

Nova Southeastern University

NSUWorks

Marine & Environmental Sciences Faculty Articles

Department of Marine and Environmental Sciences

4-20-2016

Examining the relationship between fish herbivore biomass, coral and macroalgal cover on Singapore's heavily disturbed reefs

James R. Guest SECORE

A. Vergés University of New South Wales

Andrew G. Bauman National University of Singapore, abauman@nova.edu

Alexandra H. Campbell University of New South Wales

Loke Ming Chou National University of Singapore

See next page for additional authors

Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography.

Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles

Part of the Marine Biology Commons

NSUWorks Citation

James R. Guest, A. Vergés, Andrew G. Bauman, Alexandra H. Campbell, Loke Ming Chou, David A. Feary, Jeffrey K. Y. Low, Ezequiel M. Marzinelli, Karenne Tun, and Peter D. Steinberg. 2016. Examining the relationship between fish herbivore biomass, coral and macroalgal cover on Singapore's heavily disturbed reefs .PeerJ PrePrints . https://nsuworks.nova.edu/occ_facarticles/1324.

This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

Authors David A. Feary University of Nottingham

Jeffrey K. Y. Low National Parks Board - Singapore

Ezequiel M. Marzinelli University of New South Wales

Karenne Tun National Biodiversity Centre, Singapore

Peter D. Steinberg University of New South Wales

Examining the relationship between fish herbivore biomass, coral and macroalgal cover on Singapore's heavily disturbed reefs

James R Guest¹*, Adriana Vergés^{1,2,3}, Andrew G Bauman⁴, Alexandra H Campbell^{1,2,3}, Loke Ming Chou⁵, David A Feary⁶, Jeffrey KY Low⁷, Ezequiel M Marzinelli^{1,2,3}, Karenne Tun⁷, Peter D Steinberg^{1,2,3}

¹Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

²Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

³Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia

⁴Experimental Marine Ecology Laboratory, Department of Biological Science, National University of Singapore, 117543 Singapore

⁵Tropical Marine Science Institute, National University of Singapore, S2S, 18 Kent Ridge Road, Singapore 119227

⁶School of Life Sciences, University of Nottingham, NG7 2UH, United Kingdom

⁷National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569

*Corresponding author

Present address: SECORE International, 40 Jalan Anjung 5, Horizon Hills, Nusajaya 79100, Johor Malaysia

Email: jrguest@gmail.com, tel: +60126160712.

Herbivores play a critical role in structuring benthic communities on tropical coral dominated reefs by removing macroalgae. Reducing herbivory has been implicated in promoting phase shifts from coral dominance to other ecosystem states following disturbances. Turbidity and sedimentation are key physical processes that also structure coral reef communities because they limit light penetration and interfere with biological processes such as heterotrophy. Singapore's coral reefs have been heavily impacted by human activities for decades and experience very high levels of sedimentation and turbidity. As a result, coral and algal growth is restricted to shallow reef flats and upper reef slopes. While macroalgae, particularly Sargassum spp., are abundant on the reef flats (0-2 m depth), adjacent upper reef slopes (3-4 m depth) are dominated by diverse hard coral assemblages composed primarily of sediment tolerant taxa. To gain a better understanding of the role of herbivore biomass and herbivory rates in structuring these disturbed reefs, we examined the relationship between cover of corals, macroalgae, fish herbivore biomass and urchin abundance at eight representative sites among Singapore's southern islands during two seasons. In addition we filmed herbivory assays on replicate experimental macroalgal stands (4 separate macroalgal species) and natural EAM patches at three of these sites to estimate species-specific rates of herbivory. Average coral cover at 3-4 m depth was surprisingly high (~40%), compared to current levels found on other Indo-Pacific reefs, although comparisons with historical data from these sites suggests ~15% decline in cover over the last three decades. The average biomass of herbivorous fishes ($\sim 4 \text{ g m}^{-2}$), on the other hand, was more typical of degraded and heavily overfished reefs, while urchin abundances were within the range found at other Indo-Pacific sites. Herbivorous fish were not observed feeding on macroalgal assays, while fish bites recorded on EAM were mostly made by territorial damselfish. There was a

NOT PEER-REVIEWED

significant but weak relationship between coral cover and fish herbivore biomass but none for macroalgae or between urchin abundance and benthic cover of corals and macroalgae. A possible explanation for the relatively low cover of macroalgae and low biomass of fish herbivores is that a disproportionate amount of the grazing is being carried out by one or a few fish species not captured by visual survey methods. In addition, the composition of the coral community, which is dominated by sediment tolerant taxa that are relatively resistant to thermal stress, has undoubtedly contributed to the ability of these shallow turbid reefs to persist in a coral dominated state. Furthermore, a combination of limited space for algal growth and low light levels at 3-4 m depth may limit algal growth rates so that only low levels of herbivory are necessary to prevent seaweeds outcompeting corals on these disturbed reefs. 2

Peer Preprints

Introduction

3 The distribution of corals and algae on coral reefs is strongly influenced by biological processes and physical conditions including grazing, sedimentation and light 4 availability (Steneck 1988; Bak & Engel 1979; Loya 1976). Herbivory is one of the 5 key processes structuring shallow tropical coral communities because it moderates 6 7 coral-algal interactions through the removal of fleshy macroalgae or algal turfs that can overgrow or injure adult corals and inhibits settlement and post-settlement 8 9 survival of juvenile corals (Birrell et al. 2005; McCook et al. 2001; Rasher & Hay 10 2010). Sediments also have numerous effects on coral reef benthic and community structure (McClanahan & Obura 1997). Suspended sediments limit light penetration 11 12 and particulates interfere with biological processes, such as heterotrophy in corals, and may alter rates of herbivory by fish (Bellwood & Fulton 2008; Rogers 1990). 13 Generally, increased sedimentation is considered detrimental for coral health; 14 15 however sediments can also be a source of food for corals and may provide a degree of protection from thermal stress by reducing levels of irradiance (Anthony & 16 Fabricius 2000; Cacciapaglia & Woesik 2015). 17 Over fishing has led to both reductions in rates of herbivory and removal of 18 certain key herbivore species on many coral reefs (Edwards et al. 2014; Jackson et al. 19 20 2001). Coastal development, on the other hand, has led to decreases in water quality 21 (e.g., increased turbidity) and increased rates of sedimentation (Erftemeijer et al. 2012; Rogers 1990). These disturbances, among others, have been implicated in the 22 23 observed global decline in reef condition, decreases in total coral cover and consequent deterioration of ecological function (Pandolfi et al. 2003). The effects of 24 25 combined disturbances are not always additive. Indeed, in some cases co-occurring

Peer Preprints

disturbances can interact antagonistically, resulting in the total impact of the
combined disturbances being less than the sum of individual impacts (Darling et al.
2010).

29	Declines in reef condition occur gradually in many cases, but in others, a
30	combination of disturbances results in rapid transitions from one ecosystem state to
31	another. The most widely researched of these so called phase-shifts is from
32	dominance by hard corals to dominance by fleshy macro-algae (known as a coral to
33	macroalgal phase shift) (Bruno et al. 2009; Done 1992; Hughes 1994; Hughes et al.
34	2007; McManus & Polsenberg 2004). Transitions to other ecosystem states also
35	occur, with the type of transition influenced by local physical and biological
36	conditions (Norström et al. 2009). It is generally accepted that reefs already
37	compromised by human disturbances (e.g., overfishing, reduced water quality) are
38	more prone to rapid phase shifts following acute disturbances.
39	Singapore has in the span of just under 200 years undergone a transformation
40	from a sparsely populated, forest-covered island to a highly urbanised city-state
41	(Hilton & Manning 1995). Extensive coastal development has resulted in
42	sedimentation rates and levels of total suspended solids exceeding those considered
43	optimal for tropical reefs (Dikou & van Woesik 2006; Rogers 1990; Todd et al.
44	2004). Average underwater visibility, thought to have been about 10 m in the 1960's,
45	has decreased to around 2 m at present (Chou 1996), and eutrophication has increased
46	at least 30 fold in the last 60 years (Gin et al. 2000). Erect fleshy macroalgae,
47	particularly Sargassum spp., dominate shallow reef flats (~0-2 m depth), particularly
48	during the north-east monsoon, when they bloom to form dense stands of individuals
49	measuring more than 2 m in length (Chuang 1977). Immediately adjacent to this,
50	upper reef slopes (~3-4 m depth) are dominated by diverse coral assemblages (>250

Peer Preprints 51 coral species) (Huang et al. 2009) with co

coral species) (Huang et al. 2009) with communities composed primarily of sediment 51 52 tolerant taxa (e.g., *Pectinia* spp., *Merulina* spp., *Pachyseris* spp., *Platygyra* spp. etc.) and massive, sub-massive, foliose and encrusting growth forms (Bauman et al. 2015; 53 54 Browne et al. 2015). Despite several decades of study on the ecology of Singapore's reefs, nothing 55 is known about herbivore abundance, rates of fish herbivory or the role that 56 57 herbivores play in structuring coral and algal distribution on these highly disturbed, turbid reefs (e.g., Chuang 1977; Dikou & van Woesik 2006; Guest et al. 2005; Huang 58 59 et al. 2009). In the present study we use a combination of surveys and *in situ* assays to quantify benthic community structure, herbivore biomass and herbivory rates and use 60 these data to examine the relationship between coral and algal cover and herbivores at 61 62 representative sites in Singapore's southern islands. We also compare coral cover to historical values to look for evidence of decline over the last three decades and 63 develop hypotheses about the role of herbivory and physical factors in the 64 65 maintenance of coral cover on highly disturbed turbid reefs. 66 **Methods and Materials** 67 68 All research carried out abided by local laws and was done with permission of the 69 70 Singapore National Parks Board (Permit no. NP/RP11-089). In November 2011 and 71 May 2012, surveys of benthic cover, fish biomass and urchin abundance were carried out at eight haphazardly selected shallow sites within the southern islands group (Fig. 72 73 1) that are being examined as part of ongoing studies of ecological processes on Singapore's reefs (Bauman et al. 2015; Guest et al. 2016). The eight sites were Kusu 74

75 Island, Pulau Hantu, Pulau Jong, Sisters Island, Semakau, Raffles Lighthouse,

Terumpu Pempang Tengah (TPT) and Terumpu Pempang Laut (TPL) (Fig 1). The 76 77 abundances of all reef fishes and urchins were quantified at each site along eight belt 78 transects $(30 \times 2 \text{ m for fishes}, 30 \times 1 \text{ m for urchins})$. Due to logistical constraints, 79 urchin surveys were only conducted in November 2011. Benthic community structure was quantified along the same transects using the line point count method with 80 measurements taken every 50 cm. Categories used for the benthic surveys were hard 81 82 coral, macroalgae, epilithic algal matrix (EAM sensu Wilson et al. 2003), other biota (e.g., sponges, zoantharians), crustose coralline algae (CCA), sand, silt, rock, recently 83 84 dead coral, and unconsolidated rubble. Coral community structure was also quantified 85 and data are presented in Bauman et al. (2015). All surveyed fish were categorized into 50 mm interval size classes for later conversion to biomass using species-specific 86 87 growth coefficients (Froese & Pauly 2014). Length to weight conversions were calculated as follows: $W = a * L_T^{b}$, where W is weight in grams, L_T is total length and 88 parameters a and b are constants obtained from the literature and Fishbase (Froese & 89 90 Pauly 2014). Rates of herbivory were estimated by videoing (GoPro® Hero2) feeding 91 92 assays to count bite rates on macroalgae and EAM in May 2012. Video assays took place at reef crests of three shallow sites (Sisters Island, Kusu Island and TPT), 93 94 haphazardly selected from the eight sites used for the benthic and herbivore surveys. 95 For the macroalgal studies, four locally common species were offered simultaneously 96 Sargassum ilicifolium, Lobophora variegata, Padina australis and Halimeda tuna. In

97 the EAM assays, video cameras were placed for 2-4 h in front of EAM patches

98 (approx. 0.2 m^{-2}) naturally clear of dominant macrophytes and characterized by

99 abundant EAM.

NOT PEER-REVIEWED

Video assays were done on two separate days per site with two replicates 100 deployed per food type (macroalgae and EAM). In the macroalgae assays, we placed 101 video cameras approximately 1 m in front of an experimental rope to which we tied 102 103 individual whole thalli from the four algal macroalgal species. In each replicate the four algae specimens were selected to be as similar in size as possible. Quadrats of 104 known area were placed in front of each EAM camera at the beginning of filming for 105 a few seconds to provide a spatial scale, and so that bites could later be converted to 106 bites cm⁻². To maximise independence among replicates, we separated individual 107 108 replicate assays by at least 5 m, and we positioned replicates in a different location every day within each site to ensure independence among days. Video footage was 109 analysed by counting the number of bites per hour taken by individual fishes on either 110 111 macroalgae or the EAM. A video camera fault caused us to lose one replicate from 112 the macroalgae assays on one of the days. Total hours of footage viewed were 28.2 h and 36.5 h for macroalgae and EAM assays, respectively. 113 The relationship between current coral and macroalgal benthic cover (as 114 proportions); and biomass of fish $(g m^{-2}; log[x+0.1] transformed)$ and abundance of 115 urchins (number of individuals m^{-2}) was examined among the eight sites using 116 Generalised Linear Mixed Models (GLMM) assuming a binomial distribution, with 117 sites as random effects (Zuur et al. 2009). Because fish were surveyed twice (in Nov 118 119 2011 and May 2012), time was also fitted as a random effect for analyses of

relationships between coral/macroalgal cover and fish biomass. Analyses were carried
out using the glmmADMB package in R, with the betabinomial family to account for

- 122 overdispersion (Fournier et al. 2012; Skaug et al. 2012). To determine spatial and
- temporal multivariate differences among the assemblages of fishes feeding on the
- algal assays we used a two-way permutational analysis of variance (PERMANOVA)

Peer	Preprints NOT PEER-RE
125	with the following factors: Site (3 levels, random), and day (2 levels, random, nested
126	within site). We used Bray-Curtis distance as our metric in these multivariate
127	analyses. This was only done for the EAM assays as no fish were observed to feed on
128	macroalgae during our assays (see Results).
129	
130	Results
131	
132	Pooling all data from 2011 and 2012, average cover of coral across all eight shallow
133	sites was 40.5% (SD \pm 17.3%) and ranged from 27.2 to 53.6% among sites (Fig. 2a).
134	Average macroalgal cover was 8.2% (SD \pm 9.0%) and ranged from 1.1 to 16.9%
135	among sites (Fig. 2b) whereas average cover of EAM was 9.9% (SD \pm 9.4%) and
136	ranged from 13.1 to 6.2% among sites (Fig. 2c). Much of the remaining benthos was
137	composed of abiotic substrata including unconsolidated dead coral fragments (17.9 \pm
138	11.6%, mean \pm SD), rock (6.7% \pm 8.1%, mean \pm SD) and sand/silt (7.8% \pm 6.5%,
139	mean \pm SD) (Fig. 3). A relatively low proportion of the benthos (6.1% \pm 6.5%, mean
140	\pm SD) was covered by other fauna (e.g., sponges, soft corals, zoantharians) and
141	average cover of CCA was <1%. Between surveys in November and May there was a
142	marked difference in average benthic cover of EAM and abiotic substrata. Average
143	cover of EAM decreased from 18.3% (SD \pm 6.1%) in November to 1.9% (SD \pm
144	2.26%) in May, whereas average cover of abiotic substrata (i.e., rock, sand, silt, dead
145	coral) increased from 10.2% (SD \pm 19.4%) to 21.0% (SD \pm 11.4%) (Fig. 3).
146	Surveys carried out at reef crests at 65 sites around Singapore's southern
147	island group between 1987 and 1991 found average coral cover to be similar to that
148	found in the present study at 43.0% (SD \pm 19.1%)(Chua & Chou 1992). However,
149	when we compared data just from the eight sites used in the present study, we found

that cover has declined at six of the sites and mean coral cover has declined by ~15%(Table 1).

The mean total biomass of fish across (all surveys pooled) was 26.6 g m^{-2} (SD 152 \pm 42.4 g m⁻²). Nearly 50% of the total fish biomass consisted of planktivores, 153 primarily fusiliers (f. Caesionidae) (Fig. 4b) with only ~16% of the biomass (4.4 SD \pm 154 6.5 g m^{-2}) comprised of herbivorous fishes (Fig.4b). Browsers within the family 155 Siganidae (mostly Siganus guttatus and S. virgatus) were the most dominant of the 156 functional herbivore groups (~10% of fish biomass). Scrapers (<1% of fish biomass) 157 158 were rare, and no excavators were observed. Parrotfish were also rare (1% of the fish biomass) and no acanthurids were observed (Fig. 4b). 159 Among sites and years, total fish biomass ranged from 2.7 g m⁻² to 137.3 g m⁻² 160 ², whereas biomass of fish herbivores ranged from 0.1 g m⁻² to 20.8 g m⁻² (Fig. 5). 161 Estimated mean fish herbivore biomass in Singapore is between ~2 and 43 times 162 lower than that at other Indo-Pacific reef sites with similarly high coral and low 163 164 macroalgal cover, but similar to that found on heavily overfished and degraded reef flats (e.g., Fiji) (Table 2). Average urchin abundance across all sites was 0.10 165 individuals m^{-2} (SD ± 0.17 individuals m^{-2}), of which >99% were *Diadema setosum* 166 (Fig. 5c). Urchin abundances in Singapore are within the range found on comparable 167 Indo-Pacific reefs (Table 2). Although we lack information about diel activity patterns 168 169 of urchins on Singapore's reefs, the dominant sea urchin in Singapore - Diadema setosum – is known to be a nocturnal feeder (Muthiga et al. 2007). We cannot 170 therefore rule out the possibility that our video assays underestimated algal 171 172 consumption rates by urchins and other nocturnal herbivores. No fish were recorded taking bites in the macroalgal assays during 28.2 hours 173 of filming, however a herbivorous crab (Leptodius sp) was recorded taking seven 174

175	bites (Fig. 6). A total of 741 bites (20.3 bites h^{-1}) were recorded in the EAM assays.
176	Two damselfish species contributed ca. 80% of all bites to the EAM: Pomacentrus
177	chrysurus (~50 %) and P. littoralis (~30%). In addition, the wrasse Halichoeres
178	melanurus took a further 10% of all bites within the EAM (Fig. 6). There were no
179	significant differences among sites in the assemblage of fishes observed feeding on
180	the EAM assays (Pseudo- $F_{2,3} = 2.15$, p = 0.07) and no differences among days
181	(Pseudo- $F_{3,6} = 1.03$, p = 0.45).
182	Coral cover was positively related to herbivorous fish biomass (LRT Chi-
183	square = 4.35, df = 1, $p = 0.04$), however there was no relationship between the
184	percentage cover of macroalgae and herbivorous fish biomass (LRT Chi-square =
185	2.48, df = 1, $p = 0.12$). Sea-urchin densities were not related with cover of either
186	corals (LRT Chi-square = 1.80 , df = 1 , $p = 0.18$) or macroalgae (LRT Chi-square =
187	0.06, df = 1, <i>p</i> = 0.81)(Fig. 7).
188	
189	Discussion

190

Coral cover has declined markedly on reefs worldwide in recent decades as a direct 191 result of increased human driven disturbances and changes in environmental 192 193 conditions due to climate change (Bruno & Selig 2007). Singapore has lost much of 194 its original reef area to coastal reclamation (Lai et al. 2015). Evidence from the present study suggests that coral cover on shallow reefs has also declined, on average, 195 by around 15% over the last three decades. Surveys from the two survey periods are 196 197 not from permanent transects, so some of this decline may be due to natural spatial heterogeneity. Furthermore, surveys during 2011-2012 were carried out just one to 198 two years after a major thermal bleaching event in Singapore (Guest et al. 2016). 199

Peer Preprints

Nonetheless, we suggest that deterioration in water quality as a result of coastal
development and dredging activities (Chou 2006; Gin et al. 2000) and other localised
direct impacts such as boat groundings have led to an overall decline in coral cover on
Singapore's shallow reefs since 1987.

Despite decades of anthropogenic impacts, however, Singapore's remaining 204 shallow reefs appear to have maintained levels of coral cover (~40%) comparable to 205 206 or higher than many reefs in the broader Indo-Pacific region (Bruno & Selig 2007; De'ath et al. 2012). For example, average coral cover for the Great Barrier Reef 207 208 (GBR) (De'ath et al. 2012; 214 reefs surveyed over 27 y) and the wider Indo-Pacific region (Bruno & Selig 2007; 390 reefs surveyed in 2003) is ~22 to 23% of the total 209 benthos. While coral cover alone should not be used as a measure of reef health, our 210 211 data suggest a surprising resilience for these shallow reefs considering decades of 212 human disturbances and close proximity to a highly populated urban center. Mean macroalgal cover (~8%) on surveyed reefs, on the other hand, was 213 comparable to that reported for reef crests and slopes of the Outer Central GBR but 214 much lower than that on inner central GBR reefs (Wismer et al. 2009). For example, 215 average cover of macroalgae ranges from 1.7 to 15.4% on the Outer Central GBR and 216 36.2 to 66.2% on inner central GBR reefs (Wismer et al. 2009). Cover of EAM, 217 which often forms a stable and significant part of the benthos on many reefs 218 219 (Bellwood & Fulton 2008; Wilson et al. 2003b), varied markedly between surveys in May and November. For example, average cover was ~18% in November 2011 but 220 dropped to <2% cover in May 2012. This apparent temporal variation in turf algal 221 222 abundance may be driven by seasonal environmental factors related to the change in monsoons (e.g., Diaz-Pulido & Garzón-Ferreira 2002). 223

Peer Preprints

Herbivory is critically important in mediating transitions between coral to algal dominance following disturbances on reefs (Hughes et al. 2007). Estimates of herbivorous fish biomass from underwater visual censuses can be strong predictors of grazing intensity on coral reefs (Mumby 2006) and both herbivore biomass and the dominant type of herbivores (e.g, scrapers, grazers etc.) are strong predictors of reef state (Jouffray, 2015).

In the present study, the estimated biomass of fish herbivores (~4 g m⁻²) in 230 Singapore was seven times lower than the average for Indo-Pacific reefs (~29 g m^{-2}) 231 232 (Roff & Mumby 2012). Fish herbivore biomass was up to 43 times lower than relatively undisturbed reefs (e.g., Ningaloo), but similar to heavily degraded and 233 overfished reefs (e.g., Fiji) where similar studies have been conducted (Vergés et al. 234 235 2012; Rasher et al. 2013). The majority of herbivorous fish, in terms of biomass, were 236 macroalgal browsers, primarily from the family Siganidae. Functionally important groups of herbivorous fishes such as excavating parrotfishes were absent, while 237 238 scraping parrotfishes were present in very low numbers. Surgeonfishes (Family Acanthuridae), one of the most diverse and abundant group of herbivorous fishes in 239 240 coral reefs, were not recorded during our surveys.

No feeding by fish was observed on the macroalgal assays in Singapore, while 241 242 comparable studies outside of Singapore have found fish bite rates ranging from ~13 243 to almost 1000 bites per hour on single or mixed species algal assemblages (Vergés et al. 2012). Fish bite rates on EAM were, however, within the range found for 244 comparable Indo-Pacific sites (Bennett et al. 2010; Rasher et al. 2013) but most bites 245 246 were taken by a single territorial damselfish species (P. littoralis), whereas elsewhere, the majority of the fish recorded taking bites from EAM are roving herbivores 247 248 (e.g., Scarus spp., Acanthurus spp.)(Bennett et al. 2010; Rasher et al. 2013). In the

Peer Preprints

249	absence of historical data on fish biomass we do not know if and when herbivores
250	declined or whether certain functional groups were more abundant in the past.
251	There was a significant (albeit weak) relationship between coral cover and fish
252	herbivore biomass, suggesting either a functional role for fish in maintaining high
253	cover or for coral cover in maintaining high fish biomass at some sites, or that
254	herbivorous fishes are responding to some other factor (e.g., turbidity, sedimentation)
255	that is collinear with coral cover (Wismer et al. 2009). The relatively low cover of
256	fleshy macroalgae at study reefs, however, is surprising considering the overall low
257	fish herbivore biomass, recorded low rates of herbivory and the lack of any significant
258	relationship between macrolagal cover and fish biomass among sites.
259	One possible explanation is that a single functionally important fish species is
260	responsible for a disproportionate amount of grazing in Singapore. It is possible, due
261	to the relatively poor underwater visibility (typically ~ 2 m), that certain key species
262	were missed during surveys, indeed the importance of occasional roving herbivores
263	are known to be underestimated when using visual fish census methods (Hoey &
264	Bellwood 2010). Such functional redundancy has been reported elsewhere, for
265	example, a single fish species (Naso unicornis) was found to be responsible for ~90%
266	of bites taken on Sargassum sp. in a range of reef habitats on the GBR (Hoey &
267	Bellwood 2009). Furthermore, in addition to herbivory, other processes may be
268	equally important on these turbid reefs in preventing a shift away from coral
269	dominance and towards macroalgal dominance.
270	The composition of Singapore's coral communities has undoubtedly
271	contributed to their ability to maintain relatively high levels of coral cover and resist
272	phase shifts towards macroalgal dominance. Coral communities are dominated by
273	stress tolerant and generalist taxa that can withstand high levels of sedimentation and

are relatively resistant to thermal stress (Guest et al. 2012; Browne et al. 2015; 274 Darling et al. 2013; Huang et al. 2009). For example, data from the present study 275 276 found the six most common coral genera to be *Pectinia*, *Merulina*, *Pachyseris*, 277 Montipora, Echinopora and Platygyra (presented in Bauman et al. 2015). Following disturbances, such as coral bleaching, surviving remnant colonies from these taxa are 278 capable of rapid regrowth, allowing coral cover to return more rapidly following 279 280 bleaching disturbances, compared to the relatively slow process of larval recruitment (Bauman et al. 2015; Guest et al. 2016). It is also possible that high coral cover in 281 282 Singapore has concentrated the efforts of herbivory to a relatively smaller area, making lower rates of herbivory more effective at removing macroalgae (Williams et 283 al. 2001). 284 285 Physical factors (e.g., light and sedimentation) may also be playing an important role in structuring the distribution of corals and algae on these reefs. Light 286 attenuates rapidly in Singapore's sediment-rich coastal waters, leading to an almost 287 288 50% reduction in photosynthetic efficiency of *Sargassum* spp. at the reef crest (Tun et al. 1994). If algal growth is limited by light even at quite shallow depths, then 289

relatively low rates of herbivory may be sufficient to prevent macroalgae from

291 overgrowing coral dominated areas. If so, then this provides an example of an

292 "ecological surprise", where two negative impacts (increased turbidity and reduced

293 herbivory) interact antagonistically, resulting in stable shallow coral communities

294 (Paine et al. 1998). If this is the case, then management efforts to improve water

clarity may need to be combined with efforts to increase the biomass of key

296 functional herbivores.

297 Clearly, further studies are needed to determine the contribution that fish and298 invertebrate herbivores play in structuring the distribution of corals and macroalgae

Peer	Preprints NOT PEEB-REVIEWE
299	on Singapore's shallow reefs. Of particular importance are studies to identify
300	individual key functional fish species and to determine the precise role they play in
301	preventing transitions from coral to macroalgal dominance. Such information is of
302	critical importance to the future management of these highly disturbed, turbid, yet
303	remarkably diverse coral reefs.
304	
305	Acknowledgements
306	
307	We thank R. Bonaldo and D. Rasher for providing data on fish and urchin densities in
308	Indo-Pacific reefs for comparative purposes.
309	
310	References
311 312	Anthony KR, and Fabricius KE. 2000. Shifting roles of heterotrophy and autotrophy
313	in coral energetics under varying turbidity. Journal of Experimental Marine
314	Biology and Ecology 252:221-253.
315	Bak R, and Engel M. 1979. Distribution, abundance and survival of juvenile
316	hermatypic corals (Scleractinia) and the importance of life history strategies in
317	the parent coral community. Marine Biology 54:341-352.
318	Bauman AG, Guest JR, Dunshea G, Low J, Todd PA, and Steinberg PD. 2015. Coral
319	Settlement on a Highly Disturbed Equatorial Reef System. PLoS ONE
320	10:e0127874.
321	Bellwood DR, and Fulton CJ. 2008. Sediment-mediated suppression of herbivory on
322	coral reefs: Decreasing resilience to rising sea-levels and climate change?
323	Limnology and Oceanography 53:2695-2701.

Đ

Peer	Preprints NOT PEER-REVIEWE
324	Bennett S, Vergés A, and Bellwood D. 2010. Branching coral as a macroalgal refuge
325	in a marginal coral reef system. Coral Reefs 29:471-480.
326	Birrell CL, McCook LJ, and Willis BL. 2005. Effects of algal turfs and sediment on
327	coral settlement. Marine Pollution Bulletin 51:408-414.
328	Browne NK, Tay JK, Low J, Larson O, and Todd PA. 2015. Fluctuations in coral
329	health of four common inshore reef corals in response to seasonal and
330	anthropogenic changes in water quality. Marine Environmental Research
331	105:39-52.
332	Bruno JF, and Selig ER. 2007. Regional decline of coral cover in the Indo-Pacific:
333	timing, extent, and subregional comparisons. PLOS ONE 2:e711.
334	Bruno JF, Sweatman H, Precht WF, Selig ER, and Schutte VG. 2009. Assessing
335	evidence of phase shifts from coral to macroalgal dominance on coral reefs.
336	Ecology 90:1478-1484.
337	Cacciapaglia C, and Woesik R. 2015. Climate-change refugia: shading reef corals by
338	turbidity. Global Change Biology.
339	Chou LM. 1996. Response of Singapore reefs to land reclamation. Galaxea 13:85-92
340	Chou LM. 2006. Marine habitats in one of the World's busiest harbours. In: Wolanski
341	E, ed. The Environment in Asia Pacific Harbours. Netherlands: Springer, 377-
342	391.
343	Chua CY, and Chou L. 1992. Coral reef conservation in Singapore-a case for
344	integrated coastal area management. Third ASEAN science and technology
345	week conference proceedings. p 437-445.
346	Chuang S-H. 1977. Ecology of Singapore and Malayan coral reefs-preliminary
347	classification. In: Taylor DL, editor. Proc Third Int Coral Reef Symp. Miami.
348	p 545-561.

Ð

Peer	Preprints NOT PEER-REVIEWE
349	Darling ES, McClanahan TR, and Côté IM. 2010. Combined effects of two stressors
350	on Kenyan coral reefs are additive or antagonistic, not synergistic.
351	Conservation Letters 3:122-130.
352	Darling ES, McClanahan TR, and Côté IM. 2013. Life histories predict coral
353	community disassembly under multiple stressors. Global Change Biology
354	19:1930-1940.
355	De'ath G, Fabricius KE, Sweatman H, and Puotinen M. 2012. The 27-year decline of
356	coral cover on the Great Barrier Reef and its causes. Proceedings of the
357	National Academy of Sciences 109:17995-17999.
358	Dikou A, and van Woesik R. 2006. Survival under chronic stress from sediment load:
359	Spatial patterns of hard coral communities in the southern islands of
360	Singapore. Marine Pollution Bulletin 52:7-21.
361	Diaz-Pulido G, and Garzón-Ferreira J. 2002. Seasonality in algal assemblages on
362	upwelling-influenced coral reefs in the Colombian Caribbean. Botanica
363	Marina 45:284-292.
364	Done TJ. 1992. Phase shifts in coral reef communities and their ecological
365	significance. The Ecology of Mangrove and Related Ecosystems. Netherlands:
366	Springer, 121-132.
367	Edwards CB, Friedlander A, Green A, Hardt M, Sala E, Sweatman H, Williams I,
368	Zgliczynski B, Sandin S, and Smith J. 2014. Global assessment of the status of
369	coral reef herbivorous fishes: evidence for fishing effects. Proceedings of the
370	Royal Society of London B: Biological Sciences 281:20131835.
371	Erftemeijer PL, Riegl B, Hoeksema BW, and Todd PA. 2012. Environmental impacts
372	of dredging and other sediment disturbances on corals: a review. Marine
373	Pollution Bulletin 64:1737-1765.

)

Peer	Preprints NOT PEER-REVIEWED
374	Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A,
375	and Sibert J. 2012. AD Model Builder: using automatic differentiation for
376	statistical inference of highly parameterized complex nonlinear models.
377	Optimization Methods and Software 27:233-249.
378	Froese R, and Pauly D. 2014. Fishbase. World Wide Web electronic publication.
379	www.fishbase.org, version (04/2014). Available at www.fishbase.org.
380	Gin KYH, Lin XH, and Zhang S. 2000. Dynamics and size structure of phytoplankton
381	in the coastal waters of Singapore. Journal of Plankton Research 22:1465-
382	1484.
383	Guest JR, Baird AH, Goh BPL, and Chou LM. 2005. Reproductive seasonality in an
384	equatorial assemblage of scleractinian corals. Coral Reefs 24:112-116.
385	Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall
386	K, Affendi YA, and Chou LM. 2012. Contrasting patterns of coral bleaching
387	susceptibility in 2010 suggest an adaptive response to thermal stress. PLOS
388	<i>ONE</i> 7:e33353.
389	Guest J, Low J, Tun K, Wilson B, Ng C, Raingeard D, Ulstrup K, Tanzil J, Todd P,
390	and Toh T. 2016. Coral community response to bleaching on a highly
391	disturbed reef. Scientific Reports 6:20717 DOI: 10.1038/srep20717
392	Hilton MJ, and Manning SS. 1995. Conversion of coastal habitats in Singapore:
393	indications of unsustainable development. Environmental Conservation
394	22:307-322.
395	Hoey AS, and Bellwood DR. 2009. Limited functional redundancy in a high diversity
396	system: single species dominates key ecological process on coral reefs.
397	Ecosystems 12:1316-1328.

eer	Preprints NOT PEER-REVIEWE
398	Hoey AS, and Bellwood DR. 2010. Among-habitat variation in herbivory on
399	Sargassum spp. on a mid-shelf reef in the northern Great Barrier Reef. Marine
400	Biology 157:189-200.
401	Huang DW, Tun KPP, Chou LM, and Todd PA. 2009. An Inventory of zooxanthellate
402	scleractinian corals in Singapore including 33 new records. The Raffles
403	Bulletin of Zoology Supp 22:69-80.
404	Hughes TP. 1994. Catastrophes, phase shifts and large-scale degradation of a
405	Caribbean coral reef. Science 265:1-23.
406	Hughes TP, Graham NA, Jackson JB, Mumby PJ, and Steneck RS. 2010. Rising to
407	the challenge of sustaining coral reef resilience. Trends in Ecology &
408	Evolution 25:633-642.
409	Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook
410	L, Moltschaniwskyj N, Pratchett MS, Steneck RS, and Willis B. 2007. Phase
411	shifts, herbivory, and the resilience of coral reefs to climate change. Current
412	Biology 17:360-365.
413	Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ,
414	Bradbury RH, Cooke R, Erlandson J, and Estes JA. 2001. Historical
415	overfishing and the recent collapse of coastal ecosystems. Science 293:629-
416	637.
417	Jouffray J-B, Nyström M, Norström AV, Williams ID, Wedding LM, Kittinger JN,
418	and Williams GJ. 2015. Identifying multiple coral reef regimes and their
419	drivers across the Hawaiian archipelago. Philosophical Transactions of the
420	Royal Society of London B: Biological Sciences 370:20130268.

Ð

Peer	Preprints NOT PEER-REVIEWED
421	Lai S, Loke LH, Hilton MJ, Bouma TJ, and Todd PA. 2015. The effects of
422	urbanisation on coastal habitats and the potential for ecological engineering: A
423	Singapore case study. Ocean & Coastal Management 103:78-85.
424	Loya Y. 1976. Effects of water turbidity and sedimentation on the community
425	structure of Puerto Rican corals. Bulletin of Marine Science 26:450-466.
426	McClanahan T, and Obura D. 1997. Sedimentation effects on shallow coral
427	communities in Kenya. Journal of Experimental Marine Biology and Ecology
428	209:103-122.
429	McCook LJ, Jompa J, and Diaz-Pulido G. 2001. Competition between corals and
430	algae on coral reefs: a review of evidence and mechanisms. Coral Reefs
431	19:400-417.
432	McManus JW, and Polsenberg JF. 2004. Coral-algal phase shifts on coral reefs:
433	ecological and environmental aspects. Progress in Oceanography 60:263-279.
434	Mumby PJ. 2006. The impact of exploiting grazers (Scaridae) on the dynamics of
435	Caribbean coral reefs. Ecological Applications 16:747-769.
436	Muthiga N, McClanahan T, and Lawrence J. 2007. Ecology of Diadema. Edible Sea
437	Urchins: Biology and Ecology:205-225.
438	Norström AV, Nyström M, Lokrantz J, and Folke C. 2009. Alternative states on coral
439	reefs: beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:295-306.
440	Paine RT, Tegner MJ, and Johnson EA. 1998. Compounded perturbations yield
441	ecological surprises. Ecosystems 1:535-545.
442	Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle
443	D, McClenachan L, Newman MJH, Paredes G, Warner RR, and Jackson JBC.
444	2003. Global trajectories of the long-term decline of coral reef ecosytems.
445	Science 301:955-958.

eer	Preprints NOT PEER-REVIEWED
446	Rasher DB, and Hay ME. 2010. Chemically fich seaweeds poison corais when not
447	controlled by herbivores. Proceedings of the National Academy of Sciences
448	107:9683-9688.
449	Rasher DB, Hoey AS, and Hay ME. 2013. Consumer diversity interacts with prey
450	defenses to drive ecosystem function. <i>Ecology</i> 94:1347-1358.
451	Roff G, and Mumby PJ. 2012. Global disparity in the resilience of coral reefs. Trends
452	in Ecology & Evolution 27:404-413.
453	Rogers CS. 1990. Responses of coral reefs and reef organisms to
454	sedimentation. Marine Ecology Progress Series 62:185-202.
455	Skaug H, Fournier D, Nielsen A, Magnusson A, and Bolker B. 2012. Package
456	glmmADMB: generalized linear mixed models using AD Model Builder. R
457	package version 0.7. 3. See ht tp. <i>r-forge r-project org/projects/glmmadmb</i> .
458	Steneck R. 1988. Herbivory on coral reefs: a synthesis. Proc 6th Int Coral Reef Symp.
459	p 37-49.
460	Todd PA, Ladle RJ, Lewin-Koh NJI, and Chou LM. 2004. Genotype x environment
461	interactions in transplanted clones of the massive corals Favia speciosa and
462	Diploastrea heliopora. Marine Ecology-Progress Series 271:167-182.
463	Tun K, Cheshire A, and Chou L. 1994. Photosynthetic production of the macroalgae
464	Sargassum and the seagrass Enhalus. In: Sudara S, Wilkinson CR, and Chou
465	LM, editors. Proceedings, Third ASEAN-Australia Symposium on Living
466	Coastal. Bangkok, Thailand: Chulalongkorn University. p 281-286.
467	Vergés A, Bennett S, and Bellwood DR. 2012. Diversity among macroalgae-
468	consuming fishes on coral reefs: a transcontinental comparison. PLoS ONE
469	7:e45543.
470	Williams ID, Polunin NV, and Hendrick VJ. 2001. Limits to grazing by herbivorous

Peer	Preprints NOT PEER-REVIEWED
471	fishes and the impact of low coral cover on macroalgal abundance on a coral
472	reef in Belize. Marine Ecology Progress Series 222:187-196.
473	Wilson SK, Bellwood DR, Choat JH, and Furnas MJ. 2003. Detritus in the epilithic
474	algal matrix and its use by coral reef fishes. In: Atkinson RJA, and Gibson
475	RN, eds. Oceanography and Marine Biology, An Annual Review. Oxford,
476	U.K.: Taylor & Francis, 279-309.
477	Wismer S, Hoey A, and Bellwood DR. 2009. Cross-shelf benthic community
478	structure on the Great Barrier Reef: relationships between macroalgal cover
479	and herbivore biomass. Marine Ecology Progress Series 376:45-54.
480	Zuur AF, leno EN, Walker NJ, Saveliev AA, and Smith GM. 2009. Mixed effects
481	models and extensions in ecology with R: Springer, New York.
482	

NOT PEER-REVIEWED

483484 Fig. 1. Map of study sites in Singapore's southern island group.

Fig. 2. Bar chart showing a) mean cover of hard coral b) macroalgae and c) EAM by
sites (all surveys pooled). Sites are in order of decreasing mean coral cover from left
to right. Error bars SE.

491

492 493

494 Fig. 3. Bar chart showing difference in mean benthic cover between sampling months

495 of coral, macroalgae, EAM, other biota, rubble and other substrata. Error bars are SE.

Peer Preprints

497 498

499

500

Fig. 4. Bar chart showing a) average biomass of fish families $(g m^{-2})$ and b) fish functional groups $(g m^{-2})$ from all surveys pooled. Error bars are SE. 501

NOT PEER-REVIEWED

503

Fig. 5. Bar chart showing differences among sites in a) average biomass of all fish, b) herbivorous fish (g m^{-2}) and c) urchins (ind. m^{-2}) from all surveys pooled. Sites are in 504 505 the same order as Fig. 2 with decreasing mean coral cover from left to right. Error 506 bars are SE. 507

508

NOT PEER-REVIEWED

510 511

Fig. 6. Bite rates by different species (mean Log bites h^{-1} +SE) on epilithic algal

513 matrix (EAM) and on tethered macroalgal (MA) species during timed video assays.

514 515

Fig. 7. The relationship between a) hard coral cover and fish herbivore abundance, b)
macroalgal cover and fish herbivore abundance, c) hard coral cover and urchin
density and d) macroalgal cover and urchin density among eight Singaporean reef
sites surveyed in Nov 2011 (fish and urchins) and May 2012 (fish). The fitted line is
the predicted cover based on the GLMM and shaded areas are 95% confidence
intervals.

NOT PEER-REVIEWED

Table 1. A comparison of coral cover (%) at the upper reef slopes (3-4 m depth) of 524 eight sites in Singapore's southern islands group between surveys carried out during 525 1987-1991 and 2011-2012. Data from 1987-1991 are from Table 1 in (Chua & Chou 526 1992). The earlier surveys were carried out using the line intersept transect method on 527 a single 100 m transect at each site which differs from the method used in the present 528 study (8×30 m line point intercept transects). The precise location of the transects 529 530 were not the same between sampling periods, therefore some variation in coral cover may be due to natural spatial heterogeneity. 531

532

Sites	1987-1991	2011-2012	
Raffles Lighthouse	73.3	53.6	
Pulau Hantu	43.8	53.6	
Sisters Island	65.7	27.2	
Pulau Jong	43.2	27.2	
TPT	73.9	46.2	
TPL	57.0	30.0	
Kusu Island	33.1	46.2	
Semakau	51.0	35.2	
Mean	55.1	39.9	
SD	15.0	11.3	

Table 2. Comparison of herbivores and herbivory on Indo-Pacific reefs. Numbers in parentheses are SD. * denotes that data came from inside sanctuary zones. For the comparison of macroalgal bite rate assays, different species assemblages were used in each study as follows: Singapore & Tioman, Malaysia = 1) *Sargassum ilicifolium*, 2) *Lobophora variegata*, 3) *Padina australis and* 4) *Halimeda tuna*; Keppel Islands & Ningaloo = 1) *S. myriocystum*; Viti Levu, Fiji = 1) *Sargassum polycystum*, 2) *Turbinaria conoides*, 3) *Padina boryana*, 4) *Dictyota bartayresiana*, 5) *Amphiroa crassa*, 6) *Galaxuraura filamentosa*, 7) *Chlorodesmis fastigiata*. EAM bite rates were estimated for benthic patch sizes of ~0.2 m² in Singapore and 0.3 m² in Tioman. Average number of bites is shown as bites h⁻¹m⁻² for comparison across sites.

Location	Mean herbivorous fish biomass (g m ⁻²)	Mean abundance of herbivorous sea urchins (ind m ⁻²)	Total number of fish bites on macroalgae (bites h ⁻¹)	Total number of bites on EAM (bites h ⁻¹ m ⁻²)	Reference
Singapore	4.30 (8.2)	0.10 (0.13)	0.00	109.27	Present study
Pulau Tioman, Malaysia	10.30 (14.85)	0.75 <u>(</u> 0.12)	21.52	334.93	Vergés et al, unpublished data
Keppel Islands, GBR	13.80 (17.43)	No data	13.40		Vergés et al 2012
Ningaloo, Western	186.53 (362.55)*		195.0*	67.78 No data	Bennett et al. 2010 Vergés et al 2012
Australia		0.42 <u>(</u> 0.41)			Langdon 2012
Viti Levu, Fiji	39.61 (46.20)* 3.64 (23.18)		997.41*	252.37*	Rasher et al. 2013
		0.03 <u>(</u> 0.02)* 0.02 (0.01)			Bonaldo, unpublished data