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MICROB IOLOGY

Growth productivity as a determinant of the inoculum
effect for bactericidal antibiotics
Gabriela Diaz-Tang1†, Estefania Marin Meneses1†, Kavish Patel1, Sophia Mirkin1,
Laura García-Diéguez1, Camryn Pajon1, Ivana Barraza1, Vijay Patel1, Helana Ghali1,
Angelica P. Tracey1, Christopher A. Blanar1, Allison J. Lopatkin2,3,4, Robert P. Smith1,5*

Understanding the mechanisms by which populations of bacteria resist antibiotics has implications in evolution,
microbial ecology, and public health. The inoculum effect (IE), where antibiotic efficacy declines as the density of
a bacterial population increases, has been observed for multiple bacterial species and antibiotics. Several mech-
anisms to account for IE have been proposed, but most lack experimental evidence or cannot explain IE for
multiple antibiotics. We show that growth productivity, the combined effect of growth and metabolism, can
account for IE for multiple bactericidal antibiotics and bacterial species. Guided by flux balance analysis and
whole-genome modeling, we show that the carbon source supplied in the growth medium determines
growth productivity. If growth productivity is sufficiently high, IE is eliminated. Our results may lead to ap-
proaches to reduce IE in the clinic, help standardize the analysis of antibiotics, and further our understanding
of how bacteria evolve resistance.

Copyright © 2022

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
Antibiotics have fallen victim to their own success as the emergence
of antibiotic-resistant bacteria threatens global public health (1).
Not only has this led to increased mortality (2), but it has also led
to increased health care costs (3). Further confounding the issue is
the slow pace at which previously unidentified antibiotic and non-
antibioic approaches to treat infections are being developed (4). Ac-
cordingly, there is a need to understand the mechanisms by which
bacteria resist existing antibiotics toward extending their functional
shelf life. Most of the research toward understanding antibiotic re-
sistance has focused on the behavior of the individual bacterium (5).
However, there is growing awareness that bacterial population dy-
namics can confer resistance (6). These include the dissemination of
conjugative plasmids conferring antibiotic resistance (7), antibiotic-
mediated altruistic death (8), and inactivation of antibiotics through
collective degradation (9). A general understanding of how bacterial
populations resist antibiotics has bearing on the evolution of resis-
tance itself (10), how resistance mechanisms shape microbial
ecology in nonclinical settings (6), and in the treatment of infectious
diseases.
One widely observed mechanism that a population of bacteria

can use to tolerate antibiotics is the inoculum effect (IE). Here,
the initial density of a bacterial population determines its
minimum inhibitory concentration (MIC) (11). For a given concen-
tration of antibiotic, a population initiated from a sufficiently high
density will grow and survive. Otherwise, for the same concentra-
tion of antibiotic, if the initial density of the population is too low,
the population will not grow. IE has been observed for nearly all

bacteria and antibiotics [e.g., (12), SM (Supplementary Materials)
Results], can occur with only small differences in the initial popu-
lation density (13), and can arise in the absence of genetically
encoded resistance mechanisms (14). Resistance to antibiotics
owing to IE has been reported in the clinical setting (tables S1
and S2). Increasing antibiotic concentrations to combat IE may
not be plausible as high concentrations of antibiotics can have neg-
ative health consequences (15). Dosing high-density infections with
standard antibiotic concentrations has the potential to drive addi-
tional resistance mechanisms (16). Developing approaches to treat
high-density bacterial infections is required.
Most of themechanisms that have been used to explain IE rely on

growth dynamics (17) or the ratio of antibiotic to antibiotic target
(18). Several antibiotic specific mechanisms have also been pro-
posed for IE including induced degradation of the antibiotic
target by bacterial proteases (14), differential growth rates (19),
and collective inactivation of antibiotics (20). However, these mech-
anisms cannot explain IE for different antibiotic classes (14, 19),
many have yet to be verified experimentally (17, 18), and they gen-
erally do not inform of strategies to rationally reduce, or eliminate,
IE. To develop strategies to reduce or eliminate IE, it is important to
discover a mechanism that can explain IE across antibiotic classes.
While bacterial growth ratewas initially thought to be a predictor

of antibiotic efficacy, it has been recently shown that bacterial met-
abolic state better predicts antibiotic efficacy; when growth rate is
constant, increasing the concentration of adenosine 5′-triphosphate
(ATP) in the cell increases bactericidal antibiotic lethality (21). This
finding is directly relevant to IE as bacterial density and the concen-
tration of ATP are interrelated. In a closed system, highly dense pop-
ulations, such as those in stationary phase, have reduced
concentrations of ATP due to nutrient depletion (22). Populations
with faster growth rates, such as those in log phase, have increased
ATP concentrations (23). Within the context of IE, the average con-
centration of ATP of a population would be largely determined by
its initial density. Bacteria initiated at a high density would experi-
ence a short period of growth before entering stationary phase (24),
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which would reduce the concentration of ATP, and thus reduce an-
tibiotic efficacy. For the same carrying capacity, bacteria initiated
from a lower density have a longer period of log phase growth
before stationary phase. This increases the time over which the con-
centration of ATP in the cell is high, which would potentiate anti-
biotic lethality. Although growth and energy utilization can be
positively correlated (25), they are not strictly coupled and their re-
lationship depends on the growth environment (e.g., nutrients,
temperature, etc.). For example, fast growth can coincide with
reduced ATP production (26), and slow growth can coincide with
increased ATP production (21). While interactions between cell
density and ATP production could explain IE for bactericidal anti-
biotics, most of the current mechanisms that explain IE do not
account for changes in the energy status of the bacteria (summary
in SM Results). Accordingly, we ask whether the interaction
between growth rate and the concentration of ATP can explain IE
for bactericidal antibiotics. Addressing this question may allow for
the development of protocols to treat high-density bacterial infec-
tions more effectively.

RESULTS
Theoretical basis of growth productivity
Previous work has demonstrated that both growth rate and the con-
centration of ATP can be perturbed by growing bacteria in minimal
medium supplied with a carbon source and various concentrations
of casamino acids, which serve as a nitrogen source (21). Both ATP
production (27) and growth rate (28) can be affected by the concen-
tration and identity of a carbon source, together which serves to es-
tablish a unique growth environment. As the relationship between
growth and the concentration of ATP could potentially explain IE,
we developed a simple metric, called growth productivity, to esti-
mate the relationship between growth and the concentration of
ATP for each unique growth environment (Fig. 1A). Growth pro-
ductivity measures the change in the concentration of ATP during
log phase growth as a function of the change in maximum growth
rate owing to differences in minimal media composition. Numeri-
cally, we can estimate growth productivity using the slope of a linear
line fit through a plot of various concentrations of ATP as a function
ofmaximum growth rate. By quantifying growth productivity across
minimal media that allows different maximum growth rates and
concentrations of ATP to be achieved, but with the same carbon
source, we can derive a single value for a carbon source at a given
percentage that estimates the relationship between growth rate and
ATP production. If maximum growth rate is held constant, increas-
ing the concentration of ATP would result in high growth produc-
tivity. Alternatively, if the concentration of ATP decreases when
maximum growth rate is held constant, growth productivity is
low. In scenarios where both growth rate and the concentration of
ATP increase, if the increase in the concentration of ATP outpaces
the increase in maximum growth rate, growth productivity increas-
es. We focused on ATP as a measure of energy status in the bacteria
due to its previously identified and critical role in determining an-
tibiotic lethality (21).
To quantify growth productivity, we independently measured

maximum growth rate and the concentration of ATP (Fig. 1B).
We grew bacteria in minimal medium with different percentages
of carbon source and increasing percentages of casamino acids
(21). Changing the percentage of carbon source and casamino

acids alters both growth rate and ATP production (21), thus allow-
ing us to examine growth productivity over a wide range of environ-
ments. Maximum growth rate was quantified by making high-
resolution measurements of cell density in the absence of antibiot-
ics. We then plotted cell density as a function of time and estimated
the maximum growth rate by fitting the experimental data using a
logistic growth equation (eq. S1, SM Methods). The concentration
of ATP during log phase growth and under aerobic conditions was
measured in the absence of antibiotics using a bioluminescent assay,
a method that is a strong correlate of alternative measures of energy
status in bacteria including the ratio of nicotinamide adenine dinu-
cleotide (NAD+)/reduced form of NAD+ (NADH) and O2 con-
sumption rate (SM Results) (21). Growth productivity [ATP
(micromolar)/growth rate (per hour)] for a given percentage of
carbon source was determined by quantifying the slope of a linear
line fit through a plot of the concentration of ATP versus maximum
growth rate. A negative slope indicates low growth productivity; the
concentration of ATP produced decreases with maximum growth
rate. Alternatively, a positive slope indicates high growth productiv-
ity; the concentration of ATP increases with maximum growth rate.
We used a linear regression to approximate and simplify our esti-
mate of growth productivity for a given carbon source (additional
justification in SM Results).

Increasing growth productivity decreases the strength of IE
when Escherichia coli is grown in medium with glucose
We grew E. coli that did not contain extrachromosomal elements
conferring antibiotic resistance in M9 medium with different per-
centages of glucose and casamino acids. We started with glucose as
it is inefficiently metabolized at high, but not low, concentrations
(29) and is a preferred carbon source for E. coli (30). After measur-
ing maximum growth rate (fig. S1) and the concentration of ATP
(Fig. 1C), we quantified growth productivity (Fig. 1D). We observed
a biphasic relationship between the percentage of glucose and
growth productivity; growth productivity was lowest with 0.04%
glucose. Increasing or decreasing glucose away from this concentra-
tion increased growth productivity. The greatest growth productiv-
ity was observed with 0.00004% glucose.
We then quantified IE under aerobic conditions for the amino-

glycoside kanamycin (kan) by measuring the MIC for two popula-
tions of E. coli strain BW25113 initiated from either high (5000×
dilution from an overnight culture that had reached stationary
phase; fig. S2) or low (50,000× dilution) density. The initial
density of the high initial density population [1.13 × 106 colony-
forming units (CFU) per milliliter] was greater than the density rec-
ommended for testing MIC in the clinic (5 × 105 CFU/ml) and
outside of the acceptable range for MIC testing [2 to 8 × 105
CFU/ml; (13, 31)], thus establishing the clinical relevance of this
initial density. As above, we grew E. coli in the presence of different
percentages of glucose and casamino acids. After 24 hours, we mea-
sured cell density [optical density at 600 nm (OD600)] and observed
that, for a given percentage of glucose, MICkan increased with the
percentage of casamino acids. Moreover, MICkan for the high
initial density population was generally greater than that of the
lower initial density population, confirming IE in our
system (Fig. 2A).
The strength of IE (ΔMIC) for a given percentage of carbon

source was determined using the average difference in MIC
between the initial high- and low-density populations; an increase
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in ΔMIC indicates that IE is enhanced, whereas a decrease indicates
a reduction of IE (Fig. 2B, left). Experimentally, we observed a bi-
phasic relationship between ΔMICkan and the percentage of glucose
in the growth medium (Fig. 2B, right). ΔMICkan peaked at a glucose
percentage of 0.04%; increasing or decreasing the percentage of
glucose from 0.04% led to a reduction in ΔMICkan. When
ΔMICkan was plotted as a function of growth productivity,
ΔMICkan decreased with increasing growth productivity [simple
linear regression, R2 = 0.95, P = 0.005, Fig. 2C; Deming regression,
P = 0.005 and weighted least squares (WLS) regression, P = 0.01; the
two former methods of regression account for error in measuring
growth productivity]. At the lowest growth productivity measured,
ΔMICkan was greatest and was greater than zero (P = 0.004, one-
tailed t test). If growth productivity was sufficiently high,
ΔMICkan was not different from zero (P ≥ 0.09, one-tailed t test;
P values henceforth found in figure legends).
To determine the generality of this finding, we then measured

ΔMIC for an additional aminoglycoside, streptomycin. Consistent
with kanamycin, as growth productivity increased (Fig. 2C), ΔMIC
decreased, and ΔMIC was not significantly different from zero if
growth productivity was sufficiently high. Next, we measured
ΔMIC for two additional antibiotics that were representative of
the major bactericidal classes: carbenicillin (β-lactams) and cipro-
floxacin (fluoroquinolones). Combined, these antibiotics cover the

three main bactericidal modes of action (32). Similar to kanamycin
and streptomycin, both carbenicillin and ciprofloxacin showed high
ΔMIC under low growth productivity conditions, and ΔMIC de-
creased with increasing growth productivity (Fig. 2C). ΔMIC of car-
benicillin was not significantly different from zero under the highest
growth productivity condition. The relationship between ΔMIC
and growth productivity remains consistent when NAD+/NADH
is used to measure metabolism (fig. S6). InitiatingMIC experiments
using bacteria in midlog (as opposed to stationary) does not change
the relationship between ΔMICkan and growth productivity (fig.
S6). The number of antibiotic targets as a result of changes in
growth and metabolism is not correlated with ΔMICkan (fig. S7).
The presence of efflux pumps and the endogenous ampC β-lacta-
mase found in E. coli strain BW25113 did not affect the qualitative
trends in IE as determined using knockout strains (fig. S7). For a
discussion of alternative hypotheses that could explain IE, including
the role of growth and metabolism independently, please see
SM Results.

Model-guided perturbation of growth and metabolism
alters growth productivity and ΔMIC
To gain a general intuition into the interactions between growth,
metabolism, and antibiotic lethality, we created an abstracted math-
ematical model (see Materials and Methods; Eq. 1). Bacteria (N )

Fig. 1. Growth productivity as a metric to quantify the relationship between growth and metabolism. (A) If metabolism (i.e., [ATP]) increases at a greater rate than
maximum growth rate, growth productivity is high. If metabolism (i.e., [ATP]) decreases with increasing maximum growth rate, growth productivity is low. (B) Experi-
mental quantification of growth productivity. Wemeasured maximum growth rate at each percentage of carbon source and casamino acids. To measure metabolism, we
measured [ATP] at each percentage of carbon source and casamino acids. Growth productivity for a carbon source was estimated by plotting [ATP] as a function of
maximum growth rate. The slope of a linear line through this plot determined growth productivity; a negative slope (shown) indicates low growth productivity,
whereas a positive slope indicates high growth productivity. (C) [ATP] as a function of maximum growth rate for E. coli grown in different percentages of glucose
and casamino acids. ATP measurements from three biological replicates (minimum of two technical replicates). Maximum growth rate from three biological replicates.
Shading denotes 95% confidence intervals. Error bars denote SD. Growth curves in fig. S1; average residual values from growth curve analysis in table S3. [ATP] was
measured below carrying capacity of the medium and is reduced in stationary phase but remains relatively constant during log phase (fig. S2). (D) Growth productivity
determined from data in (C) plotted as a function of percent glucose in the growth medium. Error bars denote standard error from linear regression used to determine
growth productivity. Summary statistics in table S7.
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grow according to logistic growth scaled as a function of basal
growth rate (μ; per hour) and metabolism (ε; millimoles per gram
per hour). ε is an approximation of a maintenance coefficient (33),
which is the amount of energy that is not directly used to create
biomass. Consistent with our experimental definition of growth
productivity, the relationship between μ and ε defines growth pro-
ductivity; if μ is held constant, increasing ε, which approximates an
increase in [ATP], increases growth productivity. A modified Mi-
chaelis-Menten equation describes per-capita death of bacteria
due to antibiotics, which is dependent on the initial density of the
population, the concentration of antibiotic (A), and an antibiotic
killing rate (b). If growth due to the relative values of μ and ε out-
paces per-capita antibiotic death, the population lives; otherwise, if
antibiotic death is greater than growth, the population perishes. Re-
ducing initial N reduces the logistic growth term in our model,

which increases the effect of per-capita death due to antibiotics.
This decreases the initial density at which bacteria die.
Our simulations predict IE. For given values of μ and ε, if the

initial density of the population (N ) is sufficiently high (Nhigh),
the populations will grow. Otherwise, for the same value of A, if
initial N is low (Nlow), the population will die. The difference in
the smallest values of Awhere Nhigh and Nlow do not grow captures
ΔMIC. Over a wide range of values, our simulations show that for a
given μ, increasing ε increases growth productivity and reduces
ΔMIC (Fig. 3). Our simulations allowed us to gain a general intui-
tion into the relationship between the combined effect of growth (μ)
and metabolism (ε) on IE.
Our model predicts that increasing ε and decreasing μ will in-

crease growth productivity. This perturbation is predicted to de-
crease ΔMIC (Fig. 4A). In addition, owing to increased

Fig. 2. Growth productivity in medium with glucose can determine the strength of IE. (A) MIC of kanamycin for high- and low-density populations. SD from ≥3
biological replicates. Raw MIC data in fig. S3. Twenty-four hours of growth is sufficient time to measure IE (fig. S2). We confirmed the presence of IE in kanamycin with a
lower initial density (1/500,000×; fig. S2). (B) Left: Strength of IE (ΔMIC) = MIChigh − MIClow for each percentage of casamino acids for a given concentration of carbon
source. Right:ΔMICkan as a function of percentage of glucose in themedium. Data from (A). SD from≥3 biological replicates. (C)ΔMIC as a function of growth productivity.
SD from≥4 different percentages of casamino acids per percentage of glucose. For each percentage of casamino acids,ΔMIC from≥3 biological replicates. *ΔMICwas not
significantly different from zero (*P = 0.09, **P = 0.20, ***P = 1, one-tailed t tests compared to zero). P and R2 on the figure from a linear regression (table S9). Shading de-
notes 95% confidence interval. x-axis error bars denote standard error from regression used to determine growth productivity. Trends were significant using a Deming
regression (table S10) and a WLS regression (table S11). Raw data in fig. S4. We found the same trends between ΔMIC and growth productivity when maximum growth
rates were determined using a modified Gompertz equation or a k-means clustering analysis (fig. S5), when NAD+/NADH was used to measure metabolism, when E. coli
was grown to midlog phase before initiating MIC experiments, and with a higher density of E. coli (1/500×; fig. S6). Maximum growth rate or [ATP] alone could not
consistently account for changes in ΔMIC (SM Results and fig. S19).
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metabolism (ε), the model predicts an increase in antibiotic efficacy,
which can be quantified as a reduction in the average MIC of the
high- and low-density populations when considered separately. Av-
eraging the MIC values of these populations can be used to measure
changes in antibiotic efficacy due to metabolism and outside of
density-dependent effects. To test these predictions, we grew E.
coli in kanamycin at 42°C or at 37°C with a serine protease inhibitor.
As reported previously, these perturbations increased [ATP] (34,
35) and reduced maximum growth rate (Fig. 4B) (36), thus increas-
ing growth productivity (Fig. 4C). As predicted by our model, this
decreased ΔMICkan and the average MICkan of the high- and low-
density populations (Fig. 4C). The relative decrease in ΔMICkan and
average MICkan followed the relative increase in growth
productivity.
Our model predicts that interactions between ε, μ, and b deter-

mine ΔMIC. When holding ε and μ constant, increasing b would
decrease average MIC by increasing antibiotic lethality. However,
changes in ε and μ can offset increases to b. If both ε and μ are in-
creased, this can offset the increase in b resulting in an increase to
average MIC. This prediction is consistent with previous experi-
mental data showing that increasing [ATP] and growth rate
reduces antibiotic lethality (21). Our model predicts that if the in-
crease in ε is greater than μ, growth productivity increases, which
reduces ΔMIC even when the average MIC of the high- and low-
density populations increases (Fig. 5A). To test these predictions,
we used E. coli that lacked gltA and cydB, genes that are involved

in the tricarboxylic acid cycle and electron transport, respectively.
Removal of genes involved in central carbon metabolism has been
reported to increase cellular respiration and ATP production, which
potentiates antibiotic lethality (37). Both strains showed increased
[ATP] and maximum growth rate, the former of which was greater
(Fig. 5B). As predicted by the model, this increased growth produc-
tivity and average MICkan but reduced ΔMICkan (Fig. 5C). These
simulations and experiments provide support for the role that
growth productivity plays in IE.

Growth productivity determines ΔMIC for multiple species
of bacteria
Bacterial species differ in their growth requirements. For a given
carbon source, each species could have a unique growth productiv-
ity and thus a different ΔMIC. To test this, we determined growth
productivity and ΔMICkan with glucose and in aerobic conditions
for Alcaligenes faecalis and Pseudomonas aeruginosa. The percent-
age of glucose in the medium had different effects on ΔMICkan for
each species (Fig. 6A). As growth productivity increased, ΔMICkan
decreased (Fig. 6B). For the same percentage of glucose (0.04%),
each species had a unique growth productivity. To explore this,
we quantified growth productivity (0.04% glucose) and ΔMICkan
for Acinetobacter baumannii and Klebsiella pneumoniae. Each
species had its own growth productivity (Fig. 6C). When we grew
P. aeruginosa in medium that contained acetate, which is a preferred

Fig. 3. Amathematicalmodel (Eq. 1) captures the qualitative trends ofmetab-
olism, growth rate, and ΔMIC. Top: Heatmap showing the interactions between
growth rate (μ), metabolism (ε), andΔMIC. InitialNhigh = 5 × 10−2. InitialNlow = 10−4.
Bottom: Left: For given values of μ and ε, simulation initiated with low initial N go
extinct at a lower value of A as compared to high initial N. The difference between
the lines determines ΔMIC. Right: Increasing ε at constant μ (increasing growth
productivity) reduces ΔMIC. Parameters in table S4. Sensitivity analysis in fig. S8.
Bottom left: μ = 0.6, ε = 0.055; bottom right: μ = 0.6, ε = 0.385. For all simulations:
t = 24 hours. ΔMIC shown above each simulation.

Fig. 4. Model-guided manipulation of growth rate and metabolism alters
growth productivity and ΔMIC. (A) Our model predicts that increasing ε and re-
ducing μ increase growth productivity, reduceΔMIC, and decrease the value of A at
which high- and low-density populations go extinct. Top: μ = 0.6, ε = 0.055;
bottom: μ = 0.48, ε = 0.11. Parameters in table S4. (B) Average maximum growth
rate (top) and [ATP] (bottom) of E. coli grown at 37°C, at 42°C, or at 37°C with 10 ng/
ml of serine protease inhibitor (+ inh) in medium with 0.04% glucose. Maximum
growth rate and [ATP] averaged from five different casamino acid concentrations,
each consisting of three biological replicates. *Increase in [ATP] (P ≤ 0.049, one-
tailed t test). Error bars denote SD. Data for 37°C from Fig. 1C. For (B) and (C),
raw data in fig. S9. Average residuals for growth curve fitting in table S3. (C) Top:
ΔMICkan of E. coli grown at 37°C, 42°C, or at 37°C + inh. Growth productivity indi-
cated above each bar with standard error shown (from linear regression used to
determine growth productivity). *Decrease in ΔMIC (P = 0.033, one-tailed t test).
Bottom: Average MIC from initial high- and low-density populations of E. coli. *Sig-
nificant decrease in average MIC (P = 0.017, one-tailed t test). MIC averaged from
five percentages of casamino acids, each with ≥3 biological replicates. Error bars
denote SD. Similar trends were observed when using a modified Gompertz equa-
tion to determine maximum growth rate (fig. S9).
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carbon source relative to glucose (38), growth productivity in-
creased, which resulted in a decrease in ΔMICkan as compared to
when glucose was used in the growth medium (fig. S10). Thus, al-
though increasing growth productivity can reduce IE for bacteria
other than E. coli, species-specific carbon source preferences
dictate growth productivity. We did not find a significant relation-
ship between ΔMICkan and maximum growth rate or [ATP] when
all bacterial species were considered (SM Results and fig. S10).

When growth productivity, as determined by carbon
source, is sufficiently high, IE can be abolished
Because each bacterial species studied had a different growth pro-
ductivity for the same percentage of glucose, we wondered how
growth productivity and ΔMIC would be affected by carbon
sources other than glucose. Carbon sources can alter both ATP pro-
duction (39) and growth rate (40). Given the breadth of carbon
sources that we could test, we used flux balance analysis (FBA)
coupled with a whole-genome model of E. coli to predict which
carbon sources would reduce growth productivity. Using published
flux parameters (table S5), we simulated biomass accumulation and
ATP synthase activity for 10 carbon sources in addition to glucose.

Growth productivity was determined as the ratio of ATP synthase
activity to biomass accumulation. Our FBA predicts a range of
growth productivities; glucose had the smallest growth productivity,
whereas uracil and acetate had the greatest (Fig. 7A). Thus, we
predict that glucose will have the greatest ΔMIC, whereas uracil
and acetate will have the smallest.
To test these predictions, we grew E. coli in the 11 carbon sources

studied in our FBA and determined ΔMICkan under aerobic condi-
tions. To protect against concentration-dependent changes in
ΔMIC and growth productivity, the percentage of carbon source
was constant (0.04%). Carbon sources with the smallest (glucose)
and greatest (acetate/uracil) FBA-predicted growth productivities
had the largest and smallest values of ΔMICkan, respectively
(Fig. 7B). A range of ΔMIC values were found between these two
extremes for the additional carbon sources. The relationship
between ΔMICkan and growth productivity remained consistent
and significant when growth productivity was calculated using ex-
perimentally derived ATP concentrations and final biomass as com-
puted using FBA (Fig. 7B, inset), indicating a general qualitative
agreement between experimentally derived concentrations of ATP
and those predicted by FBA.
To validate the FBA-predicted trends in growth productivity, we

quantified growth productivity for all 11 carbon sources and an ad-
ditional 7 carbon sources that lacked published flux parameters. We
observed a significant negative linear correlation between ΔMICkan
and growth productivity (Fig. 7C). ΔMICkan for uracil and acetate,
which represented the two greatest growth productivities measured,
was no different from zero. We found a strong positive correlation
between FBA-predicted growth productivity and experimentally
measured growth productivity for each carbon source (Fig. 7C,
inset). Last, we tested the significance of the slope from Fig. 7C
by generating 2500 bootstrapped slopes and determined whether
these bootstrapped slopes were significantly different from zero
using a t test. The relationship between ΔMICkan and growth pro-
ductivity was significantly different from zero (P < 0.001). We note
that the concentration of ATP measured in our experiments
matches previous published trends and that trends in growth pro-
ductivity remain consistent when [ATP] is measured at different
times during log phase growth (fig. S14). A significant linear rela-
tionship between growth productivity and ΔMICkan continues to be
observed when growth productivity for insignificant relationships
between [ATP] and maximum growth rate (as determined using a
linear regression) are removed from the analysis (fig. S15). A reduc-
tion in ΔMICkan at higher growth productivities cannot be due to a
slow growth rate, which would impede the ability of the low-density
population to reach carrying capacity (fig. S16). Last, the relation-
ship between growth productivity and ΔMICkan remains significant
when equimolar concentrations of amino acids, as opposed to casa-
mino acids, are used (fig. S17).
To determine whether carbon source–determined growth pro-

ductivity could reduce ΔMIC for additional antibiotics, we grew
E. coli in five carbon sources that spanned the range of growth pro-
ductivities. As growth productivity increased, ΔMIC decreased for
carbenicillin and ciprofloxacin (Fig. 8, see SM Results for explana-
tion as to why the relationship between ciprofloxacin and growth
productivity is not significant). Consistent with Fig. 2C, when
growth productivity was sufficiently high (uracil), ΔMIC of carbe-
nicillin and ciprofloxacin was no different from zero. The concen-
tration of ATP, maximum growth rate, and pHwere not consistently

Fig. 5. Model-guided manipulation of growth rate and metabolism using E.
coli strains that lack genes in the tricarboxylic acid cycle and electron trans-
port affects growth productivity and ΔMIC. (A) Our model predicts that increas-
ing b, ε, and μ increases growth productivity, decreases ΔMIC, and increases
average MIC. Top: μ = 0.6, ε = 0.055, and b = 0.1; bottom: μ = 0.84, ε = 0.0935,
and b = 0.117. Parameters in table S4. (B) Average maximum growth rate (top)
and [ATP] (bottom) of E. coli knockout strains ΔgltA and ΔcydB. *Significant in-
crease in growth rate or [ATP] (P < 0.001 for ΔgltA growth rate, P = 0.006 for
ΔcydB ATP, P = 0.013 for ΔgltA ATP, one-tailed t tests). Maximum growth rate av-
eraged from four different casamino acid concentrations, each consisting of three
biological replicates. [ATP] averaged from three biological replicates (three techni-
cal replicates) for each of four different casamino acid concentrations. Error bars
denote SD. Data for 37°C and wild type (WT) from Fig. 1C. Raw data in fig. S9.
Average residuals for curve fitting in table S3. (C) Top: ΔMIC of ΔgltA and ΔcydB
grown in streptomycin (strp). Growth productivity indicated above each bar with
standard error shown (from linear regression used to determine growth produc-
tivity). *Significant decrease in ΔMIC (P = 0.016 for ΔcydB, P = 0.028 for ΔgltA, one-
tailed t tests). Bottom: Average MIC from both high and low initial density popu-
lations of ΔgltA and ΔcydB. *Significant increase in average MIC of both popula-
tions (P = 0.001 for ΔcydB, P = 0.008 for ΔgltA, one-tailed t tests). Similar trends
were observed when using a modified Gompertz equation to determine
maximum growth rate (fig. S9). Error bars denote SD from ≥3 biological replicates.
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or significantly associated with ΔMICkan across all growth condi-
tions, bacterial species, and antibiotics, providing further support
of growth productivity as a critical determinant of IE (SM Results,
figs. S10 and S19).

DISCUSSION
Our analysis suggests that growth productivity can account for IE
across multiple classes of bactericidal antibiotics and in multiple
species of bacteria. As the growth environment, and antibiotic
used, could influence the presence of IE, differences in host-specific
environments could account for conflicting observation of IE in the
clinic (41). Our proposedmechanism to account for IE is dependent
on both growth productivity and the initial density of the popula-
tion. For a given growth productivity, and in a closed system, pop-
ulations initiated at lower initial density will produce more ATP
over a longer period of time as compared to their higher initial
density counterparts. As higher initial density populations will

enter stationary phase quickly, a concurrent reduction in the con-
centration of ATP will protect these populations from antibiotics;
this leads to a higher MIC. Conversely, populations initiated at
lower initial density will produce ATP over a longer period of
time before entering stationary phase; this longer period of
growth where ATP production is greater than in stationary phase
will potentiate antibiotic lethality and reduce MIC. Thus, for a
given growth productivity, higher initial density populations have
a greater MIC relative to lower initial density populations, thus ful-
filling the core definition of IE. When comparing between different
growth productivities, the relationship between the concentration of
ATP and maximum growth rate determines MIC. For populations
with low growth productivity, ATP production decreases with in-
creasing maximum growth rate, resulting in a negative growth pro-
ductivity (e.g., glucose). In this scenario, the effective reduction of
[ATP] at higher log phase maximum growth rates reduces antibiotic
lethality. As bacteria initiated from high initial density will have
reduced [ATP] owing to both lower growth productivity and

Fig. 6. Growth productivity determines the strength of IE for multiple bacterial species. (A) ΔMICkan as a function of % glucose y for A. faecalis, P. aeruginosa, and E.
coli (from Fig. 2B). SD from ≥3 biological replicates. For (A) and (B), SD from ≥4 different percentages of casamino acids per percentage of glucose. Raw data in fig. S10.
Average residuals for growth curve fitting in table S3. (B) ΔMICkan as a function of growth productivity. *ΔMICkan not greater than zero (*P = 0.09, **P = 0.20, one-tailed t
tests). P and R2 values on the figure from a linear regression. Shading denotes 95% confidence interval. Trends were significant using a Deming regression (table S10) and
a WLS regression (table S11). Error bars: x axis = standard error from linear regression used to determine growth productivity, y axis = SD. Raw growth productivity data in
fig. S10A. (C) ΔMICkan as function of growth productivity for multiple bacterial species. Glucose = 0.04%. AB = A. baumannii, EC = E. coli, KP = K. pneumoniae, AF = A.
faecalis, and PA = P. aeruginosa. We did not find a significant linear correlation between ΔMICkan and [ATP] or maximum growth rate for P. aeruginosa and A. faecalis. Error
bars: x axis = standard error from linear regression used to determine growth productivity, y axis = SD.We did not find a significant linear correlation betweenΔMICkan and
[ATP] or maximum growth rate when all species were considered (glucose = 0.04%; fig. S10 and SM Results).
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earlier entry into stationary phase (as compared to their lower initial
density counterparts), they are protected against antibiotics. Thus,
ΔMIC is high. As growth productivity increases, bacteria produce
higher concentrations of ATP at higher maximum growth rates,
thus leading to a positive growth productivity (e.g., acetate). This
increase in [ATP] potentiates antibiotic lethality. Thus, for popula-
tions initiated from high initial density, even when rapidly ap-
proaching stationary phase owing to higher maximum growth

rates, increased ATP-driven antibiotic lethality reduces theMIC rel-
ative to lower initial density populations. Thus, ΔMIC is reduced.
Last, and as supported by our results, if growth productivity is suf-
ficiently high (e.g., acetate and uracil), theMICof both high and low
initial density populations are effectively the same, and ΔMIC is
reduced to zero. Our findings generally apply to a closed system
where growth and metabolism are bounded by nutrient limitation.
It is currently unclear whether growth productivity can account for
IE in an open system, such as a chemostat. We note that our estima-
tion of growth productivity in this manuscript has its limitations.
For example, we chose to estimate the relationship between the con-
centration of ATP and maximum growth rate using the slope of a
linear line, which will not capture any significant nonlinear trends
in this relationship. Despite these approximations, the relationship
between ΔMIC and growth productivity remains strong; we have
observed this relationship consistently for multiple species of bac-
teria and carbon source, in addition to conditions that used either
casamino acids or equimolar concentrations of amino acids (fig.
S17, SM Results). Thus, our simplified approach to estimate
growth productivity does not appear to influence the overall inter-
pretation of its relationship to ΔMIC.
While previous work has indicated that the concentration of

ATP and maximum growth rate can separately influence antibiotic
efficacy, our metric of growth productivity may serve to unify the
influence of these features of bacterial physiology, perhaps even in
the absence of IE. It is important to consider both the role of ATP
and growth rate together when considering IE. If one only considers
the concentration of ATP in the absence of changes in growth, entry
into stationary phasewould not be considered.Without considering
entry into stationary phase owing to growth, the concentration of
ATP would not be reduced for the high initial density population.
Thus, populations initiated from both high and low initial density
would have the same concentration of ATP, which would likely

Fig. 7. FBA predicts the effects of different carbon sources on growth productivity. (A) In silico prediction of growth productivity [ATP synthase activity (ATPsyn)/
biomass] using FBA. Parameters in table S5. (B) ΔMICkan as a function of FBA-predicted growth productivity. P and R2 values from linear regression. Shading denotes 95%
confidence interval. SD from≥3 biological replicates. Inset: ΔMICkan versus growth productivity calculated using experimental [ATP] and FBA-predicted biomass. SD from
≥3 biological replicates and ≥4 percentages of casamino acids. *ΔMICkan is not greater than zero (*P = 0.091, one-tailed t test). Sensitivity analysis for FBA—fig. S11. Raw
data—fig. S12. (C) ΔMICkan as a function of experimentally determined growth productivities. Carbon source = 0.04%. *ΔMIC not greater than zero (*P = 0.091). Raw MIC
data—fig. S12. Growth curves—fig. S13. Raw growth productivity data—fig. S14. P and R2 from linear regression (table S9). Shading denotes 95% confidence interval.
Trends were significant using Deming (table S10) or WLS regression (table S11). Inset: Correlation between FBA predicted and experimentally determined values of
growth productivity. SD from ≥3 biological replicates (y axis). x-axis error bars denote standard error from linear regression used to determine growth productivity.
ΔMICkan decreases with growth productivity, and there is a positive correlation between FBA-predicted and experimental values of growth productivity when alternative
methods to determine growth rate are used (fig. S15). Growth productivity values are correlated when calculated using different approaches to determine growth rate
(fig. S15).

Fig. 8. Increasing growth productivity decreases ΔMIC for multiple antibiot-
ics. ΔMIC of kanamycin (kan), carbenicillin (carb), and ciprofloxacin (cipro) for E.
coli grown in representative carbon sources (0.04%) covering the range of
growth productivities. *ΔMIC is not greater than zero (*P = 0.091, **P = 0.21,
one-tailed t test). R2 and P value from a simple linear regression shown in the
figure (summary statistics in table S9). Trends were also significant using a
Deming regression (table S10) or WLS regression (table S11). Raw MIC data in
fig. S18. Inset: ciprofloxacin data replotted with a smaller y axis. ΔMIC decreases
as a function of growth productivity when a modified Gompertz equation or k-
means clustering analysis is used to determine maximum growth rate (fig. S18).
Data from a minimum of three biological replicates. Error bars: x axis = standard
error from linear regression used to determine growth productivity, y axis = SD.
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result in identical MICs. If one only considers growth in the absence
of changes in the concentration of ATP, then populations would
have the same concentration of ATP throughout the growth
curve. That is, a reduction in ATP would not occur in stationary
phase. Thus, the high initial density population, although entering
stationary phase earlier than the low initial density population,
would have the same concentration of ATP. We would therefore
expect the MIC of both populations to be the same. Consideration
of both growth rate and metabolism is reflected in our experimental
findings; maximum growth rate and [ATP] were not consistently
associated with changes in ΔMIC (SM Results, fig. S19). Alterna-
tively, growth productivity was consistently and strongly associated
with ΔMIC over a wide range of condition and bacterial species. It is
entirely possible that there are reactions and changes to bacterial
physiology that are occurring as growth productivity changes,
such as changes in flux through the tricarboxylic acid cycle (42),
nucleotide concentrations (43), and reactive oxygen species (44),
as well as changes to bacterial physiology during stationary phase
outside of growth and metabolism. While these additional underly-
ing changes may play an important role in determining IE, we have
nevertheless demonstrated conclusive links between growth pro-
ductivity and ΔMIC; additional changes to bacterial physiology in
light of the inoculum certainly warrant future study. Overall, it is
important to consider both growth and the concentration of ATP
when considering IE.
Using different percentages of glucose, and both uracil and

acetate as a carbon source, we reduced ΔMIC to zero for E. coli.
However, when glucose was used as the carbon source forA. faecalis
and P. aeruginosa, although increasing growth productivity reduced
ΔMIC, we were unable to abolish IE. This may reflect differences in
carbon source preference. Carbon sources that are preferred by each
individual species could result in the formation of more ATP, which
could extend the period of time during log phase growth. For
example, P. aeruginosa is known to prefer organic acids as a
carbon source as opposed to complex carbon sources, such as
glucose (38). As evidence that carbon source preference may be crit-
ical to reduce IE across diverse pathogens, we provided P. aerugino-
sa with acetate, an organic acid, as a carbon source. We found that
growth productivity increased and that ΔMIC decreased as com-
pared to when glucose was used as the carbon source. Accordingly,
to reduce IE in each species of bacteria, different carbon sources,
and different percentages of carbon sources, may be required.
In line with recent studies that have examined the use of metab-

olites as possible antibiotic adjuvants [e.g., (42)], modulation of
growth productivity using metabolite(s) may reduce or eliminate
IE, which could prolong the usefulness of existing antibiotics. For
example, previous work has shown that potentiating ATP produc-
tion through the use of different metabolites can increase suscept-
ibility of persister cells (45) and opportunistic pathogens (42) to
aminoglycosides. It has been proposed that providing antibiotics
along with metabolites to serve as adjuvants could increase antibi-
otic efficacy in the clinic (46).
It has been suggested that the emergent properties of microbial

populations be studied as mechanisms to drive the evolution of an-
tibiotic resistance, as opposed to the sole focus on the individual
bacterium (6). As IE in this study occurs in the absence of any
unique gene-based resistance mechanism that is specific to any
one individual bacterium, it is the emergent properties of a bacterial
population that drive the resistance mechanism. Prolonged growth

of a bacterial population under sub-MIC conditions, owing to IE,
may lead to the evolution of additional resistance mechanisms
(16). To our knowledge, IE has yet to be observed in nonclinical en-
vironments where populations of bacteria reside, including soils
and wastewater. However, it is well established that antibiotics
have been detected in such areas (47) and that the acquisition of in-
fections caused by antibiotic resistance bacteria can occur outside of
the clinical setting (48). Thus, it is entirely possible that IE serves as
a mechanism by which microbial communities can tolerate antibi-
otics in the natural environment allowing for the evolution of anti-
biotic resistance.

MATERIALS AND METHODS
Strains and growth conditions
E. coli strain BW25113 [F-Δ(araD-araB)567 ΔlacZ4787:rrnB-3 λ-
rph-1 Δ(rhaD-rhaB)568 hsdR514] was used throughout. Note that
BW25113 contains the ampC β-lactamase and several efflux pumps.
P. aeruginosa strain PA14, K. pneumoniae strain (Carolina Biolog-
ical, Burlington, NC), A. baumannii strain 5-109 (Carolina Biolog-
ical), and A. faecalis (Carolina Biological) were used where
indicated. Keio collection mutants (49) were obtained from
Horizon Discovery (Boyertown, PA). Overnight cultures (grown
for ~24 hours) were created by isolating single colonies from
Luria-Bertani (LB) agar medium (MP Biomedicals, Solon OH).
Each colony was subsequently inoculated in 3 ml of liquid LB
medium and was shaken overnight (250 RPM and 37°C) in
culture tubes (Genesee Scientific, Morrisville, NC). Bacteria
grown under this condition had reached stationary phase as we
did not observe a change in CFU per milliliter between 23 and 25
hours after inoculation (fig. S2). Experiments were performed in
modified M9 medium [1× M9 salts (48 mM Na2HPO4, 22 mM
KH2PO4, 862 mM NaCl, and 19 mM NH4Cl), 0.5% thiamine
(Alfa Aesar, Ward Hill, MA), 2 mM MgSO4, and 0.1 mM CaCl2]
with various percentages of glucose (or additional carbon
sources) and casamino acids (Teknova, Hollister, CA). For most
of the assays, we used casamino acid concentrations of 0.01, 0.05,
0.1, 0.5, and 1.0%. This was reduced to four concentrations (0.05,
0.1, 0.5, and 1.0%) if growth with 0.01% was unreliable or
minimal (less than 0.01 at the lowest concentration of antibiotic
tested or in antibiotic-free medium). Additional information on
key reagents used in this study can be found in SM Methods.

Maximum growth rate and curve fitting
Overnight cultures were washed once in ddH2O and diluted 200-
fold into 200 μl of fresh M9 medium, which was subsequently
placed in the wells of a 96-well plate. The medium was overlaid
with 70 μl of mineral oil to prevent evaporation. OD600 was then
measured every 10 min for approximately 16 hours in a PerkinElm-
er Victor X4 (Waltham, MA) plate reader that was set to 37°C.
OD600 values from cell-free medium were subtracted from all mea-
surements to ensure that only cell density was being recorded. Bac-
terial growth curves from three biological replicates were averaged.
We then extracted maximum growth rate by fitting the growth
curves to a logistic equation (50), using a modified Gompertz equa-
tion or a k-means clustering analysis (as described in SMMethods).
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Determining the concentration of ATP
Overnight cultures were diluted 1/40 into 40ml ofM9mediumwith
carbon source and that lacked casamino acids. Bacteria were shaken
at 250 RPM and at 37°C for 2 hours in a 50-ml conical tube. Cul-
tures were then concentrated 2× in fresh diluted (3:1) M9 medium
that contained the carbon source and casamino acids. One hundred
microliters of these cultures was added to the wells of an opaque
walled 96-well plate, overlaid with two Breath-Easy filters (Sigma-
Aldrich, St. Louis, MO, to prevent evaporation), and was shaken at
250 RPM/37°C for 1 hour whereupon they reached OD600 = ~0.075.
[ATP] was measured using a BacTiter-Glo assay (Promega,
Madison, WI) according to the manufacturer’s recommendations.
ATP (quantified using luminescence) and OD600 were measured in
a microplate reader. Using a lower initial density of bacteria (1/400)
to measure [ATP] does not affect the concentration of ATP mea-
sured (fig. S2—note that these bacteria were concentrated 10×
before the measurement of ATP to account for differences in
density). A standard curve prepared using pure ATP (ATP disodi-
um salt hydrate, Sigma-Aldrich) was used to quantify the ATP con-
centration. Additional details onmeasuring ATP during heat shock,
in the presence of protease inhibitor and in stationary phase, can be
found in SM Methods.

Measuring the IE and MIC
Overnight cultures were washed in ddH2O and diluted in modified
M9 medium that contained various concentration of antibiotics,
carbon source, and casamino acids. Two hundred microliters of
these cultures was then placed in the wells of a 96-well plate. The
plate was overlaid with two Breathe-Easy sealing membranes (to
reduce evaporation but ensure an aerobic growth environment)
and was then shaken at 250 RPM/37°C for 24 hours (or 40 hours
where indicated). Cell density was determined using OD600 mea-
sured in a microplate reader. All OD600 measurements were
blanked using OD600 values observed in cell-free medium. Any con-
dition where growth did not exceed 0.01 was set to zero (see SM
Methods for justification). Concentration gradients for antibiotics
used in MIC assays are presented in table S6. For each bacteria
and antibiotic pair, we chose the smallest gradient that would
lead to an observable difference between high-density and low-
density populations and that could be largely contained in a
single 96-well plate. We generally used the same concentration gra-
dient for a given antibiotic-bacteria species pair so as to not allow
changes in concentration gradient to dictate differences in MIC for
the high- and low-density populations. We verified the qualitative
trends in our OD600 measurements using CFUs by performing the
experimental setup above. After 24 hours of growth, we performed a
dilution series and determined the number of CFUs growing on ap-
proximately 1 ml of LB agar medium housed in 24-well plates. We
note that due to the constraints afforded by the carrying capacity of
growth medium with low percentages of glucose and casamino
acids, we could not test initial densities greater than ~5 × 107
CFU/ml (fig. S6).

Mathematical modeling
We created a model to describe the density-dependent bistability of
survival as a function of initial cell density and antibiotic concen-
tration. Bacteria grow according to logistic growth that is scaled by
basal growth rate (μ) and non–biomass-generating metabolism (ε).
Antibiotics reduce growth using a per-capita death rate term, which

is dependent on the density of the population (N ), the antibiotic
concentration (A), and antibiotic lethality (b)

dN
dt
¼ ðm � eÞ 1 �

N
Nm

� �

N �
N�A�b
K þ N

� �

ð1Þ

where μ is the basal growth rate (per hour) and ε is metabolism
(millimoles per gram per hour), which approximates a maintenance
coefficient as described in several previous studies (33). We assume
that cells grow logistically to a carrying capacity (Nm), A represents
the antibiotic concentration (unitless), and b represents the antibi-
otic-specific death rate (per hour) as a function of the antibiotic
concentration, and that cells are killed according to Michaelis-
Menten dynamics, where K represents the half-maximal killing
rate of the antibiotic. All simulations were performed for t = 24
hours using MATLAB (R2021b, MathWorks Inc., Natick, MA)
using ode45. Base parameters are shown in table S4. Modifications
are as indicated in the corresponding figure legend.

FBA and whole-genome modeling
FBA was performed using the COBRA toolbox v.3.0 (51) coupled
with the iJO1366 genome-scale model of E. coli metabolism (52).
Lower and upper bound flux parameters were derived from previ-
ous literature (see SM Results, table S5).

Statistical analysis
Statistical analysis is indicated in the main text or figure legends.
Unpaired t tests (unequal variance) were performed using Micro-
soft Excel (Redmond, WA). Standard linear regression analysis
was performed using JMP Pro 16 SAS Institute Inc. (Cary, NC).
Deming regressions were performed in GraphPad Prism (version
9.3.1, GraphPad, San Diego, CA). SD in MIC values was used for
error on the y axis; standard error from the linear line used to cal-
culate growth productivity was used as the error in the x axis. WLS
regressions (which account for error on the x axis) were performed
in JMP Pro 16. Additional details are provided in SM Methods.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S19
Tables S1 to S13
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