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In cybersecurity, one of most important forensic tools are audit files; they contain a 
record of cyber events that occur on systems throughout the enterprise. Threats to an 
enterprise have become one of the top concerns of IT professionals world-wide. Although 
there are various approaches to detect anomalous insider behavior, these approaches are 
not always able to detect advanced persistent threats or even exfiltration of sensitive data 
by insiders. The issue is the volume of network data required to identify this anomalous 
activity. It has been estimated that an average corporate user creates a minimum of 1.5 
MB audit data per day or roughly 30 MB per business month and thus 90 MB or more in 
a three-month period. That volume by itself is not unwieldy, but that is for a single user. 
If a large corporate network is involved, that number could easily reach one-half petabyte 
or more, a size that could be unwieldy to store for any length of time. Normal 
compression techniques can reduce this size significantly, but the resultant file not only 
may still be large, but it also requires decompression to its original size to analyze. 

In gene research, file size is also a major concern. An approach has been developed 
whereby common segments of a gene are stored as links to the original, augmented with 
edit scripts showing any difference, such that the resultant file is significantly smaller 
than the original, allowing for easier analysis. The purpose of this research was to apply 
dynamic compressive techniques utilized in genomic research to the issue of data 
volume. All available data is required for gene sequencing, so compressive techniques 
have been developed where redundant information is replaced by links to that data, 
leaving only the difference intact for analysis. Similarly, in this research, network traffic 
was processed such that redundant packet information was replaced by links to that 
information, leaving intact the pertinent information needed to reconstruct the packet 
information and the steps required for the access. 
 
To test the Genomic Network Compression System (GNCS), two datasets were chosen, 
packet captures from the 2012 Mid-Atlantic Collegiate Cyber Defense Competition 
(MACCDC) and a hybrid dataset from the University of New South Wales at the 
Australian Defense Force Academy, Canberra, Australia, the UNSW-NB15 17-2-2015 
dataset. To test for the efficacy with request/reply message formats, Address Resolution 
Protocol packets were processed for both datasets and obtained file size savings of 54.8% 
and 49.6% respectively. To test the GNCS with protocols that transfer large amounts of 
data, the Transmission Control Protocol was processed for both datasets. The MACCDC 
2012 dataset consistently exhibited file space savings of approximately 66%, while the 



 
 

 
 

UNSW NB-15 dataset showed a gradual increase from 10.3% for a sample of 1,000 
packets and increased until it plateaued at approximately 46% for samples of 10,000,000 
packets and larger. This shows that the GNCS can provide approximately a 50% savings 
in storage space for network packets, providing organizations with a significant decrease 
in the required storage space for audit files.  
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Chapter 1 

Introduction 

 

Background 

Cybersecurity professionals agree that it is essential to collect and maintain audit 

files (audit trails) in order to ensure accountability, determine who is accessing a 

network, the applications they are using, any activity that could impact the security 

posture of the enterprise, and allow for reconstruction of events after a problem has 

occurred (Marker, 2021; NIST ITL Bulletin, 1997; Shopp, 2020). Operationally, 

enterprises utilize various intrusion detection systems, as well as Security Information 

and Event Manager (SIEM) systems which collect and correlate security data from 

multiple devices, report the results, and raise appropriate events (Mokalled, H., 2019). 

The actual functioning of these types of network systems was beyond the scope of this 

paper. Rather, the data streams and files these and other enterprise devices utilize was the 

focus – audit files and network traffic archive files stored over a long term to analyze for 

malicious activity. 

Audit logs can be extremely varied in their content, depending upon the source of 

the log and its intended use. Most log files document events that have happened, the 

content is limited, and follows some documented guidance, such as that provided by the 

National Institutes of Science and Technology (NIST) Special Publications (SP) 800-92 

Guide to Computer Security Log Management. However, some logs, such as those 
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required for intrusion detection, require more information or even aggregated data flows 

to detect unauthorized activities. Network intrusion detection systems can perform packet 

captures to analyze the entire connection should an alert occur (NIST SP 800-94, 2007). 

It is this latter form of audit logging that will have the tendency to become large, since 

the entire contents of the Ethernet packet, including the data segments, must be 

maintained, and not just the limited fields maintained in event-based audit logs. 

To address processing large amounts of data in real-time or near real-time, some 

researchers have turned to distributed processing (Forestiero, 2015; Sindhu, 

Ramasubramanian, and Kannan, 2004) or modular neural networks (Golovko, 2007). In 

this manner, they could monitor heavy network traffic with a minimal impact on 

throughput. Although all these approaches address the real-time detection objective, they 

do not allow for long-term storage for future correlation and reconstruction. 

Depending upon the source of an audit log file, the size of the files can get quite 

large. In a presentation at the 2015 ACM Conference on Data and Applications Security 

(CODASPY) discussing use of SIEM tools at Hewlett Packard (HP), William Horne 

indicated that their Domain Name Service (DNS) clusters process approximately 16 

billion packets per day, or more than 5.8 trillion packets per year (Horne, W., 2015). The 

HP presentation was limited to their DNS servers. Typical DNS communications occur in 

pairs – a query and a response (DNS, 2022). Although a DNS query or response format 

allows for multiple queries/responses per message, the overall query transaction size is 

relatively small and would fit within a single Ethernet packet (The TCP/IP Guide, 2005). 

Therefore, the 16 billion packets would relate to approximately 8 billion query/response 

pairs. A packet flow is defined as the total sequence of packets between a source 
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computer and its destination. If the discussion is limited to the Internet Protocol (IP), 

there will be two sets of packet flows, from the computer initiating traffic to the 

destination and then another packet flow for the return communications (Kerner, 2021). 

In a paper by Kim, et. al., (2004), the average flow contained 28 packets, comprised of 

18,239 bytes. If we assume that each DNS query is a prelude to an internet connection 

and thus a packet flow, then the resultant traffic would equate to approximately 3,700 TB 

per day. To take a very conservative approach, we will assume that 90% of the traffic is 

for external users accessing public internet pages, thus decreasing the traffic of interest to 

perhaps 370 TB per day. For the US Department of Defense, sources and methods 

intelligence (SAMI) audit records must be maintained for five (5) years, and all other 

audit records retained for one (1) year1. If we then also assume activity will occur on 

business days only, this will equate to over 90 petabytes of network traffic annually, 

which may need to be maintained for audit purposes.  

 

The NIST ITL Bulletin, (1997) further discusses the value of audit logs in 

reconstructing events after a problem has occurred, by using the audit log to reconstruct 

the series of steps taken by the systems, users, and applications leading up to the event. 

(The NIST ITL Bulletin, 1997). The results of the HP presentation and the private study 

above are representative of the underlying issue: how do you maintain large data files for 

future analysis? 

 
1 These time periods are obtained from https://www.stigviewer.com/controls/8500/ECRR-1 that covers a 
security control from the DoD Information Assurance Certification and Accreditation Process (DIACAP) 
security catalog. DoD has subsequently transitioned to the Risk Management Framework. Control ECRR-1 
has been replaced by the RMF security Control AU-11. However, access to the new DoD security control 
parameters requires a valid DoD-issues Computer Access Card (CAC). Therefore, the older, publicly 
accessible URL parameters are cited. 

https://www.stigviewer.com/controls/8500/ECRR-1
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To address the problem of storing large amounts of data, various file compression 

techniques have been developed. Although formats such as ZIP, RAR, and TAR are 

commonly thought to be compression techniques, they are archiving formats that include 

various compression techniques for efficient archiving (FileInfo, n.d.).  

In a review of compression methods, Kavitha (2016) identified two general 

categories of compression: Lossless and Lossy compression. Lossless compression is 

mainly used for archiving and includes those methods in which after decompression, the 

resultant file is identical to the original, bit for bit; some of the main techniques include 

Run-Length Encoding (RLE), Lempel-Ziv-Welch (LZW), and Huffman encoding. Lossy 

compression is used where loss of some data is determined not to impact the essential 

information of the original; the main lossy compression techniques include JPEG, MP3, 

and MP4 (Kavitha, 2016). In 2018, Uthayakumar, Vengattaraman, & Dhavachelvan 

discussed the common compression techniques based on data quality, coding scheme, 

data type, and application. Network traffic is a combination of all possible data types that 

are represented by a stream of 16-bit hexadecimal characters. The final compression ratio 

will be dependent upon the mixture of the data – the more text, the higher the possible 

compression ratio. Regardless of the technique utilized, standard compression techniques 

create static compressed files. To access the data to perform any analysis requires 

decompression of the file (Loh, Baym and Berger, 2012). 

Network traffic analysis is not the only area of scientific research where large 

volumes of data must be analyzed in an efficient manner. Genomic research is increasing 

datasets at a factor of nearly 10 times every year (Berger, Daniels, & Yu, 2016). Due to 

this, various new data compression techniques have been developed to compensate for 
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storage constraints. Taking this one step further, in 2012, Loh, Baym and Berger 

proposed a compression algorithm that allowed them to perform genomic analysis 

directly on the compressed data, without having to be uncompressed (Loh, Baym and 

Berger, 2012; Loh, Baym and Berger, 2012a).  

The purpose of this research was to incorporate the dynamic compression 

techniques of Loh, et al. (2012) into a new approach to reduce the size of the network 

data file storage, while maintaining data integrity to allow future reconstruction of events 

leading to an incident. 

Problem Statement 

There is no system that utilizes preprocessing of network traffic to remove 

duplicate and extraneous data prior to compression, decreasing the resultant file size to 

not only save storage space but to decrease the time required to compress and 

decompress. Network traffic audit trails are critical in cybersecurity, not just for the 

detection of current attacks, but also for the reconstruction of the events that led up to an 

attack, which can aid in mounting a defense against future similar attacks. In the HP 

example above, audit logs can be quite large, making them unwieldy for future analysis. 

There are many applications that can compress data files, but as the size of the original 

file increases, the time to compress and decompress the file also increases. Cybersecurity 

professionals require access to historic network traffic to reconstruct an attack. In large 

organizations generating network audit files, reconstruction can become an onerous task. 

Kalutarage, et al. (2015), was able to show promise in detecting protracted insider attacks 

at the network level, but due to the large amount of data required to detect activity over 

weeks and months, sampling techniques were employed. In doing so, only approximately 
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10% of network traffic was being analyzed, leaving 90% unanalyzed and potentially 

hiding stealthy insider activity, which is not a practical solution for forensic 

reconstruction. To be able to correlate activity across multiple packet flows and possibly 

multiple individuals requires more intensive analysis of internet traffic. Therefore, a 

method to reduce the volume of internet traffic while maintaining its integrity would be a 

valuable tool for cybersecurity analysists.  

Dissertation Goal 

The goal of this research was to develop a method whereby network traffic can be 

compressed in real time. It was previously discussed that there are many forms of audit 

logs. However, it is the larger packet capture logs required by network intrusion detection 

systems that is the focus of the research. As indicated by Kalutarage, et al. (2015), a 

malicious insider can perform their attack over weeks and months, necessitating the 

maintenance of audit logs over an extended period with its concomitant increase in file 

size. 

Building upon prior research by Loh, et al. (2012, 2012a), a new compression 

algorithm was developed to take advantage of commonality in the data segments of 

network packets, such that a user’s entire network traffic over an extended period could 

be captured for future analysis. The scope was limited to determining the viability of the 

compression technique; detecting malicious activity of any kind was outside the scope of 

this research. Unfortunately, no access to a network sufficiently large enough to generate 

a significantly large volume and variety of network traffic was available, so the genomic 

compression technique was tested using static network packet capture files. These files 

were generated from networks with additional traffic superimposed on top or from 
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synthetic data created to represent network traffic. In all cases, the network capture files 

were continuous with no breaks in traffic outside of normal packet-to-packet separations. 

Relevance and Significance 

The feasibility of analyzing a large audit file is not the only issue facing 

organizations; the cost to maintain those large audit files can become substantial. For 

example, the published Google Cloud audit costs states one can store up to 50 GB of data 

access audit logs for 30 days at no additional charge. However, beyond 50 GB, there is an 

additional charge of $0.50 per GB per month, and if the logs need to be retained for a 

longer period, there is an additional charge of $0.01 per GB for the second month and 

$0.02 per GB for each month after that. Therefore, for the first petabyte (PB) of audit 

logs, there would be an additional charge of $475.00 and each PB beyond that of 

$500.00. If the logs need to be retained for one year, there would be an additional charge 

of $10 per PB for the second month, and $20 per PB per month for months three through 

12, or $210 for the year. Although log files grow over time, if the average size of retained 

audit logs is 50PB, there could be a cost in excess of $400,000 per year. 

The NIST Cybersecurity Framework provides an approach to managing 

cybersecurity risk; and is comprised of three parts: the Framework Core, the Framework 

Implementation Tiers, and the Framework Profiles (NIST CSFW, 2018). The Framework 

Core establishes five functional areas: Identity, Protect, Detect, Respond, and Recovery. 

The Detect functional area includes the use of network intrusion and protection devices, 

and audit event correlation and reporting; the Protect functional area includes use of audit 

logging; and the Respond functional area includes performing forensic analyses of events 

(NIST CSFW, 2018). The NIST Cybersecurity Framework is not the only guideline for 
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cybersecurity practices, such as: the NIST Risk Management Framework (NIST SP 800-

37R2, 2018); the International Organization for Standardization (ISO) and the 

International Electrotechnical Commission (IEC) publish the ISO/IEC 27001 Information 

Security Management Standard (ISO/IEC 27001, n.d.); and the Center for Internet 

Security provides the CIS Controls® (CIS Controls, n.d.)2. All these approaches to 

cybersecurity include the need for monitoring network traffic for malicious activity in 

real time and maintaining audit log files for future forensic analysis or reconstruction to 

determine how the malicious event happened and how to remediate the vulnerability. For 

example, Advanced Persistent Threats (APT) can last for weeks and months and the 

attacks contain multiple steps that individually are difficult to identify (Zou, Liu, Sun, 

and Singhal, 2020). In fact, three different APTs have been active for up to 20 years: 

Titan Rain since 2003, SkiPot since 2006, and Dep Panda since 2012. To determine the 

method and scope of an APT attack requires analyzing log files for the duration of that 

attack.  

Thus, a method that can provide for better compression of network traffic which 

would allow for retaining more network traffic, could be beneficial to organizations. Not 

only by improving the ability to reconstruct possible malicious activity to implement 

cyber defenses against future attacks, but also by decreasing the financial impact to the 

organization for storage of those files.  

 
2 Although the listed security frameworks are utilized throughout both the private and public sectors, the 
author has had years of experience with the NIST Special Publications and its Risk Management 
Framework. Therefore, throughout this Dissertation Report, references to published cyber security 
guidance will be to NIST guidance only. 
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Barriers and Issues  

The genomic compression technique is based on identification of common 

segments of data strings between a test segment and a dictionary of known segments 

(Loh, et al., 2012, 2012a). To take advantage of this technique with network traffic, the 

network traffic packets must contain substantial data segments. Although there are a 

number of protocols that are simple message protocols (request and reply messages with 

minimal or no data segment), it was a simple matter of identifying which parameters have 

data. No matter whether the Internet Protocol version 4 (IPv4) or the Internet Protocol 

version 6 (IPv6) packets are involved, the packet formats are standardized making the 

header sizes determinant. It therefore only required a simple calculation to determine if 

the packet contained any data segment. Those without data segments were not candidates 

for the compression technique and would be ignored during processing.  

To handle packets with data properly required development of dedicated parsers. 

Each parser took advantage of the specific protocol format similar to the compressive 

techniques currently in genomic analysis – unique, critical data was maintained as is, 

while common, repetitive data was maintained offline once, and substituted with a link. 

The key issue was identifying what data must be available for analysis, and what can be 

compressed; what data could be totally ignored and possibly discarded; and what was the 

best file format for the minimized packets to allow forensic analysis. 

The most difficult impediment to success was analyzing secure communications. 

Many organizations utilize secure communications, even within their Intranet – the more 

valuable the information, the more secure it will be. The best forensic analysis will be 

useless if the data segment of the packet cannot be decrypted and analyzed. For these 
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approaches to be successful, they will require having access to the certificates/keys used 

to encrypt. However, having all requisite keys may be problematic. Another approach is 

called Transport Layer Security (TLS) break and inspect, also known as Transport Layer 

Security Inspection (TLSI). This is a process in which enterprise network traffic is 

decrypted, the decrypted content is inspected for threats, and then the traffic is re-

encrypted before it enters or leaves the network (NSA, 2019). This process is not without 

issues and requires careful configuration and monitoring to ensure performance is not 

negatively impacted and the unencrypted data is not exposed, which could violate privacy 

laws, or worse, show usernames and passwords in plain text. 

With the break and inspect system, audit logs covering a sufficient time span 

could be used to help reconstruct a general representation of the network traffic. This is 

not without challenge. If there are anomalous users in an organization, then their 

anomalous actions would appear in the audit logs. If you use the logs to group individuals 

and to emulate normal traffic, there might not be a clean base upon which you can detect 

anomalies – the existing anomalies would be considered normal. If access is being 

analyzed, then ignoring the encrypted data segment might not be a problem. For secure 

communications, the compression technique will not be as efficient, but should still 

decrease the overall storage requirement compared to normal compression techniques. 

Assumptions, Limitations, and Delimitations 

There are several issues that impacted the research. A major issue pertained to the 

number of transport protocols in the dataset that do not contain a data segment. If these 

packets were compressed as is without the benefits of genomic techniques, they would 

skew the compression ratio. So, an approach to analyze compression ratios ignoring un-



11 
 

 
 

compressible packets was required. Another limitation previously discussed is that secure 

communications without break and inspect would also skew the compression ratio since 

there will be fewer common payloads that can be saved once and substituted with a link. 

Since a component of the genomic compression technique was looking at commonality, 

mainly based on IP address and port combinations, it was assumed that there was no IP or 

Media Access Control (MAC) address spoofing, such that the identified sources and 

destination were actual, not spoofed. As to IP addresses, as will be discussed in the 

methodology section, not all IP addresses are static. Many organizations assign user IP 

addresses utilizing Dynamic Host Configuration Protocol (DHCP) which may assign a 

different IP address to a system the next time it connects to the network. Even without 

DHCP, users may have laptop computers and will connect from different locations or 

utilize secure Virtual Private Network (VPN) connections, also causing a different IP 

address to be assigned. So, without some method of definitively identifying a user each 

time they connect, long-term analysis of the compressed files may be disconnected and 

not accurately reflect users. 

Summary 

With the frequency of cyber threats, it has become important to be able to 

maintain network traffic log files for future reconstruction and forensic analysis. 

Unfortunately, with organizations generating upwards of hundreds of terabytes of 

network traffic per day, the sheer volume of traffic makes storage and analysis 

problematic. Although there are a variety of compression techniques available, they 

create static compressed files, that must be decompressed to be analyzed. In order to 

perform analysis of large audit log files, a method that can decrease the volume of data 
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while maintaining data integrity for possible forensic analysis would be a valuable tool 

for cybersecurity. 
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Chapter 2 

Review of the Literature 

 

Overview 

Cybersecurity professionals agree that it is a basic requirement to obtain audit 

trails (log files) to determine whether the actions taken by users could impact the security 

posture of the systems and enterprise and allow for reconstruction of those actions taken 

by the user leading up to the event (Marker, 2021; Shopp, 2020; NIST ITL Bulletin, 

1997). A brief history of audit logging will be presented. Due to the physical size of audit 

logs and the need to maintain them for periods of time, common types of compression 

techniques will be provided. The review will cover general file compression algorithms, 

but will not be exhaustive, since the goal of this research is to apply the genomic 

compression techniques proposed by Po-Ru Loh, Michael Baym, and Bonnie Berger in 

2012. Their approach entailed identifying data in a test string, that is common with a 

known string, and replacing it with links to that known data, thus reducing the size of the 

test string. Therefore, the review of compression algorithms is to identify the pros and 

cons of the different algorithms and propose possible solutions that could be utilized in a 

“production” implementation. To better understand the value of the approach by Loh et 

al. (2012), it is important to understand the various search and approximate match 

algorithms that have been used in genomic research. A brief review of those techniques 
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will be provided, including algorithms used in such applications as spell checkers and 

identifying the longest common substring – these are instrumental to this research. 

Context 

In 1979, David Hanson identified three different classes of computer 

vulnerabilities: threats to the physical system; individuals who threaten the integrity of or 

loss to the system from the outside; and individuals who threaten the integrity of or loss 

to the system from the inside (Hanson, 1979). However, it was not until the high-profile 

cases of Robert Hanssen, Chelsea (a.k.a. Bradley) Manning, and finally Edward Snowden 

came to light, that the issue received the attention it deserved. On February 20, 2001, the 

FBI announced the arrest of Robert Hanssen for selling highly classified national security 

information to the Russians (“Robert Hanssen,” 2001). Between November 2009 and 

May 2010, Private First Class Bradley Manning passed on hundreds of thousands of 

United States Government classified documents to WikiLeaks, who released them 

between February 2010 and the autumn of 2011 (“Chelsea Manning,” n.d.). On October 

7, 2011, President Barack Obama signed Executive Order 13587, the “National Insider 

Threat Policy” (Obama, 2011). However, that was not a deterrent. In May 2013, Edward 

Snowden, an NSA analyst working for contractor Booz Allen Hamilton, leaked the 

details of several top-secret surveillance programs to the media (“Edward Snowden,” 

n.d.). Although the Hanssen case pertained to hard copy documents while the Manning 

and Snowden cases involved release of computer (or computerized) documents, all three 

instances fall into the category of exfiltration, a term meaning the unauthorized removal 

or transfer of data. There is a plethora of references to research on exfiltration, and 

although exfiltration might be the end goal of an insider, exfiltration itself is not within 
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the scope of the proposed research. However, what these three individuals have in 

common with the proposed research is that they were trusted, authenticated users 

(although Hanssen did not commit a computer crime, he was authorized to access the 

documents that he stole). The threat posed by a trusted insider can be much more 

pervasive than exfiltration, it can extend to changing data, damaging systems, and 

committing fraud.  

Audit Log Files 

Audit trails (logs) can assist an organization in detecting security violations (NIST 

ITL Bulletin, 1997). Since audit logs are created at the time an event is occurring, that 

event might not be stopped. However, reviewing audit logs on a routine basis and taking 

proper actions could have decreased the magnitude of the security leaks by Manning or 

Snowden. 

Modern audit logging (audit trails) really did not begin until the introduction of 

the UNIVAC in 1954 and the first computer accounting systems (Singleton, 1996). By 

the 1980’s, classical “paper trails” were vanishing in favor of computerized systems 

(Anderson, 1981). Anderson goes on to discuss how electronic audit trails can be useful 

in detecting possible crime that normal financial auditing did not. By the 1990’s, the use 

of audit logs had become common place, leading to the NIST Information Technology 

Laboratory (ITL) issuing the ITL Bulletin 1997-03, “Audit Trails” that formally 

addresses the uses and advantages of audit logs, including their use in intrusion detection 

(NIST ITL Bulletin, 1997). 

Under the Federal Information Security Management Act (FISMA) of 2002, 

Public Law 107-347, NIST was tasked with providing guidance for the security 
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certification and accreditation of information systems of the U.S. federal government. 

This culminated in the issuance of the NIST Special Publication (SP) 800-37, “Guide for 

the Security Certification and Accreditation of Federal Information Systems, and a 

multitude of supporting special publications. One of those is NIST SP 800-53, 

“Recommended Security Controls for Federal Information Systems,” with a final release 

in February 2005. The security control catalog is organized into three general classes of 

security controls (management, operational, and technical) and 17 different families. The 

Audit and Accountability family is considered a technical control and consists of 11 base 

security controls, with an additional nine (9) security control enhancements spread across 

the base controls, for a total of 20 Audit and Accountability security controls (NIST SP 

800-53, 2005).  

The NIST guidance has gone through several revisions over the years, such that 

currently, NIST SP 800-37 is at Revision 2, “Risk Management Framework for 

Information Systems and Organizations, A System Life Cycle Approach for Security and 

Privacy,” released in December 2018, and NIST SP 800-53, Revision 5, “Security and 

Privacy Controls for Information Systems and Organizations,” released in September 

2020. NIST SP 800-53, Revision 5 has expanded to 20 control families which now 

include security controls aimed at protecting privacy. The Audit and Accountability (AU) 

family now consists of 16 base controls and 40 control enhancements, for a total of 56 

security and privacy controls devoted to auditing and accountability (see Appendix A, 

NIST SP 800-53r5, 2020). Without discussing every security and privacy control, there 

are several specific controls that are pertinent to this research: 1) AU-3 “Content of Audit 

Records” provides guidance on the type of events and information that is to be 
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maintained in an audit record; 2) AU-4 “Audit Log Storage Capacity” dictates that 

systems must comply with an organizations audit storage capacity, and the requirements 

for backing up audit log files as they reach their configured maximum size; 3) AU-6 

“Audit Record Review, Analysis, and Reporting” is critical to maintaining a secure 

system by providing guidance on the type and frequency of analysis of audit logs; 4) AU-

7 “Audit Record Reduction and Report Generation” supports the goal of this research, in 

that the organization must “a. Supports on-demand audit record review, analysis, and 

reporting requirements and after-the-fact investigations of incidents; and b. Does not alter 

the original content or time ordering of audit records” (NIST SP 800-53r5, 2020, p 72); 

5) AU-11 “Audit Record Retention” provides guidance on the length of time audit logs 

must be maintained; and 6) AU-13 “Monitoring for Information Disclosure” provides 

guidance on auditing for unauthorized use of information, including exfiltration, making 

unauthorized copies of information, and monitoring for evidence of unauthorized 

disclosure of information. 

One related security control to AU-13 is, SI-4 “System Monitoring,” 

Enhancement 2 “Automated Tools and Mechanisms for Real-Time Analysis” which 

dictates the use of automated tools and mechanisms to support analysis of possible 

security events in near real time. This can entail the use of SIEM technologies (NIST SP 

800-53r5, 2020, p 365). In 2005, the Gartner Group discussed the combination of two 

systems – Security Information Management (SIM) and Security Event Management 

(SEM) – into a single tool, the SEIM (Buecker et al., 2010). Thus, the SIEM combines 

the security information (risk), event, and threat data into a single system that can 

correlate this varied information, identifies possible deviations, provides reporting 
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capability of results, and provide for detection and remediation of possible security issues 

(IRS, n.d.; Mokalled et al., 2019). 

Log files take many forms. The NIST SP 800-92 Guide to Computer Security Log 

Management provides a very broad listing of types of audit logs and events to capture 

(NIST SP 800-92, 2006). Many organizations have developed their own policies on event 

logging, such as the University of California Berkeley. They have published their 

“Security Audit Logging Guideline” that provides detailed guidance on the information 

that must be included in audit logs for Operating System (OS) Events, OS Audit Records, 

Application Account Information, and Application operations. Although they allow for 

variance in the content of the different audit events, at a minimum, each record must 

contain the “timestamp, event, status, and/or error codes, service/command/application 

name, user or system account associated with an event, and device used (e.g., source and 

destination IPs, terminal session ID, web browser, etc.)” (UC Berkeley, n.d.). 

All federal information systems must comply with NIST guidance, and therefore 

must comply with the audit file creation, retention, and analysis guidelines provided by 

the security and privacy controls (FISMA, 2002). In accordance with Title 44 U.S. Code, 

Sec. 3554, all components of nonfederal systems that process, store, or transmit 

Controlled Unclassified Information (CUI), or that provide security protection for such 

components are subject to the same requirements as federal system as provided in NIST 

SP 800-171 Revision 2. This NIST guidance further states that these nonfederal systems 

must follow the guidance provided in NIST SP 800-53 (NIST SP 800-171r2, 2017). 

Thus, all affected nonfederal systems must comply with all the auditing requirements of 

federal systems. 
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Intrusion Detection 

Intrusion detection is the process of monitoring network communications for 

unauthorized accesses or activity, logging the findings, and reporting those findings (Liao 

et al., 2013; Scarfone & Mell, 2007). An Intrusion Detection System (IDS) monitors for 

possible unauthorized activity – passively, offline – and provides notifications of possible 

activity for further processing (OWASP, n.d.; Scarfone & Mell, 2007). Intrusion 

prevention not only performs intrusion detection, but takes that one step further, by 

actively attempting to stop the attack in real time (Liao et al., 2013; OWASP, n.d.; 

Scarfone & Mell, 2007). Although prevention of intrusions is a very important tool for 

cybersecurity professionals, only intrusion detection can require storing large amounts of 

data to detect long-term threats such as APTs. Although the actual detection of intrusion 

is not within the scope of this research, providing a mechanism to collect and maintain 

historical network traffic would assist cybersecurity analysts.  

Some IDSs can store all data relating to sessions for short periods of time to 

detect a possible attack and the steps taken during that attack (Kent et al., 2006). Other 

systems perform deep packet inspection in which detection is based on specific data or 

payloads. This is usually performed at the application layer for a specific list of protocols 

(Awati & Scarpati, n.d.). Regardless of the category of intrusion detection or the 

underlying technology used to detect, many sensors incorporate packet capture to store 

many packets for off-line analysis (Scarfone & Mell, 2007). These systems could benefit 

from the research provided here. 
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Signature-based detection utilizes a known list of signatures and compares new 

activity against the list looking for matches (OWASP, n.d., Scarfone & Mell, 2007; Tek-

Tools, 2020). Signature-based detection is considered the simplest since it only requires 

comparison to the known signature database. Unfortunately, signature-based detection is 

ineffective at identifying new threats without a known signature and are also generally 

ineffective in identifying threats of many application protocols (Scarfone & Mell, 2007). 

Although signature-base intrusion detection is normally applied in real time, should a 

new attack vector be discovered with new signatures, analyzing historical network traffic 

for these signatures could identify previously unknown attacks against a system. 

Anomaly-based intrusion detection (AID) covers a broad range of approaches to 

detect network activity that differs from the norm; from the expected. Much like 

signature-based detection, AID requires the knowledge of what is considered a normal 

network profile and compares the current profile to the known profiles to identify 

anomalous activity (Scarfone & Mell, 2007). However, there are newer approaches to 

anomaly-based detection that are more-effective in identifying previously unknown 

behavior. Punithavathani, Sujatha, and Jain (2015) present a multi-step approach to 

insider threat detection. The first stage is to monitor network activity and look for known 

patterns of anomalous activity. The second stage involves reviewing historic network 

traffic (log files) to identify previously undetected user anomalies. If a new anomaly is 

identified from the log files, the associated network traffic is reviewed to update the 

pattern recognition of stage one, thus improving the chance of future detection. This 

second stage of the Punithavathani, Sujatha, and Jain (2015) approach could benefit from 

the research presented here by providing smaller files for analysis. 
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Network IP Flow Techniques 

A packet flow consists of the total sequence of network packets between a source 

computer and its destination and is specific to not only the IP addresses of both devices, 

but also the specific protocol and ports utilized (Claise, Trammell, & Aitken, 2013; 

Kerner, 2021; Petryschuck, 2019). Several researchers have utilized network IP flow-

based analysis for intrusion detection as well as detecting insider threat activity. The 

origin of network IP flows goes back to the Internet Accounting Working Group (IAWG) 

of the Internet Engineering Task Force (IETF) in 1991. The intent of the IAWG was to 

develop an efficient method of monitoring network traffic for the purposes of accurate 

billing for Internet use as well as a method of maintaining access information that may be 

required during an investigation of a serious crime (Mills, Hirsh, & Ruth, 1991).  

As network speeds and traffic volume increase, deep-packet examination for 

intrusion detection becomes unwieldy. One answer has been the use of network flow 

monitoring; a method by which the connection and possible intent behind the connection 

can be analyzed. By 2010, intrusion detection using IP network flow had become an 

established area of research. Sperotto et al. (2010) provided an overview of the pertinent 

research. However, none of the presented systems could perform analysis of traffic flow 

over extended periods of time (Sperotto et al., 2010). Use of network flows continues 

today. In 2017, Alaidaros and Mahmuddin presented an approach where they modified 

the open-source Bro IDS3 to make intrusion detection closer to real-time. However, this 

approach ignores the payloads altogether, and cannot detect possible intrusions based on 

content of the payload, nor detect what data is being transferred (Alaidaros and 

 
3 Bro began in 1995 at the Lawrence Berkely National Laboratory, and was rebranded as “zeek” in 2017. 
The product can be obtained from either https://bro.org or https://zeek.org.  

https://bro.org/
https://zeek.org/
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Mahmuddin, 2017). According to Hofstede et al. (2014), the size of flow repositories can 

exceed tens of terabytes, so network flows alone cannot solve the data volume problem, 

unless a method is available to decrease the size of the flow repositories. 

Compression Techniques 

Compression is the process by which the quantity of content data is reduced 

without excessively impacting the quality of the original content. The end goal is to 

minimize the number of bits in digital media required for storage and/or transmission, in 

an efficient, cost-effective manner (Kavitha, 2016). In 1981, Hassan K. Reghbati divided 

compression into two categories based on the results of decompression. Nonreversible 

compression occurs where data deemed insignificant is removed, while relevant data is 

maintained. Reversible compression occurs when all the data is considered relevant, such 

that decompression returns an identical copy of the original data (Reghbati, 1981). 

Today, nonreversible and reversible have been replaced with the terms lossless and 

lossy4.  

Mahdi, Mohammed, and Mohamed (2012) discuss the two general categories of 

compression, lossless and lossy. Lossless compression identifies and eliminates 

statistically redundant bits. This allows for recovery of an exact copy of the original upon 

decompression. Lossy compression identifies marginal information and eliminates that 

during compression. However, the exact original content cannot be recovered upon 

decompression (Mahdi, Mohammed, and Mohamed, 2012).  

 
4 Although an extensive literature search was performed, the origin of the use of the terms lossy and 
lossless was not determined. Various articles in the 1990-1991 timeframe refer to these terms, but do not 
state an origin, and there were no references found prior to 1990. 
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Lossless Compression 

Many lossless algorithms have two separate phases: in the initial phase, a 

statistical model of the input data is created, identifying codewords; and in the final 

phase, the input data is mapped to the codewords creating the smaller output file (Fitriya, 

Purboyo, & Prasasti, 2017; Kavitha, 2016). In his book, A New Kind of Science, Stephen 

Wolfram (2002) states that the Morse code (invented in 1838) is a form of lossless 

compression, since it substitutes shorter code sequences for the most-common letters of 

the English language. In 1952, David Huffman presented a compression method that used 

codewords based on probabilistic analysis of the data, with the more-common characters 

receiving the shortest codewords (Huffman, 1952). His approach has subsequently been 

known as Huffman encoding. 

In 1977 and 1978, Jacob Ziv and Abraham Lempel proposed two lossless 

compression algorithms (LZ77 and LZ78), that were the beginning of a whole family of 

compression algorithms as depicted in Figure 1 (Zeeh, 2003). In 1984, Terry Welch 

Figure 1 - Lempel-Ziv Algorithm Family (Source: Zeeh, 2003). 
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published a modification (LZW), that has become possibly more popular than the original 

Lempel-Ziv (LV) algorithms (Zeeh, 2003). One change made by Welch pertains to the 

codewords (called translation table and string table, interchangeably by Welch). LZW 

utilizes 12-bit codes, so the table is fixed at a maximum of 4096 entries, whereas LZ77 

and LZ78 are not limited to table size. Another is pre-filling the table with all possible 

characters in the input string, and when a match is not found, it is added to the table 

(Welch, 1984). The most-known implementations of the LZW algorithm are in the 

Graphics Interchange Format (GIF) for image compression, the UNIX compress 

command, and in the original PKZIP archive compression tool (Hosseini, 2012; 

Wolfram, 2003). Other lossless compression algorithms include: 1) run-length encoding 

(RLE) in which runs of common characters (bits) are stored in two parts, one for the 

symbol and one for the count (Capon, 1959). This is mainly used in FAX machine 

transmission due to its efficiency on black and white text documents (Hosseini, 2012); 2) 

Portable Network Graphics (PNG) was developed in 1996 as a replacement to GIF, 

which required license fees. In addition, it could support up to 24-bit color graphics 

(Aguilera, 2006; Hosseini, 2012); and 3) Tagged Image File Format (TIFF) used to store 

images, including photographs and is the most-popular raster file format. It is commonly 

used as the method to store FAX rasterized output (Aguilera, 2006). 

Lossy Compression 

As stated above, lossy compression is utilized where there is data deemed not 

relevant to the original or is less significant and therefore can be discarded without 

seriously impacting the quality of the data upon decompression (Fitriya, Purboyo, & 

Prasasti, 2017; Kavitha, 2016; Mahdi, Mohammed, & Mohamed, 2018). In compression 
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review articles, lossy has been associated with image, audio, and video file storage, as 

well as with streaming transmissions (Kavitha, 2016; Smith, 2010). In discussing lossy 

compression, Kavitha limited the applicable protocols to JPEG. 

Joseph Fourier identified that in many cases, you could decompose functions into 

sums of sine waves and frequencies. With an audio file, you can then drop the lowest and 

highest frequencies that are outside the range of human hearing and save significant 

space, without impacting the quality of the final audio output (Hosseini, 2012; Kavitha, 

2016; Smith, 2010). 

Fractals are geometric structures that appear similar at different scales. Fractal 

compression relies on that feature and identifies segments of an image that are like other 

segments, converting them into “fractal codes” which are used in reconstruction of the 

encoded image (Smith, 2010). Having identified common, similar segments, fractal 

compression needs only address the differences, thus obtaining significant compression 

ratios. This makes fractal compression valuable for transferring large amounts of data, in 

particular streaming services, such as NetFlix (Smith, 2010). 

Lossy compression techniques usually fall within three areas: transform coding 

(TC), discrete cosine transform (DCT), and discrete wavelet transform (DWT) (Kavitha, 

2016). TC works best with audio signals or images and requires knowledge of the 

application to determine what data can be removed. Although the result does not match 

the original, the difference is insignificant. The result of a DCT is a sum of the cosine 

functions at different frequencies. This approach is like Fourier transforms, except cosine 

waves are utilized, as opposed to sine waves. Unlike DCT, DWT does not resemble 
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Fourier transforms, in that the signal is decomposed into a set of orthogonal wavelet base 

functions (Kavitha, 2016).  

The two main lossy compression algorithms are the Joint Photographic Experts 

Group (JPEG) and the Moving Pictures Expert Group (MPEG)5 (Hosseini, 2012). JPEG 

is aimed toward compressing images that can either be greyscale or up to 24-bit color. 

JPEG offers several options, including adjusting the compression rate, the luminance 

(brightness), the color saturation, and the hue Aguilera (2006). The Moving Pictures 

Expert Group (MPEG) compression entails transforming a stream of discrete samples 

(frames of a movie) into a bit stream of tokens. Using the fractal compression discussed 

above, from frame to frame, only the differences are coded, along with any information 

for any moving parts (Hosseini, 2012). Depending upon the application, the difference 

between loss of audio/video quality will be based on the transmission speed or storage 

size requirements. A modern compact disc (CD) can contain a maximum of 640 MB of 

data (Mahdi, Mohammed, and Mohamed, 2012). This can hold only about one hour of 

uncompressed high-fidelity music, two hours of compressed lossless music, up to seven 

hours of music in the MP3 format, or approximately 200 hours of a voice recording.  

Compressed Bitmap Indexes 

Although compressed bitmaps are technically lossless compression and are 

integral to the underlying algorithms utilized in the various lossless compression 

techniques discussed above, when utilized as indexes, they have a very different purpose 

than previously discussed. Various commercial relational database management systems 

 
5 MP3 is a shortened version of MPEG-1 Audio Layer 3, so any reference to MPEG includes MP3. MPEG4 
(MPEG-4) is a video decoding algorithm, a video codec. However, unlike MP3, MP4 is not an 
“abbreviation” of any MPEG codec. Rather, MP4 is a media container format and that allows storing still 
images, subtitles, video, audio, and other essential data (Dolina, 2021). 
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(RDBMS) utilize bitmap indices in read-only views in data warehouses, since they are 

more efficient than other methods, such as binary trees. However, updates have been 

shown to be more process intensive (Canahuate, Gibas, and Ferhatosmanoglu, 2007; 

Chen et al., 2015).  

The Byte-aligned Bitmap Compression method (BBC) abandons using run-length 

encoded compression since it requires decompression to perform many database 

functions. Rather, BBC is a byte-aligned, byte-sized bitmap that allows operations on the 

compressed bitmap after a simple merge routine that only requires partial decompression 

(Antoshenkov, 1995). BBC is very efficient, but only on data with low cardinality; it is 

less efficient than uncompressed bitmaps for data with higher cardinality. 

The Word-Aligned Hybrid (WAH) code provides for an improvement in logical 

speed on the order of a magnitude over BBC. However, being word-aligned versus byte-

aligned, there is a small increase in the space (memory) required by WAH. Another 

improvement over BBC is the ability to be applied to data with high cardinality (Wu, 

Otoo, & Shoshani, 2002; Wu, Otoo, & Shoshani, 2006). 

Update Conscious Bitmap (UCB) Indices can update the relevant bitmaps with 

minimal increase in time. With previous methods, updating required access to all bitmaps 

in the system and modification to those that are relevant. UCB only requires modification 

of a single bitmap per indexed attribute, a significant savings (Canahuate, Gibas, & 

Ferhatosmanoglu, 2007). 

Run-Length Huffman (RLH) compression provides good query times while 

maintaining compressed bitmaps. Instead of normal run-length encoding utilized by BBC 

and WAH, the RHL compression algorithm utilizes a version of Huffman encoding, in 
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which symbols are replace with bit strings – the more-frequently occurring symbols are 

associated with shorter strings (Stabno & Wrembel, 2009). 

The Position List Word Aligned Hybrid (PLWAH) improves upon WAH by 

repurposing bits that are never used by WAH to hold information for the set/unset bits of 

a 0/1 run. This way, the compressed bits are half the size of WAH, lending to faster 

processing (Deliège & Pedersen, 2010). Lemire, Kaser, and Aouiche (2010) presented the 

Enhanced Word-Aligned Hybrid (EWAH) which 99.9% of the time, will not generate a 

bitmap that is larger than the original, uncompressed bitmap. Another change is that 

EWAH utilizes two types of words used to store the number of clean words and the 

number of dirty words (Lemire, Kaser, & Aouiche, 2010). Colantonio and Di Pietro 

(2010) present the Compound ‘n’ Composable Integer Set (CONCISE) compressed 

bitmap index. When there are few bits set followed by a long sequence of unset bits, the 

WAH compression approach was improved and a decrease in the size of the compressed 

bitmap was achieved, sometimes up to 50% less (Colantonio and Di Pietro, 2010). Much 

like with EWAH, the decrease compressed bitmap size led to performance improvement, 

in addition to the space savings.  

There are other variants of the WAH bitmap compression algorithm: the 

Partitioned Word-Aligned Hybrid (PWAH) compression that utilizes compressed bit 

vectors (van Schaik & de Moor, 2011); another variation introduces a new block type 

containing “draggled fills” that can address dirty literals inside a fill. Unlike the other two 

fixed-length blocks with WAH, the draggled fill block is variable length, based upon the 

number of dirty literals it contains (Schmidt, Kimmig, & Beine, 2011). The Variable 

Aligned Length (VAL) WAH (VAL-WAH) allows for setting the segment length prior to 
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running, as opposed to WAH that fixes the length to the size of CPU architecture word, 

minus 1 – a 32-bit system would utilize 31-bit lengths, while a 64-bit CPU would utilize 

63-bit segments. Depending upon the segment length, the encoding compression scheme 

can change. In this way, the compression can be optimized by the user (Guzun, 

Canahuate, Chiu, & Sawin, 2014). The one downside of this approach is that it requires 

operator interaction to configure the system at run time, implying it might not be practical 

as a background process. 

The Roaring bitmap compression scheme partitions the space into chunks and 

stores dense and sparse chunks differently (Chambi, Lemire, Kaser, & Godin, 2016). 32-

bit indexes are broken into chunks of 216 integers and separated into two different 

containers – one for identical 16 most-significant bits and a different container to store 

the 16 least significant bits. The containers are processed based on the container density. 

If there are no more than 4096 16-bit integers in the container, a sorted array of packed 

16-bit integers is utilized, otherwise, the container is stored using a 216-bit bitmap 

(Chambi, et al., 2016).  

Wu et al. (2016) presented a bitmap compression scheme in which the raw bitmap 

indexes are divided into many bitmap snippets. Common affixes are then merged among 

the various bitmap snippets. This approach is aptly named the Common Affix Merging 

with Partition (CAMP) (Wu et al., 2016). Testing indicates that CAMP can create smaller 

indexes when compared to Roaring, WAH, CONCISE, and the COMPressed Adaptive 

indeX  (COMPAX), although when density is greater than approximately 6%, Roaring 

exhibits comparable storage requirements (Wu et al., 2016).   
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In 2016, Wen et al. introduced the MAximized Stride with Carrier (MASC). The 

basis for MASC is the implementation of a new bitmap index coding scheme that would 

exhibit improved compression ratios. Unlike PLWAH and COMPAX, MASC is not 

limited to 31-bit runs. Rather, runs in MASC are as long as possible. Testing against the 

CAIDA dataset6 indicate that MASC provides improved compression ratios of 

approximately 10% (Wen et al., 2016).  

The Compressing Dirty Snippet (CODIS) compression scheme was presented by 

Zheng, Liu, Chen, and Cao (2017). It is based on WAH, but fewer bits are used to 

represent the bit string while maintaining inter-bitmap operation efficiency. Using the 

CAIDA 2016 dataset, comparisons were made to WAH, PLWAH, and COMPAX as to 

file size, and four different performance times: encoding, decoding, unions, and 

intersections. CODIS was the best in only decoding time. COMPAX required the 

smallest file size, and WAH performed the best on the remaining three performance 

evaluations (Zheng et al., 2017).  

Network Compression 

There have been attempts at compressing network traffic, with varying degrees of 

success. In 2000, Spring and Wetherall presented a protocol-independent technique to 

identify and eliminate redundant data from web content. However, their experimentation 

was as a user-level process running on a PC and analyzing a static file, so there is no 

indication whether this technique would truly be applicable in the enterprise to decrease 

network traffic (Spring & Wetheral, 2000). 

 
6 The Center for Applied Internet Data Analysis (CAIDA) is based at the Supercomputer Center at the 
University of California San Diego. CAIDA currently supports a large number of datasets that can be 
obtained from https://catalog.caida.org/search?query=types=dataset%20links=tag:caida%20.  

https://catalog.caida.org/search?query=types=dataset%20links=tag:caida%20
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Fusco, Stoecklin, and Vlachos (2010) presented COMPAX format that is 

designed to perform on-the-fly compressing, archiving, and indexing of streaming 

network data. There are two components in the process, an archiving backend to 

compress the incoming data, and COMPAX, the compressed bitmap index. Their key to 

decreasing the size of the compressed bitmap index is to use a codebook of just four word 

types that are representative of streaming data (Fusco, Stoecklin, & Vlachos, 2010). 

Kyriakopoulos and Parish (2010) describe an approach to compress time-based 

monitoring and measuring metrics from high-speed network traffic, using wavelets. The 

approach is considered lossy compression since some information is lost in the process. 

Use of wavelets is not truly a compression technique. Rather, it is a method that 

transforms the data into a different view of the data (Kyriakopoulos & Parish, 2010). 

Wavelet compression shows a significant improvement in compression compared to Gzip 

and Bzip2, but the approach was proposed for network monitoring and performance 

measurements, not general network traffic (packet capture) compression. 

Sardari, Beirami, Zou, and Fekri (2013) proposed a compression scheme to 

decrease network traffic. Their approach was to utilize a form of memory-assisted 

compression, where compression is performed based on previously seen sequences 

residing in memory. To accomplish this, a content-aware clustering algorithm was 

developed that grouped packets in memory that can be compressed. Sardari et al. (2013) 

relied on individual nodes in a network learning the data statistics in network traffic to 

aid in compression. There are possible problems with this approach. The content-aware 

clustering uses the Hellinger distance metric. However, the authors state the algorithm is 

too complex for real-time use and needs to be performed offline. They also tested using 
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captured packets from content servers. These two issues indicate that the concept is not 

practical for large enterprise networks where there is a wide variety of high-volume 

network traffic.  

Wen et al., (2014) proposed a new bitmap index encoding algorithm to compress 

network traffic for later analysis. SECOMPAX (Scope-Extended Compressed Adaptive 

Index) is claimed to perform better compression ratios and faster encoding schemes than 

other bitmap index compression algorithms. They performed experiments on an Internet 

traffic dataset obtained from CAIDA. The results indicated improved compression rates 

over other algorithms, although the encoding time took longer. Regardless, the Wen et 

al., (2014) concept is another form of data compression that requires decompression of 

the data for analysis, and not directly applicable to real-time analytical work. However, 

for the proposed dissertation research, SECOMPAX might prove valuable for 

compressing the known, repeatable sequences in the network traffic. 

Genomic Data Compression 

There has been a limited attempt to extend genomic compression techniques to 

network traffic. Oehmen, Peterson, and Dowson (2010) presented a paper to equate 

cyber-attacks to the evolutionary concept of survival of the fittest. The most effective are 

reused and even improved by future generations. Historically, this has made detection 

difficult – relying on a signature that now does not match the actual attack. To counter 

this, the authors present a detection approach that utilizes genomic algorithms that 

identify similar, although not exact strings. Thus, the authors claim to be able to identify 

evolved, perhaps obfuscated attacks from their similarity to a previous attack, regardless 

of mismatches, insertions, or deletions.  
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To evaluate this approach, Oehmen et al. (2010) utilized warning messages from 

Windows Active Directory (AD) log files. Each message was mapped to a unique 

character and a string of these characters was created from the messages over one day 

from 508 servers. The average length of a text string was 10,561 characters; the genomic 

analog would be 508 proteins with an average of 10,561 genes. The results were 

promising in being able to show similarities between cyber entities without prior 

knowledge. However, being based on warning messages from Windows AD log files, 

limits the potential use to Windows networks and only network activity involving AD. 

Loh, Baym, and Berger (2012) present a compression algorithm that takes 

advantage of the redundancy that occurs in gene sequences. They replace the redundant 

segments with links to those segments, such that only the pertinent differences are left 

intact. Should they need access to the redundant portion during analysis, the link provides 

ready access. Their justification for this concept is to reduce the extremely large volume 

of genomic data that must be analyzed at any given time to a more manageable volume. 

Loh et al., (2012) state that genomic data is doubling every four months, while according 

to Moore’s Law, processing power and storage capacity are only doubling every 18 

months, so some analytical method that can offset this disparity is critical. Although there 

exist numerous compressive algorithms utilized in genomic research, they are solely for 

saving storage space – the data must be uncompressed to be analyzed. 

Loh, Baym, and Berger (2012a) provided more detail in supplemental material, 

which is available from the journal website. Although this compression technique is 

applied to a genomic database, it is applied sequentially as though there is an incoming 

stream of DNA, similar to network traffic. During the read phase, the system builds the 
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main data structures: the unique database and the link pointers. The main issue is the 

identification of redundancy. For this, they utilized a variation of BLAT (BLAST-like 

alignment tool; BLAST: Basic Local Alignment Search Tool) to identify an acceptable 

alignment between a sequence fragment and an existing reference in the database. That 

portion is then replaced with a link to the reference with an edit script of the differences. 

With only a small percentage of genes being different, this approach greatly decreases the 

size of the database, while maintaining the ability to analyze directly. 

In 2012, Oehmen, Peterson, and Teuton expanded upon the Oehman, Peterson, 

and Dowson (2010) paper. As in their earlier paper, the evolutionary aspects of cyber-

attacks are discussed and the researchers state that cyber attackers change their 

approaches “more rapidly than our ability to recognize them” (Oehmen et al., 2012). On 

the surface, that is a true statement, but modern intrusion detection systems have 

combined signature and anomaly detection modules. So, although the signature may 

change, the anomaly detection module could very well detect the attack. However, if the 

new attack is an obfuscated version of a previous attack, the adoption of biological 

modeling techniques might be of benefit. Not only should their approach be able to 

identify a new attack but could possibly determine the type of attack based on its family. 

A misleading statement made in the Oehmen et al. (2012) paper is that attackers 

can probe detection systems to determine what types of attacks can be identified. That is 

not totally accurate – a critical cybersecurity control is to ensure that discovery is turned 

off on network devices and default usernames and passwords are changed so that 

attackers cannot log onto these devices either (NIST SP 800-53r5, 2020). Thus, a probe 

would not yield any important information. In fact, by probing the IDS, that action itself 
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could trigger an anomaly event. So, the premise of Oehmen et al. (2012) for 

recommending that detection systems become moving targets is not particularly 

warranted. 

Regardless, the approach by Oehmen et al. (2012) of using genomic algorithms 

for evolutionary gene sequence drift to detect similarities in network traffic, software 

execution, or event files is promising. However, what is not clear is the real-time 

capability. The approach involves analysis of audit logs or software code, neither of 

which is particularly read as a time series. This approach is thus more closely 

representative of the underlying genomic algorithm that is designed to work on gene 

sequence databases. As with the approach by Teuton, Peterson, Nordwall, Akyol, and 

Oehmen (2013), Oehmen et al. (2012) are forcing the cyber events being analyzed to fit a 

gnomic model. In this case, similar events are mapped to a single character and then 

ScalaBLAST is used to identify families. With a limited alphabet required by 

ScalaBLAST, the scope of detection capabilities could be restricted. Regardless, the 

possibility of identifying similar, malicious sequences that do not match a known 

signature is a valuable tool for cybersecurity. 

Teuton, Peterson, Nordwall, Akyol, and Oehmen (2013) presented an approach to 

detect malicious actions, by applying compression techniques developed for analyzing 

extremely large gene sequencing datasets. The approach allowed them to discover traffic 

signatures dynamically and detect anomalies without resorting to expert-defined 

signatures. Their system, called LINEBACkER (they do not define that acronym, in this 

paper nor any of their earlier published papers), utilizes a variation of BLAST (Basic 
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Local Alignment Search Tool) to discover patterns in network traffic: ScalaBLAST is the 

standard BLAST program recompiled to utilize multiprocessing.  

One justification for selecting genomic techniques, is that antivirus models 

require having signatures of known malicious actions, which may or may not match the 

current patterns. Standard endpoint security programs are only effective on their host and 

cannot be applied to general network traffic. However, gene searching algorithms look 

for related sequences, not exact matches (Teuton et al., 2013). Thus, they can find attacks 

that are designed to defeat a signature-based system through obfuscations – insertions of 

extra commands or pieces of superfluous data. 

The implementation displayed promising results. However, Teuton et al. (2013) 

forced network traffic to conform to the FASTA file format, used in genomic research. 

The problem with that is the “alphabet” is extremely limited, in this case, to 14 

characters. To accomplish this, they mapped pieces of the packet using a custom mapping 

table, which was not provided. The results from ScalaBLAST are then clustered using a 

greedy hierarchal nearest neighbor algorithm to identify groups, or signatures of network 

traffic sequences. The authors state that these dynamic signatures can be used to identify 

traffic that can be allowed or should be blocked and is easier to maintain than either 

black- or whitelists. However, since the approach by Teuton et al. (2013) is based on 

URL and content, it cannot distinguish between authorized and unauthorized users, only 

where the URL or content is allowed or not. 

Approximate Matching 

A key component of the Loh et al. (2012) work is the performance of approximate 

matching of gene sequences. However, as has been discussed, mimicking this class of 
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matching algorithms, such as presented by Needleman and Wunsch (1970) and Smith and 

Waterman (1981), would be too restrictive being designed to work on a DNA sequence, 

which is made up of stings of 20 different amino acids, that are comprised of three 

nucleotide pairs (Smith, 2008). Rather, network traffic is comprised of an unsigned 

character string, that contains 256 possible values, counting zero.  

In 1950, Richard Hamming presented a method to determine the number of 

changes required to turn one string into another string, on a character-by-character basis 

(Hamming, 1950). This was a simple algorithm but was only practical for strings of 

identical length and was based solely on position in the string (Korstanje, 2020). 

In 1965, Vladimir I. Levenshtein introduced an algorithm that identifies the 

difference between two strings by determining the minimum number of single-character 

insertions, deletions, or substitutions required to change one string into the other. The 

calculated difference is referred to as the edit distance and was an indication of the 

number of changes necessary to transform one string into another string (Levenshtein, 

1966). In literature and in usage, edit distance is now referred to as the Levenshtein 

distance and is the total number of insertions, deletions, or substitutions required (Wu, 

2021). A variation on the Levenshtein distance is the Damerau-Levenshtein distance, 

which include single character transpositions to occur – adjacent characters are reversed 

in performance of the transformation.7 

 There are two main advantages to the Levenshtein distance over the Hamming 

distance: 1) the Levenshtein distance is not position specific, so the matching portions 

 
7 Although this variation is attributed to Damerau, an exhaustive literature search has not identified any 
publications by Damerau on this variation, nor any publications that attribute this to him. Regardless, the 
inclusion of transpositions into the Levenshtein distance is associated with him. 
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can occur anywhere in either string; and 2) the Levenshtein distance works on strings of 

different lengths, compared to the equal-length string restriction of Hamming (Korstanje, 

2020). Although both these algorithms are relatively simple, they rely on maintaining a 2-

dimensional array where the first string is across the x-axis and the second string down 

the y-axis. Although this is not too memory-intensive for strings of reasonable length, it 

is not the most-efficient approach for longer strings (KokiYmgch, 2018).  

Hirschberg (1975) solved the space issue with a new approximate matching 

algorithm based on the Divide and Conquer algorithm. The large matrix is divided into 

smaller matrices where there is a single position used to pass between them. As the 

algorithm finds the smallest value in the two matrices, another piece of the larger matrix 

is added and calculation resumes. This subdividing continues until the entire range of the 

matrix has been covered, yielding the result (Hirschberg, 1975; KokiYmgch, 2018). 

Although this algorithm can thus more-easily handle larger matrices (longer strings), it is 

much more complex and requires recursion that could lead to stack overflow on very 

large strings, so may not be a candidate for this research. 

Summary 

Cybersecurity professionals agree that obtaining and maintaining audit files (logs) 

is a critical effort in combating cyber threats (Marker, 2021; Shopp, 2020). These files 

not only assist in identifying malicious, unauthorized activity (OWASP, n.d.; Scarfone & 

Mell, 2007), but can also be used to reconstruct the step-by-step approach involved in the 

unauthorized activity (Kent et al., 2006). However, due to the extremely large sizes audit 

files can reach if required to maintain for any length of time, there has been a concerted 

effort to identify insignificant data that can be discarded. One approach taken was the use 



39 
 

 
 

of network flows – the sequence of network packets between a source computer and its 

destination utilized (Claise, Trammell, & Aitken, 2013; Kerner, 2021; Petryschuck, 

2019). However, many IP flow systems exclude the payload to say space, and that 

removes any ability to trace steps, determine the purpose of the attack, or determine what 

information is being transferred (Alaidaros and Mahmuddin, 2017).  

Another approach was to develop more-efficient compression algorithms with 

higher compression rates to decrease the file sizes. Unfortunately, to analyze the data for 

malicious behavior requires decompressing the data back to its original, large size (Loh, 

Baym, and Berger, 2012). Therefore, a system that not only can reduce the size of the 

stored files but can reduce the size of the data itself, would be a benefit to cybersecurity 

professionals.  
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Chapter 3 

Methodology 

 

Overview 

Since 2016, internet traffic has been doubling every two years such that it is 

expected to be 178 billion gigabytes in 2022 (O’Dea, 2020). This growth has had a 

comparable growth in cybercrime, estimated to approach $8 trillion in 2021 (Embroker 

Team, 2021). Although there are many forms of cybercrime (FBI, n.d.), this research is 

mainly concerned with the impact of long-term attacks, such as APTs, and the 

requirement to maintain audit log files for an extended period of time. The NIST Special 

Publication 800-39, “Managing Information Security Risk,” defines the APT as those 

attacks that pursue their objective repeatedly over a long period of time; adapt its 

approach to defense efforts; and are determined to execute its objectives (NIST SP 800-

39, 2011). These and other malicious attacks can occur over weeks and even months. 

Detection requires analysis of the network traffic over the life of the attack, the sheer 

volume of which can make the problem intractable. To be able to gain insight into APTs 

and other long-term attacks requires access to audit log files generated over the period of 

the attacks. 

In 1997, NIST published a bulletin that summarized a chapter in the NIST SP 

800-12, “Introduction to Computer Security: The NIST Handbook.” This publication was 

devoted to the need and importance of creating audit trails (audit logs) for IT systems 
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(NIST ITL Bulletin, 1997). The bulletin describes an audit trail as consisting of records 

of system events concerning the operating system, the users, and the functioning of any 

applications. The purpose of the audit trail is to assist in determining whether systems 

have been harmed by insiders, hackers, or even technical problems. The audit trail can be 

used immediately with access controls to identify possible malicious activity, or 

maintained for future analysis after a system outage (NIST ITL Bulletin, 1997). To this 

day, cybersecurity professionals agree that it is essential to collect and maintain audit 

files (audit trails) in order to ensure accountability, determine who is accessing a 

network, the applications they are using, any activity that could impact the security 

posture of the enterprise, and allow for reconstruction of events after a problem has 

occurred (Marker, 2021; Shopp, 2020; NIST ITL Bulletin, 1997). Although there are 

many types of audit logs, it is the audit logs comprised of Ethernet packet captures 

required by network intrusion detection systems (NIST SP 800-94, 2007) that are the 

subject of this research. 

In the Introduction, it was calculated that an organization could generate upward 

of 90 petabytes of audit log files per year. From a simple storage standpoint, standard 

compression techniques decrease the size of these files by as much as one-fifth of the 

original data file size, based on testing of a 6.4 GB Compact Muon Solenoid (CMS) data 

file (CERN, n.d.) which contained 6500 events (Zheng & Bockelman, 2017). The authors 

tested different compression algorithms, including versions of the ZLIB (Zip 

Compression Library), LZ (Lempel-Ziv), and LZMA (Lempel–Ziv–Markov) algorithms 

against the CMS file. The best results were obtained with LZMA-9, achieving a 

compression ratio of 5.29; the lowest compression ratio of 2.95 was achieved by LZ4 
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(Zheng & Bockelman, 2017). A method of compressing and storing a large percentage of 

the data in offline files, while maintaining keys that can be updated and searched in real 

time would greatly decrease the resources required to store and analyze audit files and be 

a valuable tool in fighting cybercrime. However, that ability is not within the scope of 

this research, only the feasibility of applying genomic compression techniques to network 

traffic, specifically Ethernet packets with data segments. 

Development Considerations 

Conceptually, the implementation of genomic compression techniques to network 

traffic is straight-forward. However, development of any solution is dependent upon an 

ability to test and validate the solution, so a suitable dataset is paramount. To identify a 

suitable dataset, it was necessary to identify the scope of network traffic that could be 

compressed by the new technique, and then the identification of an appropriate dataset.  

Network traffic follows a layered service model. The original model development 

led to the ISO 20000 Open Systems Interconnection (OSI) model, which presents 

network traffic as seven different layers: physical, data link, network, transport, session, 

presentation, and application layers (Kurose & Ross, 2007). Packet capture programs, 

such as Wireshark utilize a 4-layer Transmission Control Protocol/Internet Protocol 

(TCP/IP) model: 1) network access layer, comprised of the data link OSI layer – the 

physical layer is not included; 2) internet layer, which is comparable to the OSI network 

layer; 3) transport layer, identical to the OSI transport layer; and 4) application layer, 

comprised on the application, presentation, and session OSI layers (Ghosh, n.d.). Not 

having the ability to test directly on a large network with hundreds or thousands of users, 

the research was performed utilizing packet capture files. Going forward, all references to 
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layers will be to the appropriate TCP/IP model and not the OSI model, unless explicitly 

noted. 

Although there are methods to replay captured packets (Colasoft, n.d.; Nanni, 

2020; Tcpreplay, n.d.), there are potentially significant development issues in their 

implementation. Besides obtaining, installing, and configuring the replay tool, a method 

of capturing the replayed packets for testing the compression technique would be 

required, to the exclusion of all local traffic. These are not particularly onerous tasks, but 

the only purpose for the replay approach would be to show the ability to process in real 

time. Since the main intent of this research was to develop a packet compression process 

utilizing genomic compression techniques, if this proved unsuccessful, the processing in 

real time would be moot. Therefore, this additional complexity was determined not to be 

valuable. Instead, simply capturing packet times and comparing to runtimes provided an 

indication of the ability of the approach to compress packets in real time. Therefore, it 

was decided to utilize the Npcap library (Npcap, n.d.) to open and read through the data 

sets, thus providing better control of the process. 

Another concern involved the issue of the IPv4 versus IPv6 protocols. According 

to the Internet Society, in 2018 over 25% of internet-connected network advertised 

connectivity utilized the IPv6 protocol (ISOC, 2018). However, the research solely relied 

on IPv4 traffic for one simple reason, the major datasets available for testing are only 

IPv4 traffic. No matter whether the protocol is IPv4 or IPv6, that only impacts the 

Internet protocol itself – there is no impact to the transport and application layer 

protocols. Although synthetic IPv6 data could be generated, or the IPv4 dataset modified 
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for IPv6 format, the difference would have no impact on the success of the genomic 

compression technique. 

As was previously mentioned, packet capture programs work on the TCP/IP, 4-

layer model. To maximize compression, parsers were developed for the most-common 

protocols that include substantive data. The initial development created the main 

program, the Genomic Network Compression System (GNCS), which opened a PCAP 

file, read the packets, and would pass to appropriate modules to perform further 

processing. To determine the scope of the parser development, the next step was to read 

through the dataset, capture the total of each internet layer and transport layer protocol 

encountered. Although application layer traffic could be processed individually, since 

their formats are really variations of the transport layer packets; the differences were not 

considered significant enough to warrant additional parser development. Thus, the main 

program consisted of reading packets from the dataset, switching on internet layer 

protocols, then switching on transport layer protocols to determine the appropriate parser 

to use. It is in the transport layer parser where the genomic compression technique was 

implemented. 

Parser development involved the application of genomic compressive techniques 

to minimize the volume of data required to uniquely define the packet. Genomic 

compression techniques are based on the knowledge that only a small percentage of gene 

sequences are different between members of the same species (Loh, Baym, & Berger, 

2012). Therefore, sequences of the data that are equal to or comparable to a known 

sequence are identified and replaced with a link to that known sequence along with an 

edit script identifying any differences. In the case of network traffic, this involved 
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identifying what packet data is common and would lend itself to this type of 

compression.  

At a basic level, this research resembles network flow. In the development of the 

IP Flow export protocol, Claise, Trammell, and Aitken (2013) defined a network flow as 

the data stream between source and destination computers. At a minimum, a traditional 

IP flow consists of the 5-tuple source and destination IP addresses and ports, and the 

protocol. With protocol-specific parsers, this research only required a 4-tuple key, 

comprised of the source and destination IP addresses and ports. The basic function of a 

network IP flow device involves capturing packets, aggregating the flows based on the 5-

tuple value, and exporting the flows to a collector (Petryschuk, 2019). Flow devices 

follow rules to determine when a flow has ended and is to be exported: 1) when the finish 

(FIN) or reset (RST) TCP flags are set; 2) a configurable time after receiving the last 

packet of an existing flow has elapsed, typically15 seconds; 3) a maximum time after the 

flow record was created has been exceeded, default of 30 minutes; or 4) when the flow 

cache is full (Estan, Keys, Moore, & Varghese, 2004). Although the research 

compression algorithm utilized packet aggregation, during the process of flow creation, 

the genomic compression technique allowed for common packet data to be replaced with 

a link, while the common data was stored offline. However, unlike common archiving 

compression techniques, this research algorithm is considered a lossy compression 

technique, in that there is certain information in network traffic that is redundant or not 

required for analysis. This common data was stored once, and duplicate information 

discarded.  
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One issue that can impact future analysis of audit log files is the effect of DHCP 

which assigns IP addresses to their users’ workstations on an as-required basis 

(Weinberg, 2022). Although systems can be assigned a fixed (static) IP address or they 

may be repeatedly assigned the same IP address, it is more likely that over a several 

month period, that a user’s workstation will be assigned multiple IP addresses. Therefore, 

the IP address cannot be reliable, since there is no guarantee that it belongs to the same 

user as the last time analyzed. In normal network traffic, the source and destination 

network device media access control (MAC) addresses are available in the network 

access (data link) layer frame data (Harmoush, 2019). MAC addresses are unique to a 

single device, so it is theoretically possible to trace a packet back to a single device and 

thus a single user. This sounds easier than it is. MAC addresses are used for hop-to-hop 

traffic, meaning the destination MAC address is that of the next “hop” (switch/router) in 

the path and the source MAC was the previous hop. To reach the ultimate destination, at 

each hop, the switch must determine the next hop, based on the IP address. 

Unfortunately, as will be discussed later, some datasets do not contain full network 

access layer information. Wireshark was used to analyze the candidate test datasets and it 

was identified that some did not contain any network access layer data, some partial, and 

some contained a complete network access layer header (Wireshark, 2020). With real 

network traffic, if the source IP is a member of the enterprise, the source MAC address 

would represent the source system and could be used in correlation analysis. However, 

whether DHCP was utilized on the network capturing the test data is immaterial, since 

the research compression technique was based on the Transport Layer protocol, and there 

was no further analysis performed correlating the data flows over time. 
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The main function of GNCS was rather simple, utilizing the Npcap library 

(Npcap, n.d.). After opening the PCAP file, it was a straight-forward process of reading 

through the file, packet by packet, extracting the internet protocol from the network 

access layer and calling the appropriate protocol parser, passing the packet as an unsigned 

character string. After the last packet was processed, the main program finished by 

combining the working files into the final output file and saved the processing statistics 

for comparison to other techniques.  

The development of each parser followed a common approach: extract parser-

specific (protocol-specific) data and apply genomic compression techniques, where 

appropriate. For example, in parsing the major transport layer protocols, the payload was 

a perfect candidate for genomic compression techniques. However, with request/reply 

protocols, the only possibility would be matching requests and replies – there is no 

payload. The worse contributors to compression ratios were the unsupported protocols 

(those without a data segment), where the entire frame/packet was stored as-is, without 

benefit of the genomic compression techniques. 

Development Resources 

All programs of GNCS were developed in ISO C++ 2014 Standard for possible 

portability to other platforms. All programs were standard console applications developed 

using Microsoft Visual Studio 2022 Professional. The Npcap library was the only non-

Microsoft library utilized in development. There were two publicly available tools 

utilized for development/debugging purposes. The first was the 64-bit Windows version 

of Wireshark (Wireshark, 2020). This aided in debugging by seeing what data was in a 

packet and ensuring it was being handled correctly by the program. The other application 
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was the hex editor, HxD Hex Editor (Hörz, M., 2020). This application allowed for 

opening both the PCAP dataset file to actually see the raw data, and also opening any of 

the intermediate or final output files to debug any issues with the file structures.  

Development occurred on two different systems, a desktop and a laptop. The 

desktop system is a Dell XPS 8700 with an Intel® Core™ i7-4790 CPU running at 3.60 

GHz, 24 GB DDR3 RAM (1333 MHz), and a one (1) TB Samsung 850 EVO SSD 

running Windows 10 Pro. The laptop system is a Dell XPS 9520 with an Intel® Core™ 

i9-12900HK CPU running at 2.50 GHz, 32 GB RAM, and a one (1) TB SSD running 

Windows 11. 

Testing required an appropriate Ethernet dataset containing IPv4 packets. There 

are two approaches possible, use of an existing dataset versus creation of a synthetic 

dataset. The later was deemed impractical due to the nature of the genomic compression 

algorithm itself. The various headers required by the Ethernet protocol are short and 

compact and are therefore of insufficient length to efficiently utilize the genomic 

techniques. It is the data segment of the application layer that can benefit from 

compression. To prove the validity of the approach requires a large amount and variety of 

data segments, something that would be a project itself. Therefore, it was determined that 

use of an existing dataset would be preferable. 

Dataset Analysis 

A simple internet search showed there are many packet capture datasets available 

for various purposes. In many cases, these are small; limited in scope (number of layers 

and protocols), or through anonymization, the payloads have been stripped. NETRESEC 

AB is a Swedish software developer that specializes in products designed to perform 
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network security monitoring and network forensics. NETRESEC AB also maintains a 

comprehensive list of publicly available PCAC network capture files, available from their 

website (https://www.netresec.com/). Of the numerous available datasets, two groups 

stood out as promising test dataset candidates: 

1. Starting in 2005, the National CyberWatch Center began hosting the Mid-

Atlantic Collegiate Cyber Defense Competition (MACCDC), in which 

students from different universities act as Blue Team members to protect a 

corporate network from attack by a Red Team made up of volunteers from 

industry and academia. The network captures for the annual competitions 

between 2010 and 2012 were downloaded for analysis (MACCDC, 2012).  

2. The Institute of Electrical and Electronics Engineers (IEEE) 

Communications Society (ComSoc) has been a sponsor of the Military 

Communications Conference (MILCOM) since its inception in 1982. At 

MILCOM 2016, Bowen, et al. presented a paper that described the 

development of four synthetic datasets that included cyber exploitations 

for use in cyber security research (Bowen, et al., 2016). In order to better 

determine the potential testing value of these datasets, the download page 

also included a detailed description of five datasets based on the Bowen, et 

al. (2016) research, as well as supplemental material 

(https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-

E_Descriptions.pdf). 

The internet search also provided another source of datasets from the School of 

Engineering and Information Technology, University of New South Wales at the 

https://www.netresec.com/
https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-E_Descriptions.pdf
https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-E_Descriptions.pdf
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Australian Defense Force Academy, Canberra, Australia. The UNSW-NB15 network 

datasets were compiled by Moustafa and Slay (2015) and are hybrid combinations of 

real-world network traffic that were modified with some synthetic data for testing 

intrusion detection systems.  

The first program-specific tool developed was a small program that opened a 

PCAP file, walked through it packet by packet, while compiling the total of network, 

transport, and application layer protocols within the PCAP file, with special attention to 

available data segments (payloads). This small program was instrumental in determining 

the viability of a dataset for compression, as well as identifying the scope of the protocol 

parsers that would be required.  

The application of genomic compression techniques is proposed to be applicable 

to any network traffic. Since the intent of this research is to show the feasibility of this 

technique to reduce the size of the network traffic audit/log files, it was beyond the scope 

of this research to include a wide variety of possible datasets. Rather, the intent was a 

proof of concept, which requires a dataset representative of real-world network traffic. 

Another consideration in the evaluation of the candidate datasets is the size and 

composition of those datasets. As has been discussed, the genomic compression 

technique needs a sufficient volume of data to be practical – the more data there is, the 

higher the likelihood of finding similarities. Therefore, datasets with less than 1,000,000 

packets were eliminated from consideration. 

Appendix B provides a detailed analysis of 68 identified datasets, the results of 

that analysis, and the datasets that were determined to contain sufficient data to test the 

feasibility of applying genomic compression techniques to network traffic. Out of those 
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68 candidate datasets, all but two datasets were eliminated from consideration, and 

testing was therefore limited to the UNSW-NB15 17-2-2015 dataset (Moustafa and Slay, 

2015) and the MACCDC 2012 dataset (MACCDC, 2012). Although neither dataset is 

solely a capture of normal network traffic, the packets presented were complete and 

included significant payloads for standard protocols. All further analysis was limited to 

just the selected datasets. Hereinafter, the UNSW-NB15 17-2-2015 dataset will be 

referred to as the UNSW-NB15 dataset and the MACCDC 2012 dataset as the MACCDC 

dataset, unless further distinction is required. 

Parser Development 

The first level of parsers was determined based on the Ethertype values in the 

network access layer headers. The Ethertype is stored in the Ethernet packet as a 4-byte 

unsigned integer (Networx, n.d.), and although there is a theoretical maximum of 65,535 

possible Ethertype values, most of these are proprietary (IANA, 2022; Nobel, R., 2018). 

The more-common registered Ethertypes are 0x0800 (IPv4), 0x0806 (ARP), 0x8035 

(Reverse ARP, or RARP), 0x8100 (VLAN – IEEE 802.1Q), and 0x86DD (IPv6) 

(Networx, n.d.). The actual internet layer parsers developed were determined through the 

analysis of the candidate datasets. Table B7 in Appendix B shows the occurrences of 

Internet Layer protocols in the various candidate datasets. In particular, the two selected 

test datasets (MACCDC 2012 and UNSW-NB15 17-2-2015) had IPv4 and ARP in 

common, making them candidates for Internet Layer parsers. ARP is a messaging 

protocol, in that one system requests information from another system or systems, which 

reply with the requested information. However, with these request/reply message 

protocols, the only possibility would be matching requests and replies – there is no 
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payload. One aspect of genomic compression techniques is replacing common data 

segments with links. Therefore, an Internet Layer parser was developed for ARP to 

determine the feasibility of its application to message protocols. 

The next level of analysis was to identify transport layer protocols that possessed 

a data segment of sufficient size to take advantage of the genomic compression 

technique. Without developing parsers for every possible transport layer protocol, the 

analysis was geared toward capturing not only the various protocols, but also the size of 

the packet (minimum, maximum, and average), as well as the size of any contents beyond 

the transport layer header. Only those protocols that contain a sufficient data segment 

were candidates for parser development. 

Analyzing the Transport Layer results from Appendix C, Table C8A for 

MACCDC and Appendix D, Table D5A for UNSW-NB15 shows that there are a total of 

seven (7) Transport Layer protocols utilized between the two selected test datasets: 0x01, 

Internet Control Message Protocol (ICMP); 0x02, Internet Group Management Protocol 

(IGMP); 0x06, TCP; 0x11, User Datagram Protocol (UDP); 0x58, Kerberos; 0x59, Open 

Shortest Path First (OSPF); and 0x84, Stream Control Transmission Protocol (SCTP). 

However, except for TCP and UDP, the other protocols not only had an insignificant 

amount of data, but their occurrences within the datasets were a fraction of one percent. 

With the research goal of proving the efficacy of the genomic compression technique 

with network traffic, due to these limitations, these minor protocols were not deemed to 

be candidates for parsers. Therefore, TCP and UDP were the only Transport Layer 

protocols proposed for parser development. 
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As has been discussed earlier, due to the very nature of the proposed research, it 

was not practical to address all possible protocols, since only packets with a data segment 

were candidates for compression. Therefore, instead of expending a significant effort and 

significant resources required to create parsers for these protocols, the unsupported 

packets were saved as-is, to audit the output file to ensure every packet was processed. 

However, to evaluate the impact of the genomic compression technique itself, data was 

gathered pertaining to the packets with usable data to determine the original and 

compressed record sizes, thus ignoring the negative impact of the unsupported protocols. 

To support this, another tool that was developed analyzed the completed interim data files 

and the final output file, to ensure all packets in the PCAP dataset were captured. The 

final output file is a conglomeration of multiple parser files, and as such, it was important 

to be able to ensure it was structured correctly and represented all packets captured. 

Throughout development, the output of this analysis tool also provided debugging 

information through comparison with the actual packets, as viewed in Wireshark. 

Internet Layer Parser 

This was a simple parser and was implemented as part of the main PCAP packet 

read loop. A Npcap function reads each packet and presents it as a hexadecimal character 

string. It is a simple matter of extracting data according to the packet format. Upon 

reading a packet, the program walks the string, extracting protocol header information as 

required. The internet parser stops after extracting the network layer, and calls the 

appropriate parser, passing the remainder of the unsigned character string for further 

extraction. Upon return from one of the internet layer parsers, the main program 

continues the read loop through the PCAP file. If the last packet has been reached, the 
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main program saves all run statistics and consolidates all the interim files into a final 

compressed file.  

ARP Parser 

ARP is an example of a protocol without significant data and is discussed here to 

show how elimination of duplicate data reduced the size of the resultant file. In practice, 

ARP requires the exchange of messages between the source and destination devices and 

is used to identify the MAC address associated with a given IPv4 address. The 

communication is a pair of packets consisting of request and reply packets (The TCP/IP 

Guide, 2005). RARP utilizes virtually the same format as ARP and performs the opposite 

discovery – obtain the IPv4 address associated with a given MAC address. The main 

purpose is for diskless systems to obtain their IP address at boot time. However, that 

protocol has been superseded by either the Bootstrap Protocol (BOOTP) or the Dynamic 

Host Configuration Protocol (DHCP) (IONOS Digital Guide, 2019). For those 

devices/applications that still utilize RARP, the parser will check for the possibility. The 

difference is in the opcode: ARP utilizes 1 and 2 for request and reply, while RARP 

utilizes 3 and 4 for the request and reply (The TCP/IP Guide, 2005).  

Although the goal of the research was to determine the efficacy of the genomic 

compression techniques on network traffic, request/reply message formats can take 

advantage of one of the underlying precepts of the genomic compression technique – 

reduce duplicate data by referencing once. Therefore, a parser was developed for the 

ARP packets to identify the magnitude of possible data space savings that could be 

obtained for request/reply message protocols. The ARP parser maintained an index of 

packets read from the PCAP file in a balanced binary search tree (BBST). When the reply 
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to a specific request is read, the two associated packets are combined into a single record. 

Since much of the data is duplicated in the request and reply packets, there really was no 

data to be archived and linked, so a merged packet was created with additional 

information to identify the request and reply data points. This combined record was then 

written to the ARP intermittent file and the request packet was removed from the BBST. 

Although this record format was not ideal for maximizing compression ratios, any 

decrease in the amount of data to be retained, by default, will improve compression 

ratios. This also provided an indication of potential data savings for other request/reply 

message protocols. 

IPv4 Parser 

Like the ARP parser, the IPv4 parser is called by the internet layer parser. passing 

the remaining unsigned character string (packet data). This parser continues reading the 

packet string and extracting IP header data, the critical data fields being the transport 

layer protocol and the source and destination IP addresses. At this point, the parser 

continues processing dependent upon the transport protocol involved. The two most-

common transport layer protocols with a significant data segment are TCP and UDP. 

Transmission Control Protocol (TCP) Parser 

TCP is a connection-oriented, reliable data transfer service. It is connection-

oriented because the source and destination systems perform a handshaking to establish a 

full duplex connection that allows simultaneous communication. It is reliable because the 

communicating systems are assured that TCP will transfer all data without error and in 

the correct order (Kurose & Ross, 2007).  
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After the remainder of the IP header is extracted, the TCP header is next. The first 

two data elements extracted are the source and destination ports, completing the 4-tuple 

key. Next the sequence and acknowledgement numbers are extracted, the former required 

for proper reconstruction of the data if the data is fragmented and covers multiple 

packets. The next important data point is the header size, sometimes referred to as the 

data offset since this data point is used to determine where the actual data begins. The 

next important data elements are the flags. There are nine 1-bit flags, but according to 

RFC 8311, the first flag, NS, is experimental and thus not germane to this research 

(Black, 2018). Therefore, that bit can be ignored, and the remaining flags extracted as an 

unsigned 8-bit integer. Of the eight flags, the only flags that directly impacted the 

compression process were the Acknowledgement (ACK), Reset (RST), Synchronize 

(SYN), and Finish (FIN) flags. The other three flags, Congestion Window Reduce 

(CWR), ECN-Echo (ECE), and Urgent (URG) flags pertain to various aspects to 

transmission and reception, but do not really impact the compression process, so were 

ignored. At this point, all pertinent data was available. 

The first step was to determine if the packet is the beginning of a new flow or a 

continuation of an existing flow. The 4-tuple key is stored in a BBST. This structure was 

chosen for two reasons: 1) being self-balancing, the tree can theoretically hold 

2,147,483,649 (231+1) nodes. This was important, because the initial design utilized an 

unbalanced binary search tree and walking that tree caused stack overflow errors. 

Although the default stack size is 32 and can be increased, the second reason was the 

deciding factor; 2) operations on binary search trees are proportional to the height of the 

tree. Balanced trees are more efficient than unbalanced trees since they minimize the 
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height, and thus fewer comparisons are required to locate an existing node or where a 

new node should be inserted (Elgabry, 2017). The key used for the BBST was the source 

IP, destination IP, source port, destination port, with the IP addresses represented as 

unsigned, 32-bit integers and the ports as unsigned, 16-bit integers. A node of the BBST 

consists of the key and a pointer to a packet structure that contains the common data 

elements of a data flow, plus pointers to the node to the left and the node to the right, and 

the value of the height in the tree of the node that is used to balance the tree. The last key 

data point in the packet structure is a link to the data. 

The next development issue pertained to collecting and subsequent aggregation of 

data segments. If the reception of packets at the destination were guaranteed to be in 

sequential order, a simple list could be utilized to keep track of the data segments, 

However, order is not guaranteed, so a mechanism to efficiently identify the location of 

the received data segment is required. To accomplish this, data is stored in a doubly 

linked list based on the sequence number, maintaining the last insert value as the starting 

point for the next insert. If packets are received in order, the new data segment is 

appended to the end of the list. In the case of a packet being received out of order, instead 

of starting at the beginning and walk the list to find the proper location, which would be 

required for a simple list, the insert function searches the list from the last insert location 

until the proper location for the new data segment is identified and it is inserted; the 

direction of searching based upon whether the sequence number of the latest packet is 

greater than or less than that of the last inserted packet. 

There are several scenarios that identify the beginning of a flow and trigger the 

end of flow, and the details were covered previously. The SYN flag identifies the 
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beginning of a flow. If there was already a flow in progress for the 4-tuple key, by the 

very nature of the TCP hand shaking, the previous flow was considered orphaned, closed, 

and processed as complete. A new flow would be started with the SYN packet. If a RST 

flag was received, the existing flow was again considered orphaned, closed, and 

processed as complete. If a FIN flag was received and there was an existing flow, it was 

considered complete and processed. If a FIN flag was received and no flow existed, the 

single packet was considered orphaned and processed as complete. Although a timeout 

period was discussed, since this research was utilizing a finite set of internet packets, the 

timeout processing was not implemented. Rather, after the last packet was read, all open 

flows were considered “timed out” and processed as complete. 

The remaining impact to the TCP parser was duplicate packets. Pentikousis et al. 

(2010) performed an analysis on network traces from the National Laboratory of Applied 

Network Research Passive Measurement and Analysis (NLANR/PMA). This analysis 

determined that in the various traces in the dataset, retransmissions of TCP packets 

ranged from 0.48% to 3.6%, with an average of 2.4% (Pentikousis et al., 2010). The 

parser was designed to identify duplicate packets – retransmissions. Upon detection, the 

data segments are compared and if there was a difference, the original record was 

replaced with the retransmission record and a duplicate record of the original packet was 

created for future reconstruction integrity. A true duplicate record was saved as a very 

simplified record in which a link to the original packet was saved along with the 

timestamp of the duplicate, and the remaining duplicate packet data was discarded.  
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User Datagram Protocol (UDP) Parser 

UDP is a connectionless protocol – there is no handshaking before the message is 

sent. UDP is used by computer applications to send messages (datagrams) to other 

computers on a network but is considered unreliable since there is no guarantee that the 

message was received (Kurose & Ross, 2007). Therefore, unlike TCP, there are no 

sequence and acknowledgement numbers to identify the packet order. Rather, UDP 

packets are processed in the order in which they are received, regardless of the impact to 

the receiving program of out-of-order data. All this makes UDP a simple protocol. After 

the IP header, the UDP format consists of five data fields, the source and destination 

ports, the UDP length (includes both header and data), a checksum, and the data. Each 

packet stands on its own, so in the case of a streaming application, such as Voice over IP, 

there is no way to know when the communications end, other than no further packets are 

being received. Since a UDP packet could be either a complete message or a streaming 

service, the various datasets were analyzed for UDP port usage to determine the extent of 

single packet protocols (message formats) versus a streaming service. UDP packets were 

collected based on the 4-tuple key discussed above and analyzed for commonality. If 

there was an insignificant percentage of UDP traffic in a dataset utilizing protocols 

requiring multiple packets, as opposed to single packet messages, the dataset was deemed 

not compliant with the requirements for the genomic compression algorithm. Except for 

the Trivial File Transfer Protocol in the UNSW-NB15 dataset, all other reserved or 

assigned ports are utilized by messaging protocols. Therefore, the only applicability of 

genomic compression techniques would be those situations where the data segment of the 

single packet was sufficiently long to warrant an edit script. In those cases, the genomic 
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compression algorithm would be applied, where feasible. If not successful or the data 

segment is of insufficient length, the UDP traffic would be saved as is. 

Compression Algorithm 

The genomic compression algorithm developed by Loh, Baym, and Berger (2012) 

relied on a known dictionary of the gene being analyzed. As their program progressed, it 

compared the test gene sequence to the known gene. When a difference was identified, 

the common portion was replaced with a link to that sequence and an edit script showing 

the differences. The actual analysis can thus be performed on the much shorter 

differences (Loh et al., 2012). Although genes are a very large structure, they are all 

comprised of four basic nucleotide bases, adenine (A), cytosine (C), guanine (G), and 

thymine (T), and a sequence of three nucleotides makes up an amino acid, of which there 

are 20. It is how these amino acids are strung together determines the makeup of a 

protein, which can be hundreds and even thousands of amino acids in length (Genomics, 

2022). However, genomic analysis is performed at the nucleotide level, requiring only 

four different values to compare (Loh et al., 2012).  

With network traffic, there is no known dictionary to compare, but it can be 

created as processing progresses, which was the approach taken by this research. The 

next issue to consider was the comparison process. Compressed bitmaps are commonly 

used for database indexes (Wang, Lin, Papakonstantinou, & Swanson, 2017), but 

considering the potential size of aggregated data segments – a user is downloading a file 

of hundreds of megabytes in size – bitmaps can become difficult to manipulate. Another 

possibility would be to compare 4-bit words (nibble), of which there are 15 possibilities 

in a base 16 system: zero (0) through nine (9) and the alpha characters ‘a’ (or ‘A’) 
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through ‘f” (or ‘F’). However, the smallest native data type is the 8-bit character. 

Comparing nibbles would require bit manipulation, making coding less efficient and 

more complex. Therefore, the logical choice was to compare characters. However, the 

character data type is a signed 8-bit integer representing values from -126 to 127, so 

unsigned character strings which represent values from 0 to 255 were utilized. This is 

also the native data type utilized in PCAP capture files, so no transformation of the raw 

packet data is required. To support these strings, three small functions were developed to 

compare, copy, and duplicate unsigned character strings, in addition to more-complex 

functions to perform approximate string matching. 

When a flow was considered complete, the first check was to ensure all possible 

data was received. With UDP, this was more of a formality since there is no way to know 

whether any data was lost. With TCP, this was accomplished by walking the string and 

confirming that a packet sequence number plus its data length was equal to the next 

packet sequence number. If there is any missing data, the gaps are filled with 0x00 for 

each missing unsigned character, subject to a threshold on the difference between the 

sequence of the packet and that of the next available. The threshold is necessary since the 

datasets potentially contain data specifically designed to gain unauthorized access and 

might not conform to TCP standards. Since the sequence numbers are unsigned 32-bit 

numbers, the difference between two sequence numbers could potentially be not just 

thousands, but millions. It was therefore determined that if the difference between 

sequence numbers exceeded the maximum data segment of a standard TCP packet, the 

flow would be split and handled as separate flows. 
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As was discussed above, a gene is a long string comprised of just four different 

nucleotides. Genomic analysis entails comparing a subject gene to a known gene and 

identifying the differences between them. With just four possible values to compare, this 

is not particularly an onerous task. In 2005, researchers compared the genes of humans to 

chimpanzees and determined that 99% of the genetic code is similar (Gibbons, 2012). So, 

if you take two members of the same species, the differences would be less than 1%. 

With the human genome containing approximately 6.4 billion base pairs (3.2 billion on 

each strand of the double helix) (Veritas, 2017), the length of the common nucleotides is 

significant with short segments being different. This is the situation of which the Loh, 

Baym, and Berger (2012) compression technique takes advantage. 

Network traffic cannot take direct advantage of the Loh, Baym, and Berger (2012) 

compression technique for two major reasons: 1) it is intuitively obvious that the contents 

of data segments vary from packet to packet, so contrary to genomes, the differences are 

significant from packet to packet; and 2) genomic research is comparing the differences 

between two strings, while network traffic requires finding similarity between thousands 

and even millions of different packets.  

The compression algorithm begins after a data flow is closed. Since there is no 

portion of the data flow that has a direct relationship to the aggregated flow data (nothing 

links the data to itself), and since a new segment must be compared against the previous, 

known segments, the data segments are stored in a series of simple linked lists. Since the 

likelihood of data for different protocols being identical, the linked lists are stored in a 

balanced binary search tree with the protocol and destination or source being the key. 

This key was chosen to take advantage of different users accessing the same information. 
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To conserve system memory, a fragment of the data segment is maintained in the linked 

list along with a link to the entire data segment which is stored in an interim file. For the 

purposes of this research, the length of the segment will be determined through analysis 

of the aggregated data segments. Although in a production environment, that value would 

probably be configurable, it was decided to use a length close to the mode of the 

observable data lengths – the data length that occurs most often. For efficiency, the actual 

size will be divisible by the “memory address size” of the computer; in this case, divisible 

by 64, for a 64-bit system. Should the fragments match, or the projected edit script and 

difference be less than the actual length of the known fragment, then the entire segment is 

retrieved, and the comparison continues. Throughout the rest of this paper, the newly 

created aggregated flow will be referred to as the “test string” and its fragment as the 

“test fragment” and it will be compared to a previously stored fragment, referred to as the 

“known fragment” and its total stored string as the “known string.” In genome sequences, 

the differences are minor compared to the size of the common data, so adding edit scripts 

and links does not make a significant difference to the overall size of the file. With 

network traffic and the goal to decrease file sizes, the algorithm had to be cognizant of 

the length of the data difference and the length of the link and edit script in relation to the 

overall data length – short segments are best left as is.  

Another difference between genome analysis and network traffic is that in 

genomic analysis, researchers are identifying where fragments differ from the whole 

sequence. With network traffic, on any given day, a network would experience 

thousands, perhaps millions of different flows. To analyze every complete flow would 

not be practical and would most likely require more processing power than would be 
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available. Instead, the data segment will be analyzed using an approximate match 

algorithm to determine the number of differences between two strings. As discussed in 

Chapter 2, Review of the Literature, there are several possible algorithms. The Hamming 

distance is a very efficient measure of the number of differences between two strings – it 

compares character by character, starting at the beginning of each string until it reaches 

the last character (Hamming, 1950). It requires strings of equal length, which is not an 

issue when comparing equal-length data segments. However, it is intuitively obvious that 

if the comparison starts with the first character of each string and continues character-by-

character, the Hamming distance cannot account for common substrings that are offset by 

even a single character. For example, if 255 characters of two strings that are 256 

characters long are identical, but one string is offset by a single leading character 

compared to the other string, the Hamming distance would be 256 and not a candidate for 

the genomic compression technique.  

The Levenshtein edit distance is also a measure of the number of differences 

between two strings, but the count it produces includes the number of character 

insertions, deletions, or substitutions required to convert one string into another (Berger, 

Waterman, & Yu, 2021). Therefore, in the example above, the Levenshtein edit distance 

would be 1 by deleting the initial character of one string, making it a better algorithm in 

determining approximate matches.  

Vladimir Levenshtein first presented his algorithm in 1965 in Russian, and then in 

English in 1966 (Levenshtein, 1966). For two strings a and b of length m and n 

respectively, the Levenshtein edit distance, d, is calculated as follows: 
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𝑑𝑑[𝑖𝑖][𝑗𝑗] =  

⎩
⎪⎪
⎨

⎪⎪
⎧

|𝑖𝑖|                                                                            𝑖𝑖𝑖𝑖 |𝑗𝑗| = 0 
|𝑗𝑗|                                                                            𝑖𝑖𝑖𝑖 |𝑖𝑖| = 0  
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗 − 1]                                              𝑖𝑖𝑖𝑖 𝑎𝑎[𝑗𝑗] = 𝑏𝑏[𝑖𝑖]

min�
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗] + 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏[𝑖𝑖])                                            
𝑑𝑑[𝑖𝑖][𝑗𝑗 − 1] + 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎[𝑗𝑗])                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗 − 1] + 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎[𝑗𝑗], 𝑏𝑏[𝑖𝑖])                          

 

For 1 ≤ i ≤ m and 1≤ j ≤ n; wdel, wins, and wsub are the weight (cost) of performing 

a deletion, insertion, and substitution, respectively. In some implementations, the weights 

of deletion and insertions are one (1) and the weight of substitution is 1 if a[j] ≠ b[i], else 

zero (0) (Cuelogic, 2017; Jokinen, Tarhio, & Ukkonon, 1996). A variation of the 

Levenshtein edit distance is the Damerau-Levenshtein distance which adds the ability of 

transposing adjacent characters (Devopedia, 2019). Dmitry Mozzherin (2019) presents a 

software system that can calculate the Levenshtein or the Damerau-Levenshtein distances 

and allows for comparing blocks of characters, as opposed to single characters. However, 

the Edpresso Team from Educative, Inc. presented a simpler approach where all the cost 

variables are zero – they were deemed to be equal (Edpresso, 2022). The major short-

coming of the Levenshtein algorithm is the requirement for a working 2-dimensional 

array, which, for strings m and n, would be [m + 1] by [n + 1] in size. The matrix starts in 

the upper left corner with a value of zero and is populated cell-by-cell until full – the edit 

distance is the value in the lower right cell. If only a few short strings were being 

compared for commonality, this approach would not be an issue. However, with millions 

of network packets to search for matches, the total number of calculations necessary 

again becomes untenable. 

Since the publication of the Levenshtein algorithm, there have been several 

variations proposed. However, in 1975, Daniel S. Hirschberg presented a variation that 

recursively divides the matrix in half until a series of trivial problems are obtained; the 
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results of which are combined to obtain the final solution (Hirschberg, 1975). There have 

been various implementations of the Hirschberg algorithm, but they utilize recursion 

which becomes problematic on very large strings (KokiYmgch, 2018). Therefore, those 

variations have been discarded in favor of a simpler version released to the public domain 

in 2015 by Lari Rascu, to be utilized for feasibility. 

Since applying an approximate matching algorithm to two strings that could 

exceed several megabytes in size, the program needs to determine if the two strings are 

even candidates for full comparison. Besides the Levenshtein and Hirschberg approaches, 

there is also the possibility of comparing the fragments and identifying the longest 

common substring (LCS). If the LCS is small in comparison to the length of the 

fragments, then the number of edit scripts and text would exceed the length of the test 

string itself. However, a long common substring would leave smaller mismatches 

requiring edit scripts, and most likely be shorter than the full string. Since the first pass is 

solely for the purpose of identifying candidates for full comparison, the fastest approach 

that can determine suitability will be utilized. 

Analysis of aggregated data flows was performed to identify the efficiency of the 

three approaches and whether different approaches should be applied to the fragments 

versus the entire strings, and possibly based upon the length of the string. The basic 

program was modified to process all three approaches on the fragments, as well as 

applying the Levenshtein and Hirschberg algorithms to the entire strings. For all three, 

the time to process was captured – minimum, maximum, and average time for each pass, 

as well as the total time to process all packets in the test. For the Levenshtein and 



67 
 

 
 

Hirschberg algorithms, the edit distance was also captured and the length of the longest 

common substring for the LCS algorithm.  

10,000 aggregated packets were tested for the three approaches, and the results 

are presented in Table 2. The LCS algorithm is the fastest of the three and will be the 

most-efficient method to determine the suitability of two strings for full comparison. 

Table 1 – Processing Time Comparison 
 Levenshtein Edit 

Distance 
Longest Common 

Substring 
Hirschberg 
Algorithm 

Minimum 288 μs 220 μs 516 μs 

Maximum 98 ms 31 ms 44 ms 

Average 782 μs 574 μs 1,105 μs 

Total All Runs 7,821 ms 5,745 ms 11,050 ms 
 

The Hirschberg algorithm takes almost twice as long to process than does the 

Levenshtein Edit Distance. This is not unexpected in review of the code. Whereas 

calculating the Levenshtein Edit Distance requires simple loops, the Hirschberg 

algorithm utilizes function recursion which entails much more overhead. Although the 

Levenshtein method requires significantly more memory than the Hirshberg algorithm, 

with today’s systems, that is not really a concern, compared to time. Therefore, the 

Levenshtein Edit Distance will be utilized when comparing the full-length strings, 

To determine the suitability of two fragments for full comparison, the longest 

common substring must exceed a minimum threshold. As will be discussed in detail later, 

each edit script requires a minimum of 17 bytes of overhead per node, and when written 

to the interim data file, an additional 6-byte header consisting of a link to the known data 

string and the count of the edit nodes in the script. For LCS to be an indicator of 

suitability, it is assumed that the common substring is within the middle of the fragment, 
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thus requiring three edit scripts plus the header, or 76 bytes of overhead. For two 256-

byte fragments, an LCS equal to the overhead (76 bytes) would be a break-even point. 

However, the added processing time is not warranted for a gain of zero space, and 

depending upon the type of data involved, substituting text with integer values could 

increase the size of the compressed data. Therefore, the threshold will arbitrarily be set to 

almost double that value, 128 bytes, or half the length of the segment. In a production 

system, this value should probably be adjustable, since the type of network traffic, and 

whether it is encrypted or not, would greatly influence the final compression ratio. 

Regardless of actual value, test segments exhibiting a longest common substring less than 

the threshold, were maintained as is and written to the interim data file. However, there is 

one last aspect of string length that must be considered. If a test string is being compared 

to a known string that is significantly shorter, pursuing that comparison might not be 

practical. For example, if a test string that is 90,000 bytes long is compared to a known 

string that is only 2,000 bytes, the edit string would end with 88,000 insertion characters. 

Effectively, going through this process might only save several hundred bytes and is 

probably not worth the processing time involved. However, for purposes of this research, 

where the feasibility of utilizing the genomic compression technique is being determined, 

no threshold will be utilized – any gain in compression ratio is advantageous. 

The code from the Edpresso team was modified to handle unsigned character 

strings versus ASCII character strings. The code was further modified to provide an 

output string that symbolically represented the changes required in addition to the 

classical Levenshtein Edit Distance – the total number of edits required. The output string 

begins with the first character of the test string and indicates, symbolically, the changes 
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involved to make the test string match the known string. There are four symbols in the 

output string:  the equals sign (‘=’) indicates that the two characters are the same; the 

exclamation mark (‘!’) indicates that the two characters do not match – character 

substitution is required; the minus sign (‘-’) indicates that a character deletion is required; 

and the plus sign (‘+’) indicates that a character needs to be inserted. Since the known 

string has already been identified as unique and has been written to the interim data file, 

the goal of the edit script is to identify how to change the known string to match the test 

string so that the entire test string does not need to be maintained. For example, if the test 

string is “abcqdef” and the known string is “abcxdef,” the edit string would be 

“===!===” since except for the ‘q’ and ‘x’ mismatch, the strings are identical. If test 

string A is “abcqdef” and known string is “abcdef,” the edit string would be “===+===” 

since an insertion of the letter ‘q’ is required for the known string to match the test string. 

Lastly, if the test string A is “abcdef” and the known string is “abcqdef,” the edit string 

would be “===-===” since the deletion of the letter ‘q’ is required for the known string to 

match the test string.  

The candidate datasets are comprised of multiple PCAP files that are individual, 

contiguous pieces of a single, large PCAP file. The MACCDC 2012 dataset consists of 

17 individual files for a total of 16.8 GB of raw data; the UNSW-NB15 17-2-2015 dataset 

consists of 27 individual files for a total of 49.7 GB of raw data. Therefore, the link to the 

location of a data segment in the interim file required an unsigned 64-bit integer, since a 

32-bit unsigned integer can only reference a maximum of 4,294,967,295 bytes. To 

identify where the difference occurs in the test data segment, a 32-bit unsigned integer 

was chosen over the 16-bit version, since the latter could only handle a maximum data 
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flow of 65,535 bytes. From personal experience, downloading files exceeding 65,535 

bytes is very common, so the 32-bit variable will ensure data integrity. The process of 

creating the scripts will be iterative, creating an interim string of edit scripts. The first 

data element is the 16-byte index to the original data on the interim datafile, followed by 

edit segments, each of which utilizes the following structure: 

struct { 
char   // [edit type] 
unsigned int  // [start location] 
unsigned int  // [data length] 
unsigned char * // [mismatch data] 

} 

The edit type takes two values: ‘T’ denotes there is a data mismatch, and the test 

data is contained in the script. In this case, the mismatched data field will be included and 

will be the test data not found in the known string as an unsigned character string; ‘K’ 

denotes the known string and since there is a link to that string and the location and 

length are provided, there is no need for the fourth structure element, so it will be ignored 

for known strings.  

Output File Structure 

There are several interim files utilized by the various parsers to hold processed 

data. These served several purposes: 1) processed data could be removed from active 

memory and any BBST and lists, thus improving processing speed, and memory usage; 

2) having segregated interim files facilitated keeping track of the different types of 

completed flows; and 3) the interim files provide a simplified process for combining the 

final output file. Although a common record format could be developed to handle all 

types of interim structures, the use of record formats specific to the type of parser was 

deemed the most space efficient. The final file format starts with a header section that 
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provides the location of the specific record type, the number of those records, and their 

length. None of the records contain the data segments, just a link (index) to the segment 

or the edit script. Where the record length was not fixed, such as when unsupported 

protocols were encountered, there is no standard record size. Rather, the individual record 

size is prepended to the unsupported record as it is written. The end of the file contains a 

summary of the PCAP files processed, including the file and packet header information, 

and the file name. The final file format header is as follows: 

1. Location of file header data.  
2. TCP completed flow records location.  
3. TCP completed flow record count.  
4. TCP completed flow record format length.  
5. TCP orphan record location. 
6. TCP orphan record count. 
7. TCP orphan record format length. 
8. TCP duplicate packet location. 
9. TCP duplicate packet count. 
10. TCP duplicate packet format length. 
11. UDP record location.  
12. UDP record count.  
13. UDP orphan record location. 
14. UDP orphan record count. 
15. ARP completed record location.  
16. ARP completed record count.  
17. ARP completed record format length. 
18. ARP orphan record location. 
19. ARP orphan record count. 
20. ARP orphan record format length. 
21. ARP duplicate packet location. 
22. ARP duplicate packet count. 
23. ARP duplicate packet format length. 
24. Ignored TCP protocol record location. 
25. Ignored TCP protocol record count. 
26. Unsupported Network Layer protocol record location. 
27. Unsupported Network Layer protocol record count. 
28. Unsupported Internet Layer protocol record location. 
29. Unsupported Internet Layer protocol record count. 
30. Unsupported Transport Layer protocol record location. 
31. Unsupported Transport Layer protocol record count. 
32. Data segment location. 
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33. Data segment count. 

The actual interim file contents are then written to the final file, in the order 

shown in the header, culminating with the PCAP file information, and storing its start 

location at the beginning of the file. For efficiency, the TCP completed records are not 

written to an interim file. Rather, they are written directly to the output file, since they are 

the first true records written. 

The compression method to apply to the final file can vary, dependent upon 

whether speed or final size is to be optimized. Zheng and Bockelman (2017) tested 10 

different compression algorithms against a 6.4 GB file. If speed is more important than 

compressed file size, the LZ4 algorithm exhibited the fastest overall compression times. 

If the smallest compressed file size is the objective, then LZMA-9 provided the highest 

compression ratio, reducing the 6.4 GB raw data file to 1.21 GB. If the goal is a 

combination, then one of the ZLIB algorithms would suffice. The candidate dataset files 

are downloaded as archives consisting of compressed individual files. Therefore, it was 

decided to forego the final compression of the output file, since the test dataset would not 

be a single compressed file, and it would not be representative to compare compressed 

files. Instead, the size of the interim data file comprised of data strings and edit scripts 

will be compared to the size of the total of all raw data, to determine the potential 

compression ratio. 

Data Analysis 

On the surface, analyzing the results of a compression technique is simple – what 

compression ratio was obtained and how long did it take to compress or decompress the 

dataset compared to other compression techniques. However, that is only the bottom-line 
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analysis. Since different compression algorithms are optimized for size or speed, and that 

is therefore based on the access requirements for the data, it was determined that the best 

analysis would be comparison of raw data sizes to the final data sizes after application of 

the genomic compression technique. A secondary reason is that the results of any one file 

compression algorithm is dependent upon the type of data in that file, so comparing the 

compression ratios and processing time to compress and decompress could be skewed 

just between the raw dataset and the final genomic output file.   

In addition, since this research was a proof of concept of applying genomic 

compression techniques to network traffic, there were protocols at the Network, Internet, 

and Transport layers that were ignored, and not processed. Therefore, it was determined 

to compare just the raw data of supported protocols to the compressed records. This 

would be a true representation of the potential for improving the size of a compressed 

file. 

Summary 

Since 2016, internet traffic has doubled approximately every other year (O’Dea, 

2020), as has computer crime (Embroker Team, 2021). In 1997, NIST published an IT 

Laboratory Bulletin outlining the needs for computer audit trails/audit logs, and that 

practice is now considered standard, including maintaining log files for one or more years 

(Marker, 2021; Shopp, 2020). As was calculated in Chapter 1, an organization could 

generate 90 petabytes or more of network traffic annually. Although there are multiple 

archiving/compression applications available, they create static, fixed compressed files 

that need to be decompressed for the data to be accessible.  
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Genomic research requires access to extremely large datasets. If these datasets 

need to be uncompressed to allow analysis, the resources required could be extreme and 

possibly cause major delays in any analysis. Loh, Baym, and Berger (2012) developed an 

approach to compression which identified the common parts of a gene and replaced them 

with a link and an edit script of the differences. In this way, they could analyze a large 

gene database with significantly fewer resources and in a significantly shorter period. 

This research applied those same basic principles to network log files – common data 

(packet/frame payloads) was stored offline and replaced with a link to the edit script 

(structure) for the data in the record associated with the 4-tuple source and destination IP 

addresses and ports.  

This research is limited to determining the feasibility of applying genomic 

compression techniques to network traffic, with the uncompressed final output being 

compared to the original, uncompressed dataset. As is, a compression algorithm that 

would allow packet capture and compression in real time at higher compression ratios 

could be a valuable tool in fighting cybercrime. However, extending the approach to 

allow for compressing and storing a large percentage of the data in offline files, while 

maintaining keys that can be updated and searched in real time would not be that difficult 

to implement.  
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Chapter 4 

Results 

 

Introduction 

In chapter 3, the method of extending genomic compression techniques to 

computer network traffic was provided. However, developing the actual steps required to 

apply this technique to network traffic was more evolutionary in nature. Researching the 

various internet protocols and the formats is straight-forward, but understanding all the 

vagaries of their implementation consumed a major portion of the development time. 

Without the availability of a large internet traffic capture file representative of the real 

world, a search was performed to identify candidate datasets.  

As has been discussed, the genomic compression technique requires the packets to 

contain a data segment/payload. This immediately eliminated some datasets that were 

published as being anonymized for privacy with the data segments being removed. To 

eliminate other candidates, a program was developed to read through a dataset and 

identify the various protocols and the length of additional data. Many datasets were 

comprised of a single capture file, that had no or an insignificant amount of post-header 

data and did not require further analysis. However, there were several datasets that met 

this first level of evaluation as was discussed in Chapter 3, Methodology and in more 

detail in Appendix B, which provides the full detailed analysis of the candidate datasets. 
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As was shown, out of the 68 candidate datasets, two were chosen for test: the MACCDC 

2012 and UNSW-NB15 17-2-2015 dataets. 

Parser Development 

As was discussed in Chapter 3, the UNSW-NB15 dataset was comprised of only 

two Internet Layer protocols, ARP and IPv4, with the bulk of the packets being with 

IPv4. Although the MACCDC dataset was comprised of five different Internet Layer 

protocols, ICMP, Kerberos, and IGMP comprised only approximately 1% of the total, 

while the remainder were ARP and IPv4 protocols. Since the program was developed for 

use with other possible PCAP datasets, a contingency was added in case there were 

unsupported Internet Layer protocols. In this case, the entire packet would be saved to an 

interim file, prepended by the timestamp of the packet and the actual captured length of 

the packet. 

ARP Parser 

The Address Resolution Protocol (ARP) is rather simple, comprised of a request packet 

and a reply packet. Each packet is identical in structure with the main differences being 

the opcode and the requested/missing data. The basic ARP format is shown in Figure 1 – 

the horizontal axis is in bits. The depicted format is representative of Ethernet or IEEE 

802 networks with which the hardware addresses are six (6) bytes long and the protocol 

address lengths are four (4) bytes long, representative of IPv4 packets. The other field 
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sizes are as depicted in Figure 1, for a total packet size of 28 bytes per packet, or 56 bytes 

per request/reply pair for the basic ARP format. However, the PCAP capture format 

includes a 16-byte header record for each packet, making the total for the request/reply 

pair as 88 bytes. Since there is no data segment in the ARP format, the ability to apply 

genomic compression techniques is limited to ignoring common (duplicate) data 

elements. 

 The actual program was not as straight-forward as matching request/reply pairs. 

During processing, ARP packets are stored in a balanced binary search tree using a key of 

the combination of the source and destination IP addresses. As an ARP packet is 

received, the tree is searched for existence of the pair. From the results of that search, 

there are several possible scenarios:  

1) Complete Pair. If the search succeeds, the opcode of the current packet is 

checked to confirm it is a reply. If the request packet in the search results has an opcode 

Figure 2- ARP Packet Format (The TCP/IP Guide, 2005) 
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of 1 or 3 and the current packet opcode is 2 or 4 respectively, then this is a matched 

request/reply pair and is written to the complete ARP interim file. 

2) Duplicate. If the search of the tree was successful, but the current packet is 

identical to search result packet, this is considered a duplicate. In this situation, a record 

will be written to the duplicate ARP interim file. 

 3) Orphan. There are several scenarios that result in declaring a packet an orphan. 

A reply could be received before a request, possibly caused by the reply being a 

retransmission of a previous reply which had completed a request/reply pair; there could 

have been an unknown network issue occurred where the request was not captured; the 

current packet was toward the beginning of the capture that didn’t start after the request 

would have been captured; or a reply is not received. This can occur due to there being no 

systems available to reply at the time, necessitating sending another request, or it is the 

end of the run and the reply has not yet been received for any remaining request packets 

in the search tree. In these scenarios, the packet is considered an orphan and a record will 

be written to the orphan ARP interim file.  

Complete ARP Pair 

An ARP pair is considered complete when the search is successful and the current 

packet opcode is appropriate for the request packet, thus completing a request/reply pair; 

the results are written to the interim file. The structure of the final combined ARP 

request/reply pair is as follows: 

typedef struct { 
 struct timeval  rqstTS;  // time stamp for request packet 
 struct timeval  rplyTS; // time stamp for reply packet 
 unsigned int32  rqstAddr; // request IP address 
 unsigned int32  rplyAddr; // reply IP address 
 unsigned int16  hType;  // hardware type 
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 unsigned int16  pType;  // protocol type 
 unsigned int16  rqstOper; // Operation requester is performing 
 unsigned int16  rplyOper; // Operation reply is performing 
 u_char   rqstMAC[6]; // request MAC address (6 bytes) 
 u_char   hLen;  // length of hardware address 
 u_char   pLen;  // length of internet layer protocol
 u_char   rplyMAC[6]; // reply MAC address 
} 

The two timestamp values are obtained from the respective header records, and 

they can be used in any reconstruction efforts. This structure is 46 bytes in size compared 

to the 88 bytes required for the request and reply packets plus their PCAP headers. Since 

ARP packets are a minor subset of the UNSW-NB15 dataset, it is not possible to compare 

compressed sizes, but it is safe to assume that at a minimum, the raw percentage savings 

would be representative of the compressed savings. 

Orphan ARP Packets 

An orphan is a single request or reply packet that cannot be matched with its pair. 

Except in the situation where the orphan is not identified until the end of the run, orphans 

are written to the interim file upon detection in a structure different than the actual packet 

layout to account for byte alignment. 

Duplicate ARP Packets 

As was discussed, if a request packet is captured that is identical to an existing 

request packet, it is considered a duplicate. However, unlike orphan packets, being a 

duplicate, only the timestamps are stored – that information can be used to link back to 

the original packet for reconstruction of the remaining information. 

IPv4 Parsers 

The basic functioning of the IPv4 parser was discussed in Chapter 3, 

Methodology. Its main purpose was to read enough of the packet data to identify the 
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transport layer protocols and send the packet data to the respective parser. The detailed 

analysis presented in Appendix B demonstrated that both the UNSW-NB15 and 

MACCDC datasets contain significant transport layer data that could benefit from the 

genomic compression techniques. The Transmission Control Protocol (TCP, protocol 

number 0x06, decimal 6) and the User Datagram Protocol (UDP, protocol number 0x11, 

decimal 17) comprise at least 98% of packets observed in the transport layer. If the 

transport layer protocol was not supported, the original packet was written to the 

unsupported transport layer protocol interim file, prepended by the packet timestamp and 

length of the packet. 

Similar results were obtained from the utility program on analysis of the UDP 

protocol. Appendix E, Tables E3A, E3B, and E3C for the MACCDC dataset and E4A, 

E4B, and E4C for the UNSW-NB15 dataset and tables C11A and C11B provide the 

details for the top 10 ports identified in the two datasets. As with TCP, the distribution of 

ports was different for the two datasets, but like the results with TCP, the format of the 

UDP packets was not compromised, so all packets were included in the analysis. 

Transmission Control Protocol (TCP) Parser 

This was the most-utilized parser, since 98.3% of the UNSW-NB15 dataset and 

99.9% of the MACCDC dataset consisted of TCP packets. After the IPv4 parser 

determined the packet to be TCP, it called the TCP parser for further processing, which 

continued to read the packet data where the IPv4 parser left off.  
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 The TCP/IP format is shown in Figure 3 and is very flexible with several optional 

fields. However, since the purpose of the research was to determine the feasibility of 

applying genomic compression techniques to network traffic, any optional fields were 

either considered part of the TCP header and thus ignored, or if not included in the TCP 

header length, they were considered a portion of the data segment. 

After the network and Internet layer headers are processed, the TCP Parser takes 

over. The first fields extracted are the source and destination ports with the low port 

Figure 3 - TCP Segment Format (The TCP/IP Guide, 2005) 
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designated as the TCP protocol as discussed above, followed by the sequence and 

acknowledgement numbers, and the Controls Flags. The Window, Checksum, and Urgent 

Pointer fields are bypassed to reach the data segment.  

In Chapter 3, TCP was introduced as a connection-oriented, reliable data transfer 

service. As such, there is bidirectional communication between the source and destination 

computers to ensure the transferred data is complete. Briefly, this is accomplished 

through inclusion of a sequence number on each packet that is incremented according to 

the size of the previous data segment, and values of the control flags. 

The TCP parser is centered around two distinct structures. The first is a balanced 

binary search tree (BBST), utilizing a 4-tuple key of the source and destination IP 

addresses and ports. This tree stores the unique, unidirectional data flows occurring 

between two systems. After all pertinent data is extracted from a packet, the TCP parser 

attempts to insert the new 4-tuple key into the BBST. There are several possible 

outcomes. If the 4-tuple key is not found, the program checks the status of the control 

flags. If the FIN flag is set, that indicates the communication is finished. Being that the 4-

tuple is not in the BBST indicates that this is probably a retransmission of a previous flow 

that has been completed. Therefore, this packet is considered an orphan and processing 

returns to the PCAP reader. The other possible flag is the RES or reset flag, which 

indicates that the communications is being reset and the flow is thus stopped. As with the 

FIN flag, since the 4-tuple was not on file, this packet is declared an orphan and 

processing is returned to the PCAP reader. In both these cases, the packet is written to an 

interim file using a simple format: the timestamp, the length of the packet, and the full 

packet itself. The last scenario is the 4-tuple is not found and neither the FIN nor RES 
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flags are set. This indicates it is the beginning of a new flow, so the 4-tuple is added to 

the tree and processing is returned to the PCAP reader. 

If the 4-tuple key is found, there are two possible outcomes. If the SYN or 

synchronize flag is set, that would normally indicate the beginning of a new flow. 

Therefore, the current packet is either a packet retransmission or a FIN packet was not 

received and the existing flow is actually complete and the new packet indicates a new 

flow should be started. In this case, the existing flow must first be completed before 

inserting the new flow into the BBST. Processing completed flows will be covered later. 

If the SYN flag is not set, the packet is simply marked as a duplicate, subject to further 

analysis. 

After the 4-tuple is inserted into the BBST, the second key structure comes into 

play. This is a doubly linked list that maintains the data segments in order according to 

the sequence numbers. Each list is unique to the 4-tuple flow, so the primary key is just 

the sequence number of the packet. As packets with common keys are identified during 

the BBST insertion process (the 4-tuple was found), the next step is to attempt to insert 

into the sequence list. If the sequence number is not found, a new node is added to the list 

which contains packet-specific fields, including the full data segment. If the sequence 

number is already on file, this is considered a retransmission. The next check is to 

determine if the data segment of the retransmitted packet is different. If not, the packet is 

declared a duplicate. However, if there is a difference, the new packet replaces the 

existing packet which is now considered a duplicate. Packets so identified as duplicates 

are written to the duplicate interim file, using a similar format as the duplicate ARP file: 

the packet timestamp and the frame numbers of the original and duplicate packets. The 
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last processing on the sequence structure is to determine if the FIN flag is set. If so, this 

indicates the last packet in the flow, so the flow is completed, and written to file. 

User Datagram Protocol (UDP) Parser 

As was discussed in Chapter 3, UDP is a connectionless communication protocol 

in that the packet is sent without concern as to whether it will be received. There many 

uses of UDP for communications, such as Domain Name Service (DNS port 53), 

Dynamic Host Configuration Protocol (DHCP port 67), NetBIOS (ports 137 - 139), and 

Simple Network Management Protocol (SNMP port 161). All these protocols are single-

packet or request/reply message protocols and will not require aggregation of data flows. 

If the single data segment meets the threshold for application of the genomic compression 

algorithm, it will receive further processing. If not, the packets were saved as is, 

prepended by the timestamp and the packet length. 

UDP is a transport layer protocol that runs over the internet protocol (UDP/IP). 

Figure 4 shows the UDP header format, which resides in the packet immediately 

following the IP header. The UDP header is eight (8) bytes in length, consisting of the 

Figure 4 - User Datagram Protocol (UDP) Header Format 
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source and destination ports, the length of the UDP structure including both the header 

and the data, followed by a checksum. After the checksum is the variable length data 

segment (limited by the Ethernet packet size restrictions). 

To understand the scope of usage by UDP, the utility program analyzed the 

MACCDC and UNSW-NB15 datasets to count occurrences and data usage of UDP ports. 

Analysis of the MACCDC dataset showed that DNS (port 53) and NetBIOS Name 

Service (port 137) comprised 76% of the 549,510 UDP packets and 57% of the total data 

usage (Appendix E, Tables E3A and E3B). Analysis of the UNSW NB-15 dataset 

showed that DNS (port 53) and Open Network Computing Remote Procedure Call (ONC 

RPC, port 111) comprised 74% of the 1,430,377 UDP packets and 64% of the total UDP 

data usage (Appendix E, Tables E4A and E4B). These three protocols as well as most of 

the remaining top 10 UDP protocols are message or request/reply format, in that the data 

is linked to either the single packet or the pair and is not really a candidate for 

aggregation and application of the genomic compression technique. 

Although File Transfer protocols usually entail multiple packets and thus lend 

themselves to the advantages of the genomic compression techniques, only the Trivial 

File Transfer Protocol (TFTP) was identified in the UNSW NB-14 dataset, and only 

comprised 0.1% of the UDP packets; TFTP was not in the top 10 of the MACCDC 

dataset. With UDP only making up 1.6% of all packets in the UNSW-NB15 dataset and 

0.08% of MACCDC dataset and streaming and file transfer usage only accounting for 

less than 0.03% of either the dataset, it was determined that the added complexity of 

attempting to create data flows for UDP traffic was not warranted, and all UDP traffic 

was handled as single-packet communications. 
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Genomic Compression Algorithm 

As discussed in Chapter 3, the implementation of the genomic compression 

algorithm to network traffic required a multi-step process. The sheer volume of network 

traffic and the unknown nature of network packets required an approach that maximized 

efficiency. With genomic analysis, a gene segment is tested against a single known gene. 

With network traffic, instead of the one-to-one analysis of genomics, there is a many-to-

many analysis with network packets.  

Table 2 – Transport Layer Protocol Usage 
MACCDC Dataset UNSW NB-15 Dataset 

Protocol Packets Data (bytes) Protocol Packets Data (bytes) 
0x06–TCP  68,357,197   13,593,753,312  0x06–TCP 86,029,251 45,078,624,185 
0x11–UDP  560,934   41,212,397  0x11–UDP 1,430,389 111,862,194 
0x01–ICMP  526,103   13,117,305  0x59–OSPF 13,766   1,276,200  
0x58–EIGRP  303,549   12,141,960  0x84–SCTP 1,856 1,497,008 
0x02–IGMP  1,946   26,808  0x01–ICMP 1,594   824,684  

Totals: 69,749,729 13,660,251,782 Totals: 87,480,078 45,194,340,111 
 

Table 2 summarizes the usage of transport layer protocols in the two datasets. 

Although TCP is the dominant Transport Layer protocol in both datasets and UDP is the 

second most observed protocol, from there, the two datasets differ. With the UNSW NB-

15 dataset, the other three transport layer protocols are insignificant and ignored for 

processing. However, the MACCDC dataset was not so obvious. UDP was still second 

with 560,934 packets, but Internet Control Message Protocol (ICMP) was a close third 

with 526,103 packets, followed by the Enhanced Interior Gateway Routing Protocol 

(EIGRP) with 303,549 packets. Comparing data bytes and the difference is wider, with 

UDP having 41,212,397 bytes, followed by ICMP with 13,117,305 bytes and EIGRP 

with 12,141,960 bytes. ICMP is a request/reply message protocol with the default data 

payload being 32 bytes with a maximum of 576 allowed (ICMP, 2018). The MACCDC 
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dataset analysis showed that the minimum data payload was 8, and the maximum was 

544, with an average of 24 bytes (Appendix B, Table B8). However, being a 

request/reply message format, the protocol could not take advantage of the genomic 

compression technique, so was bypassed and saved as is. EIGRP is a network protocol 

for routers to communicate using a series of message packets request and reply messages 

used to provide authentication services (Sheldon, 2021). Therefore, despite the frequency 

of ICMP and EIGRP in the MACCDC dataset, the lack of UDP Application Layer 

protocols that support significant data, the only protocol that lends itself to data 

aggregation and compression using the genomic techniques is TCP. 

The first step in the process was to eliminate as many packets as possible. This 

was primarily accomplished through the identification of duplicate data, ARP protocol 

packets, and less-frequent protocols that were not fully processed; none of these packets 

are candidates for further processing. Since dataflows, which include file downloads and 

uploads, can easily be thousands and even millions of bytes in size, another contributor to 

efficiency was the determination to initially compare just a segment of a packet flow. 

Therefore, the first 256 bytes of a packet flow is maintained for comparison, rather than 

the entire flow. Although there is no proof, from years of personal experience, it is the 

opinion of the author that if the first 256 bytes of two aggregated data flows have no 

similarity, it is unlikely that the remaining data in the flow will have any similarity. The 

genomic compression algorithm thus begins with aggregating the packet flow after a 

triggering event is identified and then extracting the first 256 bytes from the aggregation, 

or the total flow if less than 256 bytes.  
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In Chapter 3, Methodology, there was significant discussion concerning 

determination of the suitability of a data flow for application of genomic compression 

techniques. It was shown that applying a longest common substring algorithm to 256-

byte segments of a test flow and a known flow would provide a good indication as to the 

likelihood that the two flows exhibited enough similarity to warrant performing the full 

comparison. Further, it was determined that the Levenshtein edit distance was more 

efficient for processing time when compared to the Hirschberg algorithm, so it became 

the algorithm of choice.  

The actual algorithm utilized is a modification of the Levenshtein edit distance to 

include the creation of an edit string that identifies the changes necessary to convert the 

known data flow into the test data flow. This is created by walking the matrix created by 

the Levenshtein algorithm from the bottom right cell back to the top left cell, using the 

reverse of the algorithm to determine whether characters in the flow are equal, not equal, 

a character insertion, or a character deletion is required, represented by the ‘=’, ‘!’, ‘+’, 

and ‘-’ characters in the edit string, respectively. Since the edit string is created by 

walking the matrix backwards, the edit string is reversed for use in creating the overall 

edit script. 

The process starts with the beginning of each flow and the edit string, with 

separate position counters for each of the three. Unlike genomic compression techniques, 

the purpose of this research is to develop a more-efficient network traffic compression 

algorithm and therefore, the research is not interested in analyzing the subtle nuances of 

the different characters in each string. Rather, it is solely to identify how many characters 

are required from each string to be able to reconstruct the original. The edit string is 
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analyzed symbol-by-symbol and the edit string incremented after each analysis. If a ‘=’ 

or ‘!’ symbol is encountered, the two flows are equally incremented. If a ‘+’ sign is 

encountered, that indicates a character must be inserted into the known flow, so that 

position counter of the test flow is incremented, but not that of the known flow. 

Conversely, the ‘-’ symbol indicates a character must be removed from the known flow, 

so the known flow position counter is incremented, but not that of the test flow. In this 

manner, the edit string and flows are walked until the end of the shorter flow is reached, 

and the remaining characters warrant either insertion or deletion, depending upon which 

of the flows is the shorter.  

The other key aspect of the edit script creation is determination of the starting and 

stopping points of the individual scripts. Those are determined by contiguous ‘=’ symbols 

in the edit script. When a string of equal characters is encountered that is of a minimum 

length (discussed later), the progression is halted, and two edit script nodes are saved. 

The first node would represent the test flow data to save, and the second node would 

indicate the starting position and length of the known data flow to save. For example, if 

there are a combination of symbols encountered through the first 65 bytes of the test data 

flow, followed by 245 bytes of common data (‘=’ symbols in edit string), the two nodes 

could be: 

First node: edit type: ‘T’ 
  Starting location: 0 
  Data length: 65 
  Data: “2a2031204558495354530d0a61303033204f…” 

Second node: edit Type: ‘K’ 
  Start location: 54 (accounts for insertions and deletions) 
  Data length: 245 
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As indicated in Chapter 3, Methodology, each node has an overhead of 17 bytes, 

plus an additional 6-byte header when the edit script is written to file. In the example 

above, while the raw test data flow would be 310 bytes (65 bytes plus 245 bytes), these 

two nodes reduce that to 124 bytes (2 nodes at 17 bytes each, plus 65 bytes of test flow 

data, plus the 6-byte record header). During actual processing, the nodes will actually be 

handled in a linked list and collapsed into the sizes identified upon completion of script 

creation and writing the output to the interim data file. 

Final Program Results 

ARP Results 

Both test datasets contained ARP packets, but to different degrees. The 

MACCDC dataset contained 101,294 ARP packets, while the UNSW-NB15 dataset 

contained 12,081 packets. The distribution of completed request/reply pairs versus 

duplicate packets and orphans also was different between the two datasets. The 

MACCDC dataset had almost as many duplicate packets as completed packets, while the 

duplicate packets in the UNSW-BN15 dataset were approximately one-eighth of the 

completed packets.  

Table 3 - ARP Results – Full Run 
 MACCDC 2012 Dataset 

 Packets Packet Sizes 
w/Headers Records Record Sizes Size Savings 

Completed 52,518 2,310,792 26,259 1,207,914 47.73% 
Orphans 1,030 45,320 1,030 45,320 0.00% 
Duplicates 47,746 2,100,824 47,746 763,936 63.64% 
Totals 101,294 4,456,936 75,035 2,017,170 54.74% 

 UNSW-NB15 17-2-2015 Dataset 
 Packets Packet Size Records Record Sizes Size Savings 
Completed 10,688 470,272 5,344 245,824 47.73% 
Orphans 3 132 3 132 0.00% 
Duplicates 1,390 61,160 1,390 22,240 63.64% 
Totals 12,081 531,564 6,737 268,196 49.55% 
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Table 3 provides the results for processing of ARP packets using GNCS for the 

two datasets. Although there is no real data segment with the ARP packet format, through 

elimination of duplicate data elements and no longer requiring the PCAP packet header, 

the savings of the size of the raw data for completed pairs is 38.64% and 47.73% for the 

MACCDC 2012 and UNSW-NB15 17-2-2015 datasets, respectively. If orphan and 

duplicate packets are included, the overall size savings is approximately 50% for both 

datasets. Although it was not part of this research, it is safe to assume that similar 

decreases can be expected with the other common message (request/reply) formats. 

TCP Results 

As has been discussed, outside of ARP, the only protocol that contained sufficient 

data to test the feasibility of the genomic compression techniques was TCP. To analyze 

the effectiveness, only TCP packets were included in the analysis since inclusion of 

unsupported protocols would negatively skew the results. This exclusion also included 

any detected duplicate and orphan packets. The structure used to save duplicates would 

improve the perceived space savings, but that would be an artificial improvement. 

Orphan packets and flows are incomplete, so also would not properly contribute to the 

results of the genomic compression algorithm. Thus, only complete TCP flows were 

analyzed. This is the most representative comparison of the impact of applying genomic 

compression techniques. 

Both PCAP files and the genomic compression algorithm have overhead. Each 

PCAP packet is prepended with a 16-byte header. The packet length itself is variable 

depending on the Ethertype which determines the length of the Layer 2 header – between 
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14 and 18 bytes – and the length of any associated data. The Internet and Transport layer 

headers are 20 bytes each for IPv4 packets, for a total of 54 to 58 bytes plus any 

associated data. The MACCDC dataset utilizes a standard Ethernet Layer 2 header of 18 

bytes, so the overhead per packet is 58 bytes plus the PCACP header, for a total of 74 

bytes. The UNSW-NB15 dataset utilizes the Linux “cooked” capture header of 14 bytes, 

making the total header overhead 70 bytes for these headers.  

The output file structure for TCP flows in this research consisted of two 

components, a summary record and a data flow reference. The summary record consists 

of a 52-byte header plus 17 bytes per packet contributing to the flow. In addition, the 

dataflow itself has an eight-byte header consisting of two 4-byte unsigned integers, the 

data flow index and the length of the flow. The PCAP representation of a completed flow 

consisting of two packets but no data, would require a minimum of 144 bytes. The same 

two packets would be represented by 86 bytes, for a savings of 58 bytes. If there is data, 

this would increase to 94 bytes due to the eight-byte data header. However, as the number 

of packets in a data flow increases, the total of the standard PCAP packets in the flow 

would increase by up to 74 bytes per packet in the flow. Kim, et. al., (2004) calculated 

that the average packet flow consists of 28 packets. Therefore, not counting the data 

itself, a 28-packet flow would require up to 2,072 bytes of overhead, compared to 542 

bytes for the genomic compression algorithm, an effective savings of 1,530 bytes for a 

space savings of 74%. Although this appears to be significant, this has to be compared to 

the total flow size including data. In the case of the 28-packet flow, if each packet carried 

the maximum data – 1518 bytes – then the total of the standard PCAP capture would 

approach 44,600 bytes. If the data is unique and no comparison found, then the genomic 
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compression algorithm would require 43,054 bytes for a space savings of 3.5%. The real 

savings is dependent upon the impact of the genomic compression algorithm. 

Although the program was compiled for speed, there was no effort to improve 

efficiency through programming techniques that take advantage of multi-threading or 

multiple cores. With packets being processed sequentially, the time to process a packet 

increased as the total number of packets increased. The result was such that processing 

the complete MACCDC 2012 or the UNSW-NB15 17-2-2015 datasets required up to a 

week of processing time to complete. Therefore, it was decided to process incrementally 

larger segments of each dataset to determine if there is a threshold beyond which further 

processing would not improve the results. The starting point was arbitrarily chosen to be 

1,000 packets and each subsequent run increased by a factor of ten until 10,000,000 

packets were processed. Since the next factor of ten level would be 100,000,000, which is 

larger than either dataset, the last sample was set to 25,000,000. To determine the 

efficacy of any compression algorithm, there are two approaches, the compression ratio, 

and the space savings. The compression ratio is calculated as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

 

The space savings is calculated as follows, as a percentage: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −  
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) ∗ 100 

Appendix F provides the detailed analysis of the two datasets. As has been 

discussed, the GNCS algorithm is data-driven, in that the more data that is available, the 

higher the likelihood of finding similarity. To highlight the relationship between the 

average data per packet for each sample versus the space savings percentage, the data is 
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presented graphically in Figures 5 and 6 for the MACCDC 2012 and UNSW-NB15 17-2-

2015 datasets, respectively.  

Figure 5 - MACCDC Data Distribution 

 

 
Figure 6 - UNSW-NB15 Data Distribution 

 

Although there are sample-to-sample fluctuations in space savings, the trend line 

of the MACCDC 2012 dataset is relatively flat at a space savings of approximately 67% 

(Figure 5), regardless of data volume. However, the UNSW-NB15 17-2-2015 dataset 
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does exhibit an increase in space savings as the packet data increases (Figure 6), with the 

actual space savings results leveling off at approximately 46%. Therefore, both datasets 

provide an indication that implementation of genomic compression techniques can have a 

significant impact on the size of audit/log files consisting of captured Ethernet packets. 

Summary 

The UNSW-NB15 17-2-2015 dataset compiled by Moustafa and Slay (2015) 

contains 27 files with a combined 87,492,159 packets. The dataset was analyzed for the 

occurrence of protocols at the internet layer, yielding just two, the Address Resolution 

Protocol (ARP) and the Internet Protocol, Version 4 (IPv4). The transport layer exhibited 

every protocol except one, protocol number 58. The Transmission Control Protocol 

(TCP) represented 98.342% of the UNSW-NB15 dataset, the User Datagram Protocol 

(UDP represented 1.635%, and the remaining representing only 0.023% of the total.  

The MACCDC 2012 dataset is a network capture of traffic generated in the 2012 

Mid-Atlantic Collegiate Cyber Defense Competition where Blue Team students protected 

a network from a Red Team attack comprised of members of industry and academia. This 

traffic was interspersed with normal network traffic. The MACCDC 2012 dataset 

consisted of 17 files with a combined 71,856,691 packets. Unlike the UNSW-NB15 

dataset, the MACCDCC dataset consisted of 17 different internet layer protocols. And, 

although the most-prevalent protocol was IPv4 with 97.07% of the total, IPv6 was second 

with 1.73% and ARP a distant third with only 0.14%, and the remaining 14 protocols 

having a combined 1.06%. Unlike the UNSW-NB15 dataset, there were only five 

transport layer protocols in the MACCDC dataset, with TCP and UDP comprising 98.0% 

and 0.8%, respectively. The remaining three protocols represented 1.2% of the total. 
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These two datasets, although comprised of multiple static packet capture files, 

represented continuous network traffic. The 25-million sample for the UNSW-NB15 

dataset required slightly fewer than nine (9) files, and occurred over a period of 3 hours, 

48 minutes, 48 seconds, for an average of 549 μs between packets, The 25-million sample 

for the MACCDC 2012 dataset required slightly over five (5) files, and occurred over a 

period of 3 hours, 26 minutes, 1 second, for an average of 494 μs between packets. 

The genomic compression technique requires packet data to be effective, although 

the duplicate data elimination component can be applied to message format protocols that 

have minimal data but are comprised of packets with common header information. 

Further analysis of the transport layer protocols on both datasets indicate that only the 

TCP packets contain significant data. Therefore, parser development was limited to 

parsers for ARP, IPv4, and TCP protocols; the implementation of the actual genomic 

compression techniques to network traffic was geared solely around TCP.  

Although ARP packets are processed, it is solely to eliminate common data, since 

those packets are too short for the genomic compression techniques. As with ARP, 

duplicate information in TCP packets is eliminated and just saved once, with the data 

segments aggregated into packet flows. When the program detected that a flow was 

complete, the genomic compression technique was then applied in which the flows were 

analyzed for commonality leading to the creation of the edit scripts. Due to the overhead 

associated with edit scripts, only flows that exceeded a threshold level were candidates 

for the techniques.  

The results of this research indicated that the application of the genomic 

compression techniques to network traffic can have a significant impact on audit/log 
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network capture file storage space. Since this research was limited to TCP packets in 

complete, aggregated network flows, and not the entire file, there was no method 

available to compare the results to other techniques. Therefore, the only comparison 

available was between the size of the data processed by the GNCS and the  original raw 

data. The application of genomic compression techniques was shown to save space 

required for TCP packets – an average of 46% for the UNSW-NB15 dataset and 67% for 

the MACCDC dataset, as well as an approximate 50% savings for ARP network traffic 

for either dataset.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

The program developed in this research indicates that utilization of genomic 

compression techniques to network traffic can improve upon standard compression 

algorithms. A major aspect of the original goal was to develop a compression algorithm 

that upon decompression, could reconstruct the original packets as closely as possible. 

Since not every protocol requires every field in their associated packets, it was 

determined to eliminate superfluous data during processing to save file space. Therefore, 

this technique is considered a lossy compression technique. 

Genomic compression techniques are based on the commonality found in genes. 

Loh, Baym, and Berger (2012) developed a compression algorithm that took advantage of 

the common parts of a gene by replacing them with a link and an edit script of the 

differences. The Genomic Network Compression System (GNCS) presented here utilized 

that same concept – duplicate packet fields were removed, and common aggregated data 

flows were replaced with an edit script showing the differences. 

Although it was shown that removal of common packet fields in a packet flow 

could provide a significant reduction if the size of the aggregated packet flows, this is no 

real improvement on standard packet flow systems (Claise, Trammell, & Aitken, 2013). 

However, applying the genomic compression techniques to the aggregated data flow 
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provided for a significant reduction in the size of a TCP packet flow – an average of 46% 

for the UNSW-NB15 17-2-2015 dataset and 67% for the MACCDC 2012 dataset. In 

addition, ARP network traffic exhibited a savings of approximately 50% for either 

dataset over the raw PCAP packet data. 

The reported space savings are an indication of the capability of genomic 

compression techniques, and although accurate for the two selected datasets, those 

datasets are not normal network traffic. The MACCDC dataset is the network packet 

captures from the 2012 Mid-Atlantic Collegiate Cyber Defense Competition, in which 

students from different universities act as blue team members to protect a corporate 

network from attack by a red team made up of volunteers from industry and academia. 

The network activity of the red and blue teams is interspersed with simulated normal 

network traffic. As such, there was no indication as to what attack vectors the red team 

was attempting to exploit, nor how the blue team defended against those attacks. 

However, this could explain the fluctuations in the GNCS results and the higher space 

savings compared to the UNSW-NB15 dataset – there could be multiple similar attacks 

and responses that were easier to match using the algorithm. 

The UNSW-NB15 dataset was created by Nour Moustafa and Jill Slay in 2015 to 

provide a more-current dataset for testing intrusion detection systems. It is a hybrid 

dataset consisting of both real-world network traffic and synthetic data representing nine 

types of attacks, namely: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, and Worms. Although Moustafa and Slay (2015) state there 

is real-world traffic, analysis of the GNCS output identified that 65.75% of all packets in 

the 25-million packet sample were duplicates (Table 8, highlighted cell). In 2010, 
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Pentikousis et al. performed an analysis on network traces from the National Laboratory 

of Applied Network Research Passive Measurement and Analysis (NLANR/PMA). This 

analysis determined that in the various traces in the dataset, retransmissions of TCP 

packets ranged from 0.48% to 3.6%, with an average of 2.4% (Pentikousis et al., 2010). 

Moustafa and Slay (2015) provided no explanation for this significant discrepancy, but it 

is probably safe to assume it was intentional to make the attack packets a smaller 

percentage of the total and thus harder to identify. 

Table 4 – UNSW-NB15 Dataset Output 
UNSW-NB15 Dataset – 25-Million Packet Run 

Record Type Total 
Records Total Size Record 

Length Total Packets % of 
Total 

File header 1 188 188   
TCP complete records 397,262 148,102,391 47 7,496,751 29.99% 
TCP orphan records 219,065 15,569,572 48 245,776 0.98% 
TCP duplicate records 16,437,802 30,280,976 16 16,437,802 65.75% 
TCP ignored records 396,419 3,162,938 Variable 396,419 1.59% 
UDP complete records 413,795 5,829,179 Variable 413,795 1.66% 
UDP orphan records 0 0 Variable 0 0.00% 
ARP complete records 1,561 84,294 54 3,122 0.01% 
ARP orphan records 3 132 44 3 0.00% 
ARP duplicate records 417 6,672 16 417 0.00% 
Unsupported L2 
records 0 0 Variable 0 0.00% 

Unsupported L3 
records  5,915 1,381,679 Variable 5,915 0.02% 

Unsupported L4 
records 0 0 Variable 0 0.00% 

Data records 367,612 6,032,954,363 Variable   
Header records 8 682 Variable   
Totals: 18,239,860 6,237,373,066  25,000,000 100.0% 

 

A close examination of the datasets indicated that in some cases, data flows that 

were exact matches were either nonsense text or encrypted – the protocol did not indicate 

the traffic was encrypted. This adds credence to the statement that the datasets were 

artificially expanded. However, in the real world, this would not be observed for different 

IP addresses, and encrypted data flows would defeat the comparison routines required by 
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the genomic compression algorithm. Privacy and confidentially considerations aside, if 

the algorithm could be implemented in conjunction with a Transport Layer Security 

Inspection system (NSA, 2019), more flows would be available for comparison, and the 

likelihood of finding matches, even partial matches would increase, leading to a higher 

compression ratio. 

One issue with the development was the utilization of an implementation of the 

Levenshtein algorithm (Levenshtein, 1966) available from the Edpresso Team (Edpresso, 

2022). Although this variation is a simple implementation of the Levenshtein algorithm, 

it requires a single 2-dimensional matrix which, for strings m and n, would be [m + 1] by 

[n + 1] in size. It is not uncommon that a user download could be up to hundreds of 

megabytes in size. If you are determining if a one-megabyte string is a substring of a very 

large download, the matrix could actually be terabytes in size, easily making in 

unmanageable to process in most computers. For this research, only matrices that would 

fit in available memory were utilized – if the matrix was too large, the processing of that 

combination was ignored. Although the extremely large matrices would remain 

unmanageable, a variation of the Levenshtein algorithm was presented that would break 

the matrix into multiple, smaller matrices (Hirschberg, 1975). To compare large strings, a 

variation of the Hirshberg algorithm would need to be implemented. 

Implications 

An approximately 50% decrease in file size indicates that application of edit 

scripts similar to genomic compression techniques could be beneficial in storing network 

traffic. The key for a practical use of the algorithm would be to optimize the exiting 

parsers and add additional parsers as necessary, such that only the information that is 
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germane to the long-term use is maintained. Although the final step in the current 

implementation was to combine all the associated interim files into a single, compressible 

file, use of compressed bitmap indexes could allow for real-time comparisons required 

for detection of such activity as advanced persistent threats or data exfiltration. Future 

research would be toward improving efficiency of the approximate match search 

algorithms. Besides extending the Hirschberg algorithm to a larger number of smaller 

problems, the use of multi-processing, multi-threading could decrease processing time. 

This will not be a total solution to the large matrix issue, since even if a matrix is broken 

into smaller matrices, the total of the computer memory for all the matrices could still 

exceed available memory. Rather, the smaller matrices would need to be performed 

sequentially, potential edit strings created (containing the ‘=’, ‘!’, ‘-’ and ‘+’ symbols), 

and the memory released for use by a subsequent matrix. At the end, the pieces of edit 

strings would be reconstructed to provide the final string required to create the actual edit 

script.  

For the genomic techniques to be maximized, there needs to be a higher 

probability of packet data segments containing similar data. This would be the case on a 

corporate internal network, where users are routinely accessing similar data, such as 

would be experienced accessing the organizations website, SharePoint sites, etc. This 

would be even more likely given the larger number of people working from home and 

accessing the corporate via secure VPN tunnels. Since all data required by a user would 

be traversing the internet, the probability of common data being shared by multiple users 

appearing in network audit log files would be increased. Application of genomic 

compression techniques to potentially a large amount of common data should greatly 
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increase the space savings above that shown in this research. If Transport Layer Security 

Inspection system (NSA, 2019) is included, there could be substantial decreases in space 

required to save audit logs. 

Recommendations 

Future research would further refine the algorithm based upon the goal of the 

process. Implementation for identifying APTs might be different than an implementation 

to detect insider threats. The initial approach was geared totally to decreasing file size, 

based on aggregated data segment flows. A simple extension would be to maintain the 4-

tuple of source and destination IP addresses and ports and a link to the data flows in a 

database. This way, trends in usage related to specific IP addresses could be identified as 

they occur. Conversely, if data exfiltration is suspected, it would be possible to trace back 

to the user or users involved in the activity.  

Without regard to possible end uses, the main thrust of future research will be 

toward improving the efficiency of the approximate match algorithm. As discussed 

above, there are several published extensions to the Levenshtein and Hirschberg 

algorithms. During the research, a new approach was identified in which creation of the 

symbolic edit strings is concurrent with the comparison of two strings, rather than 

creating the large matrix first, and then reading that matrix backwards to develop the 

symbolic edit strings. This would not only decrease the memory requirement of the 

current approach but would also be a candidate for multi-processing – as possible 

common beginnings are identified, a separate process is spawned to continue that 

analysis, while the original process continues looking for additional possible matches. 
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Conceptually, in a production environment, as packets are captured, they would 

be processed, and results stored for future analysis. This research utilized balanced binary 

search trees to maintain the incomplete flows and ARP pairs. In production, these would 

be replaced with a database that would maintain references to all flows, such that queries 

could be made to perform trend analysis on any combination of IP addresses and ports. 

Considering the potential file size of one year of audit logs, it would not be practical to 

maintain all that data in a live environment. In the tests of the MACCDC and 

UNSW-NB15 datasets, the data flows made up 83.2% and 96.7% of the total output data 

files, respectively. Further research will be required to determine the most-efficient 

method of storing the data off-line but make it available for research. 

Summary 

While business traffic has doubled every three years since 2016 (O’Dea, 2020), 

the cost of cybercrime has kept pace (Embroker Team, 2021). To combat cybercrime, 

organization began collecting and maintaining audit files to aid in identification of 

malicious activity (Marker, 2021; Shopp, 2020; NIST ITL Bulletin, 1997). In 2015, 

Horne presented data traffic from HP DNS servers. Assuming the DNS request is a 

prelude to actual connections, the data can be extrapolated to possible IPv4 traffic. Using 

packet estimates provided by Kim, et, al., (2004), an organization with 1,000 users could 

generate in excess of 10 petabytes of audit logs per year. 

To address the storage issues of such large files, various compression algorithms 

have been developed, such as ZIP, RAR, and TAR, although these are generally used for 

archiving purposes (FileInfo, n.d.). There are two general categories of compression 

algorithms: Lossless and Lossy (Kavitha, 2016). Lossless compression is used where 
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exact copies of the original data is required, such as with run length encoding, Lempel 

Ziv Welch and Huffman encoding; Lossy compression allows for elimination of some of 

the original data that is deemed not to impact the essential information of the original, 

such as JPEG, MP3, and MP4 (Kavitha, 2016).  

Genomic research involves analysis of very large datasets. In 2012, Loh, Baym 

and Berger proposed a compression algorithm that allowed them to perform genomic 

analysis directly on the compressed data, without having to be uncompressed. The 

purpose of this research is to utilize the dynamic compression techniques of Loh, et al. 

(2012) to not only reduce the size of the network data file storage, but also allow analysis 

in real time. The compression algorithm developed here is considered lossy, since certain 

packet fields are eliminated during processing. 

The development and validation of the genomic compression technique required 

the availability of a dataset that was representative of the real world. After an in-depth 

search, the UNSW-NB15 17-2-2015 dataset compiled by Moustafa and Slay (2015) and 

the network packet captures from the 2012 Mid-Atlantic Collegiate Cyber Defense 

Competition were selected. These files follow the TCP/IP, 4-layer model, but utilized 

different PCAP capture formats, requiring modification of the program to account for the 

network layer header differences.  

The datasets were analyzed for the occurrence of protocols at the internet and 

transport layers. At the internet layer, there are only two protocols represented in the 

UNSW-NB15 dataset, the Address Resolution Protocol (ARP) and the Internet Protocol, 

Version 4 (IPv4). However, in addition to those two protocols, the MACCDC dataset 

contained 12 additional protocols, none of which was of significant occurrence to warrant 
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further analysis. With both datasets, the Transmission Control Protocol (TCP) was the 

most-prevalent protocol in the transport layer, representing 98.3% and 90.7% of the 

UNSW-NB15 and MACCDC datasets, respectively. However, after TCP, the remaining 

transport layer protocols varied between the two datasets. The User Datagram Protocol 

(UDP) was the next for both, but there was no subsequent similarity between the two 

datasets. The MACCDC dataset had a total of five transport layer protocols, whereas the 

UNSW-NB15 dataset exhibited every possible protocol, except for protocol number 58; 

239 of which only had 12 instances each. Due to the minimal occurrences of these 

protocols and their lack of significant data, all were ignored for further processing. 

Ultimately, modules were developed to parse the datasets for ARP and IPv4 packets, and 

the latter further parsed into just TCP and UDP usage – all other transport layer protocols 

were saved as is, without taking advantage of the genomic techniques. As development 

progressed, it was apparent that the bulk of the UDP usage was for single-packet 

messaging. Therefore, as with unsupported protocols, all UDP packets were saved as is. 

The program developed for this research read through the files of the datasets, 

sequentially, packet by packet. Since only ARP and TCP packets were matched, they 

were saved in their own balanced binary tree structure. All other packets were 

immediately written to their associated interim file: 1) TCP duplicate packets; 2) UDP 

packets; 3) ARP duplicate packets; 4) Ignored TCP packets; 5) Unsupported Internet 

Layer packets; 6) Unsupported Transport Layer packets; and 7) Unsupported TCP 

protocols packets.  

The Address Resolution Protocol is a fixed-length protocol, consisting of request 

and reply packets. Although there is no data segment and thus no ability to apply the 
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genomic compression technique, by combining the request and reply pair into a single, 

final structure, significant space can be saved. When an ARP request packet is read, it is 

written to the ARP binary tree. Upon identification of the reply packet, it is matched with 

the request packet, the final structure is written to its own interim file, and the associated 

request node removed from the ARP binary tree. Each ARP packet is 28 bytes in length 

(Figure 2, Chapter 4), for a combined 56 bytes per pair. However, in a PCAP file, each 

packet has a 16-byte header, making the total 88 bytes for the pair. The final structure for 

an ARP pair utilized in this research is 46 bytes, for a 48% savings in file space. 

As indicated above, the implementation of the genomic compression techniques 

to network traffic was geared solely around TCP packets. To decrease any overhead 

associated with creating edit scripts, it was decided that complete packet flows would be 

aggregated, rather than attempting to apply the genomic techniques to individual packet 

data segments. Since the protocol is known (TCP), the aggregation was based on a 4-

tuple key, comprised of the source and destination IP addresses and ports, as opposed to 

the 5-tuple key utilized in the IP Flow export protocol, which includes the protocol in the 

key (Claise et. al., 2013). This had the added advantage of eliminating the common data 

exhibited in the packets that make up packet flow – the important information for 

reconstruction was save once, with a link to the data. As packets are read, the first packet 

with a unique 4-tuple key is written to the TCP balanced binary tree, and the data 

segment stored in an associated linked list, ordered by sequence number. As additional 

packets matching the 4-tuple key are identified. If they are duplicates, they are 

immediately written to the TCP duplicate interim file. If not, the data segment is added to 

the sequence linked list. This processing of the flow continues until the last packet in the 
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flow is received (FIN, or finish, flag is set). When the program detected that a flow was 

complete, the genomic compression technique was then applied. Since the creation of edit 

scripts requires overhead to identify the components of the script, only flows that exceed 

a threshold level were possible candidates for the techniques.  

The major difference between actual genomic data and network data is that with 

gene research, a single gene is compared to a known “dictionary” and the difference 

between the two are identified. With network traffic, there is no one-to-one relationship. 

Rather, the current packet flow must be compared to every previous packet flow that has 

been saved, a one-to-many relationship. Besides ensuring the packet flow meets a 

minimum size threshold, determining the longest common substring between segments of 

the packet flow and like-length segments of the previous flows was utilized to identify 

possible common strings. It was at this point that the Levenshtein Edit Distance algorithm 

(Levenshtein, 1966) was applied to the two flows (a known flow and the test flow) and 

the resultant matrix walked in reverse to determine where characters either matched, did 

not match, and whether the insertion or deletion of a character to either string would be 

required. The edit string was comprised of four symbols: ‘=’ where the characters 

matched; ‘!’ where the character did not match; ‘+’ where a character needed to be 

inserted into the known string; and ‘-’ where a character had to be removed from the 

known string. This edit string was then used to create the edit scripts to indicate how to 

change a known flow to match the current flow. 

There is a single edit script node structure comprised of four fields: 1) the edit 

type, which is either ‘K’ for a reference to the known string, or ‘T’ referring to the test 

string; 2) the starting location for either string; 3) the length of the data; and 4) the data 
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involved. In the case of the node referring to a known string, the data field is empty since 

the known string is on file and the location and length of the common data has been 

saved in the previous two fields. In the case of the test string, the data field would contain 

the unique data segment belonging to the test string. At this point, the data flow, if unique 

or didn’t meet the length threshold, is written to the data interim file. If a match is 

identified, the edit scripts are written to the datafile. In either case, the base TCP packet is 

removed from the TCP binary tree, including removal of the sequence linked list. 

At the end of processing of each dataset, the program creates the final file, based 

on the various interim files, as well as any orphan nodes in the ARP and TCP binary 

trees. The final file is built upon the TCP interim file. During its initial creation at 

program start-up, the first 188 bytes are written with zeros, as reserved space for the final 

file header. Final processing is performed in the following order, based upon the header 

structure: 1) During processing, the count of the number of flows was stored, so the TCP 

flow record location, record count, and the known format length are written to the header; 

2) the TCP binary tree is checked for any orphan nodes. Their starting location in the file 

is saved and the orphan packets were written to file. The header information is updated 

and the remaining TCP binary tree nodes removed and the tree destroyed; 3) the duplicate 

TCP interim file is copied to the final file and the header information updated; 4) since 

UDP packets were not processed for flows, there is nothing to add to the file and the 

header is updated for location with a count of zero records; 5) all UDP packets were 

written to an interim file, and considered orphans. The UDP interim file was copied to the 

final file and the header information updated; 6) the ARP completed pair interim file is 

copied to the final file and the header information updated; 7) the ARP binary tree is 
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checked for any orphans and the associated packets are written to the output file, the 

header information updated; and the ARP binary tree deleted. 8) the ignored TCP, 

unsupported Internet Layer protocol, unsupported Transport Layer, and unsupported TCP 

interim files are copied to the final file and the header information updated, in the order 

presented; 9) the data interim file is copied to the output file and the header information 

updated; and 10) the number of files in the dataset is written, followed by the header 

information for each file, and then the location of the dataset header files is written to the 

final file header. 

The results of this research indicated that the application of the genomic 

compression techniques to network traffic can have a significant impact on audit/log 

network capture file storage space. For protocols with significant data, the application of 

genomic compression techniques was shown to save significant space – an average of 

46% for the UNSW-NB15 dataset and 67% for the MACCDC dataset for TCP 

aggregated data flows. For message formats consisting of request packets and replies, the 

genomic compression technique of eliminating duplicate data can also provide significant 

space savings – both datasets exhibited approximately 50% space savings. 
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Appendix A 

NIST SP 800-53 Revision 5, Audit and Accountability Security Controls 

Table A1 provides a list of the NIST SP 800-53 security and privacy controls and 

control enhancements that are assigned to the Audit and Accountability family. Note that 

the breaks in numbering are due to controls from the previous Revision 4 being 

withdrawn and incorporated into other controls. For simplicity, those controls have been 

eliminated from this table. The controls that are pertinent to this research are highlighted 

in yellow. 

Table A1 - NIST SP 800-53 Revision 5 Audit and Accountability Security Controls 

Control 
Number Control Name 

AU-01 Policy and Procedures 
AU-02 Event Logging 
AU-03 Content of Audit Records 
AU-03(1) Content of Audit Records | Additional Audit Information 
AU-03(3) Content of Audit Records | Limit Personally Identifiable Information 

Elements 
AU-04 Audit Log Storage Capacity 
AU-04(1) Audit Log Storage Capacity | Transfer to Alternate Storage 
AU-05 Response to Audit Logging Process Failures 
AU-05(1) Response to Audit Logging Process Failures | Storage Capacity Warning 
AU-05(2) Response to Audit Logging Process Failures | Real-time Alerts 
AU-05(3) Response to Audit Logging Process Failures | Configurable Traffic 

Volume Thresholds 
AU-05(4) Response to Audit Logging Process Failures | Shutdown on Failure 
AU-05(5) Response to Audit Logging Process Failures | Alternate Audit Logging 

Capability 
AU-06 Audit Record Review, Analysis, and Reporting 
AU-06(01) Audit Record Review, Analysis, and Reporting | Automated Process 

Integration 
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Control 
Number Control Name 

AU-06(03) Audit Record Review, Analysis, and Reporting | Correlate Audit Record 
Repositories 

AU-06(04) Audit Record Review, Analysis, and Reporting | Central Review and 
Analysis 

AU-06(05) Audit Record Review, Analysis, and Reporting | Integrated Analysis of 
Audit Records 

AU-06(06) Audit Record Review, Analysis, and Reporting | Correlation with 
Physical Monitoring 

AU-06(07) Audit Record Review, Analysis, and Reporting | Permitted Actions 
AU-06(08) Audit Record Review, Analysis, and Reporting | Full Text Analysis of 

Privileged Commands 
AU-06(09) Audit Record Review, Analysis, and Reporting | Correlation with 

Information from Nontechnical Sources 
AU-07 Audit Record Reduction and Report Generation 
AU-07(1) Audit Record Reduction and Report Generation | Automatic Processing 
AU-08 Time Stamps 
AU-09 Protection of Audit Information 
AU-09(1) Protection of Audit Information | Hardware Write-once Media 
AU-09(2) Protection of Audit Information | Store on Separate Physical Systems or 

Components 
AU-09(3) Protection of Audit Information | Cryptographic Protection 
AU-09(4) Protection of Audit Information | Access by Subset of Privileged Users 
AU-09(5) Protection of Audit Information | Dual Authorization 
AU-09(6) Protection of Audit Information | Read-only Access 
AU-09(7) Protection of Audit Information | Store on Component with Different 

Operating System 
AU-10 Non-repudiation 
AU-10(1) Non-repudiation | Association of Identities 
AU-10(2) Non-repudiation | Validate Binding of Information Producer Identity 
AU-10(3) Non-repudiation | Chain of Custody 
AU-10(4) Non-repudiation | Validate Binding of Information Reviewer Identity 
AU-11 Audit Record Retention 
AU-11(1) Audit Record Retention | Long-term Retrieval Capability 
AU-12 Audit Record Generation 
AU-12(1) Audit Record Generation | System-wide and Time-correlated Audit Trail 
AU-12(2) Audit Record Generation | Standardized Formats 
AU-12(3) Audit Record Generation | Changes by Authorized Individuals 
AU-12(4) Audit Record Generation | Query Parameter Audits of Personally 

Identifiable Information 
AU-13 Monitoring for Information Disclosure 
AU-13(1) Monitoring for Information Disclosure | Use of Automated Tools 
AU-13(2) Monitoring for Information Disclosure | Review of Monitored Sites 
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Control 
Number Control Name 

AU-13(3) Monitoring for Information Disclosure | Unauthorized Replication of 
Information 

AU-14 Session Audit 
AU-14(1) Session Audit | System Start-up 
AU-14(3) Session Audit | Remote Viewing and Listening 
AU-16 Cross-organizational Audit Logging 
AU-16(1) Cross-organizational Audit Logging | Identity Preservation 
AU-16(2) Cross-organizational Audit Logging | Sharing of Audit Information 
AU-16(3) Cross-organizational Audit Logging | Disassociability 
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Appendix B 

Dataset Analysis and Selection 

Table B1 provides the complete list of the downloaded candidate datasets. Both 

the MACCDC and UNSW-NB15 datasets were single datasets comprised of multiple, 

chronologically sequential PCAP files. However, the two MILCOM 2016 Datasets were 

actually comprised of multiple, individual datasets  

Table B1 – Candidate Datasets 

Each of the candidate datasets was processed by various modules of the utility 

program which incorporated certain built-in functions of the Npcap library. In the PCAP 

file format, each packet is preceded with a packet header as follows: 

typedef struct pcap_record_header { 
unsigned int32  timestamp_seconds;  // 4 bytes 
unsigned int32  timestamp_microseconds; // 4 bytes 
unsigned int32  packet_octets_captured; // 4 bytes 
unsigned int32  actual_packet_length;  // 4 bytes 

}        // 16 total bytes 

Mid-Atlantic Collegiate Cyber Defense Competition (MACCDC) Datasets 
Dataset Name Compressed Size #PCAP Files #Datasests 
MACCDC 2010 10 GB 27 1 
MACCDC 2011 14.2 GB 15 1 
MACCDC 2012 5.4 GB 17 1 

University of New South Wales (UNSW) Datasets 
Dataset Name Compressed Size #PCAP Files #Datasests 
UNSW-NB15 17-2-2015 49 GB 27 1 
UNSW-NB15 22-1-2015 50.2 GB 53 1 

Military Communications Conference (MILCOM) 2016 Datasets 
Dataset Name Compressed Size #PCAP Files #Datasests 
dataSetAv2 33 G 15 15 
dataSetEAggregator 44 G 48 48 
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The first module read through all files of the dataset, totaling the number of PCAP 

records and two values provided by the PCAP packet header: the number of bytes 

captured (packet_octets_captured) and saved in the PCAP file; and the length, in bytes, of 

the record actually on the network when it was captured (actual_packet_length). To 

provide a comparative analysis, the average packet size was calculated for each dataset. 

After counting all the packets and bytes in a file, the module then calculated the expected 

size of the PCAP file to account for the PCAP packet header (16 bytes per packet) and 

the global PCAP file header (24 bytes per file). The last value obtained was the actual 

on-disk file size. Tables B2, B3, B4, and B5 show the summary results for the 

MACCDC, UNSW-NB15, MILCOM dataSetAv2, and MILCOM dataSetEAggregator 

datasets, respectively (Appendix C, Tables C1 through C3 provides the per-file results for 

the three MACCDC datasets and Appendix D, Tables D1 and D2 for the two UNSW-

NB15 datasets). Putting the average size into perspective, any comparisons must account 

for the impact of the lengths of the various protocol packet headers. The network layer 

header ranges from 14 bytes to 18 bytes and the Internet layer (IPv4) header is 20 bytes. 

Transport layer headers are variable. For example, TCP headers are 20 bytes, while UDP 

headers are 8 bytes. Therefore, mosts packet will require anywhere from 40 to 60 bytes 

for the headers, which must be included in any data segment calculation. 

Table B2 – Candidate Datasets: File and Packet Statistics – MACCDC Datasets 
MACCDC Datasets 

Dataset:  MACCDC 2010 MACCDC 2011 MACCDC 2012 
Total Packets 264,973,151 134,465,786 71,856,691 
Total Bytes 32,513,443,821 30,237,514,309 16,703,208,838 
Bytes/Packet 123 225 222 
Bytes on Wire 32,513,443,821 30,237,514,309 16,703,208,838 
Total w/Headers 36,753,014,885 32,388,967,245 17,852,916,302 
Actual File Size 36,753,014,885 32,388,967,245 17,852,916,302 

 



116 
 

 
 

The MACCDC datasets results did not show anything abnormal, although the 

average packet size of the MACCDC 2010 dataset was approximately half the sizes of 

the MACCDC 2011 and MACCDC 2012 datasets (Table B2). Even though that dataset 

contained significantly more packets than the other two, due to the lower data segment 

sizes, the MACCDC 2010 dataset was eliminated from further analysis (dataset name 

highlighted in red in Table B2). 

Table B3 – Candidate Datasets: File and Packet Statistics – UNSW-NB15 Datasets 
UNSW-NB15 Datasets 

Dataset:  17-2-2015 22-1-2015 
Total Packets 87,492,159 94,571,342 
Total Bytes 48,347,208,654 51,116,871,461 
Average Bytes/Pkt 411 96 
Bytes on Wire 48,347,208,654 51,116,871,461 
Total w/Headers 49,747,083,846 52,630,014,205 
Actual File Size 49,747,092,020 53,044,845,688 

 
In both UNSW-NB15 datasets, the actual file sizes where larger than the 

calculated size for the number of packets read (highlighted in yellow in Table B3). For 

the UNSW-NB 17-2-2015 dataset, the discrepancy was minor: 8,174 additional bytes in a 

dataset that captured 49,747,083,846 bytes. With the UNSW-NB 22-1-2015 dataset, there 

was a more significant difference: 414,831,483 bytes compared to 52,630,014,205 

captured bytes. In both datasets, the extra data did not cause any program issues and the 

packet counts were confirmed using Wireshark. However, due to the significantly smaller 

packet sizes in the 22-1-2015 dataset (96 bytes per packet versus 411 bytes per packet for 

the 17-2-2015 dataset), the 22-1-2015 dataset was excluded from further analysis (dataset 

name highlighted in red in Table B3). 

As with the UNSW-NB15 datasets, two of the MILCOM 2016 dataSetAv2 

datasets contained additional data (cells highlighted in yellow in Table B4). However, the 
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differences were very significant with the actual file size of the i-dc-9 dataset being over 

twice what was expected and that for the fw-sniffer dataset being 9.1 times larger. Again, 

these differences did not impact processing and the packet counts were confirmed with 

Wireshark. However, like the UNSW-NB15 22-1-2015 dataset, the fw-sniffer dataset 

only contained 96 bytes per packet, so it was excluded from future processing, as well as 

those candidate datasets with less than 1,000,000 packets (dataset names highlighted in 

red in Table B4). 

The other MILCOM 2016 dataset group, dataSetEAggregator, also had files with 

extra data, and similar to the dataSetAv2 group, the differences were significant: the cop 

dataset was 10.9 times larger than expected and the i-dc-9 dataset was 5.6 times larger 

(highlighted in yellow in Table B5). Again, the extra data did not impact processing and 

the number of packets was confirmed with Wireshark. Since the cop dataset packets were 

significantly less than other datasets with greater than 1,000,000 packets, it was excluded 

from further analysis, as were the two datasets with no packets (1stplt2rto and 2ndpltrto), 

and the other datasets that did not reach the 1,000,000-packet threshold (dataset names 

highlighted in red in Table B5). This eliminated every dataset in the dataSetEAggregator 

group, except the i-dc-9 dataset. 

After the first level of analysis, most of the datasets have been eliminated either due 

to number of packets to test, or the average packet not containing sufficient data to test. 

This leaves eight datasets for further analysis: MACCDC 2011; MACCDC 2012; UNSW-

NB15 17-2-2015; the i-dc-4, i-dc-5, i-dc-6, and i-dc-9 datasets from the dataSetAv2 group; 

and the i_dc-9 dataset from the dataSetEAggregator group. 
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Table B4 – Candidate Datasets: File and Packet Statistics – MILCOM Datasets 

MILCOM 2016 dataSetAv2 Datasets 
Dataset: db fw-sniffer i-dc-1 i-dc-2 i-dc-3 

Total 
Packets 278,827 14,239,985 59,443 15,706 77,804 

Total 
Bytes 102,331,494 1,368,367,400 52,124,194 6,175,912 67,893,178 

Average 
Bytes/Pkt 411 96 877 393 873 

Bytes on 
Wire 102,331,494 1,368,367,400 52,124,194 6,175,912 67,893,178 

Total 
w/Headers 106,792,750 1,596,207,184 53,075,306 6,427,232 69,138,066 

Actual File 
Size 106,792,750 14,481,109,072 53,075,306 6,427,232 69,138,066 

Dataset: i-dc-4 i-dc-5 i-dc-6 i-dc-7 i-dc-8 
Total 
Packets 1,580,379 2,124,915 1,428,356 26,319 461,571 

Total 
Bytes 1,622,623,997 2,172,641,100 1,464,901,945 11,792,338 459,676,581 

Average 
Bytes/Pkt 1,027 1,022 1,026 448 996 

Bytes on 
Wire 1,622,623,997 2,172,641,100 1,464,901,945 11,792,338 459,676,581 

Total 
w/Headers 1,647,910,085 2,206,639,764 1,487,755,665 12,213,466 467,061,741 

Actual File 
Size 1,647,910,085 2,206,639,764 1,487,755,665 12,213,466 467,061,741 

Dataset: i-dc-9 nodejs ns-dc smf wpvuln 
Total 
Packets 7,487,262 18 318,341 432,053 7,414 

Total 
Bytes 3,415,530,780 4,743 28,359,627 154,175,229 1,381,336 

Average 
Bytes/Pkt 456 264 89 357 186 

Bytes on 
Wire 3,415,530,780 4,743 28,359,627 154,175,229 1,381,336 

Total 
w/Headers 3,535,326,996 5,055 33,453,107 161,088,101 1,499,984 

Actual File 
Size 7,830,294,292 5,055 33,453,107 161,088,101 1,499,984 

 
 



119 
 

 
 

Table B5 – Candidate Datasets: File and Packet Statistics – MILCOM Datasets 

MILCOM 2016 dataSetEAggregator Datasets 
Dataset: 1stplt1rto 1stplt1sqd1rfl

mn1 
1stplt1sqd1rflmn

2 
1stplt1sqd1tl 1stplt1sqd2rflmn

1 
Total Packets 3,069 11,264 9,423 10,417 9,126 
Total Bytes 3,264,894 5,944,570 3,957,648 4,749,122 3,737,216 
Avg Bytes/Pkt 1,064 528 420 456 410 
Bytes on Wire 3,264,894 5,944,570 3,957,648 4,749,122 3,737,216 
Total w/Headers 3,314,022 6,124,818 4,108,440 4,915,818 3,883,256 
Actual File Size 3,314,022 6,124,818 4,108,440 4,915,818 3,883,256 
Dataset: 1stplt1sqd2

rflmn2 
1stplt1sqd2tl 1stplt1sqdldr 1stplt2rto 1stplt2sqd1rflm

n1 
Total Packets 9,063 10,226 9,818 0 9,125 
Total Bytes 3,556,794 4,673,850 4,334,082 0 3,552,190 
Avg Bytes/Pkt 392 457 441 0 389 
Bytes on Wire 3,556,794 4,673,850 4,334,082 0 3,552,190 
Total w/Headers 3,701,826 4,837,490 4,491,194 0 3,698,214 
Actual File Size 3,701,826 4,837,490 4,491,194 0 3,698,214 
Dataset: 1stplt2sqd1

rflmn2 
1stplt2sqd2tl 1stplt2sqd2rflm

n1 
1stplt2sqd2

rflmn2 
1stplt2sqd2tl 

Total Packets 8,760 9,234 7,867 10,140 9,234 
Total Bytes 3,182,094 3,654,292 2,349,358 4,541,954 3,654,292 
Avg Bytes/Pkt 363 396 299 448 396 
Bytes on Wire 3,182,094 3,654,292 2,349,358 4,541,954 3,654,292 
Total w/Headers 3,322,278 3,802,060 2,475,254 4,704,218 3,802,060 
Actual File Size 3,322,278 3,802,060 2,475,254 4,704,218 3,802,060 
Dataset: 1stplt2sqdl

dr 
1stpltldr 2ndplt1sqd1rfl

mn1 
2ndplt2sqd

1rflmn2 
2ndplt1sqd1tl 

Total Packets 9,522 23,371 11,095 8,347 10,569 
Total Bytes 4,011,744 18,919,020 5,844,668 2,856,298 4,998,112 
Average 
Bytes/Pkt 

421 810 527 342 473 

Bytes on Wire 4,011,744 18,919,020 5,844,668 2,856,298 4,998,112 
Total w/Headers 4,164,120 19,292,980 6,022,212 2,989,874 5,167,240 
Actual File Size 4,164,120 19,292,980 6,022,212 2,989,874 5,167,240 
Dataset: 2ndplt1sqd

2rflmn1 
2ndplt1sqd2

rflmn2 2ndplt1sqd2tl 2ndplt1sqdl
dr 

2ndplt2sqd1rfl
mn1 

Total Packets 8,425 8,569 9,849 12,587 8,456 
Total Bytes 3,051,478 3,134,318 4,357,484 7,380,692 2,970,188 
Average 
Bytes/Pkt 362 366 442 586 351 

Bytes on Wire 3,051,478 3,134,318 4,357,484 7,380,692 2,970,188 
Total w/Headers 3,186,302 3,271,446 4,515,092 7,582,108 3,105,508 
Actual File Size 3,186,302 3,271,446 4,515,092 7,582,108 3,105,508 
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MILCOM 2016 dataSetEAggregator Datasets 
Dataset: 2ndplt2sqd

1rflmn2 
2ndplt2sqd1

tl 
2ndplt2sqd2rfl

mn1 
2ndplt2sqd

2rflmn2 2ndplt2sqd2tl 

Total Packets 8,347 9,300 7,810 10,015 9,522 
Total Bytes 2,856,298 3,931,340 2,362,258 4,436,966 3,984,258 
Average 
Bytes/Pkt 342 423 302 443 418 

Bytes on Wire 2,856,298 3,931,340 2,362,258 4,436,966 3,984,258 
Total w/Headers 2,989,874 4,080,164 2,487,242 4,597,230 4,136,634 
Actual File Size 2,989,874 4,080,164 2,487,242 4,597,230 4,136,634 
Dataset: 2ndplt2sqdl

dr 2ndpltldr 2ndpltrto 3rdplt1sqd
1rflmn1 

3rdplt1sqd1rflm
n2 

Total Packets 9,698 10,829 0 8,594 8,676 
Total Bytes 4,286,814 5,578,678 0 3,132,412 3,203,772 
Average 
Bytes/Pkt 442 516 0 364 369 

Bytes on Wire 4,286,814 5,578,678 0 3,132,412 3,203,772 
Total w/Headers 4,442,006 5,751,966 0 3,269,940 3,342,612 
Actual File Size 4,442,006 5,751,966 0 3,269,940 3,342,612 
Dataset: 3rdplt1sqd

1tl 
3rdplt1sqd2r

flmn1 
3rdplt1sqd2rflm

n2 
3rdplt1sqd

2tl 3rdplt1sqdldr 

Total Packets 9,951 8,802 8,708 10,444 12,847 
Total Bytes 4,261,960 3,387,814 3,223,284 5,043,220 7,612,416 
Average 
Bytes/Pkt 428 385 370 483 593 

Bytes on Wire 4,261,960 3,387,814 3,223,284 5,043,220 7,612,416 
Total w/Headers 4,421,200 3,528,670 3,362,636 5,210,348 7,817,992 
Actual File Size 4,421,200 3,528,670 3,362,636 5,210,348 7,817,992 
Dataset: 3rdpltldr 3rdpltrto cop db i-dc-9 
Total Packets 16,228 7,152 12,974,530 46,831 14,842,234 
Total Bytes 11,254,030 7,567,192 1,529,379,506 17,819,978 3,535,380,449 
Avg Bytes/Pkt 693 1,058 118 381 238 
Bytes on Wire 11,254,030 7,567,192 1,529,379,506 17,819,978 3,535,380,449 
Total w/Headers 11,513,702 7,681,648 1,736,972,010 18,569,298 3,772,856,217 
Actual File Size 11,513,702 7,681,648 18,916,841,194 18,569,298 20,952,725,401 
Dataset: nodejs ns-dc Smf   
Total Packets 452 82,370 73,689   
Total Bytes 30,902 7,441,446 26,756,753   
Average 
Bytes/Pkt 68 90 363   

Bytes on Wire 30,902 7,441,446 26,756,753   
Total w/Headers 38,158 8,759,390 27,935,801   
Actual File Size 38,158 8,759,390 27,935,801   

 

In order to provide further analysis of the suitability of any given dataset, the actual 

structure of the packet captures had to be determined. There are multiple possible packet 

capture formats within the Npcap library. The differences are related to how the Network 

Layer header is presented, including whether the PCAP packet starts immediately with the 
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Internet Layer, totally ignoring the Network Layer header (Tcpdump, 2022). The complete 

global PCAP file header is as follows: 

typedef struct pcap_global_header { 
unsigned int32  magic_number;  // 4 bytes 
unsigned int16  version_major;  // 2 bytes 
unsigned int16  version_minor;  // 2 bytes 

   int32  time_zone_correction; // 4 bytes 
unsigned int32  timestamp_accuracy;  // 4 bytes 
unsigned int32  max_capture_length;  // 4 bytes 
unsigned int32  data_link_type;  // 4 bytes 

}        // 24 total bytes  

The “data_link_type” member of the PCAP file header structure represents the 

Network Layer type (Wireshark, 2020). A “magic_number” structure element is used to 

identify whether the PCAP file data elements have been written in the native byte order of 

the current operating system or not. The result of this element determined how the actual 

data values are extracted from the packet. The next program module to run simply opened 

the PCAP file using the Ncpap library, displayed the contents of the PCAP file header and 

closed the file. The Network Layer Type and Native Byte Order for the remaining eight 

datasets are shown in Table B6. 

This module showed that the UNSW-NB15 dataset utilizes network layer header 

type 113, an artificial network layer header inserted by file captures performed on a Linux 

system. The two MACCDC and the MILCOM 2016 datasets all utilize network layer 

header type 1 which references the standard Ethernet link-layer (Network Layer) header. 

All further analysis, including the actual genomic compression program, utilized a short 

function to identify the network layer type and data order of the PCAP file, in order to 

properly account for the length and content of the Network Layer header and obtain 

accurate data extraction. 
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Table B6 – Candidate Datasets: File Header Extracts 
Dataset Network Layer type Native Byte Order 
MACCDC 2011 1 (Ethernet) Native 
MACCDC 2012 1 (Ethernet) Native 
UNSW-NB15 17-2-2015 113 (Linux “cooked”) Native 
dataSetAv2 i-dc-4 1 (Ethernet) Native 
dataSetAv2 i-dc-5 1 (Ethernet) Native 
dataSetAv2 i-dc-6 1 (Ethernet) Native 
dataSetAv2 i-dc-9 1 (Ethernet) Native 
dataSetEAggregator i_dc-9 1 (Ethernet) Native 

 
The next analysis read through the datasets, extracting the Internet Layer protocol 

from the Network Layer header based on the structure defined by the Network Layer 

type. This module was limited to counting occurrences of the Internet Layer protocols. 

The results for the eight candidate datasets are provided in Table B7. Except for the two 

MACCDC datasets, the other six candidate datasets were comprised of two Internet 

Layer protocols only: Internet Protocol version 4 (IPv4) and the Address Resolution 

Protocol (ARP), where IPv4 comprised over 99.9% of the total packets. In addition to 

IPv4 and ARP, the MACCDC datasets also contained several other protocols, the most 

notable being IPv6. IPv4 again was the dominant protocol with 97.8% for the MACCDC 

2011 dataset and 97.0% for the MACCDC 2012 dataset, with IPv6 comprising 1.5% and 

1.8% of the MACCDC 2011 and MACCDC 2012 datasets, respectively. (Appendix C, 

Tables C4 through C6 provide the per-file results for the most-common Internet Layer 

protocols for the two remaining MACCDC datasets and Appendix D, Tables D3 and D4, 

for the two UNSW-NB15 datasets). 
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Table B7 – Candidate Datasets: Internet Layer Protocols 

Dataset Protocol Description Count Percent Decimal Hex 
MACCDC 2011  2,048  0x0800 IPv4 131,527,680 97.815% 
  34,525  0x86DD IPv6  2,010,213  1.495% 
  2,054  0x0806 ARP  169,498  0.126% 
  36,864  0x9000 Loopback  16,058  0.012% 
  35,020  0x88CC Link Layer Discovery Protocol (LLDP)  5,194  0.004% 
  32,821  0x8035 RARP  485  0.000% 
   Remaining 11 Protocols:  736,658  0.548% 
   Dataset Total:  134,465,786  100.000% 
      
MACCDC 2012 2048 0x0800 IPv4  69,749,729  97.068% 
 34525 0x86DD IPv6  1,246,065  1.734% 
 2054 0x0806 ARP  101,294  0.141% 
 24579 0x6003 DEC DECNET Phase IV Route  8,870  0.012% 
 36864 0x9000 Loopback  6,688  0.009% 
 35020 0x88CC Link Layer Discovery Protocol (LLDP)  2,160  0.003% 
 32821 0x8035 RARP  590  0.001% 
   Remaining 9 Protocols:  741,295  1.032% 
   Dataset Total:   71,856,691 100.000% 
      
17-2-2015 2048 0x0800 IPv4 87,480,078 99.986% 
 2054 0x0806 ARP 12,081 0.014% 
   Dataset Total:  87,492,159  100.000% 
      
dataSetAv2 i-dc-4 2048 0x0800 IPv4 1,580,285 99.994% 
 2054 0x0806 ARP 94 0.006% 
   Dataset Total:       1,580,379  100.000% 
      
dataSetAv2 i-dc-5 2048 0x0800 IPv4 2,124,799 99.995% 
 2054 0x0806 ARP 116 0.005% 
   Dataset Total:  2,124,915  100.000% 
      
dataSetAv2 i-dc-6 2048 0x0800 IPv4 1,428,078 99.981% 
 2054 0x0806 ARP 278 0.019% 
   Dataset Total:  1,428,356  100.000% 
      
dataSetAv2 i-dc-9 2048 0x0800 IPv4 7,487,190 99.999% 
 2054 0x0806 ARP 72 0.001% 
   Dataset Total:  7,487,262  100.000% 
      
dataSetEA i_dc-9 2048 0x0800 IPv4 14,842,071 99.999% 
 2054 0x0806 ARP 163 0.001% 
   Dataset Total:  14,842,234  100.000% 

 
 
Although the bytes per packet calculations presented in tables B2 through B5 

indicated that there are data segments available beyond the various protocol headers, the 

next analysis identified whether there was any actual usable data for genomic compression. 

In this run, the transport layer header was parsed to determine the expected data length, 
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accounting for the lengths of the network, internet, and transport layer headers. The data 

elements extracted and/or calculated included the minimum, maximum, and average 

expected and actual data lengths, as well as the captured lengths. Table B8 provides the 

transport layer results for the candidate datasets (Appendix C, Tables C7 and C8 provides 

for the per-file results for the top Transport layer protocols for the two remaining 

MACCDC datasets and Appendix D, Tables D5 and D6 for the two UNSW-NB15 datasets. 

There and ‘A’ and ‘B’ versions of each table with the ‘A’ version providing the summary 

of the occurrences of the various Transport Layer protocols and the ‘B’ version providing 

the detailed data elements.). 

As Table B8 shows, in all datasets except dataSetEAggregator i_dc-9 Dataset, TCP 

packets comprise over 90% of the total packet count. With the dataSetEAggregator i_dc-9 

dataset, however, TCP only comprises 11.7% of the total, with UDP packets making up 

the remainder. In addition, all the MILCOM 2016 datasets have many TCP packets that 

are significantly larger than the standard Ethernet packet, which, including the Ethernet 

header, is a maximum of 1520 bytes (Wright, 2021). Analyzing the various MILCOM 2016 

datasets further shows that the captures were all within a single virtual Lan (VLAN). As 

such, the captures are not limited to the Ethernet total (Wright, 2021). Since this is only 

representative of system-to-system traffic within a VLAN, all the MILCOM 2016 datasets 

were eliminated from further analysis. 
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Table B8 – Candidate Datasets: Transport Layer Protocols 
MACCDC 2011 Dataset 

Protocol TCP UDP ICMP Remaining 3 
Count  119,292,009   10,259,235   1,690,967   285,469  
Percent 90.70% 7.80% 1.29% 0.22% 
Capture  28,715,725,818   1,065,182,605   146,353,049   22,162,568  
On Wire  28,715,725,818   1,065,182,605   146,353,049   22,162,568  
Data  23,997,688,025   672,584,341   68,090,478   11,237,608  
Max Cap  1,518   1,518   1,518   78  
Max Wire  1,518   1,518   1,518   78  
Max Data  1,480   1,480   1,480   40  
Min Cap  64   64   64   60  
Min Wire  64   64   64   60  
Min Data  20   8   8   8  
Avg Cap  240   103   86   78  
Avg Wire  240   103   86   78  
Avg Data  201   65   40   39  

MACCDC 2012 Dataset 
Protocol TCP UDP ICMP Remaining 2 
Count  68,357,197   560,934   526,103   305,495  
Percent 98.0% 0.8% 0.8% 0.4% 
Capture  16,302,050,032   62,878,650   37,817,477   23,801,548  
On Wire  16,302,050,032   62,878,650   37,817,477   23,801,548  
Data  13,593,753,312   41,212,397   13,117,305   12,168,768  
Max Cap 1518 1518 582 78 
Max Wire 1518 1518 582 78 
Max Data 1480 1480 544 40 
Min Cap 64 64 64 64 
Min Wire 64 64 64 64 
Min Data 20 8 8 8 
Avg Cap 238 112 71 78 
Avg Wire 238 112 71 78 
Avg Data 198 73 24 40 

UNSW-NB15 17-2-2015 Dataset 
Protocol TCP UDP OSPF Remaining 251 
Count  86,029,251   1,430,389   13,776   6,662  
Percent 98.349% 1.635% 0.016% 0.01% 
Capture  48,178,578,289   163,379,188   1,772,498   2,825,849  
On Wire  48,178,578,289   163,379,188   1,772,498   2,825,849  
Data  45,078,624,185   111,862,194   1,276,200   2,577,732  
Max Cap  1,516   1,520   1,116   1,076  
Max Wire  1,516   1,520   1,116   1,076  
Max Data  1,480   1,488   1,080   1,032  
Min Cap 56 37 60 44 
Min Wire 56 37 60 44 
Min Data 20 1 24 8 
Avg Cap 560 114 128 424 
Avg Wire 560 114 128 424 
Avg Data 523 78 92 387 
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dataSetAv2 i-dc-4 Dataset 
Protocol TCP UDP ICMP  
Count  1,576,399   3,843   43   
Percent 99.754% 0.243% 0.003%  
Capture  1,622,224,533   387,275   7,395   
On Wire  1,622,224,533   387,275   7,395   
Data  1,568,626,967   256,613   5,933   
Max Cap  29,026   278   268   
Max Wire  29,026   278   268   
Max Data  28,992   244   234   
Min Cap 66 73 104  
Min Wire 66 73 104  
Min Data 32 39 70  
Avg Cap 1029 100 171  
Avg Wire 1029 100 171  
Avg Data 995 66 137  

dataSetAv2 i-dc-5 Dataset 
Protocol TCP UDP ICMP  
Count  2,121,217   3,551   31   
Percent 99.831% 0.167% 0.001%  
Capture  2,172,273,923   355,770   5,491   
On Wire  2,172,273,923   355,770   5,491   
Data  2,100,152,545   235,036   4,437   
Max Cap  15,994   339   262   
Max Wire  15,994   339   262   
Max Data  15,960   305   228   
Min Cap 54 72 104  
Min Wire 54 72 104  
Min Data 20 38 70  
Avg Cap 1024 100 177  
Avg Wire 1024 100 177  
Avg Data 990 66 143  

dataSetAv2 i-dc-6 Dataset 
Protocol TCP UDP ICMP  
Count  1,421,880   6,157   41   
Percent 99.566% 0.431% 0.003%  
Capture  1,464,242,693   637,190   7,884   
On Wire  1,464,242,693   637,190   7,884   
Data  1,415,898,773   427,852   6,490   
Max Cap  23,234   526   267   
Max Wire  23,234   526   267   
Max Data  23,200   492   233   
Min Cap 54 70 106  
Min Wire 54 70 106  
Min Data 20 36 72  
Avg Cap 1029 103 192  
Avg Wire 1029 103 192  
Avg Data 995 69 158  
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dataSetAv2 i-dc-9 Dataset 
Protocol TCP UDP ICMP  
Count  7,486,124   1,038   28   
Percent 99.986% 0.014% 0.000%  
Capture  3,415,415,624   106,009   5,475   
On Wire  3,415,415,624   106,009   5,475   
Data  3,160,887,408   70,717   4,523   
Max Cap  29,026   278   267   
Max Wire  29,026   278   267   
Max Data  28,992   244   233   
Min Cap 66 73 105  
Min Wire 66 73 105  
Min Data 32 39 71  
Avg Cap 456 102 195  
Avg Wire 456 102 195  
Avg Data 422 68 161  

dataSetEAggregator i_dc-9 Dataset 
Protocol UDP TCP   
Count  13,108,792   1,733,279    
Percent 88.322% 11.678%   
Capture  1,722,339,266   1,813,032,879    
On Wire  1,722,339,266   1,813,032,879    
Data  1,276,640,338   1,754,101,393    
Max Cap  1,442   29,026    
Max Wire  1,442   29,026    
Max Data  1,408   28,992    
Min Cap 73 66   
Min Wire 73 66   
Min Data 39 32   
Avg Cap 131 1046   
Avg Wire 131 1046   
Avg Data 97 1012   

 

At this point, two of the original three MACCDC datasets (MACCDC 2011 and 

MACCDC 2012) and one of the UNSW-NB datasets (UNSW NB-15 17-2-2015 remain 

as candidate test datasets. The similarities between the two remaining MACCDC datasets 

were not as close as those with the two UNSW-NB15 datasets: 1) IPv4 was still the 

dominant internet layer protocol with approximately 99.9% of the packets; 2) TCP was 

the dominant Transport Layer protocol, but the percentage of packets in the files was 

varied (MACCDC 2011: 90.7%, and MACCDC 2012: 98.0%), with UDP being second  

(MACCDC 2011: 7.8%, and MACCDC 2012: 0.8%); and 3) the data segments for TCP 

packets were larger than those for UDP, but not as significantly different as with the 
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UNSW-NB15 dataset (201 and 65 bytes for MACCDC 2011 and 198 and 73 bytes for 

MACCDC 2012, versus 523 and 78 bytes for the UNSW-NB15 dataset). Unlike the 

UNSW-NB15 dataset, there was no extra data in any of the two MACCDC datasets. 

Although the average TCP data segment was larger for MACCDC 2012 dataset, there 

was not any significant difference between the two, so the MACCDC 2012 was selected 

over the MACCDC 2011 simply because it was the most recent of the MACCDC dataset 

capture files available. 
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Appendix C 

MACCDC Datasets 

Table C1 - PCAP File Summaries MACCDC 2010 Dataset 

PCAP 
Filename 

Total 
Packets Total Bytes Total Bytes On 

Wire 
Total 

w/Headers 
Actual File 

Size 
00000.pcap 10,000,000  765,336,697  765,336,697  925,336,721  925,336,721  
00001.pcap 10,000,000 655,887,930 655,887,930  815,887,954 815,887,954  
00002.pcap 10,000,000  687,109,057  687,109,057  847,109,081  847,109,081  
00003.pcap 10,000,000  728,005,177  728,005,177  888,005,201  888,005,201  
00004.pcap 10,000,000  709,419,736  709,419,736  869,419,760  869,419,760  
00005.pcap 10,000,000  730,769,304  730,769,304  890,769,328  890,769,328  
00006.pcap 10,000,000  738,762,246  738,762,246  898,762,270  898,762,270  
00007.pcap 10,000,000  1,044,848,203  1,044,848,203  1,204,848,227  1,204,848,227  
00008.pcap 10,000,000  752,930,630  752,930,630  912,930,654  912,930,654  
00009.pcap 10,000,000  865,406,857  865,406,857  1,025,406,881  1,025,406,881  
00010.pcap 10,000,000  1,935,415,847  1,935,415,847  2,095,415,871  2,095,415,871  
00011.pcap 10,000,000  2,568,026,899  2,568,026,899  2,728,026,923  2,728,026,923  
00012.pcap 10,000,000  1,598,817,421  1,598,817,421  1,758,817,445  1,758,817,445  
00013.pcap 10,000,000  2,043,430,798  2,043,430,798  2,203,430,822  2,203,430,822  
00014.pcap 10,000,000  2,484,368,534  2,484,368,534  2,644,368,558  2,644,368,558  
00015.pcap 10,000,000  1,453,766,235  1,453,766,235  1,613,766,259  1,613,766,259  
00016.pcap 10,000,000  2,279,976,308  2,279,976,308  2,439,976,332  2,439,976,332  
00017.pcap 10,000,000  778,115,891  778,115,891  938,115,915  938,115,915  
00018.pcap 10,000,000  1,447,111,235  1,447,111,235  1,607,111,259  1,607,111,259  
00019.pcap 10,000,000  842,534,398  842,534,398  1,002,534,422  1,002,534,422  
00020.pcap 10,000,000  999,195,268  999,195,268  1,159,195,292  1,159,195,292  
00021.pcap 10,000,000  1,158,397,077  1,158,397,077  1,318,397,101  1,318,397,101  
00022.pcap 10,000,000  1,977,166,435  1,977,166,435  2,137,166,459  2,137,166,459  
00023.pcap 10,000,000  711,054,236  711,054,236  871,054,260  871,054,260  
00024.pcap 10,000,000  1,007,951,659  1,007,951,659  1,167,951,683  1,167,951,683  
00025.pcap 10,000,000  675,318,231  675,318,231  835,318,255  835,318,255  
00026.pcap 4,973,151  874,321,512  874,321,512  953,891,952  953,891,952  
Totals: 264,973,151  32,513,443,821  32,513,443,821  36,753,014,885  36,753,014,885  
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Table C2 - PCAP File Summaries MACCDC 2011 Dataset 

PCAP 
Filename 

Total 
Packets Total Bytes Total Bytes On 

Wire 
Total 

w/Headers 
Actual File 

Size 
00000.pcap 10,000,000  1,175,401,003  1,175,401,003  1,335,401,027  1,335,401,027  
00001.pcap 10,000,000  955,394,836  955,394,836  1,115,394,860  1,115,394,860  
00002.pcap 10,000,000  1,637,376,514  1,637,376,514  1,797,376,538  1,797,376,538  
00003.pcap 10,000,000  1,595,081,053  1,595,081,053  1,755,081,077  1,755,081,077  
00004.pcap 10,000,000  968,113,473  968,113,473  1,128,113,497  1,128,113,497  
00005.pcap 10,000,000  1,223,870,644  1,223,870,644  1,383,870,668  1,383,870,668  
00006.pcap 10,000,000  1,661,870,600  1,661,870,600  1,821,870,624  1,821,870,624  
00007.pcap 10,000,000  1,673,019,223  1,673,019,223  1,833,019,247  1,833,019,247  
00008.pcap 10,000,000  1,258,929,849  1,258,929,849  1,418,929,873  1,418,929,873  
00009.pcap 10,000,000  1,072,158,898  1,072,158,898  1,232,158,922  1,232,158,922  
00010.pcap 10,000,000  3,748,281,275  3,748,281,275  3,908,281,299  3,908,281,299  
00011.pcap 5,000,000  3,064,806,574  3,064,806,574  3,144,806,598  3,144,806,598  
00012.pcap 5,000,000  3,343,512,324  3,343,512,324  3,423,512,348  3,423,512,348  
00013.pcap 10,000,000  4,270,552,548  4,270,552,548  4,430,552,572  4,430,552,572  
00014.pcap 4,465,786  2,589,145,495  2,589,145,495  2,660,598,095  2,660,598,095  
Totals: 134,465,786  30,237,514,309  30,237,514,309  32,388,967,245 32,388,967,245  

 

Table C3 - PCAP File Summaries MACCDC 2012 Dataset 

PCAP 
Filename 

Total 
Packets Total Bytes Total Bytes On 

Wire 
Total 
w/Headers 

Actual File 
Size 

00000.pcap 8,635,943  935,501,635   935,501,635  1,073,676,747  1,073,676,747  
00001.pcap 4,198,011  1,006,573,119   1,006,573,119  1,073,741,319  1,073,741,319  
00002.pcap 2,776,813  1,029,312,773   1,029,312,773  1,073,741,805  1,073,741,805  
00003.pcap 1,791,239 1,045,083,217 1,045,083,217 1,073,743,065 1,073,743,065 
00004.pcap 3,730,515  1,014,053,658   1,014,053,658  1,073,741,922  1,073,741,922  
00005.pcap 3,410,931  1,019,165,726   1,019,165,726  1,073,740,646  1,073,740,646  
00006.pcap 2,246,880  1,037,791,936   1,037,791,936  1,073,742,040  1,073,742,040  
00007.pcap 2,139,516  1,039,510,245   1,039,510,245  1,073,742,525  1,073,742,525  
00008.pcap 3,582,987  1,016,414,006   1,016,414,006  1,073,741,822  1,073,741,822  
00009.pcap 3,679,667  1,014,867,161   1,014,867,161  1,073,741,857  1,073,741,857  
00010.pcap 4,598,557  1,000,163,983   1,000,163,983  1,073,740,919  1,073,740,919  
00011.pcap 4,926,880  994,911,919   994,911,919  1,073,742,023  1,073,742,023  
00012.pcap 5,001,472  993,718,688   993,718,688  1,073,742,264  1,073,742,264  
00013.pcap 3,190,917  1,022,686,575   1,022,686,575  1,073,741,271  1,073,741,271  
00014.pcap 6,763,234  965,530,052   965,530,052  1,073,741,820  1,073,741,820  
00015.pcap 7,366,222  955,882,258   955,882,258  1,073,741,834  1,073,741,834  
00016.pcap 3,816,907  612,041,887   612,041,887  673,112,423  673,112,423  

Totals: 70,065,452  15,658,125,621   15,658,125,621  16,779,173,237  16,779,173,237  
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Table C4 - Internet Layer Protocols MACCDC 2010 Dataset 

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets 

maccdc2010_00000.pcap 18 5,078,269               19,287  5,097,574  
maccdc2010_00001.pcap 0 9,983,228                 2,436  9,985,664  
maccdc2010_00002.pcap 0 9,993,162                    638  9,993,800  
maccdc2010_00003.pcap 0 9,986,589                    433  9,987,022  
maccdc2010_00004.pcap 0 9,787,705                 1,203  9,788,908  
maccdc2010_00005.pcap 6 9,562,559                    295  9,562,860  
maccdc2010_00006.pcap 86 9,854,347                    248  9,854,681  
maccdc2010_00007.pcap 0 9,966,792                 2,059  9,968,851  
maccdc2010_00008.pcap 0 9,994,122                    267  9,994,389  
maccdc2010_00009.pcap 0 9,991,719                    404  9,992,123  
maccdc2010_00010.pcap 0 9,991,502                    918  9,992,420  
maccdc2010_00011.pcap 0 9,993,582                    427  9,994,009  
maccdc2010_00012.pcap 0 9,989,730                    610  9,990,340  
maccdc2010_00013.pcap 0 9,989,697                    494  9,990,191  
maccdc2010_00014.pcap 4 9,987,737                    744  9,988,485  
maccdc2010_00015.pcap 12 9,980,016                 1,508  9,981,536  
maccdc2010_00016.pcap 0 9,994,944                    309  9,995,253  
maccdc2010_00017.pcap 0 9,978,262                 1,428  9,979,690  
maccdc2010_00018.pcap 6 9,579,287               18,075  9,597,368  
maccdc2010_00019.pcap 0 9,933,253                 4,855  9,938,108  
maccdc2010_00020.pcap 6 9,954,496                 3,622  9,958,124  
maccdc2010_00021.pcap 0 9,970,365                 1,268  9,971,633  
maccdc2010_00022.pcap 0 9,915,464                 3,920  9,919,384  
maccdc2010_00023.pcap 0 9,930,754                 1,233  9,931,987  
maccdc2010_00024.pcap 50 8,181,352                 1,701  8,183,103  
maccdc2010_00025.pcap 0 9,993,387                    204  9,993,591  
maccdc2010_00026.pcap 0 4,594,546                 2,078  4,596,624  
Totals: 188 256,156,866               70,664  256,227,718  
 0.00007% 99.9723% 0.0276%  

 

Table C5 - Internet Layer Protocols MACCDC 2011 Dataset 

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets 
maccdc2011_00000.pcap   1,794         9,446,615            28,962  9,477,371  
maccdc2011_00001.pcap         52         9,477,992              1,270  9,479,314  
maccdc2011_00002.pcap      168         9,958,454              6,791  9,965,413  
maccdc2011_00003.pcap      112         9,774,633            10,613  9,785,358  
maccdc2011_00004.pcap         72         9,981,643              3,119  9,984,834  
maccdc2011_00005.pcap      113         9,911,204              3,268  9,914,585  
maccdc2011_00006.pcap      175         9,958,690              5,246  9,964,111  
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PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets 
maccdc2011_00007.pcap   1,718         9,072,099            43,854  9,117,671  
maccdc2011_00008.pcap      200         9,887,441            11,204  9,898,845  
maccdc2011_00009.pcap      238         9,875,155            14,053  9,889,446  
maccdc2011_00010.pcap         68         9,984,574              2,289  9,986,931  
maccdc2011_00011.pcap         12         4,997,240                 358  4,997,610  
maccdc2011_00012.pcap         14         4,997,295                 351  4,997,660  
maccdc2011_00013.pcap      372         9,843,250            11,558  9,855,180  
maccdc2011_00014.pcap      273         4,337,905              8,603  4,346,781  
Totals:   5,381    131,504,190         151,539  131,661,110  
 0.004% 99.881% 0.115%  

 

Table C6 - Internet Layer Protocols MACCDC 2012 Dataset 

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets 
maccdc2012_00000.pcap  42,316   8,590,643   2,984   8,635,943  
maccdc2012_00001.pcap  24,552   4,172,146   1,313   4,198,011  
maccdc2012_00002.pcap  16,989   2,758,749   1,075   2,776,813  
maccdc2012_00003.pcap  2,854   1,788,228   157   1,791,239  
maccdc2012_00004.pcap  27,120   3,701,629   1,766   3,730,515  
maccdc2012_00005.pcap  33,336   3,375,939   1,656   3,410,931  
maccdc2012_00006.pcap  19,107   2,226,076   1,697   2,246,880  
maccdc2012_00007.pcap  15,372   2,122,977   1,167   2,139,516  
maccdc2012_00008.pcap  37,551   3,541,248   4,188   3,582,987  
maccdc2012_00009.pcap  27,633   3,648,338   3,696   3,679,667  
maccdc2012_00010.pcap  17,208   4,578,116   3,233   4,598,557  
maccdc2012_00011.pcap  88,142   4,827,213   11,525   4,926,880  
maccdc2012_00012.pcap  314,673   4,671,903   14,896   5,001,472  
maccdc2012_00013.pcap  65,914   3,116,293   8,710   3,190,917  
maccdc2012_00014.pcap  145,136   6,598,950   19,148   6,763,234  
maccdc2012_00015.pcap  365,184   6,985,065   15,973   7,366,222  
maccdc2012_00016.pcap  762,581   3,046,216   8,110   3,816,907  
Totals:  2,005,668   69,749,729   101,294   71,856,691  
 2.791% 97.068% 0.141%  
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Table C7A - Transport Layer Protocols - MACCDC 2011 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
6 TCP Transmission Control Protocol 119,292,009 90.713% 
17 UDP User Datagram Protocol 10,237,067 7.785% 
1 ICMP Internet Control Message Protocol 1,690,967 1.286% 
88 Kerberos Kerberos Authentication System  277,377 0.211% 
2 IGMP Internet Group Management Protocol 5,286 0.004% 
132 SCTP Stream Control Transmission Protocol 1,484 0.001% 
-- -- Remaining Transport Layer Protocols 0 0.00% 
  Total: 131,504,190  

 

Table C7B - Transport Layer Protocols - MACCDC 2011 Dataset 

Protocol: 1 2 6 17 88 132 Totals/Ranges 
Packet Count 1,690,967   5,286   119,292,009   10,237,067   277,377   1,484  131,504,190  
Total Data 68,090,478  84,120  23,997,688,025  666,018,145   11,095,080  47,488  24,743,023,336  
Data Segment Min  8   8   20   8   40   32  8  
Data Segment Max 1,480   24   1,480   1,480   40   32  1,480  
Data Segment Avg 40   15   201   65   40   32  66  
Capture Min 64   64   64   64   78   70   64  
Capture Max 1,518   66   1,518   1,518   78   70  1,518  
Capture Avg 86   64   240   103   78   70   107  
On Wire Min 64   64   64   64   78   70   64  
On Wire Max 1,518   66   1,518   1,518   78   70   1,518  
On Wire Avg 86   64   240   103   78   70  107 

 

Table C8A - Transport Layer Protocols - MACCDC 2012 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
6 TCP Transmission Control Protocol  68,357,197  98.004% 
17 UDP User Datagram Protocol  560,934  0.804% 
1 ICMP Internet Control Message Protocol  526,103  0.754% 
88 Kerberos Kerberos Authentication System   303,549  0.435% 
2 IGMP Internet Group Management Protocol  1,946  0.003% 
-- -- Remaining Transport Layer Protocols  68,357,197  98.004% 
  Total: 69,749,729  
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Table C8B - Transport Layer Protocols - MACCDC 2012 Dataset 

Protocol: 1 2 6 17 88 Totals/Ranges 
Packet Count  526,103   1,946   68,357,197   560,934   303,549   69,749,729  
Total Data  13,117,305   26,808   13,593,753,312   41,212,397   12,141,960   13,660,251,782  
Data Min 8 8 20 8 40 8 
Data Max 544 32 1480 1480 40 1480 
Data Avg 24 13 198 73 40 196 
Capture Min 64 64 64 64 78 64 

Capture Max 582 74 1518 1518 78 1518 
Capture Avg 71 64 238 112 78 236 
On Wire Min 64 64 64 64 78 64 
On Wire Max 582 74 1518 1518 78 1518 
On Wire Avg 71 64 238 112 78 236 
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Appendix D 

UNSW-NB15 Datasets 

Table D1 - PCAP File Summaries UNSW-NB15 17-2-2015 Dataset 

PCAP 
Filename Total Packets Total Bytes Total Bytes 

On Wire 
Total 

w/Headers 
Actual File 

Size 
1.pcap  3,526,992   1,943,568,152   1,943,568,152 2,000,000,048  2,000,000,048  

2.pcap  3,436,833   1,945,012,012   1,945,012,012  2,000,001,364  2,000,001,364  

3.pcap  3,555,838   1,943,107,743   1,943,107,743  2,000,001,175  2,000,001,175  

4.pcap  941,588   535,221,182   535,221,182   550,286,614   550,289,571  

5.pcap  3,516,448   1,943,737,646   1,943,737,646  2,000,000,838  2,000,000,838  

6.pcap  3,626,252   1,941,980,465   1,941,980,465  2,000,000,521  2,000,000,521  

7.pcap  3,517,971   1,943,713,647   1,943,713,647  2,000,001,207  2,000,001,207  

8.pcap  3,424,905   1,945,201,512   1,945,201,512  2,000,000,016  2,000,000,016  

9.pcap  3,618,135   1,942,110,458   1,942,110,458  2,000,000,642  2,000,000,642  

10.pcap  3,448,936   1,944,817,053   1,944,817,053  2,000,000,053  2,000,000,053  

11.pcap  3,530,922   1,943,505,448   1,943,505,448  2,000,000,224  2,000,000,224  

12.pcap  3,532,917   1,943,474,355   1,943,474,355  2,000,001,051  2,000,001,051  

13.pcap  3,584,129   1,942,655,174   1,942,655,174  2,000,001,262  2,000,001,262  

14.pcap  3,463,943   1,944,576,999   1,944,576,999  2,000,000,111  2,000,000,111  

15.pcap  3,514,238   1,943,773,569   1,943,773,569  2,000,001,401  2,000,001,401  

16.pcap  3,601,530   1,942,376,198   1,942,376,198  2,000,000,702  2,000,000,702  

17.pcap  3,388,055   1,945,792,364   1,945,792,364  2,000,001,268  2,000,001,268  

18.pcap  2,037,672   1,259,301,384   1,259,301,384  1,291,904,160  1,291,906,262  

19.pcap  2,201,840   1,273,574,851   1,273,574,851  1,308,804,315  1,308,806,331  

20.pcap  3,503,117   1,943,950,119   1,943,950,119  2,000,000,015  2,000,000,015  

21.pcap  3,548,974   1,943,217,843   1,943,217,843  2,000,001,451  2,000,001,451  

22.pcap  3,790,584   1,939,351,032   1,939,351,032  2,000,000,400  2,000,000,400  

23.pcap  3,396,023   1,945,663,824   1,945,663,824  2,000,000,216  2,000,000,216  

24.pcap  3,570,419   1,942,873,819   1,942,873,819  2,000,000,547  2,000,000,547  

25.pcap  3,569,406   1,942,889,641   1,942,889,641  2,000,000,161  2,000,000,161  

26.pcap  3,576,768   1,942,772,375   1,942,772,375  2,000,000,687  2,000,000,687  

27.pcap  1,067,724   578,989,789   578,989,789   596,073,397   596,074,496  

Totals: 87,492,159 48,347,208,654 48,347,208,654  49,747,083,846  49,747,092,020  

Cells highlighted in yellow indicate extra data on file besides packet and PCAP headers. 
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Table D2 - PCAP File Summaries UNSW-NB15 22-1-2015 Dataset 

PCAP 
Filename Total Packets Total Bytes Total Bytes On 

Wire 
Total 
w/Headers 

Actual File 
Size 

01.pcap 1,800,680 971,189,943 971,189,943  1,000,000,847 1,000,000,847 

02.pcap 1,614,980 974,160,455 974,160,455  1,000,000,159 1,000,000,159 

03.pcap 1,752,554 971,959,806 971,959,806  1,000,000,694 1,000,000,694 

04.pcap 1,736,122 972,222,301 972,222,301  1,000,000,277 1,000,000,277 

05.pcap 1,750,127 971,998,776 971,998,776  1,000,000,832 1,000,000,832 

06.pcap 1,727,227 972,364,573 972,364,573  1,000,000,229 1,028,295,840 

07.pcap 1,825,199 970,797,694 970,797,694  1,000,000,902 1,029,959,340 

08.pcap 1,719,835 972,483,651 972,483,651  1,000,001,035 1,000,001,035 

09.pcap 1,728,972 972,337,838 972,337,838  1,000,001,414 1,000,001,414 

10.pcap 1,879,903 969,922,720 969,922,720  1,000,001,192 1,000,001,192 

11.pcap 1,744,141 972,093,795 972,093,795  1,000,000,075 1,000,000,075 

12.pcap 1,849,673 970,406,625 970,406,625  1,000,001,417 1,000,001,417 

13.pcap 1,741,188 972,141,034 972,141,034  1,000,000,066 1,000,000,066 

14.pcap 1,771,257 971,660,451 971,660,451  1,000,000,587 1,000,000,587 

15.pcap 1,861,462 970,217,548 970,217,548  1,000,000,964 1,000,000,964 

16.pcap 1,876,880 969,969,922 969,969,922  1,000,000,026 1,000,000,026 

17.pcap 1,840,858 970,546,450 970,546,450  1,000,000,202 1,000,000,202 

18.pcap 1,781,738 971,492,206 971,492,206  1,000,000,038 1,000,000,038 

19.pcap 1,735,386 972,233,823 972,233,823  1,000,000,023 1,000,000,023 

20.pcap 1,841,677 970,533,351 970,533,351  1,000,000,207 1,000,000,207 

21.pcap 1,754,452 971,928,761 971,928,761  1,000,000,017 1,000,000,017 

22.pcap 1,771,055 971,663,236 971,663,236  1,000,000,140 1,000,000,140 

23.pcap 1,776,553 971,575,264 971,575,264  1,000,000,136 1,014,212,560 

24.pcap 1,818,474 970,904,809 970,904,809  1,000,000,417 1,000,000,417 

25.pcap 1,819,745 970,884,524 970,884,524  1,000,000,468 1,014,558,428 

26.pcap 1,869,147 970,095,118 970,095,118  1,000,001,494 1,000,001,494 

27.pcap 1,751,466 971,976,580 971,976,580  1,000,000,060 1,000,000,060 

28.pcap 1,777,858 971,554,290 971,554,290  1,000,000,042 1,000,000,042 

29.pcap 1,802,883 971,154,332 971,154,332  1,000,000,484 1,000,000,484 

30.pcap 1,827,112 970,766,681 970,766,681  1,000,000,497 1,000,000,497 

31.pcap 1,942,890 968,913,779 968,913,779  1,000,000,043 1,000,000,043 

32.pcap 1,754,452 971,928,761 971,928,761  1,000,000,017 1,000,000,017 

33.pcap 1,722,038 972,448,325 972,448,325  1,000,000,957 1,000,000,957 

34.pcap 1,793,462 971,305,536 971,305,536  1,000,000,952 1,014,348,648 

35.pcap 1,721,390 972,458,786 972,458,786  1,000,001,050 1,000,001,050 

36.pcap 1,850,989 970,384,248 970,384,248  1,000,000,096 1,000,000,096 

37.pcap 1,853,340 970,347,058 970,347,058  1,000,000,522 1,000,000,522 
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PCAP 
Filename Total Packets Total Bytes Total Bytes On 

Wire 
Total 
w/Headers 

Actual File 
Size 

38.pcap 1,870,202 970,077,812 970,077,812  1,000,001,068 1,000,001,068 

39.pcap 1,780,903 971,506,560 971,506,560  1,000,001,032 1,000,001,032 

40.pcap 1,862,524 970,199,647 970,199,647  1,000,000,055 1,000,000,055 

41.pcap 1,975,589 968,390,973 968,390,973  1,000,000,421 1,000,000,421 

42.pcap 1,772,799 971,635,209 971,635,209  1,000,000,017 1,000,000,017 

43.pcap 1,707,491 972,681,332 972,681,332  1,000,001,212 1,027,982,068 

44.pcap 1,728,024 972,351,947 972,351,947  1,000,000,355 1,028,317,452 

45.pcap 1,808,596 971,062,774 971,062,774  1,000,000,334 1,029,676,040 

46.pcap 1,770,509 971,672,844 971,672,844  1,000,001,012 1,029,000,080 

47.pcap 1,811,817 971,011,428 971,011,428  1,000,000,524 1,029,687,268 

48.pcap 1,860,601 970,231,234 970,231,234  1,000,000,874 1,030,509,848 

49.pcap 1,857,934 970,273,129 970,273,129  1,000,000,097 1,030,485,472 

50.pcap 1,860,561 970,231,074 970,231,074  1,000,000,074 1,030,494,104 

51.pcap 1,775,797 971,587,417 971,587,417  1,000,000,193 1,029,098,860 

52.pcap 1,754,452 971,928,761 971,928,761  1,000,000,017 1,028,743,892 

53.pcap 1,186,378 611,006,270 611,006,270  629,988,342 649,457,304 

Totals: 94,571,342 51,116,871,461 51,116,871,461  52,630,014,205 53,044,845,688 

Cells highlighted in yellow indicate extra data on file besides packet and PCAP headers. 

Table D3 - Internet Layer Protocols UNSW-NB15 17-2-2015 Dataset 
PCAP Filename IPv4 Protocol ARP Protocol Total Packets 

1.pcap 3,526,347 645 3,526,992 
2.pcap 3,436,388 445 3,436,833 
3.pcap 3,555,361 477 3,555,838 
4.pcap 941,468 120 941,588 
5.pcap 3,515,953 495 3,516,448 
6.pcap 3,625,790 462 3,626,252 
7.pcap 3,517,492 479 3,517,971 
8.pcap 3,424,398 507 3,424,905 
9.pcap 3,617,604 531 3,618,135 

10.pcap 3,448,465 471 3,448,936 
11.pcap 3,530,395 527 3,530,922 
12.pcap 3,532,414 503 3,532,917 
13.pcap 3,583,646 483 3,584,129 
14.pcap 3,463,486 457 3,463,943 
15.pcap 3,513,775 463 3,514,238 
16.pcap 3,601,058 472 3,601,530 
17.pcap 3,387,650 405 3,388,055 
18.pcap 2,037,415 257 2,037,672 

19.pcap 2,201,551 289 2,201,840 
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PCAP Filename IPv4 Protocol ARP Protocol Total Packets 
20.pcap 3,502,638 479 3,503,117 
21.pcap 3,548,471 503 3,548,974 
22.pcap 3,790,031 553 3,790,584 
23.pcap 3,395,604 419 3,396,023 
24.pcap 3,569,881 538 3,570,419 
25.pcap 3,568,915 491 3,569,406 
26.pcap 3,576,303 465 3,576,768 
27.pcap 1,067,579 145 1,067,724 
Totals: 87,480,078 12,081 87,492,159 

 99.99% 0.01%  
 

Table D4 - Internet Layer Protocols UNSW-NB15 22-1-2015 Dataset 
PCAP Filename IPv4 Protocol ARP Protocol Total Packets 

01.pcap 1,800,426               254            3,601,360  
02.pcap 1,614,792               188            3,229,960  
03.pcap 1,752,326               228            3,505,108  
04.pcap 1,735,914               208            3,472,244  
05.pcap 1,749,881               246            3,500,254  
06.pcap 1,727,015               212            3,454,454  
07.pcap 1,824,951               248            3,650,398  
08.pcap 1,719,599               236            3,439,670  
09.pcap 1,728,760               212            3,457,944  
10.pcap 1,879,651               252            3,759,806  
11.pcap 1,743,919               222            3,488,282  
12.pcap 1,849,428               245            3,699,346  
13.pcap 1,740,978               210            3,482,376  
14.pcap 1,771,017               240            3,542,514  
15.pcap 1,861,180               282            3,722,924  
16.pcap 1,876,590               290            3,753,760  
17.pcap 1,840,608               250            3,681,716  
18.pcap 1,781,500               238            3,563,476  
19.pcap 1,735,173               213            3,470,772  
20.pcap 1,841,391               286            3,683,354  
21.pcap 1,754,230               222            3,508,904  
22.pcap 1,770,825               230            3,542,110  
23.pcap 1,776,321               232            3,553,106  
24.pcap 1,818,208               266            3,636,948  
25.pcap 1,819,481               264            3,639,490  
26.pcap 1,868,881               266            3,738,294  
27.pcap 1,751,222               244            3,502,932  
28.pcap 1,777,646               212            3,555,716  
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PCAP Filename IPv4 Protocol ARP Protocol Total Packets 
29.pcap 1,802,637               246            3,605,766  
30.pcap 1,826,884               228            3,654,224  
31.pcap 1,942,628               262            3,885,780  
32.pcap 1,754,230               222            3,508,904  
33.pcap 1,721,792               246            3,444,076  
34.pcap 1,793,210               252            3,586,924  
35.pcap 1,721,162               228            3,442,780  
36.pcap 1,850,721               268            3,701,978  
37.pcap 1,853,062               278            3,706,680  
38.pcap 1,869,954               248            3,740,404  
39.pcap 1,780,647               256            3,561,806  
40.pcap 1,862,256               268            3,725,048  
41.pcap 1,975,337               252            3,951,178  
42.pcap 1,772,567               232            3,545,598  
43.pcap 1,707,291               200            3,414,982  
44.pcap 1,727,776               248            3,456,048  
45.pcap 1,808,360               236            3,617,192  
46.pcap 1,770,279               230            3,541,018  
47.pcap 1,811,578               239            3,623,634  
48.pcap 1,860,333               268            3,721,202  
49.pcap 1,857,660               274            3,715,868  
50.pcap 1,860,339               222            3,721,122  
51.pcap 1,775,589               208            3,551,594  
52.pcap 1,754,230               222            3,508,904  
53.pcap 1,186,210               168            2,372,756  
Totals: 94,558,645         12,697          94,571,342  

 99.99% 0.01%  
 

Table D5A - Transport Layer Protocols - UNSW-NB15 17-2-2015 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
6 TCP Transmission Control Protocol 86,029,251 98.34% 
17 UDP User Datagram Protocol 1,430,389 1.64% 
89 OSPF Open Shortest Path First 13,776 0.02% 
132 SCTP Stream Control Transmission Protocol 1,856 0.0021% 
1 ICMP Internet Control Message Protocol 1,594 0.0018% 
-- -- Remaining Transport Layer Protocols 3,212 0.0035% 
  Total: 87,480,078  
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Table D5B - Transport Layer Protocols - UNSW-NB15 17-2-2015 Dataset 

Protocol: 1 6 17 89 132 Totals/Ranges 
Packet Count 1,594  86,029,251  1,430,389  13,776  1,856  87,477,012  
Total Data 824,684  45,078,624,185  111,862,194  1,276,200  1,497,008  45,194,099,111  
Data Segment Min 8  20  1  24  12  1  
Data Segment Max 992  1,480  1,488  1,080  1,020  1,488  
Data Segment Avg 517  523  78  92  806  403  
Capture Min 44  56  37  60  48  37  

Capture Max 1,028  1,516  1,520  1,116  1,056  1,520  
Capture Avg 557  560  114  128  842  440  
On Wire Min 44  56  37  60  48  37  
On Wire Max 1,028  1,516  1,520  1,116  1,056  1,520  
On Wire Avg 557  560  114  128  842  440  

 

Table D6A - Transport Layer Protocols - UNSW-NB15 22-1-2015 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
6 TCP Transmission Control Protocol  93,049,417  98.40% 
17 UDP User Datagram Protocol  1,497,817  1.58% 
89 OSPF Open Shortest Path First  10,137  0.01072% 
1 ICMP Internet Control Message Protocol 433 0.00046% 
132 SCTP Stream Control Transmission Protocol 308 0.00033% 
-- -- Remaining Transport Layer Protocols 533 0.00054% 
  Total: 94,558,645  

 

Table D6B - Transport Layer Protocols - UNSW-NB15 22-1-2015 Dataset 

Protocol: 1 6 17 89 132 Totals/Ranges 
Packet Count 433  93,049,417  1,497,817  10,137  308           94,558,112  
Total Data 211,991  47,600,892,545  109,598,350  571,876  249,356    47,711,524,118  
Data Segment Min 8  20  1  24  12  1  
Data Segment Max 992  1,480  1,488  1,080  1,020  1,488  
Data Segment Avg 489  511  73  56  809  388  
Capture Min 44  56  37  60  48  37  

Capture Max 1,028  1,516  1,520  1,116  1,056  1,520  
Capture Avg 526  547  109  92 845  424  
On Wire Min 44  56  37  60  48  37  
On Wire Max 1,028  1,516  1,520  1,116  1,056  1,520  
On Wire Avg 526  547  109  92  845  424  
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Appendix E 

Application Layer Protocols 

In the TCP/IP 4-layer network model, Layer 4, the Application Layer, is a 

combination of the Application, Presentation, and Session layers of the OSI model 

(Ghosh, n.d.). Transport Layer communications are between two systems and are usually 

determined by the lowest port number utilized. Therefore, the port usage is determined 

through simply identifying the lower value of the destination and source ports. The 

Application Layer protocol is stored in a 4-byte field, so there is a theoretical maximum 

of 65535 different protocols possible. However, port numbers from 0 to 1023 are 

considered the well-known ports and reserved for specific protocols. Ports between 1024 

and 49151 can be officially registered by IANA for use by a specific application, such as 

port 5432 which is utilized to communicate with a PostgreSQL database. Finally, ports 

between 49152 and 65535 are dynamic or private ports, which cannot be reserved, and 

are utilized by applications for temporary connections between two systems. 

Transmission Control Protocol Ports 

Table E1A lists occurrences of the top 10 Transmission Control Protocols ports in 

the MACCDC 2012 dataset. Tables E1B and E1C provide the maximum, minimum, and 

average packet data sizes for the top 10 TCP ports (Application Layer protocols). Tables 

E2A and E2B provide the same information for the UNSW-NB15 dataset. The 

unsupported ports are identified with “(U)” appended to the port number in these tables. 
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Table E1A – TCP Application Layer Protocol Occurrences – MACCDC 2012 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
 80  HTTP Hypertext Transfer Protocol  11,929,930  17.92% 
 5,432  -- PostgreSQL  4,489,028  6.74% 
 54180  -- Unassigned / Dynamic Port  4,183,337  6.28% 
 443  HTTPS Hypertext Transfer Protocol Secure  2,382,625  3.58% 
 22  SSH Secure Shell  1,973,645  2.96% 
 902  -- VMware ESXi  1,370,149  2.06% 
 40064  -- Unassigned / Dynamic Port  1,002,595  1.51% 
 33643  -- Unassigned / Dynamic Port  646,300  0.97% 
 445  DS Directory Services (Active Directory)  511,748  0.77% 
 36694  -- Unassigned / Dynamic Port  481,148  0.72% 
-- -- Remaining 65066 TCP Ports 37,604,011 56.48% 
  Total: 66,574,516  

 

Table E1B - TCP Application Layer Protocol Details – MACCDC 2012 – Top 5 

Protocol  80   5432   54180(U)   443   22  Totals/Ranges 
 Count   11,929,930   4,489,028   4,183,337   2,382,625   1,973,645   66,574,516  

 Capture   4,463,155,891   2,825,646,318   724,022,556   736,728,352   1,213,749,668   15,257,824,196  

 On Wire   4,463,155,891   2,825,646,318   724,022,556   736,728,352   1,213,749,668   25,987,414,952  

 Data   3,659,567,591   2,511,405,978   431,168,618   580,449,100   1,077,652,938   20,182,155,318  

 Max Cap   1,518   1,518   1,518   1,518   1,518   1,518  

 Max Wire   1,518   1,518   1,518   1,518   1,518   1,518  

 Max Data   1,460   1,448   1,448   1,460   1,460   1,460  

Min Cap 64 64 64 64 64 64 

Min Wire 64 64 64 64 64 64 

Min Data 0 0 0 0 0 0 

Avg Cap 374 629 173 309 614 229 

Avg Wire 374 629 173 309 614 390 

Avg Data 306 559 103 243 546 303 
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Table E1C – TCP Application Layer Protocol Details – MACCDC 2012 – Next 5 
Protocol  902   40064(U)   33643(U)   445   36694(U)  Totals/Ranges 

Count  1,370,149   1,002,595   646,300   511,748   481,148   86,029,251  
Capture  1,188,833,508   183,851,524   116,481,582   114,797,729   90,843,266   48,178,578,289  
On Wire  1,188,833,508   183,851,524   116,481,582   114,797,729   90,845,474   74,214,877,440  

Data  1,106,650,618   113,669,292   72,159,818   79,304,024   57,189,016   71,662,874,855  
Max Cap  1,518   1,518   1,518   1,438   1,518   1,516  
Max Wire  1,518   1,518   1,518   1,438   1,518   1,516  
Max Data  1,460   1,448   1,448   1,380   1,448   1,480  
Min Cap 64 64 64 64 64 56 
Min Wire 64 64 64 64 64 56 

Min Data 0 0 0 0 0 0 
Avg Cap 867 183 180 224 188 560 
Avg Wire 867 183 180 224 188 863 
Avg Data 807 113 111 154 118 833 

 

Table E2A – TCP Application Layer Protocol Occurrences – UNSW-NB15 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
6881 -- BitTorrent  19,882,422  23.11% 
80 HTTP Hypertext Transfer Protocol  14,644,588  17.02% 
143 IMAP Internet Message Access Protocol  5,817,783  6.76% 
25 SMTP Simple Mail Transfer Protocol  4,662,046  5.42% 
22 SSH Secure Shell  4,391,772  5.10% 
5190 IM AOL Instant Messenger protocol.  2,442,950  2.84% 
21 FTP File Transfer Protocol  2,266,652  2.63% 
179 BGP Border Gateway Protocol  379,726  0.44% 
110 POP3 Post Office Protocol, version 3  250,504  0.29% 
445 DS Directory Services (Active Directory)  164,208  0.19% 
-- -- Remaining 57801 TCP Ports 31,126,600 36.18% 
  Total: 86,029,251  
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Table E2B – TCP App Layer Protocol Details – UNSW-NB15 17-2-2015 – Top 5 
Protocol 6881 80 143 25 22 Totals/Ranges 

Count  19,882,422   14,644,588   5,817,783   4,662,046   4,391,772   86,029,251  
Capture  16,461,292,919   13,322,416,872   867,259,833   2,752,278,421   613,430,328   48,178,578,289  
On Wire  16,462,547,737   13,322,416,872   867,259,833   2,752,278,421   613,430,328   74,214,877,440  

Data  15,108,714,889   12,334,955,596   474,252,834   2,447,509,404   314,435,116   71,662,874,855  
Max Cap  1,516   1,516   1,516   1,516   1,516   1,516  
Max Wire  1,516   1,516   1,516   1,516   1,516   1,516  
Max Data  1,448   1,460   1,460   1,460   1,460   1,480  
Min Cap 68 56 56 56 56 56 
Min Wire 68 56 56 56 56 56 

Min Data 0 0 0 0 0 0 
Avg Cap 827 909 149 590 139 560 
Avg Wire 827 909 149 590 139 863 
Avg Data 759 842 81 524 71 833 

 

Table E2C – TCP App Layer Protocol Details – UNSW-NB15 Dataset – Next 5 
Protocol 5190 21 179 110 445 Totals/Ranges 

Count  2,442,950   2,266,652   379,726   250,504   164,208   86,029,251  
Capture  355,332,281   184,834,610   118,540,486   239,460,235   80,970,227   48,178,578,289  
On Wire  355,593,603   184,834,610   118,540,486   239,460,235   80,970,227   74,214,877,440  
Data  189,952,232   31,202,986   96,040,232   225,246,388   71,368,518   71,662,874,855  
Max Cap  1,516   1,516   1,516   1,516   1,516   1,516  

Max Wire  1,516   1,516   1,516   1,516   1,516   1,516  
Max Data  1,460   1,460   1,460   1,460   1,460   1,480  
Min Cap 56 56 56 56 56 56 
Min Wire 56 56 56 56 56 56 
Min Data 0 0 0 0 0 0 
Avg Cap 145 81 312 955 493 560 

Avg Wire 145 81 312 955 493 863 
Avg Data 77 13 252 899 434 833 

 

Table E2A shows that the top 10 ports (protocols) of the UNSW-NB15 dataset 

utilized standard, assigned ports, which was not the case with the MACCDC dataset. 

Instead, only six (6) of the top 10 ports by occurrence were assigned, while four (4) were 

unassigned (Table E1A). There was no information provided by the distributor of the 

dataset, Netresec AB (MACCDC, 2012) concerning this, but tables E1B and E1C shows 
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that these unassigned ports supported a protocol that required a data segment, although 

not as prevalent as the top assigned ports – 27% of the assigned port average data. Since 

the structure of these packets followed the TCP format, these differences were ignored, 

and all packets were included in the program. 

User Datagram Protocol Ports 

Table E3A lists occurrences of the top 10 User Datagram Protocol ports in the 

MACCDC 2012 dataset. Tables E3B and E3C provide the maximum, minimum, and 

average packet data sizes for the top 10 UDP ports (Application Layer protocols). The 

unsupported ports are identified with “(U)” appended to the port number in these tables. 

Tables E4A, E4B, and E4C provide the same information for the UNSW-NB15 dataset.  

Table E3A – UDP Application Layer Protocol – MACCDC 2012 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
 53  DNS Domain Name System  340,159  60.94% 
 137  -- NetBIOS Name Service  84,307  15.10% 
 21371  -- Unassigned / Dynamic Port  13,380  2.40% 
 161  SNMP Simple Network Management 

Protocol 
 10,526  1.89% 

 1900  SSDP Simple Service Discovery Protocol  9,056  1.62% 
 67  BOOTP Bootstrap Protocol  7,633  1.37% 
 5,060  SIP Session Initiation Protocol  6,784  1.22% 
 138  -- NetBIOS Datagram Service  6,684  1.20% 
 57621  -- Unassigned / Dynamic Port  4,418  0.79% 
 123  NTP Network Time Protocol  3,355  0.60% 
-- -- Remaining 5504 TCP Ports 71,859 12.87% 
  Total: 558,161  
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Table E3B – UDP Application Layer Protocol Details – MACCDC 2012 – Top 5 

Protocol  53   137   21371(U)   161   1,900  Totals/Ranges 
 Count   340,159   84,307   13,380   10,526   9,056   558,161  
 Capture   31,956,318   8,279,013   1,016,008   957,392   3,078,614   62,440,697  
 On Wire   31,956,318   8,279,013   1,016,008   957,392   3,078,614   62,440,697  
 Data   16,305,709   4,400,891   400,528   473,196   2,695,774   36,415,097  
 Max Cap   346   311   83   346   367   1,518  
 Max Wire   346   311   83   346   367   1,518  
 Max Data   300   265   37   300   325   1,472  
Min Cap  64   96   68   80   64  64 
Min Wire  64   96   68   80   64  64 
Min Data  1   50   22   34   -    0 
Avg Cap  93   98   75   90   339  112 
Avg Wire  93   98   75   90   339  112 
Avg Data  47   52   29   44   297  65 

 

Table E3C – UDP Application Layer Protocol Details – MACCDC 2012 – Next 5 

Protocol  67  5060  138  57621(U)  123  Totals/Ranges 
 Count   7,633   6,784   6,684   4,418   3,355   558,161  
 Capture   2,605,593   2,999,440   1,571,057   397,620   309,640   62,440,697  
 On Wire   2,605,593   2,999,440   1,571,057   397,620   309,640   62,440,697  
 Data   2,252,020   2,672,848   1,262,133   194,392   153,924   36,415,097  
 Max Cap   387   1,421   292   90   94   1,518  
 Max Wire   387   1,421   292   90   94   1,518  
 Max Data   341   1,375   246   44   48   1,472  
Min Cap  64   64   64   90   64  64 
Min Wire  64   64   64   90   64  64 
Min Data  -     -     -     44   8  0 
Avg Cap  341   442   235   90   92  112 
Avg Wire  341   442   235   90   92  112 
Avg Data  295   393   188   44   45  65 
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Table E4A – UDP Application Layer Protocol Occurrences – UNSW-NB15 Dataset 

Protocol 
Number Acronym Protocol Quantity Percent of 

Total 
 53  DNS Domain Name System  733,276  51.26% 
 111  ONC 

RPC 
Open Network Computing Remote 
Procedure Call 

 321,222  22.46% 

 4,569  IAX2 Inter-Asterisk eXchange  18,992  1.33% 
 520  RIP Routing Information Protocol  15,432  1.08% 
 137  -- NetBIOS Name Service  10,800  0.76% 
 514  -- Syslog  5,718  0.40% 
 5,060  SIP Session Initiation Protocol  4,826  0.34% 
 4,433  -- Unassigned / Dynamic Port  1,820  0.13% 
 69  TFTP Trivial File Transfer Protocol  854  0.06% 
 1,608  -- Unassigned / Dynamic Port  330  0.02% 
-- -- Remaining 57801 TCP Ports 317,107 22.17% 
  Total: 1,430,377  

 

Table E4B – UDP App Layer Protocol Details – UNSW-NB15 Dataset – Top 5 

Protocol  53   111   4,569   520   137  Totals/Ranges 
 Count   733,276   321,222   18,992   15,432   10,800   1,430,377  
 Capture   70,134,526   40,263,856   1,532,028   3,835,884   1,490,458   163,368,532  
 On Wire   70,134,526   40,263,856   1,532,028   3,835,884   1,490,458   163,368,532  
 Data   37,870,822   26,130,088   696,104   3,136,032   1,015,258   100,416,216  
 Max Cap   850   679   164   1,368   1,132   1,520  
 Max Wire   850   679   164   1,368   1,132   1,520  
 Max Data   806   635   120   1,324   1,088   1,480  
Min Cap  40   72   56   45   63   37  
Min Wire  40   72   56   45   63   37  
Min Data  23   28   12   1   19   1  
Avg Cap  95   125   80   248   138   114  
Avg Wire  95   125   80   248   138   114  
Avg Data  51   81   36   203   94   70  
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Table E4C – UDP App Layer Protocol Details – UNSW-NB15 Dataset – Nest 5 

Protocol  514   5,060   4,433(U)   69   1,608(U)  Totals/Ranges 
 Count   5,718   4,826   1,820   854   330   1,430,377  
 Capture   2,941,890   3,282,482   167,196   739,007   23,178   163,368,532  
 On Wire   2,941,890   3,282,482   167,196   739,007   23,178   163,368,532  
 Data   2,690,298   3,070,138   87,068   702,446   8,658   100,416,216  
 Max Cap   1,514   1,499   810   1,520   164   1,520  
 Max Wire   1,514   1,499   810   1,520   164   1,520  
 Max Data   1,470   1,455   766   1,480   120   1,480  
Min Cap  70   68   58   37   68   37  
Min Wire  70   68   58   37   68   37  
Min Data  26   24   14   4   24   1  
Avg Cap  514   680   91   865   70   114  
Avg Wire  514   680   91   865   70   114  
Avg Data  470   636   47   822   26   70  

 

Unlike the unassigned TCP ports, the unassigned UDP ports had the shortest data 

segments of the top 10 ports. Regardless, except for the appearance of the Trivial File 

Transfer Protocol (TFTP) in the UNSW-BN15 dataset, all other assigned/reserved UDP 

ports are forms of a message format (request and reply packets) and would not lend 

themselves to data aggregation. Therefore, all UDP packets will be handled as single 

packets, with the one data segment being processed with the genomic compression 

technique. 
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Appendix F 

Process Results 

Both the MACCDC 2012 and UNSW-NB15 17-2-2015 datasets were processed 

by the GNCS for various run lengths ranging from 1,000 packets to 25,000,000 packets. 

For this research the number of packets in a run is hereinafter referred to as “sample 

size.” Analysis of the process output required opening the complete GNCS output file 

and compiling packet totals and outputting them to a CSV file:  

1) Record Number: an artificial record number for sorting purposes. 
2) Layer Protocols: three separate values of the Internet, Transport, and 

Application layer protocols. 
3) Data Index: the index into the data section of the output file. 
4) Payload: the total of the aggregated data.  
5) Packets: the total number of packets in the flow. 
6) Capture Length: the length of the raw packet in the PCAP file. 
7) With Header: the calculated length of the original packets in the flow. 
8) Type: this is an internal reference number identifying the source of the data 

(completed flow, orphan flow, or edit script). 
9) GNCS Size: the size of the data after processing by genomic compression 

techniques. 
10) Ratio: a simple calculation of the savings as shown in the Results Chapter. 

The CSV files for each sample are then imported into an Excel spreadsheet and 

the flowing values are then calculated for each sample: 

1) Flow Records: the total number of complete TCP flows. 
2) Total Flow Payload: the total of the aggregated data for the flow 
3) Total Packets: the total number of packets that make up the flows. 
4) PCAP Capture Size: the size of the packet captured, as obtained in the PCAP 

record header, excluding the header itself. 
5) Packet w/Headers: The PCACP Capture Size plus the length of the PCAP 

record header (16 bytes), plus the length of the PCAP file header (24 bytes). 
6) GNCS Size: the total of the final data sizes of each record after processing. 
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7) Data Savings: this is the savings for the data only, ignoring headers, using the 
calculation presented in the Results Chapter. 

8) GNCS Record Headers: this is the sum of all the possible headers for a flow 
(52 bytes for the record plus 17bytes for each packet). 

9) GNCS Data Header: this is the sum of the 8-byte header required for each data 
or edit script entry. If the data flow is an exact match for a previous data 
record, this value would be zero (0). 

10) GNCS total: this is the sum of the GNCS size, record header, and data header. 
11) Total Savings: this is the calculated space savings for the entire packet. 
12) Packets/Flow: this is calculated from the total number of packets divided by 

the total number of flows. 
13) Data/Flow: this is calculated from the total amount of data divided by the total 

number of flows. 
14) Data/Packet: this is calculated from the “Data/Flow” divided by the 

“Packets/Flow.” 
15) Compression Ratio: this is the calculated final compression ratio for the data 

flow.  

The results for the MACCDC 2012 and UNSW-NB 17-2-2015 datasets are 

presented in Tables F1 and F2, respectively. 

Table F1 – MACCDC 2012 Results 
MACCDC 2012 Dataset Results 

Packets/Run: 1,000 10,000 100,000 1,000,000 10,000,000 25,000,000 
Flow Records  118   943   1,301   7,317   103,249   397,645  
Total Flow 
Payload  57,110   541,530   638,132   2,040,003   199,474,195   1,259,098,160  

Total Packets  580   5,129   6,630   29,103   495,537   2,227,354  
PCAP 
Capture Size  98,758   908,864   1,112,944   4,136,493   233,869,989   1,405,305,865  

Packet 
w/Headers  108,038   990,928   1,219,024   4,602,141   241,798,581   1,440,943,529  

GNCS Data 
Size  20,001   178,430   265,053   1,645,698   50,690,123   428,704,708  

GNCS Data 
space savings 65.0% 67.1% 58.5% 19.3% 74.6% 66.0% 

GNCS Packet 
Size  36,725   319,667   453,199   2,575,557   64,759,696   488,284,602  

GNCS Final 
space savings 66.0% 67.7% 62.8% 44.0% 73.2% 66.1% 

Packets/Flow 4.9 5.4 5.1 4.0 4.8 5.6 
Data/Flow 484.0 574.3 490.5 278.8 1932.0 3166.4 
Data/Packet 98.5 105.6 96.2 70.1 402.5 565.3 
GNCS 
Compression 
Ratio 

1.1 1.2 1.4 1.7 1.9 1.9 
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Table F2 – UNSW-NB15 17-2-2015 Results 
UNSW-NB15 17-2-2015 Dataset Results 

Packets/Run: 1,000 10,000 100,000 1,000,000 10,000,000 25,000,000 
Flow Records  85   382   3,245   21,315   163,073  397,262 
Total Flow 
Payload  112,450   719,913   15,124,305   218,976,259   2,395,911,410  6,033,816,925 

Total Packets  317   1,840   28,872   299,384   2,987,288  7,496,751 
PCAP 
Capture Size  131,355   830,711   17,082,715   239,179,210   2,597,907,498  6,540,575,420 

Packet 
w/Headers  136,427   860,151   17,544,667   243,969,354   2,645,704,106  6,660,523,436 

GNCS Data 
Size  112,111   694,458   11,612,820   135,163,974   1,349,231,100  3,418,052,143 

GNCS Data 
space savings 0.3% 3.5% 23.2% 38.3% 43.7% 43.4% 

GNCS Packet 
Size  122,360   747,634   12,282,520   141,441,570   1,409,196,352  1,746,520 

GNCS Final 
space savings 10.3% 13.1% 30.0% 42.0% 46.7% 46.4% 

Packets/Flow 3.7 4.8 8.9 14.0 18.3 18.9 
Data/Flow 1322.9 1884.6 4660.8 10273.3 14692.3 15188.5 
Data/Packet 354.7 391.3 523.8 731.4 802.0 804.9 
GNCS 
Compression 
Ratio 

1.1 1.2 1.4 1.7 1.9 1.9 

 

The results for the two datasets show different trends. The UNSW-NB15 dataset 

(Table F2) showed an increase in the space savings and compression ratio as the number 

of packets, and thus the amount of data increases. However, the MACCDC dataset (Table 

F1) trend was very different in that except for the 1,000,000-packet run, the other runs 

were relatively like each other, with the 1,000,000-packet run exhibiting a significantly 

lower space savings and compression ratio.  
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Appendix G 

Acronyms 

 

ACK – Acknowledgement TCP flag 
AD – Active Directory 
AID – Anomaly-based Intrusion Detection 
APT – Advanced Persistent Threat 
ARP – Address Resolution Protocol 
AU – Audit and Accountability 
BBC – Byte-aligned Bitmap Compression 
BBST – Balanced Binary Search Tree 
BLAST – Basic Local Alignment Search Tool 
BLAT – BLAST-like alignment tool 
BOOTP – Bootstrap Protocol 
CAIDA – Center for Applied Internet Data Analysis 
CAC – Computer Access Card 
CAMP – Common Affix Merging with Partition 
CD – Compact Disc 
CIS – Center for Internet Security 
CMS – Compact Muon Solenoid 
CODIS – Compressing Dirty Snippet 
COMPAX – Compressed Adaptive Index 
CONCISE – Compound ‘n’ Composable Integer Set 
CSFW – Cybersecurity Framework 
CWF = Congestion Window Reduce TCP flag 
CUI – Controlled Unclassified Information 
DBMS – Database Management System 
DCT – discrete cosine transform 
DHCP – Dynamic Host Configuration Protocol 
DNS – Domain Name Service 
DWT – discrete wavelet transform 
ECN – Echo TCP flag 
EIGRP – Enhanced Interior Gateway Routing Protocol 
EWAH – Enhanced Word-Aligned Hybrid 
FIN – Finish TCP flag 
FISMA – Federal Information Security Management Act  
FTP – File Transfer Protocol 
GIF – Graphic Interchange Format 
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GNCS – Genomic Network Compression System 
HP – Hewlett Packard 
HTTP – Hypertext Transfer Protocol 
IAWG – Internet Accounting Working Group 
ICMP – Internet Control Message Protocol 
IDPS – Intrusion Detection and Prevention System 
IDS – Intrusion Detection System 
IEC – International Electrotechnical Commission 
IEEE – Electrical and Electronics Engineers 
IETF – Internet Engineering Task Force 
IP – Internet Protocol 
IPv4 – Internet Protocol version 4 
IPv6 – Internet Protocol version 6 
ITL – Information Technology Laboratory 
ISO – International Organization for Standardization 
JPEG – Joint Photographic Experts Group 
LCS – Longest Common String 
LZ – Lempel-Ziv 
LZ77 – Lempel-Ziv compression algorithm 1977 
LZ78 – Lempel-Ziv compression algorithm 1978 
LZMA – Lempel–Ziv–Markov 
LZW – Lempel-Ziv-Welch compression algorithm 
MAC – Media Access Control  
MACCDC – Mid-Atlantic Collegiate Cyber Defense Competition 
MASC – Maximized Stride with Carrier 
MILCOM – Military Communications Conference 
MPEG – Moving Pictures Expert Group 
MP3 – formally the third audio format of the MPEG-1 standard  
MP4 – formally the MPEG-4 Part 15 digital multimedia container format 
NIST –National Institute of Standards and Technology 
NSA – National Security Agency 
OS – Operating System 
OSI – Open Systems Interconnection 
OWASP – Open Web Application Security Project®  
OSPF – Open shortest Path First 
PCAP – Packet Capture 
PLWAH – Position List Word Aligned Hybrid 
PNG – Portable Network Graphics 
PWAH – Partitioned Word-Aligned Hybrid 
RAR – Roshal Archive file format 
RARP – Reverse Address Resolution Protocol 
RDBMS – relational database management systems 
RST – Reset TCP flag 
RLE – run-length encoding 
RLH – Run-Length Huffman 
SAMI – Sources and Methods Intelligence 
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ScalaBLAST – BLAST recompiled to utilize multiprocessing 
SCTP – Stream Control Transmission Protocol 
SECOMPAX – Scope-Extended Compressed Adaptive Index 
SEM – Security Event Management 
SIEM – Security Information and Event Manager  
SIM – Security Information Management 
SNMP – Simple Network Management Protocol 
SP – Special Publication  
SSH – Secure Shell  
SQL – Structured Query Language 
SYN – Synchronize TCP flag 
TAR –a Unix-based utility used to package files together for backup or distribution. 
TC – transform coding 
TCP – Transmission Control Protocol 
TIFF – Tagged Image File Format 
TLS – Transport Layer Security 
TLS/SSL – Transport Layer Security/Secure Sockets Layer 
TLSI – Transport Layer Security Inspection 
UCB – Update Conscious Bitmap 
UDP – User Datagram Protocol 
URG – Urgent TCP flag 
URL – Uniform Resource Locator 
VAL-WAH – Variable Aligned Length WAH 
VPN – Virtual Private Network 
WAH – Word-Aligned Hybrid 
ZIP – Compression format developed by PKWARE, “ZIP” means “move at high speed” 
ZLIB – ZIP Compression Library 
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