

Application of Genomic Compression Techniques for Efficient Storage of

Captured Network Traffic Packets

By

James A. Loving

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

In

Information Assurance

College of Engineering and Computing
Nova Southeastern University

October 2023

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Application of Genomic Compression Techniques for Efficient Storage of

Captured Network Traffic Packets

by
James A. Loving

October 2023

In cybersecurity, one of most important forensic tools are audit files; they contain a
record of cyber events that occur on systems throughout the enterprise. Threats to an
enterprise have become one of the top concerns of IT professionals world-wide. Although
there are various approaches to detect anomalous insider behavior, these approaches are
not always able to detect advanced persistent threats or even exfiltration of sensitive data
by insiders. The issue is the volume of network data required to identify this anomalous
activity. It has been estimated that an average corporate user creates a minimum of 1.5
MB audit data per day or roughly 30 MB per business month and thus 90 MB or more in
a three-month period. That volume by itself is not unwieldy, but that is for a single user.
If a large corporate network is involved, that number could easily reach one-half petabyte
or more, a size that could be unwieldy to store for any length of time. Normal
compression techniques can reduce this size significantly, but the resultant file not only
may still be large, but it also requires decompression to its original size to analyze.

In gene research, file size is also a major concern. An approach has been developed
whereby common segments of a gene are stored as links to the original, augmented with
edit scripts showing any difference, such that the resultant file is significantly smaller
than the original, allowing for easier analysis. The purpose of this research was to apply
dynamic compressive techniques utilized in genomic research to the issue of data
volume. All available data is required for gene sequencing, so compressive techniques
have been developed where redundant information is replaced by links to that data,
leaving only the difference intact for analysis. Similarly, in this research, network traffic
was processed such that redundant packet information was replaced by links to that
information, leaving intact the pertinent information needed to reconstruct the packet
information and the steps required for the access.

To test the Genomic Network Compression System (GNCS), two datasets were chosen,
packet captures from the 2012 Mid-Atlantic Collegiate Cyber Defense Competition
(MACCDC) and a hybrid dataset from the University of New South Wales at the
Australian Defense Force Academy, Canberra, Australia, the UNSW-NB15 17-2-2015
dataset. To test for the efficacy with request/reply message formats, Address Resolution
Protocol packets were processed for both datasets and obtained file size savings of 54.8%
and 49.6% respectively. To test the GNCS with protocols that transfer large amounts of
data, the Transmission Control Protocol was processed for both datasets. The MACCDC
2012 dataset consistently exhibited file space savings of approximately 66%, while the

UNSW NB-15 dataset showed a gradual increase from 10.3% for a sample of 1,000
packets and increased until it plateaued at approximately 46% for samples of 10,000,000
packets and larger. This shows that the GNCS can provide approximately a 50% savings
in storage space for network packets, providing organizations with a significant decrease
in the required storage space for audit files.

Acknowledgements

First and foremost, I want to acknowledge the patience and support over these

many years from my wife, Dottie. Through the frustration and exasperation of my

lingering research, she stood there giving me the support to go on. I would also like to

acknowledge my children and their loved ones, whose support and encouragement also

gave me the strength to continue. Finally, I must acknowledge my dissertation committee

for their time and guidance. In particular, I want to thank Dr. Cannady, whose patience

and guidance through my long journey were key to my success.

vi

Table of Contents

Abstract ... iii
List of Tables .. viii
List of Figures ...x

Chapters

1. Introduction ..1

Background ..1
Problem Statement ...5
Dissertation Goal ...6
Relevance and Significance ...7
Barriers and Issues ...9
Assumptions, Limitations, and Delimitations ..10
Summary ..11

2. Review of the Literature ..13

Overview ..13
Context ...14
Audit Log Files ..15
Intrusion Detection...19
Network IP Flow Techniques ..21
Compression Techniques ...22

Lossless Compression ..23
Lossy Compression ..24
Compressed Bitmap Indexes..26
Network Compression ...30
Genomic Data Compression ..32
Approximate Matching ..36

Summary ..38

3. Methodology ...40

Overview ..40
Development Considerations ...42
Development Resources...47
Dataset Analysis...48
Parser Development ...51

Internet Layer Parser ..53
ARP Parser ...54
IPv4 Parser ...55

vii

Transmission Control Protocol (TCP) Parser ..55
User Datagram Protocol (UDP) Parser ..59

Compression Algorithm ...60
Output File structure ..70
Data Analysis ...72
Summary ..73

4. Results ...75

Introduction ..75
Parser Development ...76

Arp Parser ..76
Complete ARP Pair ..78
Orphan ARP Packets..79
Duplicate ARP Packets ..79
IPv4 Parsers ...79
Transmission Control Protocol (TCP) Parser ..80
User Datagram Protocol (UDP) Parser ..84

Genomic Compression Algorithm ...86
Final Program Results ..90

Arp Results...90
TCP Results ...91

Summary ..94

5. Conclusions, Implications, Recommendations, and Summary97

Conclusions ..97
Implications..101
Recommendations ..102
Summary ..104

Appendices ..111

A. NIST SP 800-53 Revision 5, Audit and Accountability Security Controls111
B. Dataset Analysis and Selection ...114
C. MACCDC Datasets ..129
D. UNSW-NB15 Datasets ..135
E. Application Layer Protocols ..141
F. Process Results...149
G. Acronyms ...152

References ...155

viii

List of Tables

Tables

1. Processing Time Comparison ..67
2. Transport Layer Protocols..86
3. ARP Results ...90
4. UNSW-NB15 Dataset Output ..100

Appendix A – NIST SP 800-53 Rev5 Audit and Accountability Security Controls.111

A1. NIST SP 800-53 Revision 5 Audit and Accountability Security Controls111

Appendix B – Dataset Analysis and Selection ...114

B1 Candidate Datasets ...114
B2 Candidate Datasets: File and Packet Statistics – MACCDC Datasets115
B3 Candidate Datasets: File and Packet Statistics – UNSW-NB15 Datasets116
B4 Candidate Datasets: File and Packet Statistics – MILCOM Datasets........................118
B5 Candidate Datasets: File and Packet Statistics – MILCOM Datasets (Cont.)119
B6 Candidate Datasets: File Header Extracts ..122
B7 Candidate Datasets: Internet Layer Protocols ..123
B8 Candidate Datasets: Transport Layer Protocols ...125

Appendix C – MACCDC Datasets ...129

C1 PCAP File Summaries MACCDC 2010 Dataset ...129
C2 PCAP File Summaries MACCDC 2011 Dataset ...130
C3 PCAP File Summaries MACCDC 2012 Dataset ...130
C4 Internet Layer Protocols MACCDC 2010 Dataset ..131
C5 Internet Layer Protocols MACCDC 2011 Dataset ..131
C6 Internet Layer Protocols MACCDC 2012 Dataset ..132
C7A Transport Layer Protocols - MACCDC 2011 Dataset – Top 5133
C7B Transport Layer Protocols - MACCDC 2011 Dataset – Details133
C7A Transport Layer Protocols - MACCDC 2012 Dataset – Top 5133
C7B Transport Layer Protocols - MACCDC 2012 Dataset – Details134

Appendix D – UNSW-NB15 Datasets ...135

D1 PCAP File Summaries UNSW-NB15 17-2-2015 Dataset ...135
D2 PCAP File Summaries UNSW-NB15 22-1-2015 Dataset ...136

ix

D3 Internet Layer Protocols UNSW-NB15 17-2-2015 Dataset137
D4 Internet Layer Protocols UNSW-NB15 22-1-2015 Dataset138
D5A Transport Layer Protocols - UNSW-NB15 17-2-2015 – Top 5139
D5B Transport Layer Protocols - UNSW-NB15 17-2-2015 – Details140
D5A Transport Layer Protocols - UNSW-NB15 22-1-2015 – Top 5140
D5B Transport Layer Protocols - UNSW-NB15 22-1-2015 – Details140

Appendix E – Application Layer Protocols ...141

E1A TCP Application Layer Protocol Occurrences – MACCDC 2012142
E1B TCP Application Layer Protocol Details – MACCDC 2012 – Top 5142
E1C TCP Application Layer Protocol Details – MACCDC 2012 – Next 5143
E2A TCP Application Layer Protocol Occurrences – UNSW-NB15 17-2-2015...........143
E2B TCP Application Layer Protocol Details – UNSW-NB15 17-2-2015 – Top 5144
E2C TCP Application Layer Protocol Details – UNSW-NB15 17-2-2015 – Next 5144
E3A UDP Application Layer Protocol Occurrences – MACCDC 2012145
E3B UDP Application Layer Protocol Details – MACCDC 2012 – Top 5146
E3C UDP Application Layer Protocol Details – MACCDC 2012 – Next 5146
E4A UDP Application Layer Protocol Occurrences – UNSW-NB15 17-2-2015147
E4B UDP Application Layer Protocol Details – UNSW-NB15 17-2-2015 – Top 5147
E4C UDP Application Layer Protocol Details – UNSW-NB15 17-2-2015 – Next 5148

Appendix F – Process Results ...149

F1 MACCDC 2012 Dataset Results ...150
F2 UNSW-NB15 22-1-2015 Dataset Results ...151

x

List of Figures

Figures

1. Lempel-Ziv Algorithm Family ..23
2. ARP Packet Format..77
3. TCP Segment Format ...81
4. User Datagram Protocol ...84
5. MACCD Data Distribution ..94
6. UNSW-NB15 Data Distribution ..94

1

Chapter 1

Introduction

Background

Cybersecurity professionals agree that it is essential to collect and maintain audit

files (audit trails) in order to ensure accountability, determine who is accessing a

network, the applications they are using, any activity that could impact the security

posture of the enterprise, and allow for reconstruction of events after a problem has

occurred (Marker, 2021; NIST ITL Bulletin, 1997; Shopp, 2020). Operationally,

enterprises utilize various intrusion detection systems, as well as Security Information

and Event Manager (SIEM) systems which collect and correlate security data from

multiple devices, report the results, and raise appropriate events (Mokalled, H., 2019).

The actual functioning of these types of network systems was beyond the scope of this

paper. Rather, the data streams and files these and other enterprise devices utilize was the

focus – audit files and network traffic archive files stored over a long term to analyze for

malicious activity.

Audit logs can be extremely varied in their content, depending upon the source of

the log and its intended use. Most log files document events that have happened, the

content is limited, and follows some documented guidance, such as that provided by the

National Institutes of Science and Technology (NIST) Special Publications (SP) 800-92

Guide to Computer Security Log Management. However, some logs, such as those

2

required for intrusion detection, require more information or even aggregated data flows

to detect unauthorized activities. Network intrusion detection systems can perform packet

captures to analyze the entire connection should an alert occur (NIST SP 800-94, 2007).

It is this latter form of audit logging that will have the tendency to become large, since

the entire contents of the Ethernet packet, including the data segments, must be

maintained, and not just the limited fields maintained in event-based audit logs.

To address processing large amounts of data in real-time or near real-time, some

researchers have turned to distributed processing (Forestiero, 2015; Sindhu,

Ramasubramanian, and Kannan, 2004) or modular neural networks (Golovko, 2007). In

this manner, they could monitor heavy network traffic with a minimal impact on

throughput. Although all these approaches address the real-time detection objective, they

do not allow for long-term storage for future correlation and reconstruction.

Depending upon the source of an audit log file, the size of the files can get quite

large. In a presentation at the 2015 ACM Conference on Data and Applications Security

(CODASPY) discussing use of SIEM tools at Hewlett Packard (HP), William Horne

indicated that their Domain Name Service (DNS) clusters process approximately 16

billion packets per day, or more than 5.8 trillion packets per year (Horne, W., 2015). The

HP presentation was limited to their DNS servers. Typical DNS communications occur in

pairs – a query and a response (DNS, 2022). Although a DNS query or response format

allows for multiple queries/responses per message, the overall query transaction size is

relatively small and would fit within a single Ethernet packet (The TCP/IP Guide, 2005).

Therefore, the 16 billion packets would relate to approximately 8 billion query/response

pairs. A packet flow is defined as the total sequence of packets between a source

3

computer and its destination. If the discussion is limited to the Internet Protocol (IP),

there will be two sets of packet flows, from the computer initiating traffic to the

destination and then another packet flow for the return communications (Kerner, 2021).

In a paper by Kim, et. al., (2004), the average flow contained 28 packets, comprised of

18,239 bytes. If we assume that each DNS query is a prelude to an internet connection

and thus a packet flow, then the resultant traffic would equate to approximately 3,700 TB

per day. To take a very conservative approach, we will assume that 90% of the traffic is

for external users accessing public internet pages, thus decreasing the traffic of interest to

perhaps 370 TB per day. For the US Department of Defense, sources and methods

intelligence (SAMI) audit records must be maintained for five (5) years, and all other

audit records retained for one (1) year1. If we then also assume activity will occur on

business days only, this will equate to over 90 petabytes of network traffic annually,

which may need to be maintained for audit purposes.

The NIST ITL Bulletin, (1997) further discusses the value of audit logs in

reconstructing events after a problem has occurred, by using the audit log to reconstruct

the series of steps taken by the systems, users, and applications leading up to the event.

(The NIST ITL Bulletin, 1997). The results of the HP presentation and the private study

above are representative of the underlying issue: how do you maintain large data files for

future analysis?

1 These time periods are obtained from https://www.stigviewer.com/controls/8500/ECRR-1 that covers a
security control from the DoD Information Assurance Certification and Accreditation Process (DIACAP)
security catalog. DoD has subsequently transitioned to the Risk Management Framework. Control ECRR-1
has been replaced by the RMF security Control AU-11. However, access to the new DoD security control
parameters requires a valid DoD-issues Computer Access Card (CAC). Therefore, the older, publicly
accessible URL parameters are cited.

https://www.stigviewer.com/controls/8500/ECRR-1

4

To address the problem of storing large amounts of data, various file compression

techniques have been developed. Although formats such as ZIP, RAR, and TAR are

commonly thought to be compression techniques, they are archiving formats that include

various compression techniques for efficient archiving (FileInfo, n.d.).

In a review of compression methods, Kavitha (2016) identified two general

categories of compression: Lossless and Lossy compression. Lossless compression is

mainly used for archiving and includes those methods in which after decompression, the

resultant file is identical to the original, bit for bit; some of the main techniques include

Run-Length Encoding (RLE), Lempel-Ziv-Welch (LZW), and Huffman encoding. Lossy

compression is used where loss of some data is determined not to impact the essential

information of the original; the main lossy compression techniques include JPEG, MP3,

and MP4 (Kavitha, 2016). In 2018, Uthayakumar, Vengattaraman, & Dhavachelvan

discussed the common compression techniques based on data quality, coding scheme,

data type, and application. Network traffic is a combination of all possible data types that

are represented by a stream of 16-bit hexadecimal characters. The final compression ratio

will be dependent upon the mixture of the data – the more text, the higher the possible

compression ratio. Regardless of the technique utilized, standard compression techniques

create static compressed files. To access the data to perform any analysis requires

decompression of the file (Loh, Baym and Berger, 2012).

Network traffic analysis is not the only area of scientific research where large

volumes of data must be analyzed in an efficient manner. Genomic research is increasing

datasets at a factor of nearly 10 times every year (Berger, Daniels, & Yu, 2016). Due to

this, various new data compression techniques have been developed to compensate for

5

storage constraints. Taking this one step further, in 2012, Loh, Baym and Berger

proposed a compression algorithm that allowed them to perform genomic analysis

directly on the compressed data, without having to be uncompressed (Loh, Baym and

Berger, 2012; Loh, Baym and Berger, 2012a).

The purpose of this research was to incorporate the dynamic compression

techniques of Loh, et al. (2012) into a new approach to reduce the size of the network

data file storage, while maintaining data integrity to allow future reconstruction of events

leading to an incident.

Problem Statement

There is no system that utilizes preprocessing of network traffic to remove

duplicate and extraneous data prior to compression, decreasing the resultant file size to

not only save storage space but to decrease the time required to compress and

decompress. Network traffic audit trails are critical in cybersecurity, not just for the

detection of current attacks, but also for the reconstruction of the events that led up to an

attack, which can aid in mounting a defense against future similar attacks. In the HP

example above, audit logs can be quite large, making them unwieldy for future analysis.

There are many applications that can compress data files, but as the size of the original

file increases, the time to compress and decompress the file also increases. Cybersecurity

professionals require access to historic network traffic to reconstruct an attack. In large

organizations generating network audit files, reconstruction can become an onerous task.

Kalutarage, et al. (2015), was able to show promise in detecting protracted insider attacks

at the network level, but due to the large amount of data required to detect activity over

weeks and months, sampling techniques were employed. In doing so, only approximately

6

10% of network traffic was being analyzed, leaving 90% unanalyzed and potentially

hiding stealthy insider activity, which is not a practical solution for forensic

reconstruction. To be able to correlate activity across multiple packet flows and possibly

multiple individuals requires more intensive analysis of internet traffic. Therefore, a

method to reduce the volume of internet traffic while maintaining its integrity would be a

valuable tool for cybersecurity analysists.

Dissertation Goal

The goal of this research was to develop a method whereby network traffic can be

compressed in real time. It was previously discussed that there are many forms of audit

logs. However, it is the larger packet capture logs required by network intrusion detection

systems that is the focus of the research. As indicated by Kalutarage, et al. (2015), a

malicious insider can perform their attack over weeks and months, necessitating the

maintenance of audit logs over an extended period with its concomitant increase in file

size.

Building upon prior research by Loh, et al. (2012, 2012a), a new compression

algorithm was developed to take advantage of commonality in the data segments of

network packets, such that a user’s entire network traffic over an extended period could

be captured for future analysis. The scope was limited to determining the viability of the

compression technique; detecting malicious activity of any kind was outside the scope of

this research. Unfortunately, no access to a network sufficiently large enough to generate

a significantly large volume and variety of network traffic was available, so the genomic

compression technique was tested using static network packet capture files. These files

were generated from networks with additional traffic superimposed on top or from

7

synthetic data created to represent network traffic. In all cases, the network capture files

were continuous with no breaks in traffic outside of normal packet-to-packet separations.

Relevance and Significance

The feasibility of analyzing a large audit file is not the only issue facing

organizations; the cost to maintain those large audit files can become substantial. For

example, the published Google Cloud audit costs states one can store up to 50 GB of data

access audit logs for 30 days at no additional charge. However, beyond 50 GB, there is an

additional charge of $0.50 per GB per month, and if the logs need to be retained for a

longer period, there is an additional charge of $0.01 per GB for the second month and

$0.02 per GB for each month after that. Therefore, for the first petabyte (PB) of audit

logs, there would be an additional charge of $475.00 and each PB beyond that of

$500.00. If the logs need to be retained for one year, there would be an additional charge

of $10 per PB for the second month, and $20 per PB per month for months three through

12, or $210 for the year. Although log files grow over time, if the average size of retained

audit logs is 50PB, there could be a cost in excess of $400,000 per year.

The NIST Cybersecurity Framework provides an approach to managing

cybersecurity risk; and is comprised of three parts: the Framework Core, the Framework

Implementation Tiers, and the Framework Profiles (NIST CSFW, 2018). The Framework

Core establishes five functional areas: Identity, Protect, Detect, Respond, and Recovery.

The Detect functional area includes the use of network intrusion and protection devices,

and audit event correlation and reporting; the Protect functional area includes use of audit

logging; and the Respond functional area includes performing forensic analyses of events

(NIST CSFW, 2018). The NIST Cybersecurity Framework is not the only guideline for

8

cybersecurity practices, such as: the NIST Risk Management Framework (NIST SP 800-

37R2, 2018); the International Organization for Standardization (ISO) and the

International Electrotechnical Commission (IEC) publish the ISO/IEC 27001 Information

Security Management Standard (ISO/IEC 27001, n.d.); and the Center for Internet

Security provides the CIS Controls® (CIS Controls, n.d.)2. All these approaches to

cybersecurity include the need for monitoring network traffic for malicious activity in

real time and maintaining audit log files for future forensic analysis or reconstruction to

determine how the malicious event happened and how to remediate the vulnerability. For

example, Advanced Persistent Threats (APT) can last for weeks and months and the

attacks contain multiple steps that individually are difficult to identify (Zou, Liu, Sun,

and Singhal, 2020). In fact, three different APTs have been active for up to 20 years:

Titan Rain since 2003, SkiPot since 2006, and Dep Panda since 2012. To determine the

method and scope of an APT attack requires analyzing log files for the duration of that

attack.

Thus, a method that can provide for better compression of network traffic which

would allow for retaining more network traffic, could be beneficial to organizations. Not

only by improving the ability to reconstruct possible malicious activity to implement

cyber defenses against future attacks, but also by decreasing the financial impact to the

organization for storage of those files.

2 Although the listed security frameworks are utilized throughout both the private and public sectors, the
author has had years of experience with the NIST Special Publications and its Risk Management
Framework. Therefore, throughout this Dissertation Report, references to published cyber security
guidance will be to NIST guidance only.

9

Barriers and Issues

The genomic compression technique is based on identification of common

segments of data strings between a test segment and a dictionary of known segments

(Loh, et al., 2012, 2012a). To take advantage of this technique with network traffic, the

network traffic packets must contain substantial data segments. Although there are a

number of protocols that are simple message protocols (request and reply messages with

minimal or no data segment), it was a simple matter of identifying which parameters have

data. No matter whether the Internet Protocol version 4 (IPv4) or the Internet Protocol

version 6 (IPv6) packets are involved, the packet formats are standardized making the

header sizes determinant. It therefore only required a simple calculation to determine if

the packet contained any data segment. Those without data segments were not candidates

for the compression technique and would be ignored during processing.

To handle packets with data properly required development of dedicated parsers.

Each parser took advantage of the specific protocol format similar to the compressive

techniques currently in genomic analysis – unique, critical data was maintained as is,

while common, repetitive data was maintained offline once, and substituted with a link.

The key issue was identifying what data must be available for analysis, and what can be

compressed; what data could be totally ignored and possibly discarded; and what was the

best file format for the minimized packets to allow forensic analysis.

The most difficult impediment to success was analyzing secure communications.

Many organizations utilize secure communications, even within their Intranet – the more

valuable the information, the more secure it will be. The best forensic analysis will be

useless if the data segment of the packet cannot be decrypted and analyzed. For these

10

approaches to be successful, they will require having access to the certificates/keys used

to encrypt. However, having all requisite keys may be problematic. Another approach is

called Transport Layer Security (TLS) break and inspect, also known as Transport Layer

Security Inspection (TLSI). This is a process in which enterprise network traffic is

decrypted, the decrypted content is inspected for threats, and then the traffic is re-

encrypted before it enters or leaves the network (NSA, 2019). This process is not without

issues and requires careful configuration and monitoring to ensure performance is not

negatively impacted and the unencrypted data is not exposed, which could violate privacy

laws, or worse, show usernames and passwords in plain text.

With the break and inspect system, audit logs covering a sufficient time span

could be used to help reconstruct a general representation of the network traffic. This is

not without challenge. If there are anomalous users in an organization, then their

anomalous actions would appear in the audit logs. If you use the logs to group individuals

and to emulate normal traffic, there might not be a clean base upon which you can detect

anomalies – the existing anomalies would be considered normal. If access is being

analyzed, then ignoring the encrypted data segment might not be a problem. For secure

communications, the compression technique will not be as efficient, but should still

decrease the overall storage requirement compared to normal compression techniques.

Assumptions, Limitations, and Delimitations

There are several issues that impacted the research. A major issue pertained to the

number of transport protocols in the dataset that do not contain a data segment. If these

packets were compressed as is without the benefits of genomic techniques, they would

skew the compression ratio. So, an approach to analyze compression ratios ignoring un-

11

compressible packets was required. Another limitation previously discussed is that secure

communications without break and inspect would also skew the compression ratio since

there will be fewer common payloads that can be saved once and substituted with a link.

Since a component of the genomic compression technique was looking at commonality,

mainly based on IP address and port combinations, it was assumed that there was no IP or

Media Access Control (MAC) address spoofing, such that the identified sources and

destination were actual, not spoofed. As to IP addresses, as will be discussed in the

methodology section, not all IP addresses are static. Many organizations assign user IP

addresses utilizing Dynamic Host Configuration Protocol (DHCP) which may assign a

different IP address to a system the next time it connects to the network. Even without

DHCP, users may have laptop computers and will connect from different locations or

utilize secure Virtual Private Network (VPN) connections, also causing a different IP

address to be assigned. So, without some method of definitively identifying a user each

time they connect, long-term analysis of the compressed files may be disconnected and

not accurately reflect users.

Summary

With the frequency of cyber threats, it has become important to be able to

maintain network traffic log files for future reconstruction and forensic analysis.

Unfortunately, with organizations generating upwards of hundreds of terabytes of

network traffic per day, the sheer volume of traffic makes storage and analysis

problematic. Although there are a variety of compression techniques available, they

create static compressed files, that must be decompressed to be analyzed. In order to

perform analysis of large audit log files, a method that can decrease the volume of data

12

while maintaining data integrity for possible forensic analysis would be a valuable tool

for cybersecurity.

13

Chapter 2

Review of the Literature

Overview

Cybersecurity professionals agree that it is a basic requirement to obtain audit

trails (log files) to determine whether the actions taken by users could impact the security

posture of the systems and enterprise and allow for reconstruction of those actions taken

by the user leading up to the event (Marker, 2021; Shopp, 2020; NIST ITL Bulletin,

1997). A brief history of audit logging will be presented. Due to the physical size of audit

logs and the need to maintain them for periods of time, common types of compression

techniques will be provided. The review will cover general file compression algorithms,

but will not be exhaustive, since the goal of this research is to apply the genomic

compression techniques proposed by Po-Ru Loh, Michael Baym, and Bonnie Berger in

2012. Their approach entailed identifying data in a test string, that is common with a

known string, and replacing it with links to that known data, thus reducing the size of the

test string. Therefore, the review of compression algorithms is to identify the pros and

cons of the different algorithms and propose possible solutions that could be utilized in a

“production” implementation. To better understand the value of the approach by Loh et

al. (2012), it is important to understand the various search and approximate match

algorithms that have been used in genomic research. A brief review of those techniques

14

will be provided, including algorithms used in such applications as spell checkers and

identifying the longest common substring – these are instrumental to this research.

Context

In 1979, David Hanson identified three different classes of computer

vulnerabilities: threats to the physical system; individuals who threaten the integrity of or

loss to the system from the outside; and individuals who threaten the integrity of or loss

to the system from the inside (Hanson, 1979). However, it was not until the high-profile

cases of Robert Hanssen, Chelsea (a.k.a. Bradley) Manning, and finally Edward Snowden

came to light, that the issue received the attention it deserved. On February 20, 2001, the

FBI announced the arrest of Robert Hanssen for selling highly classified national security

information to the Russians (“Robert Hanssen,” 2001). Between November 2009 and

May 2010, Private First Class Bradley Manning passed on hundreds of thousands of

United States Government classified documents to WikiLeaks, who released them

between February 2010 and the autumn of 2011 (“Chelsea Manning,” n.d.). On October

7, 2011, President Barack Obama signed Executive Order 13587, the “National Insider

Threat Policy” (Obama, 2011). However, that was not a deterrent. In May 2013, Edward

Snowden, an NSA analyst working for contractor Booz Allen Hamilton, leaked the

details of several top-secret surveillance programs to the media (“Edward Snowden,”

n.d.). Although the Hanssen case pertained to hard copy documents while the Manning

and Snowden cases involved release of computer (or computerized) documents, all three

instances fall into the category of exfiltration, a term meaning the unauthorized removal

or transfer of data. There is a plethora of references to research on exfiltration, and

although exfiltration might be the end goal of an insider, exfiltration itself is not within

15

the scope of the proposed research. However, what these three individuals have in

common with the proposed research is that they were trusted, authenticated users

(although Hanssen did not commit a computer crime, he was authorized to access the

documents that he stole). The threat posed by a trusted insider can be much more

pervasive than exfiltration, it can extend to changing data, damaging systems, and

committing fraud.

Audit Log Files

Audit trails (logs) can assist an organization in detecting security violations (NIST

ITL Bulletin, 1997). Since audit logs are created at the time an event is occurring, that

event might not be stopped. However, reviewing audit logs on a routine basis and taking

proper actions could have decreased the magnitude of the security leaks by Manning or

Snowden.

Modern audit logging (audit trails) really did not begin until the introduction of

the UNIVAC in 1954 and the first computer accounting systems (Singleton, 1996). By

the 1980’s, classical “paper trails” were vanishing in favor of computerized systems

(Anderson, 1981). Anderson goes on to discuss how electronic audit trails can be useful

in detecting possible crime that normal financial auditing did not. By the 1990’s, the use

of audit logs had become common place, leading to the NIST Information Technology

Laboratory (ITL) issuing the ITL Bulletin 1997-03, “Audit Trails” that formally

addresses the uses and advantages of audit logs, including their use in intrusion detection

(NIST ITL Bulletin, 1997).

Under the Federal Information Security Management Act (FISMA) of 2002,

Public Law 107-347, NIST was tasked with providing guidance for the security

16

certification and accreditation of information systems of the U.S. federal government.

This culminated in the issuance of the NIST Special Publication (SP) 800-37, “Guide for

the Security Certification and Accreditation of Federal Information Systems, and a

multitude of supporting special publications. One of those is NIST SP 800-53,

“Recommended Security Controls for Federal Information Systems,” with a final release

in February 2005. The security control catalog is organized into three general classes of

security controls (management, operational, and technical) and 17 different families. The

Audit and Accountability family is considered a technical control and consists of 11 base

security controls, with an additional nine (9) security control enhancements spread across

the base controls, for a total of 20 Audit and Accountability security controls (NIST SP

800-53, 2005).

The NIST guidance has gone through several revisions over the years, such that

currently, NIST SP 800-37 is at Revision 2, “Risk Management Framework for

Information Systems and Organizations, A System Life Cycle Approach for Security and

Privacy,” released in December 2018, and NIST SP 800-53, Revision 5, “Security and

Privacy Controls for Information Systems and Organizations,” released in September

2020. NIST SP 800-53, Revision 5 has expanded to 20 control families which now

include security controls aimed at protecting privacy. The Audit and Accountability (AU)

family now consists of 16 base controls and 40 control enhancements, for a total of 56

security and privacy controls devoted to auditing and accountability (see Appendix A,

NIST SP 800-53r5, 2020). Without discussing every security and privacy control, there

are several specific controls that are pertinent to this research: 1) AU-3 “Content of Audit

Records” provides guidance on the type of events and information that is to be

17

maintained in an audit record; 2) AU-4 “Audit Log Storage Capacity” dictates that

systems must comply with an organizations audit storage capacity, and the requirements

for backing up audit log files as they reach their configured maximum size; 3) AU-6

“Audit Record Review, Analysis, and Reporting” is critical to maintaining a secure

system by providing guidance on the type and frequency of analysis of audit logs; 4) AU-

7 “Audit Record Reduction and Report Generation” supports the goal of this research, in

that the organization must “a. Supports on-demand audit record review, analysis, and

reporting requirements and after-the-fact investigations of incidents; and b. Does not alter

the original content or time ordering of audit records” (NIST SP 800-53r5, 2020, p 72);

5) AU-11 “Audit Record Retention” provides guidance on the length of time audit logs

must be maintained; and 6) AU-13 “Monitoring for Information Disclosure” provides

guidance on auditing for unauthorized use of information, including exfiltration, making

unauthorized copies of information, and monitoring for evidence of unauthorized

disclosure of information.

One related security control to AU-13 is, SI-4 “System Monitoring,”

Enhancement 2 “Automated Tools and Mechanisms for Real-Time Analysis” which

dictates the use of automated tools and mechanisms to support analysis of possible

security events in near real time. This can entail the use of SIEM technologies (NIST SP

800-53r5, 2020, p 365). In 2005, the Gartner Group discussed the combination of two

systems – Security Information Management (SIM) and Security Event Management

(SEM) – into a single tool, the SEIM (Buecker et al., 2010). Thus, the SIEM combines

the security information (risk), event, and threat data into a single system that can

correlate this varied information, identifies possible deviations, provides reporting

18

capability of results, and provide for detection and remediation of possible security issues

(IRS, n.d.; Mokalled et al., 2019).

Log files take many forms. The NIST SP 800-92 Guide to Computer Security Log

Management provides a very broad listing of types of audit logs and events to capture

(NIST SP 800-92, 2006). Many organizations have developed their own policies on event

logging, such as the University of California Berkeley. They have published their

“Security Audit Logging Guideline” that provides detailed guidance on the information

that must be included in audit logs for Operating System (OS) Events, OS Audit Records,

Application Account Information, and Application operations. Although they allow for

variance in the content of the different audit events, at a minimum, each record must

contain the “timestamp, event, status, and/or error codes, service/command/application

name, user or system account associated with an event, and device used (e.g., source and

destination IPs, terminal session ID, web browser, etc.)” (UC Berkeley, n.d.).

All federal information systems must comply with NIST guidance, and therefore

must comply with the audit file creation, retention, and analysis guidelines provided by

the security and privacy controls (FISMA, 2002). In accordance with Title 44 U.S. Code,

Sec. 3554, all components of nonfederal systems that process, store, or transmit

Controlled Unclassified Information (CUI), or that provide security protection for such

components are subject to the same requirements as federal system as provided in NIST

SP 800-171 Revision 2. This NIST guidance further states that these nonfederal systems

must follow the guidance provided in NIST SP 800-53 (NIST SP 800-171r2, 2017).

Thus, all affected nonfederal systems must comply with all the auditing requirements of

federal systems.

19

Intrusion Detection

Intrusion detection is the process of monitoring network communications for

unauthorized accesses or activity, logging the findings, and reporting those findings (Liao

et al., 2013; Scarfone & Mell, 2007). An Intrusion Detection System (IDS) monitors for

possible unauthorized activity – passively, offline – and provides notifications of possible

activity for further processing (OWASP, n.d.; Scarfone & Mell, 2007). Intrusion

prevention not only performs intrusion detection, but takes that one step further, by

actively attempting to stop the attack in real time (Liao et al., 2013; OWASP, n.d.;

Scarfone & Mell, 2007). Although prevention of intrusions is a very important tool for

cybersecurity professionals, only intrusion detection can require storing large amounts of

data to detect long-term threats such as APTs. Although the actual detection of intrusion

is not within the scope of this research, providing a mechanism to collect and maintain

historical network traffic would assist cybersecurity analysts.

Some IDSs can store all data relating to sessions for short periods of time to

detect a possible attack and the steps taken during that attack (Kent et al., 2006). Other

systems perform deep packet inspection in which detection is based on specific data or

payloads. This is usually performed at the application layer for a specific list of protocols

(Awati & Scarpati, n.d.). Regardless of the category of intrusion detection or the

underlying technology used to detect, many sensors incorporate packet capture to store

many packets for off-line analysis (Scarfone & Mell, 2007). These systems could benefit

from the research provided here.

20

Signature-based detection utilizes a known list of signatures and compares new

activity against the list looking for matches (OWASP, n.d., Scarfone & Mell, 2007; Tek-

Tools, 2020). Signature-based detection is considered the simplest since it only requires

comparison to the known signature database. Unfortunately, signature-based detection is

ineffective at identifying new threats without a known signature and are also generally

ineffective in identifying threats of many application protocols (Scarfone & Mell, 2007).

Although signature-base intrusion detection is normally applied in real time, should a

new attack vector be discovered with new signatures, analyzing historical network traffic

for these signatures could identify previously unknown attacks against a system.

Anomaly-based intrusion detection (AID) covers a broad range of approaches to

detect network activity that differs from the norm; from the expected. Much like

signature-based detection, AID requires the knowledge of what is considered a normal

network profile and compares the current profile to the known profiles to identify

anomalous activity (Scarfone & Mell, 2007). However, there are newer approaches to

anomaly-based detection that are more-effective in identifying previously unknown

behavior. Punithavathani, Sujatha, and Jain (2015) present a multi-step approach to

insider threat detection. The first stage is to monitor network activity and look for known

patterns of anomalous activity. The second stage involves reviewing historic network

traffic (log files) to identify previously undetected user anomalies. If a new anomaly is

identified from the log files, the associated network traffic is reviewed to update the

pattern recognition of stage one, thus improving the chance of future detection. This

second stage of the Punithavathani, Sujatha, and Jain (2015) approach could benefit from

the research presented here by providing smaller files for analysis.

21

Network IP Flow Techniques

A packet flow consists of the total sequence of network packets between a source

computer and its destination and is specific to not only the IP addresses of both devices,

but also the specific protocol and ports utilized (Claise, Trammell, & Aitken, 2013;

Kerner, 2021; Petryschuck, 2019). Several researchers have utilized network IP flow-

based analysis for intrusion detection as well as detecting insider threat activity. The

origin of network IP flows goes back to the Internet Accounting Working Group (IAWG)

of the Internet Engineering Task Force (IETF) in 1991. The intent of the IAWG was to

develop an efficient method of monitoring network traffic for the purposes of accurate

billing for Internet use as well as a method of maintaining access information that may be

required during an investigation of a serious crime (Mills, Hirsh, & Ruth, 1991).

As network speeds and traffic volume increase, deep-packet examination for

intrusion detection becomes unwieldy. One answer has been the use of network flow

monitoring; a method by which the connection and possible intent behind the connection

can be analyzed. By 2010, intrusion detection using IP network flow had become an

established area of research. Sperotto et al. (2010) provided an overview of the pertinent

research. However, none of the presented systems could perform analysis of traffic flow

over extended periods of time (Sperotto et al., 2010). Use of network flows continues

today. In 2017, Alaidaros and Mahmuddin presented an approach where they modified

the open-source Bro IDS3 to make intrusion detection closer to real-time. However, this

approach ignores the payloads altogether, and cannot detect possible intrusions based on

content of the payload, nor detect what data is being transferred (Alaidaros and

3 Bro began in 1995 at the Lawrence Berkely National Laboratory, and was rebranded as “zeek” in 2017.
The product can be obtained from either https://bro.org or https://zeek.org.

https://bro.org/
https://zeek.org/

22

Mahmuddin, 2017). According to Hofstede et al. (2014), the size of flow repositories can

exceed tens of terabytes, so network flows alone cannot solve the data volume problem,

unless a method is available to decrease the size of the flow repositories.

Compression Techniques

Compression is the process by which the quantity of content data is reduced

without excessively impacting the quality of the original content. The end goal is to

minimize the number of bits in digital media required for storage and/or transmission, in

an efficient, cost-effective manner (Kavitha, 2016). In 1981, Hassan K. Reghbati divided

compression into two categories based on the results of decompression. Nonreversible

compression occurs where data deemed insignificant is removed, while relevant data is

maintained. Reversible compression occurs when all the data is considered relevant, such

that decompression returns an identical copy of the original data (Reghbati, 1981).

Today, nonreversible and reversible have been replaced with the terms lossless and

lossy4.

Mahdi, Mohammed, and Mohamed (2012) discuss the two general categories of

compression, lossless and lossy. Lossless compression identifies and eliminates

statistically redundant bits. This allows for recovery of an exact copy of the original upon

decompression. Lossy compression identifies marginal information and eliminates that

during compression. However, the exact original content cannot be recovered upon

decompression (Mahdi, Mohammed, and Mohamed, 2012).

4 Although an extensive literature search was performed, the origin of the use of the terms lossy and
lossless was not determined. Various articles in the 1990-1991 timeframe refer to these terms, but do not
state an origin, and there were no references found prior to 1990.

23

Lossless Compression

Many lossless algorithms have two separate phases: in the initial phase, a

statistical model of the input data is created, identifying codewords; and in the final

phase, the input data is mapped to the codewords creating the smaller output file (Fitriya,

Purboyo, & Prasasti, 2017; Kavitha, 2016). In his book, A New Kind of Science, Stephen

Wolfram (2002) states that the Morse code (invented in 1838) is a form of lossless

compression, since it substitutes shorter code sequences for the most-common letters of

the English language. In 1952, David Huffman presented a compression method that used

codewords based on probabilistic analysis of the data, with the more-common characters

receiving the shortest codewords (Huffman, 1952). His approach has subsequently been

known as Huffman encoding.

In 1977 and 1978, Jacob Ziv and Abraham Lempel proposed two lossless

compression algorithms (LZ77 and LZ78), that were the beginning of a whole family of

compression algorithms as depicted in Figure 1 (Zeeh, 2003). In 1984, Terry Welch

Figure 1 - Lempel-Ziv Algorithm Family (Source: Zeeh, 2003).

24

published a modification (LZW), that has become possibly more popular than the original

Lempel-Ziv (LV) algorithms (Zeeh, 2003). One change made by Welch pertains to the

codewords (called translation table and string table, interchangeably by Welch). LZW

utilizes 12-bit codes, so the table is fixed at a maximum of 4096 entries, whereas LZ77

and LZ78 are not limited to table size. Another is pre-filling the table with all possible

characters in the input string, and when a match is not found, it is added to the table

(Welch, 1984). The most-known implementations of the LZW algorithm are in the

Graphics Interchange Format (GIF) for image compression, the UNIX compress

command, and in the original PKZIP archive compression tool (Hosseini, 2012;

Wolfram, 2003). Other lossless compression algorithms include: 1) run-length encoding

(RLE) in which runs of common characters (bits) are stored in two parts, one for the

symbol and one for the count (Capon, 1959). This is mainly used in FAX machine

transmission due to its efficiency on black and white text documents (Hosseini, 2012); 2)

Portable Network Graphics (PNG) was developed in 1996 as a replacement to GIF,

which required license fees. In addition, it could support up to 24-bit color graphics

(Aguilera, 2006; Hosseini, 2012); and 3) Tagged Image File Format (TIFF) used to store

images, including photographs and is the most-popular raster file format. It is commonly

used as the method to store FAX rasterized output (Aguilera, 2006).

Lossy Compression

As stated above, lossy compression is utilized where there is data deemed not

relevant to the original or is less significant and therefore can be discarded without

seriously impacting the quality of the data upon decompression (Fitriya, Purboyo, &

Prasasti, 2017; Kavitha, 2016; Mahdi, Mohammed, & Mohamed, 2018). In compression

25

review articles, lossy has been associated with image, audio, and video file storage, as

well as with streaming transmissions (Kavitha, 2016; Smith, 2010). In discussing lossy

compression, Kavitha limited the applicable protocols to JPEG.

Joseph Fourier identified that in many cases, you could decompose functions into

sums of sine waves and frequencies. With an audio file, you can then drop the lowest and

highest frequencies that are outside the range of human hearing and save significant

space, without impacting the quality of the final audio output (Hosseini, 2012; Kavitha,

2016; Smith, 2010).

Fractals are geometric structures that appear similar at different scales. Fractal

compression relies on that feature and identifies segments of an image that are like other

segments, converting them into “fractal codes” which are used in reconstruction of the

encoded image (Smith, 2010). Having identified common, similar segments, fractal

compression needs only address the differences, thus obtaining significant compression

ratios. This makes fractal compression valuable for transferring large amounts of data, in

particular streaming services, such as NetFlix (Smith, 2010).

Lossy compression techniques usually fall within three areas: transform coding

(TC), discrete cosine transform (DCT), and discrete wavelet transform (DWT) (Kavitha,

2016). TC works best with audio signals or images and requires knowledge of the

application to determine what data can be removed. Although the result does not match

the original, the difference is insignificant. The result of a DCT is a sum of the cosine

functions at different frequencies. This approach is like Fourier transforms, except cosine

waves are utilized, as opposed to sine waves. Unlike DCT, DWT does not resemble

26

Fourier transforms, in that the signal is decomposed into a set of orthogonal wavelet base

functions (Kavitha, 2016).

The two main lossy compression algorithms are the Joint Photographic Experts

Group (JPEG) and the Moving Pictures Expert Group (MPEG)5 (Hosseini, 2012). JPEG

is aimed toward compressing images that can either be greyscale or up to 24-bit color.

JPEG offers several options, including adjusting the compression rate, the luminance

(brightness), the color saturation, and the hue Aguilera (2006). The Moving Pictures

Expert Group (MPEG) compression entails transforming a stream of discrete samples

(frames of a movie) into a bit stream of tokens. Using the fractal compression discussed

above, from frame to frame, only the differences are coded, along with any information

for any moving parts (Hosseini, 2012). Depending upon the application, the difference

between loss of audio/video quality will be based on the transmission speed or storage

size requirements. A modern compact disc (CD) can contain a maximum of 640 MB of

data (Mahdi, Mohammed, and Mohamed, 2012). This can hold only about one hour of

uncompressed high-fidelity music, two hours of compressed lossless music, up to seven

hours of music in the MP3 format, or approximately 200 hours of a voice recording.

Compressed Bitmap Indexes

Although compressed bitmaps are technically lossless compression and are

integral to the underlying algorithms utilized in the various lossless compression

techniques discussed above, when utilized as indexes, they have a very different purpose

than previously discussed. Various commercial relational database management systems

5 MP3 is a shortened version of MPEG-1 Audio Layer 3, so any reference to MPEG includes MP3. MPEG4
(MPEG-4) is a video decoding algorithm, a video codec. However, unlike MP3, MP4 is not an
“abbreviation” of any MPEG codec. Rather, MP4 is a media container format and that allows storing still
images, subtitles, video, audio, and other essential data (Dolina, 2021).

27

(RDBMS) utilize bitmap indices in read-only views in data warehouses, since they are

more efficient than other methods, such as binary trees. However, updates have been

shown to be more process intensive (Canahuate, Gibas, and Ferhatosmanoglu, 2007;

Chen et al., 2015).

The Byte-aligned Bitmap Compression method (BBC) abandons using run-length

encoded compression since it requires decompression to perform many database

functions. Rather, BBC is a byte-aligned, byte-sized bitmap that allows operations on the

compressed bitmap after a simple merge routine that only requires partial decompression

(Antoshenkov, 1995). BBC is very efficient, but only on data with low cardinality; it is

less efficient than uncompressed bitmaps for data with higher cardinality.

The Word-Aligned Hybrid (WAH) code provides for an improvement in logical

speed on the order of a magnitude over BBC. However, being word-aligned versus byte-

aligned, there is a small increase in the space (memory) required by WAH. Another

improvement over BBC is the ability to be applied to data with high cardinality (Wu,

Otoo, & Shoshani, 2002; Wu, Otoo, & Shoshani, 2006).

Update Conscious Bitmap (UCB) Indices can update the relevant bitmaps with

minimal increase in time. With previous methods, updating required access to all bitmaps

in the system and modification to those that are relevant. UCB only requires modification

of a single bitmap per indexed attribute, a significant savings (Canahuate, Gibas, &

Ferhatosmanoglu, 2007).

Run-Length Huffman (RLH) compression provides good query times while

maintaining compressed bitmaps. Instead of normal run-length encoding utilized by BBC

and WAH, the RHL compression algorithm utilizes a version of Huffman encoding, in

28

which symbols are replace with bit strings – the more-frequently occurring symbols are

associated with shorter strings (Stabno & Wrembel, 2009).

The Position List Word Aligned Hybrid (PLWAH) improves upon WAH by

repurposing bits that are never used by WAH to hold information for the set/unset bits of

a 0/1 run. This way, the compressed bits are half the size of WAH, lending to faster

processing (Deliège & Pedersen, 2010). Lemire, Kaser, and Aouiche (2010) presented the

Enhanced Word-Aligned Hybrid (EWAH) which 99.9% of the time, will not generate a

bitmap that is larger than the original, uncompressed bitmap. Another change is that

EWAH utilizes two types of words used to store the number of clean words and the

number of dirty words (Lemire, Kaser, & Aouiche, 2010). Colantonio and Di Pietro

(2010) present the Compound ‘n’ Composable Integer Set (CONCISE) compressed

bitmap index. When there are few bits set followed by a long sequence of unset bits, the

WAH compression approach was improved and a decrease in the size of the compressed

bitmap was achieved, sometimes up to 50% less (Colantonio and Di Pietro, 2010). Much

like with EWAH, the decrease compressed bitmap size led to performance improvement,

in addition to the space savings.

There are other variants of the WAH bitmap compression algorithm: the

Partitioned Word-Aligned Hybrid (PWAH) compression that utilizes compressed bit

vectors (van Schaik & de Moor, 2011); another variation introduces a new block type

containing “draggled fills” that can address dirty literals inside a fill. Unlike the other two

fixed-length blocks with WAH, the draggled fill block is variable length, based upon the

number of dirty literals it contains (Schmidt, Kimmig, & Beine, 2011). The Variable

Aligned Length (VAL) WAH (VAL-WAH) allows for setting the segment length prior to

29

running, as opposed to WAH that fixes the length to the size of CPU architecture word,

minus 1 – a 32-bit system would utilize 31-bit lengths, while a 64-bit CPU would utilize

63-bit segments. Depending upon the segment length, the encoding compression scheme

can change. In this way, the compression can be optimized by the user (Guzun,

Canahuate, Chiu, & Sawin, 2014). The one downside of this approach is that it requires

operator interaction to configure the system at run time, implying it might not be practical

as a background process.

The Roaring bitmap compression scheme partitions the space into chunks and

stores dense and sparse chunks differently (Chambi, Lemire, Kaser, & Godin, 2016). 32-

bit indexes are broken into chunks of 216 integers and separated into two different

containers – one for identical 16 most-significant bits and a different container to store

the 16 least significant bits. The containers are processed based on the container density.

If there are no more than 4096 16-bit integers in the container, a sorted array of packed

16-bit integers is utilized, otherwise, the container is stored using a 216-bit bitmap

(Chambi, et al., 2016).

Wu et al. (2016) presented a bitmap compression scheme in which the raw bitmap

indexes are divided into many bitmap snippets. Common affixes are then merged among

the various bitmap snippets. This approach is aptly named the Common Affix Merging

with Partition (CAMP) (Wu et al., 2016). Testing indicates that CAMP can create smaller

indexes when compared to Roaring, WAH, CONCISE, and the COMPressed Adaptive

indeX (COMPAX), although when density is greater than approximately 6%, Roaring

exhibits comparable storage requirements (Wu et al., 2016).

30

In 2016, Wen et al. introduced the MAximized Stride with Carrier (MASC). The

basis for MASC is the implementation of a new bitmap index coding scheme that would

exhibit improved compression ratios. Unlike PLWAH and COMPAX, MASC is not

limited to 31-bit runs. Rather, runs in MASC are as long as possible. Testing against the

CAIDA dataset6 indicate that MASC provides improved compression ratios of

approximately 10% (Wen et al., 2016).

The Compressing Dirty Snippet (CODIS) compression scheme was presented by

Zheng, Liu, Chen, and Cao (2017). It is based on WAH, but fewer bits are used to

represent the bit string while maintaining inter-bitmap operation efficiency. Using the

CAIDA 2016 dataset, comparisons were made to WAH, PLWAH, and COMPAX as to

file size, and four different performance times: encoding, decoding, unions, and

intersections. CODIS was the best in only decoding time. COMPAX required the

smallest file size, and WAH performed the best on the remaining three performance

evaluations (Zheng et al., 2017).

Network Compression

There have been attempts at compressing network traffic, with varying degrees of

success. In 2000, Spring and Wetherall presented a protocol-independent technique to

identify and eliminate redundant data from web content. However, their experimentation

was as a user-level process running on a PC and analyzing a static file, so there is no

indication whether this technique would truly be applicable in the enterprise to decrease

network traffic (Spring & Wetheral, 2000).

6 The Center for Applied Internet Data Analysis (CAIDA) is based at the Supercomputer Center at the
University of California San Diego. CAIDA currently supports a large number of datasets that can be
obtained from https://catalog.caida.org/search?query=types=dataset%20links=tag:caida%20.

https://catalog.caida.org/search?query=types=dataset%20links=tag:caida%20

31

Fusco, Stoecklin, and Vlachos (2010) presented COMPAX format that is

designed to perform on-the-fly compressing, archiving, and indexing of streaming

network data. There are two components in the process, an archiving backend to

compress the incoming data, and COMPAX, the compressed bitmap index. Their key to

decreasing the size of the compressed bitmap index is to use a codebook of just four word

types that are representative of streaming data (Fusco, Stoecklin, & Vlachos, 2010).

Kyriakopoulos and Parish (2010) describe an approach to compress time-based

monitoring and measuring metrics from high-speed network traffic, using wavelets. The

approach is considered lossy compression since some information is lost in the process.

Use of wavelets is not truly a compression technique. Rather, it is a method that

transforms the data into a different view of the data (Kyriakopoulos & Parish, 2010).

Wavelet compression shows a significant improvement in compression compared to Gzip

and Bzip2, but the approach was proposed for network monitoring and performance

measurements, not general network traffic (packet capture) compression.

Sardari, Beirami, Zou, and Fekri (2013) proposed a compression scheme to

decrease network traffic. Their approach was to utilize a form of memory-assisted

compression, where compression is performed based on previously seen sequences

residing in memory. To accomplish this, a content-aware clustering algorithm was

developed that grouped packets in memory that can be compressed. Sardari et al. (2013)

relied on individual nodes in a network learning the data statistics in network traffic to

aid in compression. There are possible problems with this approach. The content-aware

clustering uses the Hellinger distance metric. However, the authors state the algorithm is

too complex for real-time use and needs to be performed offline. They also tested using

32

captured packets from content servers. These two issues indicate that the concept is not

practical for large enterprise networks where there is a wide variety of high-volume

network traffic.

Wen et al., (2014) proposed a new bitmap index encoding algorithm to compress

network traffic for later analysis. SECOMPAX (Scope-Extended Compressed Adaptive

Index) is claimed to perform better compression ratios and faster encoding schemes than

other bitmap index compression algorithms. They performed experiments on an Internet

traffic dataset obtained from CAIDA. The results indicated improved compression rates

over other algorithms, although the encoding time took longer. Regardless, the Wen et

al., (2014) concept is another form of data compression that requires decompression of

the data for analysis, and not directly applicable to real-time analytical work. However,

for the proposed dissertation research, SECOMPAX might prove valuable for

compressing the known, repeatable sequences in the network traffic.

Genomic Data Compression

There has been a limited attempt to extend genomic compression techniques to

network traffic. Oehmen, Peterson, and Dowson (2010) presented a paper to equate

cyber-attacks to the evolutionary concept of survival of the fittest. The most effective are

reused and even improved by future generations. Historically, this has made detection

difficult – relying on a signature that now does not match the actual attack. To counter

this, the authors present a detection approach that utilizes genomic algorithms that

identify similar, although not exact strings. Thus, the authors claim to be able to identify

evolved, perhaps obfuscated attacks from their similarity to a previous attack, regardless

of mismatches, insertions, or deletions.

33

To evaluate this approach, Oehmen et al. (2010) utilized warning messages from

Windows Active Directory (AD) log files. Each message was mapped to a unique

character and a string of these characters was created from the messages over one day

from 508 servers. The average length of a text string was 10,561 characters; the genomic

analog would be 508 proteins with an average of 10,561 genes. The results were

promising in being able to show similarities between cyber entities without prior

knowledge. However, being based on warning messages from Windows AD log files,

limits the potential use to Windows networks and only network activity involving AD.

Loh, Baym, and Berger (2012) present a compression algorithm that takes

advantage of the redundancy that occurs in gene sequences. They replace the redundant

segments with links to those segments, such that only the pertinent differences are left

intact. Should they need access to the redundant portion during analysis, the link provides

ready access. Their justification for this concept is to reduce the extremely large volume

of genomic data that must be analyzed at any given time to a more manageable volume.

Loh et al., (2012) state that genomic data is doubling every four months, while according

to Moore’s Law, processing power and storage capacity are only doubling every 18

months, so some analytical method that can offset this disparity is critical. Although there

exist numerous compressive algorithms utilized in genomic research, they are solely for

saving storage space – the data must be uncompressed to be analyzed.

Loh, Baym, and Berger (2012a) provided more detail in supplemental material,

which is available from the journal website. Although this compression technique is

applied to a genomic database, it is applied sequentially as though there is an incoming

stream of DNA, similar to network traffic. During the read phase, the system builds the

34

main data structures: the unique database and the link pointers. The main issue is the

identification of redundancy. For this, they utilized a variation of BLAT (BLAST-like

alignment tool; BLAST: Basic Local Alignment Search Tool) to identify an acceptable

alignment between a sequence fragment and an existing reference in the database. That

portion is then replaced with a link to the reference with an edit script of the differences.

With only a small percentage of genes being different, this approach greatly decreases the

size of the database, while maintaining the ability to analyze directly.

In 2012, Oehmen, Peterson, and Teuton expanded upon the Oehman, Peterson,

and Dowson (2010) paper. As in their earlier paper, the evolutionary aspects of cyber-

attacks are discussed and the researchers state that cyber attackers change their

approaches “more rapidly than our ability to recognize them” (Oehmen et al., 2012). On

the surface, that is a true statement, but modern intrusion detection systems have

combined signature and anomaly detection modules. So, although the signature may

change, the anomaly detection module could very well detect the attack. However, if the

new attack is an obfuscated version of a previous attack, the adoption of biological

modeling techniques might be of benefit. Not only should their approach be able to

identify a new attack but could possibly determine the type of attack based on its family.

A misleading statement made in the Oehmen et al. (2012) paper is that attackers

can probe detection systems to determine what types of attacks can be identified. That is

not totally accurate – a critical cybersecurity control is to ensure that discovery is turned

off on network devices and default usernames and passwords are changed so that

attackers cannot log onto these devices either (NIST SP 800-53r5, 2020). Thus, a probe

would not yield any important information. In fact, by probing the IDS, that action itself

35

could trigger an anomaly event. So, the premise of Oehmen et al. (2012) for

recommending that detection systems become moving targets is not particularly

warranted.

Regardless, the approach by Oehmen et al. (2012) of using genomic algorithms

for evolutionary gene sequence drift to detect similarities in network traffic, software

execution, or event files is promising. However, what is not clear is the real-time

capability. The approach involves analysis of audit logs or software code, neither of

which is particularly read as a time series. This approach is thus more closely

representative of the underlying genomic algorithm that is designed to work on gene

sequence databases. As with the approach by Teuton, Peterson, Nordwall, Akyol, and

Oehmen (2013), Oehmen et al. (2012) are forcing the cyber events being analyzed to fit a

gnomic model. In this case, similar events are mapped to a single character and then

ScalaBLAST is used to identify families. With a limited alphabet required by

ScalaBLAST, the scope of detection capabilities could be restricted. Regardless, the

possibility of identifying similar, malicious sequences that do not match a known

signature is a valuable tool for cybersecurity.

Teuton, Peterson, Nordwall, Akyol, and Oehmen (2013) presented an approach to

detect malicious actions, by applying compression techniques developed for analyzing

extremely large gene sequencing datasets. The approach allowed them to discover traffic

signatures dynamically and detect anomalies without resorting to expert-defined

signatures. Their system, called LINEBACkER (they do not define that acronym, in this

paper nor any of their earlier published papers), utilizes a variation of BLAST (Basic

36

Local Alignment Search Tool) to discover patterns in network traffic: ScalaBLAST is the

standard BLAST program recompiled to utilize multiprocessing.

One justification for selecting genomic techniques, is that antivirus models

require having signatures of known malicious actions, which may or may not match the

current patterns. Standard endpoint security programs are only effective on their host and

cannot be applied to general network traffic. However, gene searching algorithms look

for related sequences, not exact matches (Teuton et al., 2013). Thus, they can find attacks

that are designed to defeat a signature-based system through obfuscations – insertions of

extra commands or pieces of superfluous data.

The implementation displayed promising results. However, Teuton et al. (2013)

forced network traffic to conform to the FASTA file format, used in genomic research.

The problem with that is the “alphabet” is extremely limited, in this case, to 14

characters. To accomplish this, they mapped pieces of the packet using a custom mapping

table, which was not provided. The results from ScalaBLAST are then clustered using a

greedy hierarchal nearest neighbor algorithm to identify groups, or signatures of network

traffic sequences. The authors state that these dynamic signatures can be used to identify

traffic that can be allowed or should be blocked and is easier to maintain than either

black- or whitelists. However, since the approach by Teuton et al. (2013) is based on

URL and content, it cannot distinguish between authorized and unauthorized users, only

where the URL or content is allowed or not.

Approximate Matching

A key component of the Loh et al. (2012) work is the performance of approximate

matching of gene sequences. However, as has been discussed, mimicking this class of

37

matching algorithms, such as presented by Needleman and Wunsch (1970) and Smith and

Waterman (1981), would be too restrictive being designed to work on a DNA sequence,

which is made up of stings of 20 different amino acids, that are comprised of three

nucleotide pairs (Smith, 2008). Rather, network traffic is comprised of an unsigned

character string, that contains 256 possible values, counting zero.

In 1950, Richard Hamming presented a method to determine the number of

changes required to turn one string into another string, on a character-by-character basis

(Hamming, 1950). This was a simple algorithm but was only practical for strings of

identical length and was based solely on position in the string (Korstanje, 2020).

In 1965, Vladimir I. Levenshtein introduced an algorithm that identifies the

difference between two strings by determining the minimum number of single-character

insertions, deletions, or substitutions required to change one string into the other. The

calculated difference is referred to as the edit distance and was an indication of the

number of changes necessary to transform one string into another string (Levenshtein,

1966). In literature and in usage, edit distance is now referred to as the Levenshtein

distance and is the total number of insertions, deletions, or substitutions required (Wu,

2021). A variation on the Levenshtein distance is the Damerau-Levenshtein distance,

which include single character transpositions to occur – adjacent characters are reversed

in performance of the transformation.7

 There are two main advantages to the Levenshtein distance over the Hamming

distance: 1) the Levenshtein distance is not position specific, so the matching portions

7 Although this variation is attributed to Damerau, an exhaustive literature search has not identified any
publications by Damerau on this variation, nor any publications that attribute this to him. Regardless, the
inclusion of transpositions into the Levenshtein distance is associated with him.

38

can occur anywhere in either string; and 2) the Levenshtein distance works on strings of

different lengths, compared to the equal-length string restriction of Hamming (Korstanje,

2020). Although both these algorithms are relatively simple, they rely on maintaining a 2-

dimensional array where the first string is across the x-axis and the second string down

the y-axis. Although this is not too memory-intensive for strings of reasonable length, it

is not the most-efficient approach for longer strings (KokiYmgch, 2018).

Hirschberg (1975) solved the space issue with a new approximate matching

algorithm based on the Divide and Conquer algorithm. The large matrix is divided into

smaller matrices where there is a single position used to pass between them. As the

algorithm finds the smallest value in the two matrices, another piece of the larger matrix

is added and calculation resumes. This subdividing continues until the entire range of the

matrix has been covered, yielding the result (Hirschberg, 1975; KokiYmgch, 2018).

Although this algorithm can thus more-easily handle larger matrices (longer strings), it is

much more complex and requires recursion that could lead to stack overflow on very

large strings, so may not be a candidate for this research.

Summary

Cybersecurity professionals agree that obtaining and maintaining audit files (logs)

is a critical effort in combating cyber threats (Marker, 2021; Shopp, 2020). These files

not only assist in identifying malicious, unauthorized activity (OWASP, n.d.; Scarfone &

Mell, 2007), but can also be used to reconstruct the step-by-step approach involved in the

unauthorized activity (Kent et al., 2006). However, due to the extremely large sizes audit

files can reach if required to maintain for any length of time, there has been a concerted

effort to identify insignificant data that can be discarded. One approach taken was the use

39

of network flows – the sequence of network packets between a source computer and its

destination utilized (Claise, Trammell, & Aitken, 2013; Kerner, 2021; Petryschuck,

2019). However, many IP flow systems exclude the payload to say space, and that

removes any ability to trace steps, determine the purpose of the attack, or determine what

information is being transferred (Alaidaros and Mahmuddin, 2017).

Another approach was to develop more-efficient compression algorithms with

higher compression rates to decrease the file sizes. Unfortunately, to analyze the data for

malicious behavior requires decompressing the data back to its original, large size (Loh,

Baym, and Berger, 2012). Therefore, a system that not only can reduce the size of the

stored files but can reduce the size of the data itself, would be a benefit to cybersecurity

professionals.

40

Chapter 3

Methodology

Overview

Since 2016, internet traffic has been doubling every two years such that it is

expected to be 178 billion gigabytes in 2022 (O’Dea, 2020). This growth has had a

comparable growth in cybercrime, estimated to approach $8 trillion in 2021 (Embroker

Team, 2021). Although there are many forms of cybercrime (FBI, n.d.), this research is

mainly concerned with the impact of long-term attacks, such as APTs, and the

requirement to maintain audit log files for an extended period of time. The NIST Special

Publication 800-39, “Managing Information Security Risk,” defines the APT as those

attacks that pursue their objective repeatedly over a long period of time; adapt its

approach to defense efforts; and are determined to execute its objectives (NIST SP 800-

39, 2011). These and other malicious attacks can occur over weeks and even months.

Detection requires analysis of the network traffic over the life of the attack, the sheer

volume of which can make the problem intractable. To be able to gain insight into APTs

and other long-term attacks requires access to audit log files generated over the period of

the attacks.

In 1997, NIST published a bulletin that summarized a chapter in the NIST SP

800-12, “Introduction to Computer Security: The NIST Handbook.” This publication was

devoted to the need and importance of creating audit trails (audit logs) for IT systems

41

(NIST ITL Bulletin, 1997). The bulletin describes an audit trail as consisting of records

of system events concerning the operating system, the users, and the functioning of any

applications. The purpose of the audit trail is to assist in determining whether systems

have been harmed by insiders, hackers, or even technical problems. The audit trail can be

used immediately with access controls to identify possible malicious activity, or

maintained for future analysis after a system outage (NIST ITL Bulletin, 1997). To this

day, cybersecurity professionals agree that it is essential to collect and maintain audit

files (audit trails) in order to ensure accountability, determine who is accessing a

network, the applications they are using, any activity that could impact the security

posture of the enterprise, and allow for reconstruction of events after a problem has

occurred (Marker, 2021; Shopp, 2020; NIST ITL Bulletin, 1997). Although there are

many types of audit logs, it is the audit logs comprised of Ethernet packet captures

required by network intrusion detection systems (NIST SP 800-94, 2007) that are the

subject of this research.

In the Introduction, it was calculated that an organization could generate upward

of 90 petabytes of audit log files per year. From a simple storage standpoint, standard

compression techniques decrease the size of these files by as much as one-fifth of the

original data file size, based on testing of a 6.4 GB Compact Muon Solenoid (CMS) data

file (CERN, n.d.) which contained 6500 events (Zheng & Bockelman, 2017). The authors

tested different compression algorithms, including versions of the ZLIB (Zip

Compression Library), LZ (Lempel-Ziv), and LZMA (Lempel–Ziv–Markov) algorithms

against the CMS file. The best results were obtained with LZMA-9, achieving a

compression ratio of 5.29; the lowest compression ratio of 2.95 was achieved by LZ4

42

(Zheng & Bockelman, 2017). A method of compressing and storing a large percentage of

the data in offline files, while maintaining keys that can be updated and searched in real

time would greatly decrease the resources required to store and analyze audit files and be

a valuable tool in fighting cybercrime. However, that ability is not within the scope of

this research, only the feasibility of applying genomic compression techniques to network

traffic, specifically Ethernet packets with data segments.

Development Considerations

Conceptually, the implementation of genomic compression techniques to network

traffic is straight-forward. However, development of any solution is dependent upon an

ability to test and validate the solution, so a suitable dataset is paramount. To identify a

suitable dataset, it was necessary to identify the scope of network traffic that could be

compressed by the new technique, and then the identification of an appropriate dataset.

Network traffic follows a layered service model. The original model development

led to the ISO 20000 Open Systems Interconnection (OSI) model, which presents

network traffic as seven different layers: physical, data link, network, transport, session,

presentation, and application layers (Kurose & Ross, 2007). Packet capture programs,

such as Wireshark utilize a 4-layer Transmission Control Protocol/Internet Protocol

(TCP/IP) model: 1) network access layer, comprised of the data link OSI layer – the

physical layer is not included; 2) internet layer, which is comparable to the OSI network

layer; 3) transport layer, identical to the OSI transport layer; and 4) application layer,

comprised on the application, presentation, and session OSI layers (Ghosh, n.d.). Not

having the ability to test directly on a large network with hundreds or thousands of users,

the research was performed utilizing packet capture files. Going forward, all references to

43

layers will be to the appropriate TCP/IP model and not the OSI model, unless explicitly

noted.

Although there are methods to replay captured packets (Colasoft, n.d.; Nanni,

2020; Tcpreplay, n.d.), there are potentially significant development issues in their

implementation. Besides obtaining, installing, and configuring the replay tool, a method

of capturing the replayed packets for testing the compression technique would be

required, to the exclusion of all local traffic. These are not particularly onerous tasks, but

the only purpose for the replay approach would be to show the ability to process in real

time. Since the main intent of this research was to develop a packet compression process

utilizing genomic compression techniques, if this proved unsuccessful, the processing in

real time would be moot. Therefore, this additional complexity was determined not to be

valuable. Instead, simply capturing packet times and comparing to runtimes provided an

indication of the ability of the approach to compress packets in real time. Therefore, it

was decided to utilize the Npcap library (Npcap, n.d.) to open and read through the data

sets, thus providing better control of the process.

Another concern involved the issue of the IPv4 versus IPv6 protocols. According

to the Internet Society, in 2018 over 25% of internet-connected network advertised

connectivity utilized the IPv6 protocol (ISOC, 2018). However, the research solely relied

on IPv4 traffic for one simple reason, the major datasets available for testing are only

IPv4 traffic. No matter whether the protocol is IPv4 or IPv6, that only impacts the

Internet protocol itself – there is no impact to the transport and application layer

protocols. Although synthetic IPv6 data could be generated, or the IPv4 dataset modified

44

for IPv6 format, the difference would have no impact on the success of the genomic

compression technique.

As was previously mentioned, packet capture programs work on the TCP/IP, 4-

layer model. To maximize compression, parsers were developed for the most-common

protocols that include substantive data. The initial development created the main

program, the Genomic Network Compression System (GNCS), which opened a PCAP

file, read the packets, and would pass to appropriate modules to perform further

processing. To determine the scope of the parser development, the next step was to read

through the dataset, capture the total of each internet layer and transport layer protocol

encountered. Although application layer traffic could be processed individually, since

their formats are really variations of the transport layer packets; the differences were not

considered significant enough to warrant additional parser development. Thus, the main

program consisted of reading packets from the dataset, switching on internet layer

protocols, then switching on transport layer protocols to determine the appropriate parser

to use. It is in the transport layer parser where the genomic compression technique was

implemented.

Parser development involved the application of genomic compressive techniques

to minimize the volume of data required to uniquely define the packet. Genomic

compression techniques are based on the knowledge that only a small percentage of gene

sequences are different between members of the same species (Loh, Baym, & Berger,

2012). Therefore, sequences of the data that are equal to or comparable to a known

sequence are identified and replaced with a link to that known sequence along with an

edit script identifying any differences. In the case of network traffic, this involved

45

identifying what packet data is common and would lend itself to this type of

compression.

At a basic level, this research resembles network flow. In the development of the

IP Flow export protocol, Claise, Trammell, and Aitken (2013) defined a network flow as

the data stream between source and destination computers. At a minimum, a traditional

IP flow consists of the 5-tuple source and destination IP addresses and ports, and the

protocol. With protocol-specific parsers, this research only required a 4-tuple key,

comprised of the source and destination IP addresses and ports. The basic function of a

network IP flow device involves capturing packets, aggregating the flows based on the 5-

tuple value, and exporting the flows to a collector (Petryschuk, 2019). Flow devices

follow rules to determine when a flow has ended and is to be exported: 1) when the finish

(FIN) or reset (RST) TCP flags are set; 2) a configurable time after receiving the last

packet of an existing flow has elapsed, typically15 seconds; 3) a maximum time after the

flow record was created has been exceeded, default of 30 minutes; or 4) when the flow

cache is full (Estan, Keys, Moore, & Varghese, 2004). Although the research

compression algorithm utilized packet aggregation, during the process of flow creation,

the genomic compression technique allowed for common packet data to be replaced with

a link, while the common data was stored offline. However, unlike common archiving

compression techniques, this research algorithm is considered a lossy compression

technique, in that there is certain information in network traffic that is redundant or not

required for analysis. This common data was stored once, and duplicate information

discarded.

46

One issue that can impact future analysis of audit log files is the effect of DHCP

which assigns IP addresses to their users’ workstations on an as-required basis

(Weinberg, 2022). Although systems can be assigned a fixed (static) IP address or they

may be repeatedly assigned the same IP address, it is more likely that over a several

month period, that a user’s workstation will be assigned multiple IP addresses. Therefore,

the IP address cannot be reliable, since there is no guarantee that it belongs to the same

user as the last time analyzed. In normal network traffic, the source and destination

network device media access control (MAC) addresses are available in the network

access (data link) layer frame data (Harmoush, 2019). MAC addresses are unique to a

single device, so it is theoretically possible to trace a packet back to a single device and

thus a single user. This sounds easier than it is. MAC addresses are used for hop-to-hop

traffic, meaning the destination MAC address is that of the next “hop” (switch/router) in

the path and the source MAC was the previous hop. To reach the ultimate destination, at

each hop, the switch must determine the next hop, based on the IP address.

Unfortunately, as will be discussed later, some datasets do not contain full network

access layer information. Wireshark was used to analyze the candidate test datasets and it

was identified that some did not contain any network access layer data, some partial, and

some contained a complete network access layer header (Wireshark, 2020). With real

network traffic, if the source IP is a member of the enterprise, the source MAC address

would represent the source system and could be used in correlation analysis. However,

whether DHCP was utilized on the network capturing the test data is immaterial, since

the research compression technique was based on the Transport Layer protocol, and there

was no further analysis performed correlating the data flows over time.

47

The main function of GNCS was rather simple, utilizing the Npcap library

(Npcap, n.d.). After opening the PCAP file, it was a straight-forward process of reading

through the file, packet by packet, extracting the internet protocol from the network

access layer and calling the appropriate protocol parser, passing the packet as an unsigned

character string. After the last packet was processed, the main program finished by

combining the working files into the final output file and saved the processing statistics

for comparison to other techniques.

The development of each parser followed a common approach: extract parser-

specific (protocol-specific) data and apply genomic compression techniques, where

appropriate. For example, in parsing the major transport layer protocols, the payload was

a perfect candidate for genomic compression techniques. However, with request/reply

protocols, the only possibility would be matching requests and replies – there is no

payload. The worse contributors to compression ratios were the unsupported protocols

(those without a data segment), where the entire frame/packet was stored as-is, without

benefit of the genomic compression techniques.

Development Resources

All programs of GNCS were developed in ISO C++ 2014 Standard for possible

portability to other platforms. All programs were standard console applications developed

using Microsoft Visual Studio 2022 Professional. The Npcap library was the only non-

Microsoft library utilized in development. There were two publicly available tools

utilized for development/debugging purposes. The first was the 64-bit Windows version

of Wireshark (Wireshark, 2020). This aided in debugging by seeing what data was in a

packet and ensuring it was being handled correctly by the program. The other application

48

was the hex editor, HxD Hex Editor (Hörz, M., 2020). This application allowed for

opening both the PCAP dataset file to actually see the raw data, and also opening any of

the intermediate or final output files to debug any issues with the file structures.

Development occurred on two different systems, a desktop and a laptop. The

desktop system is a Dell XPS 8700 with an Intel® Core™ i7-4790 CPU running at 3.60

GHz, 24 GB DDR3 RAM (1333 MHz), and a one (1) TB Samsung 850 EVO SSD

running Windows 10 Pro. The laptop system is a Dell XPS 9520 with an Intel® Core™

i9-12900HK CPU running at 2.50 GHz, 32 GB RAM, and a one (1) TB SSD running

Windows 11.

Testing required an appropriate Ethernet dataset containing IPv4 packets. There

are two approaches possible, use of an existing dataset versus creation of a synthetic

dataset. The later was deemed impractical due to the nature of the genomic compression

algorithm itself. The various headers required by the Ethernet protocol are short and

compact and are therefore of insufficient length to efficiently utilize the genomic

techniques. It is the data segment of the application layer that can benefit from

compression. To prove the validity of the approach requires a large amount and variety of

data segments, something that would be a project itself. Therefore, it was determined that

use of an existing dataset would be preferable.

Dataset Analysis

A simple internet search showed there are many packet capture datasets available

for various purposes. In many cases, these are small; limited in scope (number of layers

and protocols), or through anonymization, the payloads have been stripped. NETRESEC

AB is a Swedish software developer that specializes in products designed to perform

49

network security monitoring and network forensics. NETRESEC AB also maintains a

comprehensive list of publicly available PCAC network capture files, available from their

website (https://www.netresec.com/). Of the numerous available datasets, two groups

stood out as promising test dataset candidates:

1. Starting in 2005, the National CyberWatch Center began hosting the Mid-

Atlantic Collegiate Cyber Defense Competition (MACCDC), in which

students from different universities act as Blue Team members to protect a

corporate network from attack by a Red Team made up of volunteers from

industry and academia. The network captures for the annual competitions

between 2010 and 2012 were downloaded for analysis (MACCDC, 2012).

2. The Institute of Electrical and Electronics Engineers (IEEE)

Communications Society (ComSoc) has been a sponsor of the Military

Communications Conference (MILCOM) since its inception in 1982. At

MILCOM 2016, Bowen, et al. presented a paper that described the

development of four synthetic datasets that included cyber exploitations

for use in cyber security research (Bowen, et al., 2016). In order to better

determine the potential testing value of these datasets, the download page

also included a detailed description of five datasets based on the Bowen, et

al. (2016) research, as well as supplemental material

(https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-

E_Descriptions.pdf).

The internet search also provided another source of datasets from the School of

Engineering and Information Technology, University of New South Wales at the

https://www.netresec.com/
https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-E_Descriptions.pdf
https://download.netresec.com/pcap/MILCOM-2016/Datasets_A-E_Descriptions.pdf

50

Australian Defense Force Academy, Canberra, Australia. The UNSW-NB15 network

datasets were compiled by Moustafa and Slay (2015) and are hybrid combinations of

real-world network traffic that were modified with some synthetic data for testing

intrusion detection systems.

The first program-specific tool developed was a small program that opened a

PCAP file, walked through it packet by packet, while compiling the total of network,

transport, and application layer protocols within the PCAP file, with special attention to

available data segments (payloads). This small program was instrumental in determining

the viability of a dataset for compression, as well as identifying the scope of the protocol

parsers that would be required.

The application of genomic compression techniques is proposed to be applicable

to any network traffic. Since the intent of this research is to show the feasibility of this

technique to reduce the size of the network traffic audit/log files, it was beyond the scope

of this research to include a wide variety of possible datasets. Rather, the intent was a

proof of concept, which requires a dataset representative of real-world network traffic.

Another consideration in the evaluation of the candidate datasets is the size and

composition of those datasets. As has been discussed, the genomic compression

technique needs a sufficient volume of data to be practical – the more data there is, the

higher the likelihood of finding similarities. Therefore, datasets with less than 1,000,000

packets were eliminated from consideration.

Appendix B provides a detailed analysis of 68 identified datasets, the results of

that analysis, and the datasets that were determined to contain sufficient data to test the

feasibility of applying genomic compression techniques to network traffic. Out of those

51

68 candidate datasets, all but two datasets were eliminated from consideration, and

testing was therefore limited to the UNSW-NB15 17-2-2015 dataset (Moustafa and Slay,

2015) and the MACCDC 2012 dataset (MACCDC, 2012). Although neither dataset is

solely a capture of normal network traffic, the packets presented were complete and

included significant payloads for standard protocols. All further analysis was limited to

just the selected datasets. Hereinafter, the UNSW-NB15 17-2-2015 dataset will be

referred to as the UNSW-NB15 dataset and the MACCDC 2012 dataset as the MACCDC

dataset, unless further distinction is required.

Parser Development

The first level of parsers was determined based on the Ethertype values in the

network access layer headers. The Ethertype is stored in the Ethernet packet as a 4-byte

unsigned integer (Networx, n.d.), and although there is a theoretical maximum of 65,535

possible Ethertype values, most of these are proprietary (IANA, 2022; Nobel, R., 2018).

The more-common registered Ethertypes are 0x0800 (IPv4), 0x0806 (ARP), 0x8035

(Reverse ARP, or RARP), 0x8100 (VLAN – IEEE 802.1Q), and 0x86DD (IPv6)

(Networx, n.d.). The actual internet layer parsers developed were determined through the

analysis of the candidate datasets. Table B7 in Appendix B shows the occurrences of

Internet Layer protocols in the various candidate datasets. In particular, the two selected

test datasets (MACCDC 2012 and UNSW-NB15 17-2-2015) had IPv4 and ARP in

common, making them candidates for Internet Layer parsers. ARP is a messaging

protocol, in that one system requests information from another system or systems, which

reply with the requested information. However, with these request/reply message

protocols, the only possibility would be matching requests and replies – there is no

52

payload. One aspect of genomic compression techniques is replacing common data

segments with links. Therefore, an Internet Layer parser was developed for ARP to

determine the feasibility of its application to message protocols.

The next level of analysis was to identify transport layer protocols that possessed

a data segment of sufficient size to take advantage of the genomic compression

technique. Without developing parsers for every possible transport layer protocol, the

analysis was geared toward capturing not only the various protocols, but also the size of

the packet (minimum, maximum, and average), as well as the size of any contents beyond

the transport layer header. Only those protocols that contain a sufficient data segment

were candidates for parser development.

Analyzing the Transport Layer results from Appendix C, Table C8A for

MACCDC and Appendix D, Table D5A for UNSW-NB15 shows that there are a total of

seven (7) Transport Layer protocols utilized between the two selected test datasets: 0x01,

Internet Control Message Protocol (ICMP); 0x02, Internet Group Management Protocol

(IGMP); 0x06, TCP; 0x11, User Datagram Protocol (UDP); 0x58, Kerberos; 0x59, Open

Shortest Path First (OSPF); and 0x84, Stream Control Transmission Protocol (SCTP).

However, except for TCP and UDP, the other protocols not only had an insignificant

amount of data, but their occurrences within the datasets were a fraction of one percent.

With the research goal of proving the efficacy of the genomic compression technique

with network traffic, due to these limitations, these minor protocols were not deemed to

be candidates for parsers. Therefore, TCP and UDP were the only Transport Layer

protocols proposed for parser development.

53

As has been discussed earlier, due to the very nature of the proposed research, it

was not practical to address all possible protocols, since only packets with a data segment

were candidates for compression. Therefore, instead of expending a significant effort and

significant resources required to create parsers for these protocols, the unsupported

packets were saved as-is, to audit the output file to ensure every packet was processed.

However, to evaluate the impact of the genomic compression technique itself, data was

gathered pertaining to the packets with usable data to determine the original and

compressed record sizes, thus ignoring the negative impact of the unsupported protocols.

To support this, another tool that was developed analyzed the completed interim data files

and the final output file, to ensure all packets in the PCAP dataset were captured. The

final output file is a conglomeration of multiple parser files, and as such, it was important

to be able to ensure it was structured correctly and represented all packets captured.

Throughout development, the output of this analysis tool also provided debugging

information through comparison with the actual packets, as viewed in Wireshark.

Internet Layer Parser

This was a simple parser and was implemented as part of the main PCAP packet

read loop. A Npcap function reads each packet and presents it as a hexadecimal character

string. It is a simple matter of extracting data according to the packet format. Upon

reading a packet, the program walks the string, extracting protocol header information as

required. The internet parser stops after extracting the network layer, and calls the

appropriate parser, passing the remainder of the unsigned character string for further

extraction. Upon return from one of the internet layer parsers, the main program

continues the read loop through the PCAP file. If the last packet has been reached, the

54

main program saves all run statistics and consolidates all the interim files into a final

compressed file.

ARP Parser

ARP is an example of a protocol without significant data and is discussed here to

show how elimination of duplicate data reduced the size of the resultant file. In practice,

ARP requires the exchange of messages between the source and destination devices and

is used to identify the MAC address associated with a given IPv4 address. The

communication is a pair of packets consisting of request and reply packets (The TCP/IP

Guide, 2005). RARP utilizes virtually the same format as ARP and performs the opposite

discovery – obtain the IPv4 address associated with a given MAC address. The main

purpose is for diskless systems to obtain their IP address at boot time. However, that

protocol has been superseded by either the Bootstrap Protocol (BOOTP) or the Dynamic

Host Configuration Protocol (DHCP) (IONOS Digital Guide, 2019). For those

devices/applications that still utilize RARP, the parser will check for the possibility. The

difference is in the opcode: ARP utilizes 1 and 2 for request and reply, while RARP

utilizes 3 and 4 for the request and reply (The TCP/IP Guide, 2005).

Although the goal of the research was to determine the efficacy of the genomic

compression techniques on network traffic, request/reply message formats can take

advantage of one of the underlying precepts of the genomic compression technique –

reduce duplicate data by referencing once. Therefore, a parser was developed for the

ARP packets to identify the magnitude of possible data space savings that could be

obtained for request/reply message protocols. The ARP parser maintained an index of

packets read from the PCAP file in a balanced binary search tree (BBST). When the reply

55

to a specific request is read, the two associated packets are combined into a single record.

Since much of the data is duplicated in the request and reply packets, there really was no

data to be archived and linked, so a merged packet was created with additional

information to identify the request and reply data points. This combined record was then

written to the ARP intermittent file and the request packet was removed from the BBST.

Although this record format was not ideal for maximizing compression ratios, any

decrease in the amount of data to be retained, by default, will improve compression

ratios. This also provided an indication of potential data savings for other request/reply

message protocols.

IPv4 Parser

Like the ARP parser, the IPv4 parser is called by the internet layer parser. passing

the remaining unsigned character string (packet data). This parser continues reading the

packet string and extracting IP header data, the critical data fields being the transport

layer protocol and the source and destination IP addresses. At this point, the parser

continues processing dependent upon the transport protocol involved. The two most-

common transport layer protocols with a significant data segment are TCP and UDP.

Transmission Control Protocol (TCP) Parser

TCP is a connection-oriented, reliable data transfer service. It is connection-

oriented because the source and destination systems perform a handshaking to establish a

full duplex connection that allows simultaneous communication. It is reliable because the

communicating systems are assured that TCP will transfer all data without error and in

the correct order (Kurose & Ross, 2007).

56

After the remainder of the IP header is extracted, the TCP header is next. The first

two data elements extracted are the source and destination ports, completing the 4-tuple

key. Next the sequence and acknowledgement numbers are extracted, the former required

for proper reconstruction of the data if the data is fragmented and covers multiple

packets. The next important data point is the header size, sometimes referred to as the

data offset since this data point is used to determine where the actual data begins. The

next important data elements are the flags. There are nine 1-bit flags, but according to

RFC 8311, the first flag, NS, is experimental and thus not germane to this research

(Black, 2018). Therefore, that bit can be ignored, and the remaining flags extracted as an

unsigned 8-bit integer. Of the eight flags, the only flags that directly impacted the

compression process were the Acknowledgement (ACK), Reset (RST), Synchronize

(SYN), and Finish (FIN) flags. The other three flags, Congestion Window Reduce

(CWR), ECN-Echo (ECE), and Urgent (URG) flags pertain to various aspects to

transmission and reception, but do not really impact the compression process, so were

ignored. At this point, all pertinent data was available.

The first step was to determine if the packet is the beginning of a new flow or a

continuation of an existing flow. The 4-tuple key is stored in a BBST. This structure was

chosen for two reasons: 1) being self-balancing, the tree can theoretically hold

2,147,483,649 (231+1) nodes. This was important, because the initial design utilized an

unbalanced binary search tree and walking that tree caused stack overflow errors.

Although the default stack size is 32 and can be increased, the second reason was the

deciding factor; 2) operations on binary search trees are proportional to the height of the

tree. Balanced trees are more efficient than unbalanced trees since they minimize the

57

height, and thus fewer comparisons are required to locate an existing node or where a

new node should be inserted (Elgabry, 2017). The key used for the BBST was the source

IP, destination IP, source port, destination port, with the IP addresses represented as

unsigned, 32-bit integers and the ports as unsigned, 16-bit integers. A node of the BBST

consists of the key and a pointer to a packet structure that contains the common data

elements of a data flow, plus pointers to the node to the left and the node to the right, and

the value of the height in the tree of the node that is used to balance the tree. The last key

data point in the packet structure is a link to the data.

The next development issue pertained to collecting and subsequent aggregation of

data segments. If the reception of packets at the destination were guaranteed to be in

sequential order, a simple list could be utilized to keep track of the data segments,

However, order is not guaranteed, so a mechanism to efficiently identify the location of

the received data segment is required. To accomplish this, data is stored in a doubly

linked list based on the sequence number, maintaining the last insert value as the starting

point for the next insert. If packets are received in order, the new data segment is

appended to the end of the list. In the case of a packet being received out of order, instead

of starting at the beginning and walk the list to find the proper location, which would be

required for a simple list, the insert function searches the list from the last insert location

until the proper location for the new data segment is identified and it is inserted; the

direction of searching based upon whether the sequence number of the latest packet is

greater than or less than that of the last inserted packet.

There are several scenarios that identify the beginning of a flow and trigger the

end of flow, and the details were covered previously. The SYN flag identifies the

58

beginning of a flow. If there was already a flow in progress for the 4-tuple key, by the

very nature of the TCP hand shaking, the previous flow was considered orphaned, closed,

and processed as complete. A new flow would be started with the SYN packet. If a RST

flag was received, the existing flow was again considered orphaned, closed, and

processed as complete. If a FIN flag was received and there was an existing flow, it was

considered complete and processed. If a FIN flag was received and no flow existed, the

single packet was considered orphaned and processed as complete. Although a timeout

period was discussed, since this research was utilizing a finite set of internet packets, the

timeout processing was not implemented. Rather, after the last packet was read, all open

flows were considered “timed out” and processed as complete.

The remaining impact to the TCP parser was duplicate packets. Pentikousis et al.

(2010) performed an analysis on network traces from the National Laboratory of Applied

Network Research Passive Measurement and Analysis (NLANR/PMA). This analysis

determined that in the various traces in the dataset, retransmissions of TCP packets

ranged from 0.48% to 3.6%, with an average of 2.4% (Pentikousis et al., 2010). The

parser was designed to identify duplicate packets – retransmissions. Upon detection, the

data segments are compared and if there was a difference, the original record was

replaced with the retransmission record and a duplicate record of the original packet was

created for future reconstruction integrity. A true duplicate record was saved as a very

simplified record in which a link to the original packet was saved along with the

timestamp of the duplicate, and the remaining duplicate packet data was discarded.

59

User Datagram Protocol (UDP) Parser

UDP is a connectionless protocol – there is no handshaking before the message is

sent. UDP is used by computer applications to send messages (datagrams) to other

computers on a network but is considered unreliable since there is no guarantee that the

message was received (Kurose & Ross, 2007). Therefore, unlike TCP, there are no

sequence and acknowledgement numbers to identify the packet order. Rather, UDP

packets are processed in the order in which they are received, regardless of the impact to

the receiving program of out-of-order data. All this makes UDP a simple protocol. After

the IP header, the UDP format consists of five data fields, the source and destination

ports, the UDP length (includes both header and data), a checksum, and the data. Each

packet stands on its own, so in the case of a streaming application, such as Voice over IP,

there is no way to know when the communications end, other than no further packets are

being received. Since a UDP packet could be either a complete message or a streaming

service, the various datasets were analyzed for UDP port usage to determine the extent of

single packet protocols (message formats) versus a streaming service. UDP packets were

collected based on the 4-tuple key discussed above and analyzed for commonality. If

there was an insignificant percentage of UDP traffic in a dataset utilizing protocols

requiring multiple packets, as opposed to single packet messages, the dataset was deemed

not compliant with the requirements for the genomic compression algorithm. Except for

the Trivial File Transfer Protocol in the UNSW-NB15 dataset, all other reserved or

assigned ports are utilized by messaging protocols. Therefore, the only applicability of

genomic compression techniques would be those situations where the data segment of the

single packet was sufficiently long to warrant an edit script. In those cases, the genomic

60

compression algorithm would be applied, where feasible. If not successful or the data

segment is of insufficient length, the UDP traffic would be saved as is.

Compression Algorithm

The genomic compression algorithm developed by Loh, Baym, and Berger (2012)

relied on a known dictionary of the gene being analyzed. As their program progressed, it

compared the test gene sequence to the known gene. When a difference was identified,

the common portion was replaced with a link to that sequence and an edit script showing

the differences. The actual analysis can thus be performed on the much shorter

differences (Loh et al., 2012). Although genes are a very large structure, they are all

comprised of four basic nucleotide bases, adenine (A), cytosine (C), guanine (G), and

thymine (T), and a sequence of three nucleotides makes up an amino acid, of which there

are 20. It is how these amino acids are strung together determines the makeup of a

protein, which can be hundreds and even thousands of amino acids in length (Genomics,

2022). However, genomic analysis is performed at the nucleotide level, requiring only

four different values to compare (Loh et al., 2012).

With network traffic, there is no known dictionary to compare, but it can be

created as processing progresses, which was the approach taken by this research. The

next issue to consider was the comparison process. Compressed bitmaps are commonly

used for database indexes (Wang, Lin, Papakonstantinou, & Swanson, 2017), but

considering the potential size of aggregated data segments – a user is downloading a file

of hundreds of megabytes in size – bitmaps can become difficult to manipulate. Another

possibility would be to compare 4-bit words (nibble), of which there are 15 possibilities

in a base 16 system: zero (0) through nine (9) and the alpha characters ‘a’ (or ‘A’)

61

through ‘f” (or ‘F’). However, the smallest native data type is the 8-bit character.

Comparing nibbles would require bit manipulation, making coding less efficient and

more complex. Therefore, the logical choice was to compare characters. However, the

character data type is a signed 8-bit integer representing values from -126 to 127, so

unsigned character strings which represent values from 0 to 255 were utilized. This is

also the native data type utilized in PCAP capture files, so no transformation of the raw

packet data is required. To support these strings, three small functions were developed to

compare, copy, and duplicate unsigned character strings, in addition to more-complex

functions to perform approximate string matching.

When a flow was considered complete, the first check was to ensure all possible

data was received. With UDP, this was more of a formality since there is no way to know

whether any data was lost. With TCP, this was accomplished by walking the string and

confirming that a packet sequence number plus its data length was equal to the next

packet sequence number. If there is any missing data, the gaps are filled with 0x00 for

each missing unsigned character, subject to a threshold on the difference between the

sequence of the packet and that of the next available. The threshold is necessary since the

datasets potentially contain data specifically designed to gain unauthorized access and

might not conform to TCP standards. Since the sequence numbers are unsigned 32-bit

numbers, the difference between two sequence numbers could potentially be not just

thousands, but millions. It was therefore determined that if the difference between

sequence numbers exceeded the maximum data segment of a standard TCP packet, the

flow would be split and handled as separate flows.

62

As was discussed above, a gene is a long string comprised of just four different

nucleotides. Genomic analysis entails comparing a subject gene to a known gene and

identifying the differences between them. With just four possible values to compare, this

is not particularly an onerous task. In 2005, researchers compared the genes of humans to

chimpanzees and determined that 99% of the genetic code is similar (Gibbons, 2012). So,

if you take two members of the same species, the differences would be less than 1%.

With the human genome containing approximately 6.4 billion base pairs (3.2 billion on

each strand of the double helix) (Veritas, 2017), the length of the common nucleotides is

significant with short segments being different. This is the situation of which the Loh,

Baym, and Berger (2012) compression technique takes advantage.

Network traffic cannot take direct advantage of the Loh, Baym, and Berger (2012)

compression technique for two major reasons: 1) it is intuitively obvious that the contents

of data segments vary from packet to packet, so contrary to genomes, the differences are

significant from packet to packet; and 2) genomic research is comparing the differences

between two strings, while network traffic requires finding similarity between thousands

and even millions of different packets.

The compression algorithm begins after a data flow is closed. Since there is no

portion of the data flow that has a direct relationship to the aggregated flow data (nothing

links the data to itself), and since a new segment must be compared against the previous,

known segments, the data segments are stored in a series of simple linked lists. Since the

likelihood of data for different protocols being identical, the linked lists are stored in a

balanced binary search tree with the protocol and destination or source being the key.

This key was chosen to take advantage of different users accessing the same information.

63

To conserve system memory, a fragment of the data segment is maintained in the linked

list along with a link to the entire data segment which is stored in an interim file. For the

purposes of this research, the length of the segment will be determined through analysis

of the aggregated data segments. Although in a production environment, that value would

probably be configurable, it was decided to use a length close to the mode of the

observable data lengths – the data length that occurs most often. For efficiency, the actual

size will be divisible by the “memory address size” of the computer; in this case, divisible

by 64, for a 64-bit system. Should the fragments match, or the projected edit script and

difference be less than the actual length of the known fragment, then the entire segment is

retrieved, and the comparison continues. Throughout the rest of this paper, the newly

created aggregated flow will be referred to as the “test string” and its fragment as the

“test fragment” and it will be compared to a previously stored fragment, referred to as the

“known fragment” and its total stored string as the “known string.” In genome sequences,

the differences are minor compared to the size of the common data, so adding edit scripts

and links does not make a significant difference to the overall size of the file. With

network traffic and the goal to decrease file sizes, the algorithm had to be cognizant of

the length of the data difference and the length of the link and edit script in relation to the

overall data length – short segments are best left as is.

Another difference between genome analysis and network traffic is that in

genomic analysis, researchers are identifying where fragments differ from the whole

sequence. With network traffic, on any given day, a network would experience

thousands, perhaps millions of different flows. To analyze every complete flow would

not be practical and would most likely require more processing power than would be

64

available. Instead, the data segment will be analyzed using an approximate match

algorithm to determine the number of differences between two strings. As discussed in

Chapter 2, Review of the Literature, there are several possible algorithms. The Hamming

distance is a very efficient measure of the number of differences between two strings – it

compares character by character, starting at the beginning of each string until it reaches

the last character (Hamming, 1950). It requires strings of equal length, which is not an

issue when comparing equal-length data segments. However, it is intuitively obvious that

if the comparison starts with the first character of each string and continues character-by-

character, the Hamming distance cannot account for common substrings that are offset by

even a single character. For example, if 255 characters of two strings that are 256

characters long are identical, but one string is offset by a single leading character

compared to the other string, the Hamming distance would be 256 and not a candidate for

the genomic compression technique.

The Levenshtein edit distance is also a measure of the number of differences

between two strings, but the count it produces includes the number of character

insertions, deletions, or substitutions required to convert one string into another (Berger,

Waterman, & Yu, 2021). Therefore, in the example above, the Levenshtein edit distance

would be 1 by deleting the initial character of one string, making it a better algorithm in

determining approximate matches.

Vladimir Levenshtein first presented his algorithm in 1965 in Russian, and then in

English in 1966 (Levenshtein, 1966). For two strings a and b of length m and n

respectively, the Levenshtein edit distance, d, is calculated as follows:

65

𝑑𝑑[𝑖𝑖][𝑗𝑗] =

⎩
⎪⎪
⎨

⎪⎪
⎧

|𝑖𝑖| 𝑖𝑖𝑖𝑖 |𝑗𝑗| = 0
|𝑗𝑗| 𝑖𝑖𝑖𝑖 |𝑖𝑖| = 0
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗 − 1] 𝑖𝑖𝑖𝑖 𝑎𝑎[𝑗𝑗] = 𝑏𝑏[𝑖𝑖]

min�
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗] + 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏[𝑖𝑖])
𝑑𝑑[𝑖𝑖][𝑗𝑗 − 1] + 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎[𝑗𝑗]) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
𝑑𝑑[𝑖𝑖 − 1][𝑗𝑗 − 1] + 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎[𝑗𝑗], 𝑏𝑏[𝑖𝑖])

For 1 ≤ i ≤ m and 1≤ j ≤ n; wdel, wins, and wsub are the weight (cost) of performing

a deletion, insertion, and substitution, respectively. In some implementations, the weights

of deletion and insertions are one (1) and the weight of substitution is 1 if a[j] ≠ b[i], else

zero (0) (Cuelogic, 2017; Jokinen, Tarhio, & Ukkonon, 1996). A variation of the

Levenshtein edit distance is the Damerau-Levenshtein distance which adds the ability of

transposing adjacent characters (Devopedia, 2019). Dmitry Mozzherin (2019) presents a

software system that can calculate the Levenshtein or the Damerau-Levenshtein distances

and allows for comparing blocks of characters, as opposed to single characters. However,

the Edpresso Team from Educative, Inc. presented a simpler approach where all the cost

variables are zero – they were deemed to be equal (Edpresso, 2022). The major short-

coming of the Levenshtein algorithm is the requirement for a working 2-dimensional

array, which, for strings m and n, would be [m + 1] by [n + 1] in size. The matrix starts in

the upper left corner with a value of zero and is populated cell-by-cell until full – the edit

distance is the value in the lower right cell. If only a few short strings were being

compared for commonality, this approach would not be an issue. However, with millions

of network packets to search for matches, the total number of calculations necessary

again becomes untenable.

Since the publication of the Levenshtein algorithm, there have been several

variations proposed. However, in 1975, Daniel S. Hirschberg presented a variation that

recursively divides the matrix in half until a series of trivial problems are obtained; the

66

results of which are combined to obtain the final solution (Hirschberg, 1975). There have

been various implementations of the Hirschberg algorithm, but they utilize recursion

which becomes problematic on very large strings (KokiYmgch, 2018). Therefore, those

variations have been discarded in favor of a simpler version released to the public domain

in 2015 by Lari Rascu, to be utilized for feasibility.

Since applying an approximate matching algorithm to two strings that could

exceed several megabytes in size, the program needs to determine if the two strings are

even candidates for full comparison. Besides the Levenshtein and Hirschberg approaches,

there is also the possibility of comparing the fragments and identifying the longest

common substring (LCS). If the LCS is small in comparison to the length of the

fragments, then the number of edit scripts and text would exceed the length of the test

string itself. However, a long common substring would leave smaller mismatches

requiring edit scripts, and most likely be shorter than the full string. Since the first pass is

solely for the purpose of identifying candidates for full comparison, the fastest approach

that can determine suitability will be utilized.

Analysis of aggregated data flows was performed to identify the efficiency of the

three approaches and whether different approaches should be applied to the fragments

versus the entire strings, and possibly based upon the length of the string. The basic

program was modified to process all three approaches on the fragments, as well as

applying the Levenshtein and Hirschberg algorithms to the entire strings. For all three,

the time to process was captured – minimum, maximum, and average time for each pass,

as well as the total time to process all packets in the test. For the Levenshtein and

67

Hirschberg algorithms, the edit distance was also captured and the length of the longest

common substring for the LCS algorithm.

10,000 aggregated packets were tested for the three approaches, and the results

are presented in Table 2. The LCS algorithm is the fastest of the three and will be the

most-efficient method to determine the suitability of two strings for full comparison.

Table 1 – Processing Time Comparison
 Levenshtein Edit

Distance
Longest Common

Substring
Hirschberg
Algorithm

Minimum 288 μs 220 μs 516 μs

Maximum 98 ms 31 ms 44 ms

Average 782 μs 574 μs 1,105 μs

Total All Runs 7,821 ms 5,745 ms 11,050 ms

The Hirschberg algorithm takes almost twice as long to process than does the

Levenshtein Edit Distance. This is not unexpected in review of the code. Whereas

calculating the Levenshtein Edit Distance requires simple loops, the Hirschberg

algorithm utilizes function recursion which entails much more overhead. Although the

Levenshtein method requires significantly more memory than the Hirshberg algorithm,

with today’s systems, that is not really a concern, compared to time. Therefore, the

Levenshtein Edit Distance will be utilized when comparing the full-length strings,

To determine the suitability of two fragments for full comparison, the longest

common substring must exceed a minimum threshold. As will be discussed in detail later,

each edit script requires a minimum of 17 bytes of overhead per node, and when written

to the interim data file, an additional 6-byte header consisting of a link to the known data

string and the count of the edit nodes in the script. For LCS to be an indicator of

suitability, it is assumed that the common substring is within the middle of the fragment,

68

thus requiring three edit scripts plus the header, or 76 bytes of overhead. For two 256-

byte fragments, an LCS equal to the overhead (76 bytes) would be a break-even point.

However, the added processing time is not warranted for a gain of zero space, and

depending upon the type of data involved, substituting text with integer values could

increase the size of the compressed data. Therefore, the threshold will arbitrarily be set to

almost double that value, 128 bytes, or half the length of the segment. In a production

system, this value should probably be adjustable, since the type of network traffic, and

whether it is encrypted or not, would greatly influence the final compression ratio.

Regardless of actual value, test segments exhibiting a longest common substring less than

the threshold, were maintained as is and written to the interim data file. However, there is

one last aspect of string length that must be considered. If a test string is being compared

to a known string that is significantly shorter, pursuing that comparison might not be

practical. For example, if a test string that is 90,000 bytes long is compared to a known

string that is only 2,000 bytes, the edit string would end with 88,000 insertion characters.

Effectively, going through this process might only save several hundred bytes and is

probably not worth the processing time involved. However, for purposes of this research,

where the feasibility of utilizing the genomic compression technique is being determined,

no threshold will be utilized – any gain in compression ratio is advantageous.

The code from the Edpresso team was modified to handle unsigned character

strings versus ASCII character strings. The code was further modified to provide an

output string that symbolically represented the changes required in addition to the

classical Levenshtein Edit Distance – the total number of edits required. The output string

begins with the first character of the test string and indicates, symbolically, the changes

69

involved to make the test string match the known string. There are four symbols in the

output string: the equals sign (‘=’) indicates that the two characters are the same; the

exclamation mark (‘!’) indicates that the two characters do not match – character

substitution is required; the minus sign (‘-’) indicates that a character deletion is required;

and the plus sign (‘+’) indicates that a character needs to be inserted. Since the known

string has already been identified as unique and has been written to the interim data file,

the goal of the edit script is to identify how to change the known string to match the test

string so that the entire test string does not need to be maintained. For example, if the test

string is “abcqdef” and the known string is “abcxdef,” the edit string would be

“===!===” since except for the ‘q’ and ‘x’ mismatch, the strings are identical. If test

string A is “abcqdef” and known string is “abcdef,” the edit string would be “===+===”

since an insertion of the letter ‘q’ is required for the known string to match the test string.

Lastly, if the test string A is “abcdef” and the known string is “abcqdef,” the edit string

would be “===-===” since the deletion of the letter ‘q’ is required for the known string to

match the test string.

The candidate datasets are comprised of multiple PCAP files that are individual,

contiguous pieces of a single, large PCAP file. The MACCDC 2012 dataset consists of

17 individual files for a total of 16.8 GB of raw data; the UNSW-NB15 17-2-2015 dataset

consists of 27 individual files for a total of 49.7 GB of raw data. Therefore, the link to the

location of a data segment in the interim file required an unsigned 64-bit integer, since a

32-bit unsigned integer can only reference a maximum of 4,294,967,295 bytes. To

identify where the difference occurs in the test data segment, a 32-bit unsigned integer

was chosen over the 16-bit version, since the latter could only handle a maximum data

70

flow of 65,535 bytes. From personal experience, downloading files exceeding 65,535

bytes is very common, so the 32-bit variable will ensure data integrity. The process of

creating the scripts will be iterative, creating an interim string of edit scripts. The first

data element is the 16-byte index to the original data on the interim datafile, followed by

edit segments, each of which utilizes the following structure:

struct {
char // [edit type]
unsigned int // [start location]
unsigned int // [data length]
unsigned char * // [mismatch data]

}

The edit type takes two values: ‘T’ denotes there is a data mismatch, and the test

data is contained in the script. In this case, the mismatched data field will be included and

will be the test data not found in the known string as an unsigned character string; ‘K’

denotes the known string and since there is a link to that string and the location and

length are provided, there is no need for the fourth structure element, so it will be ignored

for known strings.

Output File Structure

There are several interim files utilized by the various parsers to hold processed

data. These served several purposes: 1) processed data could be removed from active

memory and any BBST and lists, thus improving processing speed, and memory usage;

2) having segregated interim files facilitated keeping track of the different types of

completed flows; and 3) the interim files provide a simplified process for combining the

final output file. Although a common record format could be developed to handle all

types of interim structures, the use of record formats specific to the type of parser was

deemed the most space efficient. The final file format starts with a header section that

71

provides the location of the specific record type, the number of those records, and their

length. None of the records contain the data segments, just a link (index) to the segment

or the edit script. Where the record length was not fixed, such as when unsupported

protocols were encountered, there is no standard record size. Rather, the individual record

size is prepended to the unsupported record as it is written. The end of the file contains a

summary of the PCAP files processed, including the file and packet header information,

and the file name. The final file format header is as follows:

1. Location of file header data.
2. TCP completed flow records location.
3. TCP completed flow record count.
4. TCP completed flow record format length.
5. TCP orphan record location.
6. TCP orphan record count.
7. TCP orphan record format length.
8. TCP duplicate packet location.
9. TCP duplicate packet count.
10. TCP duplicate packet format length.
11. UDP record location.
12. UDP record count.
13. UDP orphan record location.
14. UDP orphan record count.
15. ARP completed record location.
16. ARP completed record count.
17. ARP completed record format length.
18. ARP orphan record location.
19. ARP orphan record count.
20. ARP orphan record format length.
21. ARP duplicate packet location.
22. ARP duplicate packet count.
23. ARP duplicate packet format length.
24. Ignored TCP protocol record location.
25. Ignored TCP protocol record count.
26. Unsupported Network Layer protocol record location.
27. Unsupported Network Layer protocol record count.
28. Unsupported Internet Layer protocol record location.
29. Unsupported Internet Layer protocol record count.
30. Unsupported Transport Layer protocol record location.
31. Unsupported Transport Layer protocol record count.
32. Data segment location.

72

33. Data segment count.

The actual interim file contents are then written to the final file, in the order

shown in the header, culminating with the PCAP file information, and storing its start

location at the beginning of the file. For efficiency, the TCP completed records are not

written to an interim file. Rather, they are written directly to the output file, since they are

the first true records written.

The compression method to apply to the final file can vary, dependent upon

whether speed or final size is to be optimized. Zheng and Bockelman (2017) tested 10

different compression algorithms against a 6.4 GB file. If speed is more important than

compressed file size, the LZ4 algorithm exhibited the fastest overall compression times.

If the smallest compressed file size is the objective, then LZMA-9 provided the highest

compression ratio, reducing the 6.4 GB raw data file to 1.21 GB. If the goal is a

combination, then one of the ZLIB algorithms would suffice. The candidate dataset files

are downloaded as archives consisting of compressed individual files. Therefore, it was

decided to forego the final compression of the output file, since the test dataset would not

be a single compressed file, and it would not be representative to compare compressed

files. Instead, the size of the interim data file comprised of data strings and edit scripts

will be compared to the size of the total of all raw data, to determine the potential

compression ratio.

Data Analysis

On the surface, analyzing the results of a compression technique is simple – what

compression ratio was obtained and how long did it take to compress or decompress the

dataset compared to other compression techniques. However, that is only the bottom-line

73

analysis. Since different compression algorithms are optimized for size or speed, and that

is therefore based on the access requirements for the data, it was determined that the best

analysis would be comparison of raw data sizes to the final data sizes after application of

the genomic compression technique. A secondary reason is that the results of any one file

compression algorithm is dependent upon the type of data in that file, so comparing the

compression ratios and processing time to compress and decompress could be skewed

just between the raw dataset and the final genomic output file.

In addition, since this research was a proof of concept of applying genomic

compression techniques to network traffic, there were protocols at the Network, Internet,

and Transport layers that were ignored, and not processed. Therefore, it was determined

to compare just the raw data of supported protocols to the compressed records. This

would be a true representation of the potential for improving the size of a compressed

file.

Summary

Since 2016, internet traffic has doubled approximately every other year (O’Dea,

2020), as has computer crime (Embroker Team, 2021). In 1997, NIST published an IT

Laboratory Bulletin outlining the needs for computer audit trails/audit logs, and that

practice is now considered standard, including maintaining log files for one or more years

(Marker, 2021; Shopp, 2020). As was calculated in Chapter 1, an organization could

generate 90 petabytes or more of network traffic annually. Although there are multiple

archiving/compression applications available, they create static, fixed compressed files

that need to be decompressed for the data to be accessible.

74

Genomic research requires access to extremely large datasets. If these datasets

need to be uncompressed to allow analysis, the resources required could be extreme and

possibly cause major delays in any analysis. Loh, Baym, and Berger (2012) developed an

approach to compression which identified the common parts of a gene and replaced them

with a link and an edit script of the differences. In this way, they could analyze a large

gene database with significantly fewer resources and in a significantly shorter period.

This research applied those same basic principles to network log files – common data

(packet/frame payloads) was stored offline and replaced with a link to the edit script

(structure) for the data in the record associated with the 4-tuple source and destination IP

addresses and ports.

This research is limited to determining the feasibility of applying genomic

compression techniques to network traffic, with the uncompressed final output being

compared to the original, uncompressed dataset. As is, a compression algorithm that

would allow packet capture and compression in real time at higher compression ratios

could be a valuable tool in fighting cybercrime. However, extending the approach to

allow for compressing and storing a large percentage of the data in offline files, while

maintaining keys that can be updated and searched in real time would not be that difficult

to implement.

75

Chapter 4

Results

Introduction

In chapter 3, the method of extending genomic compression techniques to

computer network traffic was provided. However, developing the actual steps required to

apply this technique to network traffic was more evolutionary in nature. Researching the

various internet protocols and the formats is straight-forward, but understanding all the

vagaries of their implementation consumed a major portion of the development time.

Without the availability of a large internet traffic capture file representative of the real

world, a search was performed to identify candidate datasets.

As has been discussed, the genomic compression technique requires the packets to

contain a data segment/payload. This immediately eliminated some datasets that were

published as being anonymized for privacy with the data segments being removed. To

eliminate other candidates, a program was developed to read through a dataset and

identify the various protocols and the length of additional data. Many datasets were

comprised of a single capture file, that had no or an insignificant amount of post-header

data and did not require further analysis. However, there were several datasets that met

this first level of evaluation as was discussed in Chapter 3, Methodology and in more

detail in Appendix B, which provides the full detailed analysis of the candidate datasets.

76

As was shown, out of the 68 candidate datasets, two were chosen for test: the MACCDC

2012 and UNSW-NB15 17-2-2015 dataets.

Parser Development

As was discussed in Chapter 3, the UNSW-NB15 dataset was comprised of only

two Internet Layer protocols, ARP and IPv4, with the bulk of the packets being with

IPv4. Although the MACCDC dataset was comprised of five different Internet Layer

protocols, ICMP, Kerberos, and IGMP comprised only approximately 1% of the total,

while the remainder were ARP and IPv4 protocols. Since the program was developed for

use with other possible PCAP datasets, a contingency was added in case there were

unsupported Internet Layer protocols. In this case, the entire packet would be saved to an

interim file, prepended by the timestamp of the packet and the actual captured length of

the packet.

ARP Parser

The Address Resolution Protocol (ARP) is rather simple, comprised of a request packet

and a reply packet. Each packet is identical in structure with the main differences being

the opcode and the requested/missing data. The basic ARP format is shown in Figure 1 –

the horizontal axis is in bits. The depicted format is representative of Ethernet or IEEE

802 networks with which the hardware addresses are six (6) bytes long and the protocol

address lengths are four (4) bytes long, representative of IPv4 packets. The other field

77

sizes are as depicted in Figure 1, for a total packet size of 28 bytes per packet, or 56 bytes

per request/reply pair for the basic ARP format. However, the PCAP capture format

includes a 16-byte header record for each packet, making the total for the request/reply

pair as 88 bytes. Since there is no data segment in the ARP format, the ability to apply

genomic compression techniques is limited to ignoring common (duplicate) data

elements.

 The actual program was not as straight-forward as matching request/reply pairs.

During processing, ARP packets are stored in a balanced binary search tree using a key of

the combination of the source and destination IP addresses. As an ARP packet is

received, the tree is searched for existence of the pair. From the results of that search,

there are several possible scenarios:

1) Complete Pair. If the search succeeds, the opcode of the current packet is

checked to confirm it is a reply. If the request packet in the search results has an opcode

Figure 2- ARP Packet Format (The TCP/IP Guide, 2005)

78

of 1 or 3 and the current packet opcode is 2 or 4 respectively, then this is a matched

request/reply pair and is written to the complete ARP interim file.

2) Duplicate. If the search of the tree was successful, but the current packet is

identical to search result packet, this is considered a duplicate. In this situation, a record

will be written to the duplicate ARP interim file.

 3) Orphan. There are several scenarios that result in declaring a packet an orphan.

A reply could be received before a request, possibly caused by the reply being a

retransmission of a previous reply which had completed a request/reply pair; there could

have been an unknown network issue occurred where the request was not captured; the

current packet was toward the beginning of the capture that didn’t start after the request

would have been captured; or a reply is not received. This can occur due to there being no

systems available to reply at the time, necessitating sending another request, or it is the

end of the run and the reply has not yet been received for any remaining request packets

in the search tree. In these scenarios, the packet is considered an orphan and a record will

be written to the orphan ARP interim file.

Complete ARP Pair

An ARP pair is considered complete when the search is successful and the current

packet opcode is appropriate for the request packet, thus completing a request/reply pair;

the results are written to the interim file. The structure of the final combined ARP

request/reply pair is as follows:

typedef struct {
 struct timeval rqstTS; // time stamp for request packet
 struct timeval rplyTS; // time stamp for reply packet
 unsigned int32 rqstAddr; // request IP address
 unsigned int32 rplyAddr; // reply IP address
 unsigned int16 hType; // hardware type

79

 unsigned int16 pType; // protocol type
 unsigned int16 rqstOper; // Operation requester is performing
 unsigned int16 rplyOper; // Operation reply is performing
 u_char rqstMAC[6]; // request MAC address (6 bytes)
 u_char hLen; // length of hardware address
 u_char pLen; // length of internet layer protocol
 u_char rplyMAC[6]; // reply MAC address
}

The two timestamp values are obtained from the respective header records, and

they can be used in any reconstruction efforts. This structure is 46 bytes in size compared

to the 88 bytes required for the request and reply packets plus their PCAP headers. Since

ARP packets are a minor subset of the UNSW-NB15 dataset, it is not possible to compare

compressed sizes, but it is safe to assume that at a minimum, the raw percentage savings

would be representative of the compressed savings.

Orphan ARP Packets

An orphan is a single request or reply packet that cannot be matched with its pair.

Except in the situation where the orphan is not identified until the end of the run, orphans

are written to the interim file upon detection in a structure different than the actual packet

layout to account for byte alignment.

Duplicate ARP Packets

As was discussed, if a request packet is captured that is identical to an existing

request packet, it is considered a duplicate. However, unlike orphan packets, being a

duplicate, only the timestamps are stored – that information can be used to link back to

the original packet for reconstruction of the remaining information.

IPv4 Parsers

The basic functioning of the IPv4 parser was discussed in Chapter 3,

Methodology. Its main purpose was to read enough of the packet data to identify the

80

transport layer protocols and send the packet data to the respective parser. The detailed

analysis presented in Appendix B demonstrated that both the UNSW-NB15 and

MACCDC datasets contain significant transport layer data that could benefit from the

genomic compression techniques. The Transmission Control Protocol (TCP, protocol

number 0x06, decimal 6) and the User Datagram Protocol (UDP, protocol number 0x11,

decimal 17) comprise at least 98% of packets observed in the transport layer. If the

transport layer protocol was not supported, the original packet was written to the

unsupported transport layer protocol interim file, prepended by the packet timestamp and

length of the packet.

Similar results were obtained from the utility program on analysis of the UDP

protocol. Appendix E, Tables E3A, E3B, and E3C for the MACCDC dataset and E4A,

E4B, and E4C for the UNSW-NB15 dataset and tables C11A and C11B provide the

details for the top 10 ports identified in the two datasets. As with TCP, the distribution of

ports was different for the two datasets, but like the results with TCP, the format of the

UDP packets was not compromised, so all packets were included in the analysis.

Transmission Control Protocol (TCP) Parser

This was the most-utilized parser, since 98.3% of the UNSW-NB15 dataset and

99.9% of the MACCDC dataset consisted of TCP packets. After the IPv4 parser

determined the packet to be TCP, it called the TCP parser for further processing, which

continued to read the packet data where the IPv4 parser left off.

81

 The TCP/IP format is shown in Figure 3 and is very flexible with several optional

fields. However, since the purpose of the research was to determine the feasibility of

applying genomic compression techniques to network traffic, any optional fields were

either considered part of the TCP header and thus ignored, or if not included in the TCP

header length, they were considered a portion of the data segment.

After the network and Internet layer headers are processed, the TCP Parser takes

over. The first fields extracted are the source and destination ports with the low port

Figure 3 - TCP Segment Format (The TCP/IP Guide, 2005)

82

designated as the TCP protocol as discussed above, followed by the sequence and

acknowledgement numbers, and the Controls Flags. The Window, Checksum, and Urgent

Pointer fields are bypassed to reach the data segment.

In Chapter 3, TCP was introduced as a connection-oriented, reliable data transfer

service. As such, there is bidirectional communication between the source and destination

computers to ensure the transferred data is complete. Briefly, this is accomplished

through inclusion of a sequence number on each packet that is incremented according to

the size of the previous data segment, and values of the control flags.

The TCP parser is centered around two distinct structures. The first is a balanced

binary search tree (BBST), utilizing a 4-tuple key of the source and destination IP

addresses and ports. This tree stores the unique, unidirectional data flows occurring

between two systems. After all pertinent data is extracted from a packet, the TCP parser

attempts to insert the new 4-tuple key into the BBST. There are several possible

outcomes. If the 4-tuple key is not found, the program checks the status of the control

flags. If the FIN flag is set, that indicates the communication is finished. Being that the 4-

tuple is not in the BBST indicates that this is probably a retransmission of a previous flow

that has been completed. Therefore, this packet is considered an orphan and processing

returns to the PCAP reader. The other possible flag is the RES or reset flag, which

indicates that the communications is being reset and the flow is thus stopped. As with the

FIN flag, since the 4-tuple was not on file, this packet is declared an orphan and

processing is returned to the PCAP reader. In both these cases, the packet is written to an

interim file using a simple format: the timestamp, the length of the packet, and the full

packet itself. The last scenario is the 4-tuple is not found and neither the FIN nor RES

83

flags are set. This indicates it is the beginning of a new flow, so the 4-tuple is added to

the tree and processing is returned to the PCAP reader.

If the 4-tuple key is found, there are two possible outcomes. If the SYN or

synchronize flag is set, that would normally indicate the beginning of a new flow.

Therefore, the current packet is either a packet retransmission or a FIN packet was not

received and the existing flow is actually complete and the new packet indicates a new

flow should be started. In this case, the existing flow must first be completed before

inserting the new flow into the BBST. Processing completed flows will be covered later.

If the SYN flag is not set, the packet is simply marked as a duplicate, subject to further

analysis.

After the 4-tuple is inserted into the BBST, the second key structure comes into

play. This is a doubly linked list that maintains the data segments in order according to

the sequence numbers. Each list is unique to the 4-tuple flow, so the primary key is just

the sequence number of the packet. As packets with common keys are identified during

the BBST insertion process (the 4-tuple was found), the next step is to attempt to insert

into the sequence list. If the sequence number is not found, a new node is added to the list

which contains packet-specific fields, including the full data segment. If the sequence

number is already on file, this is considered a retransmission. The next check is to

determine if the data segment of the retransmitted packet is different. If not, the packet is

declared a duplicate. However, if there is a difference, the new packet replaces the

existing packet which is now considered a duplicate. Packets so identified as duplicates

are written to the duplicate interim file, using a similar format as the duplicate ARP file:

the packet timestamp and the frame numbers of the original and duplicate packets. The

84

last processing on the sequence structure is to determine if the FIN flag is set. If so, this

indicates the last packet in the flow, so the flow is completed, and written to file.

User Datagram Protocol (UDP) Parser

As was discussed in Chapter 3, UDP is a connectionless communication protocol

in that the packet is sent without concern as to whether it will be received. There many

uses of UDP for communications, such as Domain Name Service (DNS port 53),

Dynamic Host Configuration Protocol (DHCP port 67), NetBIOS (ports 137 - 139), and

Simple Network Management Protocol (SNMP port 161). All these protocols are single-

packet or request/reply message protocols and will not require aggregation of data flows.

If the single data segment meets the threshold for application of the genomic compression

algorithm, it will receive further processing. If not, the packets were saved as is,

prepended by the timestamp and the packet length.

UDP is a transport layer protocol that runs over the internet protocol (UDP/IP).

Figure 4 shows the UDP header format, which resides in the packet immediately

following the IP header. The UDP header is eight (8) bytes in length, consisting of the

Figure 4 - User Datagram Protocol (UDP) Header Format

85

source and destination ports, the length of the UDP structure including both the header

and the data, followed by a checksum. After the checksum is the variable length data

segment (limited by the Ethernet packet size restrictions).

To understand the scope of usage by UDP, the utility program analyzed the

MACCDC and UNSW-NB15 datasets to count occurrences and data usage of UDP ports.

Analysis of the MACCDC dataset showed that DNS (port 53) and NetBIOS Name

Service (port 137) comprised 76% of the 549,510 UDP packets and 57% of the total data

usage (Appendix E, Tables E3A and E3B). Analysis of the UNSW NB-15 dataset

showed that DNS (port 53) and Open Network Computing Remote Procedure Call (ONC

RPC, port 111) comprised 74% of the 1,430,377 UDP packets and 64% of the total UDP

data usage (Appendix E, Tables E4A and E4B). These three protocols as well as most of

the remaining top 10 UDP protocols are message or request/reply format, in that the data

is linked to either the single packet or the pair and is not really a candidate for

aggregation and application of the genomic compression technique.

Although File Transfer protocols usually entail multiple packets and thus lend

themselves to the advantages of the genomic compression techniques, only the Trivial

File Transfer Protocol (TFTP) was identified in the UNSW NB-14 dataset, and only

comprised 0.1% of the UDP packets; TFTP was not in the top 10 of the MACCDC

dataset. With UDP only making up 1.6% of all packets in the UNSW-NB15 dataset and

0.08% of MACCDC dataset and streaming and file transfer usage only accounting for

less than 0.03% of either the dataset, it was determined that the added complexity of

attempting to create data flows for UDP traffic was not warranted, and all UDP traffic

was handled as single-packet communications.

86

Genomic Compression Algorithm

As discussed in Chapter 3, the implementation of the genomic compression

algorithm to network traffic required a multi-step process. The sheer volume of network

traffic and the unknown nature of network packets required an approach that maximized

efficiency. With genomic analysis, a gene segment is tested against a single known gene.

With network traffic, instead of the one-to-one analysis of genomics, there is a many-to-

many analysis with network packets.

Table 2 – Transport Layer Protocol Usage
MACCDC Dataset UNSW NB-15 Dataset

Protocol Packets Data (bytes) Protocol Packets Data (bytes)
0x06–TCP 68,357,197 13,593,753,312 0x06–TCP 86,029,251 45,078,624,185
0x11–UDP 560,934 41,212,397 0x11–UDP 1,430,389 111,862,194
0x01–ICMP 526,103 13,117,305 0x59–OSPF 13,766 1,276,200
0x58–EIGRP 303,549 12,141,960 0x84–SCTP 1,856 1,497,008
0x02–IGMP 1,946 26,808 0x01–ICMP 1,594 824,684

Totals: 69,749,729 13,660,251,782 Totals: 87,480,078 45,194,340,111

Table 2 summarizes the usage of transport layer protocols in the two datasets.

Although TCP is the dominant Transport Layer protocol in both datasets and UDP is the

second most observed protocol, from there, the two datasets differ. With the UNSW NB-

15 dataset, the other three transport layer protocols are insignificant and ignored for

processing. However, the MACCDC dataset was not so obvious. UDP was still second

with 560,934 packets, but Internet Control Message Protocol (ICMP) was a close third

with 526,103 packets, followed by the Enhanced Interior Gateway Routing Protocol

(EIGRP) with 303,549 packets. Comparing data bytes and the difference is wider, with

UDP having 41,212,397 bytes, followed by ICMP with 13,117,305 bytes and EIGRP

with 12,141,960 bytes. ICMP is a request/reply message protocol with the default data

payload being 32 bytes with a maximum of 576 allowed (ICMP, 2018). The MACCDC

87

dataset analysis showed that the minimum data payload was 8, and the maximum was

544, with an average of 24 bytes (Appendix B, Table B8). However, being a

request/reply message format, the protocol could not take advantage of the genomic

compression technique, so was bypassed and saved as is. EIGRP is a network protocol

for routers to communicate using a series of message packets request and reply messages

used to provide authentication services (Sheldon, 2021). Therefore, despite the frequency

of ICMP and EIGRP in the MACCDC dataset, the lack of UDP Application Layer

protocols that support significant data, the only protocol that lends itself to data

aggregation and compression using the genomic techniques is TCP.

The first step in the process was to eliminate as many packets as possible. This

was primarily accomplished through the identification of duplicate data, ARP protocol

packets, and less-frequent protocols that were not fully processed; none of these packets

are candidates for further processing. Since dataflows, which include file downloads and

uploads, can easily be thousands and even millions of bytes in size, another contributor to

efficiency was the determination to initially compare just a segment of a packet flow.

Therefore, the first 256 bytes of a packet flow is maintained for comparison, rather than

the entire flow. Although there is no proof, from years of personal experience, it is the

opinion of the author that if the first 256 bytes of two aggregated data flows have no

similarity, it is unlikely that the remaining data in the flow will have any similarity. The

genomic compression algorithm thus begins with aggregating the packet flow after a

triggering event is identified and then extracting the first 256 bytes from the aggregation,

or the total flow if less than 256 bytes.

88

In Chapter 3, Methodology, there was significant discussion concerning

determination of the suitability of a data flow for application of genomic compression

techniques. It was shown that applying a longest common substring algorithm to 256-

byte segments of a test flow and a known flow would provide a good indication as to the

likelihood that the two flows exhibited enough similarity to warrant performing the full

comparison. Further, it was determined that the Levenshtein edit distance was more

efficient for processing time when compared to the Hirschberg algorithm, so it became

the algorithm of choice.

The actual algorithm utilized is a modification of the Levenshtein edit distance to

include the creation of an edit string that identifies the changes necessary to convert the

known data flow into the test data flow. This is created by walking the matrix created by

the Levenshtein algorithm from the bottom right cell back to the top left cell, using the

reverse of the algorithm to determine whether characters in the flow are equal, not equal,

a character insertion, or a character deletion is required, represented by the ‘=’, ‘!’, ‘+’,

and ‘-’ characters in the edit string, respectively. Since the edit string is created by

walking the matrix backwards, the edit string is reversed for use in creating the overall

edit script.

The process starts with the beginning of each flow and the edit string, with

separate position counters for each of the three. Unlike genomic compression techniques,

the purpose of this research is to develop a more-efficient network traffic compression

algorithm and therefore, the research is not interested in analyzing the subtle nuances of

the different characters in each string. Rather, it is solely to identify how many characters

are required from each string to be able to reconstruct the original. The edit string is

89

analyzed symbol-by-symbol and the edit string incremented after each analysis. If a ‘=’

or ‘!’ symbol is encountered, the two flows are equally incremented. If a ‘+’ sign is

encountered, that indicates a character must be inserted into the known flow, so that

position counter of the test flow is incremented, but not that of the known flow.

Conversely, the ‘-’ symbol indicates a character must be removed from the known flow,

so the known flow position counter is incremented, but not that of the test flow. In this

manner, the edit string and flows are walked until the end of the shorter flow is reached,

and the remaining characters warrant either insertion or deletion, depending upon which

of the flows is the shorter.

The other key aspect of the edit script creation is determination of the starting and

stopping points of the individual scripts. Those are determined by contiguous ‘=’ symbols

in the edit script. When a string of equal characters is encountered that is of a minimum

length (discussed later), the progression is halted, and two edit script nodes are saved.

The first node would represent the test flow data to save, and the second node would

indicate the starting position and length of the known data flow to save. For example, if

there are a combination of symbols encountered through the first 65 bytes of the test data

flow, followed by 245 bytes of common data (‘=’ symbols in edit string), the two nodes

could be:

First node: edit type: ‘T’
 Starting location: 0
 Data length: 65
 Data: “2a2031204558495354530d0a61303033204f…”

Second node: edit Type: ‘K’
 Start location: 54 (accounts for insertions and deletions)
 Data length: 245

90

As indicated in Chapter 3, Methodology, each node has an overhead of 17 bytes,

plus an additional 6-byte header when the edit script is written to file. In the example

above, while the raw test data flow would be 310 bytes (65 bytes plus 245 bytes), these

two nodes reduce that to 124 bytes (2 nodes at 17 bytes each, plus 65 bytes of test flow

data, plus the 6-byte record header). During actual processing, the nodes will actually be

handled in a linked list and collapsed into the sizes identified upon completion of script

creation and writing the output to the interim data file.

Final Program Results

ARP Results

Both test datasets contained ARP packets, but to different degrees. The

MACCDC dataset contained 101,294 ARP packets, while the UNSW-NB15 dataset

contained 12,081 packets. The distribution of completed request/reply pairs versus

duplicate packets and orphans also was different between the two datasets. The

MACCDC dataset had almost as many duplicate packets as completed packets, while the

duplicate packets in the UNSW-BN15 dataset were approximately one-eighth of the

completed packets.

Table 3 - ARP Results – Full Run
 MACCDC 2012 Dataset

 Packets Packet Sizes
w/Headers Records Record Sizes Size Savings

Completed 52,518 2,310,792 26,259 1,207,914 47.73%
Orphans 1,030 45,320 1,030 45,320 0.00%
Duplicates 47,746 2,100,824 47,746 763,936 63.64%
Totals 101,294 4,456,936 75,035 2,017,170 54.74%

 UNSW-NB15 17-2-2015 Dataset
 Packets Packet Size Records Record Sizes Size Savings
Completed 10,688 470,272 5,344 245,824 47.73%
Orphans 3 132 3 132 0.00%
Duplicates 1,390 61,160 1,390 22,240 63.64%
Totals 12,081 531,564 6,737 268,196 49.55%

91

Table 3 provides the results for processing of ARP packets using GNCS for the

two datasets. Although there is no real data segment with the ARP packet format, through

elimination of duplicate data elements and no longer requiring the PCAP packet header,

the savings of the size of the raw data for completed pairs is 38.64% and 47.73% for the

MACCDC 2012 and UNSW-NB15 17-2-2015 datasets, respectively. If orphan and

duplicate packets are included, the overall size savings is approximately 50% for both

datasets. Although it was not part of this research, it is safe to assume that similar

decreases can be expected with the other common message (request/reply) formats.

TCP Results

As has been discussed, outside of ARP, the only protocol that contained sufficient

data to test the feasibility of the genomic compression techniques was TCP. To analyze

the effectiveness, only TCP packets were included in the analysis since inclusion of

unsupported protocols would negatively skew the results. This exclusion also included

any detected duplicate and orphan packets. The structure used to save duplicates would

improve the perceived space savings, but that would be an artificial improvement.

Orphan packets and flows are incomplete, so also would not properly contribute to the

results of the genomic compression algorithm. Thus, only complete TCP flows were

analyzed. This is the most representative comparison of the impact of applying genomic

compression techniques.

Both PCAP files and the genomic compression algorithm have overhead. Each

PCAP packet is prepended with a 16-byte header. The packet length itself is variable

depending on the Ethertype which determines the length of the Layer 2 header – between

92

14 and 18 bytes – and the length of any associated data. The Internet and Transport layer

headers are 20 bytes each for IPv4 packets, for a total of 54 to 58 bytes plus any

associated data. The MACCDC dataset utilizes a standard Ethernet Layer 2 header of 18

bytes, so the overhead per packet is 58 bytes plus the PCACP header, for a total of 74

bytes. The UNSW-NB15 dataset utilizes the Linux “cooked” capture header of 14 bytes,

making the total header overhead 70 bytes for these headers.

The output file structure for TCP flows in this research consisted of two

components, a summary record and a data flow reference. The summary record consists

of a 52-byte header plus 17 bytes per packet contributing to the flow. In addition, the

dataflow itself has an eight-byte header consisting of two 4-byte unsigned integers, the

data flow index and the length of the flow. The PCAP representation of a completed flow

consisting of two packets but no data, would require a minimum of 144 bytes. The same

two packets would be represented by 86 bytes, for a savings of 58 bytes. If there is data,

this would increase to 94 bytes due to the eight-byte data header. However, as the number

of packets in a data flow increases, the total of the standard PCAP packets in the flow

would increase by up to 74 bytes per packet in the flow. Kim, et. al., (2004) calculated

that the average packet flow consists of 28 packets. Therefore, not counting the data

itself, a 28-packet flow would require up to 2,072 bytes of overhead, compared to 542

bytes for the genomic compression algorithm, an effective savings of 1,530 bytes for a

space savings of 74%. Although this appears to be significant, this has to be compared to

the total flow size including data. In the case of the 28-packet flow, if each packet carried

the maximum data – 1518 bytes – then the total of the standard PCAP capture would

approach 44,600 bytes. If the data is unique and no comparison found, then the genomic

93

compression algorithm would require 43,054 bytes for a space savings of 3.5%. The real

savings is dependent upon the impact of the genomic compression algorithm.

Although the program was compiled for speed, there was no effort to improve

efficiency through programming techniques that take advantage of multi-threading or

multiple cores. With packets being processed sequentially, the time to process a packet

increased as the total number of packets increased. The result was such that processing

the complete MACCDC 2012 or the UNSW-NB15 17-2-2015 datasets required up to a

week of processing time to complete. Therefore, it was decided to process incrementally

larger segments of each dataset to determine if there is a threshold beyond which further

processing would not improve the results. The starting point was arbitrarily chosen to be

1,000 packets and each subsequent run increased by a factor of ten until 10,000,000

packets were processed. Since the next factor of ten level would be 100,000,000, which is

larger than either dataset, the last sample was set to 25,000,000. To determine the

efficacy of any compression algorithm, there are two approaches, the compression ratio,

and the space savings. The compression ratio is calculated as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

The space savings is calculated as follows, as a percentage:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) ∗ 100

Appendix F provides the detailed analysis of the two datasets. As has been

discussed, the GNCS algorithm is data-driven, in that the more data that is available, the

higher the likelihood of finding similarity. To highlight the relationship between the

average data per packet for each sample versus the space savings percentage, the data is

94

presented graphically in Figures 5 and 6 for the MACCDC 2012 and UNSW-NB15 17-2-

2015 datasets, respectively.

Figure 5 - MACCDC Data Distribution

Figure 6 - UNSW-NB15 Data Distribution

Although there are sample-to-sample fluctuations in space savings, the trend line

of the MACCDC 2012 dataset is relatively flat at a space savings of approximately 67%

(Figure 5), regardless of data volume. However, the UNSW-NB15 17-2-2015 dataset

98.5 105.6 96.2 70.1

402.5

565.3

66.0%

67.7%

62.8%

44.0%

73.2%

66.1%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%

0.0

100.0

200.0

300.0

400.0

500.0

600.0

1K 10K 100K 1M 10M 25M

Sp
ac

e
Sv

in
gs

Da
ta

/P
ac

ke
t

Sample Sizes

Data Distribution vs Space Savings

Data/Pkt Space Savings Linear (Space Savings)

354.7 391.3

523.8

731.4
802.0 804.9

10.3%
13.1%

30.0%

42.0%
46.7% 46.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1K 10K 100K 1M 10M 25M

Sp
ac

e
Sa

vi
ng

s

Da
ta

/P
ac

ke
t

Sample Sizes

Data Distribution vs Space Savings

Data/Pkt Space Savings Linear (Space Savings)

95

does exhibit an increase in space savings as the packet data increases (Figure 6), with the

actual space savings results leveling off at approximately 46%. Therefore, both datasets

provide an indication that implementation of genomic compression techniques can have a

significant impact on the size of audit/log files consisting of captured Ethernet packets.

Summary

The UNSW-NB15 17-2-2015 dataset compiled by Moustafa and Slay (2015)

contains 27 files with a combined 87,492,159 packets. The dataset was analyzed for the

occurrence of protocols at the internet layer, yielding just two, the Address Resolution

Protocol (ARP) and the Internet Protocol, Version 4 (IPv4). The transport layer exhibited

every protocol except one, protocol number 58. The Transmission Control Protocol

(TCP) represented 98.342% of the UNSW-NB15 dataset, the User Datagram Protocol

(UDP represented 1.635%, and the remaining representing only 0.023% of the total.

The MACCDC 2012 dataset is a network capture of traffic generated in the 2012

Mid-Atlantic Collegiate Cyber Defense Competition where Blue Team students protected

a network from a Red Team attack comprised of members of industry and academia. This

traffic was interspersed with normal network traffic. The MACCDC 2012 dataset

consisted of 17 files with a combined 71,856,691 packets. Unlike the UNSW-NB15

dataset, the MACCDCC dataset consisted of 17 different internet layer protocols. And,

although the most-prevalent protocol was IPv4 with 97.07% of the total, IPv6 was second

with 1.73% and ARP a distant third with only 0.14%, and the remaining 14 protocols

having a combined 1.06%. Unlike the UNSW-NB15 dataset, there were only five

transport layer protocols in the MACCDC dataset, with TCP and UDP comprising 98.0%

and 0.8%, respectively. The remaining three protocols represented 1.2% of the total.

96

These two datasets, although comprised of multiple static packet capture files,

represented continuous network traffic. The 25-million sample for the UNSW-NB15

dataset required slightly fewer than nine (9) files, and occurred over a period of 3 hours,

48 minutes, 48 seconds, for an average of 549 μs between packets, The 25-million sample

for the MACCDC 2012 dataset required slightly over five (5) files, and occurred over a

period of 3 hours, 26 minutes, 1 second, for an average of 494 μs between packets.

The genomic compression technique requires packet data to be effective, although

the duplicate data elimination component can be applied to message format protocols that

have minimal data but are comprised of packets with common header information.

Further analysis of the transport layer protocols on both datasets indicate that only the

TCP packets contain significant data. Therefore, parser development was limited to

parsers for ARP, IPv4, and TCP protocols; the implementation of the actual genomic

compression techniques to network traffic was geared solely around TCP.

Although ARP packets are processed, it is solely to eliminate common data, since

those packets are too short for the genomic compression techniques. As with ARP,

duplicate information in TCP packets is eliminated and just saved once, with the data

segments aggregated into packet flows. When the program detected that a flow was

complete, the genomic compression technique was then applied in which the flows were

analyzed for commonality leading to the creation of the edit scripts. Due to the overhead

associated with edit scripts, only flows that exceeded a threshold level were candidates

for the techniques.

The results of this research indicated that the application of the genomic

compression techniques to network traffic can have a significant impact on audit/log

97

network capture file storage space. Since this research was limited to TCP packets in

complete, aggregated network flows, and not the entire file, there was no method

available to compare the results to other techniques. Therefore, the only comparison

available was between the size of the data processed by the GNCS and the original raw

data. The application of genomic compression techniques was shown to save space

required for TCP packets – an average of 46% for the UNSW-NB15 dataset and 67% for

the MACCDC dataset, as well as an approximate 50% savings for ARP network traffic

for either dataset.

98

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

The program developed in this research indicates that utilization of genomic

compression techniques to network traffic can improve upon standard compression

algorithms. A major aspect of the original goal was to develop a compression algorithm

that upon decompression, could reconstruct the original packets as closely as possible.

Since not every protocol requires every field in their associated packets, it was

determined to eliminate superfluous data during processing to save file space. Therefore,

this technique is considered a lossy compression technique.

Genomic compression techniques are based on the commonality found in genes.

Loh, Baym, and Berger (2012) developed a compression algorithm that took advantage of

the common parts of a gene by replacing them with a link and an edit script of the

differences. The Genomic Network Compression System (GNCS) presented here utilized

that same concept – duplicate packet fields were removed, and common aggregated data

flows were replaced with an edit script showing the differences.

Although it was shown that removal of common packet fields in a packet flow

could provide a significant reduction if the size of the aggregated packet flows, this is no

real improvement on standard packet flow systems (Claise, Trammell, & Aitken, 2013).

However, applying the genomic compression techniques to the aggregated data flow

99

provided for a significant reduction in the size of a TCP packet flow – an average of 46%

for the UNSW-NB15 17-2-2015 dataset and 67% for the MACCDC 2012 dataset. In

addition, ARP network traffic exhibited a savings of approximately 50% for either

dataset over the raw PCAP packet data.

The reported space savings are an indication of the capability of genomic

compression techniques, and although accurate for the two selected datasets, those

datasets are not normal network traffic. The MACCDC dataset is the network packet

captures from the 2012 Mid-Atlantic Collegiate Cyber Defense Competition, in which

students from different universities act as blue team members to protect a corporate

network from attack by a red team made up of volunteers from industry and academia.

The network activity of the red and blue teams is interspersed with simulated normal

network traffic. As such, there was no indication as to what attack vectors the red team

was attempting to exploit, nor how the blue team defended against those attacks.

However, this could explain the fluctuations in the GNCS results and the higher space

savings compared to the UNSW-NB15 dataset – there could be multiple similar attacks

and responses that were easier to match using the algorithm.

The UNSW-NB15 dataset was created by Nour Moustafa and Jill Slay in 2015 to

provide a more-current dataset for testing intrusion detection systems. It is a hybrid

dataset consisting of both real-world network traffic and synthetic data representing nine

types of attacks, namely: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,

Reconnaissance, Shellcode, and Worms. Although Moustafa and Slay (2015) state there

is real-world traffic, analysis of the GNCS output identified that 65.75% of all packets in

the 25-million packet sample were duplicates (Table 8, highlighted cell). In 2010,

100

Pentikousis et al. performed an analysis on network traces from the National Laboratory

of Applied Network Research Passive Measurement and Analysis (NLANR/PMA). This

analysis determined that in the various traces in the dataset, retransmissions of TCP

packets ranged from 0.48% to 3.6%, with an average of 2.4% (Pentikousis et al., 2010).

Moustafa and Slay (2015) provided no explanation for this significant discrepancy, but it

is probably safe to assume it was intentional to make the attack packets a smaller

percentage of the total and thus harder to identify.

Table 4 – UNSW-NB15 Dataset Output
UNSW-NB15 Dataset – 25-Million Packet Run

Record Type Total
Records Total Size Record

Length Total Packets % of
Total

File header 1 188 188
TCP complete records 397,262 148,102,391 47 7,496,751 29.99%
TCP orphan records 219,065 15,569,572 48 245,776 0.98%
TCP duplicate records 16,437,802 30,280,976 16 16,437,802 65.75%
TCP ignored records 396,419 3,162,938 Variable 396,419 1.59%
UDP complete records 413,795 5,829,179 Variable 413,795 1.66%
UDP orphan records 0 0 Variable 0 0.00%
ARP complete records 1,561 84,294 54 3,122 0.01%
ARP orphan records 3 132 44 3 0.00%
ARP duplicate records 417 6,672 16 417 0.00%
Unsupported L2
records 0 0 Variable 0 0.00%

Unsupported L3
records 5,915 1,381,679 Variable 5,915 0.02%

Unsupported L4
records 0 0 Variable 0 0.00%

Data records 367,612 6,032,954,363 Variable
Header records 8 682 Variable
Totals: 18,239,860 6,237,373,066 25,000,000 100.0%

A close examination of the datasets indicated that in some cases, data flows that

were exact matches were either nonsense text or encrypted – the protocol did not indicate

the traffic was encrypted. This adds credence to the statement that the datasets were

artificially expanded. However, in the real world, this would not be observed for different

IP addresses, and encrypted data flows would defeat the comparison routines required by

101

the genomic compression algorithm. Privacy and confidentially considerations aside, if

the algorithm could be implemented in conjunction with a Transport Layer Security

Inspection system (NSA, 2019), more flows would be available for comparison, and the

likelihood of finding matches, even partial matches would increase, leading to a higher

compression ratio.

One issue with the development was the utilization of an implementation of the

Levenshtein algorithm (Levenshtein, 1966) available from the Edpresso Team (Edpresso,

2022). Although this variation is a simple implementation of the Levenshtein algorithm,

it requires a single 2-dimensional matrix which, for strings m and n, would be [m + 1] by

[n + 1] in size. It is not uncommon that a user download could be up to hundreds of

megabytes in size. If you are determining if a one-megabyte string is a substring of a very

large download, the matrix could actually be terabytes in size, easily making in

unmanageable to process in most computers. For this research, only matrices that would

fit in available memory were utilized – if the matrix was too large, the processing of that

combination was ignored. Although the extremely large matrices would remain

unmanageable, a variation of the Levenshtein algorithm was presented that would break

the matrix into multiple, smaller matrices (Hirschberg, 1975). To compare large strings, a

variation of the Hirshberg algorithm would need to be implemented.

Implications

An approximately 50% decrease in file size indicates that application of edit

scripts similar to genomic compression techniques could be beneficial in storing network

traffic. The key for a practical use of the algorithm would be to optimize the exiting

parsers and add additional parsers as necessary, such that only the information that is

102

germane to the long-term use is maintained. Although the final step in the current

implementation was to combine all the associated interim files into a single, compressible

file, use of compressed bitmap indexes could allow for real-time comparisons required

for detection of such activity as advanced persistent threats or data exfiltration. Future

research would be toward improving efficiency of the approximate match search

algorithms. Besides extending the Hirschberg algorithm to a larger number of smaller

problems, the use of multi-processing, multi-threading could decrease processing time.

This will not be a total solution to the large matrix issue, since even if a matrix is broken

into smaller matrices, the total of the computer memory for all the matrices could still

exceed available memory. Rather, the smaller matrices would need to be performed

sequentially, potential edit strings created (containing the ‘=’, ‘!’, ‘-’ and ‘+’ symbols),

and the memory released for use by a subsequent matrix. At the end, the pieces of edit

strings would be reconstructed to provide the final string required to create the actual edit

script.

For the genomic techniques to be maximized, there needs to be a higher

probability of packet data segments containing similar data. This would be the case on a

corporate internal network, where users are routinely accessing similar data, such as

would be experienced accessing the organizations website, SharePoint sites, etc. This

would be even more likely given the larger number of people working from home and

accessing the corporate via secure VPN tunnels. Since all data required by a user would

be traversing the internet, the probability of common data being shared by multiple users

appearing in network audit log files would be increased. Application of genomic

compression techniques to potentially a large amount of common data should greatly

103

increase the space savings above that shown in this research. If Transport Layer Security

Inspection system (NSA, 2019) is included, there could be substantial decreases in space

required to save audit logs.

Recommendations

Future research would further refine the algorithm based upon the goal of the

process. Implementation for identifying APTs might be different than an implementation

to detect insider threats. The initial approach was geared totally to decreasing file size,

based on aggregated data segment flows. A simple extension would be to maintain the 4-

tuple of source and destination IP addresses and ports and a link to the data flows in a

database. This way, trends in usage related to specific IP addresses could be identified as

they occur. Conversely, if data exfiltration is suspected, it would be possible to trace back

to the user or users involved in the activity.

Without regard to possible end uses, the main thrust of future research will be

toward improving the efficiency of the approximate match algorithm. As discussed

above, there are several published extensions to the Levenshtein and Hirschberg

algorithms. During the research, a new approach was identified in which creation of the

symbolic edit strings is concurrent with the comparison of two strings, rather than

creating the large matrix first, and then reading that matrix backwards to develop the

symbolic edit strings. This would not only decrease the memory requirement of the

current approach but would also be a candidate for multi-processing – as possible

common beginnings are identified, a separate process is spawned to continue that

analysis, while the original process continues looking for additional possible matches.

104

Conceptually, in a production environment, as packets are captured, they would

be processed, and results stored for future analysis. This research utilized balanced binary

search trees to maintain the incomplete flows and ARP pairs. In production, these would

be replaced with a database that would maintain references to all flows, such that queries

could be made to perform trend analysis on any combination of IP addresses and ports.

Considering the potential file size of one year of audit logs, it would not be practical to

maintain all that data in a live environment. In the tests of the MACCDC and

UNSW-NB15 datasets, the data flows made up 83.2% and 96.7% of the total output data

files, respectively. Further research will be required to determine the most-efficient

method of storing the data off-line but make it available for research.

Summary

While business traffic has doubled every three years since 2016 (O’Dea, 2020),

the cost of cybercrime has kept pace (Embroker Team, 2021). To combat cybercrime,

organization began collecting and maintaining audit files to aid in identification of

malicious activity (Marker, 2021; Shopp, 2020; NIST ITL Bulletin, 1997). In 2015,

Horne presented data traffic from HP DNS servers. Assuming the DNS request is a

prelude to actual connections, the data can be extrapolated to possible IPv4 traffic. Using

packet estimates provided by Kim, et, al., (2004), an organization with 1,000 users could

generate in excess of 10 petabytes of audit logs per year.

To address the storage issues of such large files, various compression algorithms

have been developed, such as ZIP, RAR, and TAR, although these are generally used for

archiving purposes (FileInfo, n.d.). There are two general categories of compression

algorithms: Lossless and Lossy (Kavitha, 2016). Lossless compression is used where

105

exact copies of the original data is required, such as with run length encoding, Lempel

Ziv Welch and Huffman encoding; Lossy compression allows for elimination of some of

the original data that is deemed not to impact the essential information of the original,

such as JPEG, MP3, and MP4 (Kavitha, 2016).

Genomic research involves analysis of very large datasets. In 2012, Loh, Baym

and Berger proposed a compression algorithm that allowed them to perform genomic

analysis directly on the compressed data, without having to be uncompressed. The

purpose of this research is to utilize the dynamic compression techniques of Loh, et al.

(2012) to not only reduce the size of the network data file storage, but also allow analysis

in real time. The compression algorithm developed here is considered lossy, since certain

packet fields are eliminated during processing.

The development and validation of the genomic compression technique required

the availability of a dataset that was representative of the real world. After an in-depth

search, the UNSW-NB15 17-2-2015 dataset compiled by Moustafa and Slay (2015) and

the network packet captures from the 2012 Mid-Atlantic Collegiate Cyber Defense

Competition were selected. These files follow the TCP/IP, 4-layer model, but utilized

different PCAP capture formats, requiring modification of the program to account for the

network layer header differences.

The datasets were analyzed for the occurrence of protocols at the internet and

transport layers. At the internet layer, there are only two protocols represented in the

UNSW-NB15 dataset, the Address Resolution Protocol (ARP) and the Internet Protocol,

Version 4 (IPv4). However, in addition to those two protocols, the MACCDC dataset

contained 12 additional protocols, none of which was of significant occurrence to warrant

106

further analysis. With both datasets, the Transmission Control Protocol (TCP) was the

most-prevalent protocol in the transport layer, representing 98.3% and 90.7% of the

UNSW-NB15 and MACCDC datasets, respectively. However, after TCP, the remaining

transport layer protocols varied between the two datasets. The User Datagram Protocol

(UDP) was the next for both, but there was no subsequent similarity between the two

datasets. The MACCDC dataset had a total of five transport layer protocols, whereas the

UNSW-NB15 dataset exhibited every possible protocol, except for protocol number 58;

239 of which only had 12 instances each. Due to the minimal occurrences of these

protocols and their lack of significant data, all were ignored for further processing.

Ultimately, modules were developed to parse the datasets for ARP and IPv4 packets, and

the latter further parsed into just TCP and UDP usage – all other transport layer protocols

were saved as is, without taking advantage of the genomic techniques. As development

progressed, it was apparent that the bulk of the UDP usage was for single-packet

messaging. Therefore, as with unsupported protocols, all UDP packets were saved as is.

The program developed for this research read through the files of the datasets,

sequentially, packet by packet. Since only ARP and TCP packets were matched, they

were saved in their own balanced binary tree structure. All other packets were

immediately written to their associated interim file: 1) TCP duplicate packets; 2) UDP

packets; 3) ARP duplicate packets; 4) Ignored TCP packets; 5) Unsupported Internet

Layer packets; 6) Unsupported Transport Layer packets; and 7) Unsupported TCP

protocols packets.

The Address Resolution Protocol is a fixed-length protocol, consisting of request

and reply packets. Although there is no data segment and thus no ability to apply the

107

genomic compression technique, by combining the request and reply pair into a single,

final structure, significant space can be saved. When an ARP request packet is read, it is

written to the ARP binary tree. Upon identification of the reply packet, it is matched with

the request packet, the final structure is written to its own interim file, and the associated

request node removed from the ARP binary tree. Each ARP packet is 28 bytes in length

(Figure 2, Chapter 4), for a combined 56 bytes per pair. However, in a PCAP file, each

packet has a 16-byte header, making the total 88 bytes for the pair. The final structure for

an ARP pair utilized in this research is 46 bytes, for a 48% savings in file space.

As indicated above, the implementation of the genomic compression techniques

to network traffic was geared solely around TCP packets. To decrease any overhead

associated with creating edit scripts, it was decided that complete packet flows would be

aggregated, rather than attempting to apply the genomic techniques to individual packet

data segments. Since the protocol is known (TCP), the aggregation was based on a 4-

tuple key, comprised of the source and destination IP addresses and ports, as opposed to

the 5-tuple key utilized in the IP Flow export protocol, which includes the protocol in the

key (Claise et. al., 2013). This had the added advantage of eliminating the common data

exhibited in the packets that make up packet flow – the important information for

reconstruction was save once, with a link to the data. As packets are read, the first packet

with a unique 4-tuple key is written to the TCP balanced binary tree, and the data

segment stored in an associated linked list, ordered by sequence number. As additional

packets matching the 4-tuple key are identified. If they are duplicates, they are

immediately written to the TCP duplicate interim file. If not, the data segment is added to

the sequence linked list. This processing of the flow continues until the last packet in the

108

flow is received (FIN, or finish, flag is set). When the program detected that a flow was

complete, the genomic compression technique was then applied. Since the creation of edit

scripts requires overhead to identify the components of the script, only flows that exceed

a threshold level were possible candidates for the techniques.

The major difference between actual genomic data and network data is that with

gene research, a single gene is compared to a known “dictionary” and the difference

between the two are identified. With network traffic, there is no one-to-one relationship.

Rather, the current packet flow must be compared to every previous packet flow that has

been saved, a one-to-many relationship. Besides ensuring the packet flow meets a

minimum size threshold, determining the longest common substring between segments of

the packet flow and like-length segments of the previous flows was utilized to identify

possible common strings. It was at this point that the Levenshtein Edit Distance algorithm

(Levenshtein, 1966) was applied to the two flows (a known flow and the test flow) and

the resultant matrix walked in reverse to determine where characters either matched, did

not match, and whether the insertion or deletion of a character to either string would be

required. The edit string was comprised of four symbols: ‘=’ where the characters

matched; ‘!’ where the character did not match; ‘+’ where a character needed to be

inserted into the known string; and ‘-’ where a character had to be removed from the

known string. This edit string was then used to create the edit scripts to indicate how to

change a known flow to match the current flow.

There is a single edit script node structure comprised of four fields: 1) the edit

type, which is either ‘K’ for a reference to the known string, or ‘T’ referring to the test

string; 2) the starting location for either string; 3) the length of the data; and 4) the data

109

involved. In the case of the node referring to a known string, the data field is empty since

the known string is on file and the location and length of the common data has been

saved in the previous two fields. In the case of the test string, the data field would contain

the unique data segment belonging to the test string. At this point, the data flow, if unique

or didn’t meet the length threshold, is written to the data interim file. If a match is

identified, the edit scripts are written to the datafile. In either case, the base TCP packet is

removed from the TCP binary tree, including removal of the sequence linked list.

At the end of processing of each dataset, the program creates the final file, based

on the various interim files, as well as any orphan nodes in the ARP and TCP binary

trees. The final file is built upon the TCP interim file. During its initial creation at

program start-up, the first 188 bytes are written with zeros, as reserved space for the final

file header. Final processing is performed in the following order, based upon the header

structure: 1) During processing, the count of the number of flows was stored, so the TCP

flow record location, record count, and the known format length are written to the header;

2) the TCP binary tree is checked for any orphan nodes. Their starting location in the file

is saved and the orphan packets were written to file. The header information is updated

and the remaining TCP binary tree nodes removed and the tree destroyed; 3) the duplicate

TCP interim file is copied to the final file and the header information updated; 4) since

UDP packets were not processed for flows, there is nothing to add to the file and the

header is updated for location with a count of zero records; 5) all UDP packets were

written to an interim file, and considered orphans. The UDP interim file was copied to the

final file and the header information updated; 6) the ARP completed pair interim file is

copied to the final file and the header information updated; 7) the ARP binary tree is

110

checked for any orphans and the associated packets are written to the output file, the

header information updated; and the ARP binary tree deleted. 8) the ignored TCP,

unsupported Internet Layer protocol, unsupported Transport Layer, and unsupported TCP

interim files are copied to the final file and the header information updated, in the order

presented; 9) the data interim file is copied to the output file and the header information

updated; and 10) the number of files in the dataset is written, followed by the header

information for each file, and then the location of the dataset header files is written to the

final file header.

The results of this research indicated that the application of the genomic

compression techniques to network traffic can have a significant impact on audit/log

network capture file storage space. For protocols with significant data, the application of

genomic compression techniques was shown to save significant space – an average of

46% for the UNSW-NB15 dataset and 67% for the MACCDC dataset for TCP

aggregated data flows. For message formats consisting of request packets and replies, the

genomic compression technique of eliminating duplicate data can also provide significant

space savings – both datasets exhibited approximately 50% space savings.

111

Appendix A

NIST SP 800-53 Revision 5, Audit and Accountability Security Controls

Table A1 provides a list of the NIST SP 800-53 security and privacy controls and

control enhancements that are assigned to the Audit and Accountability family. Note that

the breaks in numbering are due to controls from the previous Revision 4 being

withdrawn and incorporated into other controls. For simplicity, those controls have been

eliminated from this table. The controls that are pertinent to this research are highlighted

in yellow.

Table A1 - NIST SP 800-53 Revision 5 Audit and Accountability Security Controls

Control
Number Control Name

AU-01 Policy and Procedures
AU-02 Event Logging
AU-03 Content of Audit Records
AU-03(1) Content of Audit Records | Additional Audit Information
AU-03(3) Content of Audit Records | Limit Personally Identifiable Information

Elements
AU-04 Audit Log Storage Capacity
AU-04(1) Audit Log Storage Capacity | Transfer to Alternate Storage
AU-05 Response to Audit Logging Process Failures
AU-05(1) Response to Audit Logging Process Failures | Storage Capacity Warning
AU-05(2) Response to Audit Logging Process Failures | Real-time Alerts
AU-05(3) Response to Audit Logging Process Failures | Configurable Traffic

Volume Thresholds
AU-05(4) Response to Audit Logging Process Failures | Shutdown on Failure
AU-05(5) Response to Audit Logging Process Failures | Alternate Audit Logging

Capability
AU-06 Audit Record Review, Analysis, and Reporting
AU-06(01) Audit Record Review, Analysis, and Reporting | Automated Process

Integration

112

Control
Number Control Name

AU-06(03) Audit Record Review, Analysis, and Reporting | Correlate Audit Record
Repositories

AU-06(04) Audit Record Review, Analysis, and Reporting | Central Review and
Analysis

AU-06(05) Audit Record Review, Analysis, and Reporting | Integrated Analysis of
Audit Records

AU-06(06) Audit Record Review, Analysis, and Reporting | Correlation with
Physical Monitoring

AU-06(07) Audit Record Review, Analysis, and Reporting | Permitted Actions
AU-06(08) Audit Record Review, Analysis, and Reporting | Full Text Analysis of

Privileged Commands
AU-06(09) Audit Record Review, Analysis, and Reporting | Correlation with

Information from Nontechnical Sources
AU-07 Audit Record Reduction and Report Generation
AU-07(1) Audit Record Reduction and Report Generation | Automatic Processing
AU-08 Time Stamps
AU-09 Protection of Audit Information
AU-09(1) Protection of Audit Information | Hardware Write-once Media
AU-09(2) Protection of Audit Information | Store on Separate Physical Systems or

Components
AU-09(3) Protection of Audit Information | Cryptographic Protection
AU-09(4) Protection of Audit Information | Access by Subset of Privileged Users
AU-09(5) Protection of Audit Information | Dual Authorization
AU-09(6) Protection of Audit Information | Read-only Access
AU-09(7) Protection of Audit Information | Store on Component with Different

Operating System
AU-10 Non-repudiation
AU-10(1) Non-repudiation | Association of Identities
AU-10(2) Non-repudiation | Validate Binding of Information Producer Identity
AU-10(3) Non-repudiation | Chain of Custody
AU-10(4) Non-repudiation | Validate Binding of Information Reviewer Identity
AU-11 Audit Record Retention
AU-11(1) Audit Record Retention | Long-term Retrieval Capability
AU-12 Audit Record Generation
AU-12(1) Audit Record Generation | System-wide and Time-correlated Audit Trail
AU-12(2) Audit Record Generation | Standardized Formats
AU-12(3) Audit Record Generation | Changes by Authorized Individuals
AU-12(4) Audit Record Generation | Query Parameter Audits of Personally

Identifiable Information
AU-13 Monitoring for Information Disclosure
AU-13(1) Monitoring for Information Disclosure | Use of Automated Tools
AU-13(2) Monitoring for Information Disclosure | Review of Monitored Sites

113

Control
Number Control Name

AU-13(3) Monitoring for Information Disclosure | Unauthorized Replication of
Information

AU-14 Session Audit
AU-14(1) Session Audit | System Start-up
AU-14(3) Session Audit | Remote Viewing and Listening
AU-16 Cross-organizational Audit Logging
AU-16(1) Cross-organizational Audit Logging | Identity Preservation
AU-16(2) Cross-organizational Audit Logging | Sharing of Audit Information
AU-16(3) Cross-organizational Audit Logging | Disassociability

114

Appendix B

Dataset Analysis and Selection

Table B1 provides the complete list of the downloaded candidate datasets. Both

the MACCDC and UNSW-NB15 datasets were single datasets comprised of multiple,

chronologically sequential PCAP files. However, the two MILCOM 2016 Datasets were

actually comprised of multiple, individual datasets

Table B1 – Candidate Datasets

Each of the candidate datasets was processed by various modules of the utility

program which incorporated certain built-in functions of the Npcap library. In the PCAP

file format, each packet is preceded with a packet header as follows:

typedef struct pcap_record_header {
unsigned int32 timestamp_seconds; // 4 bytes
unsigned int32 timestamp_microseconds; // 4 bytes
unsigned int32 packet_octets_captured; // 4 bytes
unsigned int32 actual_packet_length; // 4 bytes

} // 16 total bytes

Mid-Atlantic Collegiate Cyber Defense Competition (MACCDC) Datasets
Dataset Name Compressed Size #PCAP Files #Datasests
MACCDC 2010 10 GB 27 1
MACCDC 2011 14.2 GB 15 1
MACCDC 2012 5.4 GB 17 1

University of New South Wales (UNSW) Datasets
Dataset Name Compressed Size #PCAP Files #Datasests
UNSW-NB15 17-2-2015 49 GB 27 1
UNSW-NB15 22-1-2015 50.2 GB 53 1

Military Communications Conference (MILCOM) 2016 Datasets
Dataset Name Compressed Size #PCAP Files #Datasests
dataSetAv2 33 G 15 15
dataSetEAggregator 44 G 48 48

115

The first module read through all files of the dataset, totaling the number of PCAP

records and two values provided by the PCAP packet header: the number of bytes

captured (packet_octets_captured) and saved in the PCAP file; and the length, in bytes, of

the record actually on the network when it was captured (actual_packet_length). To

provide a comparative analysis, the average packet size was calculated for each dataset.

After counting all the packets and bytes in a file, the module then calculated the expected

size of the PCAP file to account for the PCAP packet header (16 bytes per packet) and

the global PCAP file header (24 bytes per file). The last value obtained was the actual

on-disk file size. Tables B2, B3, B4, and B5 show the summary results for the

MACCDC, UNSW-NB15, MILCOM dataSetAv2, and MILCOM dataSetEAggregator

datasets, respectively (Appendix C, Tables C1 through C3 provides the per-file results for

the three MACCDC datasets and Appendix D, Tables D1 and D2 for the two UNSW-

NB15 datasets). Putting the average size into perspective, any comparisons must account

for the impact of the lengths of the various protocol packet headers. The network layer

header ranges from 14 bytes to 18 bytes and the Internet layer (IPv4) header is 20 bytes.

Transport layer headers are variable. For example, TCP headers are 20 bytes, while UDP

headers are 8 bytes. Therefore, mosts packet will require anywhere from 40 to 60 bytes

for the headers, which must be included in any data segment calculation.

Table B2 – Candidate Datasets: File and Packet Statistics – MACCDC Datasets
MACCDC Datasets

Dataset: MACCDC 2010 MACCDC 2011 MACCDC 2012
Total Packets 264,973,151 134,465,786 71,856,691
Total Bytes 32,513,443,821 30,237,514,309 16,703,208,838
Bytes/Packet 123 225 222
Bytes on Wire 32,513,443,821 30,237,514,309 16,703,208,838
Total w/Headers 36,753,014,885 32,388,967,245 17,852,916,302
Actual File Size 36,753,014,885 32,388,967,245 17,852,916,302

116

The MACCDC datasets results did not show anything abnormal, although the

average packet size of the MACCDC 2010 dataset was approximately half the sizes of

the MACCDC 2011 and MACCDC 2012 datasets (Table B2). Even though that dataset

contained significantly more packets than the other two, due to the lower data segment

sizes, the MACCDC 2010 dataset was eliminated from further analysis (dataset name

highlighted in red in Table B2).

Table B3 – Candidate Datasets: File and Packet Statistics – UNSW-NB15 Datasets
UNSW-NB15 Datasets

Dataset: 17-2-2015 22-1-2015
Total Packets 87,492,159 94,571,342
Total Bytes 48,347,208,654 51,116,871,461
Average Bytes/Pkt 411 96
Bytes on Wire 48,347,208,654 51,116,871,461
Total w/Headers 49,747,083,846 52,630,014,205
Actual File Size 49,747,092,020 53,044,845,688

In both UNSW-NB15 datasets, the actual file sizes where larger than the

calculated size for the number of packets read (highlighted in yellow in Table B3). For

the UNSW-NB 17-2-2015 dataset, the discrepancy was minor: 8,174 additional bytes in a

dataset that captured 49,747,083,846 bytes. With the UNSW-NB 22-1-2015 dataset, there

was a more significant difference: 414,831,483 bytes compared to 52,630,014,205

captured bytes. In both datasets, the extra data did not cause any program issues and the

packet counts were confirmed using Wireshark. However, due to the significantly smaller

packet sizes in the 22-1-2015 dataset (96 bytes per packet versus 411 bytes per packet for

the 17-2-2015 dataset), the 22-1-2015 dataset was excluded from further analysis (dataset

name highlighted in red in Table B3).

As with the UNSW-NB15 datasets, two of the MILCOM 2016 dataSetAv2

datasets contained additional data (cells highlighted in yellow in Table B4). However, the

117

differences were very significant with the actual file size of the i-dc-9 dataset being over

twice what was expected and that for the fw-sniffer dataset being 9.1 times larger. Again,

these differences did not impact processing and the packet counts were confirmed with

Wireshark. However, like the UNSW-NB15 22-1-2015 dataset, the fw-sniffer dataset

only contained 96 bytes per packet, so it was excluded from future processing, as well as

those candidate datasets with less than 1,000,000 packets (dataset names highlighted in

red in Table B4).

The other MILCOM 2016 dataset group, dataSetEAggregator, also had files with

extra data, and similar to the dataSetAv2 group, the differences were significant: the cop

dataset was 10.9 times larger than expected and the i-dc-9 dataset was 5.6 times larger

(highlighted in yellow in Table B5). Again, the extra data did not impact processing and

the number of packets was confirmed with Wireshark. Since the cop dataset packets were

significantly less than other datasets with greater than 1,000,000 packets, it was excluded

from further analysis, as were the two datasets with no packets (1stplt2rto and 2ndpltrto),

and the other datasets that did not reach the 1,000,000-packet threshold (dataset names

highlighted in red in Table B5). This eliminated every dataset in the dataSetEAggregator

group, except the i-dc-9 dataset.

After the first level of analysis, most of the datasets have been eliminated either due

to number of packets to test, or the average packet not containing sufficient data to test.

This leaves eight datasets for further analysis: MACCDC 2011; MACCDC 2012; UNSW-

NB15 17-2-2015; the i-dc-4, i-dc-5, i-dc-6, and i-dc-9 datasets from the dataSetAv2 group;

and the i_dc-9 dataset from the dataSetEAggregator group.

118

Table B4 – Candidate Datasets: File and Packet Statistics – MILCOM Datasets

MILCOM 2016 dataSetAv2 Datasets
Dataset: db fw-sniffer i-dc-1 i-dc-2 i-dc-3

Total
Packets 278,827 14,239,985 59,443 15,706 77,804

Total
Bytes 102,331,494 1,368,367,400 52,124,194 6,175,912 67,893,178

Average
Bytes/Pkt 411 96 877 393 873

Bytes on
Wire 102,331,494 1,368,367,400 52,124,194 6,175,912 67,893,178

Total
w/Headers 106,792,750 1,596,207,184 53,075,306 6,427,232 69,138,066

Actual File
Size 106,792,750 14,481,109,072 53,075,306 6,427,232 69,138,066

Dataset: i-dc-4 i-dc-5 i-dc-6 i-dc-7 i-dc-8
Total
Packets 1,580,379 2,124,915 1,428,356 26,319 461,571

Total
Bytes 1,622,623,997 2,172,641,100 1,464,901,945 11,792,338 459,676,581

Average
Bytes/Pkt 1,027 1,022 1,026 448 996

Bytes on
Wire 1,622,623,997 2,172,641,100 1,464,901,945 11,792,338 459,676,581

Total
w/Headers 1,647,910,085 2,206,639,764 1,487,755,665 12,213,466 467,061,741

Actual File
Size 1,647,910,085 2,206,639,764 1,487,755,665 12,213,466 467,061,741

Dataset: i-dc-9 nodejs ns-dc smf wpvuln
Total
Packets 7,487,262 18 318,341 432,053 7,414

Total
Bytes 3,415,530,780 4,743 28,359,627 154,175,229 1,381,336

Average
Bytes/Pkt 456 264 89 357 186

Bytes on
Wire 3,415,530,780 4,743 28,359,627 154,175,229 1,381,336

Total
w/Headers 3,535,326,996 5,055 33,453,107 161,088,101 1,499,984

Actual File
Size 7,830,294,292 5,055 33,453,107 161,088,101 1,499,984

119

Table B5 – Candidate Datasets: File and Packet Statistics – MILCOM Datasets

MILCOM 2016 dataSetEAggregator Datasets
Dataset: 1stplt1rto 1stplt1sqd1rfl

mn1
1stplt1sqd1rflmn

2
1stplt1sqd1tl 1stplt1sqd2rflmn

1
Total Packets 3,069 11,264 9,423 10,417 9,126
Total Bytes 3,264,894 5,944,570 3,957,648 4,749,122 3,737,216
Avg Bytes/Pkt 1,064 528 420 456 410
Bytes on Wire 3,264,894 5,944,570 3,957,648 4,749,122 3,737,216
Total w/Headers 3,314,022 6,124,818 4,108,440 4,915,818 3,883,256
Actual File Size 3,314,022 6,124,818 4,108,440 4,915,818 3,883,256
Dataset: 1stplt1sqd2

rflmn2
1stplt1sqd2tl 1stplt1sqdldr 1stplt2rto 1stplt2sqd1rflm

n1
Total Packets 9,063 10,226 9,818 0 9,125
Total Bytes 3,556,794 4,673,850 4,334,082 0 3,552,190
Avg Bytes/Pkt 392 457 441 0 389
Bytes on Wire 3,556,794 4,673,850 4,334,082 0 3,552,190
Total w/Headers 3,701,826 4,837,490 4,491,194 0 3,698,214
Actual File Size 3,701,826 4,837,490 4,491,194 0 3,698,214
Dataset: 1stplt2sqd1

rflmn2
1stplt2sqd2tl 1stplt2sqd2rflm

n1
1stplt2sqd2

rflmn2
1stplt2sqd2tl

Total Packets 8,760 9,234 7,867 10,140 9,234
Total Bytes 3,182,094 3,654,292 2,349,358 4,541,954 3,654,292
Avg Bytes/Pkt 363 396 299 448 396
Bytes on Wire 3,182,094 3,654,292 2,349,358 4,541,954 3,654,292
Total w/Headers 3,322,278 3,802,060 2,475,254 4,704,218 3,802,060
Actual File Size 3,322,278 3,802,060 2,475,254 4,704,218 3,802,060
Dataset: 1stplt2sqdl

dr
1stpltldr 2ndplt1sqd1rfl

mn1
2ndplt2sqd

1rflmn2
2ndplt1sqd1tl

Total Packets 9,522 23,371 11,095 8,347 10,569
Total Bytes 4,011,744 18,919,020 5,844,668 2,856,298 4,998,112
Average
Bytes/Pkt

421 810 527 342 473

Bytes on Wire 4,011,744 18,919,020 5,844,668 2,856,298 4,998,112
Total w/Headers 4,164,120 19,292,980 6,022,212 2,989,874 5,167,240
Actual File Size 4,164,120 19,292,980 6,022,212 2,989,874 5,167,240
Dataset: 2ndplt1sqd

2rflmn1
2ndplt1sqd2

rflmn2 2ndplt1sqd2tl 2ndplt1sqdl
dr

2ndplt2sqd1rfl
mn1

Total Packets 8,425 8,569 9,849 12,587 8,456
Total Bytes 3,051,478 3,134,318 4,357,484 7,380,692 2,970,188
Average
Bytes/Pkt 362 366 442 586 351

Bytes on Wire 3,051,478 3,134,318 4,357,484 7,380,692 2,970,188
Total w/Headers 3,186,302 3,271,446 4,515,092 7,582,108 3,105,508
Actual File Size 3,186,302 3,271,446 4,515,092 7,582,108 3,105,508

120

MILCOM 2016 dataSetEAggregator Datasets
Dataset: 2ndplt2sqd

1rflmn2
2ndplt2sqd1

tl
2ndplt2sqd2rfl

mn1
2ndplt2sqd

2rflmn2 2ndplt2sqd2tl

Total Packets 8,347 9,300 7,810 10,015 9,522
Total Bytes 2,856,298 3,931,340 2,362,258 4,436,966 3,984,258
Average
Bytes/Pkt 342 423 302 443 418

Bytes on Wire 2,856,298 3,931,340 2,362,258 4,436,966 3,984,258
Total w/Headers 2,989,874 4,080,164 2,487,242 4,597,230 4,136,634
Actual File Size 2,989,874 4,080,164 2,487,242 4,597,230 4,136,634
Dataset: 2ndplt2sqdl

dr 2ndpltldr 2ndpltrto 3rdplt1sqd
1rflmn1

3rdplt1sqd1rflm
n2

Total Packets 9,698 10,829 0 8,594 8,676
Total Bytes 4,286,814 5,578,678 0 3,132,412 3,203,772
Average
Bytes/Pkt 442 516 0 364 369

Bytes on Wire 4,286,814 5,578,678 0 3,132,412 3,203,772
Total w/Headers 4,442,006 5,751,966 0 3,269,940 3,342,612
Actual File Size 4,442,006 5,751,966 0 3,269,940 3,342,612
Dataset: 3rdplt1sqd

1tl
3rdplt1sqd2r

flmn1
3rdplt1sqd2rflm

n2
3rdplt1sqd

2tl 3rdplt1sqdldr

Total Packets 9,951 8,802 8,708 10,444 12,847
Total Bytes 4,261,960 3,387,814 3,223,284 5,043,220 7,612,416
Average
Bytes/Pkt 428 385 370 483 593

Bytes on Wire 4,261,960 3,387,814 3,223,284 5,043,220 7,612,416
Total w/Headers 4,421,200 3,528,670 3,362,636 5,210,348 7,817,992
Actual File Size 4,421,200 3,528,670 3,362,636 5,210,348 7,817,992
Dataset: 3rdpltldr 3rdpltrto cop db i-dc-9
Total Packets 16,228 7,152 12,974,530 46,831 14,842,234
Total Bytes 11,254,030 7,567,192 1,529,379,506 17,819,978 3,535,380,449
Avg Bytes/Pkt 693 1,058 118 381 238
Bytes on Wire 11,254,030 7,567,192 1,529,379,506 17,819,978 3,535,380,449
Total w/Headers 11,513,702 7,681,648 1,736,972,010 18,569,298 3,772,856,217
Actual File Size 11,513,702 7,681,648 18,916,841,194 18,569,298 20,952,725,401
Dataset: nodejs ns-dc Smf
Total Packets 452 82,370 73,689
Total Bytes 30,902 7,441,446 26,756,753
Average
Bytes/Pkt 68 90 363

Bytes on Wire 30,902 7,441,446 26,756,753
Total w/Headers 38,158 8,759,390 27,935,801
Actual File Size 38,158 8,759,390 27,935,801

In order to provide further analysis of the suitability of any given dataset, the actual

structure of the packet captures had to be determined. There are multiple possible packet

capture formats within the Npcap library. The differences are related to how the Network

Layer header is presented, including whether the PCAP packet starts immediately with the

121

Internet Layer, totally ignoring the Network Layer header (Tcpdump, 2022). The complete

global PCAP file header is as follows:

typedef struct pcap_global_header {
unsigned int32 magic_number; // 4 bytes
unsigned int16 version_major; // 2 bytes
unsigned int16 version_minor; // 2 bytes

 int32 time_zone_correction; // 4 bytes
unsigned int32 timestamp_accuracy; // 4 bytes
unsigned int32 max_capture_length; // 4 bytes
unsigned int32 data_link_type; // 4 bytes

} // 24 total bytes

The “data_link_type” member of the PCAP file header structure represents the

Network Layer type (Wireshark, 2020). A “magic_number” structure element is used to

identify whether the PCAP file data elements have been written in the native byte order of

the current operating system or not. The result of this element determined how the actual

data values are extracted from the packet. The next program module to run simply opened

the PCAP file using the Ncpap library, displayed the contents of the PCAP file header and

closed the file. The Network Layer Type and Native Byte Order for the remaining eight

datasets are shown in Table B6.

This module showed that the UNSW-NB15 dataset utilizes network layer header

type 113, an artificial network layer header inserted by file captures performed on a Linux

system. The two MACCDC and the MILCOM 2016 datasets all utilize network layer

header type 1 which references the standard Ethernet link-layer (Network Layer) header.

All further analysis, including the actual genomic compression program, utilized a short

function to identify the network layer type and data order of the PCAP file, in order to

properly account for the length and content of the Network Layer header and obtain

accurate data extraction.

122

Table B6 – Candidate Datasets: File Header Extracts
Dataset Network Layer type Native Byte Order
MACCDC 2011 1 (Ethernet) Native
MACCDC 2012 1 (Ethernet) Native
UNSW-NB15 17-2-2015 113 (Linux “cooked”) Native
dataSetAv2 i-dc-4 1 (Ethernet) Native
dataSetAv2 i-dc-5 1 (Ethernet) Native
dataSetAv2 i-dc-6 1 (Ethernet) Native
dataSetAv2 i-dc-9 1 (Ethernet) Native
dataSetEAggregator i_dc-9 1 (Ethernet) Native

The next analysis read through the datasets, extracting the Internet Layer protocol

from the Network Layer header based on the structure defined by the Network Layer

type. This module was limited to counting occurrences of the Internet Layer protocols.

The results for the eight candidate datasets are provided in Table B7. Except for the two

MACCDC datasets, the other six candidate datasets were comprised of two Internet

Layer protocols only: Internet Protocol version 4 (IPv4) and the Address Resolution

Protocol (ARP), where IPv4 comprised over 99.9% of the total packets. In addition to

IPv4 and ARP, the MACCDC datasets also contained several other protocols, the most

notable being IPv6. IPv4 again was the dominant protocol with 97.8% for the MACCDC

2011 dataset and 97.0% for the MACCDC 2012 dataset, with IPv6 comprising 1.5% and

1.8% of the MACCDC 2011 and MACCDC 2012 datasets, respectively. (Appendix C,

Tables C4 through C6 provide the per-file results for the most-common Internet Layer

protocols for the two remaining MACCDC datasets and Appendix D, Tables D3 and D4,

for the two UNSW-NB15 datasets).

123

Table B7 – Candidate Datasets: Internet Layer Protocols

Dataset Protocol Description Count Percent Decimal Hex
MACCDC 2011 2,048 0x0800 IPv4 131,527,680 97.815%
 34,525 0x86DD IPv6 2,010,213 1.495%
 2,054 0x0806 ARP 169,498 0.126%
 36,864 0x9000 Loopback 16,058 0.012%
 35,020 0x88CC Link Layer Discovery Protocol (LLDP) 5,194 0.004%
 32,821 0x8035 RARP 485 0.000%
 Remaining 11 Protocols: 736,658 0.548%
 Dataset Total: 134,465,786 100.000%

MACCDC 2012 2048 0x0800 IPv4 69,749,729 97.068%
 34525 0x86DD IPv6 1,246,065 1.734%
 2054 0x0806 ARP 101,294 0.141%
 24579 0x6003 DEC DECNET Phase IV Route 8,870 0.012%
 36864 0x9000 Loopback 6,688 0.009%
 35020 0x88CC Link Layer Discovery Protocol (LLDP) 2,160 0.003%
 32821 0x8035 RARP 590 0.001%
 Remaining 9 Protocols: 741,295 1.032%
 Dataset Total: 71,856,691 100.000%

17-2-2015 2048 0x0800 IPv4 87,480,078 99.986%
 2054 0x0806 ARP 12,081 0.014%
 Dataset Total: 87,492,159 100.000%

dataSetAv2 i-dc-4 2048 0x0800 IPv4 1,580,285 99.994%
 2054 0x0806 ARP 94 0.006%
 Dataset Total: 1,580,379 100.000%

dataSetAv2 i-dc-5 2048 0x0800 IPv4 2,124,799 99.995%
 2054 0x0806 ARP 116 0.005%
 Dataset Total: 2,124,915 100.000%

dataSetAv2 i-dc-6 2048 0x0800 IPv4 1,428,078 99.981%
 2054 0x0806 ARP 278 0.019%
 Dataset Total: 1,428,356 100.000%

dataSetAv2 i-dc-9 2048 0x0800 IPv4 7,487,190 99.999%
 2054 0x0806 ARP 72 0.001%
 Dataset Total: 7,487,262 100.000%

dataSetEA i_dc-9 2048 0x0800 IPv4 14,842,071 99.999%
 2054 0x0806 ARP 163 0.001%
 Dataset Total: 14,842,234 100.000%

Although the bytes per packet calculations presented in tables B2 through B5

indicated that there are data segments available beyond the various protocol headers, the

next analysis identified whether there was any actual usable data for genomic compression.

In this run, the transport layer header was parsed to determine the expected data length,

124

accounting for the lengths of the network, internet, and transport layer headers. The data

elements extracted and/or calculated included the minimum, maximum, and average

expected and actual data lengths, as well as the captured lengths. Table B8 provides the

transport layer results for the candidate datasets (Appendix C, Tables C7 and C8 provides

for the per-file results for the top Transport layer protocols for the two remaining

MACCDC datasets and Appendix D, Tables D5 and D6 for the two UNSW-NB15 datasets.

There and ‘A’ and ‘B’ versions of each table with the ‘A’ version providing the summary

of the occurrences of the various Transport Layer protocols and the ‘B’ version providing

the detailed data elements.).

As Table B8 shows, in all datasets except dataSetEAggregator i_dc-9 Dataset, TCP

packets comprise over 90% of the total packet count. With the dataSetEAggregator i_dc-9

dataset, however, TCP only comprises 11.7% of the total, with UDP packets making up

the remainder. In addition, all the MILCOM 2016 datasets have many TCP packets that

are significantly larger than the standard Ethernet packet, which, including the Ethernet

header, is a maximum of 1520 bytes (Wright, 2021). Analyzing the various MILCOM 2016

datasets further shows that the captures were all within a single virtual Lan (VLAN). As

such, the captures are not limited to the Ethernet total (Wright, 2021). Since this is only

representative of system-to-system traffic within a VLAN, all the MILCOM 2016 datasets

were eliminated from further analysis.

125

Table B8 – Candidate Datasets: Transport Layer Protocols
MACCDC 2011 Dataset

Protocol TCP UDP ICMP Remaining 3
Count 119,292,009 10,259,235 1,690,967 285,469
Percent 90.70% 7.80% 1.29% 0.22%
Capture 28,715,725,818 1,065,182,605 146,353,049 22,162,568
On Wire 28,715,725,818 1,065,182,605 146,353,049 22,162,568
Data 23,997,688,025 672,584,341 68,090,478 11,237,608
Max Cap 1,518 1,518 1,518 78
Max Wire 1,518 1,518 1,518 78
Max Data 1,480 1,480 1,480 40
Min Cap 64 64 64 60
Min Wire 64 64 64 60
Min Data 20 8 8 8
Avg Cap 240 103 86 78
Avg Wire 240 103 86 78
Avg Data 201 65 40 39

MACCDC 2012 Dataset
Protocol TCP UDP ICMP Remaining 2
Count 68,357,197 560,934 526,103 305,495
Percent 98.0% 0.8% 0.8% 0.4%
Capture 16,302,050,032 62,878,650 37,817,477 23,801,548
On Wire 16,302,050,032 62,878,650 37,817,477 23,801,548
Data 13,593,753,312 41,212,397 13,117,305 12,168,768
Max Cap 1518 1518 582 78
Max Wire 1518 1518 582 78
Max Data 1480 1480 544 40
Min Cap 64 64 64 64
Min Wire 64 64 64 64
Min Data 20 8 8 8
Avg Cap 238 112 71 78
Avg Wire 238 112 71 78
Avg Data 198 73 24 40

UNSW-NB15 17-2-2015 Dataset
Protocol TCP UDP OSPF Remaining 251
Count 86,029,251 1,430,389 13,776 6,662
Percent 98.349% 1.635% 0.016% 0.01%
Capture 48,178,578,289 163,379,188 1,772,498 2,825,849
On Wire 48,178,578,289 163,379,188 1,772,498 2,825,849
Data 45,078,624,185 111,862,194 1,276,200 2,577,732
Max Cap 1,516 1,520 1,116 1,076
Max Wire 1,516 1,520 1,116 1,076
Max Data 1,480 1,488 1,080 1,032
Min Cap 56 37 60 44
Min Wire 56 37 60 44
Min Data 20 1 24 8
Avg Cap 560 114 128 424
Avg Wire 560 114 128 424
Avg Data 523 78 92 387

126

dataSetAv2 i-dc-4 Dataset
Protocol TCP UDP ICMP
Count 1,576,399 3,843 43
Percent 99.754% 0.243% 0.003%
Capture 1,622,224,533 387,275 7,395
On Wire 1,622,224,533 387,275 7,395
Data 1,568,626,967 256,613 5,933
Max Cap 29,026 278 268
Max Wire 29,026 278 268
Max Data 28,992 244 234
Min Cap 66 73 104
Min Wire 66 73 104
Min Data 32 39 70
Avg Cap 1029 100 171
Avg Wire 1029 100 171
Avg Data 995 66 137

dataSetAv2 i-dc-5 Dataset
Protocol TCP UDP ICMP
Count 2,121,217 3,551 31
Percent 99.831% 0.167% 0.001%
Capture 2,172,273,923 355,770 5,491
On Wire 2,172,273,923 355,770 5,491
Data 2,100,152,545 235,036 4,437
Max Cap 15,994 339 262
Max Wire 15,994 339 262
Max Data 15,960 305 228
Min Cap 54 72 104
Min Wire 54 72 104
Min Data 20 38 70
Avg Cap 1024 100 177
Avg Wire 1024 100 177
Avg Data 990 66 143

dataSetAv2 i-dc-6 Dataset
Protocol TCP UDP ICMP
Count 1,421,880 6,157 41
Percent 99.566% 0.431% 0.003%
Capture 1,464,242,693 637,190 7,884
On Wire 1,464,242,693 637,190 7,884
Data 1,415,898,773 427,852 6,490
Max Cap 23,234 526 267
Max Wire 23,234 526 267
Max Data 23,200 492 233
Min Cap 54 70 106
Min Wire 54 70 106
Min Data 20 36 72
Avg Cap 1029 103 192
Avg Wire 1029 103 192
Avg Data 995 69 158

127

dataSetAv2 i-dc-9 Dataset
Protocol TCP UDP ICMP
Count 7,486,124 1,038 28
Percent 99.986% 0.014% 0.000%
Capture 3,415,415,624 106,009 5,475
On Wire 3,415,415,624 106,009 5,475
Data 3,160,887,408 70,717 4,523
Max Cap 29,026 278 267
Max Wire 29,026 278 267
Max Data 28,992 244 233
Min Cap 66 73 105
Min Wire 66 73 105
Min Data 32 39 71
Avg Cap 456 102 195
Avg Wire 456 102 195
Avg Data 422 68 161

dataSetEAggregator i_dc-9 Dataset
Protocol UDP TCP
Count 13,108,792 1,733,279
Percent 88.322% 11.678%
Capture 1,722,339,266 1,813,032,879
On Wire 1,722,339,266 1,813,032,879
Data 1,276,640,338 1,754,101,393
Max Cap 1,442 29,026
Max Wire 1,442 29,026
Max Data 1,408 28,992
Min Cap 73 66
Min Wire 73 66
Min Data 39 32
Avg Cap 131 1046
Avg Wire 131 1046
Avg Data 97 1012

At this point, two of the original three MACCDC datasets (MACCDC 2011 and

MACCDC 2012) and one of the UNSW-NB datasets (UNSW NB-15 17-2-2015 remain

as candidate test datasets. The similarities between the two remaining MACCDC datasets

were not as close as those with the two UNSW-NB15 datasets: 1) IPv4 was still the

dominant internet layer protocol with approximately 99.9% of the packets; 2) TCP was

the dominant Transport Layer protocol, but the percentage of packets in the files was

varied (MACCDC 2011: 90.7%, and MACCDC 2012: 98.0%), with UDP being second

(MACCDC 2011: 7.8%, and MACCDC 2012: 0.8%); and 3) the data segments for TCP

packets were larger than those for UDP, but not as significantly different as with the

128

UNSW-NB15 dataset (201 and 65 bytes for MACCDC 2011 and 198 and 73 bytes for

MACCDC 2012, versus 523 and 78 bytes for the UNSW-NB15 dataset). Unlike the

UNSW-NB15 dataset, there was no extra data in any of the two MACCDC datasets.

Although the average TCP data segment was larger for MACCDC 2012 dataset, there

was not any significant difference between the two, so the MACCDC 2012 was selected

over the MACCDC 2011 simply because it was the most recent of the MACCDC dataset

capture files available.

129

Appendix C

MACCDC Datasets

Table C1 - PCAP File Summaries MACCDC 2010 Dataset

PCAP
Filename

Total
Packets Total Bytes Total Bytes On

Wire
Total

w/Headers
Actual File

Size
00000.pcap 10,000,000 765,336,697 765,336,697 925,336,721 925,336,721
00001.pcap 10,000,000 655,887,930 655,887,930 815,887,954 815,887,954
00002.pcap 10,000,000 687,109,057 687,109,057 847,109,081 847,109,081
00003.pcap 10,000,000 728,005,177 728,005,177 888,005,201 888,005,201
00004.pcap 10,000,000 709,419,736 709,419,736 869,419,760 869,419,760
00005.pcap 10,000,000 730,769,304 730,769,304 890,769,328 890,769,328
00006.pcap 10,000,000 738,762,246 738,762,246 898,762,270 898,762,270
00007.pcap 10,000,000 1,044,848,203 1,044,848,203 1,204,848,227 1,204,848,227
00008.pcap 10,000,000 752,930,630 752,930,630 912,930,654 912,930,654
00009.pcap 10,000,000 865,406,857 865,406,857 1,025,406,881 1,025,406,881
00010.pcap 10,000,000 1,935,415,847 1,935,415,847 2,095,415,871 2,095,415,871
00011.pcap 10,000,000 2,568,026,899 2,568,026,899 2,728,026,923 2,728,026,923
00012.pcap 10,000,000 1,598,817,421 1,598,817,421 1,758,817,445 1,758,817,445
00013.pcap 10,000,000 2,043,430,798 2,043,430,798 2,203,430,822 2,203,430,822
00014.pcap 10,000,000 2,484,368,534 2,484,368,534 2,644,368,558 2,644,368,558
00015.pcap 10,000,000 1,453,766,235 1,453,766,235 1,613,766,259 1,613,766,259
00016.pcap 10,000,000 2,279,976,308 2,279,976,308 2,439,976,332 2,439,976,332
00017.pcap 10,000,000 778,115,891 778,115,891 938,115,915 938,115,915
00018.pcap 10,000,000 1,447,111,235 1,447,111,235 1,607,111,259 1,607,111,259
00019.pcap 10,000,000 842,534,398 842,534,398 1,002,534,422 1,002,534,422
00020.pcap 10,000,000 999,195,268 999,195,268 1,159,195,292 1,159,195,292
00021.pcap 10,000,000 1,158,397,077 1,158,397,077 1,318,397,101 1,318,397,101
00022.pcap 10,000,000 1,977,166,435 1,977,166,435 2,137,166,459 2,137,166,459
00023.pcap 10,000,000 711,054,236 711,054,236 871,054,260 871,054,260
00024.pcap 10,000,000 1,007,951,659 1,007,951,659 1,167,951,683 1,167,951,683
00025.pcap 10,000,000 675,318,231 675,318,231 835,318,255 835,318,255
00026.pcap 4,973,151 874,321,512 874,321,512 953,891,952 953,891,952
Totals: 264,973,151 32,513,443,821 32,513,443,821 36,753,014,885 36,753,014,885

130

Table C2 - PCAP File Summaries MACCDC 2011 Dataset

PCAP
Filename

Total
Packets Total Bytes Total Bytes On

Wire
Total

w/Headers
Actual File

Size
00000.pcap 10,000,000 1,175,401,003 1,175,401,003 1,335,401,027 1,335,401,027
00001.pcap 10,000,000 955,394,836 955,394,836 1,115,394,860 1,115,394,860
00002.pcap 10,000,000 1,637,376,514 1,637,376,514 1,797,376,538 1,797,376,538
00003.pcap 10,000,000 1,595,081,053 1,595,081,053 1,755,081,077 1,755,081,077
00004.pcap 10,000,000 968,113,473 968,113,473 1,128,113,497 1,128,113,497
00005.pcap 10,000,000 1,223,870,644 1,223,870,644 1,383,870,668 1,383,870,668
00006.pcap 10,000,000 1,661,870,600 1,661,870,600 1,821,870,624 1,821,870,624
00007.pcap 10,000,000 1,673,019,223 1,673,019,223 1,833,019,247 1,833,019,247
00008.pcap 10,000,000 1,258,929,849 1,258,929,849 1,418,929,873 1,418,929,873
00009.pcap 10,000,000 1,072,158,898 1,072,158,898 1,232,158,922 1,232,158,922
00010.pcap 10,000,000 3,748,281,275 3,748,281,275 3,908,281,299 3,908,281,299
00011.pcap 5,000,000 3,064,806,574 3,064,806,574 3,144,806,598 3,144,806,598
00012.pcap 5,000,000 3,343,512,324 3,343,512,324 3,423,512,348 3,423,512,348
00013.pcap 10,000,000 4,270,552,548 4,270,552,548 4,430,552,572 4,430,552,572
00014.pcap 4,465,786 2,589,145,495 2,589,145,495 2,660,598,095 2,660,598,095
Totals: 134,465,786 30,237,514,309 30,237,514,309 32,388,967,245 32,388,967,245

Table C3 - PCAP File Summaries MACCDC 2012 Dataset

PCAP
Filename

Total
Packets Total Bytes Total Bytes On

Wire
Total
w/Headers

Actual File
Size

00000.pcap 8,635,943 935,501,635 935,501,635 1,073,676,747 1,073,676,747
00001.pcap 4,198,011 1,006,573,119 1,006,573,119 1,073,741,319 1,073,741,319
00002.pcap 2,776,813 1,029,312,773 1,029,312,773 1,073,741,805 1,073,741,805
00003.pcap 1,791,239 1,045,083,217 1,045,083,217 1,073,743,065 1,073,743,065
00004.pcap 3,730,515 1,014,053,658 1,014,053,658 1,073,741,922 1,073,741,922
00005.pcap 3,410,931 1,019,165,726 1,019,165,726 1,073,740,646 1,073,740,646
00006.pcap 2,246,880 1,037,791,936 1,037,791,936 1,073,742,040 1,073,742,040
00007.pcap 2,139,516 1,039,510,245 1,039,510,245 1,073,742,525 1,073,742,525
00008.pcap 3,582,987 1,016,414,006 1,016,414,006 1,073,741,822 1,073,741,822
00009.pcap 3,679,667 1,014,867,161 1,014,867,161 1,073,741,857 1,073,741,857
00010.pcap 4,598,557 1,000,163,983 1,000,163,983 1,073,740,919 1,073,740,919
00011.pcap 4,926,880 994,911,919 994,911,919 1,073,742,023 1,073,742,023
00012.pcap 5,001,472 993,718,688 993,718,688 1,073,742,264 1,073,742,264
00013.pcap 3,190,917 1,022,686,575 1,022,686,575 1,073,741,271 1,073,741,271
00014.pcap 6,763,234 965,530,052 965,530,052 1,073,741,820 1,073,741,820
00015.pcap 7,366,222 955,882,258 955,882,258 1,073,741,834 1,073,741,834
00016.pcap 3,816,907 612,041,887 612,041,887 673,112,423 673,112,423

Totals: 70,065,452 15,658,125,621 15,658,125,621 16,779,173,237 16,779,173,237

131

Table C4 - Internet Layer Protocols MACCDC 2010 Dataset

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets

maccdc2010_00000.pcap 18 5,078,269 19,287 5,097,574
maccdc2010_00001.pcap 0 9,983,228 2,436 9,985,664
maccdc2010_00002.pcap 0 9,993,162 638 9,993,800
maccdc2010_00003.pcap 0 9,986,589 433 9,987,022
maccdc2010_00004.pcap 0 9,787,705 1,203 9,788,908
maccdc2010_00005.pcap 6 9,562,559 295 9,562,860
maccdc2010_00006.pcap 86 9,854,347 248 9,854,681
maccdc2010_00007.pcap 0 9,966,792 2,059 9,968,851
maccdc2010_00008.pcap 0 9,994,122 267 9,994,389
maccdc2010_00009.pcap 0 9,991,719 404 9,992,123
maccdc2010_00010.pcap 0 9,991,502 918 9,992,420
maccdc2010_00011.pcap 0 9,993,582 427 9,994,009
maccdc2010_00012.pcap 0 9,989,730 610 9,990,340
maccdc2010_00013.pcap 0 9,989,697 494 9,990,191
maccdc2010_00014.pcap 4 9,987,737 744 9,988,485
maccdc2010_00015.pcap 12 9,980,016 1,508 9,981,536
maccdc2010_00016.pcap 0 9,994,944 309 9,995,253
maccdc2010_00017.pcap 0 9,978,262 1,428 9,979,690
maccdc2010_00018.pcap 6 9,579,287 18,075 9,597,368
maccdc2010_00019.pcap 0 9,933,253 4,855 9,938,108
maccdc2010_00020.pcap 6 9,954,496 3,622 9,958,124
maccdc2010_00021.pcap 0 9,970,365 1,268 9,971,633
maccdc2010_00022.pcap 0 9,915,464 3,920 9,919,384
maccdc2010_00023.pcap 0 9,930,754 1,233 9,931,987
maccdc2010_00024.pcap 50 8,181,352 1,701 8,183,103
maccdc2010_00025.pcap 0 9,993,387 204 9,993,591
maccdc2010_00026.pcap 0 4,594,546 2,078 4,596,624
Totals: 188 256,156,866 70,664 256,227,718
 0.00007% 99.9723% 0.0276%

Table C5 - Internet Layer Protocols MACCDC 2011 Dataset

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets
maccdc2011_00000.pcap 1,794 9,446,615 28,962 9,477,371
maccdc2011_00001.pcap 52 9,477,992 1,270 9,479,314
maccdc2011_00002.pcap 168 9,958,454 6,791 9,965,413
maccdc2011_00003.pcap 112 9,774,633 10,613 9,785,358
maccdc2011_00004.pcap 72 9,981,643 3,119 9,984,834
maccdc2011_00005.pcap 113 9,911,204 3,268 9,914,585
maccdc2011_00006.pcap 175 9,958,690 5,246 9,964,111

132

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets
maccdc2011_00007.pcap 1,718 9,072,099 43,854 9,117,671
maccdc2011_00008.pcap 200 9,887,441 11,204 9,898,845
maccdc2011_00009.pcap 238 9,875,155 14,053 9,889,446
maccdc2011_00010.pcap 68 9,984,574 2,289 9,986,931
maccdc2011_00011.pcap 12 4,997,240 358 4,997,610
maccdc2011_00012.pcap 14 4,997,295 351 4,997,660
maccdc2011_00013.pcap 372 9,843,250 11,558 9,855,180
maccdc2011_00014.pcap 273 4,337,905 8,603 4,346,781
Totals: 5,381 131,504,190 151,539 131,661,110
 0.004% 99.881% 0.115%

Table C6 - Internet Layer Protocols MACCDC 2012 Dataset

PCAP Filename Other IPv4 Protocol ARP Protocol Total Packets
maccdc2012_00000.pcap 42,316 8,590,643 2,984 8,635,943
maccdc2012_00001.pcap 24,552 4,172,146 1,313 4,198,011
maccdc2012_00002.pcap 16,989 2,758,749 1,075 2,776,813
maccdc2012_00003.pcap 2,854 1,788,228 157 1,791,239
maccdc2012_00004.pcap 27,120 3,701,629 1,766 3,730,515
maccdc2012_00005.pcap 33,336 3,375,939 1,656 3,410,931
maccdc2012_00006.pcap 19,107 2,226,076 1,697 2,246,880
maccdc2012_00007.pcap 15,372 2,122,977 1,167 2,139,516
maccdc2012_00008.pcap 37,551 3,541,248 4,188 3,582,987
maccdc2012_00009.pcap 27,633 3,648,338 3,696 3,679,667
maccdc2012_00010.pcap 17,208 4,578,116 3,233 4,598,557
maccdc2012_00011.pcap 88,142 4,827,213 11,525 4,926,880
maccdc2012_00012.pcap 314,673 4,671,903 14,896 5,001,472
maccdc2012_00013.pcap 65,914 3,116,293 8,710 3,190,917
maccdc2012_00014.pcap 145,136 6,598,950 19,148 6,763,234
maccdc2012_00015.pcap 365,184 6,985,065 15,973 7,366,222
maccdc2012_00016.pcap 762,581 3,046,216 8,110 3,816,907
Totals: 2,005,668 69,749,729 101,294 71,856,691
 2.791% 97.068% 0.141%

133

Table C7A - Transport Layer Protocols - MACCDC 2011 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
6 TCP Transmission Control Protocol 119,292,009 90.713%
17 UDP User Datagram Protocol 10,237,067 7.785%
1 ICMP Internet Control Message Protocol 1,690,967 1.286%
88 Kerberos Kerberos Authentication System 277,377 0.211%
2 IGMP Internet Group Management Protocol 5,286 0.004%
132 SCTP Stream Control Transmission Protocol 1,484 0.001%
-- -- Remaining Transport Layer Protocols 0 0.00%
 Total: 131,504,190

Table C7B - Transport Layer Protocols - MACCDC 2011 Dataset

Protocol: 1 2 6 17 88 132 Totals/Ranges
Packet Count 1,690,967 5,286 119,292,009 10,237,067 277,377 1,484 131,504,190
Total Data 68,090,478 84,120 23,997,688,025 666,018,145 11,095,080 47,488 24,743,023,336
Data Segment Min 8 8 20 8 40 32 8
Data Segment Max 1,480 24 1,480 1,480 40 32 1,480
Data Segment Avg 40 15 201 65 40 32 66
Capture Min 64 64 64 64 78 70 64
Capture Max 1,518 66 1,518 1,518 78 70 1,518
Capture Avg 86 64 240 103 78 70 107
On Wire Min 64 64 64 64 78 70 64
On Wire Max 1,518 66 1,518 1,518 78 70 1,518
On Wire Avg 86 64 240 103 78 70 107

Table C8A - Transport Layer Protocols - MACCDC 2012 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
6 TCP Transmission Control Protocol 68,357,197 98.004%
17 UDP User Datagram Protocol 560,934 0.804%
1 ICMP Internet Control Message Protocol 526,103 0.754%
88 Kerberos Kerberos Authentication System 303,549 0.435%
2 IGMP Internet Group Management Protocol 1,946 0.003%
-- -- Remaining Transport Layer Protocols 68,357,197 98.004%
 Total: 69,749,729

134

Table C8B - Transport Layer Protocols - MACCDC 2012 Dataset

Protocol: 1 2 6 17 88 Totals/Ranges
Packet Count 526,103 1,946 68,357,197 560,934 303,549 69,749,729
Total Data 13,117,305 26,808 13,593,753,312 41,212,397 12,141,960 13,660,251,782
Data Min 8 8 20 8 40 8
Data Max 544 32 1480 1480 40 1480
Data Avg 24 13 198 73 40 196
Capture Min 64 64 64 64 78 64

Capture Max 582 74 1518 1518 78 1518
Capture Avg 71 64 238 112 78 236
On Wire Min 64 64 64 64 78 64
On Wire Max 582 74 1518 1518 78 1518
On Wire Avg 71 64 238 112 78 236

135

Appendix D

UNSW-NB15 Datasets

Table D1 - PCAP File Summaries UNSW-NB15 17-2-2015 Dataset

PCAP
Filename Total Packets Total Bytes Total Bytes

On Wire
Total

w/Headers
Actual File

Size
1.pcap 3,526,992 1,943,568,152 1,943,568,152 2,000,000,048 2,000,000,048

2.pcap 3,436,833 1,945,012,012 1,945,012,012 2,000,001,364 2,000,001,364

3.pcap 3,555,838 1,943,107,743 1,943,107,743 2,000,001,175 2,000,001,175

4.pcap 941,588 535,221,182 535,221,182 550,286,614 550,289,571

5.pcap 3,516,448 1,943,737,646 1,943,737,646 2,000,000,838 2,000,000,838

6.pcap 3,626,252 1,941,980,465 1,941,980,465 2,000,000,521 2,000,000,521

7.pcap 3,517,971 1,943,713,647 1,943,713,647 2,000,001,207 2,000,001,207

8.pcap 3,424,905 1,945,201,512 1,945,201,512 2,000,000,016 2,000,000,016

9.pcap 3,618,135 1,942,110,458 1,942,110,458 2,000,000,642 2,000,000,642

10.pcap 3,448,936 1,944,817,053 1,944,817,053 2,000,000,053 2,000,000,053

11.pcap 3,530,922 1,943,505,448 1,943,505,448 2,000,000,224 2,000,000,224

12.pcap 3,532,917 1,943,474,355 1,943,474,355 2,000,001,051 2,000,001,051

13.pcap 3,584,129 1,942,655,174 1,942,655,174 2,000,001,262 2,000,001,262

14.pcap 3,463,943 1,944,576,999 1,944,576,999 2,000,000,111 2,000,000,111

15.pcap 3,514,238 1,943,773,569 1,943,773,569 2,000,001,401 2,000,001,401

16.pcap 3,601,530 1,942,376,198 1,942,376,198 2,000,000,702 2,000,000,702

17.pcap 3,388,055 1,945,792,364 1,945,792,364 2,000,001,268 2,000,001,268

18.pcap 2,037,672 1,259,301,384 1,259,301,384 1,291,904,160 1,291,906,262

19.pcap 2,201,840 1,273,574,851 1,273,574,851 1,308,804,315 1,308,806,331

20.pcap 3,503,117 1,943,950,119 1,943,950,119 2,000,000,015 2,000,000,015

21.pcap 3,548,974 1,943,217,843 1,943,217,843 2,000,001,451 2,000,001,451

22.pcap 3,790,584 1,939,351,032 1,939,351,032 2,000,000,400 2,000,000,400

23.pcap 3,396,023 1,945,663,824 1,945,663,824 2,000,000,216 2,000,000,216

24.pcap 3,570,419 1,942,873,819 1,942,873,819 2,000,000,547 2,000,000,547

25.pcap 3,569,406 1,942,889,641 1,942,889,641 2,000,000,161 2,000,000,161

26.pcap 3,576,768 1,942,772,375 1,942,772,375 2,000,000,687 2,000,000,687

27.pcap 1,067,724 578,989,789 578,989,789 596,073,397 596,074,496

Totals: 87,492,159 48,347,208,654 48,347,208,654 49,747,083,846 49,747,092,020

Cells highlighted in yellow indicate extra data on file besides packet and PCAP headers.

136

Table D2 - PCAP File Summaries UNSW-NB15 22-1-2015 Dataset

PCAP
Filename Total Packets Total Bytes Total Bytes On

Wire
Total
w/Headers

Actual File
Size

01.pcap 1,800,680 971,189,943 971,189,943 1,000,000,847 1,000,000,847

02.pcap 1,614,980 974,160,455 974,160,455 1,000,000,159 1,000,000,159

03.pcap 1,752,554 971,959,806 971,959,806 1,000,000,694 1,000,000,694

04.pcap 1,736,122 972,222,301 972,222,301 1,000,000,277 1,000,000,277

05.pcap 1,750,127 971,998,776 971,998,776 1,000,000,832 1,000,000,832

06.pcap 1,727,227 972,364,573 972,364,573 1,000,000,229 1,028,295,840

07.pcap 1,825,199 970,797,694 970,797,694 1,000,000,902 1,029,959,340

08.pcap 1,719,835 972,483,651 972,483,651 1,000,001,035 1,000,001,035

09.pcap 1,728,972 972,337,838 972,337,838 1,000,001,414 1,000,001,414

10.pcap 1,879,903 969,922,720 969,922,720 1,000,001,192 1,000,001,192

11.pcap 1,744,141 972,093,795 972,093,795 1,000,000,075 1,000,000,075

12.pcap 1,849,673 970,406,625 970,406,625 1,000,001,417 1,000,001,417

13.pcap 1,741,188 972,141,034 972,141,034 1,000,000,066 1,000,000,066

14.pcap 1,771,257 971,660,451 971,660,451 1,000,000,587 1,000,000,587

15.pcap 1,861,462 970,217,548 970,217,548 1,000,000,964 1,000,000,964

16.pcap 1,876,880 969,969,922 969,969,922 1,000,000,026 1,000,000,026

17.pcap 1,840,858 970,546,450 970,546,450 1,000,000,202 1,000,000,202

18.pcap 1,781,738 971,492,206 971,492,206 1,000,000,038 1,000,000,038

19.pcap 1,735,386 972,233,823 972,233,823 1,000,000,023 1,000,000,023

20.pcap 1,841,677 970,533,351 970,533,351 1,000,000,207 1,000,000,207

21.pcap 1,754,452 971,928,761 971,928,761 1,000,000,017 1,000,000,017

22.pcap 1,771,055 971,663,236 971,663,236 1,000,000,140 1,000,000,140

23.pcap 1,776,553 971,575,264 971,575,264 1,000,000,136 1,014,212,560

24.pcap 1,818,474 970,904,809 970,904,809 1,000,000,417 1,000,000,417

25.pcap 1,819,745 970,884,524 970,884,524 1,000,000,468 1,014,558,428

26.pcap 1,869,147 970,095,118 970,095,118 1,000,001,494 1,000,001,494

27.pcap 1,751,466 971,976,580 971,976,580 1,000,000,060 1,000,000,060

28.pcap 1,777,858 971,554,290 971,554,290 1,000,000,042 1,000,000,042

29.pcap 1,802,883 971,154,332 971,154,332 1,000,000,484 1,000,000,484

30.pcap 1,827,112 970,766,681 970,766,681 1,000,000,497 1,000,000,497

31.pcap 1,942,890 968,913,779 968,913,779 1,000,000,043 1,000,000,043

32.pcap 1,754,452 971,928,761 971,928,761 1,000,000,017 1,000,000,017

33.pcap 1,722,038 972,448,325 972,448,325 1,000,000,957 1,000,000,957

34.pcap 1,793,462 971,305,536 971,305,536 1,000,000,952 1,014,348,648

35.pcap 1,721,390 972,458,786 972,458,786 1,000,001,050 1,000,001,050

36.pcap 1,850,989 970,384,248 970,384,248 1,000,000,096 1,000,000,096

37.pcap 1,853,340 970,347,058 970,347,058 1,000,000,522 1,000,000,522

137

PCAP
Filename Total Packets Total Bytes Total Bytes On

Wire
Total
w/Headers

Actual File
Size

38.pcap 1,870,202 970,077,812 970,077,812 1,000,001,068 1,000,001,068

39.pcap 1,780,903 971,506,560 971,506,560 1,000,001,032 1,000,001,032

40.pcap 1,862,524 970,199,647 970,199,647 1,000,000,055 1,000,000,055

41.pcap 1,975,589 968,390,973 968,390,973 1,000,000,421 1,000,000,421

42.pcap 1,772,799 971,635,209 971,635,209 1,000,000,017 1,000,000,017

43.pcap 1,707,491 972,681,332 972,681,332 1,000,001,212 1,027,982,068

44.pcap 1,728,024 972,351,947 972,351,947 1,000,000,355 1,028,317,452

45.pcap 1,808,596 971,062,774 971,062,774 1,000,000,334 1,029,676,040

46.pcap 1,770,509 971,672,844 971,672,844 1,000,001,012 1,029,000,080

47.pcap 1,811,817 971,011,428 971,011,428 1,000,000,524 1,029,687,268

48.pcap 1,860,601 970,231,234 970,231,234 1,000,000,874 1,030,509,848

49.pcap 1,857,934 970,273,129 970,273,129 1,000,000,097 1,030,485,472

50.pcap 1,860,561 970,231,074 970,231,074 1,000,000,074 1,030,494,104

51.pcap 1,775,797 971,587,417 971,587,417 1,000,000,193 1,029,098,860

52.pcap 1,754,452 971,928,761 971,928,761 1,000,000,017 1,028,743,892

53.pcap 1,186,378 611,006,270 611,006,270 629,988,342 649,457,304

Totals: 94,571,342 51,116,871,461 51,116,871,461 52,630,014,205 53,044,845,688

Cells highlighted in yellow indicate extra data on file besides packet and PCAP headers.

Table D3 - Internet Layer Protocols UNSW-NB15 17-2-2015 Dataset
PCAP Filename IPv4 Protocol ARP Protocol Total Packets

1.pcap 3,526,347 645 3,526,992
2.pcap 3,436,388 445 3,436,833
3.pcap 3,555,361 477 3,555,838
4.pcap 941,468 120 941,588
5.pcap 3,515,953 495 3,516,448
6.pcap 3,625,790 462 3,626,252
7.pcap 3,517,492 479 3,517,971
8.pcap 3,424,398 507 3,424,905
9.pcap 3,617,604 531 3,618,135

10.pcap 3,448,465 471 3,448,936
11.pcap 3,530,395 527 3,530,922
12.pcap 3,532,414 503 3,532,917
13.pcap 3,583,646 483 3,584,129
14.pcap 3,463,486 457 3,463,943
15.pcap 3,513,775 463 3,514,238
16.pcap 3,601,058 472 3,601,530
17.pcap 3,387,650 405 3,388,055
18.pcap 2,037,415 257 2,037,672

19.pcap 2,201,551 289 2,201,840

138

PCAP Filename IPv4 Protocol ARP Protocol Total Packets
20.pcap 3,502,638 479 3,503,117
21.pcap 3,548,471 503 3,548,974
22.pcap 3,790,031 553 3,790,584
23.pcap 3,395,604 419 3,396,023
24.pcap 3,569,881 538 3,570,419
25.pcap 3,568,915 491 3,569,406
26.pcap 3,576,303 465 3,576,768
27.pcap 1,067,579 145 1,067,724
Totals: 87,480,078 12,081 87,492,159

 99.99% 0.01%

Table D4 - Internet Layer Protocols UNSW-NB15 22-1-2015 Dataset
PCAP Filename IPv4 Protocol ARP Protocol Total Packets

01.pcap 1,800,426 254 3,601,360
02.pcap 1,614,792 188 3,229,960
03.pcap 1,752,326 228 3,505,108
04.pcap 1,735,914 208 3,472,244
05.pcap 1,749,881 246 3,500,254
06.pcap 1,727,015 212 3,454,454
07.pcap 1,824,951 248 3,650,398
08.pcap 1,719,599 236 3,439,670
09.pcap 1,728,760 212 3,457,944
10.pcap 1,879,651 252 3,759,806
11.pcap 1,743,919 222 3,488,282
12.pcap 1,849,428 245 3,699,346
13.pcap 1,740,978 210 3,482,376
14.pcap 1,771,017 240 3,542,514
15.pcap 1,861,180 282 3,722,924
16.pcap 1,876,590 290 3,753,760
17.pcap 1,840,608 250 3,681,716
18.pcap 1,781,500 238 3,563,476
19.pcap 1,735,173 213 3,470,772
20.pcap 1,841,391 286 3,683,354
21.pcap 1,754,230 222 3,508,904
22.pcap 1,770,825 230 3,542,110
23.pcap 1,776,321 232 3,553,106
24.pcap 1,818,208 266 3,636,948
25.pcap 1,819,481 264 3,639,490
26.pcap 1,868,881 266 3,738,294
27.pcap 1,751,222 244 3,502,932
28.pcap 1,777,646 212 3,555,716

139

PCAP Filename IPv4 Protocol ARP Protocol Total Packets
29.pcap 1,802,637 246 3,605,766
30.pcap 1,826,884 228 3,654,224
31.pcap 1,942,628 262 3,885,780
32.pcap 1,754,230 222 3,508,904
33.pcap 1,721,792 246 3,444,076
34.pcap 1,793,210 252 3,586,924
35.pcap 1,721,162 228 3,442,780
36.pcap 1,850,721 268 3,701,978
37.pcap 1,853,062 278 3,706,680
38.pcap 1,869,954 248 3,740,404
39.pcap 1,780,647 256 3,561,806
40.pcap 1,862,256 268 3,725,048
41.pcap 1,975,337 252 3,951,178
42.pcap 1,772,567 232 3,545,598
43.pcap 1,707,291 200 3,414,982
44.pcap 1,727,776 248 3,456,048
45.pcap 1,808,360 236 3,617,192
46.pcap 1,770,279 230 3,541,018
47.pcap 1,811,578 239 3,623,634
48.pcap 1,860,333 268 3,721,202
49.pcap 1,857,660 274 3,715,868
50.pcap 1,860,339 222 3,721,122
51.pcap 1,775,589 208 3,551,594
52.pcap 1,754,230 222 3,508,904
53.pcap 1,186,210 168 2,372,756
Totals: 94,558,645 12,697 94,571,342

 99.99% 0.01%

Table D5A - Transport Layer Protocols - UNSW-NB15 17-2-2015 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
6 TCP Transmission Control Protocol 86,029,251 98.34%
17 UDP User Datagram Protocol 1,430,389 1.64%
89 OSPF Open Shortest Path First 13,776 0.02%
132 SCTP Stream Control Transmission Protocol 1,856 0.0021%
1 ICMP Internet Control Message Protocol 1,594 0.0018%
-- -- Remaining Transport Layer Protocols 3,212 0.0035%
 Total: 87,480,078

140

Table D5B - Transport Layer Protocols - UNSW-NB15 17-2-2015 Dataset

Protocol: 1 6 17 89 132 Totals/Ranges
Packet Count 1,594 86,029,251 1,430,389 13,776 1,856 87,477,012
Total Data 824,684 45,078,624,185 111,862,194 1,276,200 1,497,008 45,194,099,111
Data Segment Min 8 20 1 24 12 1
Data Segment Max 992 1,480 1,488 1,080 1,020 1,488
Data Segment Avg 517 523 78 92 806 403
Capture Min 44 56 37 60 48 37

Capture Max 1,028 1,516 1,520 1,116 1,056 1,520
Capture Avg 557 560 114 128 842 440
On Wire Min 44 56 37 60 48 37
On Wire Max 1,028 1,516 1,520 1,116 1,056 1,520
On Wire Avg 557 560 114 128 842 440

Table D6A - Transport Layer Protocols - UNSW-NB15 22-1-2015 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
6 TCP Transmission Control Protocol 93,049,417 98.40%
17 UDP User Datagram Protocol 1,497,817 1.58%
89 OSPF Open Shortest Path First 10,137 0.01072%
1 ICMP Internet Control Message Protocol 433 0.00046%
132 SCTP Stream Control Transmission Protocol 308 0.00033%
-- -- Remaining Transport Layer Protocols 533 0.00054%
 Total: 94,558,645

Table D6B - Transport Layer Protocols - UNSW-NB15 22-1-2015 Dataset

Protocol: 1 6 17 89 132 Totals/Ranges
Packet Count 433 93,049,417 1,497,817 10,137 308 94,558,112
Total Data 211,991 47,600,892,545 109,598,350 571,876 249,356 47,711,524,118
Data Segment Min 8 20 1 24 12 1
Data Segment Max 992 1,480 1,488 1,080 1,020 1,488
Data Segment Avg 489 511 73 56 809 388
Capture Min 44 56 37 60 48 37

Capture Max 1,028 1,516 1,520 1,116 1,056 1,520
Capture Avg 526 547 109 92 845 424
On Wire Min 44 56 37 60 48 37
On Wire Max 1,028 1,516 1,520 1,116 1,056 1,520
On Wire Avg 526 547 109 92 845 424

141

Appendix E

Application Layer Protocols

In the TCP/IP 4-layer network model, Layer 4, the Application Layer, is a

combination of the Application, Presentation, and Session layers of the OSI model

(Ghosh, n.d.). Transport Layer communications are between two systems and are usually

determined by the lowest port number utilized. Therefore, the port usage is determined

through simply identifying the lower value of the destination and source ports. The

Application Layer protocol is stored in a 4-byte field, so there is a theoretical maximum

of 65535 different protocols possible. However, port numbers from 0 to 1023 are

considered the well-known ports and reserved for specific protocols. Ports between 1024

and 49151 can be officially registered by IANA for use by a specific application, such as

port 5432 which is utilized to communicate with a PostgreSQL database. Finally, ports

between 49152 and 65535 are dynamic or private ports, which cannot be reserved, and

are utilized by applications for temporary connections between two systems.

Transmission Control Protocol Ports

Table E1A lists occurrences of the top 10 Transmission Control Protocols ports in

the MACCDC 2012 dataset. Tables E1B and E1C provide the maximum, minimum, and

average packet data sizes for the top 10 TCP ports (Application Layer protocols). Tables

E2A and E2B provide the same information for the UNSW-NB15 dataset. The

unsupported ports are identified with “(U)” appended to the port number in these tables.

142

Table E1A – TCP Application Layer Protocol Occurrences – MACCDC 2012

Protocol
Number Acronym Protocol Quantity Percent of

Total
 80 HTTP Hypertext Transfer Protocol 11,929,930 17.92%
 5,432 -- PostgreSQL 4,489,028 6.74%
 54180 -- Unassigned / Dynamic Port 4,183,337 6.28%
 443 HTTPS Hypertext Transfer Protocol Secure 2,382,625 3.58%
 22 SSH Secure Shell 1,973,645 2.96%
 902 -- VMware ESXi 1,370,149 2.06%
 40064 -- Unassigned / Dynamic Port 1,002,595 1.51%
 33643 -- Unassigned / Dynamic Port 646,300 0.97%
 445 DS Directory Services (Active Directory) 511,748 0.77%
 36694 -- Unassigned / Dynamic Port 481,148 0.72%
-- -- Remaining 65066 TCP Ports 37,604,011 56.48%
 Total: 66,574,516

Table E1B - TCP Application Layer Protocol Details – MACCDC 2012 – Top 5

Protocol 80 5432 54180(U) 443 22 Totals/Ranges
 Count 11,929,930 4,489,028 4,183,337 2,382,625 1,973,645 66,574,516

 Capture 4,463,155,891 2,825,646,318 724,022,556 736,728,352 1,213,749,668 15,257,824,196

 On Wire 4,463,155,891 2,825,646,318 724,022,556 736,728,352 1,213,749,668 25,987,414,952

 Data 3,659,567,591 2,511,405,978 431,168,618 580,449,100 1,077,652,938 20,182,155,318

 Max Cap 1,518 1,518 1,518 1,518 1,518 1,518

 Max Wire 1,518 1,518 1,518 1,518 1,518 1,518

 Max Data 1,460 1,448 1,448 1,460 1,460 1,460

Min Cap 64 64 64 64 64 64

Min Wire 64 64 64 64 64 64

Min Data 0 0 0 0 0 0

Avg Cap 374 629 173 309 614 229

Avg Wire 374 629 173 309 614 390

Avg Data 306 559 103 243 546 303

143

Table E1C – TCP Application Layer Protocol Details – MACCDC 2012 – Next 5
Protocol 902 40064(U) 33643(U) 445 36694(U) Totals/Ranges

Count 1,370,149 1,002,595 646,300 511,748 481,148 86,029,251
Capture 1,188,833,508 183,851,524 116,481,582 114,797,729 90,843,266 48,178,578,289
On Wire 1,188,833,508 183,851,524 116,481,582 114,797,729 90,845,474 74,214,877,440

Data 1,106,650,618 113,669,292 72,159,818 79,304,024 57,189,016 71,662,874,855
Max Cap 1,518 1,518 1,518 1,438 1,518 1,516
Max Wire 1,518 1,518 1,518 1,438 1,518 1,516
Max Data 1,460 1,448 1,448 1,380 1,448 1,480
Min Cap 64 64 64 64 64 56
Min Wire 64 64 64 64 64 56

Min Data 0 0 0 0 0 0
Avg Cap 867 183 180 224 188 560
Avg Wire 867 183 180 224 188 863
Avg Data 807 113 111 154 118 833

Table E2A – TCP Application Layer Protocol Occurrences – UNSW-NB15 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
6881 -- BitTorrent 19,882,422 23.11%
80 HTTP Hypertext Transfer Protocol 14,644,588 17.02%
143 IMAP Internet Message Access Protocol 5,817,783 6.76%
25 SMTP Simple Mail Transfer Protocol 4,662,046 5.42%
22 SSH Secure Shell 4,391,772 5.10%
5190 IM AOL Instant Messenger protocol. 2,442,950 2.84%
21 FTP File Transfer Protocol 2,266,652 2.63%
179 BGP Border Gateway Protocol 379,726 0.44%
110 POP3 Post Office Protocol, version 3 250,504 0.29%
445 DS Directory Services (Active Directory) 164,208 0.19%
-- -- Remaining 57801 TCP Ports 31,126,600 36.18%
 Total: 86,029,251

144

Table E2B – TCP App Layer Protocol Details – UNSW-NB15 17-2-2015 – Top 5
Protocol 6881 80 143 25 22 Totals/Ranges

Count 19,882,422 14,644,588 5,817,783 4,662,046 4,391,772 86,029,251
Capture 16,461,292,919 13,322,416,872 867,259,833 2,752,278,421 613,430,328 48,178,578,289
On Wire 16,462,547,737 13,322,416,872 867,259,833 2,752,278,421 613,430,328 74,214,877,440

Data 15,108,714,889 12,334,955,596 474,252,834 2,447,509,404 314,435,116 71,662,874,855
Max Cap 1,516 1,516 1,516 1,516 1,516 1,516
Max Wire 1,516 1,516 1,516 1,516 1,516 1,516
Max Data 1,448 1,460 1,460 1,460 1,460 1,480
Min Cap 68 56 56 56 56 56
Min Wire 68 56 56 56 56 56

Min Data 0 0 0 0 0 0
Avg Cap 827 909 149 590 139 560
Avg Wire 827 909 149 590 139 863
Avg Data 759 842 81 524 71 833

Table E2C – TCP App Layer Protocol Details – UNSW-NB15 Dataset – Next 5
Protocol 5190 21 179 110 445 Totals/Ranges

Count 2,442,950 2,266,652 379,726 250,504 164,208 86,029,251
Capture 355,332,281 184,834,610 118,540,486 239,460,235 80,970,227 48,178,578,289
On Wire 355,593,603 184,834,610 118,540,486 239,460,235 80,970,227 74,214,877,440
Data 189,952,232 31,202,986 96,040,232 225,246,388 71,368,518 71,662,874,855
Max Cap 1,516 1,516 1,516 1,516 1,516 1,516

Max Wire 1,516 1,516 1,516 1,516 1,516 1,516
Max Data 1,460 1,460 1,460 1,460 1,460 1,480
Min Cap 56 56 56 56 56 56
Min Wire 56 56 56 56 56 56
Min Data 0 0 0 0 0 0
Avg Cap 145 81 312 955 493 560

Avg Wire 145 81 312 955 493 863
Avg Data 77 13 252 899 434 833

Table E2A shows that the top 10 ports (protocols) of the UNSW-NB15 dataset

utilized standard, assigned ports, which was not the case with the MACCDC dataset.

Instead, only six (6) of the top 10 ports by occurrence were assigned, while four (4) were

unassigned (Table E1A). There was no information provided by the distributor of the

dataset, Netresec AB (MACCDC, 2012) concerning this, but tables E1B and E1C shows

145

that these unassigned ports supported a protocol that required a data segment, although

not as prevalent as the top assigned ports – 27% of the assigned port average data. Since

the structure of these packets followed the TCP format, these differences were ignored,

and all packets were included in the program.

User Datagram Protocol Ports

Table E3A lists occurrences of the top 10 User Datagram Protocol ports in the

MACCDC 2012 dataset. Tables E3B and E3C provide the maximum, minimum, and

average packet data sizes for the top 10 UDP ports (Application Layer protocols). The

unsupported ports are identified with “(U)” appended to the port number in these tables.

Tables E4A, E4B, and E4C provide the same information for the UNSW-NB15 dataset.

Table E3A – UDP Application Layer Protocol – MACCDC 2012

Protocol
Number Acronym Protocol Quantity Percent of

Total
 53 DNS Domain Name System 340,159 60.94%
 137 -- NetBIOS Name Service 84,307 15.10%
 21371 -- Unassigned / Dynamic Port 13,380 2.40%
 161 SNMP Simple Network Management

Protocol
 10,526 1.89%

 1900 SSDP Simple Service Discovery Protocol 9,056 1.62%
 67 BOOTP Bootstrap Protocol 7,633 1.37%
 5,060 SIP Session Initiation Protocol 6,784 1.22%
 138 -- NetBIOS Datagram Service 6,684 1.20%
 57621 -- Unassigned / Dynamic Port 4,418 0.79%
 123 NTP Network Time Protocol 3,355 0.60%
-- -- Remaining 5504 TCP Ports 71,859 12.87%
 Total: 558,161

146

Table E3B – UDP Application Layer Protocol Details – MACCDC 2012 – Top 5

Protocol 53 137 21371(U) 161 1,900 Totals/Ranges
 Count 340,159 84,307 13,380 10,526 9,056 558,161
 Capture 31,956,318 8,279,013 1,016,008 957,392 3,078,614 62,440,697
 On Wire 31,956,318 8,279,013 1,016,008 957,392 3,078,614 62,440,697
 Data 16,305,709 4,400,891 400,528 473,196 2,695,774 36,415,097
 Max Cap 346 311 83 346 367 1,518
 Max Wire 346 311 83 346 367 1,518
 Max Data 300 265 37 300 325 1,472
Min Cap 64 96 68 80 64 64
Min Wire 64 96 68 80 64 64
Min Data 1 50 22 34 - 0
Avg Cap 93 98 75 90 339 112
Avg Wire 93 98 75 90 339 112
Avg Data 47 52 29 44 297 65

Table E3C – UDP Application Layer Protocol Details – MACCDC 2012 – Next 5

Protocol 67 5060 138 57621(U) 123 Totals/Ranges
 Count 7,633 6,784 6,684 4,418 3,355 558,161
 Capture 2,605,593 2,999,440 1,571,057 397,620 309,640 62,440,697
 On Wire 2,605,593 2,999,440 1,571,057 397,620 309,640 62,440,697
 Data 2,252,020 2,672,848 1,262,133 194,392 153,924 36,415,097
 Max Cap 387 1,421 292 90 94 1,518
 Max Wire 387 1,421 292 90 94 1,518
 Max Data 341 1,375 246 44 48 1,472
Min Cap 64 64 64 90 64 64
Min Wire 64 64 64 90 64 64
Min Data - - - 44 8 0
Avg Cap 341 442 235 90 92 112
Avg Wire 341 442 235 90 92 112
Avg Data 295 393 188 44 45 65

147

Table E4A – UDP Application Layer Protocol Occurrences – UNSW-NB15 Dataset

Protocol
Number Acronym Protocol Quantity Percent of

Total
 53 DNS Domain Name System 733,276 51.26%
 111 ONC

RPC
Open Network Computing Remote
Procedure Call

 321,222 22.46%

 4,569 IAX2 Inter-Asterisk eXchange 18,992 1.33%
 520 RIP Routing Information Protocol 15,432 1.08%
 137 -- NetBIOS Name Service 10,800 0.76%
 514 -- Syslog 5,718 0.40%
 5,060 SIP Session Initiation Protocol 4,826 0.34%
 4,433 -- Unassigned / Dynamic Port 1,820 0.13%
 69 TFTP Trivial File Transfer Protocol 854 0.06%
 1,608 -- Unassigned / Dynamic Port 330 0.02%
-- -- Remaining 57801 TCP Ports 317,107 22.17%
 Total: 1,430,377

Table E4B – UDP App Layer Protocol Details – UNSW-NB15 Dataset – Top 5

Protocol 53 111 4,569 520 137 Totals/Ranges
 Count 733,276 321,222 18,992 15,432 10,800 1,430,377
 Capture 70,134,526 40,263,856 1,532,028 3,835,884 1,490,458 163,368,532
 On Wire 70,134,526 40,263,856 1,532,028 3,835,884 1,490,458 163,368,532
 Data 37,870,822 26,130,088 696,104 3,136,032 1,015,258 100,416,216
 Max Cap 850 679 164 1,368 1,132 1,520
 Max Wire 850 679 164 1,368 1,132 1,520
 Max Data 806 635 120 1,324 1,088 1,480
Min Cap 40 72 56 45 63 37
Min Wire 40 72 56 45 63 37
Min Data 23 28 12 1 19 1
Avg Cap 95 125 80 248 138 114
Avg Wire 95 125 80 248 138 114
Avg Data 51 81 36 203 94 70

148

Table E4C – UDP App Layer Protocol Details – UNSW-NB15 Dataset – Nest 5

Protocol 514 5,060 4,433(U) 69 1,608(U) Totals/Ranges
 Count 5,718 4,826 1,820 854 330 1,430,377
 Capture 2,941,890 3,282,482 167,196 739,007 23,178 163,368,532
 On Wire 2,941,890 3,282,482 167,196 739,007 23,178 163,368,532
 Data 2,690,298 3,070,138 87,068 702,446 8,658 100,416,216
 Max Cap 1,514 1,499 810 1,520 164 1,520
 Max Wire 1,514 1,499 810 1,520 164 1,520
 Max Data 1,470 1,455 766 1,480 120 1,480
Min Cap 70 68 58 37 68 37
Min Wire 70 68 58 37 68 37
Min Data 26 24 14 4 24 1
Avg Cap 514 680 91 865 70 114
Avg Wire 514 680 91 865 70 114
Avg Data 470 636 47 822 26 70

Unlike the unassigned TCP ports, the unassigned UDP ports had the shortest data

segments of the top 10 ports. Regardless, except for the appearance of the Trivial File

Transfer Protocol (TFTP) in the UNSW-BN15 dataset, all other assigned/reserved UDP

ports are forms of a message format (request and reply packets) and would not lend

themselves to data aggregation. Therefore, all UDP packets will be handled as single

packets, with the one data segment being processed with the genomic compression

technique.

149

Appendix F

Process Results

Both the MACCDC 2012 and UNSW-NB15 17-2-2015 datasets were processed

by the GNCS for various run lengths ranging from 1,000 packets to 25,000,000 packets.

For this research the number of packets in a run is hereinafter referred to as “sample

size.” Analysis of the process output required opening the complete GNCS output file

and compiling packet totals and outputting them to a CSV file:

1) Record Number: an artificial record number for sorting purposes.
2) Layer Protocols: three separate values of the Internet, Transport, and

Application layer protocols.
3) Data Index: the index into the data section of the output file.
4) Payload: the total of the aggregated data.
5) Packets: the total number of packets in the flow.
6) Capture Length: the length of the raw packet in the PCAP file.
7) With Header: the calculated length of the original packets in the flow.
8) Type: this is an internal reference number identifying the source of the data

(completed flow, orphan flow, or edit script).
9) GNCS Size: the size of the data after processing by genomic compression

techniques.
10) Ratio: a simple calculation of the savings as shown in the Results Chapter.

The CSV files for each sample are then imported into an Excel spreadsheet and

the flowing values are then calculated for each sample:

1) Flow Records: the total number of complete TCP flows.
2) Total Flow Payload: the total of the aggregated data for the flow
3) Total Packets: the total number of packets that make up the flows.
4) PCAP Capture Size: the size of the packet captured, as obtained in the PCAP

record header, excluding the header itself.
5) Packet w/Headers: The PCACP Capture Size plus the length of the PCAP

record header (16 bytes), plus the length of the PCAP file header (24 bytes).
6) GNCS Size: the total of the final data sizes of each record after processing.

150

7) Data Savings: this is the savings for the data only, ignoring headers, using the
calculation presented in the Results Chapter.

8) GNCS Record Headers: this is the sum of all the possible headers for a flow
(52 bytes for the record plus 17bytes for each packet).

9) GNCS Data Header: this is the sum of the 8-byte header required for each data
or edit script entry. If the data flow is an exact match for a previous data
record, this value would be zero (0).

10) GNCS total: this is the sum of the GNCS size, record header, and data header.
11) Total Savings: this is the calculated space savings for the entire packet.
12) Packets/Flow: this is calculated from the total number of packets divided by

the total number of flows.
13) Data/Flow: this is calculated from the total amount of data divided by the total

number of flows.
14) Data/Packet: this is calculated from the “Data/Flow” divided by the

“Packets/Flow.”
15) Compression Ratio: this is the calculated final compression ratio for the data

flow.

The results for the MACCDC 2012 and UNSW-NB 17-2-2015 datasets are

presented in Tables F1 and F2, respectively.

Table F1 – MACCDC 2012 Results
MACCDC 2012 Dataset Results

Packets/Run: 1,000 10,000 100,000 1,000,000 10,000,000 25,000,000
Flow Records 118 943 1,301 7,317 103,249 397,645
Total Flow
Payload 57,110 541,530 638,132 2,040,003 199,474,195 1,259,098,160

Total Packets 580 5,129 6,630 29,103 495,537 2,227,354
PCAP
Capture Size 98,758 908,864 1,112,944 4,136,493 233,869,989 1,405,305,865

Packet
w/Headers 108,038 990,928 1,219,024 4,602,141 241,798,581 1,440,943,529

GNCS Data
Size 20,001 178,430 265,053 1,645,698 50,690,123 428,704,708

GNCS Data
space savings 65.0% 67.1% 58.5% 19.3% 74.6% 66.0%

GNCS Packet
Size 36,725 319,667 453,199 2,575,557 64,759,696 488,284,602

GNCS Final
space savings 66.0% 67.7% 62.8% 44.0% 73.2% 66.1%

Packets/Flow 4.9 5.4 5.1 4.0 4.8 5.6
Data/Flow 484.0 574.3 490.5 278.8 1932.0 3166.4
Data/Packet 98.5 105.6 96.2 70.1 402.5 565.3
GNCS
Compression
Ratio

1.1 1.2 1.4 1.7 1.9 1.9

151

Table F2 – UNSW-NB15 17-2-2015 Results
UNSW-NB15 17-2-2015 Dataset Results

Packets/Run: 1,000 10,000 100,000 1,000,000 10,000,000 25,000,000
Flow Records 85 382 3,245 21,315 163,073 397,262
Total Flow
Payload 112,450 719,913 15,124,305 218,976,259 2,395,911,410 6,033,816,925

Total Packets 317 1,840 28,872 299,384 2,987,288 7,496,751
PCAP
Capture Size 131,355 830,711 17,082,715 239,179,210 2,597,907,498 6,540,575,420

Packet
w/Headers 136,427 860,151 17,544,667 243,969,354 2,645,704,106 6,660,523,436

GNCS Data
Size 112,111 694,458 11,612,820 135,163,974 1,349,231,100 3,418,052,143

GNCS Data
space savings 0.3% 3.5% 23.2% 38.3% 43.7% 43.4%

GNCS Packet
Size 122,360 747,634 12,282,520 141,441,570 1,409,196,352 1,746,520

GNCS Final
space savings 10.3% 13.1% 30.0% 42.0% 46.7% 46.4%

Packets/Flow 3.7 4.8 8.9 14.0 18.3 18.9
Data/Flow 1322.9 1884.6 4660.8 10273.3 14692.3 15188.5
Data/Packet 354.7 391.3 523.8 731.4 802.0 804.9
GNCS
Compression
Ratio

1.1 1.2 1.4 1.7 1.9 1.9

The results for the two datasets show different trends. The UNSW-NB15 dataset

(Table F2) showed an increase in the space savings and compression ratio as the number

of packets, and thus the amount of data increases. However, the MACCDC dataset (Table

F1) trend was very different in that except for the 1,000,000-packet run, the other runs

were relatively like each other, with the 1,000,000-packet run exhibiting a significantly

lower space savings and compression ratio.

152

Appendix G

Acronyms

ACK – Acknowledgement TCP flag
AD – Active Directory
AID – Anomaly-based Intrusion Detection
APT – Advanced Persistent Threat
ARP – Address Resolution Protocol
AU – Audit and Accountability
BBC – Byte-aligned Bitmap Compression
BBST – Balanced Binary Search Tree
BLAST – Basic Local Alignment Search Tool
BLAT – BLAST-like alignment tool
BOOTP – Bootstrap Protocol
CAIDA – Center for Applied Internet Data Analysis
CAC – Computer Access Card
CAMP – Common Affix Merging with Partition
CD – Compact Disc
CIS – Center for Internet Security
CMS – Compact Muon Solenoid
CODIS – Compressing Dirty Snippet
COMPAX – Compressed Adaptive Index
CONCISE – Compound ‘n’ Composable Integer Set
CSFW – Cybersecurity Framework
CWF = Congestion Window Reduce TCP flag
CUI – Controlled Unclassified Information
DBMS – Database Management System
DCT – discrete cosine transform
DHCP – Dynamic Host Configuration Protocol
DNS – Domain Name Service
DWT – discrete wavelet transform
ECN – Echo TCP flag
EIGRP – Enhanced Interior Gateway Routing Protocol
EWAH – Enhanced Word-Aligned Hybrid
FIN – Finish TCP flag
FISMA – Federal Information Security Management Act
FTP – File Transfer Protocol
GIF – Graphic Interchange Format

153

GNCS – Genomic Network Compression System
HP – Hewlett Packard
HTTP – Hypertext Transfer Protocol
IAWG – Internet Accounting Working Group
ICMP – Internet Control Message Protocol
IDPS – Intrusion Detection and Prevention System
IDS – Intrusion Detection System
IEC – International Electrotechnical Commission
IEEE – Electrical and Electronics Engineers
IETF – Internet Engineering Task Force
IP – Internet Protocol
IPv4 – Internet Protocol version 4
IPv6 – Internet Protocol version 6
ITL – Information Technology Laboratory
ISO – International Organization for Standardization
JPEG – Joint Photographic Experts Group
LCS – Longest Common String
LZ – Lempel-Ziv
LZ77 – Lempel-Ziv compression algorithm 1977
LZ78 – Lempel-Ziv compression algorithm 1978
LZMA – Lempel–Ziv–Markov
LZW – Lempel-Ziv-Welch compression algorithm
MAC – Media Access Control
MACCDC – Mid-Atlantic Collegiate Cyber Defense Competition
MASC – Maximized Stride with Carrier
MILCOM – Military Communications Conference
MPEG – Moving Pictures Expert Group
MP3 – formally the third audio format of the MPEG-1 standard
MP4 – formally the MPEG-4 Part 15 digital multimedia container format
NIST –National Institute of Standards and Technology
NSA – National Security Agency
OS – Operating System
OSI – Open Systems Interconnection
OWASP – Open Web Application Security Project®
OSPF – Open shortest Path First
PCAP – Packet Capture
PLWAH – Position List Word Aligned Hybrid
PNG – Portable Network Graphics
PWAH – Partitioned Word-Aligned Hybrid
RAR – Roshal Archive file format
RARP – Reverse Address Resolution Protocol
RDBMS – relational database management systems
RST – Reset TCP flag
RLE – run-length encoding
RLH – Run-Length Huffman
SAMI – Sources and Methods Intelligence

154

ScalaBLAST – BLAST recompiled to utilize multiprocessing
SCTP – Stream Control Transmission Protocol
SECOMPAX – Scope-Extended Compressed Adaptive Index
SEM – Security Event Management
SIEM – Security Information and Event Manager
SIM – Security Information Management
SNMP – Simple Network Management Protocol
SP – Special Publication
SSH – Secure Shell
SQL – Structured Query Language
SYN – Synchronize TCP flag
TAR –a Unix-based utility used to package files together for backup or distribution.
TC – transform coding
TCP – Transmission Control Protocol
TIFF – Tagged Image File Format
TLS – Transport Layer Security
TLS/SSL – Transport Layer Security/Secure Sockets Layer
TLSI – Transport Layer Security Inspection
UCB – Update Conscious Bitmap
UDP – User Datagram Protocol
URG – Urgent TCP flag
URL – Uniform Resource Locator
VAL-WAH – Variable Aligned Length WAH
VPN – Virtual Private Network
WAH – Word-Aligned Hybrid
ZIP – Compression format developed by PKWARE, “ZIP” means “move at high speed”
ZLIB – ZIP Compression Library

155

References

44 USC 3552, (2017). Title 44 U.S. Code, Sec. 3554, Federal agency responsibilities.
2017 ed. https://www.govinfo.gov/app/details/USCODE-2017-title44/USCODE-
2017-title44-chap35-subchapII-sec3554

Aguilera, P. (2006). Comparison of different image compression formats. Wisconsin
College of Engineering, ECE, 533.

Alaidaros, H., & Mahmuddin, M. (2017). Flow-Based Approach on Bro Intrusion
Detection. Journal of Telecommunication, Electronic and Computer Engineering
(JTEC), 9(2-2), 139-145.

Andersen, R. E. (1981). EDP auditing in the 1980's or the vanishing paper trail. ACM
SIGSAC Review, 1(1), 6-15.

Antoshenkov, G. (1995, March). Byte-aligned bitmap compression. In Proceedings
DCC'95 Data Compression Conference (p. 476). IEEE.

Awati, R. and Scarpati, J. (2022). Deep Packet Inspection (DPI). TechTarget. Retrieved
from: https://www.techtarget.com/searchnetworking/definition/deep-packet-
inspection-
DPI#:~:text=Deep%20packet%20inspection%20(DPI)%20is,only%20packet%20
headers%2C%20cannot%20detect.

Berger, B., Daniels, N. M., & Yu, Y. W. (2016). Computational biology in the 21st
century: scaling with compressive algorithms. Communications of the
ACM, 59(8), 72-80.

Berger, B., Waterman, M. S., & Yu, Y. W. (2021). Levenshtein Distance, Sequence
Comparison and Biological Database Search. IEEE Trans. Inf. Theory, 67(6),
3287-3294.

Black, D. (2018). Relaxing restrictions on explicit congestion notification (ecn)
experimentation (No. rfc8311).

https://www.techtarget.com/searchnetworking/definition/deep-packet-inspection-DPI#:%7E:text=Deep%20packet%20inspection%20(DPI)%20is,only%20packet%20headers%2C%20cannot%20detect
https://www.techtarget.com/searchnetworking/definition/deep-packet-inspection-DPI#:%7E:text=Deep%20packet%20inspection%20(DPI)%20is,only%20packet%20headers%2C%20cannot%20detect
https://www.techtarget.com/searchnetworking/definition/deep-packet-inspection-DPI#:%7E:text=Deep%20packet%20inspection%20(DPI)%20is,only%20packet%20headers%2C%20cannot%20detect
https://www.techtarget.com/searchnetworking/definition/deep-packet-inspection-DPI#:%7E:text=Deep%20packet%20inspection%20(DPI)%20is,only%20packet%20headers%2C%20cannot%20detect

156

Bowen, T., Poylisher, A., Serban, C., Chadha, R., Chiang, C. Y. J., & Marvel, L. M.
(2016, November). Enabling reproducible cyber research-four labeled datasets. In
MILCOM 2016-2016 IEEE Military Communications Conference (pp. 539-544).
IEEE.

Buecker, A., Amado, J., Druker, D., Lorenz, C., Muehlenbrock, F., & Tan, R. (2010). IT
Security Compliance Management Design Guide with IBM Tivoli Security
Information and Event Manager. IBM Redbooks.

Canahuate, G., Gibas, M., & Ferhatosmanoglu, H. (2007, July). Update conscious bitmap
indices. In 19th International Conference on Scientific and Statistical Database
Management (SSDBM 2007) (pp. 15-15). IEEE.

Capon, J. (1959). A probabilistic model for run-length coding of pictures. IRE
Transactions on Information Theory, 5(4), 157-163.

CERN. (n.d.). Compact Muon Solenoid (CMS) event dataset. Available from:
http://cms.web.cern.ch.

Chambi, S., Lemire, D., Kaser, O., & Godin, R. (2016). Better bitmap performance with
roaring bitmaps. Software: practice and experience, 46(5), 709-719.

Chen, Z., Wen, Y., Cao, J., Zheng, W., Chang, J., Wu, Y., ... & Peng, G. (2015). A
survey of bitmap index compression algorithms for big data. Tsinghua Science
and Technology, 20(1), 100-115.

Chelsea Manning. (n.d.). In nndb.com. Retrieved September 21, 2013, from
http://www.nndb.com/people/681/000262892/.

CIS Controls. (n.d.). CIS Controls. Center for Internet Security. Retrieved from:
https://www.cisecurity.org/.

Claise, B., Trammell, B., & Aitken, P. (2013). Specification of the IP flow information
export (IPFIX) protocol for the exchange of flow information (No. RFC 7011).

Colantonio, A., & Di Pietro, R. (2010). Concise: Compressed ‘n’composable integer
set. Information Processing Letters, 110(16), 644-650.

Colasoft. (n.d.). Colasoft Packet Player. Retrieved from
https://www.colasoft.com/packet_player/.

Cuelogic. (2017). The Levenshtein Algorithm. Cuelogic, a Larsen & Toubro Group
Company. Retrieved from: https://www.cuelogic.com/blog/the-levenshtein-
algorithm.

Deliege, F., & Pedersen, T. B. (2010, March). Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps. In Proceedings of the
13th international conference on Extending Database Technology (pp. 228-239).

http://cms.web.cern.ch/
http://www.nndb.com/people/681/000262892/
https://www.cisecurity.org/
https://www.colasoft.com/packet_player/
https://www.cuelogic.com/blog/the-levenshtein-algorithm
https://www.cuelogic.com/blog/the-levenshtein-algorithm

157

Devopedia. (2019). Levenshtein Distance. Retrieved from:
https://devopedia.org/levenshtein-distance.

DNS. (2022). DNS Message Format. GeeksforGeeks. Retrieved from:
https://www.geeksforgeeks.org/dns-message-format/

Edpresso. (2022). The Levenshtein distance algorithm. Educative, Inc. Retrieved from:
https://www.educative.io/edpresso/the-levenshtein-distance-algorithm.

Edward Snowden. (n.d.). National Whistleblower Center. Retrieved September 21, 2013,
from https://www.whistleblowers.org/whistleblowers/edward-snowden/.

Elgabry, O. (2017, February 3). Balanced Search Trees. The headache of long paths in
BSTs can be treated by self-balancing binary search trees. Omar Elgabry's Blog.
https://medium.com/omarelgabrys-blog/balanced-search-trees-68a95ba91f50 1/

Embroker. (2021, August 11). 2021 Must-Know Cyber Attack Statistics and Trends.
Embroker Insurance Services, LLC. Retrieved from:
https://www.embroker.com/blog/cyber-attack-statistics/

Estan, C., Keys, K., Moore, D., & Varghese, G. (2004). Building a better NetFlow. ACM
SIGCOMM Computer Communication Review, 34(4), 245-256.

FBI. (n.d.). What We Investigate. The Cyber Threat. Federal Bureau of Investigation.
https://www.fbi.gov/investigate/cyber.

FileInfo. (n.d.). FileInfo.com. The File Format Database. Sharpened Productions.
FileInfo.com - The File Format Database.

FISMA. (2002). Federal Information Security Modernization Act (P.L. 113-283),
December 2014. https://www.congress.gov/113/plaws/publ283/PLAW-
113publ283.pdf.

Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017). A review of data compression
techniques. International Journal of Applied Engineering Research, 12(19), 8956-
8963.

Forestiero, A. (2015). A Multi-agent Approach for Intrusion Detection in Distributed
Systems. In Multimedia Communications, Services and Security (pp. 72-82).
Springer International Publishing.

Fusco, F., Stoecklin, M. P., & Vlachos, M. (2010). Net-fli: on-the-fly compression,
archiving and indexing of streaming network traffic. Proceedings of the VLDB
Endowment, 3(1-2), 1382-1393.

https://devopedia.org/levenshtein-distance
https://www.geeksforgeeks.org/dns-message-format/
https://www.educative.io/edpresso/the-levenshtein-distance-algorithm
https://www.whistleblowers.org/whistleblowers/edward-snowden/
https://medium.com/omarelgabrys-blog/balanced-search-trees-68a95ba91f50%201/
https://www.embroker.com/blog/cyber-attack-statistics/
https://www.fbi.gov/investigate/cyber
https://fileinfo.com/
https://www.congress.gov/113/plaws/publ283/PLAW-113publ283.pdf
https://www.congress.gov/113/plaws/publ283/PLAW-113publ283.pdf

158

Gartner. (2021, May 17). Gartner Forecasts Worldwide Security and Risk Management
Spending to Exceed $150 Billion in 2021.
https://www.gartner.com/en/newsroom/press-releases/2021-05-17-gartner-
forecasts-worldwide-security-and-risk-managem21.

Genomics. (2022, April 30). Genetic Code. National Human Genome Research Institute.
Retrieved from https://www.genome.gov/genetics-glossary/Genetic-Code.

Ghosh, B. (n.d.). OSI Network Layer Analysis via Wireshark. In linuxhint.com. Retrieved
From: https://linuxhint.com/osi_network_layer_analsysis_wireshark/.

Gibbons, A. (2012, June 13). Bonobos Join Chimps as Closest Human Relatives.
American Association for the Advancement of Science. Retrieved from
https://www.science.org/content/article/bonobos-join-chimps-closest-human-
relatives.

Golovko, V., Vaitsekhovich, L. U., Kochurko, P., & Rubanau, U. S. (2007, August).
Dimensionality reduction and attack recognition using neural network
approaches. In IEEE International Joint Conference on Neural Networks, 2007.
IJCNN 2007. (pp. 2734-2739).

Guzun, G., Canahuate, G., Chiu, D., & Sawin, J. (2014, March). A tunable compression
framework for bitmap indices. In 2014 IEEE 30th international conference on
data engineering (pp. 484-495). IEEE.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell system
technical journal, 29(2), 147-160.

Hanson, D. A. (1979, April). Data security. In Proceedings of the 17th Annual Southeast
Regional Conference (pp. 154-154). ACM.

Harmoush, E. (2019). OSI Model. Practical networking. Retrieved from:
https://www.practicalnetworking.net/series/packet-traveling/osi-model/.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6), 341-343.

Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., & Pras, A.
(2014). Flow monitoring explained: From packet capture to data analysis with
netflow and ipfix. IEEE Communications Surveys & Tutorials, 16(4), 2037-2064.

Horne, W. (2015, June). Collecting, Analyzing and Responding to Enterprise Scale DNS
Events. In CODASPY (p. 73).

Hörz, M. (2020). HxD - Freeware Hex Editor and Disk Editor. Downloaded from:
https://mh-nexus.de/en/downloads.php?product=HxD20.

https://www.gartner.com/en/newsroom/press-releases/2021-05-17-gartner-forecasts-worldwide-security-and-risk-managem21
https://www.gartner.com/en/newsroom/press-releases/2021-05-17-gartner-forecasts-worldwide-security-and-risk-managem21
https://www.genome.gov/genetics-glossary/Genetic-Code
https://linuxhint.com/osi_network_layer_analsysis_wireshark/
https://www.science.org/content/article/bonobos-join-chimps-closest-human-relatives
https://www.science.org/content/article/bonobos-join-chimps-closest-human-relatives
https://www.practicalnetworking.net/series/packet-traveling/osi-model/
https://mh-nexus.de/en/downloads.php?product=HxD20

159

Hosseini, M. (2012). A survey of data compression algorithms and their applications.
Network Systems Laboratory, School of Computing Science, Simon Fraser
University, BC, Canada.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9), 1098-1101.

IANA (2022).IEEE 802 Numbers. Internet Assigned Numbers Authority. Retrieved from:
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml.

IANA (2022a). Service Name and Transport Protocol Port Number Registry. Internet
Assigned Numbers Authority. Retrieved from:
https://www.iana.org/assignments/service-names-port-numbers/service-names-
port-numbers.xhtml.

IBM. (2020). Cost of Insider Threats: Global Report 2020. IBM Security, Retrieved
from: https://www.ibm.com/downloads/cas/LQZ4RONE.

ICMP. (2018). ICMP Explained and Packet Format. Cream Magazine by Themebeez.
Retrieved from: https://learnduty.com/articles/icmp-explained-and-packet-
format/.

IONOS Digital Guide. (2019, October 15). RARP: The Reverse Address Resolution
Protocol. https://www.ionos.com/digitalguide/server/know-how/reverse-arp/.

IRS. (n.d.). Security Information and Event Management(SIEM) Systems. United States
Internal Revenue Service. Retrieved from: https://www.irs.gov/privacy-
disclosure/security-information-and-event-management-siem-systems.

ISO/IEC 27001. (n.d.). ISO/IEC 27001 Information Security Management. International
Organization for Standardization. Retrieved from: https://www.iso.org/isoiec-
27001-information-security.html.

ISOC (2018, June6). State of IPv6 Deployment 2018, Internet Society. Retrieved from
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/.

Jokinen, P., Tarhio, J., & Ukkonen, E. (1996). A comparison of approximate string
matching algorithms. Software: Practice and Experience, 26(12), 1439-1458.

Kalutarage, H. K., Shaikh, S. A., Wickramasinghe, I. P., Zhou, Q., & James, A. E.
(2015). Detecting stealthy attacks: Efficient monitoring of suspicious activities on
computer networks. Computers & Electrical Engineering, 47, 327-344.

Kavitha, P. (2016). A survey on lossless and lossy data compression methods.
International Journal of Computer Science & Engineering Technology, 7(03),
110-114.

https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.ibm.com/downloads/cas/LQZ4RONE
https://learnduty.com/articles/icmp-explained-and-packet-format/
https://learnduty.com/articles/icmp-explained-and-packet-format/
https://www.ionos.com/digitalguide/server/know-how/reverse-arp/
https://www.irs.gov/privacy-disclosure/security-information-and-event-management-siem-systems
https://www.irs.gov/privacy-disclosure/security-information-and-event-management-siem-systems
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/

160

Kent, K., Chevalier, S., Grance, T., & Dang, H. (2006). Guide to integrating forensic
techniques into incident response. NIST Special Publication 800-86.

Kerner, S. M. (May 2021.). Internet Protocol (IP). Retrieved from:
https://www.techtarget.com/searchunifiedcommunications/definition/Internet-
Protocol.

Kim, M. S., Won, Y. J., Lee, H. J., Hong, J. W., & Boutaba, R. (2004). Flow-based
characteristic analysis of Internet application traffic. In Workshop Chair.Liao, H.
J., Lin, C. H. R., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1),
16-24.

KokiYmgch. (2018). Hirschberg's Algorithm. KokiYmgch's blog. Retreived from:
https://codeforces.com/blog/entry/57512

Korstanje, J. (2020, January 17). 3 text distances that every data scientist should know.
Towards Data Science. Retrieved from: https://towardsdatascience.com/3-text-
distances-that-every-data-scientist-should-know-7fcdf850e510.

Kyriakopoulos, K. G., & Parish, D. J. (2010). Applying wavelets for the controlled
compression of communication network measurements. IET communications,
4(5), 507-520.

Kurose, J. F., & Ross, K. W. (2007). Computer Networking: A Top-Down Approach
Edition. Addison Wesley.

Lemire, D., Kaser, O., & Aouiche, K. (2010). Sorting improves word-aligned bitmap
indexes. Data & Knowledge Engineering, 69(1), 3-28.

Levenshtein, V. I. (1966, February). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet Physics Doklady, 10(8), pp. 707-710.

Liao, H. J., Lin, C. H. R., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1),
16-24.

LiveAction. (2022). The Ethertype Value Identifier. LiveAction. Retrived from:
https://www.liveaction.com/resources/glossary/ethertype-values/.

Loh, P. R., Baym, M., & Berger, B. (2012). Compressive genomics. Nature
Biotechnology, 30(7), 627-630.

Loh, P. R., Baym, M., & Berger, B. (2012a). Compressive genomics. Supplemental
material available at http://www.nature.com/doifinder/10.1038/nbt.2241.

https://www.techtarget.com/searchunifiedcommunications/definition/Internet-Protocol
https://www.techtarget.com/searchunifiedcommunications/definition/Internet-Protocol
https://codeforces.com/blog/entry/57512
https://towardsdatascience.com/3-text-distances-that-every-data-scientist-should-know-7fcdf850e510
https://towardsdatascience.com/3-text-distances-that-every-data-scientist-should-know-7fcdf850e510
https://www.liveaction.com/resources/glossary/ethertype-values/
http://www.nature.com/doifinder/10.1038/nbt.2241

161

MACCDC. (2012). Capture files from the Mid-Atlantic Collegiate Cyber Defense
Competition. National CyberWatch Center. Retrieved from:
https://www.netresec.com/?page=MACCDC,

Mahdi, O. A., Mohammed, M. A., & Mohamed, A. J. (2012). Implementing a novel
approach and convert audio compression to text coding via hybrid technique.
International Journal of Computer Science Issues (IJCSI), 9(6), 53.

Marker, A. (2019, July 19). Audit Trails: Managing the Who, What, and When of
Business Transactions. https://www.smartsheet.com/audit-trails-and-logs.

Mills, C., Hirsh, D., & Ruth, G. R. (1991). RFC1272: Internet Accounting: Background.
Network Accounting Group.

Mokalled, H., Catelli, R., Casola, V., Debertol, D., Meda, E., & Zunino, R. (2019, June).
The applicability of a siem solution: Requirements and evaluation. In 2019 IEEE
28th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE) (pp. 132-137). IEEE.

Moustafa, N. and Slay, J. "UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set)." Military Communications
and Information Systems Conference (MilCIS), 2015. IEEE, 2015.

Mozzherin, D. (2019). damerau-levenshtein. Retrieved from:
https://github.com/GlobalNamesArchitecture/damerau-levenshtein

Nanni, D. (2020, November 29). How to capture and replay network traffic on Linux.
Xmodulo. Retrieved from https://www.xmodulo.com/how-to-capture-and-replay-
network-traffic-on-linux.html.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 48(3), 443-453.

Networx (n.d.). EtherType. Networx Security e.V. Augsburg, Germany. Retrieved from:
https://www.networxsecurity.org/members-area/glossary/e/ethertype.html.

NIST CSFW (2018). Framework for Improving Critical Infrastructure Cybersecurity.
Gaithersburg: National Institute of Standards and Technology. Retrieved from:
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf.

NIST ITL Bulletin (1997). Information Technology Laboratory Bulletin 1997-03.
Gaithersburg: National Institute of Standards and Technology. Retrieved from:
https://csrc.nist.gov/csrc/media/publications/shared/documents/itl-
bulletin/itlbul1997-03.txt.

https://www.netresec.com/?page=MACCDC
https://www.smartsheet.com/audit-trails-and-logs
https://www.xmodulo.com/how-to-capture-and-replay-network-traffic-on-linux.html
https://www.xmodulo.com/how-to-capture-and-replay-network-traffic-on-linux.html
https://www.networxsecurity.org/members-area/glossary/e/ethertype.html
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/shared/documents/itl-bulletin/itlbul1997-03.txt
https://csrc.nist.gov/csrc/media/publications/shared/documents/itl-bulletin/itlbul1997-03.txt

162

NIST SP 800-37, (2005). Recommended security controls for federal information systems,
Revision 2. Gaithersburg: National Institute of Standards and Technology.
Retrieved from: https://doi.org/10.6028/NIST.SP.800-37.

NIST SP 800-37R2 (2014). Risk Management Framework for Information Systems and
Organizations, Revision 2. Gaithersburg: National Institute of Standards and
Technology. Retrieved from: https://doi.org/10.6028/NIST.SP.800-37r2.

NIST SP 800-39. (2011). Managing Information Security Risk-Organization. Mission,
and Information System View. Gaithersburg: National Institute of Standards and
Technology. Retrieved from:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf

NIST SP 800-53. (2005). Guide for the security certification and accreditation of federal
information systems. Gaithersburg: National Institute of Standards and Technology.
Retrieved from:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53.pdf.

NIST SP 800-53r5. (2020). Security and Privacy Controls for Information Systems and
Organizations, Revision 5. Gaithersburg: National Institute of Standards and
Technology. Retrieved from:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf.

NIST SP 800-92. (2006). Guide to Computer Security Log Management. Gaithersburg:
National Institute of Standards and Technology. Retrieved from:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf.

NIST SP 800-94. (2007). Guide to intrusion detection and prevention systems (IDPS).
Gaithersburg: National Institute of Standards and Technology. Retrieved from:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf.

NIST SP 800-171r2, (2017). Protecting Controlled Unclassified Information in
Nonfederal Systems and Organizations, Revision 2. Gaithersburg: National
Institute of Standards and Technology. Retrieved from:
https://doi.org/10.6028/NIST.SP.800-171r2.

Nobel, R. (2018). The Ethertype value, part 1. Stockholm, Sweden: Rickard Nobel, AB.
Retrieved from: https://rickardnobel.se/the-ethertype-value-part-
1/#:~:text=One%20example%20of%20an%20Ethertype,module%20at%20the%2
0destination%20host.

Npcap (n.d.). Packet capture library for Windows. Nmap.org. Retrieved from
https://insecure.org/fyodor/.

https://doi.org/10.6028/NIST.SP.800-37
https://doi.org/10.6028/NIST.SP.800-37r2
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf
https://doi.org/10.6028/NIST.SP.800-171r2
https://rickardnobel.se/the-ethertype-value-part-1/#:%7E:text=One%20example%20of%20an%20Ethertype,module%20at%20the%20destination%20host
https://rickardnobel.se/the-ethertype-value-part-1/#:%7E:text=One%20example%20of%20an%20Ethertype,module%20at%20the%20destination%20host
https://rickardnobel.se/the-ethertype-value-part-1/#:%7E:text=One%20example%20of%20an%20Ethertype,module%20at%20the%20destination%20host
https://insecure.org/fyodor/

163

NSA. (2019, December 16). Managing risk from Transport Layer Security Inspection.
National Security Agency Cybersecurity Information. Retrieved October 4, 2021,
from https://media.defense.gov/2019/Dec/16/2002225460/-1/-
1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSP
ORT%20LAYER%20SECURITY%20INSPECTION.PDF.

O’Dea, S. (2020, June 9). Business internet traffic volume in the U.S. 2016-2023. Statista.
https://www.statista.com/statistics/995060/business-internet-traffic-in-the-us/

Obama, B. (2011). Executive Order 13587, National Insider Threat Policy. Retrieved
from: https://www.fas.org/sgp/obama/insider.pdf.

Oehmen, C., Peterson, E., & Dowson, S. (2010, April). An organic model for detecting
cyber-events. In Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research (p. 66). ACM.

Oehmen, C., Peterson, E., & Teuton, J. (2012, January). Evolutionary drift models for
moving target defense. In Proceedings of the Eighth Annual Cyber Security and
Information Intelligence Research Workshop (p. 37). ACM.

OWASP (n.d.). Intrusion detection. Intrusion Detection Control | Open Web Application
Security Project Foundation. Retrieved October 3, 2021, from
https://owasp.org/www-community/controls/Intrusion_Detection.

Pentikousis, K., Badr, H., & Andrade, A. (2010). A comparative study of aggregate TCP
retransmission rates. International Journal of Computers and Applications, 32(4),
435-441.

Petryschuck, S. (2019). NetFlow Basics: An Introduction to Monitoring Network Traffic,
Auvik.com. Retrieved from: https://www.auvik.com/franklyit/blog/netflow-
basics/

Punithavathani, D. S., Sujatha, K., & Jain, J. M. (2015). Surveillance of anomaly and
misuse in critical networks to counter insider threats using computational
intelligence. Cluster Computing, 18(1), 435-451.

Rascu, L. (2015). Hirschberg's algorithm for global string alignment. Retrieved from:
https://gist.github.com/lxr/a222b1f063b974d88ce6.

Reghbati, H. K. (1981). Special feature an overview of data compression techniques.
Computer, 14(04), 71-75.

Robert Hanssen. (2001, February 20). In www.fbi.gov, Famous Cases & Criminals.
Retrieved April 24, 2016 from: https://www.fbi.gov/ history/famous-cases/robert-
hanssen

https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSPORT%20LAYER%20SECURITY%20INSPECTION.PDF
https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSPORT%20LAYER%20SECURITY%20INSPECTION.PDF
https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSPORT%20LAYER%20SECURITY%20INSPECTION.PDF
https://www.statista.com/statistics/995060/business-internet-traffic-in-the-us/
https://www.fas.org/sgp/obama/insider.pdf
https://owasp.org/www-community/controls/Intrusion_Detection
https://gist.github.com/lxr/a222b1f063b974d88ce6
http://www.fbi.gov/
https://www.fbi.gov/%20history/famous-cases/robert-hanssen
https://www.fbi.gov/%20history/famous-cases/robert-hanssen

164

Sardari, M., Beirami, A., Zou, J., & Fekri, F. (2013, April). Content-aware network data
compression using joint memorization and clustering. In Proceedings of the 2013
IEEE INFOCOM, (pp. 255-259). IEEE.

Scarfone, K., & Mell, P. (2007). Guide to intrusion detection and prevention systems
(idps). NIST special publication, 800(2007), 94.

Schmidt, A., Kimmig, D., & Beine, M. (2011). A proposal of a new compression scheme
of medium-sparse bitmaps. International Journal on Advances in Software, vol. 4,
nos. 3&4, pp. 401–411, 2011.

Sheldon, R. (2021, August). Enhanced Interior Gateway Routing Protocol (EIGRP).
TechTarget Network. Retrieved from:
https://www.techtarget.com/searchnetworking/definition/EIGRP?Offer=abt_pubp
ro_AI-Insider.

Shopp, B. (2020, May 9). Audit trails critical for tracking network activity. GCN.com.
Retrieved from: https://gcn.com/Articles/2020/05/05/audit-trails.aspx?p=1.

Simplilearn. (2023). What Is Kerberos? How Does Kerberos Work: Everything You
Need to Know. Simplilearn Solutions. Retrieved from:
https://www.simplilearn.com/what-is-kerberos-article#:~:text=Kerberos.

Sindhu, S. S. S., Ramasubramanian, P., & Kannan, A. (2004, November). Intelligent
multi-agent based genetic fuzzy ensemble network intrusion detection. In Neural
Information Processing (pp. 983-988). Springer Berlin Heidelberg.

Singleton, T. W. (1996). EDP auditing in North America: How its development brings
insights to contemporary issues.

Smith, A. (2008). Nucleic acids to amino acids: DNA specifies protein. Nature
Education, 1(1), 126.

Smith, C. A. (2010). A survey of various data compression techniques. Int J pf Recent
Technol Eng, 2(1), 1-20.

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of molecular biology, 147(1), 195-197.

SpeedGuide (2022). speedguide.net. SpeedGuide, LLC. Retrieved from:
https://www.speedguide.net/port.php.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., & Stiller, B. (2010). An
overview of IP flow-based intrusion detection. IEEE Communications Surveys
and Tutorials, 12(3), 343-356.

https://www.techtarget.com/searchnetworking/definition/EIGRP?Offer=abt_pubpro_AI-Insider
https://www.techtarget.com/searchnetworking/definition/EIGRP?Offer=abt_pubpro_AI-Insider
https://gcn.com/Articles/2020/05/05/audit-trails.aspx?p=1
https://www.simplilearn.com/what-is-kerberos-article#:%7E:text=Kerberos
https://www.speedguide.net/port.php

165

Spring, N. T., & Wetherall, D. (2000). A protocol-independent technique for eliminating
redundant network traffic. ACM SIGCOMM Computer Communication Review,
30(4), 87-95.

Stabno, M., & Wrembel, R. (2009). RLH: Bitmap compression technique based on run-
length and Huffman encoding. Information Systems, 34(4-5), 400-414.

Tcpdump. (2022). Link-Layer Header Types. The Tcpdump Group. Retrieved from
https://www.tcpdump.org/linktypes.html.

Tcpreplay. (n.d.). Tcpreplay - Pcap editing and replaying utilities. Retrieved from:
https://tcpreplay.appneta.com/

Tek-Tools. (2020, February 14). Intrusion Detection System (IDS) – The Fundamentals.
https://www.tek-tools.com/security/what-is-an-intrusion-detection-system-ids

Teuton, J., Peterson, E., Nordwall, D., Akyol, B., & Oehmen, C. (2013, August).
LINEBACkER: Bio-inspired data reduction toward real time network traffic
analysis. In 2013 6th International Symposium on Resilient Control Systems
(ISRCS), pp. 170-174. IEEE.

The TCP/IP Guide. (2005, September 20). ARP Overview, standards and history.
http://www.tcpipguide.com/free/t_ARPOverviewStandardsandHistory.htm.

 UC Berkeley. (n.d.). Security Audit Logging Guideline. The University of California
Berkeley, Information Security Office. Retrieved from:
https://security.berkeley.edu/security-audit-logging-guideline.

Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2018). A survey on data
compression techniques: From the perspective of data quality, coding schemes,
data type and applications. Journal of King Saud University-Computer and
Information Sciences.

van Schaik, S. J., & de Moor, O. (2011, June). A memory efficient reachability data
structure through bit vector compression. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data (pp. 913-924).

Veritas. (2017, July 28). Size Matters: A Whole Genome is 6.4B Letters. Veritas Genetics.
Retrieved from https://www.veritasgenetics.com/our-thinking/whole-
story/#:~:text=the%20full%20story.-
,A%20real%20human%20genome%20is,letters%20(base%20pairs)%20long.

Wang, J., Lin, C., Papakonstantinou, Y., & Swanson, S. (2017, May). An experimental
study of bitmap compression vs. inverted list compression. In Proceedings of the
2017 ACM International Conference on Management of Data (pp. 993-1008).

https://www.tcpdump.org/linktypes.html
https://tcpreplay.appneta.com/
https://www.tek-tools.com/security/what-is-an-intrusion-detection-system-ids
http://www.tcpipguide.com/free/t_ARPOverviewStandardsandHistory.htm
https://security.berkeley.edu/security-audit-logging-guideline
https://www.veritasgenetics.com/our-thinking/whole-story/#:%7E:text=the%20full%20story.-,A%20real%20human%20genome%20is,letters%20(base%20pairs)%20long
https://www.veritasgenetics.com/our-thinking/whole-story/#:%7E:text=the%20full%20story.-,A%20real%20human%20genome%20is,letters%20(base%20pairs)%20long
https://www.veritasgenetics.com/our-thinking/whole-story/#:%7E:text=the%20full%20story.-,A%20real%20human%20genome%20is,letters%20(base%20pairs)%20long

166

Weinberg, N. (2022). DHCP defined and how it works. IDG Communications, LLC.
Retrieved from: https://www.networkworld.com/article/3299438/dhcp-defined-
and-how-it-works.html.

Welch, T. A. (1984). A technique for high-performance data compression. Computer,
17(06), 8-19.

Wen, Y., Chen, Z., Ma, G., Cao, J., Zheng, W., Peng, G., ... & Huang, W. L. (2014,
August). SECOMPAX: A bitmap index compression algorithm. In 2014 23rd
International Conference on Computer Communication and Networks
(ICCCN) (pp. 1-7). IEEE.

Wen, Y., Wang, H., Chen, Z., Cao, J., Peng, G., Huang, W. L., ... & Guo, J. (2016, May).
MASC: A bitmap index encoding algorithm for fast data retrieval. In 2016 IEEE
International Conference on Communications (ICC) (pp. 1-6). IEEE.

Weinberg, N. (2022). DHCP defined and how it works. IDG Communications, LLC.
Retrieved from: https://www.networkworld.com/article/3299438/dhcp-defined-
and-how-it-works.html.

Wireshark. (2020) Libpcap File Format, Wireshark.org. Downloaded from
https://wiki.wireshark.org/Development/LibpcapFileFormat.

Wolfram, S. (2002). A new kind of science. Wolfram Media, p. 1069.

Wu, G. (2021). String Similarity Metrics – Edit Distance. Baeldung.com. Retrieved from:
https://www.baeldung.com/cs/string-similarity-edit-distance.

Wu, Y., Chen, Z., Cao, J., Li, H., Li, C., Wang, Y., ... & Guo, J. (2016). CAMP: A new
bitmap index for data retrieval in traffic archival. IEEE Communications
Letters, 20(6), 1128-1131.

Wu, K., Otoo, E. J., & Shoshani, A. (2002, July). Compressing bitmap indexes for faster
search operations. In Proceedings 14th international conference on scientific and
statistical database management (pp. 99-108). IEEE.

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems (TODS), 31(1), 1-38.

Wolfram, S. (2002). A new kind of science. Wolfram Media, p. 1069.

Zeeh, C. (2003, January). The lempel ziv algorithm. In URL: http://w3studi. informatik.
uni-stuttgart. de/~ zeehca/Seminar/LempelZivReport. Retrieved from:
https://tuxtina.de/files/seminar/LempelZivReport.pdf.

Zheng, Z., & Bockelman, B. (2017, October). Exploring compression techniques for
ROOT IO. In Journal of Physics: Conference Series (Vol. 898, No. 7, p. 072043).
IOP Publishing.

https://www.networkworld.com/article/3299438/dhcp-defined-and-how-it-works.html
https://www.networkworld.com/article/3299438/dhcp-defined-and-how-it-works.html
https://wiki.wireshark.org/Development/LibpcapFileFormat
https://tuxtina.de/files/seminar/LempelZivReport.pdf

167

Zheng, W., Liu, Y., Chen, Z., & Cao, J. (2017, May). CODIS: A new compression
scheme for bitmap indexes. In 2017 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS) (pp. 103-104). IEEE.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3), 337-343.

Zou, Q., Sun, X., Liu, P., & Singhal, A. (2020). An approach for detection of advanced
persistent threat attacks. Computer, 53(12), 92-96.

