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Hardware Design Verification, commonly called verification, is the process of func-
tionally verifying a design that was written in a Register Transfer Language (RTL) based
on the specification. The most common methodology in practice today uses the Univer-
sal Verification Methodology (UVM). In addition to being a methodology, UVM is also
a collection of object-oriented base classes written in SystemVerilog. A UVM testbench
is created that serves as a harness for the Design Under Test (DUT). Stimulus, with con-
strained random inputs, is written that exercises the design. Constrained Random Verifi-
cation (CRV) is used to find functional errors in the design and to meet coverage goals.

One form of coverage is functional coverage. Functional coverage is defined and de-
veloped by the verification engineer to verify that certain scenarios are covered during
simulation. Coverage is created as a collection of coverpoints, and each coverpoint has
one or more bins to indicate what is or is not hit. As a simple example, one coverpoint
could be the write indicator for a First-In First-Out (FIFO) queue. This coverpoint would
have two bins: one if the write indicator was high and another if it were low. For a large
System-on-Chip (SOC) design, the number of bins to be covered could number in the tens
of thousands. Reaching 100% coverage on such a design would require a large amount of
compute space and potentially thousands of simulations running daily. The time it takes
to analyze the coverage results and develop new stimulus to cover missing cases can take
weeks to months, depending on the complexity of the design. To improve the efficiency
and time it takes to reach coverage closure, this dissertation study evaluates the use of
machine learning techniques. More specifically, this study uses a combination of Super-
vised Learning, Reinforcement Learning, and Bayesian Optimization to select constraints
to reach coverage closure more efficiently.

Using two different RTL models, the results of this study show that using Machine
Learning models reduces time to coverage closure. Using a combination of Bayesian Op-
timization with Reinforcement Learning, constraints were optimized so that the number of
simulations required to reach 100% coverage was much less than using constrained ran-
dom constraints. This research highlights the effectiveness of using Machine Learning in
the Hardware Design Verification flow.
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Chapter 1

Introduction

Problem Statement

As Application Specific Integrated Circuit designs continue to grow in complexity,

the hardware design verification effort continues to be a bottleneck (Vanaraj et al., 2020).

The study by H. D. Foster (2015) shows that the majority of the effort spent in the design

flow is in the verification process. This dissertation investigates how machine learning

techniques can be used to address this bottleneck problem so that verification goals can be

reached faster and more efficiently.

Design Verification is the discipline of functionally verifying the hardware design

of an Application Specific Integrated Circuit (ASIC) or Intellectual Property (IP). The de-

sign is typically written in a Register Transfer Language (RTL) such as Verilog or VHDL.

A verification environment or testbench is constructed to stimulate the RTL and verify the

results according to the specification. The testbench and stimulus can be written in Sys-

temVerilog andmany companies leverage the Universal VerificationMethodology (UVM)

for more complex environments. A UVM based environment consists of several compo-

nents used to stimulate and check the Design Under Test (DUT)(Cooper, 2013). Figure 1

illustrates a simple UVM testbench and its components. The subcomponent of interest is

the Sequences. At a high level, the sequences contain data items that aggregate to form

a packet or transaction that is sent to the DUT. The data items or knobs are randomized

with constraints to meet the verification goals of stimulating various use cases in the de-

sign. This method of verification is known as constrained random verification (CRV). As
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Figure 1. UVM Testbench (Cooper, 2013)

designs have become increasingly complex, the complexity of constrained random verifi-

cation has drastically increased as well (Roy et al., 2021; Vanaraj et al., 2020).

One of the verification goals that must be met is called Coverage Closure. There

are two types of coverage: code and functional. Code coverage is observing that you hit a

certain line of code, toggled a bit, or exercised all conditional branches. However, func-

tional coverage is a better measure of the robustness of the stimulus. Functional coverage

indicates if a certain use case or scenario has occurred. For example, did the stimulus

hit the case where a First-In First-Out (FIFO) queue is full or empty? Did back-to-back

transactions on a protocol bus happen? With a large System On Chip (SOC) design, the

coverage space could take weeks or months to close using standard constrained random

verification. The challenge becomes how to optimize the constraints in such a way as to

significantly reduce the time to closure.
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Dissertation Goal

The goal of this study is to combine Supervised Learning, Reinforcement Learning,

and Bayesian Optimization into a hardware design verification flow to increase the speed

and efficiency of coverage closure. Hughes et al. (2019) proposed a method of optimiz-

ing constraint selection using a combination of Supervised and Reinforcement Learning.

In comparison, Roy et al. (2021) proposed using Bayesian Optimization to optimize con-

straints. Both studies show improvement in coverage closure compared to constrained

random verification alone. The hypothesis is that by combining these two approaches,

the time to coverage closure will be significantly reduced. Success would be defined as

meeting a coverage closure goal in fewer iterations of the simulation.

The first optimization method proposed by Hughes et al. (2019) uses a combination

of Supervised Learning in the form of a Deep Neural Network (DNN) and Reinforcement

Learning with a Deep-Q Network (DQN). Initially, the constrained random values, or ran-

dom knobs as indicated in Figure 2, are fed into the simulation to produce an output. That

output is then used to train the neural network. Once the network is trained, it can be

used to select new inputs to maximize the output that most effectively achieves coverage

closure.

Figure 2. Simulation Flow with Supervised and Reinforcement Learning (Hughes et al.,
2019)

This setup also includes a Reinforcement Learning component. Reinforcement
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Learning (RL) involves an agent trying to learn the best actions in a heuristic manner

to achieve a reward. In a small state space, the RL algorithm of Q-Learning would be

sufficient (Hughes et al., 2019). In that scenario, the rewards could be stored in a lookup

table. However, given the complexity of the environment, a lookup table is no longer

sufficient and requires a neural network called a Deep Q-Network (DQN). In both cases,

the networks act as a function approximator to achieve the desired outcome (Goodfellow

et al., 2016). The best set of input knobs from both setups is then used in simulation.

In comparison, instead of using deep neural networks, Roy et al. (2021) proposes

using Bayesian Optimization. Bayesian Optimization is a machine learning algorithm that

finds the global optimum x of the objective function f(x) : X → R (Li & Kanoulas,

2018). For the verification goal of coverage closure, the coverage hit counts would be the

function f(x) and the randomized constraints would be x (Roy et al., 2021). Bayesian

Optimization (BayesOpt) is an iterative process. Roy et al. (2021) outlines the iteration in

the following steps:

1. Evaluate the objective function f(x) for an initial random set of x values [x0 : xn−1]

2. Train a surrogate model with data [(x0, f(x0)) : (xn−1, f(xn−1))] collected from

evaluation

3. Determine the next set of x to evaluate using an acquisition function on the surrogate

model

4. Evaluate the objective function for the new x values: f(x) for x in [xn : x2n−1]

5. Start the next iteration at Step 2 with the additional data collected from evaluation

An acquisition function is one that finds a trade-off between exploration and exploitation

(Li & Kanoulas, 2018). Exploitation is sampling where the surrogate model predicts a

high value of f(x) and exploration is sampling where the prediction uncertainty is high

(Roy et al., 2021). The surrogate model is used by the acquisition function to find the next
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samples for the iteration. According to Li and Kanoulas (2018), the Gaussian Process (GP)

is the most widely used surrogate model in BayesOpt. In addition to GP, Roy et al. (2021)

also used Extra-trees (ET) and Gradient-boosted regression trees (GBRT). With regards

to coverage, results of the experiment showed a 2x-6x coverage count increase with the

optimized constraints for 20% of the coverpoints. The methodology used by Hughes et

al. (2019) also showed a significant improvement in certain coverage goals using a ML

approach instead of normal constrained random verification.

Relevance and Significance

Using Machine Learning in a hardware design verification flow is an area that has

seen a resurgence given the developments in technology (Gogri et al., 2020). Gogri et al.

(2020) proposed a flow that used a machine learning model for each planned cover point.

F. Wang et al. (2018) proposed using the relationship between tests and assertions in the

verification flow in conjunction with training an Artificial Neural Network (ANN). To

train the model, the outputs were labeled positively if a test triggered a certain assertion

(F.Wang et al., 2018). A verification flow created by C.Wang et al. (2022) used supervised

and reinforcement learning, but they added the novel approach of adding a Transformer

into the flow. A Transformer is a Natural Language Processing (NLP) technique used in

deep learningmodels that applies different weights to parts of the input data (C.Wang et al.,

2022). As opposed to using Bayesian optimization to choose constraints, the Transformer

creates a subset of constraints from all the constraints. Work done by Chauhan (2022)

also uses natural language processing; however in this case, it is used to translate text

from the specification into assertions. Chauhan and Ahmad (2021) has also researched

using machine learning for regression automation. Like this proposed study, prior research

has focused on various segments of hardware design verification. Developing efficient

methods using artificial intelligence to optimize portions of the flow will eventually lead

to an end to end solution.
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Barriers and Issues

Typically, when simulations are run for hardware design verification, it is done on

a compute farm. Utilizing a compute farm allows simulations to be run in parallel across

the various number of servers in the farm. For the experimentation carried out in this

research study, access to a compute farm is not available. All simulations done were run

on one server. Although the time to completion of all necessary simulations was longer,

the results were not affected.
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List of Acronyms

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CRV Constrained Random Verification

DNN Deep Neural Network

DQN Deep-Q Network

DUT Design Under Test

EDA Engineering Design Automation

FIFO First In First Out

IP Intellectual Property

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multilayer Perceptron

NLP Natural Language Processing

OS Operating System

RNN Recurrent Neural Network

RL Reinforcement Learning

RTL Register Transfer Language

SOC System On Chip

UVM Universal Verification Methodology

VPLAN Verification Plan

Table 1. Acronyms
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Summary

Hardware design verification is an integral component in ASIC design. As chips

become more and more complex, the complexity of the verification effort increases as

well. One element of the verification process is the closure of functional coverage. This

study utilizes Supervised Learning, Reinforcement Learning, and Bayesian Optimization

in an effort to close coverage more efficiently.
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Chapter 2

Review Of the Literature

Overview

The purpose of hardware design verification is to verify that a design is correct

based upon its specification (Sethulekshmi et al., 2016). As this study explores using

machine learning techniques to improve an element of the verification flow, the review

covers current research in Hardware Design Verification as well as Bayesian Optimization,

Supervised Learning, and Reinforcement Learning.

Hardware Design Verification

Industry stalwart, H. D. Foster (2015), led a study to determine the cost of verifica-

tion in the overall design process. The study showed that there has been a steady increase

in projects where the cost of verification was 80% of the project. Given this high cost,

verification has become the bottleneck in the design flow (H. D. Foster, 2015). One con-

tributor to this cost is the life cycle of a product. Whereas in years past, the life cycle of

an ASIC from inception to production would take years, that cycle has been reduced to

months (Chen et al., 2017). As such, despite being more complex, the stages of pre-silicon

verification must fit within the expedited life cycle. As shown in Figure 3, the three major

components of pre-silicon verification are verification planning, architecture design, and

plan execution.
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Figure 3. Pre-Silicon Verification Stages

Verification planning starts early and consists of understanding the IP or blocks of

IP under test (Chen et al., 2017). The verification plan contains the features that will be

tested and how they will be tested, checked, and covered. The next phase is the architec-

tural design of the verification components. This includes the design of agents, checkers,

monitors, and scoreboards outlined in the verification plan (Chen et al., 2017). These

components include those shown in Figure 1. The most intensive and costly stage is the

execution of the plan. Components designed during the previous stage have to be coded,

including the sequences for the stimulus (Chen et al., 2017). Any failing tests need to be

debugged, and the RTL fixed if there is a design flaw (bug). Functional coverage has to

be implemented and closed 100% (Vanaraj et al., 2020). Regressions (test suites) need to

be passing cleanly for a pre-determined amount of time to help ensure there are no bug

escapes.

One strategy to help reduce the verification bottleneck has been the adoption of

the Universal Verification Methodology (H. D. Foster, 2015). The use of UVM helps with

reuse across projects. It also helps reduce the learning curve of new employees since it has

been so widely adopted. However, the adoption of SystemVerilog and UVM has reached

a saturation point while designs continue to become more complex (H. D. Foster, 2015).

Researchers and industry verification engineers have continued to deploy other strategies

to optimize the verification effort. Vanaraj et al. (2020) proposed a framework to calculate

the valid input stimuli space based on reaching 100% coverage closure. Chatterjee et al.

(2021) proposed a solution to automate finding scenarios that over-constrain the stimulus.
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By relaxing constraints, simulation time is better used to close functional coverage. In the

past few years, verification engineers and Engineering Design Automation (EDA) compa-

nies have been investing in machine learning techniques to optimize verification in various

ways such as sequence generation (Gad et al., 2021; Gogri et al., 2020), Bayesian Opti-

mization methods (Li & Kanoulas, 2018; Wu et al., 2019), Natural Language Processing

(Chauhan, 2022), and regression automation (Chauhan & Ahmad, 2021).

Bayesian Optimization

Bayesian optimization is a mathematical way to find the maximum of a cost func-

tion in the form f(x) (Brochu et al., 2010). These optimization problems have the follow-

ing form, where A is a set of points in Rd:

maxx∈A⊂Rdf(x) (2.1)

Bayesian optimization was derived from Bayes’ Theorem which computes the

probability of an event based on prior and historical knowledge. For Bayesian optimiza-

tion, the mathematical formula is as follows, where E is the data and M is the model (Wu

et al., 2019):

P (M |E) = P (E|M)P (M)
P (E) (2.2)

Since the objective function is unknown, Bayesian optimization creates a proba-

bility model of the function. Using the sample points, A, a surrogate model is created

to approximate the actual objective function. An acquisition function is then built to se-

lect the next hyperparameter to use to obtain the maxima of the approximated objective

function. This process of choosing the next hyperparameter and adding it to the surrogate

model continues until the maxima is found (Bergstra et al., 2011).
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Supervised Learning and Deep Neural Networks

Supervised Machine Learning algorithms are those that are trained using labeled

data (Goodfellow et al., 2016). As an example, a model can be trained to predict credit card

fraud if given labeled data that include both fraudulent and valid credit card transactions

(Lee, 2019). This type of prediction is called Classification and is themost common type of

ML algorithm (Goodfellow et al., 2016). A classification algorithm is one that, after being

trained, predicts which k category an input belongs to (Goodfellow et al., 2016). Using

the credit card example, based on the inputs the transaction can be classified as valid or

fraudulent. When the feature set of the input data becomesmore complex, shallow learning

algorithms may not be sufficient. In that case, Deep Learning algorithms are needed.

Deep Learning is a concept that relies upon Artificial Neural Networks (ANN)

(Janiesch et al., 2021). Janiesch et al. (2021) defines ANNs as mathematical representa-

tions of artificial neurons that closely represent biological neurons. Deep Neural Networks

(DNNs) are a subset of ANNs that consists of more hidden layers and more advanced neu-

rons that may have convolutions or multiple activation functions on a neuron (Janiesch et

al., 2021). Figure 4 shows a generic ANN with inputs, a hidden layers, and the subsequent

outputs.
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Figure 4. Artificial Neural Network

Reinforcement Learning and the Deep-Q Network

Reinforcement Learning (RL) is a branch of unsupervised learning in which an

agent interacts with the world in which it lives, with the goal of receiving rewards based

on successes (Russell & Norvig, 2021). The agent acts using a trial and error approach to

solving a problem; it is rewarded or penalized for the action (Hughes et al., 2019). It also

receives an updated state of its environment based on the action as Figure 5 shows. For

example, if action a is a constraint fed into the environment in Figure 5 and a coverage

point is hit, then a reward would be fed back to the agent. Similarly, if coverage is not hit,

then a penalty would be sent back. In either case, the agent is updated with the new state.

The most common RL algoritm is Q-Learning in which the agent learns a Q-

function,Q(s, a), indicating the sum of rewards going forward from state s if a, the action,

is taken (Russell & Norvig, 2021). The goal is to maximize the reward using the following

Bellman Equation where s is a given state, a is an action, t is time, t′ is the time of the
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Figure 5. Reinforcement Learning (Hughes et al., 2019)

previous state, r is the reward, and γ is a discount factor (Hughes et al., 2019):

Q(st′ , at) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st′ , at] (2.3)

When the solution space is relatively small, the reward values can be stored in a

Q-table. However, for a larger space which is typical for verification, a Q-table is not

feasible and a Deep Neural Network (DNN) called a Deep Q-Network (DQN) is required

(Hughes et al., 2019). A Deep Q-Network can include a DNN or a Convolutional Neural

Network (CNN) with the differentiator being the use of Q-Learning. The DQN becomes

a Q-value function approximator and learns the values for each action at a state (Hughes

et al., 2019).
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Chapter 3

Methodology

Overview

The proposed study evaluates the merits of combining the works of Hughes et al.

(2019) utilizing supervised and reinforcement learning with the Bayesian optimization

deployed by Roy et al. (2021). The steps performed to conduct the study are outlined as

follows:

1. Build a UVM testbench for a simple RTL design that can initially be used as a proof

of concept. The design chosen is an Asynchronous FIFO (Pretet, 2020).

2. Generate coverage data using a standard constrained random approach that has been

optimized by BayesOpt.

3. Add the DNN/DQN into the UVM simulation flow and generate coverage results.

4. Add the DNN/DQN into the UVM simulation flow filtered through BayesOpt and

generate coverage results.

5. Once all environments are complete for the proof of concept, repeat with a more

complex design such as a RISC-V core used by (OpenHW Group, 2021) or an Ab-

stract Model.

Coverage results are the number of iterations of the simulation required to hit a certain cov-

erage point. For example, if the coverage point is that a FIFO is full, how many iterations

did it take to reach that condition.
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Figure 6 illustrates this flow.

Figure 6. Proposed Simulation Flow

Proof Of Concept

The experiment begins with a FIFO as a proof of concept to build the UVM envi-

ronments and develop the ML implementations as simply as possible. A FIFO is a first

in, first out block that is used to transfer data typically across different clock domains in

a system. The Asynchronous FIFO that is used is Open Source and available on Githbub

(Pretet, 2020). The random knobs (input features) in this scenario include the following:

clock frequencies (24MHz, 48MHz, 96MHZ), FIFO depth (128 words, 512 words, 1024

words), data (16 bit, 32 bit, 64 bit), read, and write. The coverage (output) hit includes:

1. Same clock frequency on both sides of the FIFO

2. Different clock frequency on each side

3. Read and write enables both high
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4. Read and write enable both low

5. Read enable high with write enable low

6. Read enable low with write enable high

7. Data ranges (minimum, maximum, ranges in between)

8. FIFO full

9. FIFO empty

The projected coverage results from each implementation, given the same number of sim-

ulation iterations, are similar given the simplicity.

Abstract Model

To determine if the new hybridML optimizationmethod is more successful, a more

complex design is needed. The architecture used by (Hughes et al., 2019) was RISC-V.

RISC-V is an open instruction set architecture (ISA) that is based on reduced instruction

set computer (RISC) guidelines (Zaruba & Benini, 2019). The core and implementation

can also be found on GitHub OpenHW Group (2021). However, given limitations in the

environment that do not support the RISC-V compiler, an abstract model was created. The

abstract model has a coverage space large enough to give a degree of complexity. Using

an abstract model also has the flexibility of scaling the complexity.

Following the same steps as the proof of concept, a UVM environment is created

for the abstract model. The model builds upon the FIFO in the proof of concept but adds

a layer of complexity. The schematic for the model is shown in Figure 7. The FIFO is

configurable for six different depths, four modes, and three data transformations.
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Figure 7. Abstract Model

Before the implementation of the simulation flow, the random knobs and functional

coverage are defined, and the standard constrained random simulation run as a control in

the experiment. This flow consists of the DNN/DQN used by Hughes et al. (2019). It also

includes the BayesOpt implementation proposed by Roy et al. (2021). To be consistent

with the previous work, the Scikit-Optimize library is also used (Kumar et al., 2020). Sim-

ulations are run evaluating GBRT, ET, and GP as surrogate models. The three acquisition

functions used by Roy et al. (2021) are also evaluated. The number of coverage points hit

per each iteration of the simulation are compared with the control outcome and the results

of Hughes et al. (2019) and Roy et al. (2021). The final results showwhether the combined

or hybrid method produces results that improve upon those of the cited researchers.

The Verification Environment

One of the first steps in any verification process is creating a verification plan based

on the design specification. As a proof of concept, this experiment starts with the speci-

fication of the FIFO which is found in Appendix B. A typical verification plan includes

what features are tested, how they are tested (stimulus), how they are checked (verified),
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and how they are covered (functional coverage). Since the focus of this study is coverage

efficiency, the verification plan for the FIFO includes the stimulus and coverage and is

found in Appendix A. The stimulus is required because it details the random knobs that

are used to hit the coverage points.

After the verification plan is completed, the testbench is developed. Figure 8 shows

another example of a UVM testbench with all of its various components.

Figure 8. Full UVM Testbench (learnuvmverification.com)

The sequences contain constrained random variables (knobs) that are used in the

transactions sent by the driver over the virtual interface to the DUT. Figure 8 also shows

a coverage collector. This object subscribes to the transactions being sent, and the im-

plemented coverage is updated. The data from the generated coverage report is used to
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inform and train the ML models. Once the full proof of concept environment is com-

pleted, the effort of verification planning and testbench development needs to be repeated

for the abstract model. The respective specification and verification plans are found in

Appendices B and A.

BayesOpt Implementation

To implement the BayesianOptimization component of the environment, the BayesOpt

implementation provided in the Scikit-Optimize library as proposed by Roy et al. (2021)

is used. Roy et al. (2021) utilized both an offline and an online flow. Given the hybrid

nature of this experiment, only the offline flow is utilized, as illustrated in Figure 9.

Figure 9. BayesOpt Flow (Roy et al., 2021)
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Machine Learning Models

As illustrated in Figure 6, once a simulation is done, the output is used as input in

the ML models. Although the work by Hughes et al. (2019) states that a DNN is used,

the work does not explicitly state the algorithm used. The first step after collecting data

from several simulation runs is exploring the various models to determine which model

or models work best. Given the level of complexity between the FIFO and the Abstract

Model, the models needed for each environment are different. The models that are trained

come from the scikit-learn classifier library.

Reinforcement Learning

The final component of the environment is the Reinforcement Learning model.

Similarly to the supervised learning models, the simulation output serves as input to the

RL model. The model needs to find the optimal policy and maximize the reward return of

its goal. In this case, the goal is to reach 100% functional coverage.

Summary

To begin implementation, the first DUT is the Asynchronous FIFO. Step 1 is to

create the Verification Plan (VPLAN) for the FIFO based on its specification found in Ap-

pendix B. The VPLAN can be found in Appendix A. The VPLAN outlines the constrained

random knobs needed for the stimulus and the functional coverage plan. Once the plan is

complete, a simple UVM testbench is created to drive the stimulus and collect coverage.

Three selection paths through the DUT are illustrated in Figure 6. First, once the testbench

is developed, the possible constrained random knobs are chosen using the BayesOpt flow

described in Figure 9. The data captured in this flow is compared against the other two

paths. The data of interest is the coverage closure rate based on the number of simulation

runs. Also, it is noted if any functional coverage points are never hit.
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Still utilizing the FIFO testbench, the second path also takes advantage of Bayesian

Optimization. However, in this path, the stimulus is no longer just the constrained random

values from the simulation tool constraint solver. The stimulus is a product of the Machine

learning and Reinforcement learning models based on simulation output. Finally, the third

path eliminates the Bayesian Optimization from the flow. Once this proof of concept ex-

periment is complete, it is replicated on a more complex design using the Abstract Model.

The more complex DUT emulates the real-world scenario of closing functional coverage

across many simulation runs.
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Chapter 4

Results

This chapter details the results of the experiments previously described. The first

step, the Proof of Concept, was to create a UVM environment for a simple asynchronous

FIFO as the DUT. Once the UVM environment was implemented, the next step was to

create and prove the viability of the models: Bayesian Optimization, Supervised Learning,

and Reinforcement Learning as shown in Figure 6. The Proof of Concept served as a

development basis for the more complex Abstract Model environment.

FIFO: Bayesian Optimization

The coveragemodel developed for the FIFO focused on the frequencies of the write

and read clocks, whether or not a write or read was enabled, if the FIFO is full or empty,

the size of the data (dsize), and the depth of the FIFO (asize). The clock frequencies

were limited to 24MHz, 48MHz, and 98MHz. Based on the design, the data width and

depth sizes were also constrained. The implemenation of the coverage model is found in

Appendix A.

The constrained values for the coverpoints are as follows:

• write_freq ∈ {0, 1, 2} (FREQ_24MHz, FREQ_48MHz, FREQ_96MHz)

• read_freq ∈ {0, 1, 2} (FREQ_24MHz, FREQ_48MHz, FREQ_96MHz)

• write_enable ∈ {0 , 1}

• read_enable ∈ {0 , 1}
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• full ∈ {0, 1}

• empty ∈ {0, 1}

• dsize ∈ {8, 16, 32, 64}

• asize ∈ {4, 8, 16, 32, 64, 128, 512, 1024}

As a baseline, three trial simulation sets, T1, T2, and T3, were conducted until

100% coverage was reached. Each trial simulation set consisted of individual runs and the

cumulative coverage was captured after each run. Figure 10 shows that it took an average

of 23 individual runs to reach full coverage.

Figure 10. FIFO Simulation Results without Optimization

Using the work of Roy et al. (2021) as a baseline, an offline optimizer as described

in Figure 9 was implemented. The surrogate models used were Gaussian Processes (GP),

Gradient Boosted Regression Trees (GBRT), and Extra Trees (ET). Each surrogate model

was run with three acquisition functions: Expected Improvement (EI), Lower Confidence

Bound (LCB), and Probability of Improvement (PI). For this simple design, the constraints
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of the acquisition functions that balance the trade-off between exploration and exploitation

were left as default (Carlen & Nahrstaedt, 2020).

As observed in Figure 11, the GBRT model demonstrated the worst performance.

Using the LCB and PI, acquisition functions, 100% coverage was never reached. The GP

and ET models were both able to converge to 100% coverage, with ET reaching the goal

with an average of 21 simulation runs. Since the Extra Trees model, performed best, it

was used in the hybrid flow with the Reinforcement Learning model.
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(a)

(b)

(c)

Figure 11. FIFO Simulation Results with Bayesian Optimization
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FIFO: Supervised Learning and Reinforcement Learning

The next step in the Proof of Concept was identifying a SupervisedMachine Learn-

ing model. The first step was to train and test various Multilayer Perceptrons to identify

one with a high degree of accuracy. The Scikit-Learn models that were trained wereMulti-

nomial NB, Gaussian NB, Decision Tree Classifier, Random Forest Classifier, Extra Trees

Classifier, SGD Classifier, Ridge Classifier, Linear SVC, K Neighbors Classifier, SVC,

Logistic Regression, and MLP Classifier. Of the twelve models evaluated, the Decision

Tree Classifer was themost accurate at 70%. Although better than the other models, the ac-

curacy was still low to make valid predictions. This result was not surprising. The features

the model trained on were the six verification constraints. The binary output of whether

or not coverage improved was based on a cumulative coverage score. For the model to be

effectively accurate, it needed to have a concept of memory of the previous coverage. For

this case, a variant of a Recurrent Neural Network (RNN) would be better suited (Pfeifer

et al., 2020). Because each simulation run can be considered a time step and the coverage

result depends on the previous values, a Long Short-Term Memory (LSTM) was chosen

and incorporated into the Reinforcement Model.

For the RL model, the action space in the environment consisted of all possible

permutations of the six feature constraints. Four possible actions were defined, as shown

in Table 2. Using an epsilon greedy policy, one of the four actions was chosen in each step

of an episode. Once epsilon decayed past a specified minimum, the action was selected

based on target values from the historical data produced by the LSTM model.
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Action Description

0 Choose a random constraint permutation

1 Choose a constraint to target the coverage case where the FIFO is full

2 Choose a constraint that targets covering the ASIZE feature

3 Choose a constraint that targets covering the DSIZE feature

Table 2. FIFO: Reinforcement Learning Action Set

For the Proof of Concept toy problem, only one episode was performed. Each step

produced a set of constraints and waited for the resulting coverage value. The reward was

calculated as the current value of the cumulative coverage less the previous value. The

episode was considered done once the cumulative coverage reached 1.0. As shown in Fig-

ure 12, three simulation sets, T1, T2, and T3, were performed, with one set resulting in

coverage closure in 24 individual simulation runs. The results show for the Proof of Con-

cept FIFO case, the ML/RL results are no better than the constrained random verification.

Figure 12. FIFO Simulation Results Reinforcement Learning using LSTM
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FIFO: Hybrid Approach

The final path is to use the Extra Trees (ET) model from BayesOpt in conjunction

with the ML/RL model. Figure 6 showed the proposed flow of the constraints from the

RL model being fed into the BayesOpt model. Given the nature of the RL model to pro-

duce constraints based on the policy and the reward, the proposed flow did not work. An

amended flow was developed by which the initial batch of constraints was produced by

the BayesOpt model. In other words, the position of the model changed in the flow, as

illustrated in Figure 13. With a batch size of 8, the last 8 constraints from the BayesOpt

ETmodel were used, resulting in a cumulative coverage of 95.31%. After the initial batch,

the RL model produced constraints based on the calculated target and policy. Coverage

closure, 100% was reached with an additional six simulation runs. With the models in

place for the Proof of Concept, the next step was to utilize them in a more complex space

with the Abstract Model.

Figure 13. Amended Flow Simulation
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Abstract Model: Bayesian Optimization

For the Abstract Model implementation, the coverage model captured whether or

not the FIFO was full, if all four modes were hit as well as the three possible data transfor-

mations, and the depth. To add to the complexity of the model, the depth could be scaled

to a much larger value making coverage harder to achieve. Also adding to the coverage

complexity is the cross coverage between the modes and transformations, and also cross

coverage between the depth and if the FIFO was full. For example, cross_depth_full listed

below covers whether the FIFO was full at all possible depths. The specification for the

Abstract Model that details the functionality of the various modes and data transformations

is found in Appendix B.

The constraints for each coverpoint for Abstract Model verification are as follows:

• fifo_full ∈ {0, 1}

• mode ∈ {0, 1, 2, 3}

• depth ∈ {8, 16, 32, 64, 128, 256}

• transform ∈ {0 , 1, 2}

• cross_mode_transform (all permutations of mode and transform)

• cross_depth_full (all permutations of depth and fifo_full)

The constraints (random knobs) needed for the simulation were write, read, mode,

transform, and depth. As a baseline, groups of simulations were run to determine how

many were required to achieve 100% coverage closure. Figure 14 shows that with the

three trials of fifty simulation runs, two achieved full coverage closure while the remaining

one was close at 98.61%.
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Figure 14. Abstract Model Baseline

After the control simulations were completed, the optimized constraints were gen-

erated using Bayesian Optimization. To replicate the Proof of Concept experiment done

with the FIFO, the Gaussian Processes (GP), Gradient Boosted Regression Trees (GBRT),

and Extra Trees (ER) surrogate models were used. The same three acquisition functions

were used as well. As with the FIFO, Figure 15, shows that the Extra Trees surrogate

model performed best with the Expected Improvement (EI) and Lower Confidence Bound

(LCB) acquisition functions. Both achieved 100% coverage in under 20 simulation runs.
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(a)

(b)

(c)

Figure 15. Abstract Model Simulation Results with Bayesian Optimization
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Abstract Model: Hybrid Approach

The Reinforcement Learning Model with the LSTM Deep-Q Network created was

used as a foundation for the Abstract Model. The action space consisted of all possible

combinations of write, read, mode, and transform. Since each simulation run used the

same depth alongwith a batch of constraints, the depth was chosen by themodel separately.

The initial batch of constraints used was a set generated from the ET/LCB combination.

The remaining constraints were chosen based on the target values produced by the LSTM

model. The updated actions taken by the policy are shown in Table 3.

Action Description

0 Choose a random constraint set permutation

1 Choose a constraint set to target the coverage case where the FIFO is full

2 Choose a constraint set that targets covering the Depth feature

3 Choose a constraint set that was generated using Bayesian Optimization

Table 3. Abstract Model: Reinforcement Learning Action Set

Using this hybrid approach of combining Reinforcement Learning with Bayesian

Optimization improved coverage closure results. Figure 16 shows that the first two simu-

lation trails achieved closure in 13 and 12 runs, respectively. The final trial did not reach

full coverage closure in this same scope due to the missing depth size of 8.
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Figure 16. Abstract Model Hybrid Results

Summary

Two different RTL designs were used: a simple FIFO and a more complex Abstract

Model that built upon the FIFO. A UVM environment that was suitable to drive stimulus

and collect coverage was developed for each. Once the verification environments were

complete and the coverage spaces identified, control or baseline simulations were run to

determine how many simulations were needed to reach 100% coverage, also known as

coverage closure. Simulations were then run using Bayesian Optimization, Deep Neural

Networks, and Reinforcement Learning. Results showed that for the FIFO, adding Ma-

chine Learning showed no significant improvement over constrained random. However,

with the Abstract Model which was designed to be a more complex case, the improve-

ment was measurable. For the baseline with just constrained random verification to using

the hybrid Bayesian Optimization with Reinforcement Learning model full coverage was

reached 74% faster.
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Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Constrained Random Verification is one of the most commonly used methodolo-

gies in Design Verification (Aboelmaged et al., 2021). Researchers have been exploring

implementing Machine Learning techniques in the various aspects of verification. The

most common explorations are test generation and optimizing constraints (Vangara et al.,

2021). The goal of this study was to determine the effectiveness of using Bayesian Opti-

mization in conjunction with Reinforcement Learning to optimize constraints. This study

was derived from work done by Roy et al. (2021) who used Bayesian Optimization in both

online and offline verification flows, and Hughes et al. (2019) who used a combination of

Supervised Machine Learning and Reinforcement Learning.

Starting with the Proof of Concept case, the FIFO, three different flows were ex-

amined: Bayesian Optimization, Supervised Learning with a DNN, and Reinforcement

Learning. The results showed that the most effective cases were using Bayesian Opti-

mization and Reinforcement Learning with a Deep-Q LSTM model. The flow was also

amended to use Bayesian Optimization constraints as the initial batch of constraints in the

RL model. Using this amended flow, simulations were run using the Abstract Model. The

baseline simulation sets using only constrained random data took approximately fifty indi-

vidual simulation runs to reliably close coverage. By comparison, the hybrid model, only

12 to 13 individual runs per simulation set were required. The difference in the amount

represents a 74% reduction of simulations required to close coverage. The hybrid combi-
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nation of Bayesian Optimization with the LSTM Reinforcement model was demonstrably

effective in optimizing the constraints.

Implications and Limitations

Given that the design verification flow is a bottleneck in getting a chip to mar-

ket, having an effective methodology to reduce the time is crucial (H. Foster, 2023). Al-

though Engineering Design Automation (EDA) companies are implementing various AI

techniques into their tools, changing or upgrading simulation tools is not always feasible.

As a verification team, being able to utilize existing libraries such as scikit-learn will allow

the team to increase their efficiency while also managing new costs. However, investing

in having the correct infrastructure is required. In additional to the normal EDA tools and

framework, engineers will need access to the libraries, and APIs will need to be created to

access coverage data from the simulator.

One limitation that was encountered during the research was the compatibility of

the OS with the latest Tensorflow library. Another limitation was the access to the needed

compiler for a RISC-V processor case study. Limitations such as these would need to

be addressed in the infrastructure for the verification team. If these and other limitations

are addressed, then verification engineers will have less obstacles in adopting these ML

models into their flow.

Recommendations and Future Work

This study has illustrated an effective use case of Artificial Intelligence in the Hard-

ware Design Verification space. To continue this work further, the next step would be

automation to make the work easily reproducible and scalable. Both the Bayesian Op-

timization models and RL models were done using Google Colab. That data was then

entered into the Linux-based simulation environment. The next goal would be to create a

cohesive flow in the Linux-based environment. A wrapper would be created so that the



37

engineer could execute the flow from ML to simulation and back with minimal manual

effort. This automation would also allow further study of the models and adjusting of the

hyperparameters to continue to achieve better results.

Another area of further study is to explore whether or not this hybrid approach is

effective for a full System on Chip (SOC) design as opposed to block implementations

used in this research.

Summary

The intention of this research study was to utilize Artificial Intelligence in a Hard-

ware Design Verification Environment to optimize the stimulus constraints to improve the

rate at which a verification engineer can close coverage. Two different designs were used

to test the effectiveness of Bayesian Optimization, Supervised Machine Learning, and Re-

inforcement Learning. A hybrid flow was created such that an initial batch of constraints

was generated using the Extra Trees surrogate model. That initial batch was then used in

the Reinforcement Learning model with a LSTM model as the Deep-Q Neural Network.

This hybrid approach improved the coverage closure results by 74% using the Abstract

Model design. Based on these results, the study has shown that implementing this hybrid

model would improve coverage closure with similar designs. Further study is warranted

to determine effectiveness full scale SOC designs as well as improve the automation of

the flow.



Appendices
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Appendix A

Verification Plans

A.1 Verification Plan: FIFO

This Verification Plan (VPLAN) is an illustration of a simple plan that outlines the

features that are to be tested, the stimulus to test them, how they will be checked, and the

coverage collected on those features.
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Figure 17. FIFO Verification Plan
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A.2 Coverage Model: FIFO

SystemVerilog coverage is developed in an object called a covergroup. This code

outlines the features to be covered and how they are placed in bins. There is also cross

coverage that creates a matrix from the items to be covered.
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Figure 18. FIFO Coverage
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A.3 Coverage Model: Abstract Model

Figure 19. Abstract Model Coverage
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Appendix B

Specifications

B.1 Specification: FIFO

This document lists all the features the FIFO supports : (Pretet, 2020)

• The module is a full synchronized module, working on clock rising edge.

• It can be put under reset on both sides. For proper behavior, both side have to be

reset at the same time before any data transmission/reception.

• It can be synthesized either for Xilinx and Altera FPGAs.

• It supports built-in RAM of the FPGAs, used by inference. This ensures an easy

way to include the module in a design, regardless the FPGA family.

• It can be configured for any data bus width, specified in bits.

• Its depth can be configured in bytes.

– If the FIFO depth is not modulo the datapath, the real FIFO depth infered is

round up to the next datapath width. For instance, if the datapath width is 16

bytes and the depth specified being 20 bytes, the effective FIFO size will be

32 bytes

– If the depth is modulo the datapath, the specified depth will be the effective

depth

• The FIFO handles for the user all the RAM addressing.
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• The FIFO is composed by two asynchronous sides

– Write side uses

* A write enable control (wren), enabling the data recording. This control

increments the write pointer to point the next RAM address to write.

∙ wren doesn’t have to be asserted when ”full” flag is asserted. The

word passed to the write side will be losted.

∙ wren can be asserted continuously, or occasionally.

* A full flag, asserted when the FIFO is full. The flag is asserted on the next

clock cycle the last available word has been written.

* A data bus, passing the information to store.

– Read side uses

* A read enable control (rden), enabling the data read. This control incre-

ments the read pointer to address the next word to read.

∙ rden doesn’t have to be asserted when empty flag is enabled. If as-

serted, the data under read can be a valid data.

∙ rden can be asserted continuously, or occasionally.

* An empty flag, asserted when the FIFO is empty. The flag is asserted on

the next clock cycle last available word has been read.

* A data bus, receiving the information to read.

B.2 Specification: Abstract Model

The Abstract Model contains a FIFO with depths 8, 16, 32, 64, 128, and 256.

The depth can be scaled to any length. It also contains a Victim Buffer of depth 4. The

functionality of the model is based on the modes shown in Table 4. The corresponding
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transformations that are enabled based on the Mode selection are detailed in Table 5. The

implementation is detailed in Appendix C.

Mode Description

0 Normal read and write operations at the positive edge

of the clock. If the FIFO is full, write data is lost.

1 If the FIFO is full on a write, data is written to the

victim buffer if it is not full. On a read, if the FIFO is

full, data is read and an entry from the victim buffer is

moved to the FIFO.

2 Normal operation like Mode 0, but the write data goes

through a transformation based on the setting.

3 Victim buffer operation likeMode 1, but the write data

goes through a transformation based on the setting.

Table 4. Abstract Model Modes

Transform Description

0 Data is shifted left by 2.

1 Data is shifted right by 2.

2 The endianness of the data is swapped. In other words,

bit 0 is not bit 31 and so forth.

Table 5. Abstract Model Transforms
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Appendix C

Designs Used: RTL

C.1 Asynchronous Fifo

1 //-----------------------------------------------------------------------------

2 // Copyright 2017 Damien Pretet ThotIP

3 //

4 // Licensed under the Apache License , Version 2.0 (the "License");

5 // you may not use this file except in compliance with the License.

6 // You may obtain a copy of the License at

7 //

8 // http://www.apache.org/licenses/LICENSE -2.0

9 //

10 // Unless required by applicable law or agreed to in writing , software

11 // distributed under the License is distributed on an "AS IS" BASIS ,

12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

13 // See the License for the specific language governing permissions and

14 // limitations under the License.

15 //-----------------------------------------------------------------------------

16

17 `timescale 1 ns / 1 ps

18 `default_nettype none

19

20 module async_fifo
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21

22 #(

23 parameter DSIZE = 8,

24 parameter ASIZE = 4,

25 parameter FALLTHROUGH = "TRUE" // First word fall-through

26 )(

27 input wire wclk,

28 input wire wrst_n ,

29 input wire winc,

30 input wire [DSIZE -1:0] wdata ,

31 output wire wfull ,

32 output wire awfull ,

33 input wire rclk,

34 input wire rrst_n ,

35 input wire rinc,

36 output wire [DSIZE -1:0] rdata ,

37 output wire rempty ,

38 output wire arempty

39 );

40

41 wire [ASIZE -1:0] waddr , raddr;

42 wire [ ASIZE:0] wptr, rptr, wq2_rptr , rq2_wptr;

43

44 // The module synchronizing the read point

45 // from read to write domain

46 sync_r2w

47 #(ASIZE)

48 sync_r2w (

49 .wq2_rptr (wq2_rptr),
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50 .rptr (rptr),

51 .wclk (wclk),

52 .wrst_n (wrst_n)

53 );

54

55 // The module synchronizing the write point

56 // from write to read domain

57 sync_w2r

58 #(ASIZE)

59 sync_w2r (

60 .rq2_wptr (rq2_wptr),

61 .wptr (wptr),

62 .rclk (rclk),

63 .rrst_n (rrst_n)

64 );

65

66 // The module handling the write requests

67 wptr_full

68 #(ASIZE)

69 wptr_full (

70 .awfull (awfull),

71 .wfull (wfull),

72 .waddr (waddr),

73 .wptr (wptr),

74 .wq2_rptr (wq2_rptr),

75 .winc (winc),

76 .wclk (wclk),

77 .wrst_n (wrst_n)

78 );
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79

80 // The DC-RAM

81 fifomem

82 #(DSIZE , ASIZE , FALLTHROUGH)

83 fifomem (

84 .rclken (rinc),

85 .rclk (rclk),

86 .rdata (rdata),

87 .wdata (wdata),

88 .waddr (waddr),

89 .raddr (raddr),

90 .wclken (winc),

91 .wfull (wfull),

92 .wclk (wclk)

93 );

94

95 // The module handling read requests

96 rptr_empty

97 #(ASIZE)

98 rptr_empty (

99 .arempty (arempty),

100 .rempty (rempty),

101 .raddr (raddr),

102 .rptr (rptr),

103 .rq2_wptr (rq2_wptr),

104 .rinc (rinc),

105 .rclk (rclk),

106 .rrst_n (rrst_n)

107 );
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108

109 endmodule

110

111 `resetall

C.2 Abstract Model

1 //-----------------------------------------------------------------------------

2 // Copyright 2023 Vanessa Cooper

3 //

4 // Licensed under the Apache License , Version 2.0 (the "License");

5 // you may not use this file except in compliance with the License.

6 // You may obtain a copy of the License at

7 //

8 // http://www.apache.org/licenses/LICENSE -2.0

9 //

10 // Unless required by applicable law or agreed to in writing , software

11 // distributed under the License is distributed on an "AS IS" BASIS ,

12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

13 // See the License for the specific language governing permissions and

14 // limitations under the License.

15 //-----------------------------------------------------------------------------

16

17 `timescale 1 ns / 1 ps

18

19 module model

20 (

21 input clk,
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22 input reset_n ,

23 input wr,

24 input rd,

25 input [1:0] mode,

26 input [1:0] transform ,

27 input [2:0] depth ,

28 input [31:0] wdata ,

29 output reg fifo_full ,

30 output reg fifo_empty ,

31 output reg [31:0] rdata

32 );

33

34 //Fifo Depth:

35 // 0 = 8

36 // 1 = 16

37 // 2 == 32

38 // 3 == 64

39 // 4 == 128

40 // 5 == 512

41

42 bit [31:0] fifo[$];

43 bit [31:0] victim_buffer[$:3];

44 bit [31:0] hold_data;

45 bit [31:0] vb_data;

46 int fifo_max_size;

47 int current_size;

48 int vb_size;

49 bit burst_read;

50
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51 //Flags

52 always @(posedge clk) begin : fifo_flags

53 if(reset_n === 1'b1) begin

54 current_size = fifo.size();

55 fifo_max_size = get_max_size();

56 if((current_size == fifo_max_size) && current_size != 0) begin

57 fifo_full <= 1'b1;

58 fifo_empty <= 1'b0;

59 end

60 else if(current_size > 0 && current_size < fifo_max_size) begin

61 fifo_empty <= 1'b0;

62 fifo_full <= 1'b0;

63 end

64 else if(current_size == 0) begin

65 fifo_empty <= 1'b1;

66 fifo_full <= 1'b0;

67 end

68 end

69 end

70

71 //Write

72 always @(posedge clk) begin : write

73 if(reset_n === 1'b1) begin

74 if(wr) begin

75 fifo_max_size = get_max_size();

76 case(mode)

77 0: begin

78 burst_read = 0;

79 if(current_size < fifo_max_size) begin
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80 fifo.push_back(wdata);

81 end

82 end

83 1: begin

84 burst_read = 1;

85 if((current_size == fifo_max_size) && current_size != 0)

begin //push to victim buffer

86 if(victim_buffer.size() < 4)

87 victim_buffer.push_back(wdata);

88 end

89 else if(current_size < fifo_max_size) begin

90 fifo.push_back(wdata);

91 end

92 end

93 2: begin

94 burst_read = 0;

95 if(current_size < fifo_max_size) begin

96 hold_data = transform_data(wdata);

97 fifo.push_back(hold_data);

98 end

99 end

100 3: begin

101 burst_read = 1;

102 hold_data = transform_data(wdata);

103 if((current_size == fifo_max_size) && current_size != 0) begin //push to victim buffer

104 if(victim_buffer.size() < 4)

105 victim_buffer.push_back(hold_data);

106 end

107 else if(current_size < fifo_max_size) begin
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108 fifo.push_back(hold_data);

109 end

110 end

111 endcase

112 end

113 end //!reset_n

114 end //always

115

116 //Read

117 always @(posedge clk) begin : read

118 if(reset_n === 1'b1) begin

119 if(rd == 1 && wr == 0) begin

120 if(burst_read) begin

121 rdata <= fifo.pop_front();

122 if(vb_size != 0) begin

123 vb_data = victim_buffer.pop_front();

124 fifo.push_back(vb_data);

125 end

126 end

127 else begin

128 rdata <= fifo.pop_front();

129 end

130 end //rd && !wr

131 end //!reset_n

132 end //always

133

134 function int get_max_size();

135 case(depth)

136 3'b000: return 8;
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137 3'b001: return 16;

138 3'b010: return 32;

139 3'b011: return 64;

140 3'b100: return 128;

141 3'b101: return 256;

142 endcase

143 endfunction

144

145 function bit [31:0] transform_data(bit [31:0] data);

146 bit [31:0] t_data;

147 if(transform == 0) begin

148 t_data = data << 2;

149 end

150 else if (transform == 1) begin

151 t_data = data >> 2;

152 end

153 else if (transform == 2) begin

154 for(int i=0,j=31; i<32; i++, j--) begin

155 t_data[j] = data[i];

156

157 end

158 end

159 return t_data;

160 endfunction

161

162

163

164

165 endmodule
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