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Cerebral microbleeds (CMB) are small foci of chronic blood products in brain tissues that are 

critical markers for cerebral amyloid angiopathy. CMB increases the risk of symptomatic 

intracerebral hemorrhage and ischemic stroke. CMB can also cause structural damage to brain 

tissues resulting in neurologic dysfunction, cognitive impairment, and dementia. Due to the 

paramagnetic properties of blood degradation products, CMB can be better visualized via 

susceptibility-weighted imaging (SWI) than magnetic resonance imaging (MRI). 

CMB identification and classification have been based mainly on human visual identification of 

SWI features via shape, size, and intensity information. However, manual interpretation can be 

biased. Visual screening may miss small CMB or be confused by CMB mimics. Therefore, 

developing automatic methods for CMB detection is critical, and recent research has been directed 

at finding solutions based on automated feature extraction.  

One of the most promising automated solutions uses a 3-dimensional convolutional neural network 

(3D-CNN) approach to screen and discriminate CMBs. The method uses an improved sliding 

window strategy, avoiding redundant computation and reducing the classification workload. 

However, despite its satisfactory results, the technique still suffers from limitations such as the 

lack of spatial information, poor handling of CMB size variation, and the existence of CMB 

mimics.  

This dissertation implements the SPP strategy into the 3D CNN two-stage model. It investigates 

its advantages over extant methods for CMB detection to enhance its discrimination capabilities 

without compromising detection speeds. The suggested model improved the results obtained by 

the 3D-CNN method yielding an overall 96.94% sensitivity and 95.48% precision. Another 

contribution is providing the 3D-CNN-SPP with the capability to detect CMBs of different sizes 

and shapes.  
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Chapter 1 

Introduction 

Background 

Cerebral microbleeds (CMBs) are small foci of chronic blood products in brain tissues 

that are critical markers for cerebral amyloid angiopathy (Knudsen et al., 2001). CMBs' presence 

increases the risk of symptomatic intracerebral hemorrhage and ischemic stroke (Cordonnier, Al-

Shahi Salman, & Wardlaw, 2007). CMBs can also cause structural damage to brain tissues 

resulting in neurologic dysfunction, cognitive impairment, and dementia (Agarwal, Kanekar, & 

Mittal, 2016).  

Advances in magnetic resonance imaging (MRI) technologies, e.g., susceptibility-

weighted imaging (SWI) (Akter et al., 2007), make these paramagnetic blood products 

(hemosiderin) sensitive to screening and facilitating the identification of CMBs (Goos et al., 

2011). The traditional method for CMB classification employs human visual rating based on the 

Microbleed Anatomical Rating Scale (MARS) (Greenberg et al., 2009; Gregoire et al., 2009) that 

draws up stringent rules to classify CMBs into “definite” and “possible”. Nevertheless, the 

manual method is both time-consuming and error-prone.  

Several semi-automated detection methods have been proposed (Kuijf et al., 2013; 

Krizhevsky, Sutskever, & Hinton, 2012; Barnes et al., 2011) to improve rating quality and 

decrease rating time. However, these methods have limitations because of clinical and technical 

constraints. On the clinical side, significant variation in the size of CMBs (Charidimou et al., 

2013); their widely distributed locations (Charidimou & Werring, 2012); and the existence of 
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CMB mimics, e.g., flow voids, calcification, and cavernous malformations, all of which 

resemble CMB in SWI scans (Figure 1), may result in CMB misclassification (Greenberg et al., 

2009). On the technical side, semi-automated methods came across the following problems: they 

need intensive preprocessing and prescreening techniques, the detection resolution is rough, and 

the lack of volumetric data is a problem since the spatial information on all three dimensions is 

crucial to enhancing CMB detection and classification.  

Other deep learning techniques have been proposed to overcome the limitations of the 

extant machine learning methods on detecting and classifying CMBs with remarkable results. 

For example, Dou et al. (2016) presented one of these methods using a two-stage, three-

dimensional convolutional neural network (3D-CNN) cascade method, achieving 92.31% 

sensitivity and 42.69% precision.  

 

Figure 1 - Examples of true CMB (green rectangles) and CMB mimics (red rectangles). 
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Problem Statement 

The Dou et al. (2016) method for CMB detection and classification consists of screening 

and discrimination stages. In the screening stage, a 3D Fully Convolutional Network (3D-FCN) 

uses MRI volumetric data as its input, outputting 3D score volumes and retrieving potential 

candidates where the value for each 3D score volume represents the probability of a CMB 

occurrence at a corresponding voxel of the input volume. Subsequently, a 3D-CNN classifies 

true CMB from challenging mimics with high-level feature representations in the discrimination 

stage. The screening stage’s 3D-FCN detects lesions using the traditional sliding window 

strategy (Ciresan, Giusti, Gambardella, & Schmidhuber, 2013; Havaei et al., 2017; Roth et al., 

2015) for a volume of 512 ×512 ×150 voxels. However, this arrangement results in the sampling 

of 39.3 million 3D patches in a voxel-wise manner, resulting in a computational workload that 

may not be acceptable in clinical practice.  

Dou et al. (2016) noted that most convolutional operations are conducted redundantly due 

to overlapped sampling. The authors enhanced the original CNN algorithm to reduce this 

overload, significantly removing redundant computations and speeding up the detection process. 

In addition to the sliding window enhancement, it has been verified that, during the 

discrimination stage, the screened candidate positions are marked and cropped, constructing a 

new 3D-CNN model and classifying 3D candidate regions. However, not all CMB are perfectly 

spherical. Thus the potential CMB volumetric information may not be sufficient to define a 

voxel volume encompassing all CMB dimensions. The missing volumetric details may cause the 

model not to identify CMB correctly.  
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In the CNN architecture, while both convolutional (C) and the max-pooling (M) layers 

can process arbitrary-sized input, the fully-connected (FC) layers must have a fixed length. The 

fixed length constraint occurs because the FC inputs require flattening the feature volumes into 

vectors. Such vectors are generated via a Bag-of-Words (BoW) approach (Yang et al., 2007) that 

pools the features together, missing both the aspect ratio and scale of the input image (He, 

Zhang, Ren, & Sun, 2015). This constraint poses additional problems: the cropped region may 

not contain the entire object, while wrapping may result in unwanted geometric distortion.  

To address the FC fixed-size constraint without compromising detection speed, Dou et al. 

(2016) suggest (without implementation) integrating the Spatial Pyramid Pooling (SPP) strategy 

(He, Zhang, Ren, & Sun, 2015), allowing the 3D-CNN model to consider multi-scale 

information during the feature representation phase.  

The SPP technique maintains spatial information by pooling local spatial bins with sizes 

proportional to the image size. Hence, regardless of the image size, the number of bins is 

predetermined. In each spatial bin, each filter's responses are pooled using max-pooling, and the 

outputs of the spatial pyramid pooling are kB-dimensional vectors, where B represents the 

number of bins, and k represents the number of filters in the last convolutional layer. The feature 

vectors are the n-dimensional vectors describing the coordinates of the features of the respective 

images. The fixed feature-vector output from the previous convolutional layer is the fully-

connected layer's input, regardless of the feature maps' size, as shown in Figure 2. 
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Figure 2 – SPP layer in feature vector processing (Li et al., 2018; He, Zhang, Ren, & Sun, 2015) 

Adding an SPP layer between the last convolutional layer and the following fully-

connected layer (Li et al., 2018) removes the model’s fixed-size constraint because of the 

following SPP properties:  

1) The SPP allows the CNN to accept inputs of any scale, thus increasing the image scale 

invariance of the model, suppressing overfitting, and enabling the extraction of local 

features of the data at multiple levels by  generating a fixed-length output regardless of 

the input size; and 

2) The SPP uses multi-level spatial bins while sliding window pooling uses only a single-

window format. 

The resulting information aggregation avoids the need for cropping images in the 

discrimination stage and the consequent loss of contextual information, improving CNN’s 

classification accuracy and reducing the training and prediction time.  

When combined with a 3D-CNN, SPP can learn features from 3D data such as 

volumetric images, videos, or point clouds. The basic idea is the same as with 2D-CNN, instead 

of dividing the input into 2D spatial bins, the 3D data is divided into 3D bins. 
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Dissertation Goal 

This dissertation implements the SPP strategy into the 3D-CNN two-stage model (Dou et 

al., 2016). It compares the method with the best available techniques for detecting and 

classifying candidate CMB of different sizes and shapes. As a proof of concept, Dou et al. (2016) 

3D-CNN two-stage model is used to baseline the modified 3D-CNN-SPP model to distinguish 

between two classes of objects: CMB and noise.  

As a control, the performance of the modified 3D-CNN model is compared to three 

classifiers, such as Support Vector Machine (SVM) (Barnes et al., 2011), Random Forest (Liaw 

& Wiener, 2002), and the classifier used in Dou et al. (2016). 

Relevance and Significance 

CNNs are feature extractors consisting of convolutional and fully-connected layers that 

reduce the number of the parameters learned, retaining the most helpful information for a 

classifier. Recent improvements in the deep CNN's representative capacity have been achieved 

through architectural innovations (Khan, Sohail, Zahoora, & Qureshi, 2019). However, despite 

their effectiveness and efficiency, a limitation of the CNNs requires a fixed size input. This 

constraint arises because fully-connected layers are essentially linear projection operators. In 

contrast, convolutional layers operate in a sliding window, not requiring fixed-size input to 

generate feature maps of any size. 

Although Dou et al. (2016) method has achieved 92.31% sensitivity, it may misinterpret 

some actual CMBs due to their volumetric irregularities, resulting in input images of various 

sizes. A proposed solution for this limitation is integrating the SPP strategy into the 3D-CNN  
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layer between the convolutional and fully-connected layers, determining the optimal pool sizes 

and vector inputs for the last fully-connected layer.  

Therefore, this dissertation's primary contribution is investigating the effects of allowing 

different-size images to be sent to the same network for training and enhancing the 3D-CNN 

model classification capabilities on detecting CMB of different sizes and shapes incorporating 

the SPP. This dissertation's secondary contribution is converting the SPP 2D model into 3D. The 

original SPP model expects a 2D image input, but when it comes to 3D images, the SPP strategy 

requires an extra dimension added to the original pooling kernel. Converting the original SPP 

model into a 3D image pooling operation enables the CNN architecture to accept different image 

sizes without massive zero-padding effort, reducing noise and improving the model performance. 

Summary 

This chapter begins by providing background about CMB. Then, it briefly introduces the 

significance of CMB identification on SWI-MRI for clinical diagnosis and discusses the 

differences between manual and semi-automated or fully automated classification methods. 

Next, the chapter defines the goal of the proposed dissertation. Finally, the chapter elaborates on 

the proposed dissertation's contribution to computer science's knowledge base. 

This dissertation is organized as follows: Chapter 2 provides a literature review on semi-

automated, traditional machine learning and deep learning methods for CMB detection and 

classification methods on MRI/SWI. Chapter 3 presents the methodology of the foundation for 

the investigational portion of the study. Chapter 4 presents implementation details, lists the 

metrics to be used, runs the experiment, and compares the results. Finally, Chapter 5 concludes 

the dissertation and provides suggestions for future work.  
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Chapter 2 

Literature Review 

Context 

CMB identification and classification have been based mainly on human visual 

identification of MRI/SWI features via shape, size, and intensity information. However, 

advances in imaging technologies enabled robust computer vision-based systems for automatic 

CMB detection. In the context of computer vision, Spatial Pyramid Pooling has been considered 

a suitable solution to improve CNNs classification capability. The following sections review the 

relevant literature:  

• Feature-based approaches 

• Machine Learning approaches 

• Deep Learning approaches 

• Spatial Pyramid Pooling 

• Summary 

Feature-based approaches 

Previous CMB identification and classification investigations have used geometry-based 

learning features (Lo et al., 1995) to identify and increase nodule detection accuracy on 

radiographs. The method works by pre-scanning suspect areas and classifying them by a CNN 

using a modified moment invariance of matrix operations. Despite being developed for 

radiographs with consequent severe image quality limitations, this method was one of the first 
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attempts to use CNN for semi-automated clinical image nodule detection to achieve 88% 

accuracy.  

Kuijf et al. (2011, 2013) applied fast radial symmetry transform (FRST) (Loy & Zelinski, 

2003) to identify spherical regions as CMBs on MR images with 71.2% sensitivity and a 

detection rate of 50% for total true CMB. While not using machine learning methods for 

identification and classification, this method's contribution is implementing the 3D FRST 

algorithm, highlighting the radial symmetry spherical points of interest for CMB detection. 

Furthermore, an enhancement of Kuijf’s process (Bian et al., 2013) combines 2D FRST 

detection and 3D region growing to exclude the falsely identified CMBs, achieving 86.5% 

sensitivity. 

Machine Learning approaches 

Barnes et al. (2011) present an enhancement in CMB detection using a 3D semi-

automatic process and exploiting a Support Vector Machine (SVM) to classify CMBs. This 

method uses four steps: a preprocessing phase to remove the skull and background features, 

statistical thresholding to mark all hypointensities, an SVM classifier to eliminate noises and 

veins, and the manual review of results to remove false positives (FP).  

Although the technique has  81.7% sensitivity with an average of 107.5 FPs per subject, 

its semi-automated process has been considered cumbersome and impractical for clinical use. 

Therefore, Ghafaryasl et al. (2012a, 2012b) propose a three-step CMB detection and 

classification framework consisting of preprocessing, classification, and postprocessing phases.  

The preprocessing phase consists of two steps: the first one performs soft tissue 

segmentation. The next task selects CMB potential candidates based on image intensity and size 
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interval. This phase's output is a set of regions of interest (ROI) composed of binary images. The 

classification phase encompasses feature extraction, selection, and the learning classifier. The 

feature extraction’s primary goal is to distinguish CMBs from false-positive candidates. The 

selection phase differentiates blob structures from vessels or plate-like structures. Finally, the 

classification phase uses the binary Quadratic Discriminant Classifier (QDC) method to 

distinguish CMBs from veins and noise.  

The technique has achieved 98.6% sensitivity, detecting 4.1 false candidates per subject. 

Despite the method's sensitivity, the authors reported a limitation in finding many false-positives, 

causing the technique not to be used as a fully automated system. Hence, radiologists have to 

annotate CMBs manually. The method’s performance has also been considered unsuitable for 

clinical use.  

Fazlollahi et al. (2015) use a multi-scale Laplacian of Gaussian (MSLoG) model to detect 

the potential CMB candidates and train a cascade of binary random forests. The method 

improves the detection of spheric objects differentiating CMBs from blood vessels. Nonetheless, 

a limitation of this solution is the lack of contextual information due to the third dimension's loss.  

Dou et al. (2015a) propose a three-stage approach where the first phase performs CMBs 

candidate screening based on intensity. The second stage performs a 3D hierarchical feature 

extraction via a stacked convolutional Independent Subspace Analysis (ISA) network. Finally, 

the third stage removes false-positive candidates with an SVM classifier based on the learned 

representation features from ISA. The method achieved 89.44% sensitivity, averaging 7.70 false 

positives per subject and 0.90 false positives per total CMBs.  
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Ateeq et al. (2018) proposed an ensemble classifier-based system consisting of three 

steps: first, the image of the brain is extracted from surrounding rigid structures, then the initial 

candidates are identified on the threshold layer; finally, the third step performs the feature 

extraction and classification of CMBs from other healthy tissues to remove FPs using an SVM, 

Quadratic Discriminant Analysis (QDA) and ensemble classifiers. 

Deep Learning approaches 

One main limitation of previous methods is considering low-level features only, like 

intensity and geometry (shape, compactness, and size) for CMB detection, requiring a post-

manual review process to eliminate the large number of FPs. To overcome such limitations, 

Ciresan, Giusti, Gambardella, & Schmidhuber (2013) and Roth et al. (2015) proposed using 

single-slice images for data collection, processing them sequentially on a 2D-CNN.  

Chen et al. (2016) presented a complementary approach to this method using the 

aggregation of adjacent slices or orthogonal planes to provide additional spatial information. 

In another work, Dou et al. (2015b) proposed a three-phased pipeline for CMB automatic 

detection via deep learning-based 3D feature representation. In the first phase, the CMB 

candidates are located by statistical thresholding. The second phase uses a deep convolutional 

neural network (CNN) for hierarchical 3D feature representation. In the last step, an SVM 

classifier is trained to distinguish between true CMB and CMB mimics, achieving 89.13% 

sensitivity with an average of 6.4 FPs per subject.  

Zhang et al. (2016) used a Sparse Autoencoder (SAE) for unsupervised feature learning 

for voxel-wise detection (Tao & Cloutie, 2018) with a four-layered deep neural network 

achieving 93.2% sensitivity. In a subsequent study, Zhang et al. (2017) compared the results of a 
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single hidden layer feed-forward neural network using three different activation functions: 

logistic sigmoid (LOSI), rectifier linear unit (ReLU), and leaky rectified unit (LReLU), 

achieving 93.05% sensitivity with LReLU as the best result.  

Recently, a seven-layer deep neural network (DNN) model based on the sparse 

autoencoder and softmax classifier (Zhang et al., 2018) for voxel detection CMBs achieved 

95.13% sensitivity, 93.33% specificity, and 94.23% accuracy.  

Despite their accuracy and efficiency, the previous solutions could still not fully use 

volumetric spatial information because the input slices are treated independently. Therefore, Dou 

et al. (2016) propose a novel approach using 3D convolutional kernels as a more reliable solution 

that takes full advantage of CMBs' spatial information. In addition, the authors introduced a 

method for identifying CMB candidates with higher sensitivity, performing a fine-grained 

discrimination selection, and avoiding redundant computations used in the traditional sliding 

window technique.  

Detecting lesions using the conventional 3D CNN sliding window method has been 

demonstrated to be impractical, especially for high-resolution image inputs, because thousands 

or millions of 3D block samples must be analyzed. The strategy proposes a workaround 

consisting of two cascaded stages, screening and discrimination. In the screening stage, the 3D 

FCN retrieves potential candidates, while in the discrimination stage, the 3D CNN focuses on 

these candidates to accurately single out the real CMBs from challenging mimics. The screening 

stage includes the training and testing phases. 

In the training phase, the positive samples are extracted from candidate regions. The 

network is then trained in three sub-steps. The first step consists of initial 3D-CNN training with 
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randomly selected non-CMB regions throughout the brain (negative samples). Next, false-

positive samples acquired via the initial model are added to the training set. The initial model is 

then fine-tuned, and regions with high prediction probabilities are selected as potential 

candidates.  

The 3D-FCN model inputs the whole volume and generates the corresponding coarse 3D 

score volume during testing. Since the produced score volume could be noisy, the model utilizes 

local non-max suppression in post-processing. According to the index mapping process 

proposed, the 3D score volume locations are then traced back to coordinates in the original input 

space. Finally, a newly constructed 3D-CNN model classifies the extracted 3D candidate regions 

in the discrimination stage.  

To generate representative samples and improve the 3D-CNN model's discrimination 

capability, the FPs from the screening stage's training set are used as negative samples when 

training the 3D-CNN in the second stage. Thus, the 3D-CNN captures the spatial contextual 

information and hierarchically extracts high-level features from the 3D images. As a result, it 

performs better than previous methods based on low-level 3D features or 2D-CNN. 

Spatial Pyramid Pooling 

The traditional CNN architecture consists primarily of convolutional (C) and fully-

connected (FC) layers. The convolutional layers (C) slide a kernel over the image, and the 

number of features is determined by the number of different kernels used to slide over the input. 

i.e., K different kernels will result in W different feature maps. The fully connected (FC) layers 

take the convolution/pooling process outputs classifying the image.  
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As previously mentioned, a limitation of the CNN is the input (in this case, an image) 

fixed size requirement. The sliding kernel strategy used in the convolutional layers can cope with 

any image size, but the fully connected layers have a fixed-sized input by construction. 

Therefore, the fully connected layers impose the size restriction, and input images often must be 

cropped or warped to fit the network's size requirements.  

To overcome the fixed-size input limitation, He, Zhang, Ren, & Sun (2015) proposed a 

suitable solution based on a kernel-based image categorization (Lazebnik, Schmid, & Ponce, 

2006) by adopting an efficient approximation technique from the pyramid matching scheme 

(Grauman & Darrell, 2005) called Spatial Pyramid Pooling (SPP).  

The method, shown in Figure 3, consists of implementing an SPP layer on top of the first 

fully connected layer after the last convolutional layer to avoid the need for the image to be 

resized, i.e., the input image can have any size (Qu, Zhang, & Sun, 2017). Furthermore, this 

arrangement allows different-sized pictures to be sent to the same network for training, avoiding 

complexity during feature extraction and classification (Li et al., 2018) and mapping any size 

input down to a fixed size output.  

The SPP divides the last convolutional layer feature maps output into uniform sub-

regions or bins at different resolution levels and then applies a pooling operator on these sub-

regions separately. Therefore, the number of bins is fixed regardless of the image size.  

The bins dimensions are proportional to the image, with shapes 𝑐 × 4 × 4, 𝑐 × 2 × 2, and 

𝑐 × 1 × 1, for example, where c is the number of filters of the convolutional layer before the SPP 

as shown in Figure 3. Each filter's response is pooled using max-pooling. The final 
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representation is obtained by concatenating different sub-regions features, resulting in a fixed 

feature-vector output with the fully connected layer's input. 

 

Figure 3 – SPP layer architecture (He, Zhang, Ren, & Sun, 2015) 

Summary 

This chapter reviewed extant CMB identification and classification investigations using 

geometry and intensity features. The chapter continued by examining traditional machine 

learning methods for detection and classification. The last section reviews the relevant literature 

and SPP architecture concepts to be implemented in this work. The next chapter addresses the 

proposed methodology for the dissertation.  
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Chapter 3 

Methodology 

Overview 

This dissertation investigates incorporating SPP into the original Dou et al. (2016) 3D-

CNN model for CMB detection and classification. This chapter describes the study’s approach in 

the following sections: 

1) Description of the experiment dataset. 

2) Reproducing the previous results of the SVM, Random Forest, and the original two-

stage 3D-CNN baselining the model.  

3) Incorporating the SPP into the 3D-CNN two-stage model. 

Description of the experiment dataset 

A three-dimensional (3D) brain MRI comprises a sequence of 2D magnetic resolution 

images generally of the same height, width, and thickness greater than zero, as shown in Figure 

4. Therefore, the image is composed of voxels instead of pixels. If voxels are equal in size in all 

three dimensions (e.g., 3mm × 3mm × 3mm), they are considered isotropic, and the voxel size is 

the spatial resolution of the image (Tariq & Burney, 2014).  

In the MRI-SWI, CMBs appear as small black circles because they are deposits of 

paramagnetic blood products (hemosiderin) (Haake et al., 2009). The hemosiderin absorbs the 

magnetic fields of the MRI, causing a hypointense image. 
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Figure 4 - Image elements of brain 3D MRI with ten slices (Tariq & Burney, 2014). 

The Dou et al. (2016) study used 320 MRI-SWI images acquired from a 3.0T scan with a 

volume size of 512 × 512 × 150 voxels, slice thickness of 2mm, slice spacing of 1mm, and a 

230 x230mm2 field of view. Hence, each sample is an array size of 512 × 512 × 150, i.e., 

39,321,600 voxels.  

The dataset was labeled by an experienced rater and verified by a neurologist following 

the Microbleed Anatomical Rating Scale (Greenberg et al., 2009; Gregoire et al., 2009). In 

addition, a set of 20 SWI images (out of 320) has been made available by Dou et al. (2016). The 

20 example files containing 1,149 labeled CMBs are available at 

http://www.cse.cuhk.edu.hk/~qdou/cmb-3D-CNN/cmb-3D-CNN.html. All models developed use 

the twenty images subset to train the model.  

Figure 5 shows an example MRI-SWI image. The ground truths are the three cartesian 

coordinates of annotated CMB.  

http://www.cse.cuhk.edu.hk/~qdou/cmb-3dcnn/cmb-3dcnn.html
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Figure 5 – MRI-SWI image (01.nii)  

The following section aims to replicate the previous works of Barnes et al. (2011) 

(SVM), Liaw & Wiener (2002) (Random Forest), and Dou et al. (2016) 3D-CNN. These models 

are baseline models compared to the developed 3D-CNN-SPP model. 

Reproducing SVM and Random Forest 

SVM (Barnes et al., 2011) and Random Forest (Liaw & Wiener, 2002) classify the CMBs 

based on geometry features. For example, a cluster of adjacent voxels with a common centroid 

forms a Region of Interest (ROI) (Figure 7).  

 

Figure 7 – Voxel cluster (ROI) (Haake et al., 2009)  
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Each ROI has a seed voxel, which determines the candidate neighbor voxels based on 

their intensities (Newman et al., 1996), as shown in Figure 8.  

 

Figure 8 – ROI candidate voxels (Newman et al., 1996) 

The selected voxels within an ROI define a volume (Figure 9) that has its geometric 

features — volume (V), area (A), region compactness (C), and fractional anisotropy (FA). 

 

Figure 9 – 3D plot of voxels in a binary matrix 
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Because CMBs have a characteristic spherical shape, Fractional Anisotropy (FA) helps 

differentiate between CMB and veins. FA values near zero (0) indicate a sphere. On the other 

hand, values above 0.7 may indicate veins or other tubular structures (Cohen-Adad et al., 2008), 

as shown in Figure 10. 

   

FA = 0.7698 FA = 0 FA = 0.6030 

Figure 10 – Fractional Anisotropy values (Cohen-Adad et al., 2008) 

Dou et al. (2016) provide a candidate ROI list for each image. The selected dataset 

contains 317 ROI centroids preprocessed to calculate the ROI geometry (Compactness and 

Fractional Anisotropy) using the Python library PyRadiomcs (Griethuysen et al., 2017).  

The SVM and Random Forest were trained with 105 samples (33%) of the dataset. The 

SVM model hyperparameters are kernel = rbf (default), a training set size = 33%, and 

regularization parameter C = 0.08.  

The resulting confusion matrix (Figure 11) is consistent with the annotated training 

dataset (105 candidates with five confirmed CMBs) with 86.67% accuracy, 100% precision, and 

26.32% recall for CMB (class = 1).  
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Figure 11 – SVM classifier confusion matrix 

  

The Random Forest model used 500 trees, with a maximum depth of ten levels for each 

tree, resulting in 90.47% accuracy, 76.47% recall, and 68.42% precision.  

Figure 12 shows the confusion matrix, and Figure 13 shows both models' Receiver 

Operating Characteristic (ROC) curves. 

 

Figure 12 – Random Forest classifier confusion matrix  
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Figure 13 – Receiver Operating Characteristic (ROC) curve 

Comparing confusion matrices and the ROC chart curves, the results are consistent with 

Dou et al. (2016) findings, baselining the model. 

The 3D-CNN cascaded model 

   As mentioned, the Dou et al. (2016) framework is based on a cascaded architecture 

composed of a screening and discrimination stage, as shown in Figure 14.  

.  

Figure 14 – The cascaded framework for CMB detection (Dou et al., 2016)  
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In the Screening stage, the 3D-FCN model retrieves the SWI image volume as input and 

outputs a 3D prediction score volume. Each value on the 3D score volume traces back to a 

candidate Region of Interest (ROI) in the input volume. In this stage, Dou et al. (2016) 

developed a novel sliding window strategy that avoids redundant computations, improving the 

3D-FCN and dramatically accelerating the detection process.  

The Screening stage consists of two steps training and testing (Figure 15). During the 

training phase, the goal is to extract and augment the candidate CMB regions to expand the 

training database.  

The training phase consists of three sub-steps. The first step (1) trains an initial 

traditional 3D-CNN with positive samples and randomly generates negative samples throughout 

the brain image. The second step (2) augments data, adding false-positive samples and applying 

the initial model to the training set. Finally, the third step (3) fine-tunes the initial 3D-CNN with 

the enlarged training database.  

In the testing phase, the fine-tuned 3D-CNN is converted into the 3D-FCN model by 

transforming the FC layers into a shape consistent with the convolution layer. Therefore, the 3D-

FCN takes the whole volume as input and generates the coarse 3D score volume. 

Finally, in the Discrimination stage, the 3D-CNN model encodes spatial contextual 

information to extract high-level features from candidate CMB, distinguishing positive ones and 

removing false positives.  
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Figure 15 – The Screening stage of CMB cascaded framework (Dou et al., 2016)  

Reproducing the 3D-CNN cascaded model 

The original version of the Dou et al. (2016) code uses an outdated Python version and a 

deprecated library (Theano), making it unsuitable to work with the most recent NVIDIA® GPU 

CUDA® drivers and Python 3.19. Hence, it was necessary to entirely rewrite the code using 

modern ML frameworks, such as Keras (Charles, 2013) and TensorFlow® (Abadi et al., 2016).  
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In practical terms, the training phase starts by preprocessing the images of the testing 

volume, reading the positive CMBs labeled by specialists from the ground truth files (.nii), and 

saving the candidate centroids of positive CMBs (“Positive samples” in Figure 15). The next 

step creates the random negative samples (“Randomly negative samples” in Figure 15), creating 

a random centroids list.  

The positive and negative sample lists are combined as the input for the traditional 3D 

CNN (Table 1), generating a list of false-positive samples and enlarging the training database. 

The input size 16x16x10 is selected because it bounds most CMB lesions.  

The traditional 3D CNN is then fine-tuned with the enlarged database to strengthen its 

discrimination capability using the same model as Table 1.  

 
Layer Kernel Stride Output size Feature volumes 

Input - - 16x16x10 1 
C1 10x10x7  1 7x7x4 32 
M1 1x1x1 1 7x7x4  32 
C2 6x6x2 1 2x2x3 64 

FC1 - - - 500 
FC2 - - - 100 
FC3 - - - 2 

Table 1 – 3D-CNN screening model 

Once the training phase is done, the resulting fine-tuned 3D-CNN model is saved and 

used as the input for the testing phase. Finally, the traditional FC layers are converted into a 

shape consistent with the convolution layer (Figure 15 - brown box).  

During the testing phase, the 3D-FCN takes a whole volume as input, extracts 

representative feature volumes, and produces a coarse 3D score volume to retrieve candidates 

according to the architecture of Table 2. 
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Layer Kernel Stride Output size Feature volumes 

Input - - 16x16x10 1 
C1 5x5x3 1 12x12x8 64 
M1 2x2x2 2 6x6x6 64 
C2 3x3x3 1 4x4x2 64 
C3 3x3x1 1 2x2x2 64 

FC1 2x2x2 1 1x1x1 150 
FC2 1x1x1 1 1x1x1 2 

Note: FC Layers converted into convolutional layers 

Table 2 – 3D-FCN Screening Model 

After the 3D-FCN process finishes, the image sections are bundled in one package 

resulting in an image with the expected dimensions. Next, the potential CMBs' resulting scores 

are stored in a MATLAB® file and post-processed to generate the possible CMB candidates. 

Figure 16 shows a map of the listed candidates.  

 

  

Figure 16 - 3D FCN results (Left - X-axis, Right - Y-axis) 

The Discrimination stage classifies the true CMBs with high sensitivity and low false-

positive rate obtained from the previous stage using the 3D-CNN model in Table 3. For this 

purpose, Dou et al. (2016) evaluated different receptive field (input) sizes, finding the optimal 
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input size of 20×20×16. The classified CMBs are stored in a MATLAB® format file resulting 

mask file. The file is post-processed and linked to the raw images' centroids, as in Figure 17. 

Layer Kernel Stride Output size Feature volumes 

Input - - 20x20x16 1 
C1 7x7x5 1 14x14x12 32 
M1 2x2x2 2 7x7x6 32 
C2 5x5x3 1 3x3x4 64 

FC1 - - - 500 
FC2 - - - 100 
FC3 - - - 2 

Table 3 – 3D CNN Discrimination Model 

 
 

Figure 17 – Resulting mask linked to raw image marked with positive CMB (green boxes)  

Incorporating the SPP into the 3D-CNN two-stage model 

As mentioned in Section 2, in 2015, He, Zhang, Ren, & Sun equipped a network with a 

spatial pyramid pooling to eliminate the fixed-size input constraint imposed by the fully 

connected layers. Spatial pyramid pooling technology generates a fixed-length vector output due 

to its use of multi-level spatial bins, regardless of the input size. Hence, Dou et al.(2016) 
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suggested incorporating the SPP to handle outlier CMBs that might be missed, incorrectly 

detected, or misclassified.  

Incorporating the SPP into the 3D CNN model requires adapting the SPP technique to a 

3D model proposed by Rao, Tang, & Zhang (2020). The adaptive SPP layer input values are the 

sides of each cubic spatial bin and the previous convolutional or max-pooling layer features size. 

For example, a layer of 3 bins of 1, 2, and 4 sides will result in a 1³ + 2³ + 4³ =  73  feature 

map. Each bin is multiplied by the previous layer output size (c), as shown in Figure 18. In the 

example, the last convolutional layer output is 64, i.e.,  (13 ∗  64 +  2³ ∗  64 +  4³ ∗ 64)  =

4,672, the size of the fixed-length resulting vector.  

 

Figure 18 – 3D adaptive spatial pyramid pooling (3D SPP) (Rao, Tang, & Zhang, 2020) 

The 3D adaptive spatial pyramid pooling algorithm SpatialPyramidPooling input 

parameters (shape[0], shape[1], shape[2]) represent the dimension of each spatial bin, 

and size is the previous layer feature volume output. The class output is a vector containing the 

input vector for the next fully connected layer. 
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Algorithm 1 3D Spatial Pyramid Pooling 

Input: shape[0],shape[1],shape[2],size  Output: []  

1: def: row_length[], col_length[], depth_length[], outputs[] 

2: def: num_pool_regions, pool_num, pooled_val, output 

2: def: x1, y1, z1, x2, y2, z2, ix, jy, kz 

3: num_pool_regions ← pool list length - 1 

4: for pool_num ← 0 to num_pool_regions do 

5:     col_length[] ← shape[pool_num] 

6:     row_length[] ← shape[pool_num] 

7:     depth_length[] ← shape[pool_num] 

8: for pool_num ← 0 to num_pool_regions do 

9:   for kz ← 0 to num_pool_regions do 

10:    for jy ← 0 to num_pool_regions do 

11:      for ix ← 0 to num_pool_regions do  

12:          x1 ← ix * col_length[pool_num] 

13:          x2 ← ix * col_length[pool_num] + col_length[pool_num] 

14:          y1 ← jy * row_length[pool_num] 

15:          y2 ← jy * row_length[pool_num] + row_length[pool_num] 

16:          z1 ← kz * depth_length[pool_num] 

17:          z2 ← kz * depth_length[pool_num] + depth_length[pool_num] 

18:          new_shape = (shape[0], z2 - z1, y2 - y1, x1 – x2, shape[4]) 

19:          pooled_val ← max(new_shape) 

20:          outputs ← pooled_val  

21: output ← concatenate(outputs) 

22: return output 

Table 4 shows the 3D-CNN model with the 3D adaptive SPP layer. The implemented 

model is shown in Figure 19. 
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Layer Kernel Stride Output size Feature volumes 

Input - - 20x20x16 1 
C1 7x7x5 1 14x14x12 32 
M1 2x2x2 2 7x7x6 32 
C2 5x5x3 1 3x3x4 64 

SPP (1,2,4) - - 4672 
FC1 - - - 500 
FC2 - - - 100 
FC3 - - - 2 

Table 4 – 3D-CNN with SPP layer 

 

Figure 19 – 3D-CNN with the SPP layer 



 

31 

 
 

 

Summary 

This chapter described the experiment dataset, the SVM and Random Forest results 

classifying CMB, and the original Dou et al. (2016) two-stage cascade 3D-CNN model. 

Moreover, it expands the SPP architecture, how SPP translates into a three-dimensional model, 

how to incorporate SPP into the 3D-CNN two-stage mode, and the resulting 3D-CNN-SPP 

model. Chapter 4 presents details of the used dataset, implementation, hyperparameters selection 

discussion, and test results. 
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Chapter 4 

Model Implementation and Results 

Introduction 

 This chapter details the used dataset, the model implementation, and hyperparameters and 

compares the performance of the 3D-CNN-SPP model against the updated Dou et al. (2016) 

model. The accuracy of the classifications is evaluated using the same metrics used by Dou et al. 

(2016) to score sensitivity and precision. Additionally, it discusses using the true-positive (TP) 

metric as a more relevant parameter for CMB diagnostic.  

Dataset Details 

The dataset comprises 20 brain SWI volumes made available by Dou et al. (2016), 

denoted as SWI-CMB. The volumes were acquired from a 3.0T Philips Medical System with 3D 

spoiled gradient-echo sequence with a repetition time of 17ms, echo time of 24ms, volume size 

512 × 512 × 150, in-plane resolution 0.45 × 0.45mm, slice thickness 2mm, slice spacing 1mm, 

and 230 × 230mm2 field of view. The resulting SWI-CMB is composed of 148 images with 178 

annotated CMBs and 418 candidate CMBs from the FCN (Table 5). 

 

 

 

 

 

Table 5 – SWI-CMB Dataset 

 

  

Images 

Annotated CMBs 

(Ground truth) 

Candidates  

(from FCN) 

Training 60 53 138 

Testing 88 125 280 

Total 148 178 418 
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Implementation and Hyperparameters Selection 

As seen before, the suggested model replaces the 3D-CNN flattening layer before the 

FCN with an SPP layer. Changing the model architecture implies reviewing the network 

parameters and reevaluating network performance. For example, the learning and regularization 

rates significantly impact the network's adaptability and performance (Santos & Papa, 2022).  

On the other hand, deep neural networks are prone to overfitting because of the 

considerable number of parameters to learn (Sabiri et al., 2022). One way to address overfitting 

is to use dropout or weight decay techniques. Another approach is augmenting the training data 

by applying random transformations to the images, such as rotation, scaling, and flipping. 

However, since the SPP layer's purpose is to handle images of different sizes, there is no need for 

cropping, circumventing data augmentation. Implementing the capability to handle original 

image sizes can help the network to learn more robust features that are less dependent on the 

specific position or orientation of the object in the image.  

Lastly, adding L1 or L2 regularization terms to the loss function can prevent overfitting 

by penalizing large weights and promoting more generalized solutions (Kolarik et al., 2020).  

Since the used dataset is small (n = 418), the model tends to overfit. Therefore, it uses L2 

regression, dropout, early stopping, and small batch size (batch = 2) to prevent the network not 

converging. As a side note, testing larger batch sizes (batch >1000) yields inconclusive results, 

while small-batch sizes provide more up-to-date calculations, producing more stable and reliable 

training, as demonstrated by Masters & Luschi (2018).  
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Selected Metrics 

This phase aims to run the 3D-CNN-SPP model against Dou et al. (2016) and compare 

the results. The metrics used to score the performances quantitatively are accuracy, loss, 

sensitivity, precision, recall, f1, number of false positives, and number of true positives. 

Sensitivity (S), precision (P), and the average number of false positives per subject (FPavg) are 

defined as follows: 

𝑆 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝑃 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝐹𝑃𝑎𝑣𝑔 =

𝐹𝑃

𝑁
, 

TP, FP, and FN denote the total number of true-positive, false-positive, and false-negative 

detection results. Here, N represents the number of subjects in the testing dataset. 

 The f1 score is the harmonic mean of precision and recall scores. When the value of f1 is 

high, the precision and recall are high. A lower f1 score means a more significant imbalance 

between precision and recall. The precision-recall curve shows the tradeoff between the 

precision and recall values for different thresholds.  

 

𝑓1 =  2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 +  𝑅𝑒𝑐𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒)
  

 

The 3D-CNN updated model 

The original Dou et al. (2016) model has been reproduced, baselining the experiment. 

The updated model outperformed the original (Table 6). Nonetheless, the comparison results are 

close enough (< 1% variance). 
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Table 6 – Original x Updated 3D-CNN Performance 

 

 

Figure 20 – Original x Updated 3D-CNN Performance 

 

Experiment and Comparison with state-of-the-art methods  

Running the 3D-CNN-SPP and 3D-CNN models, the binary cross-entropy (Figure 21) 

shows that the model performed well, achieving 98.28% accuracy on the training and 96.41% on 

the test datasets with an f1 score of 96.20%. Figure 22 compares 3D-CNN-SPP and 3D-CNN 

after five runs. Table 7 shows that 3D-CNN-SPP outperformed the 3D-CNN by 2.16%.  
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Sensitivity Precision

Original 3D-CNN x Updated 3D-CNN

3D-CNN (Dou et al., 2016) (Original) 3D-CNN (Updated)

Method Sensitivity Precision FPavg 

3D-CNN (Dou et al., 2016) (Original) 92.31% 42.69% 2.90 

3D-CNN (Updated) 94.45% 45.69% 2.32 
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(a) 

 

(b) 

Figure 21 – 3D CNN – Binary Cross-entropy – (a) Without SPP and (b) With SPP  

 

 

 

Table 7 – Accuracy & Loss – 3D-CNN x 3D-CNN-SPP 

 

 

Method 

Accuracy Loss 

Train Test Train Test 

3D-CNN (Dou et al., 2016) 98.15% 94.45% 0.1814 0.4316 

3D-CNN-SPP 98.28% 96.41% 0.1473  0.3922 
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Figure 22 – 3D-CNN-SPP x 3D-CNN performance 

For recall evaluation, the experiment determined how the used threshold affects the 

results, deciding whether the detection is positive. Figure 23 (a) and (b) and Table 8 show 3D-

CNN-SPP model behavior using different input sizes, 16×16×10 and 20×20×16, and how the 

SPP layer handled different scales. 
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(b) 20×20×16 Image - Accuracy and Loss 

Figure 23 – 3D-CNN-SPP – Binary Cross-entropy using different scales  

Image Scale Accuracy Loss 

20×20×16 96.41% 0.3922 

16×16×10 80.85% 0.3363 

Table 8 – Accuracy & Loss – 3D-CNN-SPP x 3D-CNN 

Although the 16×16×10 scale train and test converged better, the 20×20×16 scale 

provided remarkable results. Table 9 compares the Sensitivity, Precision, and FPavg between the 

3D-CNN and 3D-CNN-SPP  models using 16 × 16 × 10 and 20 × 20 × 16 images. Figures 24 and 

25 show the confusion matrix and AUROC curve, respectively, for 3D-CNN-SPP. 

Figure 26 shows the feature mapping of positive (left) and negative (right) CMB 

detection. 

Model/ 

3D block size 

3D-CNN 3D-CNN-SPP 

16 × 16 × 10 20 × 20 × 16 16 × 16 × 10 20 × 20 × 16 

Sensitivity 84.00% 95.00% 86.00% 97.00% 

Precision 81.00% 94.00% 84.00% 95.00% 

F1 score 81.00% 94.00% 84.00% 96.00% 

Table 9 – 3D-CNN-SPP x 3D-CNN Metrics 
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Figure 24 – 3D-CNN-SPP – Confusion Matrix 

 

Figure 25 – 3D-CNN-SPP – AUROC 

  
CMB Non-CMB 

Figure 26 – 3D-CNN-SPP feature mapping 
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Finally, the study compares the results with the state-of-art approaches. The classification 

performance is given in Table 10. It must be noticed that the 3D-CNN-SPP improves precision 

compared to the 3D-CNN. The model's high sensitivity and precision indicate that it is making 

accurate and reliable predictions.  

 

 

 

Table 10 – Performance comparison with state-of-the-art methods 

Summary 

This Chapter started by providing further details about the dataset used for the 

experiment. The Implementation and Hyperparameters Selection section briefly discusses 

architectural issues affecting the model and the need for regularization and learning parameters. 

It also addresses aspects of the optimizer’s parameters and how to prevent overfitting. The 

section ends by providing some rationale for small batch sizes use. The metrics section describes 

the formulas used to evaluate and compare the models. The 3D-CNN updated model section 

compares the original Dou et al. (2016) results with an updated version of the model to baseline 

the study. Finally, the Comparison with state-of-the-art methods section compares the 3D-CNN-

SPP with the updated 3D-CNN model and provides a detailed comparison and analysis of the 

obtained results. It ends by comparing the 3D-CNN-SPP with other state-of-the-art methods for 

CMB classification.  

Method Sensitivity Precision FPavg 

SVM 64.96% 5.13% 28.10 

Random Forest 85.47% 17.24% 9.60 

3D-CNN (Dou et al., 2016) (Original) 92.31% 42.69% 2.90 

3D-CNN (Dou et al., 2016) (Reproduced) 94.45% 45.69% 2.32 

3D-CNN-SPP 96.94% 95.48% 9.00 
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Chapter 5 

Conclusion 

Conclusion  

Cerebral microbleeds (CMBs) are small brain bleeding areas seen on magnetic resonance 

imaging (MRI) scans. They are believed to be caused by the breakdown of small blood vessels in 

the brain and are associated with an increased risk of stroke, dementia, and other neurological 

conditions. 

As biomarkers, CMBs are essential because they can provide information about the 

underlying causes of these conditions and help identify individuals at risk for developing them. 

For example, CMBs are often found in individuals with hypertension, a leading stroke risk 

factor. By identifying individuals with hypertension who also have CMBs, healthcare providers 

can take steps to reduce their risk of stroke. 

CMBs can also be used to monitor the progression of certain neurological conditions, 

such as Alzheimer's disease. For example, in individuals with Alzheimer's, CMBs may appear 

earlier, indicating that the disease progresses more quickly than in individuals without CMBs. In 

addition, CMBs can be used to evaluate the effectiveness of treatments for neurological 

conditions. For example, if an individual's CMBs remain stable or decrease after treatment, it 

may indicate that the treatment is working. 

Overall, CMBs are important biomarkers because they provide valuable information 

about the underlying causes of neurological conditions, help identify individuals at risk for 
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developing these conditions, and can be used to monitor the progression of these conditions and 

evaluate the effectiveness of treatments. 

Considering the relevance of CMB diagnosis, this dissertation developed a 3D-CNN-SPP 

based on Dou et al. (2016) two-stage model. The suggested model improved the results obtained 

by the 3D-CNN method yielding an overall 96.94% sensitivity, 95.48% precision, and an f1 

score of 96.20%. Another contribution of this work is providing the 3D-CNN-SPP with the 

capability to detect CMBs of different sizes and shapes. Additionally, this research conducted 

experiments to determine a viable choice of hyperparameters, addressed the small batch sizes 

issue for CNNs, and presented detailed results. 

Suggestions for Future Work  

Despite the satisfactory results obtained in this study, some problems remain unsolved. 

For example, selecting the parameters in the network is still time-consuming and dependent on 

the developer’s experience. Therefore, other models with alternate architectures and hyper-

parameters must be investigated further.  
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