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Intrusion detection systems are tools that detect and remedy the presence of malicious activities. 

Intrusion detection systems face many challenges in terms of accurate analysis and evaluation. 

One such challenge is the involvement of many features during analysis, which leads to high data 

volume and ultimately excessive computational overhead. This research surrounds the 

development of a new intrusion detection system by employing an entropy-based measure called 

v-measure to select significant features and reduce dimensionality. After the development of the 

intrusion detection system, this feature reduction technique was tested on public datasets by 

applying machine learning classifiers such as Decision Tree, Random Forest, and AdaBoost 

algorithms. We have compared the results of the features selected with other feature selection 

techniques for correct classification of attacks. The findings demonstrated dimension and data 

volume reduction while maintaining low false positive rate, low false negative rate, and high 

detection rate. 
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Chapter 1 

Introduction 

Background 

 

An intrusion is outlined as any sequence of actions that compromise the confidentiality, 

integrity, or availability of a network or a host. Intrusion detection is a process of tracking and 

monitoring the passing of information and identifying malicious activities. Intrusion detection 

systems (IDS) are defense systems that detect anomalous activities. A network IDS has the 

capability to provide an overview of unusual behavior and issue alerts to inform the network 

administrators and terminate a suspected connection (Zhang & Lee, 2000). Intrusion detection 

systems function through either network-based or host-based intrusion detection techniques 

(Ahmed et al., 2016).  

Network intrusion detection systems (NIDS) track the incoming data from several 

resources and detect malicious activities targeted on networking resources, while Host-based 

intrusion detection system (HIDS) is capable of tracking and analyzing data on computers 

(Kozushko, 2003). An IDS can also be categorized according to its detection methods. A 

signature-based system detects attacks based on comparing network data to known attacks, 

which are labeled as signatures in a database. An anomaly-based system detects intrusions based 

on deviations from normal user activities and is able to detect novel attacks without prior 

knowledge (Patcha & Park, 2007). In a network-based IDS, in order to identify anomalous traffic 

to networks, all packets throughout the network are classified to verify if the data contains any 

malicious activity or not. 
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Traffic information is represented in records and attributes (sometimes referred to as 

features). The huge volume of data serves as one of the key challenges for anomaly detection 

(Chandola et al., 2009).  

Therefore, the analysis of this information obligates the use of statistical methods and 

data mining techniques for feature selection. The objective of feature selection is to avoid 

selecting irrelevant features and use only the most significant features that represent the packet 

activity (Lima et al., 2012).  

Feature selection is a process of selecting relevant attributes that assist in understanding 

data, reducing the computational requirements, and improving the performance of the predictor. 

The main focus of feature selection is to select a set of relevant variables from input data while 

reducing the effects of irrelevant variables and obtain good prediction results. By removing 

insignificant variables, the number of features can be reduced which can lead to the reduction of 

overfitting, the reduction of training time, and the improvement of accuracy. For this purpose, 

the feature selection criterion is vital to measure each feature according to the output class and 

labels (Chandrashekar & Sahin, 2014). Many feature selection methods have been discussed in 

the literature based on machine learning algorithms such as genetic algorithm (Haury et al., 

2011), sequential selection algorithms (Reunanen, 2003), clustering algorithms (Law et al., 

2004), and Ensemble feature selection (Haury et al., 2011). There are no efficient solutions to 

date to select the best features and detect every type of anomalous activity as the feature 

selection method is highly specific to attacks and datasets. 

Feature selection is not only utilized to reduce the dimensionality of the data, it also 

commonly contributes to a more compact model with higher generalization capability (Solorio-

Fernández rt al., 2019).  
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In this dissertation research, we adopted an entropy-based measurement termed v-

measure. Entropy is defined as a measure on the homogeneity and completeness of a dataset 

(Rosenberg & Hirschberg, 2007). A clustering result satisfies homogeneity when each cluster 

must assign only datapoints that are members of a single class. A clustering result satisfies 

completeness when all datapoints that are members of a given class are members to the same 

cluster. It informs us how much additional information we would get from understanding the 

feature’s value (Marsland, 2014). 

Feature selection can be viewed as a clustering problem when the significance of 

individual features or subset of features is evaluated based on the clusters they produce. For 

example, for a binary anomaly detection problem, when a feature is used to cluster a training 

dataset into two clusters – benign and attack, and the clusters are a prefect partition of intrusions 

against non-intrusions, the feature is considered a significant feature in anomaly detection (Liu & 

Yu, 2005; Roth & Lange, 2003). 

 V-measure has been a frequently used method to measure the quality of clustering 

results. For example, a Normalized Mutual Information (NMI) technique that equivalents to v-

measure metric has been used to effectively identify trending events in social media (Becker, 

2011).  In another application, v-measure has been implemented as an evaluation method to 

assess the clustering quality for a statistical method called PyClone, for the conjecture of clonal 

population structures in cancers (Roth et al., 2014). According to Yin and Wang (2014), a 

collapsed Gibbs Sampling algorithm for short text clustering was proposed, in which v-measure 

has been deployed to evaluate the homogeneity and completeness of the clustering quality.  

In the research by Rosenberg and Hirschberg (2007), it has been shown that v-measure 

overcomes the clustering issues such as dependency and the problem of matching. V-measure 
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doesn’t depend on the number of classes, the number of clusters, and the clustering algorithm. A 

common problem in clustering is that only a portion of cluster membership is evaluated because 

of the problem of matching (Rosenberg & Hirschberg, 2007). However, v-measure provides an 

elegant solution by measuring the relative sizes of the clusters and classes being evaluated; thus, 

v-measure evaluates the entire membership of every single cluster and not just a matched 

portion. In addition, v-measure provides an objective evaluation on features by combining two 

clustering aspects which are homogeneity and completeness. Homogeneity is maximized when 

all the clusters contain data points that only belong to a single class. Completeness is maximized 

when all the data points of a single class belong to a single cluster (Rosenberg & Hirschberg, 

2007).  

Two experiments have been conducted for evaluation, document clustering experiment, 

and a pitch accent type clustering experiment by using three entropy-based measurements: v-

measure, Q0 (Dom, 2002), and variation of information (VI) (Meila, 2007). In these 

experiments, it has been shown that v-measure excels Q0 in that it evaluates the completeness of 

features, while Q0 does not. On the other hand, v-measure excels VI in that VI requires 

dependency on the number of datapoints being clustered which v-measure does not. Another 

advantage of v-measure over Q0 and VI is that the calculation of v-measure makes the 

relationship between homogeneity and completeness discernible.  

By this research, we studied the impact of feature selection to detect network anomalies, 

to reduce false positive and false negative rates, and to improve the accuracy of network 

intrusion detection. Through our experiments, we believed that v-measure is a good candidate for 

all these research goals and is worthy of further exploration. 
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Problem Statement 

Intrusion detection system normally deals with a huge amount of redundant and irrelevant 

features, which may cause high positive rate and low detection rate. Removing irrelevant 

features results in a better performing model, reduces computation time, and presents an easy-to-

understand model. In this research, intrusion detection problem is simplified as a binary 

classification problem, which includes one class as normal (benign) and another class as 

abnormal (attack). The normal class is assigned class label (0) and the class with abnormal is 

assigned the class label (1). This simplification suggests that the main focus of this research is 

not simply on anomaly detection, but rather on the effectiveness of v-measure as a good 

candidate in for feature selection. Due to this simplification, it is likely that less effective features 

may be chosen and do not fit well for multi-label classifications (i.e., classifying attacks in 

multiple categories). However, as a generic technique, we believe that v-measure can be 

extended to multi-label classification tasks in anomaly detection after fine-tuning.  

Entropy is an external measure that is commonly used for clustering evaluation. The 

entropy of a cluster shows from one perspective how the datapoints are distributed within each 

cluster. It has been shown by the literature that v-measure outperforms entropy by computing 

both homogeneity and completeness of a giving cluster in the field of natural language 

processing tasks, such as document clustering (Zhao & Karypis, 2001).  

Despite the significance of feature selection in anomaly detection, there was no perfect 

solution in feature selection. In this research we have used v-measure as a feature selection 

technique for network-based anomaly detection. The research problem can be formally 

represented as follows. Given a set of features 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑖 … , 𝑓𝑛}, where 𝑛 is the total 

number of features in the original dataset. By evaluating the significance of v-measures of each 
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feature, a subset of 𝐹′ = {𝑓𝑣1
, 𝑓𝑣2

, … 𝑓𝑣𝑗
, … , 𝑓𝑣𝑙

}, can be identified and verified for anomaly 

detection, where 𝑣𝑗 ∈ 𝐹 (1 ≤ 𝑗 ≤ 𝑙) is a selected significant feature, and l is the number of 

selected features. 

The chosen subset of feature was tested by machine learning algorithms such as Decision 

Tree, Random Forest, and AdaBoost based on benchmark datasets of wired network traffic. The 

results have been presented using confusion matrices, which include true positives, true 

negatives, false positives, and false negatives.  

This research methodology has been evaluated using a recent intrusion detection system 

dataset CICIDS2017 (Sharafaldin et al., 2018) after three main steps. Firstly, modifying the 

dataset and removing missing values to ensure that the dataset is free of incorrect and irrelevant 

information. Secondly, applying v-measure among all features and select the features that have 

better v-measure scores. Finally, deploying three classifiers to evaluate the quality of chosen 

features in terms of data reduction rate, detection rate, and false positive rate. 

Dissertation Goal 

 

In this research, the focus is to improve the performance of anomaly-based intrusion 

detection system and reduce feature dimensionality using v-measure. The main goals of this 

research are as follows: 

1. Adopt v-measure to select significant features and reduce data dimensionality for 

anomaly detection. 

2. Maintain low false positive and false negative rate and high detection rate in binary 

intrusion classification. 
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3. Compare classification results using the features produced by v-measure with other 

feature selection techniques. The results have been evaluated and presented by 

confusion matrix (includes true/false positives and true/false negatives). 

Research Questions 

1. Is v-measure a good feature selection technique in improving intrusion detection 

based on the CIDISD2017 dataset, while maintaining high detection rate and low 

false positive and false negative rate at the same time? 

2. What are the computational costs of v-measure when it is compared to other 

statistical measures such as F-measure or Information Gain?  

Relevance and Significance 

 

There is no commonly agreed approach to improve the intrusion detection system to 

reduce data dimensionality and false positives. In many situations, feature selection has the 

potential to reduce redundant data and improve detection accuracy, as shown in research by 

Watson (2018), based on CICIDS2017 dataset.  

The proposed dissertation research concentrates on some techniques that extract features 

from a large dataset with the goal of dimensionality reduction. It is assumed that the advantages 

of reducing the features are as follows (Chandrashekar & Sahin, 2014):  

▪ Improve the machine learning algorithm's parameters. 

▪ Reduce computational time and storage space. 

▪ Simplify data presentation by focusing on a subset of key features. 

Validity measure (v-measure) has been introduced by Rosenberg and Hirschberg (2007). 

V-Measure was developed to tackle the issue of evaluating the clustering results. In other words, 

it is one way to evaluate the clustering results that could provide the suitable features to enhance 
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the intrusion detection system. As shown in the literature review, v-measure has been widely 

used as a clustering evaluation metric in diverse applications. We have used v-measure in the 

classification and selection process, and evaluated which features provide better false alarm 

reduction and better accuracy. V-measure has helped to identify appropriate features of the 

incoming traffic, whose tracking would ensure reliable detection of anomalous activity. It also 

determines the connection of those features to the intrusion detection task and the features’ 

redundancy. V-measure is therefore a good candidate for classifying network traffic with high 

accuracy result and low false positive and false negative rate.  

Based on our experiments, v-measure not only identifies important features in the tested 

dataset, but also help reducing false positive and false negative rates and improving detection 

rate. We believe this is a contribution to the body of knowledge in anomaly-based IDS. 

Barriers and Issues 

 

One of the main challenges for this research is to extract a set of features to represent the 

activity of the collected data based on a specific measure. Feature selection has been shown as a 

dimension reduction technique in dealing with high dimensional data. The main concentration of 

the feature selection is to select a suitable subset of variables from huge dataset. This process has 

been done by eliminating the dependent and irrelevant variables, which can lead to enhancement 

in the classification performance (Li & Liu, 2017). In this research, v-measure has been 

implemented as a feature selection that has acted as a promising choice. There are also multiple 

other options such as F-measure (Van Rijsbergen, 1979), including the entropy-based measures 

such as Q0 (Dom, 2002), and variation of information (VI) (Meila, 2007). V-measure has been 

compared against other statistical measures such as F-measure and filter method such as 
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Information Gain (IG) on their effectiveness and efficiency of feature selection. The results have 

been validated using multiple machine learning classifiers.  

In this research, the modeling of feature selection as a clustering problem, the ranking of 

individual classifiers, and the use of filter methods in general, may not be perfect ways for 

feature selection. Other techniques, such as the use of wrapper or embedded methods (Srihari & 

Anitha, 2014; Wang et al., 2015), the use of machine learning techniques directly on feature 

selection, may produce better results in feature selection. The results may also vary depending on 

the datasets adopted for testing. Despite these possibilities, we believed the proposed research is 

a novel path in feature selection for anomaly detection and is worthy of in-depth exploration. 

Datasets are a significant portion of evaluating different IDSs. There have been many 

critiques on the popular KDD 99 dataset in that it lacks traffic diversity and volume, attack types, 

or feature sets (McHugh, 2000). Research has been made to improve the KDD99 dataset, which 

leads to NSL-KDD (Tavallaee et al., 2009). However, finding up to date dataset remains 

difficult. Moustafa and Slay (2015) have concluded that there was an absence of a suitable 

comprehensive data set for the evaluation of NIDS research efforts. They have created a new 

data set called UNSW-NB15 due to the fact that the dataset KDD99 does not include modern 

network traffic. In this research, CICIDS2017 was adopted as the intrusion detection system 

dataset.  

The CICIDS2017 has many of the desirable properties that fits our research. For 

example, the size of the dataset (the simulation covers 5 days of attack simulation with each of a 

size about 10 GB), the wide coverage of a variety of network protocols, the number of attacks 

(e.g., Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and 

DDoS), and most importantly, the number of features (about 80 network flow features) are some 
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of the desirable properties (Sharafaldin et al., 2018). We understand that it may not be the most 

up-to-date dataset and there could be better choices in literature, however we believe it is suitable 

to the goal of this research. 

Detecting anomalous activity can be viewed as a binary classification problem in which 

measurements of system activity such as audit records are used to provide a classification of the 

state of the system as normal or abnormal. However, detecting anomalous activity based on multi 

label classification is outside the scope of this research. V-measure may be able to perform well 

on this specific binary classification problem, but the chance of it performing well on other more 

complicated detection problems may need further exploration beyond this research. The focus of 

this research is to test out the effectiveness of the v-measure in feature reduction while 

maintaining low positive rate and high detection rate in binary intrusion classification. Despite 

potential issues, one key benefit of using binary classification is the reduced computational cost. 

This is a significant issue because during the feature selection process, we need to apply v-

measure on each of the features in a large dataset. 

Assumptions, Limitations, and Delimitations 

 

Intrusion detection systems data (CICIDS-2017) was collected from diverse sources 

which fetches numerous data types and complex data structure. There are two assumptions 

presented in this research. The first assumption is the quality of the dataset where each feature 

provides accurate information. The second assumption is about the consistency in the 

significance and relationship of the data across the features. This has been noted during the 

implementation of the proposed method to possibly make future expansions simpler.  
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The main limitation of this research is the volume of the data. As a consequence, the high 

dimensional dataset leads to long classification processes. Another expected limitation incurred 

computational cost, as noted in the previous section. 

The delimitations of this research are concentrated on developing a new feature selection 

to detect network anomalies, reduce false positive and false negative rates, and improve the 

accuracy of network intrusion detection. It should be note that there is no perfect methodology in 

feature selection for anomaly detection despite the outcomes of this research. Any methodology 

is limited by the statistical nature of the feature selection techniques, the number and nature of 

features, the datasets being tested, the nature of the attacks, the computational cost, and could 

vary case by case - sometimes significantly. 

Definition of Terms 

 

Intrusion: any sequence of actions that makes an attempt to compromise the 

 confidentiality, integrity, or availability of the information in a network or a host.  

Intrusion detection systems (IDS): tools that detect and remedy the presence of malicious 

 activities. 

Network-based intrusion detection systems (NIDS): a system that tracks the incoming data 

  from several resources and detect malicious activities targeted at networking resources. 

Host-based intrusion detection system (HIDS): a system that tracks is capable of tracking and 

 analyzing data on computers. 

False Positive: the identification of an activity as an attack while the activity is normal  

 behavior. 

False Negative: the identification of an activity as normal behavior while the activity is an 

 attack. 
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Feature Selection: a process of selecting relevant attributes that assist in understanding data, 

 reducing the computational requirements, and improving the performance of the

 predictor.  

Entropy: an external measure that evaluates the impurity of data.  

Validity Measure (V-measure): an external measure that utilized as a frequently method to 

 measure the quality of clustering results based on homogeneity and completeness 

 concepts. 

Variation of Information (VI): a linear expression that involves the mutual information by 

 measuring the distance between two clusters. 

List of Acronyms 

 

IDS: Intrusion Detection Systems 

NIDS: Network-based intrusion detection systems 

HIDS: Host-based intrusion detection system 

V-measure: Validity Measure 

NMI: Normalized Mutual Information  

PyClone: Bayesian clustering method 

VI: Variation of Information 

Q0: Dom's Q0 measure 

SVM: Support Vector Machine 

DT: Decision Tree 

RF: Random Forest 

AC: Accuracy 

FP: False Positive 
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FN: False Negative 

TP: True Positive 

TN: True Negative 

DR: Detection Rate 

Summary 

 

This chapter provided an overview of the issues that face anomaly-based intrusion 

detection systems in terms of precise analysis and evaluation. This research is about deploying 

new entropy metric as a feature selection technique. Analyzing a set of data collected from 

intrusion detection systems is a difficult task due to the huge number of features. Thus, it's very 

important to present an efficient method to reduce the number of features for intrusion detection 

while maintaining low false positive rate, low false negative rate, and high detection rate. In this 

research, we have used v-measure as a feature selection technique and have tested its 

performance against other similar methods in the literature. 
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Chapter 2 

Review of the Literature 

 

Intrusion Detection Systems 

 

The idea behind an intrusion detection system can be traced back to Anderson (1980), 

who proposed a set of tools for threat monitoring and surveillance. Later Denning (1987) 

developed the first intrusion detection model. The model was based on a system's audit records 

that can be controlled by security violations in order to obtain normal patterns of system 

application. 

Anomaly Detection 

 

Network-based intrusion detection attempts to track the network traffic from multiple 

resources, detect malicious behavior affecting multiple hosts, and protect the entire network 

(Kozushko, 2003). An anomaly is defined as a pattern that doesn’t adapt to normal behavior. 

Despite that anomaly detection has the potential to detect novel attacks, a significant problem is 

the huge number of alerts and some of them are false positive (Zuech et al., 2015). As indicated 

by the literature, one major challenge in anomaly detection research is the huge data volume for 

accurate analysis, and the other is the reduction of false positive rates (Chandola et al., 2009). 

Due to the complexity of intrusion detection, these alerts sometimes have to be analyzed and 

evaluated by a human analyst to reduce their volume. As a consequence, identifying the false 

positive is an important task for analysts due to the abundance of the alerts in the alert log 

(Pietraszek, 2004).  

In this section, we will briefly mention the contemporary key references that illustrate the 

research motivation and emphasize the limitations in the prior literature (2004-2020). 
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A number of anomaly-based IDS have been built on different types of machine learning 

algorithms such as genetic algorithm (Li, 2004), neural network (Mishra et al., 2018), decision 

tree (Lee et al., 2008), support vector machine (Sotiris et al., 2010), and ensemble methods 

(Vanerio & Casas, 2017), where most of them are assessed and evaluated with KDDCup99 and 

NSL-KDD (Tavallaee et al., 2009).  

Selecting suitable features is a significant issue in intrusion detection (Li et al., 2017). 

Several approaches have tried to address the problem of selecting suitable features, and reduce 

the data volume (Das, 2001). For instance, many machine learning algorithms and statistical 

methods including entropy are utilized in a variety of analysis techniques for recognizing attacks, 

(Zhao & Karypis, 2001).  

The research conducted by Stein et al. (2005) introduced a feature selection approach 

based on a genetic algorithm to select subsets as an input for decision tree classifier. The hybrid 

approach concentrated on using relevant features to increase the detection rate and to reduce 

false positive alerts. However, the execution time was longer than using the standard decision 

tree algorithm. Moreover, the support vector machine was utilized as a feature selection 

technique to improve the naïve Bayes classification (Thomas & Peter, 2001).  

Chiu et al. (2010) proposed another filter technique by using semi-supervised learning 

technique called Two-Teachers-One-Student algorithm (2T1S) to obtain important information 

from unlabeled data. The experiments were conducted using DARPA intrusion detection 

evaluation dataset. DARPA was generated by Defense Advanced Research Projects Agency and 

Air Force Research Laboratory in 1998, and was managed by MIT Lincoln Labs. They adopted 

the DARPA 1999 dataset for experiments because of its diversity of attacks. It was extracted 

using a network connection feature extractor based on TCP connection. In the first stage, a 
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statistical connection feature method was implemented to reduce the number of false alarms. 

Semi-supervised learning algorithm was applied on unlabeled data to improve the performance. 

The combined approach was capable to filter out 65% false alarms with missing less than 0.1% 

of true attacks in the filtering alarms.  

Machine Learning for Anomaly Detection 

 

Some of the machine learning algorithms which are commonly used by intrusion 

detection systems are not used in our research because we want to focus specifically on the use 

of statistical methods for feature reduction (Liu & Lang, 2019). One of the popular approaches in 

anomaly detection is the use of neural networks. Neural networks have the capability to analyze 

incomplete data from the network and to predict detection for any attack (Mishra et al., 2018). 

Another acclaimed machine learning technique used in intrusion detection systems is a genetic 

algorithm. It is used for finding optimal solutions space and doesn't need prior knowledge of the 

problem. In some approaches, genetic algorithms were implemented to determine classification 

rules for misuse detection (Li, 2004), while other approaches have implemented genetic 

algorithms as a feature selection to select suitable features or determine optimal parameters of 

relevant functions (Hira & Gillies, 2015). In terms of unsupervised intrusion detection, data 

clustering methods can be used. These methods include calculating a distance between numeric 

features; therefore, they cannot deal with symbolic attributes, ending in inaccuracy (Jha & 

Ragha, 2013). 

In addition, data mining techniques were used to investigate the root cause behind large 

numbers of false alarms, and machine learning was used to classify and distinguish true and false 

positive rates (Pietraszek & Tanner, 2005). It was stated that the number of alerts could be 

reduced by removing the most important root causes. The problem with this approach was the 
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dependency on the human interpretation, which has limited its practical use. A previous study by 

Parikh and Chen (2008) presented a hybrid approach by combining ensemble classifiers to derive 

information from different sources. A cost minimization strategy was applied to minimize the 

true object function and the classification error cost. It was stated that the approach was capable 

to reduce the false positive alarm and provide better enhancement.  

Malhi and Gao (2004) claimed that feature reduction has the potential to help increase the 

detection rate and reduce the false alarm rate. Principal Component Analysis (PCA) has been 

implemented for both supervised and unsupervised classification. They present the scope of their 

research by attempting an implementation of feedforward neural network and radial basis 

function network, and unsupervised competitive learning. They confirmed the experiment's 

results by using cross validation, wherein the selected features by PCA increased the accuracy 

and detection rate.  

In the following discussion, we will review three specific supervised learning classifiers 

because they have been used for the evaluation of feature selection tasks in our research. The 

first one, Decision Tree (DT), was implemented due to its efficiency dealing with large datasets 

without implementing a complicated parametric structure. Decision Tree is a graphical 

representation consisting of internal nodes and branches that presents all potential solutions to a 

decision based on particular conditions (Song & Ying, 2015). The tree is constructed by 

identifying features and their associated values which has been utilized to analyze the entered 

data at each intermediate node of the tree. Decision trees have the capability to analyze data and 

identify important factors in the network that indicate abnormal activities (Rai et al., 2016). 

The main advantages of utilizing decision tree in this research is its simplicity to handle 

large data without requiring data transformation, splitting original input variables into subgroups 
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makes the relationships between input variables and target variables simpler (Song & Ying, 

2015). 

The second classifier that was used in our research, the random forest, is a classification 

algorithm that generates multiple trees and merges them to gain an accurate prediction (Mishra et 

al., 2018). After the forest is structured, each new node needs to be classified under the three 

types of nodes root node, decision node, or leaf node. Each tree votes to make a decision about 

the class it joined. The majority votes for the objects were selected by the forest. The Random 

Forest model is an ensemble of Decision Trees, which could be utilized for regression or 

classification. In regression, the average of the tree’s output is considered as a result; while in 

classification, decision tree determines the votes of the predicted value (Resende, & Drummond, 

2018). We choose Random Forest as a classifier to evaluate our new feature selection based on 

its strengths when compared to the different machine learning algorithms. The key advantages of 

Random Forest are: (i) low training time complexity O(nlog(n)) and rapid prediction; (ii) 

flexibility to deal with unbalanced datasets; and (iii) ranking features by importance (Witten et 

al., 2016; Khoshgoftaar et al., 2007). 

The above-mentioned advantages revealed the efficiency of Random Forest when 

involved in a comparative study in the domain of intrusion detection systems. For instance, ten 

classification algorithms namely J48, BayesNet, Logistic, SGD, IBK, JRip, PART, Random 

Forest, Random Tree and REPTree have been deployed using NSL-KDD dataset based on four 

classification metrics. The experiments showed that Random Forest achieved better performance 

(Chauhan et al., 2013). The following studies have indicated significant performance for 

Random Forest models (Aziz et al., 2017; Amudha, & Rauf, 2011; Robinson, & Thomas, 2015). 
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The third classifier, the Adaptive Boost (AdaBoost), is a supervised machine learning 

model that is well-known for its performance in pattern recognition and binary classification 

problems. AdaBoost has provided better performance than traditional learning machines and has 

been widely applied in real-world classification problems and nonlinear function estimation 

problems (Hu et al., 2008). In our research, AdaBoost has been implemented due to its speed for 

detecting intrusion activities and low computational complexity. AdaBoost has been applied to 

assurance security for intrusion detection due to its real generalization nature and the capability 

to defeat the imprecation of dimensionality. Another positive aspect of AdaBoost is the 

capability to update the training patterns during the classification process (Chu et al., 2020). 

Deep Learning for Anomaly Detection 

 

  Deep learning is a branch of machine learning, which offers numerous benefits when it 

applies to anomaly detection. These approaches are developed to work with high-dimensional 

data and obtain outstanding performances. This makes it easy to combine data from various 

sources, and reduces challenges linked with independently modeling anomalies for every 

variable and aggregating the outcomes (Liu & Lang, 2019). 

 Deep learning models consist of several deep networks that are supervised learning 

models such as Deep Brief Networks (DBNs), Deep Neural Networks (DNNs), Convolutional 

Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). While some unsupervised 

learning models such as autoencoders, Restricted Boltzmann Machines (RBMs), and Generative 

Adversarial Networks (GANs). Deep learning approaches are adaptable to modeling the 

interactions between many variables according to a given task, deep learning requires minimum 

tuning to obtain good results aside from the number of layers and units per layer (Liu & Lang, 

2019). Deep learning approaches provide modeling of nonlinear relationships that can be utilized 
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in detecting anomaly behavior, and have been used in a number of approaches (Pang et al., 

2021). 

Feature Selection Techniques 

 

There are a number of feature selection techniques that have been proposed in the 

literature. Feature selection methods are generally classified into three categories: filter, wrapper, 

and embedded methods.  

Filter methods select features by using the variable ranking techniques such as the 

principal criteria (Das, 2001). Filter ranking methods mentioned in the literature include Fisher 

Score where features are selected independently based on fisher criterion (Duda et al., 2012), 

Pearson Correlation which computes linear correlation between two variables (Miyahara & 

Pazzani, 2000), and Mutual Information (MI) which measures the quantity of information that 

one random variable includes about another random variable (Battiti, 1994). These methods do 

not consider the dependency among features, and multiple correlated features have been selected 

by the feature selection algorithm.  

Alharby and Imai (2005) proposed a filtering technique to reduce false alarms rates. The 

alarms' sequential patterns were classified into two classes, continuous and discontinuous. The 

similarity algorithm was calculated to find the similarity between sequential patterns and normal 

sequence patterns. When the system is under attack, it acts in a different way from that in the 

normal situation. The system can distinguish between alarms when the system is under attack or 

in a normal situation. The network traffic was examined using Snort (Roesch, 1999). 

Wrapper methods use machine learning algorithms to find the most suitable features 

based on three methods such as forward selection, backward selection, and stepwise selection 
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(Das, 2001). These methods are sometimes computationally expensive than filter methods due to 

the use of machine learning algorithms.  

Embedded methods are a combination of the filter methods and wrapper methods where 

feature selection process and classification are performed simultaneously (Chandrashekar & 

Sahin, 2014). In embedded methods, an independent measure based on wavelet analysis has been 

used to select suitable features and machine learning algorithms to decide the final features 

(Srihari & Anitha, 2014; Wang et al., 2015). 

Entropy-Based Methods 

 

Entropy-based methods were used to select important features in IDS (Wang et al., 2015). 

The filter model was designed based on C4.5 decision tree. Three entropy methods such as 

Shannon entropy, Renyi entropy, and Tsallis have been applied to select the features on KDD99 

dataset. It was stated that the selected features based on Renyi and Tsallis entropies provided 

better results but increased the computational time. Another effective feature selection approach 

based on Bayesian network algorithm was proposed to identify the subset features using a 

sequential search strategy on NSL-KDD dataset (Zhang & Wang, 2013). The extracted features 

have been compared with three methods such as Information Gain, ChiSquare and ReliefF 

methods. It was claimed that the approach consumed less time than Information Gain, ChiSquare 

and ReliefF to detect attack and increased the classification accuracy.  

Previous studies have used classifiers to evaluate feature selection techniques. The 

research conducted by Sindhu et al. (2012) aimed on the detection of anomalous activities. The 

proposed approach was based on wrapper-based feature selection that includes three classifiers 

such as genetic algorithm, neural network, decision tree, and random forest to identify the 

important features. Genetic algorithm was deployed to extract features. Neural network was used 
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to analyze the data to find the relationship between false positive and false negative error, and to 

find the suitable weight value to decrease the total error. Decision tree was utilized to classify the 

network traffic. The combination of the three classifiers is capable to detect certain attacks such 

as Neptune, Back, Smurf, and Buffer_overflow. 

Another clustering evaluation measure commonly used is F-measure (Hand & Christen, 

2018) which evaluates the accuracy by computing the weighted harmonic mean of precision and 

recall. Precision is the ratio between relevant instances and the retrieved instances, recall is the 

ratio between the relevant instances among actual instances. Some of the significant issues are 

that F-measure provides the same importance in terms of precision and recall, and neglects the 

true negative, which leads to misclassification.  

V-measure 

 

Rosenberg and Hirschberg (2007) developed an external entropy-based cluster evaluation 

technique called v-measure. V-measure addressed some of the issues that concern cluster 

measures: 1) V-measure evaluates the independence of the size of the dataset, the clustering 

algorithm, the number of clusters, and the number of classes. 2) In terms of evaluation, it does 

not require a mapping from clusters to classes; therefore, it only evaluates the quality of 

clustering. 3) It avoids the problem of matching, by evaluating the clustering of every datapoint. 

V-measure provides an accurate evaluation by combining two clustering aspects which are 

homogeneity and completeness. A clustering result satisfies homogeneity when all the clusters 

contain only data points that are members of a single class, where a clustering result satisfies 

completeness if all the data points that are members of a given class are members to a single 

cluster. V-measure is computed as the harmonic mean which is complementary of the arithmetic 

mean of homogeneity and completeness scores (Rosenberg & Hirschberg, 2007). V-measure is 
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more comprehensive than Q0 (Dom, 2002), and variation of information (VI) (Meila, 2007) that 

evaluate only homogeneity or completeness separately.  In addition to the straightforward way to 

use v-measure to identify the significance of individual features, there are many other ways to 

extend its usage, for instance, adopting a pre-defined set of features, recombining existing 

features, and testing the significance of a group of features together. 

V-measure has been widely used as a clustering evaluation metric in different 

applications. For example, a Normalized Mutual Information (NMI) technique that equivalents to 

v-measure metric has been used to effectively identify trending events in social media (Becker, 

2011). In addition, another application of v-measure has been implemented as an evaluation 

method to assess the clustering quality of a Bayesian clustering method called PyClone, for the 

conjecture of clonal population structures in cancers (Roth, et al, 2014). Although v-measure has 

been shown as an effective feature selection technique, based on our knowledge, it has not yet 

been used in anomaly detection. Its effectiveness on anomaly detection is worthy of further 

investigation. 

Intrusion Detection Datasets 

 

Datasets are an important challenging issue in the evaluation of different IDSs. One of 

the most widely used dataset is KDD 99 (McHugh, 2000), originally generated under the 1998 

DARPA Intrusion Detection Evaluation Program managed by MIT Lincoln Labs. However, 

there have been many critiques on the KDD 99 dataset due to the lack of traffic diversity and 

volume, lack of attack types, or lack of feature sets (McHugh, 2000). Additional research that 

introduced an improvement upon KDD99 dataset, and NSL-KDD (Tavallaee et al., 2009) was 

proposed. However, finding up-to-date dataset remains difficult.  
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In a later effort, Sharafaldin et al. (2018), who generated a new reliable dataset 

CISICD2017, which includes diverse kinds of attacks that meets real world criteria. A more 

recent dataset called CISICD2017 was introduced by the Canadian Institute for Cybersecurity 

(Sharafaldin et al., 2018). It covers diverse types of attacks such as DoS, DDoS, FTPbrute force, 

SSH, heartbleed, brute force, infiltration and botnet. Over 80 network traffic features have been 

extracted for all attacks using CICFlowMeter.  

After the CISICD2017 dataset was proposed, it has been adopted in multiple research 

efforts. For example, CICIDS2017 was evaluated by applying seven machine learning algorithms. 

Random Forest has been used as a feature selection to select the best features to detect such 

attacks.  A classical Multi-Layer Perceptron (MLP) algorithm and Convolutional Neural Network 

(CNN) payload classifying algorithm have been implemented on CICIDS2017. The experiment's 

results showed that MLP was capable of classifying malicious attacks with an average rate of 

94.5% detection rate and 4.68% false positive rate (Watson, 2018).  

Aksu et al. (2018) have implemented a Fisher Score algorithm as a feature selection 

technique on CICIDS2017, where the features are selected independently based on fisher criterion 

(Duda et al., 2012). The primary purpose of this approach was to apply Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), and Decision Tree (DT) algorithms to classify Distributed 

Denial of Service (DDoS) attacks. In addition, other research efforts were conducted using 

CICIDS2017 (Yao et al., 2019; Zhang et al., 2019).  

As a result, we chose to use a revised CICIDS2017 dataset for the evaluation of the 

proposed v-measure. In the revised dataset, all types of attacks were classified as one class label. 

In our experiments, binary classification was performed based on the class labels of the 

CICIDS2017 dataset. This led to a simpler problem compared to a categorization problem with 
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different types of attacks; however, this is still a significant research problem given the volume of 

the dataset. The focus of this research is to test out the effectiveness of the v-measure in feature 

reduction. And the binary classification problem was used as a testbed for the proposed metric. 

We believed v-measure can also be tested in other datasets or other anomaly detection problems.  

Summary 

 

This chapter reviewed the current body of knowledge on feature selection in the domain of 

intrusion detection systems, as well as identified the strengths and weaknesses of the current 

studies and presented the gaps between them. The motivation behind this research was discussed. 

It also introduced an overview of some feature selection methods including their limitations. 

Based on the literature review, there is a need of an efficient feature selection technique that is 

capable to reduce the false positive and false negative while obtaining high accuracy. V-measure 

has been widely utilized as a clustering evaluation metric in different applications. In the 

following chapter, we will demonstrate how v-measure was implemented to select the suitable 

features in the CICIDS2017 dataset. 
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Chapter 3 

Methodology 

 

Our proposed research intends to use v-measure for feature selection in intrusion 

detection system. Our proposed approach was implemented in three stages. In the first stage, data 

has been cleaned up and transformed into an understandable format using feature scaling to 

standardize the independent features in a fixed scale. In the second stage, all features have been 

clustered using the K-means algorithm, and then v-measure has been implemented by computing 

the homogeneity and completeness for each cluster. The feature that has a high v-measure score 

was selected to build the model. In the third stage, three classifiers, Decision Tree, Random 

Forest, and AdaBoost were chosen to evaluate the performance of the selected features as shown 

in Figure 1.  

Figure 1 

The Proposed Architecture 

 

The proposed method introduced a novel approach that achieved high accuracy rate while 

reducing false positive and false negative rates. The evaluation of our proposed method used 

some classifiers is shown in Figure 1. In order to present the quality of our feature selection 

method, we have compared v-measure with other external measures such as Entropy (Zhao & 

Karypis, 2001).  Both measures produced ways to evaluate homogeneity; however, they don’t 

evaluate the completeness of a cluster evaluation of whether all datapoints of a class are involved 
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in a single cluster. Another commonly used external clustering measure is called F-measure (Van 

Rijsbergen, 1979). F-measure possesses a significant advantage over purity and entropy in that it 

does measure both homogeneity and completeness. However, the limitation of F-measure is the 

matching problem (Meila, 2007); therefore, v-measure has been compared against other 

statistical measures such as F-measure and other entropy measures such as Variation of 

Information (VI) on their effectiveness and efficiency of feature selection. 

Data Preprocessing of CICIDS2017 

 

In our experiment, we utilized one of the contemporary intrusion detection system 

datasets called CICIDS2017 (Sharafaldin et al., 2018). The data has been collected from Monday 

through Friday and has been exported into eight sessions. Each session has exported in the form 

of a comma separated value (CSV) file and labeled by its name. There are 14 types of attacks in 

this dataset as shown in Table 1. Over 70 network traffic features have been extracted for all 

attacks by using CICFlowMeter (Network Traffic Flow Generator and Analyzer Meter) 

(Sharafaldin et al., 2018).  

The total number of records in the dataset is 2,271,320 with 79 features, of which 

556,556 records are labeled as malicious traffic (Attack). While 2,273,097 records are labeled as 

normal traffic (Benign).  

In order to perform our experiment on this data, we combined all of these 8 files into one 

file. We cleaned the datasets by removing records with missing values, redundant attributes, or 

infinite values. There are 1,358 records that have missing information and 1,509 records that 

have infinity value. These 2867 records that represent only 0.1 % of the 2,830,743. These records 

have been removed. Class label benign replaced to 0 and the class label attack replaced to 1. The 

total number of records after cleaning up the dataset is 2,827,876 records. 
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Table 1  

Dataset Information 

File Name Records Class Label 

Monday-WorkingHours.pcap_ISCX 529918 Benign 

Tuesday-WorkingHours.pcap_ISCX 445909 Benign, SSH-

Patator, FTP-

Patator 

Wednesday-workingHours.pcap_ISCX 692703 Benign, DoS Hulk, 

DoS GoldenEye, 

DoS Slowloris 

DoS Slowhttptest, 

Heartbleed 

Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX 

170366 Benign, Web 

AttackBrute Force, 

Web Attack-Sql 

Injection, Web 

Attack-XSS 652 

Thursday-WorkingHours-Afternoon-

Infilteration.pcap_ISCX 

288602 Benign, Infiltration 

Friday-WorkingHours-Morning.pcap_ISCX 191033 Benign, Bot 

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX 

225745 Benign, Portscan 

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX 

286467 Benign, DdoS 

Total 2,830,743 14 

 

Validity Measure (V-measure) 

 

V-measure is defined as an entropy measure of homogeneity and a probability 

distribution of a dataset (Rosenberg and Hirschberg, 2007). 

Figure 2 

Calculation V-measure (Rosenberg and Hirschberg, 2007) 

𝑉𝛽 =
(1 + 𝛽) ∗ 𝐻 ∗ 𝐶

(𝛽 ∗ 𝐻) + 𝐶
    (1) 

𝐻: ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦,   𝐶: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠,   𝛽: 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 
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As defined in the equation above, the parameter 𝛽 provides control over the balance 

between precision and recall over the score. The precision is the ratio between true positives and 

predicted positives. The recall is the ratio between the true positives and actual positives. This 

can be used to model the balance between false positives and false negatives and optimize for a 

more realistic score of the detection method. As a result, if 𝛽 is exceeding 1, completeness is 

weighted more powerfully in the calculation, if 𝛽 is below 1, homogeneity is weighted more 

powerfully. V-measure can be compared across any clustering solution, regardless of the classes’ 

size, the clusters’ size, the datapoints’ size and the clustering algorithm used. Homogeneity 𝐻 

defined in Figure 3 and completeness 𝐶 defined in Figure 4 are computed as follows. 

Homogeneity 

 

In order to satisfy our homogeneity criteria, a clustering algorithm must assign only those 

datapoints that are members of a single class to a single cluster. In order to calculate the cluster 

homogeneity, let 𝐶 be the set of classes in the dataset CICIDS2017, 𝐾 the set of clusters in the 

dataset, 𝑚 the total number of elements, and 𝑎𝑐𝑘 is the number of elements from class 𝐶 assigned  

Figure 3 

Calculation of Homogeneity in V-measure 
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to cluster 𝐾, as shown in Figure 3. Note that H(C|K) is maximal and equals H(C) when the 

clustering does not provide new information. The class distribution through each cluster is equal 

to the overall class distribution. 

Completeness 

 

A clustering result satisfies completeness if all the data points that are members of a 

given class are members to a single cluster.  

Figure 4 

Calculation of Completeness in V-measure  

 

In order to calculate the cluster completeness, let 𝐶 be the set of classes in the dataset 

CICIDS2017, 𝐾 is the set of clusters in the dataset, 𝑚 the total number of elements, and 𝑎𝑐𝑘 be 

the number of elements from class 𝐶 assigned to cluster 𝐾, as shown in Figure 4. 

V-measure Calculation Demonstration 1 

 

From the above concepts in regard to homogeneity, completeness, and v-measure, we can 

turn these concepts into real examples: 

Let’s assume that we have one feature set and two class labels (0,1) 
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Feature set = [1, 0, 1, 0], class label = [0, 1, 0, 1] 

According to the calculation of homogeneity, completeness, and v-measure, we maintain 

the following scores: 

Homogeneity = 1.0 

Completeness = 1.0  

V-measure = 1.0  

This indicates that it is a perfect score. As seen in the example, the feature set satisfies 

homogeneity because the same data points are members of a single class, and each class has 

members of the same data points, which provides perfect completeness. As v-measure is the 

harmonic mean between homogeneity and completeness. As a result, the score tends to be 1 

which indicates a completely perfect labeling. 

V-measure Calculation Demonstration 2 

 

Feature set = [0, 1, 2, 3], class label = [0, 0, 1, 1] 

According to the calculation of homogeneity, completeness, and v-measure, we maintain 

the following scores: 

Homogeneity = 0.99 

Completeness = 0.49  

V-measure = 0.66  

The scores above show high homogeneity but low completeness and that refers to 

splitting classes into more clusters. 

V-measure Calculation Demonstration 3 

 

Feature set = [0, 1, 0, 1], class label = [0, 0, 1, 1] 
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According to the calculation of homogeneity, completeness, and v-measure, we maintain 

the following scores: 

Homogeneity = 0.0 

Completeness = 0.0 

V-measure = 0.0 

The scores above shows that these data points are neither homogeneous nor complete due 

to distribution of the data points among different class labels. 

Validity Measure Feature Reduction 

 

For the feature selection technique, we rely on homogeneity and completeness, which is 

derived for v-measure as defined by Rosenberg and Hirschberg (2007). The calculation of 

homogeneity and completeness is based on conditional entropy analysis. They measure the 

clustering quality of the traffic network data by forming data points based on related frequencies 

of network IP addresses, network ports, and other features. In order to select the suitable 

features, we intend to implement the K-means clustering algorithm due to its simplicity, easiness 

in interpreting the clustering results, and efficiency in terms of computational cost. K-means can 

cluster each attribute separately, and then use the v-measure to assess the clustering quality as 

follows. 

Cluster homogeneity as defined by Han et al. (2011) requires that the purer networks 

traffic data in a clustering is, the more reliable the cluster is. All data points in a data set, 𝐷 

belong to label classes 𝐾1, 𝐾2 for binary classification. Assume 𝐶1 , a clustering where 𝐶 ∈ 𝐶1 

includes data points from two classes, and 𝐶2 a clustering that corresponds to 𝐶1 except that  𝐶2 

is divided into two clusters that contains data points in 𝐾1, 𝐾2 respectively. Therefore, in terms of 

clustering quality measure 𝑄 , 𝐶2 has a homogeneity score higher than 𝐶1 as follows: 
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𝑄 (𝐶2, 𝐶𝑔) > 𝑄(𝐶1, 𝐶𝑔) (where Cg is a ground truth of clustering C, Q is measure score) and as 

shown in Figure 5 high homogeneity and low completeness. 

Cluster completeness as defined by (Han et al., 2011) requires that the networks traffic 

data of a singular cluster belong to the same class. Consider clustering 𝐶1, which contains 

clusters 𝐶1 and 𝐶2 where the members of clustering belong to the same class as indicated by 

𝐾1, 𝐾2 . Assume that clustering 𝐶2 is identical to 𝐶1 except that 𝐶1 and 𝐶2 are  

integrated into one cluster in 𝐶2. Therefore, in terms of clustering quality measure 𝑄, 𝐶2 has a 

completeness score higher than 𝐶1 as follows: 𝑄 (𝐶2, 𝐶𝑔) > 𝑄(𝐶1, 𝐶𝑔) where (Cg is a ground 

truth of clustering C, Q is measure score) and as shown in Figure 5 low homogeneity and high 

completeness. 

Figure 5 

Cluster Outlines of Completeness and Homogeneity Values 
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Therefore, the clustering is perfectly homogeneous when the data points of each cluster 

belong to the same class label (benign or attack). However, it is not complete because all data 

points do not belong to the same class label. Figure 5 shows an extreme example of the cluster 

boundaries that result in higher and lower completeness and homogeneity values. 

Experiments 

 

To demonstrate the effectiveness of using v-measure for feature selection, we have 

performed five experiments. 

 Experiment A: After pre-processing and transforming raw data into an understandable 

format, the three classifiers were applied to all training and testing datasets. Then we applied our 

new feature selection v-measure. If the v-measure score is greater than 1, completeness is 

weighted more strongly for the purpose of classification. If v-measure scores are less than 1; we 

concluded homogeneity is weighted more strongly in the classification process. According to the 

features that have been selected by v-measure, the same number of features was selected for F-

measure, and Information Gain. 

Experiment B: F-measure was applied to all training and testing datasets and evaluated 

the outcomes using the three machine learning algorithms: Decision Tree, Random Forest, and 

AdaBoost. We conducted a comparison between the v-measure and F-measure, and Information 

Gain based on the confusion matrices they produced. 

Experiment C: We have applied Information Gain (IG) that was developed as a feature 

selection to all training and testing dataset and testify the outcomes using the three machine 

learning algorithms: Decision Tree, Random Forest, and AdaBoost. We conducted a comparison 

between the Information Gain, v-measure, F-measure based on the confusion matrix. 
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Experiment D: We have applied the three machine learning algorithms: Random Forest, 

Decision Tree, and AdaBoost. The implementation was based on the identical features between 

v-measure, F-measure, and Information Gain. 

Experiment E: In this experiment, we have applied the three machine learning algorithms 

upon the top 10 features that have been extracted by v-measure, F-measure, and Information 

Gain. 

Summary 

The research methodology deploys the proposed feature selection technique v-measure 

upon CICIDS-2017 dataset. In this section, the implementation of v-measure was explained in 

detail with examples its performance improvement of three classifiers has been presented. The 

experimental analysis demonstrated the importance of the feature dimensionality reduction 

techniques which directed to better outcomes. Five different experiments have been conducted in 

order to present the efficiency of the v-measure among other feature selection techniques. 

Despite the huge number of audits and features, v-measure was able to achieve good 

performance in terms of dimensionality reduction while maintaining low false positive rate, low 

false negative rate, and high detection rate. 
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Chapter 4 

Results 

 

The primary objective of this research is to improve the performance of anomaly-based 

intrusion detection systems and reduce feature dimensionality by adopting a new feature 

selection metric v-measure. This research utilized v-measure to select the most significant 

features and provided objective evaluations of three supervised learning algorithms in 

maintaining high detection and accuracy rates. A detailed analysis of the results of each 

experiment has been presented along with an evaluation of results in regard to the 

accomplishments of the research goals.  

Experiment Criteria 

Five experiments have been conducted to evaluate the implementation of the proposed 

feature selection technique v-measure. F-measure and Information Gain (IG) have been utilized 

as feature selection techniques in order to compare their selected features to v-measure’s selected 

features. Three machine learning algorithms have been applied to evaluate the performance of 

the selected features. 

The experiment settings include Anaconda Python Distribution 3.7, Jupyter notebook, 

and Scikit-learn. All experiments were deployed on an Amazon SageMaker studio 

https://aws.amazon.com/console/ (Liberty et al., 2020). Amazon SageMaker is a cloud machine-

learning platform that supports elastic learning and incremental training. Amazon Elastic 

Compute Cloud (EC2) provides the ability to choose the configuration and the capacity with 

minimal friction. They have been widely used as third-party resources and services to reduce the 

training cost (Qiu et al., 2021; Carmona et al., 2021). The instances that have been utilized are 

memory optimized instances (ml.r5.2xlarge) to operate fast performance with 8 virtual CPU and 
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64 GB memory to pre-processing the dataset, selecting the features, and applying the classifiers. 

Amazon SageMaker platform helps to reduce the computational cost in term of memory and 

execution time.  

Data Preprocessing 

As mentioned in the methodology section, in order to compute v-measure, each feature is 

processed based on one of the two class labels (i.e., benign, attack) of each data point. This has 

led to a partition of the original dataset into two clusters.  

An explanation of the data preprocessing was mentioned in the previous chapter. 

CICIDS-207 dataset has been prepared and transformed into an understandable format. To 

perform the preprocessing steps, Python scripts were written using Pandas library for data 

analysis and DataFrame instances, and Numpy for numerical operations on a large amount of 

data (McKinney, 2012). The CICIDS-2017 dataset has 2,830,743 records. Class label (begin) 

which represents 2,273,097 records has been replaced with 0 and 557,646 records which 

represent (attacks) that have been replaced with 1.  

After removing records with missing values which are 1,358 as and/or infinity values 

which are 1,509 records, 2,827,876 records have been obtained for usage in the next stage. A few 

empirical studies utilized different data partitions for training and testing such as 70:30, 80:20, 

and 60:40 (Gholamy et al., 2018; Soni, & Sharma, 2014). The studies resulted in high accuracy 

rates. Therefore, the dataset has been split randomly with the ratio of 70% for the training and 

30% for testing for all experiments. There are some features that represent complicated attacks 

on modern networks based on their network traffic feature. 
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Table 2 

Features Numbers and Names 

F-

ID 

Feature Name F-

ID 

Feature 

Name 

F-

ID 

Feature Name F-

ID 

Feature Name 

1 Destination Port 21 Fwd IAT 

Total 

41 Packet Length 

Mean 

61 Bwd Avg 

Packets/Bulk 

2 Flow Duration 22 Fwd IAT 

Mean 

42 Packet Length 

Std 

62 Bwd Avg Bulk 

Rate 

3 Total Fwd Packets 23 Fwd IAT Std 43 Packet Length 

Variance 

63 Sub flow Fwd 

Packets 

4 Total Backward 

Packets 

24 Fwd IAT 

Max 

44 FIN Flag Count 64 Sub flow Fwd 

Bytes 

5 Total Length of 

Fwd Packets 

25 Fwd IAT 

Min 

45 SYN Flag 

Count 

65 Sub flow Bwd 

Packets 

6 Total Length of 

Bwd Packets 

26 Bwd IAT 

Total 

46 RST Flag 

Count 

66 Sub flow Bwd 

Bytes 

7 Fwd Packet 

Length Max 

27 Bwd IAT 

Mean 

47 PSH Flag 

Count 

67 Fwd Init Win bytes 

8 Fwd Packet 

Length Min 

28 Bwd IAT Std 48 ACK Flag 

Count 

68 Bwd Init Win bytes 

9 Fwd Packet 

Length Mean 

29 Bwd IAT 

Max 

49 URG Flag 

Count 

69 Fwd Act Data Pkts 

10 Fwd Packet 

Length Std 

30 Bwd IAT 

Min 

50 CWE Flag 

Count 

70 Fwd Seg Size Min 

11 Bwd Packet 

Length Max 

31 Fwd PSH 

Flags 

51 ECE Flag 

Count 

71 Active Mean 

12 Bwd Packet 

Length Min 

32 Bwd PSH 

Flags 

52 Down/Up Ratio 72 Active Std 

13 Bwd Packet 

Length Mean 

33 Fwd URG 

Flags 

53 Average Packet 

Size 

73 Active Max 

14 Bwd Packet 

Length Std 

34 Bwd URG 

Flags 

54 Fwd Segment 

Size Avg 

74 Active Min 

15 Flow Bytes/s 35 Fwd Header 

Length 

55 Bwd Segment 

Size Avg 

75 Idle Mean 

16 Flow Packets/s 36 Bwd Header 

Length 

56 Fwd Header 

Length 

76 Idle Std 

17 Flow IAT Mean 37 Fwd 

Packets/s 

57 Fwd Avg 

Bytes/Bulk 

77 Idle Max 

18 Flow IAT Std 38 Bwd 

Packets/s 

58 Fwd Avg 

Packets/Bulk 

78 Idle Min 

19 Flow IAT Max 39 Min Packet 

Length 

59 Fwd Avg Bulk 

Rate 

79 Label 

20 Flow IAT Min 40 Max Packet 

Length 

60 Bwd Avg 

Bytes/Bulk 
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There are some features that represent complicated attacks on modern networks based on 

their network traffic feature. For instance, some features are required to identify normal activities 

such as the Bwd Packet Length Min, and the Fwd Average Package Length features. While some 

of them are required to detect malicious activities such as Subflow Fwd Bytes, Total Length of 

Fwd Packets, Init Win Bytes Forward, and Bwd Packet Length Std. Some features can be easily 

removed due to their less statistical measures values such as Bwd PSHF lags, Fwd URG Flags, 

Bwd URG Flags, RST Flag Count, CWE Flag Count, ECE Flag Count, Fwd Avg Bytes/Bulk, 

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, and 

Bwd Avg Bulk Rate. A full list of these features is included in Appendix A. The features in 

Table 2 are ready to be evaluated by conducting the following five experiments.  

Evaluation Criteria 

 

The results were shown on the standard metrics for binary classification of two classes 

Benign and Attack: true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN) (Marsland, 2014). The classification accuracy, detection rate, false positive rate, and false 

negative rate were calculated from these metrics: 

1) Accuracy: the ratio of correctly classified samples to the total number of samples. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

2) Detection Rate (DT): the ratio between total numbers of detected attacks to the total number 

of attacks in the dataset. 

DT = 
𝑇𝑃

𝑇𝑃+𝑇𝑁
 

3) False Positive Rate (FPR): the number of non-intrusions inaccurately detected; false positive 

rate is defined as: 
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FPR = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

4) False Negative Rate (FNR): the number of intrusions inaccurately detected; false negative 

rate is defined as: 

FNR = 
𝐹𝑁

𝐹𝑁+𝑇𝑁
 

Experiment A: Applying V-measure 

 After preprocessing the dataset, the three classifiers were run against the training data set 

to evaluate all 78 features using the classification metric and compare their results with our 

proposed feature selection technique such as v-measure in terms of data reduction and obtaining 

better classification metrics. 

The same training and testing data was used to provide a comparison to other classifiers 

Decision Tree, Random Forest, and Adaboost using 78 features the results showed in Table 3.  

Table 3 

Performance Metric for All Features 

Classifiers Accuracy Detection Rate False Positive Rate False Negative Rate 

DT 99.8% 99.6% 0.0007 0.0007 

RF 99.8% 99.7% 0.0006 0.0006 

AdaBoost 99.2% 98.3% 0.004 0.003 

 

Training the data set using Random Forest provided the best accuracy on average but at a 

high computational cost. 

The model ran for up to 12 hours; however, the other two classifiers Decision Tree and 

AdaBoost provided lower accuracy scores at a lower computational cost. These two classifiers 

ran for up to 30 minutes. In terms of memory usage, loading the data and applying the three 

classifiers consumed over 30 GB as shown in Table 4.  
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Table 4 

Running Time 

Classifiers 

 

All Features 

 

44 features by 

v-measure 

37 features by 

F-measure 

35 features by 

Information Gain 

DT 30 minutes 12 minutes 8 minutes 13 minutes 

RF 720 minutes 360 minutes 348 minutes 362 minutes 

Adaboost 34 minutes 13 minutes 15 minutes 15 minutes 

 

According to the results in Table 4, it seems v-measure with the selected 44 features 

reduced the running time; similarly, Information gain provided a lower running time compared to 

all list of features. V-measure, homogeneity, and completeness as shown in figure 6 have been 

applied to every feature.  

Figure 6 

V-measure, Homogeneity, and Completeness 

 

Confusion matrix metrics have been deployed for the sake of evaluating the performances 

of the selected features. If the v-measure score is greater than 1, completeness is weighted more 

strongly for the purpose of classification, if v-measure scores are less than 1; we concluded that 

homogeneity is weighted more strongly in the classification process. After calculating v-measure 

score to every feature, what are the features that could be used an input and impact the model 

𝑉𝛽 =
(1 + 𝛽) ∗ 𝐻 ∗ 𝐶

(𝛽 ∗ 𝐻) + 𝐶
    (1) 

𝐻 =  {

1                       𝑖𝑓 𝐻(𝐶, 𝐾) = 0

1 −  
𝐻(𝐶|𝐾)

𝐻(𝐶)
𝑒𝑙𝑠𝑒                     

(2) 

 

𝐶 =  {

1                       𝑖𝑓 𝐻(𝐾, 𝐶) = 0

1 −  
𝐻(𝐾|𝐶)

𝐻(𝐾)
𝑒𝑙𝑠𝑒                     

(3) 
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and produce better classification metric. Therefore, a threshold has to be selected.  To determine 

the threshold values utilized as a reference for the selected features in v-measure as well as F-

measure, and Information Gain. In this research the threshold value is determined independently 

by calculating the Mean to ensure selecting the best feature that have high importance. It should 

be noted that there are alternative approaches in the literature to select significant features based 

on their rankings. For example, research conducted by Tsai and Sung (2020) computed the 

average of each frequency to obtain the best features threshold value. In another research study, a 

variance threshold is used to remove the low variance features. It removes all zero-variance by 

default as well as the features that have similar values in all datapoints (Fida et al., 2021). 

Despite different approaches, we do not anticipate significant differences in performance even if 

we change to a different approach as they are all schemes based on a single threshold value.    

After implementing v-measure among these selected features, the v-measure average 

value totals out to 0.063. These values indicate that perfect labeling is more homogeneous and 

less complete. The average value of homogeneity is 0.321 as shown in Table 5, while the 

average value of completeness is 0.141. Consequently, the features have been selected based on 

the v-measure average value. There have been 44 selected features that have a value of 0.063 or 

higher as indicated in Table 6.  

Table 5 

Homogeneity, Completeness, and V-measure for All Features 

F-ID H C VM F-ID H C VM 

F1 0.587 0.077 0.135 F41 0.670 0.048 0.089 

F2 0.643 0.030 0.056 F42 0.718 0.052 0.096 

F3 0.165 0.037 0.060 F43 0.714 0.052 0.097 

F4 0.254 0.056 0.091 F44 0.028 0.091 0.043 

F5 0.575 0.054 0.099 F45 0.009 0.023 0.013 

F6 0.599 0.057 0.104 F46 0.000 0.024 0.000 

F7 0.497 0.054 0.098 F47 0.030 0.024 0.027 
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F8 0.233 0.047 0.078 F48 0.015 0.012 0.013 

F9 0.443 0.041 0.074 F49 0.031 0.050 0.039 

F10 0.400 0.051 0.091 F50 0.000 0.022 0.000 

F11 0.526 0.058 0.105 F51 0.000 0.024 0.000 

F12 0.223 0.039 0.066 F52 0.024 0.015 0.018 

F13 0.576 0.053 0.097 F53 0.725 0.052 0.097 

F14 0.390 0.059 0.103 F54 0.443 0.041 0.074 

F15 0.767 0.033 0.063 F55 0.576 0.053 0.097 

F16 0.709 0.031 0.060 F56 0.348 0.052 0.090 

F17 0.658 0.030 0.057 F57 0.000 1.000 0.000 

F18 0.555 0.032 0.061 F58 0.000 1.000 0.000 

F19 0.576 0.030 0.057 F59 0.000 1.000 0.000 

F20 0.158 0.016 0.029 F60 0.000 1.000 0.000 

F21 0.446 0.035 0.065 F61 0.000 1.000 0.000 

F22 0.490 0.035 0.066 F62 0.000 1.000 0.000 

F23 0.433 0.042 0.076 F63 0.165 0.037 0.060 

F24 0.465 0.037 0.069 F64 0.575 0.054 0.099 

F25 0.136 0.017 0.030 F65 0.254 0.056 0.091 

F26 0.422 0.043 0.078 F66 0.599 0.057 0.104 

F27 0.468 0.042 0.078 F67 0.540 0.085 0.147 

F28 0.378 0.044 0.078 F68 0.504 0.085 0.146 

F29 0.434 0.045 0.082 F69 0.114 0.030 0.047 

F30 0.218 0.037 0.063 F70 0.085 0.041 0.055 

F31 0.009 0.023 0.013 F71 0.282 0.051 0.087 

F32 0.000 1.000 0.000 F72 0.035 0.015 0.021 

F33 0.000 0.022 0.000 F73 0.281 0.051 0.087 

F34 0.000 1.000 0.000 F74 0.275 0.054 0.090 

F35 0.348 0.052 0.090 F75 0.243 0.054 0.088 

F36 0.356 0.057 0.099 F76 0.047 0.019 0.027 

F37 0.696 0.031 0.059 F77 0.249 0.062 0.099 

F38 0.620 0.030 0.057 F78 0.258 0.054 0.089 

F39 0.231 0.047 0.078 F-ID: Feature ID, H: homogeneity  

C: completeness, VM: v-measure F40 0.528 0.055 0.099 

 
 

In this experiment, the three classifiers Decision Tree, Random Forest, and AdaBoost 

have been implemented to evaluate the performance of the selected feature. Based on the 

classification confusion matrix, the selected features by v-measure. Table 7 illustrated the 

performance metrics for the selected features by v-measure. 
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Table 6 

Selected Features by V-measure 

F-

ID 
Homogeneity Completeness 

V-

measure 

F-

ID 
Homogeneity Completeness 

V-

measure 

F15 0.767 0.033 0.063 F56 0.348 0.052 0.090 

F30 0.218 0.037 0.063 F10 0.400 0.051 0.091 

F21 0.446 0.035 0.065 F4 0.254 0.056 0.091 

F22 0.490 0.035 0.066 F65 0.254 0.056 0.091 

F12 0.223 0.039 0.066 F42 0.718 0.052 0.096 

F24 0.465 0.037 0.069 F13 0.576 0.053 0.097 

F9 0.443 0.041 0.074 F55 0.576 0.053 0.097 

F54 0.443 0.041 0.074 F53 0.725 0.052 0.097 

F23 0.433 0.042 0.076 F43 0.714 0.052 0.097 

F26 0.422 0.043 0.078 F7 0.497 0.054 0.098 

F27 0.468 0.042 0.078 F36 0.356 0.057 0.099 

F8 0.233 0.047 0.078 F40 0.528 0.055 0.099 

F28 0.378 0.044 0.078 F77 0.249 0.062 0.099 

F39 0.231 0.047 0.078 F5 0.575 0.054 0.099 

F29 0.434 0.045 0.082 F64 0.575 0.054 0.099 

F71 0.282 0.051 0.087 F14 0.390 0.059 0.103 

F73 0.281 0.051 0.087 F66 0.599 0.057 0.104 

F75 0.243 0.054 0.088 F6 0.599 0.057 0.104 

F78 0.258 0.054 0.089 F11 0.526 0.058 0.105 

F41 0.670 0.048 0.089 F1 0.587 0.077 0.135 

F74 0.275 0.054 0.090 F68 0.504 0.085 0.146 

F35 0.348 0.052 0.090 F67 0.540 0.085 0.147 

 

Table 7 

Performance Metric for the 44 Selected Features by V-measure 

 

In comparison to all results shown in Table 4, we overserved that v-measure reduced the 

computational complexity and cost of the algorithms while maintaining the highest accuracy and 

the lowest false negative rate. In terms of running time, the training data set using Random 

Classifier Accuracy Detection Rate False Positive Rate False Negative Rate 

Decision Tree 99.8% 99.6% 0.0008 0.0008 

Random Forest 99.9% 99.7% 0.0006 0.0005 

AdaBoost 99.9% 97.8% 0.007 0.005 



45 

 

 

 

Forest was conducted in about 6 hours, and about 12 to 15 minutes for the other two classifiers. 

The memory usage of the three classifiers was reduced from 32 to 16 GB. The reduction of 

features leads to the improvement in computational cost by 50%, while maintaining better 

classification evaluation metrics.  

Table 8 

Performance Metric for the 44 Selected Features by V-measure, F-measure, and IG 

SM V-measure F-measure Information Gain 

DT RF AdaBoost DT RF AdaBoost DT RF AdaBoost 

AC 99.8% 99.9% 99.9% 98.7% 98.8 96.7% 99.8% 99.8% 99.0% 

DR 99.6% 99.7% 97.8% 98.6% 98.6 86.4% 99.6% 99.7% 98.3% 

FPR 0.0008 0.0006 0.007 0.011 0.011 0.007 0.0009 0.0007 0.007 

FNR 0.0008 0.0005 0.005 0.003 0.003 0.032 0.0008 0.0006 0.003 

 

In addition, to provide an objective comparison, there are 44 features selected by F-

measure and Information Gain that have been compared against the performance of the 44 

features that have been selected by v-measure, as seen in Table 8. It’s been observed that there 

are considerable benefits by selecting 44 features from the proposed feature selection technique 

v-measure. By deploying diverse classifiers, Random Forest outperformed Decision Tree and 

AdaBoost in putting up the highest score in terms of accuracy and Detection rate.  

With the reduction of the features by selecting 44 features and by the implementation of 

the Random Forest, which gained a high accuracy of 99.9%, a low false positive rate of 0.0006, 

and a low false negative rate 0.0005.  

The selected 44 features by v-measure achieved better results compared to the full 

features set in that are shown in table 3. In addition, v-measure outperformed F-measure and 

Information Gain. An analysis of figure 7 illustrates a surprisingly high accuracy and detection 

rate, low false positive rate of 0.0006 and a false negative rate of 0.0005. The performance of v-
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measure and information gain were closely related due to both being calculated by comparing the 

entropy of the data set before and after a transformation. 

Figure 7 

Performance Metric for the 44 Selected Features by V-measure, F-measure, and IG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment B: Applying F-measure 

  

A similar process was followed as for Experiment A. The parameter that has been applied 

is weighted as an average parameter which, provides the weighted mean of the F-measure with 

 

 

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st

V-measure F-measure Information
Gain

Accuracy

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st

V-measure F-measure Information
Gain

Detection Rate

0

0.002

0.004

0.006

0.008

0.01

D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st

V-measure F-measure Information
Gain

False Positive Rate

0

0.001

0.002

0.003

0.004

0.005

D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st D
T

R
F

A
d

aB
o

o
st

V-measure F-measure Information
Gain

False Negative Rate



47 

 

 

 

weights equal to class probability. The weight is calculated by the proportion of each class’s 

support value, x relative to the sum of all support values weights.  

𝑊 = ∑ = (𝑥𝑖 ∗  𝑤𝑖)
𝑛
𝑖=1  

𝑊 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑, 
 𝑤𝑖  =  𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑥 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑥𝑖 =  𝑑𝑎𝑡𝑎 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 

 
This parameter used to calculate metrics for each label, and find their average weighted by 

computing the number of true instances for each label.  

All features were measured by computing F-measure. The average value of F-measure is 

0.282. As a result, there were 35 features that have been selected as the significant features as 

demonstrated in Table 9. 

Table 9 

Selected Features by F-measure 

Feature-ID F-measure Feature-ID F-measure Feature-ID F-measure 

F21 0.300 F52 0.436 F45 0.698 

F24 0.300 F30 0.440 F47 0.708 

F6 0.304 F12 0.450 F51 0.715 

F11 0.304 F49 0.670 F46 0.715 

F66 0.304 F74 0.678 F33 0.715 

F25 0.345 F73 0.678 F50 0.715 

F69 0.380 F77 0.678 F32 0.716 

F39 0.405 F78 0.678 F34 0.716 

F29 0.435 F48 0.684 F57 0.716 

F26 0.435 F31 0.698 F58 0.716 

F59 0.716 F61 0.716 F44 0.752 

F60 0.716 F62 0.716   

 

Table 10 demonstrates the results of different classification evaluation metrics of F-

measure as well as its comparison against v-measure and Information Gain with 35 selected 

features. All F-measure scores happened to be significantly lower than the high v-measure scores 

achieved. However, v-measure obtained a lower false negative rate of 0.0004. 
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Table 10 

Classification Evaluation Metric of F-measure, V-measure, and Information Gain 

SM F-measure V-measure Information Gain 

DT RF AdaBoost DT RF AdaBoost DT RF AdaBoost 

AC 98.4% 98.5% 95.5% 99.8% 99.9% 99.0% 99.8% 99.8% 99.0% 

DR 97.6% 97.6% 86.0% 99.5% 99.7% 98.5% 99.6% 99.7% 98.1% 

FPR 0.012 0.012 0.021 0.0008 0.0007 0.007 0.0008 0.0006 0.007 

FNR 0.005 0.005 0.033 0.0008 0.0004 0.003 0.0009 0.0007 0.004 

 

Figure 8 

Performance Metric for the Selected 35 Features by F-measure, V-measure, and IG 
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The Classification Evaluation Metric of F-measure, v-measure, and Information Gain by 

using different classifiers assures that the implementation of v-measure was good enough to 

achieve an overall accuracy, detection rate, false positive rate, and false negative rate as shown in 

figure 9. The running time and the memory usage in this experiment was indistinguishable in 

comparison to the experiment run on the selection of the 44 features. 

It can be clearly indicated that v-measure outperformed F-measure and Information Gain. 

The highest accuracy recording was implemented with Random Forest as shown in figure 8, we 

received a soaring percentage of 99.9%, which corresponded to a false positive and false 

negative rate of 0.0006 and 0.0004 respectively as presented in figure 9. It also defeats F-

measure in having a higher detection rate of 99.7%. Decision Tree and Random Forest both 

provide equal percentages of false positive and false negative rates. It’s also clearly noticeable 

that Random Forest outperforms Decision Tree in having a higher detection rate on the features 

that are selected by all feature selection techniques. 

Experiment C: Applying Information Gain 

 

Information Gain was implemented to all features in order to select the most significant 

features. Information Gain’s parameters are (discrete_features = auto) to identify whether to 

recognize all features discrete or continuous, (n_neighborsint = 3) which is the number of 

neighbors to use for continuous variables, and (copy = true) to make a copy of the given data. 

Information Gain computes the variance of every feature in the context of the class variable.  

Table 11 

Selected Features by Information Gain 

Feature-ID IG Feature-ID IG Feature-ID IG 

F26 0.149 F16 0.190 F40 0.267 

F18 0.150 F24 0.190 F64 0.285 
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F52 0.150 F14 0.194 F5 0.285 

F29 0.161 F38 0.201 F13 0.289 

F22 0.169 F2 0.201 F55 0.290 

F56 0.172 F15 0.213 F1 0.292 

F35 0.173 F19 0.214 F67 0.293 

F36 0.177 F54 0.215 F6 0.298 

F17 0.177 F9 0.215 F66 0.298 

F21 0.179 F7 0.248 F41 0.320 

F10 0.181 F68 0.252 F43 0.343 

F37 0.189 F11 0.267 F42 0.343 

F53 0.347     

 

Figure 9    

Performance Metric for the Selected 37 Features by IG, V-measure, F-measure  
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The average score was 0.142. As a result, 37 features were chosen to be evaluated by the 

three machine learning algorithms as shown in Table 11. Table 12 presents the implementation 

of the three classifiers among 37 features by the results of the classification evaluation metric of 

all selected features by Information Gain compared to v-measure and F-measure using 37 

features confirmed that v-measure achieved a lowest false negative rate. 

Referring to the results shown in Table 12. It should be noted that Decision Tree and 

AdaBoost results were very close. Random Forest achieved a better accuracy for both v-measure 

and Information Gain. Figures 9 displayed their performance. The running time and the memory 

usage in this experiment was indistinguishable in comparison to the experiment run on the 

selection of the 44 and 35 features.     

Table 12 

Classification Evaluation Metric of Information Gain, V-measure, and F-measure 

SM Information Gain V-measure F-measure 

DT RF AdaBoost DT RF AdaBoost DT RF AdaBoost 

AC 99.8% 99.9% 98.9% 99.8% 99.9% 99.0% 98.6% 98.6% 96.8% 

DR 99.6% 99.7% 98.2% 99.6% 99.7% 98.4% 98.0% 98.0% 88.3% 

FPR 0.0007 0.0006 0.008 0.0008 0.0006 0.007 0.012 0.011 0.010 

FNR 0.0008 0.0006 0.004 0.0009 0.0005 0.003 0.004 0.004 0.028 

   

Experiment D: Identical Features 

Based on our observations, we have concluded that v-measure and F-measure share 14 

identical features as shown in Table 13. F-measure and IG have also been concluded to have 8 

identical features as shown in Table 14. V-measure and IG have been confirmed to have 29 

shared features as shown in Table 15. 
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The only feature that happened to be below v-measures’ average of 0.063 was feature 25 

which had an extremely low value of 0.03. While the F-measure features were above the 

proposed average of 0.282, v-measure still managed to outperform F-measure outstandingly.  

Table 13                                      

Identical Features by V-measure and F-measure 

Feature ID Feature Names Feature value by v-

measure 

Feature value by F-

measure 

6 Total Length of Bwd Packets 0.104 0.304 

11 Bwd Packet Length Max 0.105 0.304 

12 Bwd Packet Length Min 0.066 0.450 

21 Fwd IAT Total 0.065 0.300 

24 Fwd IAT Max 0.069 0.300 

25 Fwd IAT Min 0.030 0.345 

29 Bwd IAT Max 0.082 0.435 

30 Bwd IAT Min 0.063 0.440 

39 Min Packet Length 0.078 0.405 

66 Sub flow Bwd Bytes 0.104 0.304 

73 Active Max 0.087 0.678 

74 Active Min 0.090 0.678 

77 Idle Max 0.099 0.678 

78 Idle Min  0.089 0.678 

 

Table 14 presents 25 shared identical features between v-measure and Information Gain 

where all of them maintained above average scores that have been conducted in experiments A 

and C.  

Table 15 is where the 8 identical features between F-measure and Information Gain are 

showcased. All the features have been proven to be above average as conducted in experiment B 

and C. Collectively, the three selection feature techniques, v-measure, F-measure, and 

Information Gain share 7 identical features as shown in Table 16.  
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Table 14                                    

Identical Features by V-measure and Information Gain 

Feature 

ID 

Feature Name Feature value 

by v-measure 

Feature value by 

IG 

1 Destination Port 0.135 0.191 

5 Total Length of Fwd Packets 0.099 0.285 

6 Total Length of Bwd Packets 0.104 0.298 

7 Fwd Packet Length Max 0.098 0.248 

9 Fwd Packet Length Mean 0.074 0.215 

10 Fwd Packet Length Std 0.091 0.181 

11 Bwd Packet Length Max 0.105 0.267 

13 Bwd Packet Length Mean 0.097 0.289 

14 Bwd Packet Length Std 0.103 0.194 

15 Flow Bytes/s 0.063 0.213 

21 Fwd IAT Total 0.065 0.179 

22 Fwd IAT Mean 0.066 0.169 

24 Fwd IAT Max 0.069 0.190 

26 Bwd IAT Total 0.078 0.149 

29 Bwd IAT Max 0.082 0.161 

35 Fwd Header Length 0.090 0.173 

36 Bwd Header Length 0.099 0.177 

40 Max Packet Length 0.099 0.267 

41 Packet Length Mean 0.089 0.320 

42 Packet Length Std 0.096 0.343 

43 Packet Length Variance 0.097 0.343 

53 Average Packet Size 0.097 0.347 

54 Avg Fwd Segment Size 0.074 0.215 

55 Avg Bwd Segment Size 0.097 0.290 

56 Fwd Header Length 0.090 0.172 

64 Sub flow Fwd Bytes 0.099 0.285 

66 Sub flow Bwd Bytes 0.104 0.298 

67 Init Win bytes forward 0.147 0.293 

68 Init Win bytes backward 0.146 0.252 

 

Table 15                                      

Identical Features by F-measure and Information Gain 

Feature 

ID 

Feature Name Feature value 

by F-measure 

Feature value by IG 

6 Total Length of Bwd Packets 0.304 0.298 

11 Bwd Packet Length Max 0.304 0.267 

21 Fwd IAT Total 0.300 0.179 

24 Fwd IAT Max 0.300 0.190 

26 Bwd IAT Total 0.435 0.149 

29 Bwd IAT Max 0.435 0.161 
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52 Down/Up Ratio 0.436 0.150 

66 Sub flow Bwd Bytes 0.304 0.298 

 

Table 16                                   

Identical Features by V-measure, F-measure, and Information Gain 

Feature 

ID 

Feature Name Feature value 

by v-measure 

Feature value 

by F-measure 

Feature value 

by IG 

F6 Total Length of Bwd Packets 0.104 0.304 0.298 

F11 Bwd Packet Length Max 0.105 0.304 0.267 

F21 Fwd IAT Total 0.065 0.300 0.179 

F24 Fwd IAT Max 0.069 0.300 0.190 

F26 Bwd IAT Total 0.078 0.435 0.149 

F29 Bwd IAT Max 0.082 0.435 0.161 

F66 Sub flow Bwd Bytes 0.104 0.304 0.298 

 

Moving on to the next stage, the three classifiers; Decision Tree, Random Forest, and 

AdaBoost were applied to certain selected features in order to determine which one of the feature 

selection techniques provided the highest accuracy, detection rate, and the lowest false positive 

and false negative rate. The results are clearly demonstrated below in Table 17.  

Table 17 

The Performance of the 7 Identical Features 

 Decision Tree Random Forest AdaBoost 

Accuracy 94.5% 94.6% 91.2% 

Detection Rate 88.5% 88.8% 78.2% 

False Positive Rate 0.039 0.039 0.054 

False Negative Rate 0.028 0.027 0.053 

 

Upon applying the three classifiers among the 7 identical features, the identical features 

were defeated in terms of all classification performance metrics. These features are 

discriminative and representative due to the initial windows of the TCP protocol and destination 

port, and the inter-arrival time. In addition, some features are very important to detect Bot and 

Infiltration attack types such as Sub flow Bwd Bytes and Total Length of Bwd Packets. While 
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Total Length of Bwd Packets is required to detect the types of DDoS, DoS Hulk, DoE Golden 

Eye, and Heartbleed attacks (Stiawan et al., 2020). In addition, the Init Win Fwd Bytes feature is 

very important to detect the types of Web-Attack, SSH-Patator, and FTP-Patator attacks. While 

the Min Bwd Package Length feature and Fwd Average Package Length features are needed to 

detect normal activity (Stiawan et al., 2020). 

Experiment E: Top 10 Features 

To justify the performance of the proposed feature selection technique, v-measure, the 

selection of the top 10 features from F-measure, v-measure, and Information Gain have been 

utilized as a significant part of this experiment.  

The results have been compared to the previous conducted experiments. Table 18, 19, 

and 20 display the feature values accordingly. 

Table 18                                    

Top 10 Features by V-measure 

Feature ID Feature Name Feature value by v-measure 

F77 Idle Max 0.099 

F5 Total Length of Fwd Packets 0.099 

F64 Sub flow Fwd Bytes 0.099 

F14 Bwd Packet Length Std 0.103 

F66 Sub flow Bwd Bytes 0.104 

F6 Total Length of Bwd Packets 0.104 

F11 Bwd Packet Length Max 0.105 

F1 Destination Port 0.135 

F68 Init Win bytes backward 0.146 

F67 Init Win bytes forward 0.147 

  

Table 19                                   

Top 10 Features by F-measure 

Feature ID Feature Name Feature value by F-measure 

F50 CWE Flag Count 0.715 

F32 Bwd PSH Flags 0.716 
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F34 Bwd URG Flags 0.716 

F57 Fwd Avg Bytes/Bulk 0.716 

F58 Fwd Avg Packets/Bulk 0.716 

F59 Fwd Avg BulkRate 0.716 

F60 Bwd Avg Bytes/Bulk 0.716 

F61 Bwd Avg Packets/Bulk 0.716 

F62 Bwd Avg Bulk Rate 0.716 

F44 FIN Flag Count 0.752 
        

Table 20                                    

Top 10 Features by Information Gain 

Feature ID Feature Name Feature value by IG 

F13 Bwd Packet Length Mean 0.289 

F55 Avg Bwd Segment Size 0.290 

F1 Destination Port 0.292 

F67 Init Win bytes forward 0.293 

F6 Total Length of Bwd Packets 0.298 

F66 Sub flow Bwd Bytes 0.298 

F41 Packet Length Mean 0.320 

F43 Packet Length Variance 0.343 

F42 Packet Length Std 0.343 

F53 Average Packet Size 0.347 

 

After obtaining the top 10 features among the three feature selection techniques, the three 

classifiers, Decision Tree, Random Forest, and AdaBoost are applied to selected features in order 

to determine which one of the feature selection techniques provided the highest accuracy, 

detection rate, as well as a low false positive rate and false negative rate as shown in Table 21.  

Table 21 

Classification Evaluation Metric of Top 10 by V-measure, F-measure, and IG 

SM V-measure F-measure Information Gain 

DT RF AdaBoost DT RF AdaBoost DT RF AdaBoost 

AC 99.8% 99.8% 98.3% 80.9% 80.9% 80.9% 99.6% 99.6% 97.9% 

DR 99.4% 99.4% 96.1% 10.5% 10.6% 10.4% 98.6 98.6 94.7 

FPR 0.0009 0.0009 0.010 0.018 0.018 0.018 0.001 0.001 0.012 

FNR 0.001 0.001 0.009 0.182 0.182 0.182 0.003 0.003 0.012 
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According to the results presented in Table 21, it’s obvious that v-measure won the round 

versus F-measure by selecting the top 10 features that play a major role in determining the 

performance between both feature selection techniques. The highest detection rate and the lowest 

false negative rate were obtained by v-measure. The following figures show the performance 

comparison between v-measure and F-measure. 

Figure 10    

Performance Metric for the Top 10 Features by V-measure, F-measure, and IG 
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As shown in Table 21, upon applying the three classifiers on the top 10 features to 

evaluate their performance with four classification metrics are utilized. The highest accuracy and 

detection rate, lowest false positive and lowest false negative belong to v-measure. Lastly, after 

the conduction of five experiments with different parameters and concepts, v-measure has 

achieved the best results and outperformed all the other feature selection techniques as illustrated 

in figure 10.  

These features are significant due to their impact on determining potential attack such as 

destination port and some features used to separate appendices from regular flows such as SYN 

Flag Count, Bwd Pkt Len Mean. Flow construction features such as Sub flow Bwd Bytes and 

Flow Bytes are important features that must be thoroughly tracked and analyzed in real time. 

Therefore, it is most definitely important to indicate what includes a single input for the detection 

system (Engelen et al., 2021). 

Overall, this highlights the significance of v-measure and its capabilities to select the 

considerable features on the CICIDS-2017 dataset. V-measure outperformed F-measure and 

Information Gain in terms of accuracy, detection rate, false positive rate, and false negative rate. 

Random Forest defeats Decision Tree and AdaBoost in providing better results in all aspects. 

Considering the running time, the Decision Tree classifier was the best algorithm with the 

shortest execution time and highest accuracy. However, Random Forest was the worst in terms 

of execution time.  

The experiments conducted above were capable to demonstrate the improvements of the 

proposed feature selection v-measure. It was stated that the new feature extraction has selected 

the best features for the participation in the classification process among F-measure and 

Information Gain. 
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Algorithm: V-measured-Based-IDS 

Input: Feature set 𝑭 = {𝒇𝟏, 𝒇𝟐, … , 𝒇𝒊 … , 𝒇𝒏}  

            where 𝟏 ≤ 𝒊 ≤ 𝒏, 𝑪, 𝑲, dataset 𝑫 where |𝑫| = 𝒎 

Output: V-measure of all features in 𝑭: 𝑽(𝑭) = {𝑽(𝒇𝟏), 𝑽(𝒇𝟐), … , 𝑽(𝒇𝒊) … , 𝑽(𝒇𝒏)}  

               where 𝟏 ≤ 𝒊 ≤ 𝒏 

1: For all (𝟏 ≤ 𝒊 ≤ 𝒏) 

2:  Perform clustering of items in 𝑫 into 𝑲 clusters based on feature 𝒇𝒊  

            //Calculate homogeneity  

3:         Calculate 𝑯(𝑪) =  − ∑
∑ 𝒂𝒄𝒌

|𝑲|
𝒌=𝟏

𝒎

|𝑪|
𝒄=𝟏 𝐥𝐨𝐠

∑ 𝒂𝒄𝒌
|𝑲|
𝒌=𝟏

𝒎
 

4:         Calculate   𝑯(𝑪|𝑲) =  − ∑ ∑
𝒂𝒄𝒌

𝒎

|𝑪|
𝒄=𝟏

|𝑲|
𝒌=𝟏 𝐥𝐨𝐠

𝒂𝒄𝒌

∑ 𝒂𝒄𝒌
|𝒄|
𝒄=𝟏

 

5:         If 𝑯(𝑪, 𝑲) = 𝟎  then 𝑯 = 𝟏 

6:                                             else 𝑯 = 𝟏 −  
𝑯(𝑪|𝑲)

𝑯(𝑪)
 

            //Calculate completeness  

7:         Calculate 𝑯(𝑲) =  − ∑
∑ 𝒂𝒄𝒌

|𝑪|
𝒄=𝟏

𝒎

|𝑲|
𝒌=𝟏 𝐥𝐨𝐠

∑ 𝒂𝒄𝒌
|𝑪|
𝒄=𝟏

𝒎
 

8:         Calculate 𝑯(𝑲|𝑪) =  − ∑ ∑
𝒂𝒄𝒌

𝒎

|𝑲|
𝒌=𝟏

|𝑪|
𝒄=𝟏 𝐥𝐨𝐠

𝒂𝒄𝒌

∑ 𝒂𝒄𝒌
|𝑲|
𝒌=𝟏

 

9:         If 𝑯(𝑲, 𝑪) = 𝟎  then 𝑲 = 𝟏 

10:                                           else 𝑲 = 𝟏 −  
𝑯(𝑲|𝑪)

𝑯(𝑲)
 

            //Calculate 𝜷 

11:       Calculate True Positive (𝑻𝑷), True Negative (𝑻𝑵), False Positive (𝑭𝑷), False Negative (𝑭𝑵) 

12:       Calculate 𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
, 𝐫𝐞𝐜𝐚𝐥𝐥 =

𝑻𝑷

𝑻𝑷+𝑭𝑵
 

13:       Calculate 𝜷 =
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

𝒓𝒆𝒄𝒂𝒍𝒍
 

            //Calculate v-measure 

14:       Calculate 𝑽(𝒇𝒊) =  
(𝟏+𝜷)∗𝑯∗𝑪

(𝜷∗𝑯)+𝑪
 

15: return 𝑽(𝑭) = {𝑽(𝒇𝟏), 𝑽(𝒇𝟐), … , 𝑽(𝒇𝒊) … , 𝑽(𝒇𝒏)} 
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 Computational Complexity 

In order to calculate the computational complexity, let C be the set of classes in the 

dataset CICIDS2017, K the set of clusters in the dataset. One of the implications of this method 

is computational complexity. Due to the complexity of machine learning algorithms, the training 

and testing times are longer. There could be important performance issues caused by v-measure 

because it acquires additional computing costs to estimate their number of parameters.  

Let the state of the features 𝐹 =  {𝑓0, 𝑓1, 𝑓2, … , 𝑓𝑛−1}. To calculate v-measure, we require 

to calculate the homogeneity and completeness first as follow: 

𝐻 =  {

1                       𝑖𝑓 𝐻(𝐶, 𝐾) = 0

1 −  
𝐻(𝐶|𝐾)

𝐻(𝐶)
𝑒𝑙𝑠𝑒                     

  

Calculating the cluster homogeneity, let C be the set of classes in the dataset 

CICIDS2017, K the set of clusters in the dataset in the context of this research, K=2 for binary 

classification K=2 for binary classification, n the total number of elements, and ack is the number  

of elements from class C assigned to cluster K. 𝐻(𝐶|𝐾) is maximal and equals 𝐻(𝐶) 

when the clustering does not provide new information. 

      𝐻(𝐶|𝐾) =  − ∑ ∑
𝑎𝑐𝑘

𝑛

|𝐶|
𝑐=1

|𝐾|
𝑘=1 log

𝑎𝑐𝑘

∑ 𝑎𝑐𝑘
|𝑐|
𝑐=1

 

𝐻(𝐶) =  − ∑
∑ 𝑎𝑐𝑘

|𝐾|
𝑘=1

𝑛

|𝐶|

𝑐=1

log
∑ 𝑎𝑐𝑘

|𝐾|
𝑘=1

𝑛
 

Since the class labeled "Benign" and "Attack". To find the features that belong to these 

two classes, the homogeneity algorithm examines all features of 𝐹 and count those features that 

belong to one class either benign or attack. While we calculate 𝐻(𝐶|𝐾) we go for all |𝐾| then for 

each k we have the nested loop for all |𝐶| and within it a third loop form 1 to |𝐶| this gives:  

Complexity of computing 𝐻(𝐶|𝐾): 𝑂(|𝐾||𝐶|2) 
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Complexity of computing 𝐻(𝐶): 𝑂(|𝐶||𝐾|) 

Similarly, in order to calculate the cluster completeness, let 𝐶 be the set of classes in the 

dataset CICIDS2017, 𝐾 is the set of clusters in the dataset, 𝑛 the total number of elements, and 

𝑎𝑐𝑘 be the number of elements from class 𝐶 assigned to cluster 𝐾, as 

𝐶 =  {

1                       𝑖𝑓 𝐻(𝐾, 𝐶) = 0

1 −  
𝐻(𝐾|𝐶)

𝐻(𝐾)
𝑒𝑙𝑠𝑒                     

 

  𝑊ℎ𝑒𝑟𝑒 

𝐻(𝐾|𝐶) =  − ∑ ∑
𝑎𝑐𝑘

𝑁

|𝐾|

𝑘=1

|𝐶|

𝑐=1

log
𝑎𝑐𝑘

∑ 𝑎𝑐𝑘
|𝐾|
𝑘=1

 

𝐻(𝐾) =  − ∑
∑ 𝑎𝑐𝑘

|𝐶|
𝑐=1

𝑛

|𝐾|

𝑘=1

log
∑ 𝑎𝑐𝑘

|𝐶|
𝑐=1

𝑛
 

While we calculate 𝐻(𝐾|𝐶) we go for all |𝐶| then for each k we have the nested loop for 

all |𝐾| and within it a third loop form 1 to |𝐾| this gives: 

Complexity of computing 𝐻(𝐾|𝐶): 𝑂(|𝐶||𝐾|2) 

Complexity of computing 𝐻(𝐶): 𝑂(|𝐾||𝐶|) 

In the algorithm shown above, the calculation of homogeneity has a complexity of 

𝑂(|𝐾||𝐶|2). The calculation of completeness has a complexity of 𝑂(|𝐶||𝐾|2). The algorithm has 

an overall complexity of 𝑂(𝑛𝑚2|𝐾||𝐶|2) or 𝑂(𝑛𝑚2|𝐶||𝐾|2) depending on whether |𝐶| or |𝐾| is 

larger (𝑛: the number of features, 𝑚: the number of data items) because the clustering algorithm 

generally performs with complexity of 𝑂(𝑚2). Since both |𝐾| (number of clusters) and |𝐶| 

(number of class labels) are constants in this research, the overall complexity can be simplified 

as 𝑂(𝑛𝑚2). It should be noted that this complexity cannot be underestimated especially with 

large datasets (i.e., when m is large), as demonstrated by the computation times in our 
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experiments. The computational time is also proportional to the number of features (i.e., n). 

Some expedition techniques, such as sampling, could be used on smaller datasets (assuming they 

follow the same distributions as the original datasets) to achieve better performance by reducing 

the value m. After ranking all features based on their v-measures, the selected feature set is 𝐹′ =

{𝑓𝑣1
, 𝑓𝑣2

, … 𝑓𝑣𝑗
, … , 𝑓𝑣𝑙

} , where 𝑣𝑗 ∈ 𝑉, 1 ≤ 𝑗 ≤ 𝑙, and 𝑙 is the threshold. 

Summary 

 

The research methodology introduced a feature selection technique v-measure and tested 

it on the CICISS-2017 dataset. The experimental analysis has demonstrated the importance of the 

feature dimensionality reduction techniques which lead to better outcomes. By conducting 

experiments to validate the generated feature sets using multiple classifiers, Random Forest is 

capable to detected anomalous activity and improve the detection rate, obtaining lowest false 

positive rate and false negative rate. Apparently, there is a noticeable improvement in obtaining a 

high accuracy of 99.9% recorded by Random Forest, the detection rate of 99.7%, low false 

positive rate of 0.0006, and false negative rate of 0.0004. For the other classifiers, although the 

performance is not as good as random forest, still validates the performance if v-measure in 

terms of high accuracy and low false positive/negative rates. Despite the huge number of audits 

and features, v-measure was able to achieve good performance in terms of dimensionality 

reduction while maintaining a low false positive rate, low false negative rate, and a high 

detection rate. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

This chapter presents conclusions, implications, recommendations, and a summary 

derived from this research which is to study the effect of feature selection in the intrusion 

detection systems. 

Conclusions 

 Feature selection is one of the most significant procedures of data preprocessing in data 

analytics. The data with various features has impacted the computational complexity and 

increase the amount of resource usage. This research provides empirical evidence that support 

the proposed feature selection technique through the implementation and evaluation of v-

measure. The main focus of this research was to answer the two following research questions: 

1-  Is v-measure a good feature selection technique in improving intrusion detection 

based on the CIDISD2017 dataset, while maintaining high detection rate and low 

false positive and false negative rate at the same time? 

2- What are the computational costs of v-measure when it is compared to other 

statistical measures such as F-measure or Information Gain? 

Through the experiments, we can conclude that both questions were answered. The 

CICIDS-2017 contains a huge volume of network traffic that is based on real traces of benign 

and malicious activities. The results showed that there was a significant improvement by using v-

measure, with the highest accuracy rate and detection rate occurred by Random Forest and 

Decision Tree of 99.9%, and the lowest false positive and false negative rate gained by only 

Random Forest. Our proposed feature selection technique combined the advantages of using 
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homogeneity and completeness which evaluates whether all data points with a particular class 

are put together in a cluster and whether that cluster contains only them. We conducted several 

experiments to show that our approach could improve the performance of intrusion detection 

systems. 

Implications 

 

This work can be used as a guide for researchers performing feature selection in the 

domain of intrusion detection systems. Previous studies in the field of feature selection showed 

that there is a lack in finding the optimal feature selection techniques due to multiple reasons. 

Over the years, many feature selection techniques have been proposed, with varied level of 

success. However, no single feature selection technique dominates the others. Our proposed 

research identifies a novel metric to help with the evaluation on the significance of different 

features in an intrusion detection dataset. The proposed metric has demonstrated superior 

performance on a binary intrusion classification problem. It has the potential to be used alone, or 

combined with other heuristics, in various anomaly detection fields. 

Based on the results presented in the previous chapter, it was noticeable that Random 

Forest performed remarkably well compared to the other machine learning algorithms such as 

Decision Tree and AdaBoost. Our research utilized v-measure to reduce superfluous data and 

extract significant features. The results show that v-measure wasn’t only identified to be a part of 

selecting the important features in the tested dataset, but to also help reduce false positive and 

false negative rates and improve detection rates as well. We believe this is a contribution to the 

body of knowledge in anomaly detection. 
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Recommendations 

 

Feature selection techniques have gained a considerable amount of interest in the 

intrusion detection systems domain. The results of this dissertation provided further research 

ideas for the feature selection techniques in intrusion detection systems. Some potential areas to 

extend this research consists of the following. 

• In this research, the classification problem was considered as a binary 

classification problem. Moving from this concept, multi classification problems 

could provide precise analysis of each features set that impacts each type of 

attack.   

• A potential variation of this research is to select the features based on the 

calculation homogeneity and completeness separately and compare the results 

with the significant features selected by v-measure.  

• In this research, the evaluation process was conducted using only three machine 

learning algorithms. It would be valuable to use more advanced machine learning 

techniques, for example, deep learning algorithms such as Convolutional Neural 

Networks (CNNs) or Recurrent Neural Networks (RNNs) (Banerjee et al., 2019). 

Summary 

 

 One issue to evaluate an anomaly detection system is that the data source contains 

irrelevant and duplicate input data. Each feature contains data points that represent significant 

information about the network activities. Some of these audit records may contain missing or 

infinity values that could potentially lead to misclassification.   
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To reduce data volume and eliminate irrelevant features for anomaly detection is 

sometimes important to use of statistics metrics and machine learning algorithms. An 

inaccurately selected set of features may lead to a significant reduction in the detection rate and 

low classification accuracy. Therefore, selecting the most significant features aiming to reduce 

the computing resources and improve the accuracy.  

 In our research, an external entropy v-measure was adopted as a feature selection 

technique. V-measure is an entropy-based cluster evaluation measure that provides a measure of 

the randomness of features and a measure of information acquired by comparing various 

features. V-measure is based on two concepts, homogeneity and completeness. V-measure 

presented a solution in terms of evaluating the quality of the clustering. 

 The main challenge of this research was to reduce the dataset features as much as 

possible while maintaining low false positive and false negative rates, and high detection rates in 

binary intrusion classification.  

 There were five experiments designed in the methodology chapter. The first experiment 

was conducted to deploy v-measure over all features and then choose the most proper and 

important feature. In the second and the third experiments, v-measure was compared to F-

measure as one of the entropy measures and IG as a filter feature selection technique. The fourth 

experiment uses identical features, and the fifth uses the top ten features that have been selected 

by the three feature selection techniques. The results indicated that v-measure was above our 

expectation and obtained better results in terms of high accuracy, high detection rate, low false 

positive rate, and false negative rate. 

In summary, v-measure has been developed and evaluated as a feature selection 

technique using the CICIDS-2017 dataset. This dataset was preprocessed and split for training 
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(70%) and testing (30%). Two other feature selection techniques were also introduced for a 

comparison against v-measure, those feature selection techniques appear to be F-measure, and 

Information Gain. In this research, five experiments have been conducted, as well as three 

machine learning classifiers Decision Tree, Random Forest, and AdaBoost have been applied for 

an evaluation of which of the three feature selection techniques provided better performance. 

Based on the experimental results, we claim that v-measure is a viable candidate for feature 

selection when high dimensional and big volume of data is used for anomaly detection. 
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Appendices 

Appendix A: CICIDS-2017 Features Description (Sharafaldin et al., 2018) 

 

Feature ID Feature Names Feature Description 

1 Destination Port Destination Port 

2 Flow Duration Duration of the flow in Microsecond 

3 Total Fwd Packets Total packets in the forward direction 

4 Total Backward Packets Total packets in the backward direction 

5 Total Length of Fwd Packets Total size of packet in forward direction 

6 Total Length of Bwd Packets Total size of packet in backward direction 

7 Fwd Packet Length Max Maximum size of packet in forward direction 

8 Fwd Packet Length Min Minimum size of packet in forward direction 

9 Fwd Packet Length Mean Mean size of packet in forward direction 

10 Fwd Packet Length Std Standard deviation size of packet in forward 

direction 

11 Bwd Packet Length Max Maximum size of packet in backward direction 

12 Bwd Packet Length Min Minimum size of packet in backward direction 

13 Bwd Packet Length Mean Mean size of packet in backward direction 

14 Bwd Packet Length Std Standard deviation size of packet in backward 

direction 

15 Flow Bytes/s Number of flow bytes per second 

16 Flow Packets/s Number of flow packets per second 

17 Flow IAT Mean Mean time between two packets sent in the flow 

18 Flow IAT Std Standard deviation time between two packets 

sent in the flow 

19 Flow IAT Max Maximum time between two packets sent in the 

flow 

20 Flow IAT Min Minimum time between two packets sent in the 

flow 

21 Fwd IAT Total Total time between two packets sent in the 

forward direction 

22 Fwd IAT Mean Mean time between two packets sent in the 

forward direction 

23 Fwd IAT Std Standard deviation time between two packets 

sent in the forward direction 

24 Fwd IAT Max Maximum time between two packets sent in the 

forward direction 

25 Fwd IAT Min Minimum time between two packets sent in the 

forward direction 

26 Bwd IAT Total Total time between two packets sent in the 

backward direction 

27 Bwd IAT Mean Mean time between two packets sent in the 

backward direction 

28 Bwd IAT Std Standard deviation time between two packets 

sent in the backward direction 
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29 Bwd IAT Max Maximum time between two packets sent in the 

backward direction 

30 Bwd IAT Min Minimum time between two packets sent in the 

backward direction 

31 Fwd PSH Flags Number of times the PSH flag was set in packets 

travelling in the forward direction 

32 Bwd PSH Flags Number of times the PSH flag was set in packets 

travelling in the backward direction (0 for UDP) 

33 Fwd URG Flags Number of times the PSH flag was set in packets 

travelling in the backward direction (0 for UDP) 

34 Bwd URG Flags Number of times the URG flag was set in 

packets travelling in the backward direction (0 

for UDP) 

35 Fwd Header Length Total bytes used for headers in the forward 

direction 

36 Bwd Header Length Total bytes used for headers in the backward 

direction 

37 Fwd Packets/s Number of forward packets per second 

38 Bwd Packets/s Number of backward packets per second 

39 Min Packet Length Min Packet Length 

40 Max Packet Length Max Packet Length 

41 Packet Length Mean Mean length of a packet 

42 Packet Length Std Standard deviation length of a packet 

43 Packet Length Variance Variance length of a packet 

44 FIN Flag Count Number of packets with FIN 

45 SYN Flag Count Number of packets with SYN 

46 RST Flag Count Number of packets with RST 

47 PSH Flag Count Number of packets with PUSH 

48 ACK Flag Count Number of packets with ACK 

49 URG Flag Count Number of packets with URG 

50 CWE Flag Count Number of packets with CWE 

51 ECE Flag Count Number of packets with ECE 

52 Down/Up Ratio Download and upload ratio 

53 Average Packet Size Average size of packet 

54 Fwd Segment Size Avg Average size observed in the forward direction 

55 Bwd Segment Size Avg Average size observed in the backward direction 

56 Fwd Header Length Total bytes used for headers in the forward 

direction 

57 Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the 

forward direction 

58 Fwd Avg Packets/Bulk Average number of packets bulk rate in the 

forward direction 

59 Fwd Avg Bulk Rate Average number of bulk rate in the forward 

direction 
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60 Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the 

backward direction 

61 Bwd Avg Packets/Bulk Average number of packets bulk rate in the 

backward direction 

62 Bwd Avg Bulk Rate Average number of bulk rate in the backward 

direction 

63 Sub flow Fwd Packets The average number of packets in a sub flow in 

the forward direction 

64 Sub flow Fwd Bytes The average number of bytes in a sub flow in the 

forward direction 

65 Sub flow Bwd Packets The average number of packets in a sub flow in 

the backward direction 

66 Sub flow Bwd Bytes The average number of bytes in a sub flow in the 

backward direction 

67 Fwd Init Win bytes The total number of bytes sent in initial window 

in the forward direction 

68 Bwd Init Win bytes The total number of bytes sent in initial window 

in the backward direction 

69 Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data 

payload in the forward direction 

70 Fwd Seg Size Min Minimum segment size observed in the forward 

direction 

71 Active Mean Mean time a flow was active before becoming 

idle 

72 Active Std Standard deviation time a flow was active before 

becoming idle 

73 Active Max Maximum time a flow was active before 

becoming idle 

74 Active Min Minimum time a flow was active before 

becoming idle 

75 Idle Mean Mean time a flow was idle before becoming 

active 

76 Idle Std Standard deviation time a flow was idle before 

becoming active 

77 Idle Max Maximum time a flow was idle before becoming 

active 

78 Idle Min Minimum time a flow was idle before becoming 

active 

79 Label Class activities label 

 

 

 

 



71 

 

 

 

Appendix B: List of F-measure Features Scores 

 

Feature-ID F-measure score Feature-ID F-measure score 

F1 0.001 F40 0.170 

F2 0.007 F41 0.000 

F3 0.051 F42 0.000 

F4 0.245 F43 0.000 

F5 0.171 F44 0.752 

F6 0.304 F45 0.698 

F7 0.171 F46 0.715 

F8 0.000 F47 0.708 

F9 0.000 F48 0.684 

F10 0.000 F49 0.670 

F11 0.304 F50 0.715 

F12 0.450 F51 0.715 

F13 0.000 F52 0.436 

F14 0.000 F53 0.000 

F15 0.000 F54 0.000 

F16 0.000 F55 0.000 

F17 0.000 F56 0.001 

F18 0.000 F57 0.716 

F19 0.007 F58 0.716 

F20 0.078 F59 0.716 

F21 0.300 F60 0.716 

F22 0.000 F61 0.716 

F23 0.000 F62 0.716 

F24 0.300 F63 0.051 

F25 0.345 F64 0.171 

F26 0.435 F65 0.245 

F27 0.000 F66 0.304 

F28 0.000 F67 0.027 

F29 0.435 F68 0.069 

F30 0.440 F69 0.380 

F31 0.698 F70 0.001 

F32 0.716 F71 0.000 

F33 0.715 F72 0.000 

F34 0.716 F73 0.678 

F35 0.001 F74 0.678 

F36 0.195 F75 0.000 

F37 0.000 F76 0.000 

F38 0.000 F77 0.678 

F39 0.405 F78 0.678 
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Appendix C: List of Information Gain (IG) Features Scores 

 

Feature-ID IG score Feature-ID IG score 

F1 0.292 F40 0.267 

F2 0.201 F41 0.320 

F3 0.106 F42 0.343 

F4 0.141 F43 0.343 

F5 0.285 F44 0.014 

F6 0.298 F45 0.006 

F7 0.248 F46 0.000 

F8 0.124 F47 0.051 

F9 0.215 F48 0.049 

F10 0.181 F49 0.022 

F11 0.267 F50 0.000 

F12 0.113 F51 0.000 

F13 0.289 F52 0.150 

F14 0.194 F53 0.347 

F15 0.213 F54 0.215 

F16 0.190 F55 0.290 

F17 0.177 F56 0.172 

F18 0.150 F57 0.000 

F19 0.214 F58 0.000 

F20 0.077 F59 0.000 

F21 0.179 F60 0.000 

F22 0.169 F61 0.000 

F23 0.136 F62 0.000 

F24 0.190 F63 0.106 

F25 0.064 F64 0.285 

F26 0.149 F65 0.141 

F27 0.137 F66 0.298 

F28 0.087 F67 0.293 

F29 0.161 F68 0.252 

F30 0.105 F69 0.073 

F31 0.006 F70 0.044 

F32 0.000 F71 0.126 

F33 0.000 F72 0.017 

F34 0.000 F73 0.124 

F35 0.173 F74 0.125 

F36 0.177 F75 0.105 

F37 0.189 F76 0.023 

F38 0.201 F77 0.112 

F39 0.124 F78 0.106 
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