
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

A PCNN Framework for Blood Cell Image Segmentation A PCNN Framework for Blood Cell Image Segmentation

Carol D. Lenihan

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A PCNN Framework for Blood Cell Image Segmentation

by

Carol D. Lenihan

A dissertation report for partial fulfillment of the requirements

for the degree of Doctor of Philosophy

 in

Computer Science

College of Computing and Engineering

Nova Southeastern University

2020

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A PCNN Framework for Blood Cell Image Segmentation

by

Carol D. Lenihan

This research presents novel methods for segmenting digital blood cell images under a

Pulse Coupled Neural Network (PCNN) framework. A blood cell image contains

different types of blood cells found in the peripheral blood stream such as red blood cells

(RBCs), white blood cells (WBCs), and platelets. WBCs can be classified into five

normal types – neutrophil, monocyte, lymphocyte, eosinophil, and basophil – as well as

abnormal types such as lymphoblasts and others. The focus of this research is on

identifying and counting RBCs, normal types of WBCs, and lymphoblasts. The total

number of RBCs and WBCs, along with classification of WBCs, has important medical

significance which includes providing a physician with valuable information for

diagnosis of diseases such as leukemia.

The approach comprises two phases – segmentation and cell separation – followed by

classification of WBC types including detection of lymphoblasts. The first phase presents

two methods based on PCNN and region growing to segment followed by a separate

method that combines Circular Hough Transform (CHT) with a separation algorithm to

find and separate each RBC and WBC object into separate images. The first method uses

a standard PCNN to segment. The second method uses a region growing PCNN with a

maximum region size to segment.

The second phase presents a WBC classification method based on PCNN. It uses a

PCNN to capture the texture features of an image as a sequence of entropy values known

as a texture vector. First, the parameters of the texture vector PCNN are defined. This is

then used to produce texture vectors for the training images. Each cell type is represented

by several texture vectors across its instances. Then, given a test image to be classified,

the texture vector PCNN is used to capture its texture vector, which is compared to the

texture vectors for classification.

This two-phase approach yields metrics based on the RBC and WBC counts, WBC

classification, and identification of lymphoblasts. Both the standard and region growing

PCNNs were successful in segmenting RBC and WBC objects, with better accuracy

when using the standard PCNN. The separate method introduced with this research

provided accurate WBC counts but less accurate RBC counts. The WBC subimages

created with the separate method facilitated cell counting and WBC classification. Using

a standard PCNN as a WBC classifier, introduced with this research, proved to be a

successful classifier and lymphoblast detector. While RBC accuracy was low, WBC

accuracy for total counts, WBC classification, and lymphoblast detection were overall

above 96%.

Acknowledgements

Listen to advice and accept instruction, that you may gain wisdom in the future.

(Proverbs 19:20)

I would like to thank my dissertation chair, Dr. Michael Laszlo, for agreeing to work with

me on this project and providing tremendous feedback. Your valuable advice and

guidance throughout instructed me in continuing and finishing this research. I would also

like to thank my committee members, Dr. Francisco Mitropoulos and Dr. Sumitra

Mukherjee, for taking the time to review. Also, thanks to all the faculty at NSU for their

excellent teaching and dedication.

I would like to thank my parents, brother, sisters, friends, colleagues, and fellow students

that provided me words of encouragement during this process. I am thankful to God that I

was given the necessary tools to proceed down this path of achievement.

Trust in the Lord with all your heart, and do not lean on your own understanding. In all

your ways acknowledge him, and he will make straight your paths.

(Proverbs 3:5-6)

V

Table of Contents

Abstract iii

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

Background 1

Problem Statement 2

Dissertation Goal 4

Relevance and Significance 6

Research Questions 10

Barriers and Issues 11

Summary 12

Chapter 2 Review of the Literature 13

Color Spaces 13

Segmentation Techniques 14

Thresholding 15

Clustering 17

Edge, Active Contour Methods 18

Support Vector Machine (SVM) 19

Region Growing 19

Pulse Coupled Neural Network (PCNN) 20

Neural Networks (NN) 22

Separation and Counting Techniques 24

Circular Hough Transform (CHT) 24

Template and Estimates 25

Distance and Watershed 25

Connected Component 26

Edge Based 27

Classification Techniques 27

Summary 30

Chapter 3 Methodology 31

Introduction 31

PCNN Overview 31

Key Parameters 34

PCNN Variants 35

Texture Features 35

Framework Test Environment 36

Segmentation 37

Separation 37

Count Cells 40

Classification 40

Generate Texture Vector 41

VI

Novel PCNN Methods 43

PCNN with CHT 43

Region Growing PCNN with CHT 44

Conventional Segmentation and PCNN Prior Work 44

Threshold 45

Watershed Region Growing 45

Standard PCNN 45

Comparing Prior Work 45

Total RBC and WBC Counts 46

WBC Classification and Counts 46

Lymphoblast Detection 46

Metrics and Data 47

Analysis 47

Accuracy 48

Precision 48

Recall 48

Specificity 48

F1-measure 49

Actual Image Counts 49

Resources 49

Summary 50

Chapter 4 Results 51

Introduction 51

Datasets 51

Preprocessing 56

Separation 56

PCNN with CHT 58

Key Parameters 58

Separate Cell Objects 65

Region Growing PCNN 67

Key Parameters 67

Separation 68

Intensity 68

Color 71

Cell 75

Conventional Segmentation and PCNN Prior Work 78

Threshold 78

Watershed Region Growing 78

PCNN from Literature 79

Classification 80

ALL_IDB Dataset 84

Kaggle Dataset 86

Comparing Prior Work 88

Total RBC and WBC Counts 88

WBC Classification and Counts 89

Lymphoblast Detection 90

Summary 91

Chapter 5 Conclusion 92

Introduction 92

Conclusions 92

VII

Parameters 92

Segmentation 93

Separation 94

Classification 94

Assessment 95

Future Work 96

Segmentation 96

Classification 97

Separation 98

Summary 99

References 100

VIII

List of Tables

Tables

Table 1 Segmentation Dataset Summary 53

Table 2 Classification Dataset Summary 54

Table 3 Dataset Details 55

Table 4 Standard PCNN Segmentation Fixed Parameters 59

Table 5 Standard PCNN Segmentation Parameters Impacted by Image Size 59

Table 6 Standard PCNN Segmentation Weight Matrix Parameters 60

Table 7 Standard PCNN Segmentation Key Parameters by Cell Type (ALL_IDB_subset)

61

Table 8 Standard PCNN Segmentation Key Parameters by Image Size (ALL_IDB_large)

62

Table 9 Standard PCNN Metrics (ALL_IDB_large) 63

Table 10 Standard PCNN Segmentation Key Parameters by Cell Type 65

Table 11 Standard PCNN Segmentation Average Metric Results by Cell Type 65

Table 12 Region Growing PCNN Segmentation Key Parameters 68

Table 13 Region Growing Intensity PCNN Segmentation Key Parameters by Cell Type

(ALL_IDB_subset) 69

Table 14 Region Growing Intensity Key Parameters 71

Table 15 Region Growing Intensity Average Metrics 71

Table 16 Color Region Growing PCNN Segmentation Key Parameters by Cell Type

(ALL_IDB_subset) 73

Table 17 Color Region Growing PCNN Average Metrics 75

Table 18 Color Region Growing Cell PCNN Average Metrics 78

Table 19 Threshold Metrics (ALL_IDB_subset) 78

Table 20 Watershed Metrics (ALL_IDB_subset) 79

Table 21 PCNN Parameters from Literature 79

Table 22 PCNN with Parameters from Literature Metrics 79

Table 23 Texture Vector PCNN Parameters 81

Table 24 Texture Vector Separate Parameters 81

Table 25 Adjusted Classification Parameters (ALL_IDB) 84

Table 26 Confusion Matrix (ALL_IDB_large and ALL_IDB_large2) 84

Table 27 Confusion Matrix (ALL_IDB_subset) 85

Table 28 Confusion Matrix (ALL_IDB Test Data) 85

Table 29 WBC Classification Metrics (ALL_IDB Test Data) 86

Table 30 Confusion Matrix (Kaggle_Test_simple) 87

Table 31 Confusion Matrix (Kaggle_Test) 87

Table 32 Classification Metrics (Kaggle) 87

Table 33 Metric Comparison with Literature (ALL_IDB_large) 89

Table 34 Classification Metric Comparison (ALL_IDB dataset) 89

Table 35 Classification Metric Comparison (Kaggle dataset) 90

Table 36 Lymphoblast Detection Comparison 91

IX

List of Figures

Figures

Figure 1 Standard PCNN 33

Figure 2 Framework Test Pseudocode 37

Figure 3 PCNN Framework Segmentation 37

Figure 4 Separate 39

Figure 5 Classify 41

Figure 6 Generate Texture Vectors Pseudocode 42

Figure 7 Segment and Separate 42

Figure 8 Capture Texture Vector 43

Figure 9 Original, Segmented, and Result of Im201_0 57

Figure 10 Working Images (Im201_0) 58

Figure 11 WBC and RBC (Im201_0) 58

Figure 12 Standard PCNN Accuracy by Parameters (ALL_IDB_subset) 61

Figure 13 Standard PCNN Metrics (ALL_IDB_subset) 61

Figure 14 Standard PCNN Metrics (ALL_IDB_subset) Chart 2 62

Figure 15 Standard PCNN Accuracy Metric (ALL_IDB_large) 63

Figure 16 Standard PCNN WBC Accuracy Metric (Kaggle_subset) 64

Figure 17 Clumped WBCs Improved with Split Segmentation 66

Figure 18 Missed WBCs 67

Figure 19 Region Growing Intensity PCNN Accuracy by Parameters (ALL_IDB_subset)

69

Figure 20 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics 69

Figure 21 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics Chart 2 70

Figure 22 Region Growing Intensity PCNN WBC Accuracy (ALL_IDB_large) 70

Figure 23 Region Growing Intensity PCNN WBC Accuracy (Kaggle_subset) 71

Figure 24 Color Region Growing PCNN Accuracy by Parameters (ALL_IDB_subset) 72

Figure 25 Color Region Growing PCNN Metrics (ALL_IDB_subset) 73

Figure 26 Color Region Growing PCNN Metrics (ALL_IDB_subset) Chart 2 73

Figure 27 Color Region Growing PCNN Accuracy Metric (ALL_IDB_large) 74

Figure 28 Color Region Growing PCNN WBC Accuracy (Kaggle_subset) 74

Figure 29 Color Region Growing Cell PCNN Accuracy by Parameters (ALL_IDB_subset)

76

Figure 30 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset) 76

Figure 31 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset) Chart 2 76

Figure 32 Color Region Growing Cell PCNN WBC Accuracy (ALL_IDB_large) 77

Figure 33 Color Region Growing Cell PCNN WBC Accuracy (Kaggle_subset) 77

Figure 34 Method Comparison Accuracy Methods 80

Figure 35 WBC Segmentation and Result (Im004_1) 82

Figure 36 Lymphoblasts (Im004_1) 83

Figure 37 Lymphocyte, Neutrophils (Im108_0) 83

Figure 38 Neutrophil, Lymphocyte, Lymphocyte, and Misclassified Monocyte (Im088_0)

83

Figure 39 Separate Flow Improvement 98

1

Chapter 1

Introduction

Background

 A complete blood count (CBC) is a laboratory blood test that contains a count of

leukocytes also called white blood cells (WBCs), erythrocytes also called red blood cells

(RBCs), hemoglobin, hematocrit, and blood smear examination (Brown, 1980). A

medical technologist performs a manual examination of a blood smear slide using a

microscope to classify and count the percentage of each type of leukocyte. They also

indicate the presence of any cells that are abnormal, premature, or contain parasites so

those slides can be further analyzed by a hematologist or physician. The CBC can be used

to diagnose some diseases, screen general health condition, and monitor patient during

treatment (Brown, 1980).

 The blood cells are created in the bone marrow and mature cells are circulated in the

blood stream. Leukocytes help fight infections and erythrocytes carry oxygen to the body.

However, under certain diseases and conditions, there is an increase (or decrease) in the

number of blood cells, and sometimes immature or early cells can enter the blood stream.

Immature cells seen in a blood smear can be indicative of disease.

 A blood cell image typically has a higher number of RBCs than WBCs. The RBCs

are usually smaller than WBCs, around 7-8 µm in diameter and the center may appear

2

hollow, whereas WBCs are around 10-20 µm in diameter and contain a nucleus and

depending on the type may have granules (Loddo, Putzu, Di Ruberto, and Fenu, 2016).

The color absorbed during staining of the smear can be used to differentiate between an

RBC and WBC, however, this can vary with the stain process. Leukocytes can be

classified into neutrophil, lymphocyte, monocyte, eosinophil, basophil, and early

(immature) cell types known as blasts. The types can be differentiated by a combination

of color, size, number of lobes in nucleus, and presence of granules (Loddo et al., 2016).

Erythrocyte size and shape can vary: microcell (smaller than normal), or macrocell

(larger than normal), tear drop, sickle cell (shaped like a crescent and indicative of type

of anemia), nucleated (premature RBC), malaria (parasite in RBC), among others

(Brown, 1980). Thus, blood counts and classification can show indications for leukemia,

anemia, and malaria to name a few diseases.

 This section is organized as follows. First the problem is discussed and the dissertation

goal is presented. The relevance and significance of the problem follows, along with the

research questions of this dissertation. Barriers and issues are discussed next and this

chapter concludes with a summary.

Problem Statement

 Improper blood cell image segmentation and cell clumping lead to incorrect counts

and classification that can result in misdiagnosis. To accurately count erythrocytes and

leukocytes, the cells need to be separated from each other and the background (Loddo et

al. 2016). Incorrect segmentation can result in counting one cell type as another (Acharya

& Kumar, 2018). The staining process of blood smears can impact thresholding methods

3

resulting in inaccurate results (Loddo et al. 2016). Choosing an incorrect threshold can

cause improper segmentation (Acharya & Kumar, 2018). Quinones, Macawile, Ballado

Jr., Dela Cruz, and Caya (2018) suggest that improvements in blood cell image

segmentation are still needed to provide more accurate results. Thus, segmentation is a

crucial step for blood cell image processing to provide accurate counts.

 Besides segmentation, counting cells that are clumped together or visually overlapping

can reduce accuracy if they are not correctly separated. Blood cell images can contain

many clumps of multiple cells after segmentation (Loddo et al., 2016). Cells that are

visually connected can be counted incorrectly (Acharya & Kumar, 2018). Improvements

are needed for separation of overlapped and clumped cells as they can decrease

segmentation accuracy impacting the cell counts (Savkare, Narote, & Narote, 2016).

Counting the individual cells within a clump is important for obtaining correct counts.

 Since a CBC normally includes a differential and detection of abnormalities, this

should also be included during image processing of a blood smear for complete results.

Determining types of WBCs is important as an increase in premature types of WBCs is

associated with leukemia (Loddo et al., 2016). Abnormal growth of blood cells is

indicative of leukemia, such as Lymphocytic which has an increase in lymphoblasts and

Myelogenous (also known as Myeloid) which has an increase in myeloblasts, among

others (Brown, 1980). Lymphocytic and Myeloid are two common types of leukemia

containing different signatures, thus knowledge of the types of premature WBCs are

crucial to diagnosis of which type the patient has (Khobragade, Mor, & Patil, 2015).

Thus, detecting abnormal WBCs along with classifying the type of WBC should be

included to aid in diagnosis.

4

 A CBC provides important medical information to a physician to diagnose certain

diseases that can be life-threatening to a patient. A hematology analyzer is an automated

method to obtain these counts and is costly; a hemocytometer is a manual method for

obtaining counts and thus is prone to error (Quinones et al., 2018). Some countries or

regions do not have access to a laboratory for performing a CBC (Seth & Palodhi, 2017).

To address these problems, image processing of digital blood images can potentially be

used instead to identify, count, and classify leukocytes and erythrocytes and detect

abnormalities. Therefore, the problem exists for improvements in segmentation and

clump separation of blood cell image processing to provide accurate counts and

classification.

Dissertation Goal

 The goal of this research was to develop and assess image processing methods to

segment and separate RBCs and WBCs from a blood smear image, classify WBCs, and

count RBCs and WBCs. The development was split into three main areas: segmentation,

separation, and classification. A framework was developed to experiment with different

segmentation methods including threshold, watershed, and Pulse Coupled Neural

Network (PCNN). A separate method was developed to find and separate the RBC and

WBC objects from the segmented image using postprocessing, Circular Hough

Transform (CHT), and separating the objects into sub images. The resulting WBC sub

images were used for WBC classification using a PCNN classifier.

5

 A PCNN is a single layer neural network where each pixel represents a neuron and

neighbor neurons provide link information that pulses through the network (Kuntimad &

Ranganath, 1999). PCNN was modeled after the cat’s visual cortex (Eckhorn, Reitboeck,

Arndt, and Dicke, 1990). It is an unsupervised method which can be used to segment

objects from the background in a grey scale digital image. A PCNN was used to segment

and count RBCs by Adagale and Pawar (2013) who combined it with templates and Ma,

Liang, and Ma (2016) who combined it with image quality.

 An issue with PCNN is tuning the parameters and knowing when to stop so that the

best segmentation is achieved. Liu, Wang, Yan, and Huang (2016) used fuzzy entropy to

determine the stopping criteria when segmenting WBCs using a simplified PCNN.

Recently, Zhou and Shao (2018) proposed a multi object grey scale region growing

PCNN image segmentation and Xu, Li, Lei, and Lv (2018) proposed a similar region

growing PCNN image segmentation using color.

 This dissertation examined two different PCNN stopping criteria. The first criterion

uses a fixed number of iterations, whose value was determined by experiments that

produce the best segmentation and subsequent separation of RBC and WBC objects. The

second criterion uses a region growing PCNN with additional stopping criteria that

specified a max region size. The PCNN segmentation experiments included using the

intensity from the grey scale image for the feeding and linking part of a standard PCNN,

and the spectral feeding for region growing PCNN as per Xu et al. (2018) for color

values.

6

 A separation method was developed that employs Circular Hough Transform (CHT)

on the segmented image to find cells and then separates each RBC and WBC into images.

Each object found is subsequently removed from the segmented image thus eliminating

duplicated cells, unwanted edges, and separating cells in clumps. Preprocessing and

postprocessing is also performed to facilitate separation.

 For WBC classification, the textural information was captured with a PCNN that

retrieved the entropy series and stored as the texture vector. A PCNN was used for image

texture retrieval by Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu, and Wang (2017).

The PCNN parameters were determined through experiments for the texture vector

PCNN that produced the best classifier. The texture vectors and cell type were captured

using the texture vector PCNN on the training dataset and stored. The PCNN classifier

was used to capture the texture vector for a WBC from the testing dataset, and its texture

vector compared to the stored texture vectors for WBC classification. WBCs were

classified into neutrophil, lymphocyte, monocyte, and eosinophil, along with basophil

and lymphoblasts depending on the dataset.

Relevance and Significance

 There are several steps associated with counting blood cells using image processing:

segmentation, classification, and counting. The segmentation stage separates the WBC

and/or RBC from the background (Kolhatkar & Wankhade, 2016). Classification

methods are used to separate types of WBCs as is done by a manual differential

(Macawile, Quinones, Ballado Jr., Dela Cruz, and Caya, 2018). Counting may include

separating cells that are clumped into single cells for more accurate counting (Loddo et

7

al., 2016). This section discusses the relevance and significance as related to

segmentation, classification, and counting blood cells.

 Segmentation can be done by using a threshold to separate an object from the

background. For thresholding into object and background, each pixel of a grey scale

image is compared and if it is above a certain value it is specified as a 1 for object and

otherwise 0 for background (Gonzalez and Woods, 2002). Otsu threshold is an algorithm

for finding the optimal threshold that splits an object from the background. The Otsu

threshold is used by Acharya and Kumar (2018) to segment RBCs from the background.

Shankar, Deshpande, Chaitra, and Aditi (2016) use Zack threshold on converted color

space to segment the WBCs from the background.

 Another segmentation method is clustering, where the objects of similar values are

grouped together. A common clustering method is k-means where the number of clusters

is specified by the value of k. A blood cell image is typically stored by its red, green, and

blue color values known as RGB color space. It can be converted to another color space

or grey scale. CMYK represents an image using cyan, magenta, yellow, and black, and

Lab uses luminance and chromaticity components a and b. Abdul Nasir, Mashor, and

Rosline (2011) used clustering to segment the WBC in one step and the WBC nucleus in

the next step. Savkare and Narote (2015) used k-means clustering, where k is equal to 2

to separate the cells from the background. Vogado, Veras, Andrade, Araujo, Silva, and

Medeiros (2016) converted the image to CMYK and Lab, extract the M and b

components, and perform k-means clustering to segment the WBCs. Most of the k-means

clustering methods segment either the RBCs or WBCs. However, Jagadev and Virani

(2017) used k-means clustering on Lab color space to separate into WBC nucleus, RBC

8

and WBC cytoplasm, and background. While Zhang et al. (2014) used a combination of

color transfer and k-means clustering to separate the background, RBC, and WBC

nucleus.

 A support vector machine (SVM) which is a supervised machine learning

classification method can also be used for segmentation. Di Ruberto, Loddo, and Putzu

(2016) used a Nearest Neighbor Search (NNS) and SVM model to segment the image

into WBC, RBC, and plasma.

 Pulse Coupled Neural Network (PCNN) is another method for image segmentation. A

PCNN was used by Mao-jun, Zhao-bin, Hong-juan, and Yi-de, (2008), Adagale and

Pawar (2013), and Ma et al. (2016) to segment the RBCs from the background. A

simplified PCNN and fuzzy entropy was used by Liu et al. (2016) to segment WBCs.

This dissertation used a PCNN to segment the image which subsequently was separated

into WBC and RBC objects.

 Once the image is segmented the cells need to be separated for accurate counting.

From the literature, Watershed Transform, Circular Hough Transform (CHT), and

templates are used as well as combinations. Watershed transform is used by Savkare et al.

(2016) to separate clumped RBCs. Acharya and Kumar (2018) used watershed and

Circular Hough Transform (CHT) with a specified radius to separate and count RBCs. Di

Ruberto et al. (2016) counts clumped WBCs using CHT and a specified radius along with

the grey level reference values. Dela Cruz Valiente Jr., Castor, Mendoza, Song, and

Torres (2017) use an estimated count for RBC clumps based on the clump size. Ma et al.

(2016) used CHT and average radius for template creation. Templates are also used by

Adagale and Pawar (2013) to determine the count based on the clump size. The

9

separation of cell objects for this research used CHT with a specified radius based on cell

type along with object acceptance criteria.

 Determining the type or classification of a WBC is crucial for accurate counts. Alreza

and Karimian (2016) used and SVM model for classification after extracting WBC

features such as color, texture, and number of lobes in the nucleus. An Artificial Neural

Network (ANN) was used by Manik, Saini, and Vadera (2016) to classify WBCs into

three categories (neutrophil, lymphocyte, and eosinophil). Jagadev and Virani (2017)

used an SVM to determine if cells were leukemic after extracting statistical, geometrical,

color, and textural features. Ghosh, Singh, and Sheet (2017) used a deep Convolutional

Neural Network (CNN) with average pooling to determine if the image contained

lymphoblasts. Macawile et al. (2018) used transfer learning and a CNN to classify WBC

cells from blood image into neutrophils, lymphocytes, monocytes, eosinophils, and

basophils. Liang, Hong, Xie, and Zheng (2018) used a combination of CNN and

Recurrent Neural Network (RNN) to classify WBCs into lymphocyte, eosinophils,

monocyte, and neutrophils. SVM and NN methods typically require a large set of labeled

data for the training of the network.

 Other classification methods compare different features. Khobragade et al. (2015)

detected abnormal types of WBCs by comparing statistical, textural, geometrical, and

color features between normal and blast cells. A PCNN can be used to extract statistical

features for texture classification (Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu,

Wang, 2017). Since a PCNN process is iterative until the stop criterion is reached, the

resulting output contains a series of images. A feature vector can be calculated from the

time and entropy series that is unique and invariant to large changes in scale and rotation

10

(Zhan, Zhang, Ma, 2009). The classification of WBCs for this project used a PCNN and

calculated a feature vector from the entropy series which was compared to a known set of

vectors for WBC types.

Research Questions

 There were three main stages performed by this research: segmentation, separation,

and classification. The questions associated with each stage in this section were answered

by this research as described in Chapter 4. All questions are related specifically for blood

cell images.

 The segmentation step was used to segment the objects of interest from everything

else. Segmentation for the purpose of this research was generation of a binary image that

contained either WBCs, RBCs or both and was used by the separation stage to separate

into WBC and RBC objects. The first experiment used the intensity grey scale.

RQ1: What are the significant PCNN parameters impacting PCNN segmentation?

The region growing PCNN added a color option and experiments were done on

different color spaces. It also segmented the image into regions reducing the number of

objects in the separation stage.

RQ2: What color channels and image processing methods improve the results of

PCNN segmentation and separation?

The separation stage generated an image for each circular object found in the

segmented image that was used for counting and WBC classification. Some

postprocessing was required during this stage. This stage captured each object into a

WBC and RBC list. This was a precursor for WBC classification and for counting.

11

RQ3: Does PCNN segmentation with postprocessing identify edges for CHT to

find and differentiate between WBC and RBC objects?

The classification stage was used to classify the type of WBC. This stage used a

PCNN to capture the texture vector of the WBC object and compared with the texture

vector list stored per type of WBC. The PCNN and parameters used to capture the texture

vector for the WBC test object was the same as the one used to generate the texture

vectors. There were two sets of stored texture vectors, one for each dataset (ALL_DB

and Kaggle).

RQ4: What are the significant PCNN parameters that yield the best texture vector

results for each dataset, or which worked generally across datasets?

Barriers and Issues

 Some of the PCNN code was available from Lindblad and Kinser (2013) which was

used as a starting point for the standard model, however, additional code was developed

for other PCNN models along with the separate method. A PCNN framework was

developed to select different segmentation methods for verification of this research.

A texture vector representation for each cell type was created for WBC classification.

The two datasets used were the ALL_DB from Labati, Piuri, and Scotti (2011) and the

Kaggle blood-cell dataset from Mooney (2018). Difference between these datasets

required generation of two texture vector representations, one for each dataset. The real

counts of RBC and WBCs for each image tested was manually calculated for analysis of

metrics.

12

The lymphoblasts from the ALL_IDB contained center values which were used to

obtain the real counts. The other WBCs from the ALL_IDB were manually classified

into lymphocytes, neutrophils, monocytes, basophils, and eosinophils. The Kaggle dataset

contained WBC classifications for lymphocytes, eosinophils, monocytes, and neutrophils,

but did not contain basophils or lymphoblasts; thus, those types were not included in the

results for that dataset. Only a subset from each dataset was used for counting and

classification in this research. The quality of images from the Kaggle dataset was

different than those of the ALL_IDB and as such required different preprocessing and

was not used for RBC counting.

Summary

 The research for this project created a PCNN framework for adjusting parameters and

testing segmentation methods, developed a separation method that used CHT, classified

WBCs, and counted cells. The remainder of this paper is organized as follows. Chapter 2

contains the literature review, Chapter 3 contains details of the methodology used in this

research, Chapter 4 contains the dissertation results, and Chapter 5 summarizes this

report.

13

Chapter 2

Review of the Literature

 There are several steps associated with counting blood cells using image processing:

preprocessing, segmentation, postprocessing, separation, counting, and classification. The

preprocessing stage includes image enhancement and denoising and the segmentation

stage segments the cells from the background (Kolhatkar & Wankhade, 2016). Counting

may include separating cells that are clumped into single cells for more accurate counting

(Loddo et al., 2016). Classification methods can be used to determine types of WBCs as

is done by a manual differential (Macawile, Quinones, Ballado Jr., Dela Cruz, and Caya,

2018).

 Since the goal of this research was related to segmentation, separation, counting, and

classifying WBCs, this section contains a review of the literature in these areas. Some of

the reviews in this section were concerned with just segmentation, counting, or

classifying and not necessarily all of these. This chapter first contains a brief discussion

on color spaces, followed by segmentation methods and includes preprocessing. Next is

a section on separation and counting which also includes any postprocessing. The

chapter is wrapped up with a section on classification methods followed by a chapter

summary.

Color Spaces

 Images can be represented in different color spaces. RGB is a common color space

that is represented by the colors red, green, and blue. Grey scale is represented by shades

14

of grey using a value between 0 and 1. A binary image is represented by black or white,

represented with a value of 0 or 1, respectively. HSV is known as hue, saturation, and

value, and HSI is hue, saturation, and intensity. The intensity component of HSI does not

contain any color value as that is retained in the other two components (Zhang et al.,

2014). The CMYK color space is represented by the colors, cyan, magenta, yellow, and

black. It is considered a subtractive model and is used in color printing (Zhang, 2014).

Lab color space is represented by luminance and chromaticity components a and b, which

indicate brightness, and colors red to green, and blue to yellow, respectively (Savkare et

al., 2015; Jagadev and Virani, 2017). The Haematoxylin Eosin Diaminobenzidine (HED)

is a color space that contains haematoxylin (blue), eosin (magenta-red), and

diaminobenzidine (brown) and is used in histology and cytology (Ruifrok & Johnston,

2001). The Luv color space, like Lab, consists of luminance containing the light or

brightness along with the u, v parts containing the color for red to green, and blue to

yellow, respectively. Blood cell images are typically stained using wright stain where

RBCs are red, WBCs have a blue color for the nucleus, WBC cytoplasm is a lighter blue

or red, eosinophils have an orange color to the granules, and basophils have a purple

color to the granules. Using different color spaces can have an impact on the

segmentation result.

Segmentation Techniques

 Segmentation for blood cell images is the process that partitions the image into the

objects of interest. In a binary segmented image, the objects of interest are represented

with a pixel value of 1 and everything else is background with a pixel value of 0. For a

15

blood cell image, it can represent either all cells or just RBCs or WBCs. An image can be

segmented into multiple objects of interest, where each object contains a pixel value of

non-zero with background pixel values of 0. In this case a blood cell image could

represent WBCs with a value of 1 and RBCs with a value of 2.

 Methods such as thresholding, clustering, region growing, edge based, PCNN, among

others can be used to segment an image (Kolhatkar & Aankhade, 2016; Chouhan, Kaul,

Singh, 2018). Soft computing methods can also be used for image segmentation such as

Fuzzy Logic (FL), ANN, and Genetic Algorithm (GA) (Chouhan, Kaul, Singh, 2018).

Since most methods used for blood cell segmentation contain some preprocessing, these

are included in this section with the segmentation. This section includes those related to

blood cell segmentation such as thresholding, clustering, edge, active contours, SVM,

region growing, PCNN, and Neural Networks (NN).

Thresholding

 Segmentation using a threshold can be based on a global or local threshold. A global

threshold is one that is done for the entire image, and a local threshold can be used for a

subset of the image. Kim, Kim, Song, Park (2000) used thresholding with fuzzy logic to

select the threshold to segment WBCs and RBCs. Mohamed, Far, and Guaily (2012)

enhanced the intensity of WBCs with linear contrast, histogram equalization, adding

images, and Otsu thresholding to segment WBCs. Gautam and Bhadauria (2014) finds

the optimal threshold with Otsu thresholding and uses it to segment the WBCs from the

background using some morphological preprocessing and postprocessing to remove

RBCs. Khobragade et al. (2015) perform WBC segmentation by using thresholding, first

converting RGB to grey scale, then histogram equalization and linear contrasting, add

16

and subtract the enhanced images, and Otsu thresholding to convert to binary. Le, Bui,

Yu, and Bui (2015) convert to HED then grey scale manually choosing the best threshold

to segment WBCs.

 Gatc and Maspiyanti (2016) use a preprocessing median filter, double thresholding

which includes filling holes, and morphology methods to segment both RBCs and WBCs.

Shankar, Deshpande, Chaitra, and Aditi (2016) convert RGB to CMYK to obtain higher

contrast of WBCs when converted to grey scale, then Zack thresholding is used on grey

scale image to segment the WBCs from the background. Alreza and Karimian (2016)

segmented WBCs by using a combination of RGB and CMYK converted to grey scale

followed by the Zack thresholding algorithm, where the nucleus and cytoplasm are then

obtained by subtracting the nucleus from the whole leukocyte. Manik et al. (2016)

segments in two steps; first they convert the RGB to grey scale, use adaptive histogram

equalization, Otsu threshold, and morphological operations to segment the cells; then

they convert the RGB to HSV, obtain separate G and S segments from RGB, and HSV,

respectively, subtract S from G, and apply morphological operations to segment the

nucleus.

 Dela Cruz, Valiente Jr., Castor, Mendoza, Song, and Torres (2017) convert RGB into

HSV and use HSV thresholding to segment the blood cells into RBC, WBC, and

platelets. Quinones et al. (2018) segment the WBC by first converting the image to HSV

color space and extracting the S component and convert to grey scale, then binarization

using a threshold. According to the authors using the S component eliminated the need

for preprocessing using morphological methods. Acharya and Kumar (2018) segment

RBCs using Otsu threshold where the mean intensity of the red channel is retained, after

17

first converting from RGB to Lab color space and then converting to grey scale. They

also preprocess using histogram equalization for images requiring contrast adjustment.

Clustering

 Another segmentation method is clustering, where the objects of similar values are

grouped together. K-medoids and k-means are two clustering methods. An issue with

clustering is knowing the k value or number of clusters to generate as too small a value

will combine unlike objects and too large can split objects. Sinha and Ramakrishnan

(2003) used k-means clustering after converting to HSV color space to find the WBC

nucleus, then crop around to capture the entire WBC image for further processing.

 Rawat, Singh, Bhadauria, and Kumar (2014) compared different segmentation

algorithms for WBCs where k-means clustering had the best results. Zhang et al. (2014)

used a combination of color transfer and k-means clustering. The color transfer is done in

RGB color space and is used to adjust the image color to match more closely that of a

known good color image to correct for variations in staining. The RGB color is then

converted to both HSI and CMYK to obtain characteristics that are more prominent in

those spaces. K-means clustering is done on each color space to separate the background,

RBC and WBC nucleus. RBC segmentation was done by subtracting the nucleus part

from the combination of RBC and nucleus. Likewise, cytoplasm segmentation required

image enhancement using bottom hat transformation and then subtracting the nucleus

part from the entire WBC part. However, Zhang et al. (2014) did not separate clumped

WBCs and determined accuracy based only on resulting segmentation.

 Savkare and Narote (2015) used k-means clustering, where k is equal to 2 to separate

the cells (both RBC and WBC) from the background. The image was first preprocessed

18

to remove noise and enhance the image using both a median and Laplacian filter. Both

the original and preprocessed images are converted into Lab color space and k-means

clustering performed where the results are added together. A global threshold is used

based on the Hue-Saturation in HSV color space on poorly stained images. Savkare et al.

(2016) segment the cells from background by converting RGB to CMYK and then use k-

mean clustering with k=2. First, they preprocess the image with background removal and

contrast stretching to remove noise and enhance the image.

 Vogado et al. (2016) converts to both CMYK and Lab to extract the M and b

components, receptivity, subtracts the images and perform k-means clustering, followed

by morphological postprocessing to segment the nucleus of WBCs. Jagadev and Virani

(2017) also used k-means clustering but set k=3 to segment into WBC nucleus, RBCs and

WBC cytoplasm, and background. Acharya and Kumar (2018) extracted WBCs using k-

medoids algorithm.

Edge, Active Contour Methods

 Edge based methods can be used to segment an image such as canny, sobel, prewit,

and others. Active contours or snake method finds the contour of objects based on an

energy minimizing curve that follows the contour or edges of objects. Ongun, Halici,

Leblebicioglu, Atalay, Beksac, and Beksac (2001) use the active contour method also

known as snakes to segment, by first finding the initial position for the snake based on

threshold of WBC nucleus, then minimization where the center is considered the WBC

location. Yang, Meer, and Foran (2005) modified a snake algorithm to work with a new

color gradient after converting the RGB to Luv color space and tested on already created

WBC images segmenting both cytoplasm and nucleus.

19

 Puttamadegowda and Prasannakumar (2016) first preprocess the image by converting

to grey scale, using a median filter and normalization, followed by a fuzzy clustering

algorithm. The RGB image is also preprocessed with a Gaussian filter and a snake

algorithm is used to get the WBC objects, the two images are fused into a segmented

WBC image so they can be counted. Seth and Palodhi (2017) first preprocess the grey

scale image using contrast adjustment, then segment using Gabor filter, and standard

edge detection (sobel and prewit).

Support Vector Machine (SVM)

 A support vector machine (SVM) is a supervised machine learning classification

method. Di Ruberto, Loddo, and Putzu (2016) use a Nearest Neighbor Search (NNS) and

SVM model to segment the image into WBC, RBC, and plasma. They trained the SVM

using cross validation and labeling selected regions of interest (ROI) for each of the three

classes. A nearest neighbor search (NNS) is used based on the RGB values, where

duplicates, outliers, and intersections are all removed; thus, the results contain a clean

segmentation. Loddo et al. (2016) used the same machine learning approach as Di

Ruberto et al. (2016) to segment the image.

Region Growing

 Region growing starts with a selected pixel and adds neighbor pixels to the region

based on criteria on similarity of neighbor pixel to the selected pixel. The region

continues to grow with neighboring pixels provided they meet the similarity measure.

When there are no more neighbors, another pixel is chosen, and the next region is grown

until all pixels in the image belong to a region. The selection of the start pixels has an

impact on the segmentation outcome as the region grows from those pixels. Adams and

20

Bischof (1994) proposed a seeded region growing where the selected pixels are known as

seeds and represent the starting points for each group or set, which are manually selected

based on the images.

 Abdul Nasir, Mashor, and Rosline (2011) proposed a method that used k-means

clustering and region growing. They segment the WBCs in one step and then the WBC

nucleus in the next step. In the first step, the min and max for each RGB color is obtained

using a linear contrast technique and distributed over the histogram range, this stretched

RGB image is converted to HSI color space, then k-means clustering is done using the H

component and region growing is applied till cluster centers are stabilized resulting in the

segmented WBCs. The second step takes the segmented WBCs and using the S

component, k-means clustering, and region growing to segment the nucleus. Abdul et al.

(2011) did not separate, count, or classify the WBCs.

 Rashid, Mashor, and Hassan (2015) segment RBCs by first preprocessing to enhance

the image with global contrast, then converting to HSI color space, followed by using a

moving k-means clustering algorithm and median filter. Since they were looking to

extract RBCs, they compared the segmented results from the H, S, and I components and

removed the S component that contained the WBC nucleus. This was followed with a

seeded region growing algorithm to remove platelets and any clumped RBCs and WBCs.

Pulse Coupled Neural Network (PCNN)

 A PCNN is a different type of neural network that does not require training. It

iteratively cycles through a set of equations using several parameters to generate a

sequence of segmented images. Determining the parameter settings and iteration that

21

contains the best segmentation is an area of active research. There are different variations

of PCNN that use slightly modified equations from the standard.

 A PCNN was used by Mao-jun, Zhao-bin, Hong-juan, and Yi-de, (2008) for both

noise reduction, RBC segmentation, and adjusting parameters such that the autowave

characteristics also removed artifacts. Li, Zhou, Chen, and Shi (2010) proposed a grey

scale iterative PCNN where the threshold for determining the PCNN output is based on

an iterative grey scale value. While not specific for blood cell images, they did show

segmentation results for RBCs using their method.

 Both Adagale and Pawar (2013) and Ma et al. (2016) used a PCNN to segment RBCs.

A simplified PCNN was used by Liu et al. (2016) to segment WBCs from the blood

image using fuzzy entropy for determining the best segmentation result, however they did

not separate, classify, or count.

 There are also some region growing PCNNs, while these were not used for blood cell

image segmentation, they are included here for their similarity to what was done with this

research. Stewart, Fermin, and Opper (2002) proposed a region growing PCNN as a

replacement to seeded region growing, where the feeding input contains the grey scale

value, the linking input is the sum over the eight nearest neighbors minus a positive

constant, and the linking strength is updated each iteration. The pixel with the highest

intensity is selected as the seed pixel and set as a fired neuron. The PCNN iterates and

captures each region until the stopping criteria is met. Inside is a fast linking loop that

iterates until no new neurons fire. Once the stopping criteria for a region is met, a new

seed pixel with the highest intensity of the remaining pixels is selected for the next region

which stops once all neurons have pulsed.

22

 Zhou and Shao (2018) proposed a modified PCNN region growing algorithm that

segments and separates regions of interest into multiple levels by subdividing the unfired

region into a new level or class. The linking strength is calculated at each level based on

fuzzy logic of the grey scale values for determining those belonging to that group. The

stopping criteria is based on a calculated distance between the fired and unfired regions.

 Xu et al. (2018) proposed a color region growing PCNN that adds a linking control

unit so it can handle color pixel values, which they used Lab color space normalizing the

L channel to a set range. Their PCNN and algorithm has similarities to Stewart et al.

(2002) although they removed the positive constant from the linking network, randomly

set the seed neuron, set the initial linking strength value, and added a new minimum size

to the stopping criteria. The stopping criteria for Xu et al. (2018) includes: all neurons

have fired, exceeded a maximum beta value, exceeded a mean difference, and exceeded a

minimum region size, where the first three are the same as from Stewart et al. (2002).

This research built on the work from Xu et al. (2018) and added another stop criterion for

maximum size of a region to capture WBC and RBC cell objects.

Neural Networks (NN)

 While NN are used for classification, they can also be used for image segmentation.

An Artificial Neural Network (ANN) is based on the human brains neurological system

(Chouhan et al., 2018). The input neurons are connected to the hidden layers which

connect to the output layer with each connection containing a weight that is learned based

on the training data. A convolutional Neural Network (CNN) is a NN that contains an

input, convolutional, pooling, and output layers and can be used for image classification

(Chouhan et al., 2018).

23

 Ghosh, Singh, and Sheet (2017) uses a pretrained AlexNet model and tuned it with

blood cell images from ALLDB, which are preprocessed to create more images by

mirroring and rotation. The blood images are sent through the CNN’s generated heatmap

from an average pooling layer to generate a filtered image using a threshold that can

segment out the WBCs. A second filter is created by first converting the RGB to HED

space and using a threshold on the eosin channel. Yu, Chang, Yang, Zhang, Shen, Xia,

Sha (2017) used a CNN with transfer learning using 5 different models pretrained from

ImageNet. Their own blood cell images are preprocessed, sent through the five CNN

models, and classification results are based on a vote. A contour aware CNN is used by

Razzak and Naz (2017) to segment and separate cells, then using color descriptors for

each cell image the cells are classified as RBC or WBC, whose cropped images are sent

to an extreme learning machine for classification.

 Macawile et al. (2018) used a CNN that was trained using models from AlexNet,

ResNet101 and GoogleNet after first preprocessing the image to be the required size for

the model, then segment and classify WBCs using transfer learning. A Recurrent Neural

Network (RNN) is a NN that can be used for sequential data as they contain a memory of

past data. Liang et al. (2018) used a combination of CNN and RNN to segment and

classify WBCs. They use parameters from a CNN pretrained on ImageNet as input to

their CNN, which has a convolution layer which uses two window sizes, a pooling layer,

and output goes to the merge layer. The blood cell images are preprocessed with matrix

transformation for rotation and to limit overfitting before being input to the RNN, which

goes through its hidden layers and then to the merge layer. The merge layer combines the

24

CNN and RNN features, passes through a fully connected softmax layer to generate the

output based on its probability distribution.

Separation and Counting Techniques

 This section covers the methods used to separate the cells from the segmented image

so they can be counted. The counts may be for total RBCs, WBCs or both and may

include methods for separation of clump cells. Postprocessing methods are those methods

used after segmentation and during the separation stage so the cells can be counted.

 Common methods used to separate cells are Watershed Transform and Circular Hough

Transform (CHT). Templates are also used to determine estimated counts based on clump

sizes. Not all papers separated or counted the cells. This section includes a review related

to CHT, templates and estimates, watershed, and distance transforms, connected

component, and edge methods that were used for separation and/or counting of blood

cells.

Circular Hough Transform (CHT)

 CHT is a method for finding circular object in a digital image. It works by finding

circles from the edge points and voting for those that intersect. Using a fixed radius

reduces the number of circles and execution time. Shankar et al. (2016) use Hough

transform to obtain a roundness ratio as part of their postprocessing. Di Ruberto et al.

(2016) gets the reference size and shape from the training set, counts clumped WBCs

using CHT with the specified radius and matching with the grey level values from the

original image to exclude erroneous circles. Loddo et al. (2016) uses the same method as

Di Ruberto et al. (2016) additionally counting RBCs.

25

 Seth and Palodhi (2017) take the segmented edge image and use CHT specifying a

radius for an RBC diameter of 7 to 8.5 um and double that for WBC to count single

RBCs and WBCs. After segmentation and postprocessing to separate RBCs, Acharya,

and Kumar (2018) counted RBCs using Circular Hough Transform (CHT) and a specified

radius. According to their results CHT counts were more accurate than using a labeling

algorithm.

Template and Estimates

 Adagale and Pawar (2013) used template matching on the segmented image after

passing it through a median filter to remove noise. The templates were bins of different

sizes based on area where each bin is assigned a count value that is used to determine the

count for those clumps. Ma et al. (2016) extract RBC edges using image quality and use

CHT to get the average radius to create a template, which is used on the binary image to

get a matching map that contains points for each RBC. Dela Cruz, et al. (2017) estimated

the RBC count based on each clump size and the expected single RBC size.

Distance and Watershed

 Watershed transform is a method that finds or follows edges based on grey scale

values as if it were a geographical watershed basin. Distance transform determines a

distance measure for each pixel to its nearest boundary. Savkare and Narote (2015)

separated clumped RBCs using watershed transform after first detecting edges using

Sobel edge detector. Le, Bui, Yu, and Bui (2015) first use a bilateral filter, then canny

edge detector, followed by watershed to separate clumped WBCs.

 Watershed transform is also used by Savkare et al. (2016) to separate clustered RBCs

for counting. Shankar et al. (2016) separate clumped WBCs using watershed and distance

26

transform, then further postprocess to remove unwanted objects, then the single and

clumped WBCs are counted. Alreza and Karimian (2016) separated clumped WBCs for

counting by using distance conversion and applying watershed on round leukocytes.

Ghosh, Singh, and Sheet (2017) separate clumped WBC objects by using their centroid

and distance-based algorithm to extract the potential WBC objects which are sent through

their CNN to classify as normal or abnormal.

 Acharya and Kumar (2018) separate RBCs from the binary image by first using

watershed transform to remove overlapping or touching cells, using morphological open

to filter out noise, then removing WBCs by deleting the largest objects until all WBCs are

gone using a previously extracted WBC mask. Quinones et al. (2018) separate the WBCs

for counting from the segmented image by cycling through all blobs, performing

postprocessing, and based on area and eccentricity decide if it should be counted or if

further splitting is required. Postprocessing included image cropping, distance and

watershed transforms, and filtering.

Connected Component

 Connected component labeling determines pixels are in the same region by checking

its connectivity of the neighbor pixels and labels pixels belonging to the same region.

Mohamed, Far, and Guaily (2012) used morphological operations on the binary image,

determined objects based on neighbor connectivity, and removed objects smaller than a

certain size retaining only WBC objects. WBCs. Dela Cruz, Valiente Jr., Castor, Gatc

and Maspiyanti (2016) separate the WBCs and RBCs by determining blobs that are

connected using a grass-fire algorithm that calculates a value based on intensity and size,

then classifies as RBC or WBC based on the area. Mendoza, Song, and Torres (2017) use

27

connected component labeling after morphological postprocessing on the segmented

image which contains three types of cells, WBCs, RBCs, and platelets. This gives the

count for each type in the segmented image; however, the RBC count is estimated based

on the total area and approximate size of single RBC.

Edge Based

 Khobragade et al. (2015) use a filter on the segmented binary image to remove noise

and Sobel edge detection to capture the WBC nucleus. They extract features for leukemia

detection, but do not count cells.

Classification Techniques

 This section contains a review of the classification methods used for blood cell

images. Determining the type of WBC or whether the WBC or RBC is normal or

abnormal is also part of a CBC. Some papers were concerned with classifying the WBCs

as being normal or cancer, whether RBCs were normal or abnormal, and others classified

the WBCs by type such as lymphocyte, monocyte, basophil, eosinophil, and neutrophil.

This research classified based on lymphoblast or normal and further classified normal

types of WBCs into lymphocyte, monocyte, basophil, eosinophil, and neutrophil.

 Kim, Kim, Song, Park (2000) extracted 76 features and used Principal Component

Analysis (PCA) to reduce the number of features and a three-layer NN to classify RBCs

and WBCs. Ongun, Halici, Leblebicioglu, Atalay, Beksac, and Beksac (2001) extracted

57 features from the WBCs and compared different classification methods including

SVM which had the best results. Sinha and Ramakrishnan (2003) extracted features from

28

the WBC nucleus and cytoplasm and compared different classification methods where

the NN had the best results.

 Gautam and Bhadauria (2014) extract features such as area, perimeter, circularity, and

eccentricity from the WBC objects, where the min and max for each feature is calculated

for each type during training and used later for classification into neutrophil, eosinophil,

basophil, monocyte, and lymphocyte. Khobragade et al. (2015) detected abnormal types

of WBCs (blasts) indicative of different types of leukemia by extracting statistical,

textural, geometrical, and color features, where the statistical features had the most

impact.

 Alreza and Karimian (2016) extracted WBC features such as color, texture, and

number of lobes in the nucleus with an SVM model for classification. An ANN was used

by Manik et al. (2016) to classify WBCs into three categories (neutrophil, lymphocyte,

and eosinophil) based on features extracted from both cell and nucleus segmentation.

Vogado et al. (2016) classifies WBCs as normal or cancer, but paper did not specify what

features were extracted or how the classification was performed.

 Syahputra et al. (2017) classified RBCs as normal or abnormal type based on the

shape using a Radial Bias Function Network (RBFN) where results showed two types of

abnormal cells. Jagadev and Virani (2017) extracted statistical, geometrical, color, and

textural features for WBCs and used an SVM to determine if cells were leukemic. Ghosh,

Singh, and Sheet (2017) use their CNN to classify WBCs as normal or abnormal. Yu et

al. (2017) classify WBCs into monocytes, lymphocytes, basophils, eosinophils,

neutrophils, and atypical lymphocytes using a CNN and transfer learning. Razzak and

29

Naz (2017) classify RBC and WBC using an extreme learning machine using the

ALL_IDB dataset for training and testing WBC classification.

 Macawile et al. (2018) use transfer learning and a CNN to classify WBCs into

neutrophils, lymphocytes, monocytes, eosinophils, and basophils. The models from

AlexNet, ResNet101 and GoogleNet with transfer learning for WBC classification,

although they did not mention how they performed the transfer learning. Acharya and

Kumar (2018) used a form factor to determine abnormal RBCs and highlight those with a

bounding box. Liang et al. (2018) classify WBCs into eosinophil, monocyte, lymphocyte,

and neutrophil from the Kaggle dataset using a combination of CNN and RNN. Transfer

learning is used to pass parameter weights from a pretrained model to the CNN, and the

CNN and RNN are trained with the blood cell images. Their classification results had an

accuracy of 90.79% for one of their CNN-RNN models. The training took approximately

14 hours with an average of 3.8 seconds for one blood cell test image.

 From the literature, textural information is a feature useful for classifying WBCs. The

time series and entropy from PCNN segmentation can be used to retrieve textural

information. Zhan, Zhang, and Ma (2009) compared standard PCNN image segmentation

for texture features (time series, entropy, average residual, and standard deviation) with

the variants Spiking Cortical Module (SCM) and Intersecting Cortical Module (ICM) to

determine impact of angle rotation and scale. Chacon and Mendoza (2011) used PCNN

time series combined with Fuzzy C-Means (FCM) algorithm for image segmentation

based on features. An SCM version of PCNN was used for image texture retrieval by

Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu, and Wang (2017) using entropy series,

30

time series, and average residual. This research attempted to use the PCNN textural

information to classify WBCs.

Summary

 There are several methods that can be used to segment blood cell images, however

some pixel values are similar between RBCs and WBCs, for example WBC cytoplasm.

Separating the RBCs and WBCs is also a challenge as they can be clumped together or

close together that the edges overlap. There are several features that can be extracted

from the image to classify WBCs and different methods have been used to achieve this.

The most recent being the use of NN, however, these require large labeled datasets and

long training periods. This research used PCNN to segment, a separate method

employing CHT to find objects and then separate into object images, a PCNN classifier

to retrieve textural information and classify WBCs and counted RBCs and WBCs.

31

Chapter 3

Methodology

Introduction

 This project developed a PCNN framework to perform segmentation, separation, and

classification of blood cells for subsequent counting and obtaining metrics. The principal

objective was to identify the ideal PCNN parameters and variants used to provide the best

segmentation of the image. After segmentation, the image was processed to find and

separate the cells for counting and classification. A method called separate, was

developed that employs post processing, CHT, and an algorithm to separate into object

images. The algorithm in separate creates a list of individual WBC and RBC images for

each cell object found that matches criteria specified in parameters; these objects were

later used to count and classify. The details of the algorithm are described in this section.

Each WBC object was classified using another PCNN to capture a texture vector that was

compared to texture vectors of known types.

PCNN Overview

 A PCNN is a neural network that does not require training. The PCNN works by

receiving the image pixels, neighboring pixels, and state information and using an

iterative series of equations produces a sequence of segmented images. The two inputs to

the PCNN are the feeding and linking networks. For each PCNN iteration, the previous

state from each input is combined using a convolution operator with a neighbor weight

matrix and tuning parameters; the feeding network also receives the image pixel as input.

32

On each iteration the output is determined using a threshold which is adjusted so that it

decays over time. The result is a sequence of segmented images, one for each iteration.

The PCNN parameters are used to tune the segmentation behavior. Choosing the tuning

parameters and stopping criteria that provides the best segmentation, separation, and

classification of blood cells is one of the goals of this dissertation. Experiments

performed showed the parameters that had an impact on segmentation and those that had

an impact on classification, which are described in Chapter 4.

 A PCNN diagram is shown in Figure 1, where there is one neuron for every pixel in

an image, where I represents the image and x a pixel in the image. Fx represents the

feeding network for pixel x, Lx represents the linking network for pixel x, and Nx

represents the neighbors of pixel x. The values of VL, VF, VE are normalizing constants

and αL, αF, αE represent decay factors. Each neuron receives input from the feeding

network (Fx) and the linking network (Lx) where these are combined with a linking

strength variable (β) to form an internal state (Ux) (Lindblad & Kinser, 2013). Both the

feeding and linking networks receive input from pixel neighbors and the feeding network

also receives the intensity of the pixel from the image. The impact of the neighbors of

pixel x is determined by the weight matrices M and W for the feeding and linking

networks, respectively. The output neuron Yx is considered fired when Ux is above a

threshold (Ex), so the output Y contains 1 for pixels considered fired and 0 for those not

fired. The PCNN iteratively cycles through the following 5 equations where Yy represents

the output for the pixel and its neighbors from the previous iteration. Each iteration uses

the previous iteration multiplied by a decay parameter and then combined with the

neighbor weight matrix, normalizing constant, and previous output results. The result is a

33

series of segmented images contained in Y for each iteration n. For the implementation,

F, L, U, Y, and E are represented as numpy arrays for the dimension of the image since

each of these is representative of each pixel in the image. The initial value for E can be 0

or can vary per the user implementation (Lindblad & Kinser, 2013).

1) ����� � � � 	�	���� � 1� �
� � �� ∑ 	��∊�� ������ � 1�
2) ����� � � � 	�	���� � 1� � ��∑ 	��∊�� ������ � 1�
3) ����� � �����	�1 � �������
4) ����� � �1		��	����� !��� � 1�0		#$%�&'�(� 	

5) !���� � � � 	!	!��� � 1� � �!�����

Figure 1 Standard PCNN

34

Key Parameters

 The key parameters that were fine-tuned were the linking strength and normalizing

constants (β, VF, VL, VE); the decay parameters (αF, αL, αE); the connected neighbor

weight matrixes (M and W); the PCNN type; and using color channels. Deng, Yan, and

Ma (2019) show the impact of different PCNN parameters on firing times and other

PCNN characteristics.

 The Python cspline2d() Gaussian function was used for weight matrices W and M by

Lindblad and Kinser (2013). A weak neighbor weight matrix = [[0, .01, 0,], [.01, .11,

.01], [0, .01, 0]] was suggested by Deng, et al. (2019). Zhou and Shao (2018) proposed to

set M as the center of a square matrix and W using Euclidean distance shown below

where x is the center of the neighborhood, y is the spatial position related to the center, Cs

and Cw are normalized constants, and σs is a scale factor. The values Cs, σs, and Cw were

all set to 1 in the experiments.

��, � � ,(��-��||	�	– 	�||2	/	2(2�
��, � � 3,' ∗ 1/||� � �||2, � ≠ 00, � � 0

The experiments included using the above for either M and/or W. The M and W values

are used in this document by: Cspline represents the cspline2d() method, Weak represents

weak neighbor coupling, Euclidean represents strong neighbor coupling, Exponential

represents the formula above using exp, and Common represents a value = [[0.5, 1, 0.5,],

[1, 0, 1], [0.5, 1, 0.5]].

 Another key parameter explored was using the intensity value from a grey scale image

or color space values. The standard PCNN model takes for a pixel value or a grey scale

intensity value as input. However, Xu et al. (2018) extended a region growing PCNN

35

variant for using color channels, combining the color channels as input to the PCNN

model. The experiments used a standard PCNN with intensity value input, a PCNN

region growing variant intensity value input, and another PCNN region growing variant

with color inputs. The different color models tested, included RGB, HSV, HED, and Lab

color space.

PCNN Variants

 The PCNN variant types implemented included a standard Eckhorn and region

growing models. Lindblad and Kinser (2013) contained PCNN Python code for the

standard Eckhorn PCNN model. This was used as a base line for the PCNN standard

implementation and modified for this research. The next variants were region growing

PCNN, the first based on Stewart et al. (2002) that used grey scale intensities; the second

was based on Xu et al. (2018) that was extended for using color channels.

Texture Features

As mentioned earlier PCNN is a sequence of equations where each iteration generates

a segmented image. The Shannon entropy value can be calculated on each image, and

the resulting sequence of entropy values, represented as a vector for the texture features

of the image, also referred to as the entropy signature. The use of a texture vector for

image classification was done in Yang et al. (2017). While a PCNN does not require

training for segmentation, using PCNN for classification does require creating a vector

list on a training set of known images. A list of texture vectors per dataset was created for

the following WBC types: lymphoblast, lymphocyte, monocyte, neutrophil, eosinophil,

36

and basophil depending on the dataset. The entropy values were obtained using the

skimage.filters.rank.entropy() function. For completeness, the entropy calculation is

shown below, where P
1
 and P

0
are the probabilities of a pixel value being 1 or 0,

respectively:

6�7� � 	�718#92�71� � 708#92�70�

Framework Test Environment

 The framework test environment contains segmentation, separation, counting,

classification, and texture vector list creation for classification. Images were selected

from the ALL_IDB and Kaggle datasets. Since training was not required for PCNN

segmentation, a subset of images was chosen from both the training and testing sets.

However, the training images were used to create the two sets of texture vector lists, one

for each dataset. The classification was tested on a subset of images chosen from both

training and testing sets.

 The framework was used for segmentation, separation, counting, and classification.

The classification step is dependent on the creation of the texture vector list which is

described later in this section. Each image was segmented using the PCNN framework

into a binary image representing WBCs, RBCs, or both. The cells were then separated

into RBC and WBC cell objects using the separation method, separate, that employs post

processing, CHT and an algorithm described in this section. The separated objects were

saved as a separate image and stored in a Python list to facilitate counting; WBCs were

classified after separation. The pseudo code is shown in Figure 2.

37

 Framework Testing

1. Foreach RGB image

2. PCNN_framework_segmentation()

3. Separate()

4. Count()

5. foreach WBC object

6. classify()

7. end

8. end

Figure 2 Framework Test Pseudocode

Segmentation

 The PCNN framework allowed experiments for different methods of segmentation

including different PCNN variants and two conventional methods using the

PCNN_framework_segmentation() method. The PCNN variants are described in detail

later in this chapter. Preprocessing was done as part of the framework before the

segmentation. This included converting the image to grey scale and inverting the grey

scale image so that the WBCs would have the higher intensity. The Kaggle dataset also

required the images to be cropped to remove extra white space that interfered with the

PCNN segmentation. The PCNN framework segmentation is shown in Figure 3.

PCNN_framework_segmentation()
1. Input: RGB Image

2. Output: Segmented Binary Image(s)

3. Preprocess and segment image based on segmentation

strategy

Figure 3 PCNN Framework Segmentation

Separation

A separate method was developed and included in the framework to find and separate

cell objects in the segmented image using postprocessing, CHT, specified radius, and a

separation algorithm. Postprocessing is done on the segmented image; for WBCs, small

holes were removed followed by erosion; for RBCs, erosion was done, followed by

38

removing small holes and then dilation. The method next finds circular objects by

employing CHT with a specified radius searching first for WBCs and then RBCs. The

last step was to perform the separation algorithm.

The CHT method was employed by using two methods from skimage.transform to

create the Hough transform and retrieve the peaks using hough_circle() and

hough_circle_peaks(), respectively. Since the region growing PCNN segments into

different regions, the number of Hough transform and peaks should be smaller, so a

parameter was included for the separate method called find_num to modify parameter

settings for the hough_circle_peaks() method to adjust the number of peaks to retrieve

from the Hough space. The value of find_num used for each segmentation method are

described in Chapter 4. The hough_circle() creates the Hough transform and includes a

min, max, and a radii value for the minimum and maximum radius, and the number of

radii. The radii were set to a value of 3, and since WBCs are larger than RBCs, the min

and max was based on the type, using 20 and 55 for RBCs and 45 and 175 for WBCs.

The separation algorithm cycles through the circle centers found from CHT. First it

removes duplicate circle centers from the list to speed up processing and reduce finding

duplicate cells. Next it generates a potential circle based on the center and radius found

and compares it to the circle acceptance criteria. The circle acceptance is based on

parameters for percentage, intensity, and radius offset. The percentage is the minimum

value of how much of the circle is contained in the binary image (the Y output from

PCNN), the intensity is the minimum value for the average intensity of the circle based

on the original grey scale image, and the radius offset increases the radius based on these

parameters. The acceptance criteria parameters for the separate method are: wbc_offset,

39

wbc_percent, wbc_intensity, rbc_intensity, rbc_percent, and rbc_offset. The parameter

values and defaults used are described in Chapter 4.

Once a circle object is found, it is matched to the above criteria and a circle is created

using the center and determined radius. An image of size 257 by 257 is created

containing a circle object in the center with the original grey scale image pixel values for

the object and the radius of the circle. This image is added to the list of WBC or RBC

images. The circle object is also removed from the working segmented image (the Y

output from PCNN) by setting those pixel values to 0 and the method continues to find

the next circle. The removal of the selected object from the working segmented image

was to allow for overlapped cells to be found. WBC objects are used later for

classification. The separate method is shown in Figure 4. This answered research

question RQ3 discussed in Chapter 4.

separate()
1. Input: Segmented binary image

2. Output: List of WBC images, List of RBC images

3. perform WBC postprocessing

4. while find acceptable WBC object

5. add object to WBC list

6. remove object from segmented image

7. end

8. perform RBC postprocessing

9. while find acceptable RBC object

10. add object to RBC list

11. remove object from segmented image

12. end

13. return WBC and RBC lists

Figure 4 Separate

40

Count Cells

Since the framework contained a list of WBC and RBC objects from the separate

method, the count was obtained by using the Python len() function to get the number of

objects in the list.

Classification

 To classify a WBC, first the texture vector list had to be created. This was done by the

framework using the generate_texture_vector() method which is described later in this

section. The texture vector list contains a list of texture vectors (entropy series), for WBC

types from the training dataset. The entropy series was used for this project as it produced

the best results from Yang et al. (2017). A WBC object is sent through another PCNN,

but this time it is used as a PCNN classifier as it retrieves the texture vector or entropy

signature for that image.

The texture vector generated by the PCNN classifier was compared to the texture

vector list to find the closest matching vector which determines the type. To compare the

texture vectors, the Euclidean distance was used, as was done by Yang et al. (2017). The

distance was calculated for a WBC object as follows, where j ranges over the number of

iterations N, vj is the jth iteration for a vector v in the texture vector list, xj is the jth

iteration of the WBC texture vector, and d is the distance value for the WBC vector and a

vector v in the texture vector list. The distance was calculated for a WBC object and each

vector v in the texture vector list.

: � ;<��= � >=�2?
@AB

41

The argmin was then used to find the index into the texture vector list that has the

minimum distance value, where i ranges over the vectors stored in the list, >C is the ith

vector in the list, x is the query vector, and δ is the distance function. Once the index was

found, the WBC type was retrieved using the index on the texture vector list.

��:�� � D&9E��CF��, >C�
The classify() method is shown in Figure 5. The value of N was determined by the

experiments adjusting the PCNN parameters and answered research question RQ4

discussed in Chapter 4.

classify()
1. Input: Grey scale image of cell object

2. Output: WBC type

3. capture texture vector of cell object

4. foreach cell type in texture vector list

5. calculate Euclidean distance

6. end

7. determine cell type based on min distance

8. return cell type

Figure 5 Classify

Generate Texture Vector

To classify WBC objects using the entropy texture vector, a list of known WBC types

and texture vectors had to be created. This required a dataset of images containing the

region of interest (ROI) for different types of WBCs (neutrophil, lymphocyte, monocyte,

basophil, eosinophil, and lymphoblasts). The ROI images were available from the

ALL2_IDB and Kaggle datasets, so texture vector representations were created from each

dataset. However, the WBC still had to be segmented and separated from the rest of the

image. The lymphoblasts were labeled in the ALL2_IDB, but the lymphocytes,

neutrophils, eosinophils, monocytes, and basophils had to be labeled as part of this

42

project. The Kaggle dataset contained labels for lymphocytes, monocytes, eosinophils,

and neutrophils so only those types were tested for that dataset.

 The ALL_IDB2 and Kaggle datasets contain training images with one or two

labeled WBCs along with multiple RBCs. These images were used by the framework to

segment out one WBC from the RBCs and once a WBC object was separated, the texture

vector was obtained by segmenting the WBC image using the PCNN classifier and

capture the texture vector for each WBC type. The texture vectors were stored along with

their type. The pseudo code is shown in Figure 6.

Generate Texture Vectors
1. Input: RGB Images containing one WBC and some RBCs

2. Output: List of texture vectors per WBC type

3. foreach image

4. segment_and_separate()

5. capture_texture_vector()

6. end

7. generate texture vector list

Figure 6 Generate Texture Vectors Pseudocode

The segment_and_separate() method, shown in Figure 7, experimented using

conventional segmentation methods (threshold, watershed) along with a standard PCNN

method to segment the image. It called the separate method mentioned earlier from the

framework to generate a WBC object image based on the original grey scale pixel values,

which is the output of this method.

segment_and_separate()
1. Input: RGB Image with one WBC and RBCs

2. Output: Grey scale Image of just one WBC

Figure 7 Segment and Separate

The capture_texture_vector() method shown in Figure 8, used a standard PCNN as a

PCNN classifier to capture the texture vector. The PCNN parameters were adjusted from

43

experiments that determined the best classifier and value of N. The texture_vector[s1, s2,

s3, …, sN] where si is the Shannon entropy for iteration i and N is the number of iterations.

capture_texture_vector()
1. Input: WBC object image, WBC type

2. Output: texture_vector[s1, s2, s3, …, sN]

Figure 8 Capture Texture Vector

The texture vector list contained several vectors for each type. The number saved

depended on the dataset. Since the ALL_IDB2 dataset was relatively small (max 106 of

one type), all texture vectors were included. However, the Kaggle dataset contained a

larger training dataset (greater than 1000) so it saved the mean of every ten images,

therefore keeping the texture vector list size at roughly 100 to 300 per WBC type. The

idea was to keep the dataset size relatively small so classify would not have to compare a

large texture vector list, but large enough to allow for differences in texture vectors per

type.

Novel PCNN Methods

 Depending on the PCNN model and parameters, knowing when to stop iterating is

crucial for accurate segmentation. This project explored a few stopping methods. One

method was to adjust parameters for PCNN segmentation and use the separate method to

find all WBC and RBC objects. Another was to use region growing PCNN from Xu et al.

(2018) and adding a new Smax parameter, then used the separate method to find the

WBC or RBC object.

PCNN with CHT

 The standard PCNN was used with different parameters to segment the image. The

separate method was then used on the segmented image to find and separate the objects

44

employing postprocessing, CHT, and the separation algorithm. The goal was to determine

the parameters and iteration number that contained the best segmented image as input to

the separate method such that it generated the most accurate WBC and RBC counts, as

well as accurately capture the WBC objects. The ideal and significant parameters were

determined from the experiments and shown in Chapter 4. This answered research

question RQ1 as discussed in Chapter 4.

Region Growing PCNN with CHT

 Based on the method from Xu et al. (2018), this research used a region growing

PCNN. The new region growing PCNN added a Smax for each class (WBC, RBC) and

saved the objects to a list as it grows to Smax, thus it tried to capture individual cells or

small areas of cells. The seed selection picked the intensity from the WBC range first,

then RBC range. The separate method was used to then find the cell or cells from each

segmented image to capture the WBC and RBC cell objects. This answered research

question RQ2 discussed in Chapter 4.

Conventional Segmentation and PCNN Prior Work

 The PCNN segmentation methods were compared to a couple conventional

segmentation methods along with a PCNN segmentation using the parameters from Ma et

al. (2016). The conventional methods and PCNN parameters from Ma et al. (2016) were

used to segment out cells from the background. All segmented binary images from these

methods were used as input to the separate method to find and separate the cells. The

output image list was used for counting total RBC or WBC for comparison results.

45

Threshold

 One standard method to segment WBCs or RBCs from the background used a global

threshold. A threshold was chosen from experiments that provided a segmentation of the

cells from the background.

Watershed Region Growing

 A watershed region growing method was available in scikit-image. This method

works by first obtaining edges using the sobel method, then setting up markers for the

basins based on thresholds. It was used to segment all cells from the background by

setting different threshold values. The thresholds values were set from experiments.

Standard PCNN

 A standard PCNN was used with the parameters from by Ma et al. (2016) to segment

the cells from the background. This was used as a comparison of the separation and

counting stages of this research.

Comparing Prior Work

 The results of this research were compared to prior work in several ways which are

described in this section. The first was to use the metrics described later in this chapter

for determining accuracy of the total RBC and WBC counts. These metrics were

calculated for prior work where applicable. The metrics from this research for WBC

classification using the ALL_IDB and Kaggle datasets were compared based on the

metrics in the literature. A metric based on the accuracy of lymphoblast detection from

the ALL_IDB dataset was also compared.

46

Total RBC and WBC Counts

 The results presented in the literature relied on several metrics. The metrics from

Adagale and Pawar (2013) and Ma et al. (2016) were calculated based on a computed

count percentage as described in Chapter 4. That metric was also used in this research for

comparison with those papers. The accuracy, precision, recall, and F1 metrics were

calculated for this research based on total WBC and RBC counts and compared to the

metrics from Loddo et al. (2016) which also used the ALL_IDB dataset.

WBC Classification and Counts

 A confusion matrix was generated that showed the predicted classification and the

actual classification for each WBC type. The overall true positive, false negative, true

negative, and false positive results were calculated, and the overall sensitivity, specificity,

and accuracy metrics were generated. These metrics are described in the next section.

The WBC classification metrics from this research using the ALL_IDB dataset was

compared to the work done by Macawile et al. (2018) and included the average

sensitivity, specificity, and accuracy per WBC type. The WBC classification metrics

from this research for the Kaggle dataset were compared to the work presented in Liang

et al. (2018) which included the overall accuracy metric.

Lymphoblast Detection

 The metrics from this research for the detection of lymphoblasts using the ALL_IDB

dataset was compared to the work presented in Ghosh et al. (2017), which included

sensitivity, specificity, and accuracy regarding lymphoblast detection.

47

Metrics and Data

 As was done by Macawile et al. (2018), Ghosh et al. (2017), and Loddo et al. (2016),

the dataset from Labati, Piuri, and Scotti (2011) was used to determine metrics based on

total RBC and WBC counts, WBC classification, and lymphoblast detection. The Kaggle

dataset was used for WBC classification as was done by Liang et al. (2018). The

ALL_IDB dataset was used for WBC classification and lymphoblast detection. The

Kaggle dataset contained a labeled training set for eosinophils, monocytes, lymphocytes,

and neutrophils. The ALL_IDB required labeling the eosinophils, monocytes,

lymphocytes, basophils, and neutrophils. The classification required generation of the

texture vector list from each dataset described earlier.

Analysis

Several metrics were calculated for comparison analysis. Accuracy, precision, recall,

and F1-measure were calculated which are described in this section. Both Adagale and

Pawar (2013) and Ma et al. (2016) calculated a computed count percentage described in

Chapter 4. Loddo et al. (2016) calculated precision, recall, and F1-measure. To calculate

the metrics the actual counts for each image were required. The ALL-IDB and Kaggle

datasets contain counts for some of the WBC types, however, RBCs and some WBCs

needed to be manually counted. For comparison results, some metrics were calculated

from the data provided in the literature. Not all metrics below were calculated for all tests

but calculated as needed for comparisons.

48

Accuracy

Accuracy is the percent of true values in proportion to the total possible values.

Accuracy calculation is shown below where TP represents true positive, TN represents

true negative, FP represents false positives, and FN represents false negatives.

 accuracy � �L7 � LM��L7 � LM � �7 � �M� ∗ 100

Precision

Precision is the number of true positives values in proportion to the total number of

positive values detected. Precision calculation is shown below using the previously

defined definitions.

precision � �L7��L7 � 	�7�
Recall

Recall provides the sensitivity of the result, so it is also known as sensitivity and true

positive rate. The recall calculation is shown below using the previously defined

definitions.

recall � �L7��L7 � �M�
Specificity

Specificity is the number of true negative values in proportion to the total number of

negatives and false positive values detected. It is also known as the true negative rate.

The specificity calculation is shown below using the previously defined definitions.

specificity � �LM��LM � 	�7�

49

F1-measure

The F1-measure represents the harmonic mean and uses precision and recall. The F1-

measure is shown below using the previously defined definitions.

F1-measure � 2 ∗ 	 �-&�Y�(�#� ∗ &�YD88��-&�Y�(�#� � &�YD88�
Actual Image Counts

The actual counts were retrieved from the dataset files or manually counted.

Resources

 This section lists the type of tools that were necessary for this dissertation. For this

research, Python (https://www.python.org/) was used since there are image processing

and machine libraries available with scikit-image (https://scikit-image.org/) and scikit-

learn (https://scikit-learn.org/stable/), which are all open source. Other libraries that were

required were NumPy (http://www.numpy.org/) and SciPy (https://www.scipy.org/). The

image processing library scikit-image was written in Python for a wide range of image

processing functions (Van der Walt, Schonberger, Nunez-Iglesias, Boulogne, Warner,

Yager, Gouillart, Yu, and the scikit-image contributors, 2014). The scikit-learn is a

library of machine learning algorithms written in Python that includes methods for

Support Vector Machine (SVM) and clustering (Varoquaux, Louppe, Pedregosa,

Buitinck, Grisel, and Mueller, 2015). PCNN Python scripts were available from Lindblad

and Kinser (2013) with the book purchase and were used for the basis of the standard

PCNN and modified for use in this research.

50

 These were installed on a PC running Windows. The ALL_IDB datasets from Labati

et al. (2011) were requested and granted. The Kaggle dataset from Mooney, P. (2018)

was also requested and received. Both datasets were used for this research.

Summary

 The main purpose of this research was to identify PCNN parameters and variants for

segmentation, separation into individual WBC and RBC images, and WBC classification

using a PCNN classifier. The framework presented here facilitated the use of different

segmentation methods. The framework was designed and implemented so that PCNN

variant types, parameters, and stopping criteria were easily changed. The strategy design

pattern was used so that different stopping criteria and other algorithmic changes could

be plugged in and interchanged by supporting a common interface.

51

Chapter 4

Results

Introduction

 This section discusses the results from the experiments. The ideal PCNN parameters

and variants that provided the best segmentation of the image from the experiments are

described in this section. The framework development allowed the preprocessing and

segmentation methods used to be plugged in based on the segmentation method selected.

The separate method used was the same for all segmentation methods, although

adjustments in parameters were required which are explained in this chapter.

 This chapter first discusses the different datasets and subsets used for the experiments.

Next an overall discussion on preprocessing and separation, followed by the standard

PCNN, Region Growing PCNN, and conventional segmentation and separation results.

The discussion on the WBC classification results are described next, and then the

comparison of results to prior work, with this chapter ending in a conclusion.

Datasets

 Subsets of the ALL_IDB and Kaggle datasets were used based on the experiment

type. The ALL_IDB and Kaggle datasets were requested and access provided from

Labati, Piuri, and Scotti (2011) and Mooney (2018), respectively. A summary of those

used for segmentation are shown in Table 1, those used for classification are shown in

Table 2, and additional details including file sizes are in Table 3. The first set of

experiments used the ALL_IDB_subset for determining PCNN segmentation and

52

separation parameters. These experiments tested a wide range of different parameter

combinations with those showing the biggest impact described in this chapter. There

were approximately 16 different parameter settings and 7 different segmentation

methods, although not every parameter was used for every method. However, due to the

large number of combinations tested, each requiring a manual count for accuracy, 20 files

from the ALL_IDB2 was selected that included all WBC types. The number 20 was

chosen as it allowed for multiple experiments to test a wide range of parameters. The

files were selected from the ALL_IDB2 dataset as the number of cells per slide was less,

thus making the manual counts more accurate. Next the segmentation, separation, and

cell counts were done with the ALL_IDB_large, which contained a subset of 6 randomly

selected larger files from the ALL_IDB dataset. The number 6 was selected to test the

parameter combinations on the different segmentation methods using the files that

contained many cells, which also required manual counting and accuracy metrics. The

Kaggle_subset files were chosen for similar reasons for segmenting, separation, and

WBC counting.

 For classification, the texture vector list was created for ALL_IDB2 and Kaggle_Train.

Experiments were unsuccessful to achieve PCNN parameters that worked across datasets

so two texture vector lists were created, one for each dataset. Further details on the

dataset creation are described later in this chapter. The files in ALL_IDB2 were

characterized into subdirectories by type and then the texture vector list was created. The

Kaggle_Train files were already characterized by subdirectory which was used to create

the texture vector list.

53

 The ALL_IDB_subset, ALL_IDB_large, ALL_IDB_large2, ALL_IDB_large3,

Kaggle_Test_simple and Kaggle_Test were each used to segment, separate, and classify

WBCs with the corresponding dataset texture vector list. The ALL_IDB_subset,

ALL_IDB_large, ALL_IDB_large2, ALL_IDB_large3, and ALL_IDB_first33 were used

for lymphoblast detection. The ALL_IDB_large2 and ALL_IDB_large3 subsets were

created to add more files to the testing data for WBC classification and lymphoblast

detection. The ALL_IDB_first33 were used for lymphoblast detection as these contained

files with lymphoblasts; these files were used by Loddo et al. (2016) as they were all the

same size and resolution. The Kaggle files provided some challenges as the staining was

not as clear, and some files were created by rotation, resulting in white space that

interfered with the PCNN segmentation, which was adjusted by cropping those files.

Dataset (total files)

Segmentation Usage Summary

RBC Count WBC Count Name Number of Files

ALL_IDB2 (260 files) Yes Yes ALL_IDB_subset 20

ALL_IDB1 (108 files) Yes Yes ALL_IDB_large 6

Kaggle (10,323 files) No Yes Kaggle_subset 13

Table 1 Segmentation Dataset Summary

54

Dataset (total files)

Classification Usage Summary

Training Testing Name Number of Files

ALL_IDB2 (260 files) Yes No ALL_IDB2 214

ALL_IDB2 (260 files) No Yes ALL_IDB_subset 20

ALL_IDB1 (108 files) No Yes ALL_IDB_large 6

ALL_IDB1 (108 files) No Yes ALL_IDB_large2 10

ALL_IDB1 (108 files) No Yes ALL_IDB_large3 11

ALL_IDB1 (108 files) No Yes ALL_IDB_first33 33

Kaggle (9957 files) Yes No Kaggle_Train 9957

Kaggle (71 files) No Yes Kaggle_Test_Simple 71

Kaggle (2501 files) No Yes Kaggle_Test_subset

80

Table 2 Classification Dataset Summary

Dataset (total files)

Subset Details

Name File Names or Number Size

ALL_IDB2 (260 files) ALL_IDB_subset 1. Im001_1.tif

2. Im002_1.tif

3. Im021_1.tif

4. Im024_1.tif

5. Im084_1.tif

6. Im091_1.tif

7. Im123_1.tif

8. Im135_0.tif

9. Im153_0.tif

10. Im154_0.tif

11. Im156_0.tif

12. Im166_0.tif

13. Im192_0.tif

14. Im201_0.tif

15. Im203_0.tif

16. Im212_0.tif

17. Im246_0.tif

18. Im251_0.tif

19. Im253_0.tif

20. Im260_0.tif

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

257 x 257

232 x 257

232 x 257

232 x 257

ALL_IDB1 (108 files) ALL_IDB_large 1. Im001_1.jpg

2. Im004_1.jpg

3. Im016_1.jpg

4. Im088_0.jpg

5. Im091_0.jpg

1712 x 1368

1712 x 1368

1712 x 1368

2592 x 1944

2592 x 1944

55

6. Im108_0.jpg 2592 x 1944

ALL_IDB1 (108 files) ALL_IDB_large2 1. Im005_1.jpg

2. Im006_1.jpg

3. Im017_1.jpg

4. Im020_1.jpg

5. Im062_1.jpg

6. Im063_1.jpg

7. Im05_0.jpg

8. Im079_0.jpg

9. Im090_0.jpg

10. Im093.0.jpg

1712 x 1368

1712 x 1368

1712 x 1368

1712 x 1368

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

ALL_IDB1 (108 files) ALL_IDB_large3 1. Im068_0.jpg

2. Im073_0.jpg

3. Im074_0.jpg

4. Im075_0.jpg

5. Im076_0.jpg

6. Im077_0.jpg

7. Im078_0.jpg

8. Im081_0.jpg

9. Im082_0.jpg

10. Im083_0.jpg

11. Im084_0.jpg

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

2592 x 1944

ALL_IDB1 (108 files) ALL_IDB_first33 12. Im001_1.jpg – Im033_1.jpg 1712 x 1368

Kaggle (10,323 files) Kaggle_subset 1. _0_687.jpeg

2. _0_884.jpeg

3. _0_1022.jpeg

4. _0_1338.jpeg

5. _0_2399.jpeg

6. _0_4170.jpeg

7. _1_6343.jpeg

8. BloodImage_0002.jpg

9. BloodImage_0007.jpg

10. BloodImage_0020.jpg

11. BloodImage_0053.jpg

12. BloodImage_0066.jpg

13. BloodImage_0074.jpg

320 x 240

320 x 240

320 x 240

320 x 240

320 x 240

320 x 240

320 x 240

640 x 480

640 x 480

640 x 480

640 x 480

640 x 480

640 x 480

Kaggle (9957 files) Kaggle_Train Eosinophil - 2497 files

Lymphocyte – 2483 files

Monocyte – 2478 files

Neutrophil – 2499 files

320 x 240

320 x 240

320 x 240

320 x 240

Kaggle (71 files) Kaggle_Test_Simple

Eosinophil – 13 files

Lymphocyte – 6 files

Monocyte – 4 files

Neutrophil – 48 files

320 x 240

320 x 240

320 x 240

320 x 240

Kaggle (2501 files) Kaggle_Test_subset Eosinophil - 20 files

Lymphocyte – 20 files

Monocyte – 20 files

Neutrophil – 20 files

320 x 240

320 x 240

320 x 240

320 x 240

Table 3 Dataset Details

56

Preprocessing

 As mentioned in the Chapter 3, preprocessing converted the color image to grey scale

and then inverted the grey scale image so that WBCs would appear brighter. The Kaggle

dataset also required some cropping of the images to remove the white space that was

present due to creation of those images via rotation.

Separation

The separate method processes one or more segmented binary image. The standard

PCNN contains one segmented image with all cells, however, the region growing PCNN

methods contains a list of segmented images as there is a segmented image for each

region. The method first searches for WBC cells and then RBCs by performing post

processing mentioned earlier, then employs CHT to find the circles. The default values

for hough_circle() was described in the Chapter 3. The find_num parameter was used

here for setting the max_peaks value for the hough_transform_peaks() method for

maximum peaks to retrieve. The default value for the find_num parameter is the Python

None value, which indicates to use a max_peaks=500, which was used for standard

PCNN and conventional methods, however, for region growing it was set lower as the

goal was to capture like cells in a segmented region. Additional details of this parameter

and other parameters settings for each segmentation method are described under those

sections.

At this point the separation algorithm processes each circle center as described earlier.

Once an object is found that passes the acceptance criteria, an image of that object is

stored. The working image represents a binary image and 0 indicates background and 1

57

indicates object, which are displayed in Figure 10 as black and yellow, respectively. As

objects are found, the pixels representing that object are set to 0 in the working image,

thus removing that object. Figure 9 shows the original and segmented image and Figure

10 shows the working image after the WBC object was removed. The algorithm cycles to

the next circle center which is processed using the acceptance criteria and the working

image.

An example of a segmented image using file Im201_0 from the ALL_IDB_subset and

the standard PCNN is shown in Figure 9, along with the original image and an image

containing the found objects marked with circles (red for RBC and blue for WBC).

Figure 10 shows a few working images of Im201_0, where image 1 on the top left

contains the working image with the first object removed (the WBC) from the segmented

image; images 2 and 3 contain subsequent working images, images 4 – 8 are not shown,

and image 9 shows the last working image with 9 cell objects removed. Figure 11 shows

two of the images created, the WBC object and an RBC that appears in the upper-left

between two other cells in Figure 9 and Figure 10 image 1 and is shown removed from

the upper-left of the working image in Figure 10 image 2.

Figure 9 Original, Segmented, and Result of Im201_0

58

Figure 10 Working Images (Im201_0)

Figure 11 WBC and RBC (Im201_0)

PCNN with CHT

 The first experiments were related to using standard PCNN and the CHT based

separation method, called separate. The key PCNN parameters discovered from the

experiments are described in this section along with the separate method parameters.

Key Parameters

 As mentioned, the segmentation experiments were done on the ALL_IDB_subset,

ALL_IDB_large, and Kaggle_subset. The intent was to determine the optimal parameters

using ALL_IDB_subset, since those files were smaller, and then use those parameter

59

settings for capturing the counts for the larger images. However, a couple of key

parameters appeared to be impacted by the size of the image.

 A few parameters shown in Table 4 were fixed from early experiments as they did not

significantly impact segmentation results. These parameters were also used by Deng,

Yan, and Ma (2019) include the normalizing constants VF, VL, VE, and decay parameters

αL, αE. The initial E value was set to .0001 as per the implementation from Lindblad and

Kinser (2013).

VF VL VE αL αE

.2 .2 .9740 1 .0771

Table 4 Standard PCNN Segmentation Fixed Parameters

 The β parameter and the decay parameter, αF were impacted by the images of larger

size as shown in Table 5. The β parameter represents the linking strength and for smaller

size files the value of .05 provided slightly better RBC accuracy, however, a value of .1

worked better on the larger images which may be related to a change in αF decay

parameter. For the smaller files, a decay parameter αF value of 0.69 with the above β

values provided the optimal segmentation, with 0.69 providing slightly better RBC

accuracy. However, for the larger files, the αF of 0.69 did not segment the entire image;

These images segmented best with a αF value of 0.72 and a β of 0.1.

File Size β Decay Value (αF)

257 x 257 0.05/0.1 0.69

1712 x 1368 0.1 0.69

2592 x 1944 0.1 0.72/0.73

Table 5 Standard PCNN Segmentation Parameters Impacted by Image Size

 The standard PCNN generated a segmentation result for each iteration. A total of 20

iterations was done in the experiments and manually inspected to find the best iteration

number. The iteration number was impacted by the M and W neighbor matrices as shown

60

in Table 6. An M value of Cspline and W value of Weak provided the overall best

segmentation using the other parameters previously mentioned with the segmented image

obtained from iteration number 4. However, changing both the M and W values changed

the iteration number for the segmented result image, such as, using Exponential for M

and Euclidean for W as per Zhou and Shao (2018), which produced the best segmentation

at iteration number 2. Using Exponential and Euclidean values for M and W, respectively

also provided the best WBC accuracy on the ALL_IDB_subset, however, the RBC

accuracy was reduced.

Weight Matrix (M) Weight Matrix (W) Segmented Result Iteration

Cspline Weak 4

Exponential Euclidean 2

Table 6 Standard PCNN Segmentation Weight Matrix Parameters

 The parameter testing on ALL_IDB_subset results are shown in Figure 12, which

helped to fine tune the parameters for the additional experiments. The parameters for

best overall segmentation based on cell type can be seen in Table 7 and the metrics using

the RBC based parameters is shown in Figure 13. In Figure 13, there are some overlap of

metric values, especially those at 0 and 1. As mentioned earlier the ALL_IDB_subset

contained a smaller number of cells for trying different PCNN parameters, as such there

were limited numbers of WBCs per file in this dataset. Most of the files only contain 1

WBC, but there was one file with two WBCs and one file with no WBC. Figure 14

shows the data grouped by metric instead of each file so the values for each metric are

displayed. While average WBC accuracy was above 97%, average RBC accuracy was

just over 61%. The parameters for segmenting both RBC and WBC from

ALL_IDB_subset were found to be like those from Deng, Yan, and Ma (2019) with a

slight difference in the αF value.

61

Figure 12 Standard PCNN Accuracy by Parameters (ALL_IDB_subset)

Type
Key PCNN Parameters

αF β M W

RBC 0.69 0.05 Cspline Weak

WBC 0.7 0.1 Exponential Euclidean

Table 7 Standard PCNN Segmentation Key Parameters by Cell Type

(ALL_IDB_subset)

Figure 13 Standard PCNN Metrics (ALL_IDB_subset)

62

Figure 14 Standard PCNN Metrics (ALL_IDB_subset) Chart 2

 The experiments using the ALL_IDB_large required some fine tuning of

parameters, as mentioned earlier certain images with a higher resolution had an impact on

segmentation. One of these experiments was to split the large images into four images

and process each subimage. The idea was to provide an optimal αF parameter for all files.

A concern with this was the impact on splitting cells between subimages leaving them on

the image border, which is discussed later. While the splitting did not necessarily provide

an optimal αF, it provided a slight increase in accuracy and had the advantage of breaking

up some clumped WBCs. However, as was a concern it had a slight disadvantage of

missing a WBC that got positioned on a border of a split image. The increase in accuracy

suggests that the advantage out weighted the disadvantage; and the concern over cells

being located on a border due to the split. The parameters that changed for the

ALL_IDB_large are shown in Table 8.

Size
Key PCNN Parameters

αF β

<= 1712 x 1368 0.69 0.1

>= 2592 x 1944 0.72 0.1

Table 8 Standard PCNN Segmentation Key Parameters by Image Size

(ALL_IDB_large)

63

The experiments with splitting the large images resulted in a slight increase in average

accuracy as shown in Table 9. The accuracy results on ALL_IDB_large subset using the

split method and parameter values previously mentioned are shown in Figure 15. The

WBC average accuracy was 98% and RBC average accuracy was 82%, where RBC

accuracy was higher than with ALL_IDB_subset.

Split Type
Average Metrics

Accuracy Precision Recall F1

No
RBC 81.27 0.98 0.83 0.89

WBC 97.96 0.78 0.88 0.81

Yes
RBC 82.10 0.93 0.88 0.90

WBC 98.10 0.79 0.95 0.85

Table 9 Standard PCNN Metrics (ALL_IDB_large)

Figure 15 Standard PCNN Accuracy Metric (ALL_IDB_large)

 Figure 16 shows the results of the WBC counts on the Kaggle_subset using the

parameter settings that provided the overall general segmentation from ALL_IDB_subset.

The WBC accuracy was slightly lower on this data.

64

Figure 16 Standard PCNN WBC Accuracy Metric (Kaggle_subset)

 This section provides the answer to RQ1 from Chapter 1, “What are the significant

PCNN parameters impacting PCNN segmentation?”. The key parameters for the

standard PCNN are αF, β, W, and M, with certain images having an impact on the αF

parameter, which are shown in Table 10. An αF =0.69 worked well for the smaller images

and an αF =0.72 worked better for the larger images. A β =0.05 or β =0.1 worked well

based on the αF value and had a slight impact on RBC accuracy on the smaller images.

The weight matrices M=Cspline and W=Weak provided overall best segmentation for

both RBC and WBC using iteration number 4, but M=Exponential, and W=Euclidean

provided the best WBC segmentation using iteration number 2. Other parameters, while

not providing an optimal segmentation for WBC and RBC counts, did have an impact on

the texture vector generation used for classification, described later in that section. The

average metric values for each subset based on the parameters used are shown in Table

11.

65

Name Type
Key PCNN Parameters

αF β M W

ALL_IDB_subset
RBC 0.69 0.05 Cspline Weak

WBC 0.7 0.1 Exponential Euclidean

ALL_IDB_large
RBC 0.69 and 0.72 0.1 Cspline Weak

WBC 0.72 0.1 Exponential Euclidean

Kaggle_subset WBC 0.69 0.05 Cspline Weak

Table 10 Standard PCNN Segmentation Key Parameters by Cell Type

Name Type
Average Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 61.35 0.81 0.72 0.72

WBC 100 0.95 0.95 0.95

ALL_IDB_large
RBC 82.10 0.93 0.88 0.90

WBC 98.10 0.79 0.95 0.85

Kaggle_subset WBC 96.10 0.71 0.85 0.75

Table 11 Standard PCNN Segmentation Average Metric Results by Cell Type

Separate Cell Objects

The separate method was used with acceptance parameters wbc_offset=17,

wbc_percent=0.75, wbc_intensity=0.6, rbc_intensity=0.4, rbc_percent=0.6, and

rbc_offset=7 on the ALL_IDB dataset. The Kaggle dataset required a slight modification

due to the staining differences and was set to wbc_offset=11, wbc_percent=0.17,

wbc_intensity=0.26, and RBC values were not applicable. From the experiments, the

standard PCNN segmentation did provide edges for CHT using hough_circle() and

hough_circle_peaks() to find the circular objects and for the separation algorithm to

separate the cells; thus, answering RQ3 from Chapter 1, “Does PCNN segmentation with

postprocessing identify edges for CHT to find and differentiate between WBC and RBC

objects?”. Removing found object circles from the working image did improve discovery

of clumped cells. Distinguishing WBCs from RBCs was improved by using the matching

acceptance parameters, but depending on the staining of the slides, the results varied.

Although the separate function did find some overlapped cells, it did not do as well when

66

there were larger clumps, as there were no edges in the large clump to separate. However,

if the split segmentation method was used on clumped WBCs in the middle of the image,

then some of the WBCs were split into the sub images and the separation method could

find them. Figure 17 below shows WBCs from Im001_1 on the left and the improvement

using the split method on the right for some clumped WBCs.

Figure 17 Clumped WBCs Improved with Split Segmentation

The separation method first identifies and removes WBC objects from the image, after

which it identifies RBC objects. This approach impacted RBC detection since a missed

WBC object could be detected as a false positive RBC object. This did not account for all

RBC false positives, but it did account for some. For example, Figure 18 shows the

results for Im123_1 and Im135_0 from ALL_IDB_subset using the parameters in Table

10 for RBCs to capture WBCs and RBCs. As shown in Figure 18, the WBCs were not

found and so there were 3 false positives in each due to the missed WBC, with a false

positive in Im135_0 that was not related to the missed WBC.

67

Figure 18 Missed WBCs

Region Growing PCNN

 The Region growing PCNN segmentation method starts with a seed pixel and grows

outward based on the PCNN until the stopping criteria is met for that region, then

continues to the next region with the next start pixel until all pixels are assigned to a

region. The experiments for Region Growing PCNN were split into two main areas,

intensity and color which are described in this section.

Key Parameters

 The β value is updated as part of the algorithm, so this parameter did not have the

impact as with the standard PCNN. A starting value of β=0.1 was used. The M matrix

value of Cspline was used as other values either did not work well or had no significant

impact, although not all values were tried. The W matrix parameter did have an impact on

the segmentation results which was different for intensity or color region growing and are

described in those sections. The images that were impacted by the αF value for standard

PCNN were not impacted in region growing, so a value of 0.69 was used on all datasets.

Table 12 shows the key parameters for region growing PCNN.

68

Key Parameters

αF M

0.69 Cspline

Table 12 Region Growing PCNN Segmentation Key Parameters

Separation

 For region growing, the find_num parameter of the separate method was set to a

smaller number (compared to the standard PCNN) of circle peaks to retrieve with CHT,

since a region should not contain the same number of circles as the entire image using

standard PCNN. A value of 100 was determined by experiments and checking the

segmented images of regions to determine the maximum number of circles in each.

However, this value was different for the cell option described in that section.

Intensity

 The parameters for region growing PCNN started with those previously described

that were fixed and those from the standard PCNN. Experiments using ALL_IDB_subset

were performed for determining parameters specific to PCNN region growing using the

intensity of the grey scale image pixels (preprocessing converted the color image to grey

scale) with the average accuracy results shown in Figure 19. As can be seen from Figure

19, the W value had an impact on segmentation results. A W value of Euclidean

increased WBC accuracy but decreased RBC accuracy. A W value of Neighbors provided

the overall best WBC and RBC accuracy, however, while average WBC accuracy was

above 90%, average RBC accuracy was under 30%. The RBC accuracy was increased

slightly using a smaller value for separate parameter rbc_percent. The intensity region

growing specific key parameters by type on ALL_IDB_subset is shown in Table 13 and

using the parameters for the overall best segmentation the metrics are shown in Figure

69

20. In Figure 20, there are some overlap of metric values due to the dataset as previously

mentioned, which are shown grouped by metric in Figure 21.

Figure 19 Region Growing Intensity PCNN Accuracy by Parameters

(ALL_IDB_subset)

Type
Key PCNN Parameters Separate Parameters

W rbc_percent

RBC Neighbor 0.4

WBC Euclidean N/A

Table 13 Region Growing Intensity PCNN Segmentation Key Parameters by Cell

Type (ALL_IDB_subset)

Figure 20 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics

70

Figure 21 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics Chart 2

 The split option previously mentioned was also used for region growing intensity on

ALL_IDB_large and the accuracy metrics are shown in Figure 22. While the WBC

accuracy was above 90% for the worse case, RBC accurcy was below 60% for the best

case.

Figure 22 Region Growing Intensity PCNN WBC Accuracy (ALL_IDB_large)

 The results for WBC segmentation for Kaggle_subset are shown in Figure 23 using

the previously mentioned parameters that provided the best overall segmentation.

However, the WBC accuracy is not as high on the Kaggle dataset and drops below 60%

on some files.

71

Figure 23 Region Growing Intensity PCNN WBC Accuracy (Kaggle_subset)

 The key parameters and average metrics for region growing intensity PCNN are

shown in Table 14 and Table 15.

Name Type
Key Parameters

αF M W

ALL_IDB_subset
RBC 0.69 Cspline Neighbors

WBC 0.69 Cspline Euclidean

ALL_IDB_large
RBC 0.69 Cspline Neighbors

WBC 0.69 Cspline Neighbors

Kaggle_subset WBC 0.69 Cspline Euclidean

Table 14 Region Growing Intensity Key Parameters

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 29.52 0.63 0.26 0.34

WBC 99.71 0.93 0.93 0.93

ALL_IDB_large
RBC 27.94 0.64 0.32 0.39

WBC 97.21 0.82 0.98 0.89

Kaggle_subset WBC 81.95 0.23 0.69 0.31

Table 15 Region Growing Intensity Average Metrics

Color

 The experiments on ALL_IDB_subset for Color region growing PCNN showed that

the W value had an impact on the segmentation results as can be seen in Figure 24. A W

value of Cspline increased WBC accuracy but decreased RBC accuracy. A W value of

Common provided the overall best WBC and RBC accuracy, however, while WBC

72

accuracy was above 90%, RBC accuracy was under 40%. For the color space parameter,

HSV had slightly higher accuracy for all W values except Cspline which had no

difference between color spaces, which are also shown in Figure 24. This provides the

answer to RQ2 from Chapter 1, “What color channels and image processing methods

improve the results of PCNN segmentation and separation?”. The Color Region Growing

worked best using a separate parameter of rbc_percent=0.6. From the experiments on

ALL_IDB_subset, the color space did provide a 5% increase in RBC accuracy from the

region growing with intensity, whether this is truly related to color or the algorithm

differences is undetermined. The Color region growing specific key parameters by type

on ALL_IDB_subset is shown in Table 16 and using the parameters for the overall best

segmentation the metrics are shown in Figure 25. In Figure 25, there are some overlap of

metric values due to the dataset as previously mentioned, which are shown grouped by

metric in Figure 26.

Figure 24 Color Region Growing PCNN Accuracy by Parameters

(ALL_IDB_subset)

73

Type
Key PCNN Parameters Separate Parameters

W Color space rbc_percent

RBC Common HSV 0.6

WBC Cspline N/A N/A

Table 16 Color Region Growing PCNN Segmentation Key Parameters by Cell Type

(ALL_IDB_subset)

Figure 25 Color Region Growing PCNN Metrics (ALL_IDB_subset)

Figure 26 Color Region Growing PCNN Metrics (ALL_IDB_subset) Chart 2

 The split option previously mentioned was also used for color region growing on

ALL_IDB_large and the accuracy metrics are shown in Figure 27. While the WBC

accuracy was almost 90% for the worse case, RBC accuracy was just over 50% for the

best case.

74

Figure 27 Color Region Growing PCNN Accuracy Metric (ALL_IDB_large)

 The results for WBC segmentation for Kaggle_subset are shown in Figure 28 using

the previously mentioned parameters that provided the best overall segmentation. The

WBC accuracy on Kaggle_subset is higher for region growing using color compared to

intensity.

Figure 28 Color Region Growing PCNN WBC Accuracy (Kaggle_subset)

 The average metrics per dataset for color region growing PCNN are shown in Table

17.

75

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 36.87 0.61 0.45 0.48

WBC 99.71 0.93 0.95 0.93

ALL_IDB_large
RBC 29.75 0.53 0.43 0.42

WBC 95.19 0.70 0.65 0.63

Kaggle_subset WBC 94.71 0.60 0.69 0.62

Table 17 Color Region Growing PCNN Average Metrics

Cell

 The last of the PCNN methods is the Cell variant of Color region growing, where

additional parameters were added to the color region growing to limit the size of the

region. This reduced the size of each region and increased the number of segmented

images processed by separate. The purpose was to try and capture each cell object into a

region. The parameters were set for choosing regions based on the size and intensity of

WBCs and RBCs. The find_num parameter for separate was set to 1, although other

values did not improve the results. This method increased the RBC accuracy from the

Color region growing on ALL_IDB_subset, with a slight increase in WBC accuracy. The

accuracy results based on experimented parameters are shown in Figure 29. The best

parameters were the same as for color region growing. The metrics are shown in Figure

30 for ALL_IDB_subset using these parameters. In Figure 30, there are some overlap of

metric values as previously mentioned related to the dataset, Figure 31 shows the overall

per metric values.

76

Figure 29 Color Region Growing Cell PCNN Accuracy by Parameters

(ALL_IDB_subset)

Figure 30 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset)

Figure 31 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset) Chart 2

 However, this method like the other region growing PCNN did not work well on RBC

counts for the larger files, the metrics for the color region growing cell variant on

77

ALL_IDB_large using the parameters that proved the best overall segmentation are

shown in Figure 32.

Figure 32 Color Region Growing Cell PCNN WBC Accuracy (ALL_IDB_large)

The cell variant for color region growing on Kaggle_subset is shown in Figure 33, which

showed a slight decrease in the WBC accuracy from the non-variant color region

growing.

Figure 33 Color Region Growing Cell PCNN WBC Accuracy (Kaggle_subset)

 The average metrics for color region growing cell PCNN are shown in Table 18.

78

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 50.6 0.63 0.74 0.64

WBC 96.39 0.80 0.78 0.78

ALL_IDB_large
RBC 44.75 0.59 0.67 0.61

WBC 97.93 0.86 0.67 0.72

Kaggle_subset WBC 93.17 0.50 0.77 0.58

Table 18 Color Region Growing Cell PCNN Average Metrics

Conventional Segmentation and PCNN Prior Work

 For comparison results the ALL_IDB_subset was used on a couple conventional

methods and the results are described in this section. These methods were not run for the

other datasets.

Threshold

 The threshold method uses a threshold value and every pixel less than or equal to that

value is either in or out of the result. A threshold value of 0.5 provided the best

segmentation for overall RBC and WBC segmentation and separation using separate

method. The rbc_percent parameter for separate improved RBC counts using a smaller

value of 0.4. The chart in Table 19 shows the metric values for the ALL_IDB_subset.

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 32.78 0.50 0.40 0.42

WBC 95.84 0.77 0.90 0.81

Table 19 Threshold Metrics (ALL_IDB_subset)

Watershed Region Growing

 A watershed region growing method was available in scikit-image with an example

for segmenting coins that was the basis for this implementation. An elevation map was

created using a sobel filter on the image. Markers are determined by the threshold values.

There are three ‘basins’ separated by threshold values of 0.4 and 0.51. These threshold

79

values were set from experiments. The scikit-image watershed method was called with

the elevation map and makers to segment. The three basins were chosen to segment and

capture both types of cells. As with the threshold method, Watershed also had better

accuracy with an rbc_percent parameter for separate set to 0.4, the metrics for

ALL_IDB_subset are shown in Table 20.

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 30.88 0.36 0.36 0.38

WBC 96.67 0.83 0.90 0.85

Table 20 Watershed Metrics (ALL_IDB_subset)

PCNN from Literature

 A standard PCNN with the parameters from by Ma et al. (2016) was used to segment

the ALL_IDB_subset for comparison results. The PCNN parameters are shown in Table

21, and separate used an rbc_percent value of 0.4. The metrics are shown in Table 22,

however as discussed later in the comparison section, their results used a computed count

percentage. Their method also contained differences in preprocessing, post processing,

and separation and counting.

Name
Parameters

αF αL αE β VF VL VE M W

ALL_IDB_subset 0.8 1 1.35 0.1 0.2 0.2 2000 Cspline Cspline

Table 21 PCNN Parameters from Literature

Name Type
Metrics

Accuracy Precision Recall F1

ALL_IDB_subset
RBC 43.62 0.53 0.65 0.56

WBC 96.62 0.78 0.78 0.77

Table 22 PCNN with Parameters from Literature Metrics

80

 Figure 34 shows the average accuracy metric comparison with the different

segmentation methods and separate on the ALL_IDB_subset using the best overall

segmentation results for each method.

Figure 34 Method Comparison Accuracy Methods

Classification

 The classification was done for WBCs on both the ALL_IDB and Kaggle datasets

described in Table 2. Classification required creation of the texture vector list using the

labeled training data for each dataset, ALL_IDB2 and Kaggle_Train. The

generate_texture_vector() was described in Chapter 3. Several segmentation methods

were used for segmentation with the separate method. The goal was to capture close to

the entire WBC with limited background or RBCs contained in the WBC subimage

created. The WBC segmentation method that achieved this goal best was the standard

PCNN with the parameters shown in Table 23. The significant difference between

datasets was that they required different αE PCNN parameter values. The WBC objects

81

are found as before using the separate method to capture the list of WBC images. The

dataset specific parameters for separate are shown in Table 24.

 Once the WBC objects were found, another standard PCNN was used with a different

set of PCNN parameters also in Table 23 to capture the texture vectors for classification.

The significant difference between datasets was that they required different αE and VE

PCNN parameter values. These parameters were found through experiments where the

output images produced were manually examined. The goal was to capture the texture of

the image in a series and not the entire object in one segmentation. This was done by

experimenting with different types of WBCs to capture the nucleus, granules, etc., in

different indexes of the segmentation array. The Shannon entropy was calculated on each

segmentation in the array and represented one element in the texture vector for an object,

thus it captured differences between the types. This section provides the answer to RQ4

from Chapter 1, “What are the significant PCNN parameters that yield the best texture

vector results for each dataset, or which worked generally across datasets?”.

Usage Dataset

Parameters

αF αL αE β VF VL VE M W Initial

E

Segmentation
ALL_IDB

0.72 1
0.0771

0.1 0.2 0.2 0.9740 Exponential Euclidean 0.0001
Kaggle 0.3

Classification
ALL_IDB

1.2 0.6
0.08

0.01 0.1 0.1
1.1

Cspline Common 1
Kaggle 0.4 0.8

Table 23 Texture Vector PCNN Parameters

Dataset
Parameters

wbc_offset wbc_percent wbc_intensity

ALL_IDB 15 0.6 0.5

Kaggle 11 0.17 0.26

Table 24 Texture Vector Separate Parameters

82

 Once the parameters for generating the texture vector were found, the next

experiments created and stored the list of texture vectors for each WBC type. The

original expectation was to capture and save the average texture vector per type, but there

was too much variance in the vectors, so for the ALL_IDB2 training data it was decided

to save the texture vectors and cell type for each image as was done by Yang et al (2017).

However, for the Kaggle_Train there was a larger set, so the mean along with the mean

plus and minus the variance were saved on every 10 images. The value of 10 was chosen

by experiments that reduced the number of vectors stored and still captured the difference

between types.

 The last step was to perform the segmentation and classification on the test data and

capture the results. The test data images were segmented and separated to retrieve the

WBC objects. Figure 35 shows the segmented image and resulting WBC objects found

for Im004_1, where all WBCs are found along with some false positives. The false

positives here are most likely WBCs that were either old or smeared and broken during

making the slide. Three of the lymphoblasts from this segmentation are shown in Figure

36.

Figure 35 WBC Segmentation and Result (Im004_1)

83

Figure 36 Lymphoblasts (Im004_1)

 Once the WBC object was found, the texture vector was captured using the same

parameters as was used for generating the texture vector list. The texture vector for the

WBC object was then compared against the training texture vector list to find the closest

similar vector as previously described in classify() in the Chapter 3. Figure 37 shows the

one lymphocyte and two neutrophils from Im108_0 which were correctly classified,

however, Figure 38 shows a neutrophil and two lymphocytes that were correctly

classified and one monocyte that was incorrectly classified. The incorrectly classified

WBC was not entirely captured from separate, as is evident from the image.

Figure 37 Lymphocyte, Neutrophils (Im108_0)

Figure 38 Neutrophil, Lymphocyte, Lymphocyte, and Misclassified Monocyte (Im088_0)

 The confusion matrices and metrics are shown in this section for the different testing,

along with the metrics for the combined results. Any false positive WBCs were not

84

counted in the classification results as those results were already included with the

metrics calculated for total WBC counts under segmentation.

ALL_IDB Dataset

 As was described earlier in Table 2, the classification was done for WBCs on the

testing data in ALL_IDB_subset, ALL_IDB_large, ALL_IDB_large2, and

ALL_IDB_large3. The ALL_IDB2 contained the training data and was used to label the

WBCs and capture the texture vector list. The test images were segmented using the

previously mentioned parameters with a slight adjustment in the separate parameters as

shown in Table 25 and classified using the parameters mentioned previously to capture

the texture vector.

Adjusted Separate Parameters

wbc_offset wbc_intensity

17 0.6

Table 25 Adjusted Classification Parameters (ALL_IDB)

 The confusion matrix for the test data from ALL_IDB_large and ALL_IDB_large2 are

shown in Table 26.

Predicted

A
ct

u
al

Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil

Neutrophil 11 2 3 0 0 0

Lymphocyte 0 13 0 0 0 0

Lymphoblast 1 5 93 3 0 0

Monocyte 0 1 2 3 0 0

Eosinophil 0 0 1 0 0 0

Basophil 0 0 0 0 0 0

Table 26 Confusion Matrix (ALL_IDB_large and ALL_IDB_large2)

85

 The ALL_IDB_subset which contain images from the training set was used as test data

to determine the impact of slight changes to the separate parameters. The confusion

matrix is shown in Table 27, which shows the separate parameters had a slight impact as

the captured WBC was slightly different resulting in two WBCs being incorrectly

classified.

Predicted

A
ct

u
al

Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil

Neutrophil 2 1 0 0 0 0

Lymphocyte 0 5 0 0 0 0

Lymphoblast 0 0 8 0 0 0

Monocyte 0 1 0 2 0 0

Eosinophil 0 0 0 0 1 0

Basophil 0 0 0 0 0 1

Table 27 Confusion Matrix (ALL_IDB_subset)

 The confusion matrix for all test data which includes ALL_IDB_large,

ALL_IDB_large2, and ALL_IDB_large3 from ALL_IDB is shown in Table 28.

Predicted

A
ct

u
al

Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil

Neutrophil 12 2 3 0 0 0

Lymphocyte 0 26 0 0 0 0

Lymphoblast 1 5 93 3 0 0

Monocyte 0 1 2 3 0 0

Eosinophil 0 0 1 0 0 0

Basophil 0 0 0 0 0 1

Table 28 Confusion Matrix (ALL_IDB Test Data)

86

 The metric table was calculated from the confusion matrix for the test data in

ALL_IDB_large, ALL_IDB_large2, and ALL_IDB_large3 is shown in Table 29. From the

results the classification for lymphocytes was very good at 100%. Lymphoblast

classification was 88.2 % accuracy with sensitivity of 91.2 %. The worse accuracy for

neutrophils and monocytes was above 93%, but the best sensitivity was below 70%

which may be related to staining variances resulting in segmentation and separation not

capturing the entire cell. The limited number of basophils and eosinophils make those

results not accurate.

Classification Sensitivity (%) Specificity (%) Accuracy (%)

Neutrophil 70.59 96.06 93.06

Lymphocyte 100.00 100.00 100.00

Lymphoblast 91.18 82.00 88.16

Monocyte 50.00 97.76 95.71

Eosinophil 0.00 99.26 98.53

Basophil 0.00 100.00 100.00

Table 29 WBC Classification Metrics (ALL_IDB Test Data)

Kaggle Dataset

 As was described earlier in Table 2, the classification was done for WBCs on the

testing data in Kaggle_Test_simple and Kaggle_Test. The Kaggle_Train contained the

training data and was used to capture the texture vector list. The test images were

segmented using the previously mentioned parameters and classified using the parameters

mentioned previously to capture the texture vector. The confusion matrix for the test data

from Kaggle_Test_simple and Kaggle_Test are shown in Table 30 and Table 31,

respectively.

87

Predicted

A
ct

u
al

Neutrophil Lymphocyte Monocyte Eosinophil

Neutrophil 25 4 3 6

Lymphocyte 2 5 0 0

Monocyte 1 1 2 0

Eosinophil 0 5 4 4

Table 30 Confusion Matrix (Kaggle_Test_simple)

Predicted

A
ct

u
al

Neutrophil Lymphocyte Monocyte Eosinophil

Neutrophil 14 2 1 3

Lymphocyte 7 12 0 1

Monocyte 3 0 17 0

Eosinophil 6 4 5 5

Table 31 Confusion Matrix (Kaggle_Test)

 The metric table from the combined confusion matrix for Kaggle_Test_simple and

Kaggle_Test is shown in Table 32. The classification was decent for lymphocytes and

monocytes at 80% and just under 90%, respectively. The neutrophil and eosinophils

were not as accurate at around 60%, which may be due to the staining and not capturing a

consistent whole image. The Kaggle dataset did not contain any basophils or

lymphoblasts.

Classification Sensitivity (%) Specificity (%) Accuracy (%)

Neutrophil 57.35 60.27 58.87

Lymphocyte 61.54 87.01 80.58

Monocyte 79.17 92.75 89.25

Eosinophil 27.27 75.51 63.36

Table 32 Classification Metrics (Kaggle)

88

Comparing Prior Work

 The results of this research were compared to prior work in this section. First the

overall metrics calculated from the cell counts after segmentation and separation are

compared. Next, the classification metrics for the two datasets are compared, and then the

metrics related to lymphoblast detection are compared.

Total RBC and WBC Counts

 Adagale and Pawar (2013) and Ma et al. (2016) both calculated their metrics based on

a computed count percentage as follows:

,#E-Z$�:	,#Z�$	7�&Y��$D9� � ��D(Z&�:	[8##:	,�88	,#Z�\YZD8	[8##:	,�88	,#Z�$ 	�100�
The computed count percentage from Adagale and Pawar (2013) was 90.1%; for Ma et

al. (2016) their computed count percentage was 93.18%. The total cells from the data

shown in both their papers was less than 100 RBCs per image. From the experiments, the

computed count percentage was comparable at 92.86% on ALL_IDB_large and lower at

72.3% on ALL_IDB_subset. However, the RBC accuracy on the ALL_IDB_large using

the standard PCNN and separate was 82% using the accuracy metric described in

Chapter 3.

 From Loddo, their overall accuracy was 99.2% on WBCs and 98% on RBCs, whereas

the standard PCNN accuracy was slightly lower at 98% on WBCs and 82% on RBCs.

Their method obtained a higher accuracy and other metrics then the PCNN methods in

this paper using ALL_IDB_large as shown in Table 33. However, these results were for

both RBC and WBC counting. Using the specific WBC parameters for WBC counts

89

provided more accurate results as the WBC accuracy was 100% for the standard PCNN

on ALL_IDB_subset.

Method Type
Average Metrics

Accuracy Precision Recall F1

Standard PCNN and separate (ALL_IDB_large) RBC 82% 93% 88% 90%

WBC 98.% 79% 95% 85%

Loddo et al. (2016) RBC 98% 89% 98% 93%

WBC 99.2% 100% 99.2% 99.6%

Table 33 Metric Comparison with Literature (ALL_IDB_large)

WBC Classification and Counts

 Macawile et al. (2018) classified WBCs from the ALL_IDB dataset using three

different models, with their AlexNet model providing the best results. The overall

average sensitivity, specificity, and accuracy for both methods are shown in Table 34,

these do not include the lymphoblasts since they were not in their results. While their

results show a greater sensitivity, the accuracy and specificity were slightly better with

the PCNN classifier. The sensitivity result was impacted by the number of eosinophils

and basophils which were limited to two in Macawile et al. (2018) and one or less in the

test sets used in this paper.

Classification Sensitivity (%) Specificity (%) Accuracy (%)

PCNN 44.12 98.62 97.46

Macawile et al. (2018) 89.18 97.85 96.63

Table 34 Classification Metric Comparison (ALL_IDB dataset)

 Liang et al. (2018) classified WBCs from the Kaggle dataset using different models,

with their Xception-LSTM model providing the best results. Their accuracy results were

better those using the PCNN classification, which may be related to the staining of the

90

slides in the dataset. The authors did not provide sensitivity or specificity in their results.

The overall average accuracy comparison between the two methods is shown in Table 34.

Classification Accuracy (%)

PCNN 73.02

Liang et al. (2018) 90.79

Table 35 Classification Metric Comparison (Kaggle dataset)

Lymphoblast Detection

 For lymphoblast detection, Ghosh et al. (2017) determined the metrics on a per slide

basis indicating the presence of lymphoblasts and not a per cell classification. If a slide

contains a lymphoblast and it is detected then it is counted as a true positive, if the slide

contains a lymphoblast and it is not detected it is counted as a false negative, and similar

for false positives and true negatives. The previous results displayed under the

classification section was for the overall classification by type. The per slide metric used

by Ghosh et al. (2017) was calculated for the results from ALL_IDB_large,

ALL_IDB_large2, ALL_IDB_large3, and ALL_IDB_first33 with any duplicates between

subsets removed. Table 36 shows the comparison of Ghosh et al. (2017) and the PCNN

classifier for lymphoblast detection using the per slide metric. The PCNN classifier

metrics for accuracy and specificity are less than 1% lower with sensitivity being 3%

lower; however, the lymphoblast cell level accuracy was 88.2% whereas Ghosh et al.

(2017) stated they were not able to achieve good cell level accuracy. Ghosh et al. (2017)

also did not support clumped cells which was supported by the PCNN segmentation and

separation method in this research.

91

Classification Sensitivity (%) Specificity (%) Accuracy (%)

PCNN 97.2 94.12 96.23

Ghosh et al. (2017) 100 94.9153 97.22

Table 36 Lymphoblast Detection Comparison

Summary

 While the metrics from these experiments using PCNN produced lower RBC accuracy

than those in the literature, using the standard PCNN, separate, and the PCNN classifier

provided comparable or better results for WBC counts, classification, and lymphoblast

detection on the ALL_IDB dataset. The staining on the Kaggle dataset had an impact on

the WBC results as the accuracy values were lower. Some of the images that were in

ALL_IDB_large, did require different parameter tuning which was most likely related to

the larger size due to the resolution of those images.

92

Chapter 5

Conclusion

Introduction

 This section discusses the overall experiments along with issues and concerns. The

manual counting of RBCs was time consuming and had a potential for error when the

number of cells was large and there were overlapped cells. The staining of the slides also

had an impact on the results and some unexpected complications like the white space in

the Kaggle dataset due to rotation that had to be removed during preprocessing as

previously mentioned. However, most of the preprocessing and post processing was

consistent between the datasets.

Conclusions

 This section discusses the parameters and findings from the experiments. It provides

comparative summary for segmentation, separation, and classification. The section

concludes with an overall assessment of the experiments.

Parameters

 There were several parameters associated with PCNN segmentation, where a few had

a significant impact on blood cell segmentation. The αF and β parameters were impacted

by the file size (image resolution) for overall RBC and WBC standard PCNN

segmentation but did not have the same impact with region growing PCNN. These two

parameters along with M and W weight matrices was impacted by the cell type. For WBC

only segmentation for use with classification or lymphoblast detection, these parameters

93

improved WBC accuracy. For region growing PCNN, like standard PCNN the W matrix

improved WBC segmentation, however, there was only one M matrix that was successful

at segmentation. The W matrix value also impacted WBC accuracy with region growing

PCNN when combined with the color option. The different color spaces used with region

growing PCNN segmentation did not have a significant impact.

 The PCNN parameters were dependent on usage, as using a standard PCNN as a

classifier verses segmentation required a different set of parameters. A couple of PCNN

parameters were dependent on the dataset, such as the αE for both segmentation and

classification and the VE for classification. The separation parameters were also dependent

on the dataset as the acceptance criteria was related to the quality of the staining and

image.

Segmentation

 The standard PCNN provided better segmentation and separation than the region

growing PCNN variants. While the WBC results for the standard PCNN were

comparable to the literature with an average accuracy above 98%, RBC accuracy results

were lower with the best case just over 82%. An interesting finding was that the PCNN

parameters had an impact on segmentation for certain images that were larger due to a

higher resolution. Whether this was really related to the size and resolution or something

else about the image was not clear.

 The region growing PCNN variants did not produce comparable results to the standard

PCNN. However, an interesting finding was related to the color option for region

growing; there was improvement using color over grey scale intensity, but there was little

impact between the different color spaces. This may be due to the overlap in WBC and

94

RBC colors as they both have variations of purple. Whether using intensity or color, the

PCNN segmentation variants tended to pick up more of the nucleus for WBC objects and

not as much of the cytoplasm.

Separation

 The PCNN standard segmentation did provide the edges and the separate method did

find and separate the cell objects. The separate method that created a cell object image

and subsequently removed the image from the working image improved finding clumped

cells. The split variant for segmenting a larger file into four subimages also improved

finding clump cells. However, for some cells with more cytoplasm (such as a large

monocyte or neutrophil), the entire cell was not always included in the generated WBC

subimage due to variations in the segmentation. Overall, the standard PCNN worked

better than the region growing versions. This may be due to region growing adding more

pixels to the region resulting in a clumpier segmented image as input to the separate

method which was subsequently unable to find the edges of the actual cell.

Classification

 The WBC classification results on the ALL-IDB dataset were comparable to

Macawile et al. (2018) at 97% accuracy; however, the sensitivity was slightly lower due

to the limited number of certain cell types. The classification on the Kaggle dataset

obtained an accuracy about 15% lower than the results from Liang et al. (2018), but as

previously mentioned the PCNN seemed to be more sensitive to the variations in staining

on that dataset. The lymphoblast detection using PCNN was comparable with Ghosh et

al. (2017) at 96% for the per slide results and per cell lymphoblast classification was also

achieved at 88.2%.

95

Assessment

 The assessment from the experiments was that the standard PCNN provided

comparable or better accuracy for WBC segmentation, counting, classification, and

lymphoblast detection. For WBC segmentation and counting the standard PCNN

produced comparable accuracy, but other metrics were lower. The PCNN classifier

produced slightly better accuracy and specificity but had lower sensitivity. The PCNN

classifier did not perform as well on the Kaggle dataset. For lymphoblast detection, the

PCNN classifier was comparable on the per slide results but with lower sensitivity. The

PCNN classifier also obtained per cell results, however, the comparable method in the

literature was not able to produce per cell results with their method. The standard PCNN

however produced lower RBC results compared to the literature.

 The region growing PCNN had slightly lower accuracy for WBC and significantly

lower RBC accuracy compared to the standard PCNN. Using the color option for region

growing PCNN improved the overall results compared with using the intensity value. A

region growing PCNN color cell option tried to improve the region growing by

specifying a min and max size for a region, but this did not significantly improve the

results.

 Quality of results depended on characteristics of the dataset. The image resolution and

magnification were different on some files in the ALL_IDB and caused variations in the

segmentation parameters for the standard PCNN. The main parameters impacted were the

αF and β, with αF being more sensitive to the size of the image and requiring a slightly

larger value. The αF parameter is a decay parameter and β is the linking strength which

are combined and compared against the threshold value to determine the output for the

96

iteration. A higher αF parameter would decay faster allowing more pixels in the

segmented output.

 The staining of the images in the Kaggle dataset were slightly different from the

ALL_IDB making the images not as clear with less distinct colors. This had an impact

when segmenting and classifying WBCs. The αE impacted both segmentation and

classification and the VE impacted classification only. The VE is the normalizing constant

and αE is the decay parameter and these are associated with the threshold for determining

the output of the PCNN. The lower image quality resulted in lower feeding and linking

network values so using the same parameters generated a threshold value that resulted in

little or no output. Thus, the Kaggle dataset required setting a higher αE parameter value

so the threshold would decay faster and allow the pixels to appear in the output. For

classification, the VE parameter was also reduced to allow more pixels to be captured in

the output.

Future Work

 Proposed improvements to the use of PCNN for segmentation, classification, and

separation will be described in this section. The improvements to the segmentation are

described first, followed by the improvements to classification, and ending with the

improvements to the separation method.

Segmentation

 The first improvement for segmentation relates to the preprocessing of the image

before it is sent to PCNN segmentation. The ALL-IDB contained images of different

sizes representing different resolutions and magnifications. The Kaggle dataset files were

97

different sizes compared to the ALL-IDB files. This improvement would require resizing

the images to a standard size to determine optimal values for PCNN parameters β and αF

for all images. Macawile et al. (2018) resized the ALL-IDB images to the required size

for the different CNN models.

 The second improvement to the standard PCNN is to add the linking control unit from

Xu et al. (2018) to provide color input. The color option improved the region growing

results compared to grey scale intensity and may provide an improvement in the standard

PCNN segmentation.

Classification

 Another set of proposals entail modifications to the PCNN classifier. The first is to

add an average or mean color representation feature to the texture vector, such as average

intensity or mean color value. Color features were used by Khobragade et al. (2015) and

Alreza and Karimian (2016). Khobragade et al. (2015) converted RBG to HSV and

captured the mean, and Alreza and Karimian (2016) captured from the grey scale value.

The mean color or average intensity for color representation could be added as element(s)

to the texture vector. This may improve classification between neutrophils, eosinophils,

and basophils as they all have granules, but the eosinophils are a deep orange, and the

basophils are a deep purple, so the color is an important distinguishing characteristic.

 The second PCNN classifier improvement would be to use a PCNN variant called a

Spiking Cortical Model (SCM). The SCM is a simplified PCNN with only 3 equations

(Yang et al. (2017). Yang et al. (2017) found that for textural features the SCM showed

an improvement over the standard PCNN.

98

Separation

 The last set of proposed improvements are related to the separate method used to

separate the cell objects from the segmented image. The current method finds the circles

in the segmented image using CHT. It then processes each circle center found from CHT

and determines if there is an acceptable object. The acceptance of an object is based on

the matching criteria parameters. Once an object matches the acceptance criteria a cell

object subimage is created. The cell object is then subsequently removed from the

working image. The process continues with the next circle center. For the current

separate method, CHT is run once on each segmented image.

 The improvement to the separate method would start by executing CHT on the

working image to find one circle at a time. The circle center found would be matched to

the acceptance criteria to determine if there is an acceptable object. Like the current

method a subimage would be created when an acceptable object is found, and that object

is removed from the working image. The improvement process goes back to the working

image and executes CHT to find the next circle. This continues until no more circles are

found in the working image. The improvement flow is shown in Figure 39. An additional

preprocessing step would remove small objects from the working image before finding

the next circle with CHT. This should improve finding cells that are in clumps and

reduce the number of background cells in the created object image improving

classification.

Figure 39 Separate Flow Improvement

99

Summary

 The standard PCNN worked best on the segmentation and separation of RBC and

WBC compared to the region growing versions. WBC segmentation and separation had

significantly higher accuracy then RBC segmentation and separation. Two PCNNs were

required for WBC segmentation and classification, one to segment and separate the WBC

objects, and another to capture the texture vector for each object. Overall, using a

standard PCNN to segment and classify WBCs provides comparable accuracy to the

literature at 98% for segmentation, 97% for classification, and 96% for lymphoblast

detection.

 This research showed that a standard PCNN can be used to successfully segment RBC

and WBC objects. The region growing PCNN was also successful in segmenting and

separating WBCs but did not perform as well as the standard PCNN. The separate

method introduced in this research facilitated cell counting and WBC classification with

the creation of WBC subimages, along with detection of clumped cells. Using a standard

PCNN as a WBC classifier was introduced with this research and proved to be a

successful classifier and lymphoblast detector.

100

References

Abdul Nasir, A. S., Mashor, M., Y., Rosline, H. (2011). Unsupervised colour

segmentation of white blood cell for acute leukaemia images. In Proceedings of the

IEEE International Conference on Imaging Systems and Techniques, 142 - 145.

doi:10.1109/IST.2011.5962188

Acharya, V., Kumar, P. (2018). Identification and red blood cell automated counting

from blood smear images using computer-aided system. Medical & Biological

Engineering & Computing, 56 (3). 483 - 489. doi:10.1007/s11517-017-1708-9

Adams, R., Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16 (6). 641 - 647. doi:10.1109/34.295913

Adagale, S. S., Pawar, S. S. (2013). Image segmentation using PCNN and template

matching for blood cell counting. In Proceedings of the IEEE International

Conference on Computational Intelligence and Computing Research. 1 - 5.

doi:10.1109/ICCIC.2013.6724161

Alreza, Z. K. K., Karimian A. (2016). Design a new algorithm to count white blood cells

for classification leukemic blood image using machine vision system. In Proceedings

of the 6th International Conference on Computer and Knowledge Engineering

(ICCKE), 251 - 256. doi:10.1109/ICCKE.2016.7802148

Brown, B. A., (1980). Hematology: Principles and Procedures (Third Edition).

Philadelphia, PA: Lea & Febiger.

Chacon, M. I., Mendoza, J. A. (2011). A PCNN-FCM time series classifier for texture

segmentation. 2011 Annual Meeting of the North American Fuzzy Information

Processing Society, 1 - 6. doi:10.1109/NAFIPS.2011.5752019

Chouhan, S. S., Kaul, A., Singh, U. P. (2017). Soft computing approaches for image

segmentation: a survey. Multimedia Tools and Applications, pp 1-55.

doi:10.1107/s11042-018-6005-6

Dela Cruz, J. C., Valiente Jr., L. C., Castor, C. M. T., Mendoza, A. J. B., Song, C. J. L.,

Torres, B., B. P. (2017). Determination of blood components (WBCs, RBCs, and

Platelets) count in microscopic images using image processing and analysis. In

Proceedings of the IEEE 9th International Conference on Humanoid,

Nanotechnology, Information Technology, Communication and Control, Environment

and Management (HNICEM), 1 - 7. doi:10.1109/HNICEM.2017.8269515

Deng, X., Yan, C., Ma, Y. (2019). PCNN mechanism and its parameter settings. IEEE

Transactions on Neural Networks and Learning Systems, 1 – 14.

doi:10.1109/TNNLS.2019.2905113

101

Di Ruberto, C., Loddo, A., Putzu, L. (2016). A leucocytes count system from blood

smear images. Machine Vision and Applications, 27(8), 1151 – 1160.

doi:10.1107/s00138-016-0812-4

Eckhorn, R., Reitboeck, H. J., Arndt, M., Dicke, P. (1990). Feature linking via

synchronization among distributed assemblies: simulations of results from cat visual

cortex. Neural Computation, 2, 293 – 307.

Gatc, J., Maspiyanti, F. (2016). Red blood cell and white blood cell classification using

double thresholding and BLOB analysis. In Proceedings of the 4th International

Conference on Information and Communication Technology (ICoICT), 1 - 5.

doi:10.1109/ICoICT.2016.7571900

Gautam, A., Bhadauria, H. (2014). Classification of white blood cells based on

morphological features. In Proceedings of the International Conference on Advances

in Computing, Communications and Informatics (ICACCI), 2363 - 2368.

doi:10.1109/ICACCI.2014.6968362

Ghosh, A., Singh, S., Sheet, D. (2017). Simultaneous localization and classification of

acute lymphoblastic leukemic cells in peripheral blood smears using a deep

convolutional network with average pooling layer. In Proceedings of the

International Conference on Industrial and Information Systems (ICIIS), 529 - 534.

doi:10.1109/ICIINFS.2017.8300425

Gonzalez, R. C., Woods, R. E. (2002). Digital Image Processing (Second Edition).

Upper Saddle River, NJ: Prentice Hall.

Jagadev, P., Virani, H. G. (2017). Detection of leukemia and its types using image

processing and machine learning. In Proceedings of the International Conference on

Trends in Electronics and Informatics (ICEI), 522 - 526.

doi:10.1109/ICOEI.2017.8300983

Khobragade, S., Mor, D. D., Patil, C. Y. (2015). Detection of leukemia in microscopic

white blood cell images. In Proceedings of the International Conference on

Information Processing (ICIP), 435 - 440. doi:10.1109/INFOP.2015.7489422

Kim, K. S., Kim, P. K., Song, J. J., Park, Y. C. (2000). Analyzing blood cell image to

distinguish its abnormalities. In Proceedings of the eighth ACM International

Conference on Multimedia, 395 - 397. doi:10.1145/354384.354543

Kolhatkar, D., Wankhade, N. (2016). Detection and counting of blood cells using image

segmentation: a review. In Proceedings of the World Conference on Futuristic Trends

in Research and Innovation for Social Welfare (WCFTR), 1 - 5.

doi:10.1109/STARTUP.2016.7583931

102

Kuntimad, G., Ranganath, H., S. (1999). Perfect image segmentation using pulse coupled

neural networks. IEEE Transactions on Neural Networks, 10(3). 591 - 598.

doi:10.1109/72.761716

Labati, R. D., Piuri, V., Scotti, F. (2011). ALL_IDB: The acute lymphoblastic leukemia

image database for image processing. In Proceedings of the 18th IEEE International

Conference on Image Processing, 2045 - 2048. doi:10.1109/ICIP.2011.6115881

Le, D. T., Bui, A. A., Yu, Z., Bui, F. M. (2015). An automated framework for counting

lymphocytes. In Proceedings of the International Conference and Workshop on

Computing and Communication (IEMCON), 1 - 6.

doi:10.1109/IEMCON.2015.7344535

Li, H., Zhou, H., Chen, Y., Shi, X. (2010). Image segmentation by using grayscale

iteration threshold pulse couple neural network. In Proceedings of the 2nd

International Conference on Information Engineering and Computer Science

(ICIECS), 1 - 4. doi:10.1109/ICIECS.2010.5678152

Liang, G., Hong, H., Xie, W., Zheng, L. (2018). Combining convolutional neural network

with recursive neural network for blood cell image classification. IEEE Access, 6,

36188 - 36197. doi:10.1109/ACCESS.2018.2846685

Lindblad, T., Kinser, J. M. (2013). Image Processing Using Pulse-Coupled Neural

Networks. Applications in Python (Third Edition). New York, NY: Springer.

Doi:10.1007/978-3-642-36877-6

Liu, Z., Wang, F., Yan, S., Huang, R. (2016). Blood cell segmentation based on improved

pulse coupled neural network and fuzzy entropy. International Journal

BioAutomation, 20(4), 471 - 482.

Loddo, A., Putzu, L., Di Ruberto, C., Fenu, G. (2016). A computer-aided system for

differential count from peripheral blood cell images. In Proceedings of the 12th

International Conference on Signal-Image Technology & Internet-Based Systems

(SITIS), 112 - 118. doi:10.1109/SITIS.2016.26

Ma, R., Liang, Y., Ma, Y. (2016). A self-adapting method for RBC count from different

blood smears based on PCNN and image quality. In Proceedings of the IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), 1611 - 1615.

doi:10.1109/BIBM.2016.7822760

Macawile, M. J., Quinones, V. V., Ballado Jr., A., Dela Cruz, J., Caya, M., V. (2018).

White blood cell classification and counting using convolutional neural network. In

Proceedings of the 3rd International Conference on Control and Robotics

Engineering (ICCRE), 259 - 263. doi:10.1109/ICCRE.2018.8376476

103

Manik, S., Saini, L., M., Vadera, N. (2016). Counting and classification of white blood

cell using Artificial Neural Network (ANN). In Proceedings of the IEEE 1st

International Conference on Power Electronics, Intelligent Control and Energy

Systems (ICPEICES), 1 - 5. doi:10.1109/ICPEICES.2016.7853644

Mao-jun, S., Zhao-bin, W., Hong-juan, Z., Yi-de, M. (2008). A new method for blood

cell image segmentation and counting based on PCNN and autowave. In Proceedings

of the 3rd International Symposium on Communications, Control and Signal

Processing (ISCCSP), 6 - 9. doi:10.1109/ISCCSP.2008.4537182

Mohamed, M., Far, B., Guaily, A., (2012). An efficient technique for white blood cells

nuclei automatic segmentation. In Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics (SMC), 220 - 225.

doi:10.1109/ICSMC.2012.6377703

Mooney, P. (2018). Kaggle Blood Cell Images Version 6 [Webpage]. Retrieved from

https://www.kaggle.com/paultimothymooney/blood-cells

Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksac, S. (2001). An

automated differential blood count system. In Proceedings of the 23rd Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(IEMBS), 3, 2583 - 2586. doi:10.1109/IEMBS.2001.1017309

Puttamadegowda, J., Prasannakumar, S. C. (2016). White blood cell segmentation using

fuzzy c means and snake. In Proceedings of the International Conference on

Computational Systems and Information Systems for Sustainable Solutions (CSITSS),

47 - 52. doi:10.1109/CSITSS.2016.7779438

Quinones, V. V., Macawile, M. J., Ballado Jr., A., Dela Cruz, J., Caya, M. V. (2018).

Leukocyte segmentation and counting based on microscopic blood images using HSV

saturation component with blob analysis. In Proceedings of the 3rd International

Conference on Control and Robotics Engineering (ICCRE), 254 - 258.

doi:10.1109/ICCRE.2018.8376475

Rashid, N. Z. N., Mashor, M. Y., Hassan, R. (2015). Unsupervised color image

segmentation of red blood cell for thalassemia disease. In Proceedings of the 2nd

International Conference on Biomedical Engineering (ICoBE), 1 - 6.

doi:10.1109/ICoBE.2015.7235892

Rawat, J., Singh, A., Bhadauria, H. S., Kumar, I. (2014). Comparative analysis of

segmentation algorithms for leukocyte extraction in acute lymphoblastic leukemia

images. In Proceedings of the International Conference on Parallel, Distributed and

Grid Computing, 245 - 250. doi:10.1109/PDGC.2014.7030750

Razzak, M. I., Naz, S. (2017). Microscopic blood smear segmentation and classification

using deep contour aware CNN and extreme machine learning. In Proceedings of the

104

IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 801 - 807. doi:10.1109/CVPRW.2017.111

Ruifrok, A. C., Johnston, D. A. (2001). Quantification of histochemical staining by color

deconvolution. Analytical and Quantitative Cytology and Histology, 23 (4), 291 -

299.

Savkare, S. S., Narote, A. S., Narote, S. P. (2016). Automatic blood cell segmentation

using k-mean clustering from microscopic thin blood images. In Proceedings of the

Third International Symposium on Computer Vision and the Internet. 8 - 11.

doi:10.1145/2983402.2983409

Savkare, S. S., Narote, S. P. (2015). Blood cell segmentation from microscopic blood

images. In Proceedings of the International Conference on Information Processing

(ICIP). 502 - 505. doi:10.1109/INFOP.2015.7489435

Seth, S., Palodhi, K. (2017). An efficient algorithm for segregation of white and red

blood cells based on modified hough transform. In Proceedings of the 2017 IEEE

Calcutta Conference (CALCON), 465 - 468. doi:10.1109/CALCON.2017.8280777

Shankar, V., Deshpande, M. M., Chaitra, N., Aditi, S. (2016). Automatic detection of

acute lymphoblastic leukemia using image processing. In Proceedings of the IEEE

International Conference on Advances in Computer Applications (ICACA), 186 - 189.

doi:10.1109/ICACA.2016.7887948

Sinha, N., Ramakrishnan A. G. (2003). Automation of differential blood count. In

Proceedings of the Conference on Convergent Technologies for Asia-Pacific Region

(TENCON), 2, 547 - 551. doi:10.1109/TENCON.2003.1273221

Stewart, R. D., Fermin, I., Opper, M. (2002). Region growing with pulse-coupled neural

networks: an alternative to seeded region growing. IEEE Transaction on Neural

Networks, 13 (6), 1557 - 1562. doi:10.1109/TNN.2002.804229

Syahputra, M. F., Sari, A. R., Rahmat, R. F. (2017). Abnormality classification on the

shape of red blood cells using radial basis function network. In Proceedings of the

2017 4th International Conference on Computer Applications and Information

Processing Technology (CAIPT), 1 - 5. doi:10.1109/CAIPT.2017.8320739

Yu, W., Chang, J., Yang, C., Zhang, L., Shen, H., Xia, Y., Sha, J. (2017). Automatic

classification of leukocytes using deep neural network. In Proceedings of the 12th

International Conference on ASIC (ASICON), 1041 - 1044.

doi:10.1109/ASICON.2017.8252657

Van der Walt, S., Schonberger, J. L, Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,

Yager, N., Gouillart, E., Yu, T., the scikit-image contributors. (2014). scikit-image:

image processing in Python. PeerJ, 2, e453. doi:10.7717/peerj.453.

105

Varoquaux, G., Louppe, G., Pedregosa, F., Buitinck, L., Grisel, O., Mueller, A. (2015).

scikit-learn: Machine learning without learning the machinery. GetMobile: Mobile

Computing and Communications, 19 (1), 29 - 33. doi:10.7717/peerj.453.

Vogado, L. H. S., Veras, R. M. S., Andrade, A. R., de Araujo, F. H. D., e Silva, R. R. V.,

de Medeiros, F. N. S. (2016). Unsupervised leukemia cells segmentation based on

multi-space color channels. In Proceedings of the 2016 IEEE International

Symposium on Multimedia (ISM), 451 - 456. doi:10.1109/ISM.2016.0103.

Xu, G., Li, S., Lei, B., Lv, K. (2018). Unsupervised color image segmentation with color-

alone feature using region pulse coupled neural network. Neurocomputing, 306, 1 -

16. doi:10.1016/j.neucom.2018.04.010

Yang, L., Meer, P., Foran, D. J. (2005). Unsupervised segmentation based on robust

estimation and color active contour models. IEEE Transactions on Information

Technology in Biomedicine, 9 (3), 475 - 486. doi:10.1109/TITB.2005.847515

Yang, R., Lyu, C., Liu, Y., Zhou, W., Chen, C., Jiang, X., Li, P., Chen, H., Xu, R., Wang,

Y. (2017). Spiking cortical model for geometry invariant and antinoise texture

retrieval. In Proceedings of the 2017 IEEE International Conference on Real-time

Computing and Robotics (RCAR), 645 - 650. doi:10.1109/RCAR.2017.8311936

Zhan, K., Zhang, H., and Ma, Y. (2009). New spiking cortical model for invariant texture

retrieval and image processing. IEEE Transactions on Neural Networks, 20 (12),

1980 - 1986. doi:10.1109/TNN.2009.2030585

Zhang, C., Xiao, X., Li, X., Chen, Y.J., Zhen, W., Chang, J. (2014). White blood cell

segmentation by color-space-based k-means clustering. Sensors, 14, 16128 - 16147.

doi:10.3390/s140916128

Zhou, D., Shao, Y. (2018). Region growing for image segmentation using an extended

PCNN model. IET Image Process, 12 (5), 729 - 737. doi:10.1049/iet-ipr.2016.0990

	A PCNN Framework for Blood Cell Image Segmentation
	Share Feedback About This Item

	Microsoft Word - 787656_pdfconv_1312124b-e824-4944-b366-2644d07ffb8d.docx

