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A PCNN Framework for Blood Cell Image Segmentation 

 

by 

Carol D. Lenihan  

 

This research presents novel methods for segmenting digital blood cell images under a 

Pulse Coupled Neural Network (PCNN) framework. A blood cell image contains 

different types of blood cells found in the peripheral blood stream such as red blood cells 

(RBCs), white blood cells (WBCs), and platelets. WBCs can be classified into five 

normal types – neutrophil, monocyte, lymphocyte, eosinophil, and basophil – as well as 

abnormal types such as lymphoblasts and others. The focus of this research is on 

identifying and counting RBCs, normal types of WBCs, and lymphoblasts. The total 

number of RBCs and WBCs, along with classification of WBCs, has important medical 

significance which includes providing a physician with valuable information for 

diagnosis of diseases such as leukemia. 

 

The approach comprises two phases – segmentation and cell separation – followed by 

classification of WBC types including detection of lymphoblasts. The first phase presents 

two methods based on PCNN and region growing to segment followed by a separate 

method that combines Circular Hough Transform (CHT) with a separation algorithm to 

find and separate each RBC and WBC object into separate images. The first method uses 

a standard PCNN to segment. The second method uses a region growing PCNN with a 

maximum region size to segment.  

 

The second phase presents a WBC classification method based on PCNN. It uses a 

PCNN to capture the texture features of an image as a sequence of entropy values known 

as a texture vector. First, the parameters of the texture vector PCNN are defined. This is 

then used to produce texture vectors for the training images. Each cell type is represented 

by several texture vectors across its instances. Then, given a test image to be classified, 

the texture vector PCNN is used to capture its texture vector, which is compared to the 

texture vectors for classification.  

 

This two-phase approach yields metrics based on the RBC and WBC counts, WBC 

classification, and identification of lymphoblasts. Both the standard and region growing 

PCNNs were successful in segmenting RBC and WBC objects, with better accuracy 

when using the standard PCNN. The separate method introduced with this research 

provided accurate WBC counts but less accurate RBC counts. The WBC subimages 

created with the separate method facilitated cell counting and WBC classification.  Using 

a standard PCNN as a WBC classifier, introduced with this research, proved to be a 

successful classifier and lymphoblast detector. While RBC accuracy was low, WBC 

accuracy for total counts, WBC classification, and lymphoblast detection were overall 

above 96%. 
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Chapter 1  

 

Introduction 
 

 

Background 

     A complete blood count (CBC) is a laboratory blood test that contains a count of 

leukocytes also called white blood cells (WBCs), erythrocytes also called red blood cells 

(RBCs), hemoglobin, hematocrit, and blood smear examination (Brown, 1980). A 

medical technologist performs a manual examination of a blood smear slide using a 

microscope to classify and count the percentage of each type of leukocyte. They also 

indicate the presence of any cells that are abnormal, premature, or contain parasites so 

those slides can be further analyzed by a hematologist or physician. The CBC can be used 

to diagnose some diseases, screen general health condition, and monitor patient during 

treatment (Brown, 1980).  

     The blood cells are created in the bone marrow and mature cells are circulated in the 

blood stream. Leukocytes help fight infections and erythrocytes carry oxygen to the body. 

However, under certain diseases and conditions, there is an increase (or decrease) in the 

number of blood cells, and sometimes immature or early cells can enter the blood stream. 

Immature cells seen in a blood smear can be indicative of disease.  

     A blood cell image typically has a higher number of RBCs than WBCs.  The RBCs 

are usually smaller than WBCs, around 7-8 µm in diameter and the center may appear 
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hollow, whereas WBCs are around 10-20 µm in diameter and contain a nucleus and 

depending on the type may have granules (Loddo, Putzu, Di Ruberto, and Fenu, 2016). 

The color absorbed during staining of the smear can be used to differentiate between an 

RBC and WBC, however, this can vary with the stain process. Leukocytes can be 

classified into neutrophil, lymphocyte, monocyte, eosinophil, basophil, and early 

(immature) cell types known as blasts. The types can be differentiated by a combination 

of color, size, number of lobes in nucleus, and presence of granules (Loddo et al., 2016). 

Erythrocyte size and shape can vary: microcell (smaller than normal), or macrocell 

(larger than normal), tear drop, sickle cell (shaped like a crescent and indicative of type 

of anemia), nucleated (premature RBC), malaria (parasite in RBC), among others 

(Brown, 1980). Thus, blood counts and classification can show indications for leukemia, 

anemia, and malaria to name a few diseases. 

     This section is organized as follows. First the problem is discussed and the dissertation 

goal is presented. The relevance and significance of the problem follows, along with the 

research questions of this dissertation. Barriers and issues are discussed next and this 

chapter concludes with a summary.  

 

Problem Statement 

     Improper blood cell image segmentation and cell clumping lead to incorrect counts 

and classification that can result in misdiagnosis. To accurately count erythrocytes and 

leukocytes, the cells need to be separated from each other and the background (Loddo et 

al. 2016). Incorrect segmentation can result in counting one cell type as another (Acharya 

& Kumar, 2018). The staining process of blood smears can impact thresholding methods 
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resulting in inaccurate results (Loddo et al. 2016). Choosing an incorrect threshold can 

cause improper segmentation (Acharya & Kumar, 2018). Quinones, Macawile, Ballado 

Jr., Dela Cruz, and Caya (2018) suggest that improvements in blood cell image 

segmentation are still needed to provide more accurate results. Thus, segmentation is a 

crucial step for blood cell image processing to provide accurate counts. 

     Besides segmentation, counting cells that are clumped together or visually overlapping 

can reduce accuracy if they are not correctly separated. Blood cell images can contain 

many clumps of multiple cells after segmentation (Loddo et al., 2016). Cells that are 

visually connected can be counted incorrectly (Acharya & Kumar, 2018). Improvements 

are needed for separation of overlapped and clumped cells as they can decrease 

segmentation accuracy impacting the cell counts (Savkare, Narote, & Narote, 2016). 

Counting the individual cells within a clump is important for obtaining correct counts. 

     Since a CBC normally includes a differential and detection of abnormalities, this 

should also be included during image processing of a blood smear for complete results. 

Determining types of WBCs is important as an increase in premature types of WBCs is 

associated with leukemia (Loddo et al., 2016). Abnormal growth of blood cells is 

indicative of leukemia, such as Lymphocytic which has an increase in lymphoblasts and 

Myelogenous (also known as Myeloid) which has an increase in myeloblasts, among 

others (Brown, 1980). Lymphocytic and Myeloid are two common types of leukemia 

containing different signatures, thus knowledge of the types of premature WBCs are 

crucial to diagnosis of which type the patient has (Khobragade, Mor, & Patil, 2015). 

Thus, detecting abnormal WBCs along with classifying the type of WBC should be 

included to aid in diagnosis. 
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     A CBC provides important medical information to a physician to diagnose certain 

diseases that can be life-threatening to a patient. A hematology analyzer is an automated 

method to obtain these counts and is costly; a hemocytometer is a manual method for 

obtaining counts and thus is prone to error (Quinones et al., 2018). Some countries or 

regions do not have access to a laboratory for performing a CBC (Seth & Palodhi, 2017). 

To address these problems, image processing of digital blood images can potentially be 

used instead to identify, count, and classify leukocytes and erythrocytes and detect 

abnormalities. Therefore, the problem exists for improvements in segmentation and 

clump separation of blood cell image processing to provide accurate counts and 

classification. 

 

Dissertation Goal  

     The goal of this research was to develop and assess image processing methods to 

segment and separate RBCs and WBCs from a blood smear image, classify WBCs, and 

count RBCs and WBCs. The development was split into three main areas: segmentation, 

separation, and classification. A framework was developed to experiment with different 

segmentation methods including threshold, watershed, and Pulse Coupled Neural 

Network (PCNN).  A separate method was developed to find and separate the RBC and 

WBC objects from the segmented image using postprocessing, Circular Hough 

Transform (CHT), and separating the objects into sub images. The resulting WBC sub 

images were used for WBC classification using a PCNN classifier. 
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     A PCNN is a single layer neural network where each pixel represents a neuron and 

neighbor neurons provide link information that pulses through the network (Kuntimad & 

Ranganath, 1999). PCNN was modeled after the cat’s visual cortex (Eckhorn, Reitboeck, 

Arndt, and Dicke, 1990). It is an unsupervised method which can be used to segment 

objects from the background in a grey scale digital image. A PCNN was used to segment 

and count RBCs by Adagale and Pawar (2013) who combined it with templates and Ma, 

Liang, and Ma (2016) who combined it with image quality.  

     An issue with PCNN is tuning the parameters and knowing when to stop so that the 

best segmentation is achieved. Liu, Wang, Yan, and Huang (2016) used fuzzy entropy to 

determine the stopping criteria when segmenting WBCs using a simplified PCNN. 

Recently, Zhou and Shao (2018) proposed a multi object grey scale region growing 

PCNN image segmentation and Xu, Li, Lei, and Lv (2018) proposed a similar region 

growing PCNN image segmentation using color.  

     This dissertation examined two different PCNN stopping criteria.  The first criterion 

uses a fixed number of iterations, whose value was determined by experiments that 

produce the best segmentation and subsequent separation of RBC and WBC objects.  The 

second criterion uses a region growing PCNN with additional stopping criteria that 

specified a max region size.  The PCNN segmentation experiments included using the 

intensity from the grey scale image for the feeding and linking part of a standard PCNN, 

and the spectral feeding for region growing PCNN as per Xu et al. (2018) for color 

values.  
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     A separation method was developed that employs Circular Hough Transform (CHT) 

on the segmented image to find cells and then separates each RBC and WBC into images.  

Each object found is subsequently removed from the segmented image thus eliminating 

duplicated cells, unwanted edges, and separating cells in clumps. Preprocessing and 

postprocessing is also performed to facilitate separation. 

     For WBC classification, the textural information was captured with a PCNN that 

retrieved the entropy series and stored as the texture vector. A PCNN was used for image 

texture retrieval by Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu, and Wang (2017).  

The PCNN parameters were determined through experiments for the texture vector 

PCNN that produced the best classifier. The texture vectors and cell type were captured 

using the texture vector PCNN on the training dataset and stored. The PCNN classifier 

was used to capture the texture vector for a WBC from the testing dataset, and its texture 

vector compared to the stored texture vectors for WBC classification. WBCs were 

classified into neutrophil, lymphocyte, monocyte, and eosinophil, along with basophil 

and lymphoblasts depending on the dataset.   

 

Relevance and Significance  

     There are several steps associated with counting blood cells using image processing: 

segmentation, classification, and counting. The segmentation stage separates the WBC 

and/or RBC from the background (Kolhatkar & Wankhade, 2016).  Classification 

methods are used to separate types of WBCs as is done by a manual differential 

(Macawile, Quinones, Ballado Jr., Dela Cruz, and Caya, 2018). Counting may include 

separating cells that are clumped into single cells for more accurate counting (Loddo et 
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al., 2016).  This section discusses the relevance and significance as related to 

segmentation, classification, and counting blood cells. 

     Segmentation can be done by using a threshold to separate an object from the 

background. For thresholding into object and background, each pixel of a grey scale 

image is compared and if it is above a certain value it is specified as a 1 for object and 

otherwise 0 for background (Gonzalez and Woods, 2002). Otsu threshold is an algorithm 

for finding the optimal threshold that splits an object from the background. The Otsu 

threshold is used by Acharya and Kumar (2018) to segment RBCs from the background. 

Shankar, Deshpande, Chaitra, and Aditi (2016) use Zack threshold on converted color 

space to segment the WBCs from the background.  

     Another segmentation method is clustering, where the objects of similar values are 

grouped together. A common clustering method is k-means where the number of clusters 

is specified by the value of k.  A blood cell image is typically stored by its red, green, and 

blue color values known as RGB color space. It can be converted to another color space 

or grey scale. CMYK represents an image using cyan, magenta, yellow, and black, and 

Lab uses luminance and chromaticity components a and b. Abdul Nasir, Mashor, and 

Rosline (2011) used clustering to segment the WBC in one step and the WBC nucleus in 

the next step. Savkare and Narote (2015) used k-means clustering, where k is equal to 2 

to separate the cells from the background. Vogado, Veras, Andrade, Araujo, Silva, and 

Medeiros (2016) converted the image to CMYK and Lab, extract the M and b 

components, and perform k-means clustering to segment the WBCs. Most of the k-means 

clustering methods segment either the RBCs or WBCs. However, Jagadev and Virani 

(2017) used k-means clustering on Lab color space to separate into WBC nucleus, RBC 
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and WBC cytoplasm, and background. While Zhang et al. (2014) used a combination of 

color transfer and k-means clustering to separate the background, RBC, and WBC 

nucleus. 

     A support vector machine (SVM) which is a supervised machine learning 

classification method can also be used for segmentation. Di Ruberto, Loddo, and Putzu 

(2016) used a Nearest Neighbor Search (NNS) and SVM model to segment the image 

into WBC, RBC, and plasma.  

     Pulse Coupled Neural Network (PCNN) is another method for image segmentation. A 

PCNN was used by Mao-jun, Zhao-bin, Hong-juan, and Yi-de, (2008), Adagale and 

Pawar (2013), and Ma et al. (2016) to segment the RBCs from the background. A 

simplified PCNN and fuzzy entropy was used by Liu et al. (2016) to segment WBCs. 

This dissertation used a PCNN to segment the image which subsequently was separated 

into WBC and RBC objects. 

     Once the image is segmented the cells need to be separated for accurate counting. 

From the literature, Watershed Transform, Circular Hough Transform (CHT), and 

templates are used as well as combinations. Watershed transform is used by Savkare et al. 

(2016) to separate clumped RBCs. Acharya and Kumar (2018) used watershed and 

Circular Hough Transform (CHT) with a specified radius to separate and count RBCs. Di 

Ruberto et al. (2016) counts clumped WBCs using CHT and a specified radius along with 

the grey level reference values. Dela Cruz Valiente Jr., Castor, Mendoza, Song, and 

Torres (2017) use an estimated count for RBC clumps based on the clump size. Ma et al. 

(2016) used CHT and average radius for template creation. Templates are also used by 

Adagale and Pawar (2013) to determine the count based on the clump size. The 
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separation of cell objects for this research used CHT with a specified radius based on cell 

type along with object acceptance criteria.  

     Determining the type or classification of a WBC is crucial for accurate counts. Alreza 

and Karimian (2016) used and SVM model for classification after extracting WBC 

features such as color, texture, and number of lobes in the nucleus. An Artificial Neural 

Network (ANN) was used by Manik, Saini, and Vadera (2016) to classify WBCs into 

three categories (neutrophil, lymphocyte, and eosinophil). Jagadev and Virani (2017) 

used an SVM to determine if cells were leukemic after extracting statistical, geometrical, 

color, and textural features. Ghosh, Singh, and Sheet (2017) used a deep Convolutional 

Neural Network (CNN) with average pooling to determine if the image contained 

lymphoblasts. Macawile et al. (2018) used transfer learning and a CNN to classify WBC 

cells from blood image into neutrophils, lymphocytes, monocytes, eosinophils, and 

basophils. Liang, Hong, Xie, and Zheng (2018) used a combination of CNN and 

Recurrent Neural Network (RNN) to classify WBCs into lymphocyte, eosinophils, 

monocyte, and neutrophils. SVM and NN methods typically require a large set of labeled 

data for the training of the network.  

     Other classification methods compare different features. Khobragade et al. (2015) 

detected abnormal types of WBCs by comparing statistical, textural, geometrical, and 

color features between normal and blast cells. A PCNN can be used to extract statistical 

features for texture classification (Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu, 

Wang, 2017).  Since a PCNN process is iterative until the stop criterion is reached, the 

resulting output contains a series of images. A feature vector can be calculated from the 

time and entropy series that is unique and invariant to large changes in scale and rotation 
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(Zhan, Zhang, Ma, 2009).  The classification of WBCs for this project used a PCNN and 

calculated a feature vector from the entropy series which was compared to a known set of 

vectors for WBC types. 

 

Research Questions 

     There were three main stages performed by this research: segmentation, separation, 

and classification. The questions associated with each stage in this section were answered 

by this research as described in Chapter 4. All questions are related specifically for blood 

cell images.  

    The segmentation step was used to segment the objects of interest from everything 

else. Segmentation for the purpose of this research was generation of a binary image that 

contained either WBCs, RBCs or both and was used by the separation stage to separate 

into WBC and RBC objects. The first experiment used the intensity grey scale.  

RQ1: What are the significant PCNN parameters impacting PCNN segmentation? 

The region growing PCNN added a color option and experiments were done on 

different color spaces. It also segmented the image into regions reducing the number of 

objects in the separation stage. 

RQ2: What color channels and image processing methods improve the results of 

PCNN segmentation and separation? 

The separation stage generated an image for each circular object found in the 

segmented image that was used for counting and WBC classification. Some 

postprocessing was required during this stage. This stage captured each object into a 

WBC and RBC list. This was a precursor for WBC classification and for counting. 
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RQ3: Does PCNN segmentation with postprocessing identify edges for CHT to 

find and differentiate between WBC and RBC objects? 

The classification stage was used to classify the type of WBC. This stage used a 

PCNN to capture the texture vector of the WBC object and compared with the texture 

vector list stored per type of WBC. The PCNN and parameters used to capture the texture 

vector for the WBC test object was the same as the one used to generate the texture 

vectors.  There were two sets of stored texture vectors, one for each dataset (ALL_DB 

and Kaggle). 

RQ4: What are the significant PCNN parameters that yield the best texture vector 

results for each dataset, or which worked generally across datasets?  

 

Barriers and Issues  

     Some of the PCNN code was available from Lindblad and Kinser (2013) which was 

used as a starting point for the standard model, however, additional code was developed 

for other PCNN models along with the separate method. A PCNN framework was 

developed to select different segmentation methods for verification of this research.  

A texture vector representation for each cell type was created for WBC classification. 

The two datasets used were the ALL_DB from Labati, Piuri, and Scotti (2011) and the 

Kaggle blood-cell dataset from Mooney (2018). Difference between these datasets 

required generation of two texture vector representations, one for each dataset. The real 

counts of RBC and WBCs for each image tested was manually calculated for analysis of 

metrics. 
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The lymphoblasts from the ALL_IDB contained center values which were used to 

obtain the real counts.  The other WBCs from the ALL_IDB were manually classified 

into lymphocytes, neutrophils, monocytes, basophils, and eosinophils. The Kaggle dataset 

contained WBC classifications for lymphocytes, eosinophils, monocytes, and neutrophils, 

but did not contain basophils or lymphoblasts; thus, those types were not included in the 

results for that dataset. Only a subset from each dataset was used for counting and 

classification in this research. The quality of images from the Kaggle dataset was 

different than those of the ALL_IDB and as such required different preprocessing and 

was not used for RBC counting.   

 

Summary 

     The research for this project created a PCNN framework for adjusting parameters and 

testing segmentation methods, developed a separation method that used CHT, classified 

WBCs, and counted cells. The remainder of this paper is organized as follows. Chapter 2 

contains the literature review, Chapter 3 contains details of the methodology used in this 

research, Chapter 4 contains the dissertation results, and Chapter 5 summarizes this 

report. 
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Chapter 2  

 

Review of the Literature 
 

 

     There are several steps associated with counting blood cells using image processing: 

preprocessing, segmentation, postprocessing, separation, counting, and classification. The 

preprocessing stage includes image enhancement and denoising and the segmentation 

stage segments the cells from the background (Kolhatkar & Wankhade, 2016). Counting 

may include separating cells that are clumped into single cells for more accurate counting 

(Loddo et al., 2016). Classification methods can be used to determine types of WBCs as 

is done by a manual differential (Macawile, Quinones, Ballado Jr., Dela Cruz, and Caya, 

2018).  

     Since the goal of this research was related to segmentation, separation, counting, and 

classifying WBCs, this section contains a review of the literature in these areas. Some of 

the reviews in this section were concerned with just segmentation, counting, or 

classifying and not necessarily all of these. This chapter first contains a brief discussion 

on color spaces, followed by segmentation methods and includes preprocessing.  Next is 

a section on separation and counting which also includes any postprocessing.  The 

chapter is wrapped up with a section on classification methods followed by a chapter 

summary.  

 

Color Spaces 

     Images can be represented in different color spaces. RGB is a common color space 

that is represented by the colors red, green, and blue.  Grey scale is represented by shades 
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of grey using a value between 0 and 1. A binary image is represented by black or white, 

represented with a value of 0 or 1, respectively.  HSV is known as hue, saturation, and 

value, and HSI is hue, saturation, and intensity.  The intensity component of HSI does not 

contain any color value as that is retained in the other two components (Zhang et al., 

2014). The CMYK color space is represented by the colors, cyan, magenta, yellow, and 

black. It is considered a subtractive model and is used in color printing (Zhang, 2014). 

Lab color space is represented by luminance and chromaticity components a and b, which 

indicate brightness, and colors red to green, and blue to yellow, respectively (Savkare et 

al., 2015; Jagadev and Virani, 2017). The Haematoxylin Eosin Diaminobenzidine (HED) 

is a color space that contains haematoxylin (blue), eosin (magenta-red), and 

diaminobenzidine (brown) and is used in histology and cytology (Ruifrok & Johnston, 

2001).  The Luv color space, like Lab, consists of luminance containing the light or 

brightness along with the u, v parts containing the color for red to green, and blue to 

yellow, respectively. Blood cell images are typically stained using wright stain where 

RBCs are red, WBCs have a blue color for the nucleus, WBC cytoplasm is a lighter blue 

or red, eosinophils have an orange color to the granules, and basophils have a purple 

color to the granules. Using different color spaces can have an impact on the 

segmentation result. 

 

Segmentation Techniques 

     Segmentation for blood cell images is the process that partitions the image into the 

objects of interest.  In a binary segmented image, the objects of interest are represented 

with a pixel value of 1 and everything else is background with a pixel value of 0.  For a 



15 

 

 

blood cell image, it can represent either all cells or just RBCs or WBCs. An image can be 

segmented into multiple objects of interest, where each object contains a pixel value of 

non-zero with background pixel values of 0. In this case a blood cell image could 

represent WBCs with a value of 1 and RBCs with a value of 2.  

     Methods such as thresholding, clustering, region growing, edge based, PCNN, among 

others can be used to segment an image (Kolhatkar & Aankhade, 2016; Chouhan, Kaul, 

Singh, 2018). Soft computing methods can also be used for image segmentation such as 

Fuzzy Logic (FL), ANN, and Genetic Algorithm (GA) (Chouhan, Kaul, Singh, 2018). 

Since most methods used for blood cell segmentation contain some preprocessing, these 

are included in this section with the segmentation.  This section includes those related to 

blood cell segmentation such as thresholding, clustering, edge, active contours, SVM, 

region growing, PCNN, and Neural Networks (NN). 

Thresholding 

     Segmentation using a threshold can be based on a global or local threshold. A global 

threshold is one that is done for the entire image, and a local threshold can be used for a 

subset of the image. Kim, Kim, Song, Park (2000) used thresholding with fuzzy logic to 

select the threshold to segment WBCs and RBCs. Mohamed, Far, and Guaily (2012) 

enhanced the intensity of WBCs with linear contrast, histogram equalization, adding 

images, and Otsu thresholding to segment WBCs. Gautam and Bhadauria (2014) finds 

the optimal threshold with Otsu thresholding and uses it to segment the WBCs from the 

background using some morphological preprocessing and postprocessing to remove 

RBCs. Khobragade et al. (2015) perform WBC segmentation by using thresholding, first 

converting RGB to grey scale, then histogram equalization and linear contrasting, add 
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and subtract the enhanced images, and Otsu thresholding to convert to binary. Le, Bui, 

Yu, and Bui (2015) convert to HED then grey scale manually choosing the best threshold 

to segment WBCs.  

     Gatc and Maspiyanti (2016) use a preprocessing median filter, double thresholding 

which includes filling holes, and morphology methods to segment both RBCs and WBCs. 

Shankar, Deshpande, Chaitra, and Aditi (2016) convert RGB to CMYK to obtain higher 

contrast of WBCs when converted to grey scale, then Zack thresholding is used on grey 

scale image to segment the WBCs from the background. Alreza and Karimian (2016) 

segmented WBCs by using a combination of RGB and CMYK converted to grey scale 

followed by the Zack thresholding algorithm, where the nucleus and cytoplasm are then 

obtained by subtracting the nucleus from the whole leukocyte. Manik et al. (2016) 

segments in two steps; first they convert the RGB to grey scale, use adaptive histogram 

equalization, Otsu threshold, and morphological operations to segment the cells; then 

they convert the RGB to HSV, obtain separate G and S segments from RGB, and HSV, 

respectively, subtract S from G, and apply morphological operations to segment the 

nucleus. 

     Dela Cruz, Valiente Jr., Castor, Mendoza, Song, and Torres (2017) convert RGB into 

HSV and use HSV thresholding to segment the blood cells into RBC, WBC, and 

platelets. Quinones et al. (2018) segment the WBC by first converting the image to HSV 

color space and extracting the S component and convert to grey scale, then binarization 

using a threshold. According to the authors using the S component eliminated the need 

for preprocessing using morphological methods. Acharya and Kumar (2018) segment 

RBCs using Otsu threshold where the mean intensity of the red channel is retained, after 
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first converting from RGB to Lab color space and then converting to grey scale. They 

also preprocess using histogram equalization for images requiring contrast adjustment. 

Clustering 

     Another segmentation method is clustering, where the objects of similar values are 

grouped together. K-medoids and k-means are two clustering methods. An issue with 

clustering is knowing the k value or number of clusters to generate as too small a value 

will combine unlike objects and too large can split objects. Sinha and Ramakrishnan 

(2003) used k-means clustering after converting to HSV color space to find the WBC 

nucleus, then crop around to capture the entire WBC image for further processing.   

     Rawat, Singh, Bhadauria, and Kumar (2014) compared different segmentation 

algorithms for WBCs where k-means clustering had the best results. Zhang et al. (2014) 

used a combination of color transfer and k-means clustering. The color transfer is done in 

RGB color space and is used to adjust the image color to match more closely that of a 

known good color image to correct for variations in staining. The RGB color is then 

converted to both HSI and CMYK to obtain characteristics that are more prominent in 

those spaces. K-means clustering is done on each color space to separate the background, 

RBC and WBC nucleus. RBC segmentation was done by subtracting the nucleus part 

from the combination of RBC and nucleus. Likewise, cytoplasm segmentation required 

image enhancement using bottom hat transformation and then subtracting the nucleus 

part from the entire WBC part. However, Zhang et al. (2014) did not separate clumped 

WBCs and determined accuracy based only on resulting segmentation.  

     Savkare and Narote (2015) used k-means clustering, where k is equal to 2 to separate 

the cells (both RBC and WBC) from the background. The image was first preprocessed 
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to remove noise and enhance the image using both a median and Laplacian filter. Both 

the original and preprocessed images are converted into Lab color space and k-means 

clustering performed where the results are added together. A global threshold is used 

based on the Hue-Saturation in HSV color space on poorly stained images. Savkare et al. 

(2016) segment the cells from background by converting RGB to CMYK and then use k-

mean clustering with k=2. First, they preprocess the image with background removal and 

contrast stretching to remove noise and enhance the image.  

     Vogado et al. (2016) converts to both CMYK and Lab to extract the M and b 

components, receptivity, subtracts the images and perform k-means clustering, followed 

by morphological postprocessing to segment the nucleus of WBCs. Jagadev and Virani 

(2017) also used k-means clustering but set k=3 to segment into WBC nucleus, RBCs and 

WBC cytoplasm, and background. Acharya and Kumar (2018) extracted WBCs using k-

medoids algorithm.  

Edge, Active Contour Methods 

     Edge based methods can be used to segment an image such as canny, sobel, prewit, 

and others. Active contours or snake method finds the contour of objects based on an 

energy minimizing curve that follows the contour or edges of objects. Ongun, Halici, 

Leblebicioglu, Atalay, Beksac, and Beksac (2001) use the active contour method also 

known as snakes to segment, by first finding the initial position for the snake based on 

threshold of WBC nucleus, then minimization where the center is considered the WBC 

location. Yang, Meer, and Foran (2005) modified a snake algorithm to work with a new 

color gradient after converting the RGB to Luv color space and tested on already created 

WBC images segmenting both cytoplasm and nucleus.  
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     Puttamadegowda and Prasannakumar (2016) first preprocess the image by converting 

to grey scale, using a median filter and normalization, followed by a fuzzy clustering 

algorithm. The RGB image is also preprocessed with a Gaussian filter and a snake 

algorithm is used to get the WBC objects, the two images are fused into a segmented 

WBC image so they can be counted. Seth and Palodhi (2017) first preprocess the grey 

scale image using contrast adjustment, then segment using Gabor filter, and standard 

edge detection (sobel and prewit).  

Support Vector Machine (SVM) 

     A support vector machine (SVM) is a supervised machine learning classification 

method. Di Ruberto, Loddo, and Putzu (2016) use a Nearest Neighbor Search (NNS) and 

SVM model to segment the image into WBC, RBC, and plasma. They trained the SVM 

using cross validation and labeling selected regions of interest (ROI) for each of the three 

classes. A nearest neighbor search (NNS) is used based on the RGB values, where 

duplicates, outliers, and intersections are all removed; thus, the results contain a clean 

segmentation. Loddo et al. (2016) used the same machine learning approach as Di 

Ruberto et al. (2016) to segment the image.  

Region Growing 

     Region growing starts with a selected pixel and adds neighbor pixels to the region 

based on criteria on similarity of neighbor pixel to the selected pixel. The region 

continues to grow with neighboring pixels provided they meet the similarity measure. 

When there are no more neighbors, another pixel is chosen, and the next region is grown 

until all pixels in the image belong to a region. The selection of the start pixels has an 

impact on the segmentation outcome as the region grows from those pixels. Adams and 
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Bischof (1994) proposed a seeded region growing where the selected pixels are known as 

seeds and represent the starting points for each group or set, which are manually selected 

based on the images.  

     Abdul Nasir, Mashor, and Rosline (2011) proposed a method that used k-means 

clustering and region growing. They segment the WBCs in one step and then the WBC 

nucleus in the next step. In the first step, the min and max for each RGB color is obtained 

using a linear contrast technique and distributed over the histogram range, this stretched 

RGB image is converted to HSI color space, then k-means clustering is done using the H 

component and region growing is applied till cluster centers are stabilized resulting in the 

segmented WBCs. The second step takes the segmented WBCs and using the S 

component, k-means clustering, and region growing to segment the nucleus. Abdul et al. 

(2011) did not separate, count, or classify the WBCs.  

     Rashid, Mashor, and Hassan (2015) segment RBCs by first preprocessing to enhance 

the image with global contrast, then converting to HSI color space, followed by using a 

moving k-means clustering algorithm and median filter. Since they were looking to 

extract RBCs, they compared the segmented results from the H, S, and I components and 

removed the S component that contained the WBC nucleus. This was followed with a 

seeded region growing algorithm to remove platelets and any clumped RBCs and WBCs. 

Pulse Coupled Neural Network (PCNN) 

     A PCNN is a different type of neural network that does not require training. It 

iteratively cycles through a set of equations using several parameters to generate a 

sequence of segmented images.  Determining the parameter settings and iteration that 
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contains the best segmentation is an area of active research. There are different variations 

of PCNN that use slightly modified equations from the standard.  

     A PCNN was used by Mao-jun, Zhao-bin, Hong-juan, and Yi-de, (2008) for both 

noise reduction, RBC segmentation, and adjusting parameters such that the autowave 

characteristics also removed artifacts. Li, Zhou, Chen, and Shi (2010) proposed a grey 

scale iterative PCNN where the threshold for determining the PCNN output is based on 

an iterative grey scale value. While not specific for blood cell images, they did show 

segmentation results for RBCs using their method.  

     Both Adagale and Pawar (2013) and Ma et al. (2016) used a PCNN to segment RBCs. 

A simplified PCNN was used by Liu et al. (2016) to segment WBCs from the blood 

image using fuzzy entropy for determining the best segmentation result, however they did 

not separate, classify, or count.  

     There are also some region growing PCNNs, while these were not used for blood cell 

image segmentation, they are included here for their similarity to what was done with this 

research. Stewart, Fermin, and Opper (2002) proposed a region growing PCNN as a 

replacement to seeded region growing, where the feeding input contains the grey scale 

value, the linking input is the sum over the eight nearest neighbors minus a positive 

constant, and the linking strength is updated each iteration. The pixel with the highest 

intensity is selected as the seed pixel and set as a fired neuron. The PCNN iterates and 

captures each region until the stopping criteria is met. Inside is a fast linking loop that 

iterates until no new neurons fire. Once the stopping criteria for a region is met, a new 

seed pixel with the highest intensity of the remaining pixels is selected for the next region 

which stops once all neurons have pulsed.   
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     Zhou and Shao (2018) proposed a modified PCNN region growing algorithm that 

segments and separates regions of interest into multiple levels by subdividing the unfired 

region into a new level or class.  The linking strength is calculated at each level based on 

fuzzy logic of the grey scale values for determining those belonging to that group. The 

stopping criteria is based on a calculated distance between the fired and unfired regions.   

     Xu et al. (2018) proposed a color region growing PCNN that adds a linking control 

unit so it can handle color pixel values, which they used Lab color space normalizing the 

L channel to a set range. Their PCNN and algorithm has similarities to Stewart et al. 

(2002) although they removed the positive constant from the linking network, randomly 

set the seed neuron, set the initial linking strength value, and added a new minimum size 

to the stopping criteria. The stopping criteria for Xu et al. (2018) includes: all neurons 

have fired, exceeded a maximum beta value, exceeded a mean difference, and exceeded a 

minimum region size, where the first three are the same as from Stewart et al. (2002).  

This research built on the work from Xu et al. (2018) and added another stop criterion for 

maximum size of a region to capture WBC and RBC cell objects. 

Neural Networks (NN) 

     While NN are used for classification, they can also be used for image segmentation. 

An Artificial Neural Network (ANN) is based on the human brains neurological system 

(Chouhan et al., 2018). The input neurons are connected to the hidden layers which 

connect to the output layer with each connection containing a weight that is learned based 

on the training data. A convolutional Neural Network (CNN) is a NN that contains an 

input, convolutional, pooling, and output layers and can be used for image classification 

(Chouhan et al., 2018).  



23 

 

 

     Ghosh, Singh, and Sheet (2017) uses a pretrained AlexNet model and tuned it with 

blood cell images from ALLDB, which are preprocessed to create more images by 

mirroring and rotation. The blood images are sent through the CNN’s generated heatmap 

from an average pooling layer to generate a filtered image using a threshold that can 

segment out the WBCs. A second filter is created by first converting the RGB to HED 

space and using a threshold on the eosin channel. Yu, Chang, Yang, Zhang, Shen, Xia, 

Sha (2017) used a CNN with transfer learning using 5 different models pretrained from 

ImageNet. Their own blood cell images are preprocessed, sent through the five CNN 

models, and classification results are based on a vote. A contour aware CNN is used by 

Razzak and Naz (2017) to segment and separate cells, then using color descriptors for 

each cell image the cells are classified as RBC or WBC, whose cropped images are sent 

to an extreme learning machine for classification. 

     Macawile et al. (2018) used a CNN that was trained using models from AlexNet, 

ResNet101 and GoogleNet after first preprocessing the image to be the required size for 

the model, then segment and classify WBCs using transfer learning. A Recurrent Neural 

Network (RNN) is a NN that can be used for sequential data as they contain a memory of 

past data.  Liang et al. (2018) used a combination of CNN and RNN to segment and 

classify WBCs. They use parameters from a CNN pretrained on ImageNet as input to 

their CNN, which has a convolution layer which uses two window sizes, a pooling layer, 

and output goes to the merge layer. The blood cell images are preprocessed with matrix 

transformation for rotation and to limit overfitting before being input to the RNN, which 

goes through its hidden layers and then to the merge layer. The merge layer combines the 
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CNN and RNN features, passes through a fully connected softmax layer to generate the 

output based on its probability distribution. 

 

Separation and Counting Techniques 

     This section covers the methods used to separate the cells from the segmented image 

so they can be counted. The counts may be for total RBCs, WBCs or both and may 

include methods for separation of clump cells. Postprocessing methods are those methods 

used after segmentation and during the separation stage so the cells can be counted.  

     Common methods used to separate cells are Watershed Transform and Circular Hough 

Transform (CHT). Templates are also used to determine estimated counts based on clump 

sizes. Not all papers separated or counted the cells. This section includes a review related 

to CHT, templates and estimates, watershed, and distance transforms, connected 

component, and edge methods that were used for separation and/or counting of blood 

cells. 

Circular Hough Transform (CHT) 

     CHT is a method for finding circular object in a digital image. It works by finding 

circles from the edge points and voting for those that intersect. Using a fixed radius 

reduces the number of circles and execution time. Shankar et al. (2016) use Hough 

transform to obtain a roundness ratio as part of their postprocessing. Di Ruberto et al. 

(2016) gets the reference size and shape from the training set, counts clumped WBCs 

using CHT with the specified radius and matching with the grey level values from the 

original image to exclude erroneous circles.  Loddo et al. (2016) uses the same method as 

Di Ruberto et al. (2016) additionally counting RBCs.  
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     Seth and Palodhi (2017) take the segmented edge image and use CHT specifying a 

radius for an RBC diameter of 7 to 8.5 um and double that for WBC to count single 

RBCs and WBCs. After segmentation and postprocessing to separate RBCs, Acharya, 

and Kumar (2018) counted RBCs using Circular Hough Transform (CHT) and a specified 

radius. According to their results CHT counts were more accurate than using a labeling 

algorithm. 

Template and Estimates 

     Adagale and Pawar (2013) used template matching on the segmented image after 

passing it through a median filter to remove noise. The templates were bins of different 

sizes based on area where each bin is assigned a count value that is used to determine the 

count for those clumps. Ma et al. (2016) extract RBC edges using image quality and use 

CHT to get the average radius to create a template, which is used on the binary image to 

get a matching map that contains points for each RBC. Dela Cruz, et al. (2017) estimated 

the RBC count based on each clump size and the expected single RBC size. 

Distance and Watershed 

     Watershed transform is a method that finds or follows edges based on grey scale 

values as if it were a geographical watershed basin. Distance transform determines a 

distance measure for each pixel to its nearest boundary. Savkare and Narote (2015) 

separated clumped RBCs using watershed transform after first detecting edges using 

Sobel edge detector. Le, Bui, Yu, and Bui (2015) first use a bilateral filter, then canny 

edge detector, followed by watershed to separate clumped WBCs.  

     Watershed transform is also used by Savkare et al. (2016) to separate clustered RBCs 

for counting. Shankar et al. (2016) separate clumped WBCs using watershed and distance 
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transform, then further postprocess to remove unwanted objects, then the single and 

clumped WBCs are counted. Alreza and Karimian (2016) separated clumped WBCs for 

counting by using distance conversion and applying watershed on round leukocytes. 

Ghosh, Singh, and Sheet (2017) separate clumped WBC objects by using their centroid 

and distance-based algorithm to extract the potential WBC objects which are sent through 

their CNN to classify as normal or abnormal.   

     Acharya and Kumar (2018) separate RBCs from the binary image by first using 

watershed transform to remove overlapping or touching cells, using morphological open 

to filter out noise, then removing WBCs by deleting the largest objects until all WBCs are 

gone using a previously extracted WBC mask. Quinones et al. (2018) separate the WBCs 

for counting from the segmented image by cycling through all blobs, performing 

postprocessing, and based on area and eccentricity decide if it should be counted or if 

further splitting is required. Postprocessing included image cropping, distance and 

watershed transforms, and filtering. 

Connected Component 

     Connected component labeling determines pixels are in the same region by checking 

its connectivity of the neighbor pixels and labels pixels belonging to the same region. 

Mohamed, Far, and Guaily (2012) used morphological operations on the binary image, 

determined objects based on neighbor connectivity, and removed objects smaller than a 

certain size retaining only WBC objects. WBCs. Dela Cruz, Valiente Jr., Castor, Gatc 

and Maspiyanti (2016) separate the WBCs and RBCs by determining blobs that are 

connected using a grass-fire algorithm that calculates a value based on intensity and size, 

then classifies as RBC or WBC based on the area. Mendoza, Song, and Torres (2017) use 
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connected component labeling after morphological postprocessing on the segmented 

image which contains three types of cells, WBCs, RBCs, and platelets.  This gives the 

count for each type in the segmented image; however, the RBC count is estimated based 

on the total area and approximate size of single RBC.  

Edge Based 

     Khobragade et al. (2015) use a filter on the segmented binary image to remove noise 

and Sobel edge detection to capture the WBC nucleus. They extract features for leukemia 

detection, but do not count cells. 

 

Classification Techniques 

     This section contains a review of the classification methods used for blood cell 

images. Determining the type of WBC or whether the WBC or RBC is normal or 

abnormal is also part of a CBC. Some papers were concerned with classifying the WBCs 

as being normal or cancer, whether RBCs were normal or abnormal, and others classified 

the WBCs by type such as lymphocyte, monocyte, basophil, eosinophil, and neutrophil.  

This research classified based on lymphoblast or normal and further classified normal 

types of WBCs into lymphocyte, monocyte, basophil, eosinophil, and neutrophil.  

     Kim, Kim, Song, Park (2000) extracted 76 features and used Principal Component 

Analysis (PCA) to reduce the number of features and a three-layer NN to classify RBCs 

and WBCs. Ongun, Halici, Leblebicioglu, Atalay, Beksac, and Beksac (2001) extracted 

57 features from the WBCs and compared different classification methods including 

SVM which had the best results. Sinha and Ramakrishnan (2003) extracted features from 
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the WBC nucleus and cytoplasm and compared different classification methods where 

the NN had the best results.   

     Gautam and Bhadauria (2014) extract features such as area, perimeter, circularity, and 

eccentricity from the WBC objects, where the min and max for each feature is calculated 

for each type during training and used later for classification into neutrophil, eosinophil, 

basophil, monocyte, and lymphocyte. Khobragade et al. (2015) detected abnormal types 

of WBCs (blasts) indicative of different types of leukemia by extracting statistical, 

textural, geometrical, and color features, where the statistical features had the most 

impact.  

     Alreza and Karimian (2016) extracted WBC features such as color, texture, and 

number of lobes in the nucleus with an SVM model for classification. An ANN was used 

by Manik et al. (2016) to classify WBCs into three categories (neutrophil, lymphocyte, 

and eosinophil) based on features extracted from both cell and nucleus segmentation. 

Vogado et al. (2016) classifies WBCs as normal or cancer, but paper did not specify what 

features were extracted or how the classification was performed.  

     Syahputra et al. (2017) classified RBCs as normal or abnormal type based on the 

shape using a Radial Bias Function Network (RBFN) where results showed two types of 

abnormal cells. Jagadev and Virani (2017) extracted statistical, geometrical, color, and 

textural features for WBCs and used an SVM to determine if cells were leukemic. Ghosh, 

Singh, and Sheet (2017) use their CNN to classify WBCs as normal or abnormal. Yu et 

al. (2017) classify WBCs into monocytes, lymphocytes, basophils, eosinophils, 

neutrophils, and atypical lymphocytes using a CNN and transfer learning. Razzak and 
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Naz (2017) classify RBC and WBC using an extreme learning machine using the 

ALL_IDB dataset for training and testing WBC classification. 

     Macawile et al. (2018) use transfer learning and a CNN to classify WBCs into 

neutrophils, lymphocytes, monocytes, eosinophils, and basophils. The models from 

AlexNet, ResNet101 and GoogleNet with transfer learning for WBC classification, 

although they did not mention how they performed the transfer learning. Acharya and 

Kumar (2018) used a form factor to determine abnormal RBCs and highlight those with a 

bounding box. Liang et al. (2018) classify WBCs into eosinophil, monocyte, lymphocyte, 

and neutrophil from the Kaggle dataset using a combination of CNN and RNN. Transfer 

learning is used to pass parameter weights from a pretrained model to the CNN, and the 

CNN and RNN are trained with the blood cell images. Their classification results had an 

accuracy of 90.79% for one of their CNN-RNN models. The training took approximately 

14 hours with an average of 3.8 seconds for one blood cell test image.  

     From the literature, textural information is a feature useful for classifying WBCs. The 

time series and entropy from PCNN segmentation can be used to retrieve textural 

information. Zhan, Zhang, and Ma (2009) compared standard PCNN image segmentation 

for texture features (time series, entropy, average residual, and standard deviation) with 

the variants Spiking Cortical Module (SCM) and Intersecting Cortical Module (ICM) to 

determine impact of angle rotation and scale. Chacon and Mendoza (2011) used PCNN 

time series combined with Fuzzy C-Means (FCM) algorithm for image segmentation 

based on features. An SCM version of PCNN was used for image texture retrieval by 

Yang, Lyu, Liu, Zhou, Chen, Jiang, Li, Chen, Xu, and Wang (2017) using entropy series, 
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time series, and average residual.  This research attempted to use the PCNN textural 

information to classify WBCs. 

 

Summary 

    There are several methods that can be used to segment blood cell images, however 

some pixel values are similar between RBCs and WBCs, for example WBC cytoplasm. 

Separating the RBCs and WBCs is also a challenge as they can be clumped together or 

close together that the edges overlap. There are several features that can be extracted 

from the image to classify WBCs and different methods have been used to achieve this. 

The most recent being the use of NN, however, these require large labeled datasets and 

long training periods. This research used PCNN to segment, a separate method 

employing CHT to find objects and then separate into object images, a PCNN classifier 

to retrieve textural information and classify WBCs and counted RBCs and WBCs. 
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Chapter 3  

 

Methodology 
 

 

Introduction 

    This project developed a PCNN framework to perform segmentation, separation, and 

classification of blood cells for subsequent counting and obtaining metrics. The principal 

objective was to identify the ideal PCNN parameters and variants used to provide the best 

segmentation of the image. After segmentation, the image was processed to find and 

separate the cells for counting and classification. A method called separate, was 

developed that employs post processing, CHT, and an algorithm to separate into object 

images. The algorithm in separate creates a list of individual WBC and RBC images for 

each cell object found that matches criteria specified in parameters; these objects were 

later used to count and classify. The details of the algorithm are described in this section. 

Each WBC object was classified using another PCNN to capture a texture vector that was 

compared to texture vectors of known types. 

 

PCNN Overview 

     A PCNN is a neural network that does not require training. The PCNN works by 

receiving the image pixels, neighboring pixels, and state information and using an 

iterative series of equations produces a sequence of segmented images. The two inputs to 

the PCNN are the feeding and linking networks. For each PCNN iteration, the previous 

state from each input is combined using a convolution operator with a neighbor weight 

matrix and tuning parameters; the feeding network also receives the image pixel as input. 
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On each iteration the output is determined using a threshold which is adjusted so that it 

decays over time. The result is a sequence of segmented images, one for each iteration. 

The PCNN parameters are used to tune the segmentation behavior.  Choosing the tuning 

parameters and stopping criteria that provides the best segmentation, separation, and 

classification of blood cells is one of the goals of this dissertation. Experiments 

performed showed the parameters that had an impact on segmentation and those that had 

an impact on classification, which are described in Chapter 4. 

     A PCNN diagram is shown in Figure 1, where there is one neuron for every pixel in 

an image, where I represents the image and x a pixel in the image. Fx represents the 

feeding network for pixel x, Lx represents the linking network for pixel x, and Nx 

represents the neighbors of pixel x.  The values of VL, VF, VE are normalizing constants 

and αL, αF, αE represent decay factors.  Each neuron receives input from the feeding 

network (Fx) and the linking network (Lx) where these are combined with a linking 

strength variable (β) to form an internal state (Ux) (Lindblad & Kinser, 2013). Both the 

feeding and linking networks receive input from pixel neighbors and the feeding network 

also receives the intensity of the pixel from the image. The impact of the neighbors of 

pixel x is determined by the weight matrices M and W for the feeding and linking 

networks, respectively. The output neuron Yx is considered fired when Ux is above a 

threshold (Ex), so the output Y contains 1 for pixels considered fired and 0 for those not 

fired. The PCNN iteratively cycles through the following 5 equations where Yy represents 

the output for the pixel and its neighbors from the previous iteration. Each iteration uses 

the previous iteration multiplied by a decay parameter and then combined with the 

neighbor weight matrix, normalizing constant, and previous output results. The result is a 
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series of segmented images contained in Y for each iteration n. For the implementation, 

F, L, U, Y, and E are represented as numpy arrays for the dimension of the image since 

each of these is representative of each pixel in the image. The initial value for E can be 0 

or can vary per the user implementation (Lindblad & Kinser, 2013). 

1) ����� � � � 	�	���� � 1� � 
� � �� ∑ 	��∊�� ������ � 1� 
2) ����� � � � 	�	���� � 1� � ��∑ 	��∊�� ������ � 1� 
3) ����� � �����	�1 � ������� 
4) ����� � �1		��	�����  !��� � 1�0		#$%�&'�(� 	

 

5) !���� � � � 	!	!��� � 1� � �!����� 
 

 

 

Figure 1 Standard PCNN 
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Key Parameters 

     The key parameters that were fine-tuned were the linking strength and normalizing 

constants (β, VF, VL, VE); the decay parameters (αF, αL, αE); the connected neighbor 

weight matrixes (M and W); the PCNN type; and using color channels. Deng, Yan, and 

Ma (2019) show the impact of different PCNN parameters on firing times and other 

PCNN characteristics.  

     The Python cspline2d() Gaussian function was used for weight matrices W and M by 

Lindblad and Kinser (2013). A weak neighbor weight matrix = [[0, .01, 0,], [.01, .11, 

.01], [0, .01, 0]] was suggested by Deng, et al. (2019). Zhou and Shao (2018) proposed to 

set M as the center of a square matrix and W using Euclidean distance shown below 

where x is the center of the neighborhood, y is the spatial position related to the center, Cs 

and Cw are normalized constants, and σs is a scale factor. The values Cs, σs, and Cw were 

all set to 1 in the experiments. 

��, � � ,(��-��||	�	– 	�||2	/	2(2� 
��, � � 3,' ∗ 1/||� � �||2, � ≠ 00, � � 0 

The experiments included using the above for either M and/or W. The M and W values 

are used in this document by: Cspline represents the cspline2d() method, Weak represents 

weak neighbor coupling, Euclidean represents strong neighbor coupling, Exponential 

represents the formula above using exp, and Common represents a value = [[0.5, 1, 0.5,], 

[1, 0, 1], [0.5, 1, 0.5]]. 

     Another key parameter explored was using the intensity value from a grey scale image 

or color space values.  The standard PCNN model takes for a pixel value or a grey scale 

intensity value as input.  However, Xu et al. (2018) extended a region growing PCNN 
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variant for using color channels, combining the color channels as input to the PCNN 

model.  The experiments used a standard PCNN with intensity value input, a PCNN 

region growing variant intensity value input, and another PCNN region growing variant 

with color inputs. The different color models tested, included RGB, HSV, HED, and Lab 

color space.  

 

PCNN Variants 

     The PCNN variant types implemented included a standard Eckhorn and region 

growing models. Lindblad and Kinser (2013) contained PCNN Python code for the 

standard Eckhorn PCNN model. This was used as a base line for the PCNN standard 

implementation and modified for this research.  The next variants were region growing 

PCNN, the first based on Stewart et al. (2002) that used grey scale intensities; the second 

was based on Xu et al. (2018) that was extended for using color channels. 

 

Texture Features 

As mentioned earlier PCNN is a sequence of equations where each iteration generates 

a segmented image.  The Shannon entropy value can be calculated on each image, and 

the resulting sequence of entropy values, represented as a vector for the texture features 

of the image, also referred to as the entropy signature. The use of a texture vector for 

image classification was done in Yang et al. (2017). While a PCNN does not require 

training for segmentation, using PCNN for classification does require creating a vector 

list on a training set of known images. A list of texture vectors per dataset was created for 

the following WBC types: lymphoblast, lymphocyte, monocyte, neutrophil, eosinophil, 
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and basophil depending on the dataset. The entropy values were obtained using the 

skimage.filters.rank.entropy() function. For completeness, the entropy calculation is 

shown below, where P
1
 and P

0 
are the probabilities of a pixel value being 1 or 0, 

respectively: 

6�7� � 	�718#92�71� � 708#92�70� 
 

Framework Test Environment 

     The framework test environment contains segmentation, separation, counting, 

classification, and texture vector list creation for classification. Images were selected 

from the ALL_IDB and Kaggle datasets.  Since training was not required for PCNN 

segmentation, a subset of images was chosen from both the training and testing sets. 

However, the training images were used to create the two sets of texture vector lists, one 

for each dataset. The classification was tested on a subset of images chosen from both 

training and testing sets.  

     The framework was used for segmentation, separation, counting, and classification. 

The classification step is dependent on the creation of the texture vector list which is 

described later in this section. Each image was segmented using the PCNN framework 

into a binary image representing WBCs, RBCs, or both. The cells were then separated 

into RBC and WBC cell objects using the separation method, separate, that employs post 

processing, CHT and an algorithm described in this section. The separated objects were 

saved as a separate image and stored in a Python list to facilitate counting; WBCs were 

classified after separation. The pseudo code is shown in Figure 2.  
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 Framework Testing 

1.  Foreach RGB image 

2. PCNN_framework_segmentation() 

3. Separate()  

4. Count() 

5. foreach WBC object 

6. classify() 

7. end 

8.  end 

Figure 2 Framework Test Pseudocode 

Segmentation 

     The PCNN framework allowed experiments for different methods of segmentation 

including different PCNN variants and two conventional methods using the 

PCNN_framework_segmentation() method. The PCNN variants are described in detail 

later in this chapter.  Preprocessing was done as part of the framework before the 

segmentation. This included converting the image to grey scale and inverting the grey 

scale image so that the WBCs would have the higher intensity.  The Kaggle dataset also 

required the images to be cropped to remove extra white space that interfered with the 

PCNN segmentation. The PCNN framework segmentation is shown in Figure 3.  

PCNN_framework_segmentation() 
1. Input: RGB Image 

2. Output: Segmented Binary Image(s) 

3. Preprocess and segment image based on segmentation 

strategy 

Figure 3 PCNN Framework Segmentation 

Separation 

A separate method was developed and included in the framework to find and separate 

cell objects in the segmented image using postprocessing, CHT, specified radius, and a 

separation algorithm.  Postprocessing is done on the segmented image; for WBCs, small 

holes were removed followed by erosion; for RBCs, erosion was done, followed by 
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removing small holes and then dilation. The method next finds circular objects by 

employing CHT with a specified radius searching first for WBCs and then RBCs. The 

last step was to perform the separation algorithm. 

The CHT method was employed by using two methods from skimage.transform  to 

create the Hough transform and retrieve the peaks using hough_circle() and 

hough_circle_peaks(), respectively.  Since the region growing PCNN segments into 

different regions, the number of Hough transform and peaks should be smaller, so a 

parameter was included for the separate method called find_num to modify parameter 

settings for the hough_circle_peaks() method to adjust the number of peaks to retrieve 

from the Hough space. The value of find_num used for each segmentation method are 

described in Chapter 4. The hough_circle() creates the Hough transform and includes a 

min, max, and a radii value for the minimum and maximum radius, and the number of 

radii. The radii were set to a value of 3, and since WBCs are larger than RBCs, the min 

and max was based on the type, using 20 and 55 for RBCs and 45 and 175 for WBCs.  

The separation algorithm cycles through the circle centers found from CHT. First it 

removes duplicate circle centers from the list to speed up processing and reduce finding 

duplicate cells.  Next it generates a potential circle based on the center and radius found 

and compares it to the circle acceptance criteria. The circle acceptance is based on 

parameters for percentage, intensity, and radius offset. The percentage is the minimum 

value of how much of the circle is contained in the binary image (the Y output from 

PCNN), the intensity is the minimum value for the average intensity of the circle based 

on the original grey scale image, and the radius offset increases the radius based on these 

parameters.  The acceptance criteria parameters for the separate method are: wbc_offset, 



39 

 

 

wbc_percent, wbc_intensity, rbc_intensity, rbc_percent, and rbc_offset. The parameter 

values and defaults used are described in Chapter 4. 

Once a circle object is found, it is matched to the above criteria and a circle is created 

using the center and determined radius.  An image of size 257 by 257 is created 

containing a circle object in the center with the original grey scale image pixel values for 

the object and the radius of the circle.  This image is added to the list of WBC or RBC 

images. The circle object is also removed from the working segmented image (the Y 

output from PCNN) by setting those pixel values to 0 and the method continues to find 

the next circle. The removal of the selected object from the working segmented image 

was to allow for overlapped cells to be found. WBC objects are used later for 

classification. The separate method is shown in Figure 4. This answered research 

question RQ3 discussed in Chapter 4. 

separate() 
1. Input: Segmented binary image 

2. Output: List of WBC images, List of RBC images 

3. perform WBC postprocessing 

4. while find acceptable WBC object 

5.   add object to WBC list 

6.   remove object from segmented image 

7. end 

8. perform RBC postprocessing 

9. while find acceptable RBC object 

10.   add object to RBC list 

11.   remove object from segmented image 

12. end 

13. return WBC and RBC lists 

Figure 4 Separate 
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Count Cells 

Since the framework contained a list of WBC and RBC objects from the separate 

method, the count was obtained by using the Python len() function to get the number of 

objects in the list. 

Classification 

     To classify a WBC, first the texture vector list had to be created. This was done by the 

framework using the generate_texture_vector() method which is described later in this 

section. The texture vector list contains a list of texture vectors (entropy series), for WBC 

types from the training dataset. The entropy series was used for this project as it produced 

the best results from Yang et al. (2017). A WBC object is sent through another PCNN, 

but this time it is used as a PCNN classifier as it retrieves the texture vector or entropy 

signature for that image. 

The texture vector generated by the PCNN classifier was compared to the texture 

vector list to find the closest matching vector which determines the type. To compare the 

texture vectors, the Euclidean distance was used, as was done by Yang et al. (2017). The 

distance was calculated for a WBC object as follows, where j ranges over the number of 

iterations N, vj is the jth iteration for a vector v in the texture vector list, xj is the jth 

iteration of the WBC texture vector, and d is the distance value for the WBC vector and a 

vector v in the texture vector list. The distance was calculated for a WBC object and each 

vector v in the texture vector list. 

: � ;<��= � >=�2?
@AB  
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The argmin was then used to find the index into the texture vector list that has the 

minimum distance value, where i ranges over the vectors stored in the list, >C is the ith 

vector in the list, x is the query vector, and δ is the distance function. Once the index was 

found, the WBC type was retrieved using the index on the texture vector list. 

��:�� � D&9E��CF��, >C� 
The classify() method is shown in Figure 5. The value of N was determined by the 

experiments adjusting the PCNN parameters and answered research question RQ4 

discussed in Chapter 4. 

classify() 
1. Input: Grey scale image of cell object 

2. Output: WBC type 

3. capture texture vector of cell object 

4. foreach cell type in texture vector list 

5.     calculate Euclidean distance 

6. end 

7. determine cell type based on min distance 

8. return cell type 

Figure 5 Classify 

Generate Texture Vector 

To classify WBC objects using the entropy texture vector, a list of known WBC types 

and texture vectors had to be created. This required a dataset of images containing the 

region of interest (ROI) for different types of WBCs (neutrophil, lymphocyte, monocyte, 

basophil, eosinophil, and lymphoblasts).  The ROI images were available from the 

ALL2_IDB and Kaggle datasets, so texture vector representations were created from each 

dataset. However, the WBC still had to be segmented and separated from the rest of the 

image. The lymphoblasts were labeled in the ALL2_IDB, but the lymphocytes, 

neutrophils, eosinophils, monocytes, and basophils had to be labeled as part of this 
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project. The Kaggle dataset contained labels for lymphocytes, monocytes, eosinophils, 

and neutrophils so only those types were tested for that dataset.  

     The ALL_IDB2 and Kaggle datasets contain training images with one or two 

labeled WBCs along with multiple RBCs. These images were used by the framework to 

segment out one WBC from the RBCs and once a WBC object was separated, the texture 

vector was obtained by segmenting the WBC image using the PCNN classifier and 

capture the texture vector for each WBC type. The texture vectors were stored along with 

their type. The pseudo code is shown in Figure 6. 

Generate Texture Vectors  
1. Input: RGB Images containing one WBC and some RBCs 

2. Output: List of texture vectors per WBC type 

3. foreach image 

4. segment_and_separate() 

5. capture_texture_vector() 

6. end 

7. generate texture vector list 

Figure 6 Generate Texture Vectors Pseudocode 

The segment_and_separate() method, shown in Figure 7, experimented using 

conventional segmentation methods (threshold, watershed) along with a standard PCNN 

method to segment the image. It called the separate method mentioned earlier from the 

framework to generate a WBC object image based on the original grey scale pixel values, 

which is the output of this method.  

segment_and_separate() 
1. Input: RGB Image with one WBC and RBCs 

2. Output: Grey scale Image of just one WBC 

Figure 7 Segment and Separate 

 

The capture_texture_vector() method shown in Figure 8, used a standard PCNN as a 

PCNN classifier to capture the texture vector. The PCNN parameters were adjusted from 
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experiments that determined the best classifier and value of N. The texture_vector[s1, s2, 

s3, …, sN] where si is the Shannon entropy for iteration i and N is the number of iterations. 

capture_texture_vector() 
1. Input: WBC object image, WBC type 

2. Output: texture_vector[s1, s2, s3, …, sN] 

Figure 8 Capture Texture Vector 

The texture vector list contained several vectors for each type. The number saved 

depended on the dataset. Since the ALL_IDB2 dataset was relatively small (max 106 of 

one type), all texture vectors were included.  However, the Kaggle dataset contained a 

larger training dataset (greater than 1000) so it saved the mean of every ten images, 

therefore keeping the texture vector list size at roughly 100 to 300 per WBC type.  The 

idea was to keep the dataset size relatively small so classify would not have to compare a 

large texture vector list, but large enough to allow for differences in texture vectors per 

type. 

 

Novel PCNN Methods 

     Depending on the PCNN model and parameters, knowing when to stop iterating is 

crucial for accurate segmentation. This project explored a few stopping methods. One 

method was to adjust parameters for PCNN segmentation and use the separate method to 

find all WBC and RBC objects. Another was to use region growing PCNN from Xu et al. 

(2018) and adding a new Smax parameter, then used the separate method to find the 

WBC or RBC object.   

PCNN with CHT 

     The standard PCNN was used with different parameters to segment the image. The 

separate method was then used on the segmented image to find and separate the objects 
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employing postprocessing, CHT, and the separation algorithm. The goal was to determine 

the parameters and iteration number that contained the best segmented image as input to 

the separate method such that it generated the most accurate WBC and RBC counts, as 

well as accurately capture the WBC objects. The ideal and significant parameters were 

determined from the experiments and shown in Chapter 4. This answered research 

question RQ1 as discussed in Chapter 4. 

Region Growing PCNN with CHT 

     Based on the method from Xu et al. (2018), this research used a region growing 

PCNN. The new region growing PCNN added a Smax for each class (WBC, RBC) and 

saved the objects to a list as it grows to Smax, thus it tried to capture individual cells or 

small areas of cells. The seed selection picked the intensity from the WBC range first, 

then RBC range. The separate method was used to then find the cell or cells from each 

segmented image to capture the WBC and RBC cell objects. This answered research 

question RQ2 discussed in Chapter 4. 

 

 

Conventional Segmentation and PCNN Prior Work 

     The PCNN segmentation methods were compared to a couple conventional 

segmentation methods along with a PCNN segmentation using the parameters from Ma et 

al. (2016).  The conventional methods and PCNN parameters from Ma et al. (2016) were 

used to segment out cells from the background.  All segmented binary images from these 

methods were used as input to the separate method to find and separate the cells. The 

output image list was used for counting total RBC or WBC for comparison results. 
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Threshold 

     One standard method to segment WBCs or RBCs from the background used a global 

threshold. A threshold was chosen from experiments that provided a segmentation of the 

cells from the background. 

Watershed Region Growing 

     A watershed region growing method was available in scikit-image. This method 

works by first obtaining edges using the sobel method, then setting up markers for the 

basins based on thresholds. It was used to segment all cells from the background by 

setting different threshold values. The thresholds values were set from experiments. 

Standard PCNN 

     A standard PCNN was used with the parameters from by Ma et al. (2016) to segment 

the cells from the background. This was used as a comparison of the separation and 

counting stages of this research. 

 

Comparing Prior Work 

     The results of this research were compared to prior work in several ways which are 

described in this section.  The first was to use the metrics described later in this chapter 

for determining accuracy of the total RBC and WBC counts.  These metrics were 

calculated for prior work where applicable. The metrics from this research for WBC 

classification using the ALL_IDB and Kaggle datasets were compared based on the 

metrics in the literature.  A metric based on the accuracy of lymphoblast detection from 

the ALL_IDB dataset was also compared.  
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Total RBC and WBC Counts 

     The results presented in the literature relied on several metrics.  The metrics from 

Adagale and Pawar (2013) and Ma et al. (2016) were calculated based on a computed 

count percentage as described in Chapter 4. That metric was also used in this research for 

comparison with those papers. The accuracy, precision, recall, and F1 metrics were 

calculated for this research based on total WBC and RBC counts and compared to the 

metrics from Loddo et al. (2016) which also used the ALL_IDB dataset.  

WBC Classification and Counts 

     A confusion matrix was generated that showed the predicted classification and the 

actual classification for each WBC type. The overall true positive, false negative, true 

negative, and false positive results were calculated, and the overall sensitivity, specificity, 

and accuracy metrics were generated.  These metrics are described in the next section. 

The WBC classification metrics from this research using the ALL_IDB dataset was 

compared to the work done by Macawile et al. (2018) and included the average 

sensitivity, specificity, and accuracy per WBC type. The WBC classification metrics 

from this research for the Kaggle dataset were compared to the work presented in Liang 

et al. (2018) which included the overall accuracy metric.  

Lymphoblast Detection 

     The metrics from this research for the detection of lymphoblasts using the ALL_IDB 

dataset was compared to the work presented in Ghosh et al. (2017), which included 

sensitivity, specificity, and accuracy regarding lymphoblast detection.  
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Metrics and Data 

     As was done by Macawile et al. (2018), Ghosh et al. (2017), and Loddo et al. (2016), 

the dataset from Labati, Piuri, and Scotti (2011) was used to determine metrics based on 

total RBC and WBC counts, WBC classification, and lymphoblast detection. The Kaggle 

dataset was used for WBC classification as was done by Liang et al. (2018).  The 

ALL_IDB dataset was used for WBC classification and lymphoblast detection. The 

Kaggle dataset contained a labeled training set for eosinophils, monocytes, lymphocytes, 

and neutrophils. The ALL_IDB required labeling the eosinophils, monocytes, 

lymphocytes, basophils, and neutrophils. The classification required generation of the 

texture vector list from each dataset described earlier. 

 

Analysis  

Several metrics were calculated for comparison analysis.  Accuracy, precision, recall, 

and F1-measure were calculated which are described in this section. Both Adagale and 

Pawar (2013) and Ma et al. (2016) calculated a computed count percentage described in 

Chapter 4.  Loddo et al. (2016) calculated precision, recall, and F1-measure. To calculate 

the metrics the actual counts for each image were required. The ALL-IDB and Kaggle 

datasets contain counts for some of the WBC types, however, RBCs and some WBCs 

needed to be manually counted. For comparison results, some metrics were calculated 

from the data provided in the literature. Not all metrics below were calculated for all tests 

but calculated as needed for comparisons. 
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Accuracy 

Accuracy is the percent of true values in proportion to the total possible values. 

Accuracy calculation is shown below where TP represents true positive, TN represents 

true negative, FP represents false positives, and FN represents false negatives. 

 accuracy � �L7 � LM��L7 � LM � �7 � �M� ∗ 100 

Precision 

Precision is the number of true positives values in proportion to the total number of 

positive values detected. Precision calculation is shown below using the previously 

defined definitions. 

precision � �L7��L7 � 	�7� 
Recall 

Recall provides the sensitivity of the result, so it is also known as sensitivity and true 

positive rate. The recall calculation is shown below using the previously defined 

definitions. 

recall � �L7��L7 � �M� 
Specificity 

Specificity is the number of true negative values in proportion to the total number of 

negatives and false positive values detected. It is also known as the true negative rate. 

The specificity calculation is shown below using the previously defined definitions. 

specificity � �LM��LM � 	�7� 
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F1-measure 

The F1-measure represents the harmonic mean and uses precision and recall. The F1-

measure is shown below using the previously defined definitions. 

F1-measure � 2 ∗ 	 �-&�Y�(�#� ∗ &�YD88��-&�Y�(�#� � &�YD88� 
Actual Image Counts 

The actual counts were retrieved from the dataset files or manually counted.  

 

Resources 

     This section lists the type of tools that were necessary for this dissertation. For this 

research, Python (https://www.python.org/) was used since there are image processing 

and machine libraries available with scikit-image (https://scikit-image.org/) and scikit-

learn (https://scikit-learn.org/stable/), which are all open source.  Other libraries that were 

required were NumPy (http://www.numpy.org/) and SciPy (https://www.scipy.org/). The 

image processing library scikit-image was written in Python for a wide range of image 

processing functions (Van der Walt, Schonberger, Nunez-Iglesias, Boulogne, Warner, 

Yager, Gouillart, Yu, and the scikit-image contributors, 2014).  The scikit-learn is a 

library of machine learning algorithms written in Python that includes methods for 

Support Vector Machine (SVM) and clustering (Varoquaux, Louppe, Pedregosa, 

Buitinck, Grisel, and Mueller, 2015). PCNN Python scripts were available from Lindblad 

and Kinser (2013) with the book purchase and were used for the basis of the standard 

PCNN and modified for use in this research.  
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     These were installed on a PC running Windows. The ALL_IDB datasets from Labati 

et al. (2011) were requested and granted. The Kaggle dataset from Mooney, P. (2018) 

was also requested and received. Both datasets were used for this research. 

 

Summary  

     The main purpose of this research was to identify PCNN parameters and variants for 

segmentation, separation into individual WBC and RBC images, and WBC classification 

using a PCNN classifier. The framework presented here facilitated the use of different 

segmentation methods.  The framework was designed and implemented so that PCNN 

variant types, parameters, and stopping criteria were easily changed. The strategy design 

pattern was used so that different stopping criteria and other algorithmic changes could 

be plugged in and interchanged by supporting a common interface. 
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Chapter 4  

 

Results 
 

 

Introduction 

    This section discusses the results from the experiments. The ideal PCNN parameters 

and variants that provided the best segmentation of the image from the experiments are 

described in this section. The framework development allowed the preprocessing and 

segmentation methods used to be plugged in based on the segmentation method selected. 

The separate method used was the same for all segmentation methods, although 

adjustments in parameters were required which are explained in this chapter.   

     This chapter first discusses the different datasets and subsets used for the experiments. 

Next an overall discussion on preprocessing and separation, followed by the standard 

PCNN, Region Growing PCNN, and conventional segmentation and separation results.   

The discussion on the WBC classification results are described next, and then the 

comparison of results to prior work, with this chapter ending in a conclusion. 

 

Datasets 

     Subsets of the ALL_IDB and Kaggle datasets were used based on the experiment 

type.  The ALL_IDB and Kaggle datasets were requested and access provided from 

Labati, Piuri, and Scotti (2011) and Mooney (2018), respectively. A summary of those 

used for segmentation are shown in Table 1, those used for classification are shown in 

Table 2, and additional details including file sizes are in Table 3. The first set of 

experiments used the ALL_IDB_subset for determining PCNN segmentation and 
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separation parameters.  These experiments tested a wide range of different parameter 

combinations with those showing the biggest impact described in this chapter. There 

were approximately 16 different parameter settings and 7 different segmentation 

methods, although not every parameter was used for every method.  However, due to the 

large number of combinations tested, each requiring a manual count for accuracy, 20 files 

from the ALL_IDB2 was selected that included all WBC types. The number 20 was 

chosen as it allowed for multiple experiments to test a wide range of parameters.  The 

files were selected from the ALL_IDB2 dataset as the number of cells per slide was less, 

thus making the manual counts more accurate. Next the segmentation, separation, and 

cell counts were done with the ALL_IDB_large, which contained a subset of 6 randomly 

selected larger files from the ALL_IDB dataset.  The number 6 was selected to test the 

parameter combinations on the different segmentation methods using the files that 

contained many cells, which also required manual counting and accuracy metrics. The 

Kaggle_subset files were chosen for similar reasons for segmenting, separation, and 

WBC counting.  

     For classification, the texture vector list was created for ALL_IDB2 and Kaggle_Train.  

Experiments were unsuccessful to achieve PCNN parameters that worked across datasets 

so two texture vector lists were created, one for each dataset. Further details on the 

dataset creation are described later in this chapter. The files in ALL_IDB2 were 

characterized into subdirectories by type and then the texture vector list was created. The 

Kaggle_Train files were already characterized by subdirectory which was used to create 

the texture vector list.   



53 

 

 

     The ALL_IDB_subset, ALL_IDB_large, ALL_IDB_large2, ALL_IDB_large3, 

Kaggle_Test_simple and Kaggle_Test were each used to segment, separate, and classify 

WBCs with the corresponding dataset texture vector list. The ALL_IDB_subset, 

ALL_IDB_large, ALL_IDB_large2, ALL_IDB_large3, and ALL_IDB_first33 were used 

for lymphoblast detection. The ALL_IDB_large2 and ALL_IDB_large3 subsets were 

created to add more files to the testing data for WBC classification and lymphoblast 

detection. The ALL_IDB_first33 were used for lymphoblast detection as these contained 

files with lymphoblasts; these files were used by Loddo et al. (2016) as they were all the 

same size and resolution. The Kaggle files provided some challenges as the staining was 

not as clear, and some files were created by rotation, resulting in white space that 

interfered with the PCNN segmentation, which was adjusted by cropping those files.  

 

Dataset (total files) 

Segmentation Usage Summary 

RBC Count WBC Count Name Number of Files 

ALL_IDB2 (260 files) Yes Yes ALL_IDB_subset 20 

ALL_IDB1 (108 files) Yes Yes ALL_IDB_large 6 

Kaggle (10,323 files) No Yes Kaggle_subset 13 

Table 1 Segmentation Dataset Summary 
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Dataset (total files) 

Classification Usage Summary 

Training Testing Name Number of Files 

ALL_IDB2 (260 files) Yes No ALL_IDB2 214 

ALL_IDB2 (260 files) No Yes ALL_IDB_subset 20 

ALL_IDB1 (108 files) No Yes ALL_IDB_large 6 

ALL_IDB1 (108 files) No Yes ALL_IDB_large2 10 

ALL_IDB1 (108 files) No Yes ALL_IDB_large3 11 

ALL_IDB1 (108 files) No Yes ALL_IDB_first33 33 

Kaggle (9957 files) Yes No Kaggle_Train 9957 

Kaggle (71 files) No Yes Kaggle_Test_Simple 71 

 

Kaggle (2501 files) No Yes Kaggle_Test_subset 

 

80 

Table 2 Classification Dataset Summary 

 

Dataset (total files) 

Subset Details 

Name File Names or Number Size 

ALL_IDB2 (260 files) ALL_IDB_subset 1. Im001_1.tif 

2. Im002_1.tif 

3. Im021_1.tif 

4. Im024_1.tif 

5. Im084_1.tif 

6. Im091_1.tif 

7. Im123_1.tif 

8. Im135_0.tif 

9. Im153_0.tif 

10. Im154_0.tif 

11. Im156_0.tif 

12. Im166_0.tif 

13. Im192_0.tif 

14. Im201_0.tif 

15. Im203_0.tif 

16. Im212_0.tif 

17. Im246_0.tif 

18. Im251_0.tif 

19. Im253_0.tif 

20. Im260_0.tif 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

257 x 257 

232 x 257 

232 x 257 

232 x 257 

ALL_IDB1 (108 files) ALL_IDB_large 1. Im001_1.jpg 

2. Im004_1.jpg 

3. Im016_1.jpg 

4. Im088_0.jpg 

5. Im091_0.jpg 

1712 x 1368 

1712 x 1368 

1712 x 1368 

2592 x 1944 

2592 x 1944 
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6. Im108_0.jpg 2592 x 1944 

ALL_IDB1 (108 files) ALL_IDB_large2 1. Im005_1.jpg 

2. Im006_1.jpg 

3. Im017_1.jpg 

4. Im020_1.jpg 

5. Im062_1.jpg 

6. Im063_1.jpg 

7. Im05_0.jpg 

8. Im079_0.jpg 

9. Im090_0.jpg 

10. Im093.0.jpg 

1712 x 1368 

1712 x 1368 

1712 x 1368 

1712 x 1368 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

ALL_IDB1 (108 files) ALL_IDB_large3 1. Im068_0.jpg 

2. Im073_0.jpg 

3. Im074_0.jpg 

4. Im075_0.jpg 

5. Im076_0.jpg 

6. Im077_0.jpg 

7. Im078_0.jpg 

8. Im081_0.jpg 

9. Im082_0.jpg 

10. Im083_0.jpg 

11. Im084_0.jpg 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

2592 x 1944 

ALL_IDB1 (108 files) ALL_IDB_first33 12. Im001_1.jpg – Im033_1.jpg 1712 x 1368 

Kaggle (10,323 files) Kaggle_subset 1. _0_687.jpeg 

2. _0_884.jpeg 

3. _0_1022.jpeg 

4. _0_1338.jpeg 

5. _0_2399.jpeg 

6. _0_4170.jpeg 

7. _1_6343.jpeg 

8. BloodImage_0002.jpg 

9. BloodImage_0007.jpg 

10. BloodImage_0020.jpg 

11. BloodImage_0053.jpg 

12. BloodImage_0066.jpg 

13. BloodImage_0074.jpg 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

640 x 480 

640 x 480 

640 x 480 

640 x 480 

640 x 480 

640 x 480 

Kaggle (9957 files) Kaggle_Train Eosinophil - 2497 files 

Lymphocyte – 2483 files 

Monocyte – 2478 files 

Neutrophil – 2499 files 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

Kaggle  (71 files) Kaggle_Test_Simple 

 

Eosinophil – 13 files 

Lymphocyte – 6 files 

Monocyte – 4 files 

Neutrophil – 48 files 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

Kaggle (2501 files) Kaggle_Test_subset Eosinophil - 20 files 

Lymphocyte – 20 files 

Monocyte – 20 files 

Neutrophil – 20 files 

320 x 240 

320 x 240 

320 x 240 

320 x 240 

Table 3 Dataset Details 
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Preprocessing 

     As mentioned in the Chapter 3, preprocessing converted the color image to grey scale 

and then inverted the grey scale image so that WBCs would appear brighter.  The Kaggle 

dataset also required some cropping of the images to remove the white space that was 

present due to creation of those images via rotation.   

 

Separation 

The separate method processes one or more segmented binary image.  The standard 

PCNN contains one segmented image with all cells, however, the region growing PCNN 

methods contains a list of segmented images as there is a segmented image for each 

region. The method first searches for WBC cells and then RBCs by performing post 

processing mentioned earlier, then employs CHT to find the circles.  The default values 

for hough_circle() was described in the Chapter 3. The find_num parameter was used 

here for setting the max_peaks value for the hough_transform_peaks() method for 

maximum peaks to retrieve. The default value for the find_num parameter is the Python 

None value, which indicates to use a max_peaks=500, which was used for standard 

PCNN and conventional methods, however, for region growing it was set lower as the 

goal was to capture like cells in a segmented region. Additional details of this parameter 

and other parameters settings for each segmentation method are described under those 

sections. 

At this point the separation algorithm processes each circle center as described earlier.  

Once an object is found that passes the acceptance criteria, an image of that object is 

stored. The working image represents a binary image and 0 indicates background and 1 
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indicates object, which are displayed in Figure 10 as black and yellow, respectively.  As 

objects are found, the pixels representing that object are set to 0 in the working image, 

thus removing that object. Figure 9 shows the original and segmented image and Figure 

10 shows the working image after the WBC object was removed. The algorithm cycles to 

the next circle center which is processed using the acceptance criteria and the working 

image.  

An example of a segmented image using file Im201_0 from the ALL_IDB_subset and 

the standard PCNN is shown in Figure 9, along with the original image and an image 

containing the found objects marked with circles (red for RBC and blue for WBC). 

Figure 10 shows a few working images of Im201_0, where image 1 on the top left 

contains the working image with the first object removed (the WBC) from the segmented 

image; images 2 and 3 contain subsequent working images, images 4 – 8 are not shown, 

and image 9 shows the last working image with 9 cell objects removed.  Figure 11 shows 

two of the images created, the WBC object and an RBC that appears in the upper-left 

between two other cells in Figure 9 and Figure 10 image 1 and is shown removed from 

the upper-left of the working image in Figure 10 image 2. 

 

Figure 9 Original, Segmented, and Result of Im201_0 
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Figure 10 Working Images (Im201_0) 

 
Figure 11 WBC and RBC (Im201_0) 

 
 

 

PCNN with CHT 

     The first experiments were related to using standard PCNN and the CHT based 

separation method, called separate. The key PCNN parameters discovered from the 

experiments are described in this section along with the separate method parameters.  

Key Parameters 

     As mentioned, the segmentation experiments were done on the ALL_IDB_subset, 

ALL_IDB_large, and Kaggle_subset.  The intent was to determine the optimal parameters 

using ALL_IDB_subset, since those files were smaller, and then use those parameter 
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settings for capturing the counts for the larger images.  However, a couple of key 

parameters appeared to be impacted by the size of the image. 

     A few parameters shown in Table 4 were fixed from early experiments as they did not 

significantly impact segmentation results.  These parameters were also used by Deng, 

Yan, and Ma (2019) include the normalizing constants VF, VL, VE, and decay parameters 

αL, αE. The initial E value was set to .0001 as per the implementation from Lindblad and 

Kinser (2013). 

VF VL VE αL αE 

.2 .2 .9740 1 .0771 

Table 4 Standard PCNN Segmentation Fixed Parameters 

 

     The β parameter and the decay parameter, αF were impacted by the images of larger 

size as shown in Table 5. The β parameter represents the linking strength and for smaller 

size files the value of .05 provided slightly better RBC accuracy, however, a value of .1 

worked better on the larger images which may be related to a change in αF decay 

parameter.  For the smaller files, a decay parameter αF value of 0.69 with the above β 

values provided the optimal segmentation, with 0.69 providing slightly better RBC 

accuracy.  However, for the larger files, the αF of 0.69 did not segment the entire image; 

These images segmented best with a αF value of 0.72 and a β of 0.1.  

File Size β Decay Value (αF) 

257 x 257 0.05/0.1 0.69 

1712 x 1368 0.1 0.69 

2592 x 1944 0.1 0.72/0.73 

Table 5 Standard PCNN Segmentation Parameters Impacted by Image Size 

     The standard PCNN generated a segmentation result for each iteration. A total of 20 

iterations was done in the experiments and manually inspected to find the best iteration 

number.  The iteration number was impacted by the M and W neighbor matrices as shown 
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in Table 6. An M value of Cspline and W value of Weak provided the overall best 

segmentation using the other parameters previously mentioned with the segmented image 

obtained from iteration number 4. However, changing both the M and W values changed 

the iteration number for the segmented result image, such as, using Exponential for M 

and Euclidean for W as per Zhou and Shao (2018), which produced the best segmentation 

at iteration number 2. Using Exponential and Euclidean values for M and W, respectively 

also provided the best WBC accuracy on the ALL_IDB_subset, however, the RBC 

accuracy was reduced. 

Weight Matrix (M) Weight Matrix (W) Segmented Result Iteration 

Cspline Weak 4 

Exponential Euclidean 2 

Table 6 Standard PCNN Segmentation Weight Matrix Parameters 

     The parameter testing on ALL_IDB_subset results are shown in Figure 12, which 

helped to fine tune the parameters for the additional experiments.  The parameters for 

best overall segmentation based on cell type can be seen in Table 7 and the metrics using 

the RBC based parameters is shown in Figure 13. In Figure 13, there are some overlap of 

metric values, especially those at 0 and 1. As mentioned earlier the ALL_IDB_subset 

contained a smaller number of cells for trying different PCNN parameters, as such there 

were limited numbers of WBCs per file in this dataset.  Most of the files only contain 1 

WBC, but there was one file with two WBCs and one file with no WBC.  Figure 14 

shows the data grouped by metric instead of each file so the values for each metric are 

displayed. While average WBC accuracy was above 97%, average RBC accuracy was 

just over 61%. The parameters for segmenting both RBC and WBC from 

ALL_IDB_subset were found to be like those from Deng, Yan, and Ma (2019) with a 

slight difference in the αF value. 



61 

 

 

 

 
Figure 12 Standard PCNN Accuracy by Parameters (ALL_IDB_subset) 

 

Type 
Key PCNN Parameters 

αF β M W 

RBC 0.69 0.05 Cspline Weak 

WBC 0.7 0.1 Exponential Euclidean 

Table 7 Standard PCNN Segmentation Key Parameters by Cell Type 

(ALL_IDB_subset) 

 

 
Figure 13 Standard PCNN Metrics (ALL_IDB_subset) 
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Figure 14 Standard PCNN Metrics (ALL_IDB_subset) Chart 2 

 

     The experiments using the ALL_IDB_large required some fine tuning of 

parameters, as mentioned earlier certain images with a higher resolution had an impact on 

segmentation.  One of these experiments was to split the large images into four images 

and process each subimage. The idea was to provide an optimal αF parameter for all files. 

A concern with this was the impact on splitting cells between subimages leaving them on 

the image border, which is discussed later. While the splitting did not necessarily provide 

an optimal αF, it provided a slight increase in accuracy and had the advantage of breaking 

up some clumped WBCs. However, as was a concern it had a slight disadvantage of 

missing a WBC that got positioned on a border of a split image.  The increase in accuracy 

suggests that the advantage out weighted the disadvantage; and the concern over cells 

being located on a border due to the split. The parameters that changed for the 

ALL_IDB_large are shown in Table 8. 

Size  
Key PCNN Parameters 

αF β 

<= 1712 x 1368 0.69 0.1 

>= 2592 x 1944 0.72 0.1 

Table 8 Standard PCNN Segmentation Key Parameters by Image Size 

(ALL_IDB_large) 
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The experiments with splitting the large images resulted in a slight increase in average 

accuracy as shown in Table 9. The accuracy results on ALL_IDB_large subset using the 

split method and parameter values previously mentioned are shown in Figure 15. The 

WBC average accuracy was 98% and RBC average accuracy was 82%, where RBC 

accuracy was higher than with ALL_IDB_subset. 

Split Type 
Average Metrics 

Accuracy Precision Recall F1 

No 
RBC 81.27 0.98 0.83 0.89 

WBC 97.96 0.78 0.88 0.81 

Yes 
RBC 82.10 0.93 0.88 0.90 

WBC 98.10 0.79  0.95 0.85 

Table 9 Standard PCNN Metrics (ALL_IDB_large) 

 

 
Figure 15 Standard PCNN Accuracy Metric (ALL_IDB_large) 

     Figure 16 shows the results of the WBC counts on the Kaggle_subset using the 

parameter settings that provided the overall general segmentation from ALL_IDB_subset. 

The WBC accuracy was slightly lower on this data.  
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Figure 16 Standard PCNN WBC Accuracy Metric (Kaggle_subset) 

 

     This section provides the answer to RQ1 from Chapter 1, “What are the significant 

PCNN parameters impacting PCNN segmentation?”. The key parameters for the 

standard PCNN are αF, β, W, and M, with certain images having an impact on the αF 

parameter, which are shown in Table 10. An αF =0.69 worked well for the smaller images 

and an αF =0.72 worked better for the larger images.  A β =0.05 or β =0.1 worked well 

based on the αF value and had a slight impact on RBC accuracy on the smaller images. 

The weight matrices M=Cspline and W=Weak provided overall best segmentation for 

both RBC and WBC using iteration number 4, but M=Exponential, and W=Euclidean 

provided the best WBC segmentation using iteration number 2. Other parameters, while 

not providing an optimal segmentation for WBC and RBC counts, did have an impact on 

the texture vector generation used for classification, described later in that section. The 

average metric values for each subset based on the parameters used are shown in Table 

11. 
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Name Type 
Key PCNN Parameters 

αF β M W 

ALL_IDB_subset 
RBC 0.69 0.05 Cspline Weak 

WBC 0.7 0.1 Exponential Euclidean 

ALL_IDB_large 
RBC 0.69 and 0.72 0.1 Cspline Weak 

WBC 0.72 0.1 Exponential Euclidean 

Kaggle_subset WBC 0.69 0.05 Cspline Weak 

Table 10 Standard PCNN Segmentation Key Parameters by Cell Type 

 

 

Name Type 
Average Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 61.35 0.81 0.72 0.72 

WBC 100 0.95 0.95 0.95 

ALL_IDB_large 
RBC 82.10 0.93 0.88 0.90 

WBC 98.10 0.79  0.95 0.85 

Kaggle_subset WBC 96.10 0.71 0.85 0.75 

Table 11 Standard PCNN Segmentation Average Metric Results by Cell Type 

 

Separate Cell Objects 

The separate method was used with acceptance parameters wbc_offset=17, 

wbc_percent=0.75, wbc_intensity=0.6, rbc_intensity=0.4, rbc_percent=0.6, and 

rbc_offset=7 on the ALL_IDB dataset. The Kaggle dataset required a slight modification 

due to the staining differences and was set to wbc_offset=11, wbc_percent=0.17, 

wbc_intensity=0.26, and RBC values were not applicable. From the experiments, the 

standard PCNN segmentation did provide edges for CHT using hough_circle() and 

hough_circle_peaks() to find the circular objects and for the separation algorithm to 

separate the cells; thus, answering RQ3 from Chapter 1, “Does PCNN segmentation with 

postprocessing identify edges for CHT to find and differentiate between WBC and RBC 

objects?”. Removing found object circles from the working image did improve discovery 

of clumped cells.  Distinguishing WBCs from RBCs was improved by using the matching 

acceptance parameters, but depending on the staining of the slides, the results varied.  

Although the separate function did find some overlapped cells, it did not do as well when 



66 

 

 

there were larger clumps, as there were no edges in the large clump to separate. However, 

if the split segmentation method was used on clumped WBCs in the middle of the image, 

then some of the WBCs were split into the sub images and the separation method could 

find them. Figure 17 below shows WBCs from Im001_1 on the left and the improvement 

using the split method on the right for some clumped WBCs. 

    

Figure 17  Clumped WBCs Improved with Split Segmentation 

 

The separation method first identifies and removes WBC objects from the image, after 

which it identifies RBC objects. This approach impacted RBC detection since a missed 

WBC object could be detected as a false positive RBC object. This did not account for all 

RBC false positives, but it did account for some. For example, Figure 18 shows the 

results for Im123_1 and Im135_0 from ALL_IDB_subset using the parameters in Table 

10 for RBCs to capture WBCs and RBCs. As shown in Figure 18, the WBCs were not 

found and so there were 3 false positives in each due to the missed WBC, with a false 

positive in Im135_0 that was not related to the missed WBC.  
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Figure 18 Missed WBCs 

 

Region Growing PCNN 

     The Region growing PCNN segmentation method starts with a seed pixel and grows 

outward based on the PCNN until the stopping criteria is met for that region, then 

continues to the next region with the next start pixel until all pixels are assigned to a 

region.  The experiments for Region Growing PCNN were split into two main areas, 

intensity and color which are described in this section.   

 

Key Parameters 

     The β value is updated as part of the algorithm, so this parameter did not have the 

impact as with the standard PCNN. A starting value of β=0.1 was used.  The M matrix 

value of Cspline was used as other values either did not work well or had no significant 

impact, although not all values were tried. The W matrix parameter did have an impact on 

the segmentation results which was different for intensity or color region growing and are 

described in those sections. The images that were impacted by the αF value for standard 

PCNN were not impacted in region growing, so a value of 0.69 was used on all datasets. 

Table 12 shows the key parameters for region growing PCNN. 
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Key Parameters 

αF M 

0.69 Cspline 

Table 12 Region Growing PCNN Segmentation Key Parameters 

 

Separation 

     For region growing, the find_num parameter of the separate method was set to a 

smaller number (compared to the standard PCNN) of circle peaks to retrieve with CHT, 

since a region should not contain the same number of circles as the entire image using 

standard PCNN. A value of 100 was determined by experiments and checking the 

segmented images of regions to determine the maximum number of circles in each. 

However, this value was different for the cell option described in that section.   

Intensity 

       The parameters for region growing PCNN started with those previously described 

that were fixed and those from the standard PCNN. Experiments using ALL_IDB_subset 

were performed for determining parameters specific to PCNN region growing using the 

intensity of the grey scale image pixels (preprocessing converted the color image to grey 

scale) with the average accuracy results shown in Figure 19. As can be seen from Figure 

19, the W value had an impact on segmentation results.  A W value of Euclidean 

increased WBC accuracy but decreased RBC accuracy. A W value of Neighbors provided 

the overall best WBC and RBC accuracy, however, while average WBC accuracy was 

above 90%, average RBC accuracy was under 30%. The RBC accuracy was increased 

slightly using a smaller value for separate parameter rbc_percent. The intensity region 

growing specific key parameters by type on ALL_IDB_subset is shown in Table 13 and 

using the parameters for the overall best segmentation the metrics are shown in Figure 
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20. In Figure 20, there are some overlap of metric values due to the dataset as previously 

mentioned, which are shown grouped by metric in Figure 21. 

 
Figure 19 Region Growing Intensity PCNN Accuracy by Parameters 

(ALL_IDB_subset) 

 

 

Type 
Key PCNN Parameters Separate Parameters 

W rbc_percent 

RBC Neighbor 0.4 

WBC Euclidean N/A 

Table 13 Region Growing Intensity PCNN Segmentation Key Parameters by Cell 

Type (ALL_IDB_subset) 

   

 
Figure 20 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics 
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Figure 21 Region Growing Intensity PCNN (ALL_IDB_subset) Metrics Chart 2 

 

     The split option previously mentioned was also used for region growing intensity on 

ALL_IDB_large and the accuracy metrics are shown in Figure 22. While the WBC 

accuracy was above 90% for the worse case, RBC accurcy was below 60% for the best 

case. 

 
Figure 22 Region Growing Intensity PCNN WBC Accuracy (ALL_IDB_large) 

 

     The results for WBC segmentation for Kaggle_subset are shown in Figure 23 using 

the previously mentioned parameters that provided the best overall segmentation. 

However, the WBC accuracy is not as high on the Kaggle dataset and drops below 60% 

on some files. 
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Figure 23 Region Growing Intensity PCNN WBC Accuracy (Kaggle_subset) 

 

     The key parameters and average metrics for region growing intensity PCNN are 

shown in Table 14 and Table 15. 

 

Name Type 
Key Parameters 

αF M W 

ALL_IDB_subset 
RBC 0.69 Cspline Neighbors 

WBC 0.69 Cspline Euclidean 

ALL_IDB_large 
RBC 0.69 Cspline Neighbors 

WBC 0.69 Cspline Neighbors 

Kaggle_subset WBC 0.69 Cspline Euclidean 

Table 14 Region Growing Intensity Key Parameters 

 

 

Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 29.52 0.63 0.26 0.34 

WBC 99.71 0.93 0.93 0.93 

ALL_IDB_large 
RBC 27.94 0.64 0.32 0.39 

WBC 97.21 0.82 0.98 0.89 

Kaggle_subset WBC 81.95 0.23 0.69 0.31 

Table 15 Region Growing Intensity Average Metrics 

Color 

     The experiments on ALL_IDB_subset for Color region growing PCNN showed that 

the W value had an impact on the segmentation results as can be seen in Figure 24.  A W 

value of Cspline increased WBC accuracy but decreased RBC accuracy. A W value of 

Common provided the overall best WBC and RBC accuracy, however, while WBC 
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accuracy was above 90%, RBC accuracy was under 40%. For the color space parameter, 

HSV had slightly higher accuracy for all W values except Cspline which had no 

difference between color spaces, which are also shown in Figure 24. This provides the 

answer to RQ2 from Chapter 1, “What color channels and image processing methods 

improve the results of PCNN segmentation and separation?”. The Color Region Growing 

worked best using a separate parameter of rbc_percent=0.6. From the experiments on 

ALL_IDB_subset, the color space did provide a 5% increase in RBC accuracy from the 

region growing with intensity, whether this is truly related to color or the algorithm 

differences is undetermined. The Color region growing specific key parameters by type 

on ALL_IDB_subset is shown in Table 16 and using the parameters for the overall best 

segmentation the metrics are shown in Figure 25. In Figure 25, there are some overlap of 

metric values due to the dataset as previously mentioned, which are shown grouped by 

metric in Figure 26. 

 
Figure 24 Color Region Growing PCNN Accuracy by Parameters 

(ALL_IDB_subset) 
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Type 
Key PCNN Parameters Separate Parameters 

W Color space rbc_percent 

RBC Common HSV 0.6 

WBC Cspline N/A N/A 

Table 16 Color Region Growing PCNN Segmentation Key Parameters by Cell Type 

(ALL_IDB_subset) 

 

 
Figure 25 Color Region Growing PCNN Metrics (ALL_IDB_subset) 

 
Figure 26 Color Region Growing PCNN Metrics (ALL_IDB_subset) Chart 2 

 

     The split option previously mentioned was also used for color region growing on 

ALL_IDB_large and the accuracy metrics are shown in Figure 27. While the WBC 

accuracy was almost 90% for the worse case, RBC accuracy was just over 50% for the 

best case. 
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Figure 27 Color Region Growing PCNN Accuracy Metric (ALL_IDB_large) 

 

     The results for WBC segmentation for Kaggle_subset are shown in Figure 28 using 

the previously mentioned parameters that provided the best overall segmentation. The 

WBC accuracy on Kaggle_subset is higher for region growing using color compared to 

intensity. 

 
Figure 28 Color Region Growing PCNN WBC Accuracy (Kaggle_subset) 

 

 

     The average metrics per dataset for color region growing PCNN are shown in Table 

17. 
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Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 36.87 0.61 0.45 0.48 

WBC 99.71 0.93 0.95 0.93 

ALL_IDB_large 
RBC 29.75 0.53 0.43 0.42 

WBC 95.19 0.70 0.65 0.63 

Kaggle_subset WBC 94.71 0.60 0.69 0.62 

Table 17 Color Region Growing PCNN Average Metrics 

Cell 

     The last of the PCNN methods is the Cell variant of Color region growing, where 

additional parameters were added to the color region growing to limit the size of the 

region. This reduced the size of each region and increased the number of segmented 

images processed by separate. The purpose was to try and capture each cell object into a 

region. The parameters were set for choosing regions based on the size and intensity of 

WBCs and RBCs. The find_num parameter for separate was set to 1, although other 

values did not improve the results. This method increased the RBC accuracy from the 

Color region growing on ALL_IDB_subset, with a slight increase in WBC accuracy.  The 

accuracy results based on experimented parameters are shown in Figure 29. The best 

parameters were the same as for color region growing. The metrics are shown in Figure 

30 for ALL_IDB_subset using these parameters. In Figure 30, there are some overlap of 

metric values as previously mentioned related to the dataset, Figure 31 shows the overall 

per metric values. 
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Figure 29 Color Region Growing Cell PCNN Accuracy by Parameters 

(ALL_IDB_subset) 

 

 
Figure 30 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset) 

 
Figure 31 Color Region Growing Cell PCNN Metrics (ALL_IDB_subset) Chart 2 

 

     However, this method like the other region growing PCNN did not work well on RBC 

counts for the larger files, the metrics for the color region growing cell variant on 
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ALL_IDB_large using the parameters that proved the best overall segmentation are 

shown in Figure 32. 

 
Figure 32 Color Region Growing Cell PCNN WBC Accuracy (ALL_IDB_large) 

 

The cell variant for color region growing on Kaggle_subset is shown in Figure 33, which 

showed a slight decrease in the WBC accuracy from the non-variant color region 

growing. 

 
Figure 33  Color Region Growing Cell PCNN WBC Accuracy (Kaggle_subset) 

 

     The average metrics for color region growing cell PCNN are shown in Table 18. 
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Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 50.6 0.63 0.74 0.64 

WBC 96.39 0.80 0.78 0.78 

ALL_IDB_large 
RBC 44.75 0.59 0.67 0.61 

WBC 97.93 0.86 0.67 0.72 

Kaggle_subset WBC 93.17 0.50 0.77 0.58 

Table 18 Color Region Growing Cell PCNN Average Metrics 

 

 

Conventional Segmentation and PCNN Prior Work 

    For comparison results the ALL_IDB_subset was used on a couple conventional 

methods and the results are described in this section. These methods were not run for the 

other datasets. 

Threshold 

     The threshold method uses a threshold value and every pixel less than or equal to that 

value is either in or out of the result. A threshold value of 0.5 provided the best 

segmentation for overall RBC and WBC segmentation and separation using separate 

method. The rbc_percent parameter for separate improved RBC counts using a smaller 

value of 0.4.  The chart in Table 19 shows the metric values for the ALL_IDB_subset. 

Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 32.78 0.50 0.40 0.42 

WBC 95.84 0.77 0.90 0.81 

Table 19 Threshold Metrics (ALL_IDB_subset) 

 

Watershed Region Growing 

     A watershed region growing method was available in scikit-image with an example 

for segmenting coins that was the basis for this implementation. An elevation map was 

created using a sobel filter on the image. Markers are determined by the threshold values. 

There are three ‘basins’ separated by threshold values of 0.4 and 0.51. These threshold 
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values were set from experiments. The scikit-image watershed method was called with 

the elevation map and makers to segment. The three basins were chosen to segment and 

capture both types of cells. As with the threshold method, Watershed also had better 

accuracy with an rbc_percent parameter for separate set to 0.4, the metrics for 

ALL_IDB_subset are shown in Table 20.  

Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 30.88 0.36 0.36 0.38 

WBC 96.67 0.83 0.90 0.85 

Table 20 Watershed Metrics (ALL_IDB_subset) 

 

PCNN from Literature 

     A standard PCNN with the parameters from by Ma et al. (2016) was used to segment 

the ALL_IDB_subset for comparison results. The PCNN parameters are shown in Table 

21, and separate used an rbc_percent value of 0.4. The metrics are shown in Table 22, 

however as discussed later in the comparison section, their results used a computed count 

percentage. Their method also contained differences in preprocessing, post processing, 

and separation and counting. 

Name 
Parameters 

αF αL αE β VF VL VE M W 

ALL_IDB_subset 0.8 1 1.35 0.1 0.2 0.2 2000 Cspline Cspline 

Table 21 PCNN Parameters from Literature 

 

Name Type 
Metrics 

Accuracy Precision Recall F1 

ALL_IDB_subset 
RBC 43.62 0.53 0.65 0.56 

WBC 96.62 0.78 0.78 0.77 

Table 22 PCNN with Parameters from Literature Metrics 
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     Figure 34 shows the average accuracy metric comparison with the different 

segmentation methods and separate on the ALL_IDB_subset using the best overall 

segmentation results for each method. 

 
Figure 34 Method Comparison Accuracy Methods 

 

 

Classification 

     The classification was done for WBCs on both the ALL_IDB and Kaggle datasets 

described in Table 2. Classification required creation of the texture vector list using the 

labeled training data for each dataset, ALL_IDB2 and Kaggle_Train.  The 

generate_texture_vector() was described in Chapter 3. Several segmentation methods 

were used for segmentation with the separate method. The goal was to capture close to 

the entire WBC with limited background or RBCs contained in the WBC subimage 

created. The WBC segmentation method that achieved this goal best was the standard 

PCNN with the parameters shown in Table 23. The significant difference between 

datasets was that they required different αE PCNN parameter values. The WBC objects 
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are found as before using the separate method to capture the list of WBC images. The 

dataset specific parameters for separate are shown in Table 24. 

     Once the WBC objects were found, another standard PCNN was used with a different 

set of PCNN parameters also in Table 23 to capture the texture vectors for classification.  

The significant difference between datasets was that they required different αE and VE 

PCNN parameter values. These parameters were found through experiments where the 

output images produced were manually examined. The goal was to capture the texture of 

the image in a series and not the entire object in one segmentation.  This was done by 

experimenting with different types of WBCs to capture the nucleus, granules, etc., in 

different indexes of the segmentation array. The Shannon entropy was calculated on each 

segmentation in the array and represented one element in the texture vector for an object, 

thus it captured differences between the types. This section provides the answer to RQ4 

from Chapter 1, “What are the significant PCNN parameters that yield the best texture 

vector results for each dataset, or which worked generally across datasets?”. 

 

Usage Dataset 

Parameters  

αF αL αE β VF VL VE M W Initial 

E 

Segmentation 
ALL_IDB 

0.72 1 
0.0771 

0.1 0.2 0.2 0.9740 Exponential Euclidean 0.0001 
Kaggle 0.3 

Classification 
ALL_IDB 

1.2 0.6 
0.08 

0.01 0.1 0.1 
1.1 

Cspline Common 1 
Kaggle 0.4 0.8 

Table 23 Texture Vector PCNN Parameters 

 

Dataset 
Parameters 

wbc_offset wbc_percent wbc_intensity 

ALL_IDB 15 0.6 0.5 

Kaggle 11 0.17 0.26 

Table 24 Texture Vector Separate Parameters 
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     Once the parameters for generating the texture vector were found, the next 

experiments created and stored the list of texture vectors for each WBC type.  The 

original expectation was to capture and save the average texture vector per type, but there 

was too much variance in the vectors, so for the ALL_IDB2 training data it was decided 

to save the texture vectors and cell type for each image as was done by Yang et al (2017).  

However, for the Kaggle_Train there was a larger set, so the mean along with the mean 

plus and minus the variance were saved on every 10 images. The value of 10 was chosen 

by experiments that reduced the number of vectors stored and still captured the difference 

between types. 

     The last step was to perform the segmentation and classification on the test data and 

capture the results. The test data images were segmented and separated to retrieve the 

WBC objects.  Figure 35 shows the segmented image and resulting WBC objects found 

for Im004_1, where all WBCs are found along with some false positives.  The false 

positives here are most likely WBCs that were either old or smeared and broken during 

making the slide. Three of the lymphoblasts from this segmentation are shown in Figure 

36. 

 

 

 
Figure 35 WBC Segmentation and Result (Im004_1) 
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Figure 36 Lymphoblasts (Im004_1) 

     Once the WBC object was found, the texture vector was captured using the same 

parameters as was used for generating the texture vector list.  The texture vector for the 

WBC object was then compared against the training texture vector list to find the closest 

similar vector as previously described in classify() in the Chapter 3. Figure 37 shows the 

one lymphocyte and two neutrophils from Im108_0 which were correctly classified, 

however, Figure 38 shows a neutrophil and two lymphocytes that were correctly 

classified and one monocyte that was incorrectly classified. The incorrectly classified 

WBC was not entirely captured from separate, as is evident from the image. 

 
Figure 37 Lymphocyte, Neutrophils (Im108_0) 

 
Figure 38 Neutrophil, Lymphocyte, Lymphocyte, and Misclassified Monocyte (Im088_0) 

 

     The confusion matrices and metrics are shown in this section for the different testing, 

along with the metrics for the combined results.  Any false positive WBCs were not 
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counted in the classification results as those results were already included with the 

metrics calculated for total WBC counts under segmentation.  

ALL_IDB Dataset 

     As was described earlier in Table 2, the classification was done for WBCs on the 

testing data in ALL_IDB_subset, ALL_IDB_large, ALL_IDB_large2, and 

ALL_IDB_large3. The ALL_IDB2 contained the training data and was used to label the 

WBCs and capture the texture vector list.  The test images were segmented using the 

previously mentioned parameters with a slight adjustment in the separate parameters as 

shown in Table 25 and classified using the parameters mentioned previously to capture 

the texture vector. 

Adjusted Separate Parameters 

wbc_offset wbc_intensity 

17 0.6 

Table 25 Adjusted Classification Parameters (ALL_IDB) 

 

     The confusion matrix for the test data from ALL_IDB_large and ALL_IDB_large2 are 

shown in Table 26. 

Predicted 

A
ct

u
al

 

 
Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil 

Neutrophil 11 2 3 0 0 0 

Lymphocyte 0 13 0 0 0 0 

Lymphoblast 1 5 93 3 0 0 

Monocyte 0 1 2 3 0 0 

Eosinophil 0 0 1 0 0 0 

Basophil 0 0 0 0 0 0 

Table 26 Confusion Matrix (ALL_IDB_large and ALL_IDB_large2) 
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     The ALL_IDB_subset which contain images from the training set was used as test data 

to determine the impact of slight changes to the separate parameters.  The confusion 

matrix is shown in Table 27, which shows the separate parameters had a slight impact as 

the captured WBC was slightly different resulting in two WBCs being incorrectly 

classified. 

 
Predicted 

A
ct

u
al

 

 
Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil 

Neutrophil 2 1 0 0 0 0 

Lymphocyte 0 5 0 0 0 0 

Lymphoblast 0 0 8 0 0 0 

Monocyte 0 1 0 2 0 0 

Eosinophil 0 0 0 0 1 0 

Basophil 0 0 0 0 0 1 

Table 27 Confusion Matrix (ALL_IDB_subset) 

 

     The confusion matrix for all test data which includes ALL_IDB_large, 

ALL_IDB_large2, and ALL_IDB_large3 from ALL_IDB is shown in Table 28.  

 
Predicted 

A
ct

u
al

 

 
Neutrophil Lymphocyte Lymphoblast Monocyte Eosinophil Basophil 

Neutrophil 12 2 3 0 0 0 

Lymphocyte 0 26 0 0 0 0 

Lymphoblast 1 5 93 3 0 0 

Monocyte 0 1 2 3 0 0 

Eosinophil 0 0 1 0 0 0 

Basophil 0 0 0 0 0 1 

Table 28 Confusion Matrix (ALL_IDB Test Data) 
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     The metric table was calculated from the confusion matrix for the test data in 

ALL_IDB_large, ALL_IDB_large2, and ALL_IDB_large3 is shown in Table 29. From the 

results the classification for lymphocytes was very good at 100%. Lymphoblast 

classification was 88.2 % accuracy with sensitivity of 91.2 %. The worse accuracy for 

neutrophils and monocytes was above 93%, but the best sensitivity was below 70% 

which may be related to staining variances resulting in segmentation and separation not 

capturing the entire cell.  The limited number of basophils and eosinophils make those 

results not accurate. 

Classification Sensitivity (%) Specificity (%) Accuracy (%) 

Neutrophil 70.59 96.06 93.06 

Lymphocyte 100.00 100.00 100.00 

Lymphoblast 91.18 82.00 88.16 

Monocyte 50.00 97.76 95.71 

Eosinophil 0.00 99.26 98.53 

Basophil 0.00 100.00 100.00 

Table 29 WBC Classification Metrics (ALL_IDB Test Data) 

 

Kaggle Dataset 

          As was described earlier in Table 2, the classification was done for WBCs on the 

testing data in Kaggle_Test_simple and Kaggle_Test. The Kaggle_Train contained the 

training data and was used to capture the texture vector list.  The test images were 

segmented using the previously mentioned parameters and classified using the parameters 

mentioned previously to capture the texture vector. The confusion matrix for the test data 

from Kaggle_Test_simple and Kaggle_Test are shown in Table 30 and Table 31, 

respectively. 
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Predicted 

A
ct

u
al

 

 
Neutrophil Lymphocyte Monocyte Eosinophil 

Neutrophil 25 4 3 6 

Lymphocyte 2 5 0 0 

Monocyte 1 1 2 0 

Eosinophil 0 5 4 4 

Table 30 Confusion Matrix (Kaggle_Test_simple) 

 
Predicted 

A
ct

u
al

 

 
Neutrophil Lymphocyte Monocyte Eosinophil 

Neutrophil 14 2 1 3 

Lymphocyte 7 12 0 1 

Monocyte 3 0 17 0 

Eosinophil 6 4 5 5 

Table 31 Confusion Matrix (Kaggle_Test) 

 

     The metric table from the combined confusion matrix for Kaggle_Test_simple and 

Kaggle_Test is shown in Table 32.  The classification was decent for lymphocytes and 

monocytes at 80% and just under 90%, respectively.  The neutrophil and eosinophils 

were not as accurate at around 60%, which may be due to the staining and not capturing a 

consistent whole image. The Kaggle dataset did not contain any basophils or 

lymphoblasts.  

Classification Sensitivity (%) Specificity (%) Accuracy (%) 

Neutrophil 57.35 60.27 58.87 

Lymphocyte 61.54 87.01 80.58 

Monocyte 79.17 92.75 89.25 

Eosinophil 27.27 75.51 63.36 

Table 32 Classification Metrics (Kaggle) 



88 

 

 

 

Comparing Prior Work 

     The results of this research were compared to prior work in this section.  First the 

overall metrics calculated from the cell counts after segmentation and separation are 

compared. Next, the classification metrics for the two datasets are compared, and then the 

metrics related to lymphoblast detection are compared. 

Total RBC and WBC Counts 

    Adagale and Pawar (2013) and Ma et al. (2016) both calculated their metrics based on 

a computed count percentage as follows: 

,#E-Z$�:	,#Z�$	7�&Y��$D9� � ��D(Z&�:	[8##:	,�88	,#Z�$\Y$ZD8	[8##:	,�88	,#Z�$ 	�100� 
The computed count percentage from Adagale and Pawar (2013) was 90.1%; for Ma et 

al. (2016) their computed count percentage was 93.18%. The total cells from the data 

shown in both their papers was less than 100 RBCs per image. From the experiments, the 

computed count percentage was comparable at 92.86% on ALL_IDB_large and lower at 

72.3% on ALL_IDB_subset. However, the RBC accuracy on the ALL_IDB_large using 

the standard PCNN and separate was 82% using the accuracy metric described in 

Chapter 3. 

     From Loddo, their overall accuracy was 99.2% on WBCs and 98% on RBCs, whereas 

the standard PCNN accuracy was slightly lower at 98% on WBCs and 82% on RBCs. 

Their method obtained a higher accuracy and other metrics then the PCNN methods in 

this paper using ALL_IDB_large as shown in Table 33. However, these results were for 

both RBC and WBC counting. Using the specific WBC parameters for WBC counts 
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provided more accurate results as the WBC accuracy was 100% for the standard PCNN 

on ALL_IDB_subset. 

Method Type 
Average Metrics 

Accuracy Precision Recall F1 

Standard PCNN and separate (ALL_IDB_large) RBC 82% 93% 88% 90% 

WBC 98.% 79%  95% 85% 

Loddo et al. (2016) RBC 98% 89% 98% 93% 

WBC 99.2% 100% 99.2% 99.6% 

Table 33 Metric Comparison with Literature (ALL_IDB_large) 

 

WBC Classification and Counts 

     Macawile et al. (2018) classified WBCs from the ALL_IDB dataset using three 

different models, with their AlexNet model providing the best results.  The overall 

average sensitivity, specificity, and accuracy for both methods are shown in Table 34, 

these do not include the lymphoblasts since they were not in their results. While their 

results show a greater sensitivity, the accuracy and specificity were slightly better with 

the PCNN classifier. The sensitivity result was impacted by the number of eosinophils 

and basophils which were limited to two in Macawile et al. (2018) and one or less in the 

test sets used in this paper. 

Classification Sensitivity (%) Specificity (%) Accuracy (%) 

PCNN 44.12 98.62 97.46 

Macawile et al. (2018)  89.18 97.85 96.63 

Table 34 Classification Metric Comparison (ALL_IDB dataset) 

 

     Liang et al. (2018) classified WBCs from the Kaggle dataset using different models, 

with their Xception-LSTM model providing the best results.  Their accuracy results were 

better those using the PCNN classification, which may be related to the staining of the 
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slides in the dataset. The authors did not provide sensitivity or specificity in their results. 

The overall average accuracy comparison between the two methods is shown in Table 34.  

Classification Accuracy (%) 

PCNN 73.02 

Liang et al. (2018)  90.79 

Table 35 Classification Metric Comparison (Kaggle dataset) 

Lymphoblast Detection    

     For lymphoblast detection, Ghosh et al. (2017) determined the metrics on a per slide 

basis indicating the presence of lymphoblasts and not a per cell classification. If a slide 

contains a lymphoblast and it is detected then it is counted as a true positive, if the slide 

contains a lymphoblast and it is not detected it is counted as a false negative, and similar 

for false positives and true negatives.  The previous results displayed under the 

classification section was for the overall classification by type. The per slide metric used 

by Ghosh et al. (2017) was calculated for the results from ALL_IDB_large, 

ALL_IDB_large2, ALL_IDB_large3, and ALL_IDB_first33 with any duplicates between 

subsets removed.  Table 36 shows the comparison of Ghosh et al. (2017) and the PCNN 

classifier for lymphoblast detection using the per slide metric.  The PCNN classifier 

metrics for accuracy and specificity are less than 1% lower with sensitivity being 3% 

lower; however, the lymphoblast cell level accuracy was 88.2% whereas Ghosh et al. 

(2017) stated they were not able to achieve good cell level accuracy. Ghosh et al. (2017) 

also did not support clumped cells which was supported by the PCNN segmentation and 

separation method in this research. 
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Classification Sensitivity (%) Specificity (%) Accuracy (%) 

PCNN 97.2 94.12 96.23 

Ghosh et al. (2017) 100 94.9153 97.22 

Table 36 Lymphoblast Detection Comparison 

 

 

Summary  

     While the metrics from these experiments using PCNN produced lower RBC accuracy 

than those in the literature, using the standard PCNN, separate, and the PCNN classifier 

provided comparable or better results for WBC counts, classification, and lymphoblast 

detection on the ALL_IDB dataset. The staining on the Kaggle dataset had an impact on 

the WBC results as the accuracy values were lower. Some of the images that were in 

ALL_IDB_large, did require different parameter tuning which was most likely related to 

the larger size due to the resolution of those images. 
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Chapter 5  

 

Conclusion 
 

 

Introduction 

    This section discusses the overall experiments along with issues and concerns.  The 

manual counting of RBCs was time consuming and had a potential for error when the 

number of cells was large and there were overlapped cells. The staining of the slides also 

had an impact on the results and some unexpected complications like the white space in 

the Kaggle dataset due to rotation that had to be removed during preprocessing as 

previously mentioned. However, most of the preprocessing and post processing was 

consistent between the datasets. 

 

Conclusions      

     This section discusses the parameters and findings from the experiments. It provides 

comparative summary for segmentation, separation, and classification.  The section 

concludes with an overall assessment of the experiments. 

Parameters 

     There were several parameters associated with PCNN segmentation, where a few had 

a significant impact on blood cell segmentation. The αF and β parameters were impacted 

by the file size (image resolution) for overall RBC and WBC standard PCNN 

segmentation but did not have the same impact with region growing PCNN. These two 

parameters along with M and W weight matrices was impacted by the cell type. For WBC 

only segmentation for use with classification or lymphoblast detection, these parameters 
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improved WBC accuracy.  For region growing PCNN, like standard PCNN the W matrix 

improved WBC segmentation, however, there was only one M matrix that was successful 

at segmentation. The W matrix value also impacted WBC accuracy with region growing 

PCNN when combined with the color option.  The different color spaces used with region 

growing PCNN segmentation did not have a significant impact. 

     The PCNN parameters were dependent on usage, as using a standard PCNN as a 

classifier verses segmentation required a different set of parameters.  A couple of PCNN 

parameters were dependent on the dataset, such as the αE for both segmentation and 

classification and the VE for classification. The separation parameters were also dependent 

on the dataset as the acceptance criteria was related to the quality of the staining and 

image. 

Segmentation 

     The standard PCNN provided better segmentation and separation than the region 

growing PCNN variants. While the WBC results for the standard PCNN were 

comparable to the literature with an average accuracy above 98%, RBC accuracy results 

were lower with the best case just over 82%.  An interesting finding was that the PCNN 

parameters had an impact on segmentation for certain images that were larger due to a 

higher resolution. Whether this was really related to the size and resolution or something 

else about the image was not clear.   

     The region growing PCNN variants did not produce comparable results to the standard 

PCNN. However, an interesting finding was related to the color option for region 

growing; there was improvement using color over grey scale intensity, but there was little 

impact between the different color spaces. This may be due to the overlap in WBC and 
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RBC colors as they both have variations of purple. Whether using intensity or color, the 

PCNN segmentation variants tended to pick up more of the nucleus for WBC objects and 

not as much of the cytoplasm. 

Separation 

     The PCNN standard segmentation did provide the edges and the separate method did 

find and separate the cell objects. The separate method that created a cell object image 

and subsequently removed the image from the working image improved finding clumped 

cells. The split variant for segmenting a larger file into four subimages also improved 

finding clump cells. However, for some cells with more cytoplasm (such as a large 

monocyte or neutrophil), the entire cell was not always included in the generated WBC 

subimage due to variations in the segmentation. Overall, the standard PCNN worked 

better than the region growing versions. This may be due to region growing adding more 

pixels to the region resulting in a clumpier segmented image as input to the separate 

method which was subsequently unable to find the edges of the actual cell.  

Classification 

     The WBC classification results on the ALL-IDB dataset were comparable to 

Macawile et al. (2018) at 97% accuracy; however, the sensitivity was slightly lower due 

to the limited number of certain cell types. The classification on the Kaggle dataset 

obtained an accuracy about 15% lower than the results from Liang et al. (2018), but as 

previously mentioned the PCNN seemed to be more sensitive to the variations in staining 

on that dataset. The lymphoblast detection using PCNN was comparable with Ghosh et 

al. (2017) at 96% for the per slide results and per cell lymphoblast classification was also 

achieved at 88.2%. 
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Assessment 

     The assessment from the experiments was that the standard PCNN provided 

comparable or better accuracy for WBC segmentation, counting, classification, and 

lymphoblast detection. For WBC segmentation and counting the standard PCNN 

produced comparable accuracy, but other metrics were lower. The PCNN classifier 

produced slightly better accuracy and specificity but had lower sensitivity. The PCNN 

classifier did not perform as well on the Kaggle dataset. For lymphoblast detection, the 

PCNN classifier was comparable on the per slide results but with lower sensitivity. The 

PCNN classifier also obtained per cell results, however, the comparable method in the 

literature was not able to produce per cell results with their method. The standard PCNN 

however produced lower RBC results compared to the literature.  

     The region growing PCNN had slightly lower accuracy for WBC and significantly 

lower RBC accuracy compared to the standard PCNN. Using the color option for region 

growing PCNN improved the overall results compared with using the intensity value. A 

region growing PCNN color cell option tried to improve the region growing by 

specifying a min and max size for a region, but this did not significantly improve the 

results. 

     Quality of results depended on characteristics of the dataset. The image resolution and 

magnification were different on some files in the ALL_IDB and caused variations in the 

segmentation parameters for the standard PCNN. The main parameters impacted were the 

αF and β, with αF being more sensitive to the size of the image and requiring a slightly 

larger value.  The αF parameter is a decay parameter and β is the linking strength which 

are combined and compared against the threshold value to determine the output for the 
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iteration.  A higher αF parameter would decay faster allowing more pixels in the 

segmented output.  

     The staining of the images in the Kaggle dataset were slightly different from the 

ALL_IDB making the images not as clear with less distinct colors. This had an impact 

when segmenting and classifying WBCs.  The αE impacted both segmentation and 

classification and the VE impacted classification only.  The VE is the normalizing constant 

and αE is the decay parameter and these are associated with the threshold for determining 

the output of the PCNN. The lower image quality resulted in lower feeding and linking 

network values so using the same parameters generated a threshold value that resulted in 

little or no output. Thus, the Kaggle dataset required setting a higher αE parameter value 

so the threshold would decay faster and allow the pixels to appear in the output. For 

classification, the VE parameter was also reduced to allow more pixels to be captured in 

the output.  

 

Future Work 

     Proposed improvements to the use of PCNN for segmentation, classification, and 

separation will be described in this section.  The improvements to the segmentation are 

described first, followed by the improvements to classification, and ending with the 

improvements to the separation method. 

Segmentation 

     The first improvement for segmentation relates to the preprocessing of the image 

before it is sent to PCNN segmentation. The ALL-IDB contained images of different 

sizes representing different resolutions and magnifications. The Kaggle dataset files were 
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different sizes compared to the ALL-IDB files. This improvement would require resizing 

the images to a standard size to determine optimal values for PCNN parameters β and αF  

for all images. Macawile et al. (2018) resized the ALL-IDB images to the required size 

for the different CNN models. 

     The second improvement to the standard PCNN is to add the linking control unit from 

Xu et al. (2018) to provide color input.  The color option improved the region growing 

results compared to grey scale intensity and may provide an improvement in the standard 

PCNN segmentation.  

Classification 

     Another set of proposals entail modifications to the PCNN classifier. The first is to 

add an average or mean color representation feature to the texture vector, such as average 

intensity or mean color value. Color features were used by Khobragade et al. (2015) and 

Alreza and Karimian (2016). Khobragade et al. (2015) converted RBG to HSV and 

captured the mean, and Alreza and Karimian (2016) captured from the grey scale value. 

The mean color or average intensity for color representation could be added as element(s) 

to the texture vector. This may improve classification between neutrophils, eosinophils, 

and basophils as they all have granules, but the eosinophils are a deep orange, and the 

basophils are a deep purple, so the color is an important distinguishing characteristic.  

     The second PCNN classifier improvement would be to use a PCNN variant called a 

Spiking Cortical Model (SCM). The SCM is a simplified PCNN with only 3 equations 

(Yang et al. (2017). Yang et al. (2017) found that for textural features the SCM showed 

an improvement over the standard PCNN. 
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Separation 

     The last set of proposed improvements are related to the separate method used to 

separate the cell objects from the segmented image. The current method finds the circles 

in the segmented image using CHT. It then processes each circle center found from CHT 

and determines if there is an acceptable object. The acceptance of an object is based on 

the matching criteria parameters. Once an object matches the acceptance criteria a cell 

object subimage is created.  The cell object is then subsequently removed from the 

working image. The process continues with the next circle center.  For the current 

separate method, CHT is run once on each segmented image.  

     The improvement to the separate method would start by executing CHT on the 

working image to find one circle at a time. The circle center found would be matched to 

the acceptance criteria to determine if there is an acceptable object. Like the current 

method a subimage would be created when an acceptable object is found, and that object 

is removed from the working image.  The improvement process goes back to the working 

image and executes CHT to find the next circle. This continues until no more circles are 

found in the working image.  The improvement flow is shown in Figure 39. An additional   

preprocessing step would remove small objects from the working image before finding 

the next circle with CHT.  This should improve finding cells that are in clumps and 

reduce the number of background cells in the created object image improving 

classification. 

 
Figure 39 Separate Flow Improvement 
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Summary 

     The standard PCNN worked best on the segmentation and separation of RBC and 

WBC compared to the region growing versions.  WBC segmentation and separation had 

significantly higher accuracy then RBC segmentation and separation.  Two PCNNs were 

required for WBC segmentation and classification, one to segment and separate the WBC 

objects, and another to capture the texture vector for each object. Overall, using a 

standard PCNN to segment and classify WBCs provides comparable accuracy to the 

literature at 98% for segmentation, 97% for classification, and 96% for lymphoblast 

detection. 

     This research showed that a standard PCNN can be used to successfully segment RBC 

and WBC objects. The region growing PCNN was also successful in segmenting and 

separating WBCs but did not perform as well as the standard PCNN. The separate 

method introduced in this research facilitated cell counting and WBC classification with 

the creation of WBC subimages, along with detection of clumped cells.  Using a standard 

PCNN as a WBC classifier was introduced with this research and proved to be a 

successful classifier and lymphoblast detector.  
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