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Relation extraction and classification represents a fundamental and challenging 

aspect of Natural Language Processing (NLP) research which depends on other tasks such 

as entity detection and word sense disambiguation. Traditional relation extraction methods 

based on pattern-matching using regular expressions grammars and lexico-syntactic 

pattern rules suffer from several drawbacks including the labor involved in handcrafting 

and maintaining large number of rules that are difficult to reuse. Current research has 

focused on using Neural Networks to help improve the accuracy of relation extraction tasks 

using a specific type of Recurrent Neural Network (RNN). A promising approach for 

relation classification uses an RNN that incorporates an ontology-based concept 

embedding layer in addition to word embeddings. This dissertation presents several 

improvements to this approach by addressing its main limitations. First, several different 

types of semantic relationships between concepts are incorporated into the model; prior 

work has only considered is-a hierarchical relationships. Secondly, a significantly larger 

vocabulary of concepts is used. Thirdly, an improved method for concept matching was 

devised. The results of adding these improvements to two state-of-the-art baseline models 

demonstrated an improvement to accuracy when evaluated on benchmark data used in prior 

studies. 
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Chapter 1 

 

Introduction 

Relation extraction and classification is a common Information Extraction task 

involving the linking of entities that participate in a semantic or syntactic relationship 

within a text document. Relation extraction involves the detection of the presence of a 

relation between a pair of entities, while relation classification attempts to identify the type 

of relation between a pair of entities. Relation extraction and classification represent a 

fundamental and challenging aspect of Natural Language Processing (NLP) research and 

depend on other tasks such as entity detection and word sense disambiguation.  

Traditional relation extraction methods were based on pattern-matching using 

regular expressions grammars and lexico-syntactic pattern rules (Konstantinova, 2014). 

These approaches suffer from several drawbacks including the labor involved in hand-

crafting and maintaining large number of rules that are difficult to reuse and inevitably lead 

to ambiguity when rules overlap (Chiticariu, L., Li, Y., Raghavan, S., & Reiss, F. R., 2010). 

Current research has focused on using Neural Networks to help improve the 

accuracy of relation extraction tasks using a specific type of Recurrent Neural Network 

(RNN) (Rumelhart, D. E., Hinton, G. E., & Williams, R. J, 1988) called Long-Short Term 

Memory (LSTM) proposed by Hochreiter & Schmidhuber (1997) and further refined to 

add Bidirectionality (BiLSTM) by Schuster & Paliwal (1997). These special RNN were 

designed to detect long distance patterns that frequently occur within time-series and 

sequence tagging problems such as entity and relation extraction tasks. Entity extraction 

(sometimes known as entity chunking) involves the identification of entities within 

unstructured text by identifying the beginning and ending offsets of each entity within the 

unstructured text. LSTM uses a gated short-term and long-term memory unit that can hold 

and forget information over a sequence of time steps (Hochreiter & Schmidhuber, 1997) 

and is ideally suited to remember patterns that occur between longer distances across the 

input sequence. This property is especially useful for relation extraction because entities 

participating in a relation can occur at the beginning and the end of a sentence. 

Recent research in NLP has found the use of Word Embedding layers (Mikolov, 

2013; Pennington, 2014) within an RNN model as a promising approach that has 
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demonstrated higher performance and robustness when compared to earlier pattern-based 

matching or classical feature-based machine learning algorithms. Lamurias & Couto 

(2019) proposed a novel LSTM-based architecture extending the work of Zhang Y., Zheng, 

Lin, Wang, Yang Z., & Dumontier (2018) and Xu B., Shi, Zhao, & Zheng (2018) by 

incorporating a biomedical ontology-based concept embedding layer in addition to the 

frequently used word embeddings. Lamurias & Couto name this model: BO-LSTM. Their 

approach infuses additional domain-specific knowledge into the learning process by 

encoding words and phrases into concepts that are in turn transformed into a dense feature 

vector through an ontology-based concept embedding layer. Lamurias & Couto selected 

the Chemical Entities of Biological Interest (ChEBI) ontology (Hill et al, 2013) as the most 

topically relevant ontology to support their concept embedding work. This ontology 

defines drugs and their underlying molecular structures through a collection of concepts 

and semantic relations between concepts. Their approach demonstrated state-of-the-art 

performance when evaluated using a well-known relation classification benchmark called 

the SemEval 2013 Drug-Drug Interaction (DDI) task (Segura-Bedmar et al, 2014; Herrero-

Zazo et al, 2013).   

The SemEval DDI 2013 dataset includes medical literature documents that contain 

mentions of drug interactions. This dataset also includes ground truth that labels the correct 

drug entities and whether there exists a drug interaction relationship between pair of 

mentioned drug names. These relations can be classified into 5 types: mechanism, effect, 

advice, interaction not specified (labeled ‘int’), or non-interacting (i.e. negative). Figure 1 

shows an example of the DDI ground truth format used. This example includes a sentence 

with two identified drug entities with relative offsets and a candidate relation pair with 

corresponding relation classification label of effect. When more than two drug entities are 

found within the sentence, each distinct pair will be captured and one of the five DDI 

relation classes will be labeled. 
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Figure 1 - Example from SemEval DDI 2013 dataset 

The performance of a model for the DDI relation extraction task is measured in the 

form of F1 accuracy score. The F1 score represents the combined harmonic mean of recall 

and precision where recall measures the proportion of correct DDI relations found while 

precision measures that only those correct relations, and no others, are found. 

 

Problem Statement 

The proposed approach by Lamurias & Couto (2019) suffers from several 

drawbacks and restrictions. One of these drawbacks involves the limitation of only 

considering is-a hierarchical relations from ChEBI and discarding many other semantic 

relations that may provide additional salient information to the model about a pair of drug 

entities under consideration. An example of some of these semantic relations from the 

ChEBI ontology include: has_part, has_role, and is_conjugate_acid_of among others. 

Without considering these other relations, many important properties of these drugs are 

missed and not visible to the learning algorithms during training.  

Another limitation involves the use of a small vocabulary of concepts that only 

include 2,000 of the more than 114,000 available concepts within ChEBI. This restriction 

results in a high-occurrence of Out-of-Vocab (or OOV) problem encountered by 

embeddings that limit the words (or concepts) they include in the vocabulary (Young, 

2019). This results in a reduction in accuracy performance when evaluated against a blind 

(holdout) dataset.  This limitation also makes it difficult to generalize the model beyond 

the training data and raises questions about its viability in a real-world dataset.  

A third drawback with the Lamurias & Couto BO-LSTM model involves the 

matching of concepts. The approach uses a heuristic based on a similarity score that can 

sometimes match the wrong concept within the ontology and therefore mislead the rest of 
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the model. Because the same word can be mapped to multiple concepts within the ontology, 

this creates an ambiguity that must be resolved to identify the correct concept (Ciaramita 

et al, 2006).  

The misidentification of concepts by the BO-LSTM concept matching method 

takes two forms. The first involves the matching of a substring from the input text to a 

concept in the ontology when there exists a longer string that matches a more specific 

concept. Funk, Baumgartner, Garcia, Roeder, Bada, Cohen, ... & Verspoor (2014) describe 

this problem as the under-specification of a concept and the leading cause of false-positive 

matches when using biomedical ontologies such as ChEBI.  

 The following sample sentence taken from the DDI dataset serves as an example: 

“Concomitant administration of vitamin A and medications with retinoic acid receptor 

alpha antagonists must be avoided because of the risk of hypervitaminosis A." The concept 

matching may find many overlapping possible concepts such as “acid”, “retinoic acid”, 

“antagonists”, and “alpha antagonists” but there exists a more specific concept, with a 

longer matching string, called “retinoic acid receptor alpha antagonist”. The longest 

spanning string represents the most specific concept and should be the only one selected 

over that span. This means no other substring such as “acid” or “antagonist” should be 

matched when the longer match exists. 

The second form of misidentification involves the ambiguity that arises when the 

same word (or words) can match multiple concepts. Without the use of the context 

surrounding these words, the identification of the most relevant concept may yield the 

wrong concept. An example of this problem can be described with the word “ice”. Ice may 

represent a concept for the solid state of water, while in a different context, “ice” may 

represent a Federal Law Enforcement Agency or the street name synonym for 

methamphetamine. Without the context to resolve these concepts correctly, the model can 

fail to properly identify whether a DDI relation exists between a pair of entities. 

 

Dissertation Goal 

The primary goal of this study was to extend the Lamurias & Couto’s BO-LSTM 

model to expand the use of an ontology-embedding layer by providing a new concept 

embedding method that can capture the semantic relationships of the ancestors for the 
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concepts. This study also presents a method that improve upon the concept matching 

techniques used in BO-LSTM by matching words and phrases to the most specific and 

relevant concepts. The key methods explored in this study are summarized as follows: 

1. Devised a new concept embedding that utilizes hierarchical and semantic relationships 

for concepts within the ChEBI ontology. The embedding projects a concept 

representing a drug entity into one or more low-dimensional feature space. The number 

of concept vectors will depend on the number of relation types within ChEBI that the 

concept participates in. The embedded concepts are presented to an LSTM layer of the 

model as input so that it can learn higher semantic patterns from the ontology.  

2. A concept matching method to find the most specific concept within the ontology by 

using a greedy matching method that looks for the longest possible match. This longest-

span match method produces the most specific concept by discarding matches that are 

contained as a subsequence within a longer matching span. An implementation of 

Concept Mapper (Tanenblatt, Coden, & Sominsky, 2010), considered by Funk et al 

(2014) as the best performing concept matching method for biomedical ontologies, is 

evaluated along with two other methods. 

These methods were all evaluated using the benchmark used by the previous studies 

(the SemEval 2013 DDI challenge) and the same ontology used by Lamurias & Couto 

(2019): the ChEBI Ontology. The performance of this model aimed to deliver an overall 

F1 accuracy improvement over the BO-LSTM (Lamurias & Couto, 2019) and Hierarchical 

RNN (Zhang Y. et al, 2019) baseline models. This approach also aimed to demonstrate its 

ability to support larger ontologies by supporting a larger vocabulary (100,000 concepts) 

and completing the model training activity within a reasonable amount of time (one day) 

using the SemEval DDI data set. 

Relevance and Significance 

The study of Information Extraction (IE) or Natural Language Processing (NLP) 

has focused on developing methods for processing unstructured information and extracting 

valuable insights that assist human knowledge workers and researchers quickly obtain 

answers to their questions. The present day COVID-19 pandemic has demonstrated the 
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need for effective methods of processing massive amounts of medical information to speed 

up the investigation of vaccines and treatments. The COVID-19 outbreak has generated an 

unprecedented global response to sharing medical research with the goal of increasing 

collaboration amongst research organizations to support drug discovery that can help treat 

sick patients or vaccinate them from the disease. This unprecedented sharing of information 

includes previous drug research for coronaviradae (i.e. coronavirus family), observational 

clinical studies from hospital ICU, and early clinical trial efficacy and drug adverse 

reaction reports. All this information is largely represented as unstructured text in the form 

of journal articles, technical reports, and clinical studies. Much of this information is 

available on the web through government research web sites and private research 

organizations such as the CDC, FDA, the Allen Institute, Elsevier, National Library of 

Medicine among many others.  

 Unfortunately, the rate of contribution to medical literature significantly outpaces 

the ability for a clinician or researcher to read and understand in a timely manner. As a 

result, these experts have turned to AI & NLP tools to help distill and summarize the 

information so that it can be indexed and organized in ways that helps convey insights to 

research questions. During the recent COVID-19 pandemic response, researchers and 

clinicians turned to medical literature to help find answers to questions about effective 

medications that could help treat sick patients that frequently suffer from multiple chronic 

comorbidities and were frequently on multiple medications. Physicians must cautiously 

navigate around complex prescribing guidelines when dealing with these complex cases. 

The FDA provides guidance to help physicians avoid dangerous events called Adverse 

Drug Reactions (ADR), an injury to the patient due to a side-effect or negative interaction 

of a drug with another drug (Segura-Bedmar et al, 2010).  

 The field of pharmacovigilance involves the prevention, monitoring, and reporting 

of ADR after a drug has been approved by the FDA. There are various initiatives in place 

to help prevent ADRs from occurring including frequent publications that warn physicians 

about new discovery of drug side-effects or contraindications for prescribing a drug. 

Pharmacovigilance also includes the aggregation of reporting by hospitals, pharmacies, and 

patients regarding ADR. But even with these initiatives in place, ADR occurs in over one-

third of hospital visits and resulting in over 2 million hospitalizations in the U.S. yearly 
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(Lazarou, Pomeranz, & Corey, 1998). The yearly cost of ADR’s to the U.S. Healthcare 

system was previously estimated at $30 Billion (Johnson Jeffery and Booman Lyle, 1996).  

 The study of Drug-Drug Interactions (DDI) is considered a key area of ADR 

research and involves the interference of a drug by one or more drugs taken concomitantly. 

The awareness and detection of DDI is considered an integral part of reducing ADR 

incidents. Once a DDI is discovered, pharmacy and hospital prescription ordering systems 

can be updated to alert when there is a potential contraindication due to the presence of 

another incompatible drug. Currently, these systems are maintained by teams of humans 

who scour the medical literature in search of DDI that should be reported and detected by 

automated systems. This human process is slow and often misses subtle statements within 

biomedical research describing the observation of a DDI. As such, the biomedical research 

community began to explore NLP tools to help with the automation of DDI identification 

in literature (Haas, Iyer, Orav, Schiff, & Bates, 2010; Segura-Bedmar et al, 2010).  

 The field of NLP is comprised of a common set of tasks performed on unstructured 

text helping to extract the syntactic and semantic structure of what meaning the text is 

conveying. These common tasks include sentence segmentation, tokenization, 

lemmatization, normalization, part-of-speech (POS) tagging, entity recognition, concept 

matching, and relation extraction, among others. The need for improved relation extraction 

methods is a crucial prerequisite to natural language understanding and an integral aspect 

of knowledge discovery, Q&A, semantic search engines, and decision support systems 

(Bach and Badaskar, 2007). 

Lamurias & Couto (2019) is based on current state-of-the-art methods based on 

deep learning using LSTM neural networks (Hochreiter, 1997) that have demonstrated F1 

scores of .75 when extracting drug-drug interaction relationships from biomedical text (W. 

Zheng et al, 2017). A common method used with LSTM models is to include a word 

embedding layer trained using word2vec (Mikolov, 2013) or GloVe (Pennington, 2014) on 

a corpus of documents.  

Word embeddings have demonstrated significant improvement to performance 

because they can detect relationships between entities using unsupervised algorithms such 

as skip-gram and CBOW (continuous bag of words). Word embeddings have also proven 

to be an effective solution for dealing with a neural network’s difficulty in dealing with 
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sparse data. By mapping a sparse feature representation, such as one-hot binary encoding, 

to a dense and low-dimensional feature space, a neural network requires fewer weights 

(less neurons) and therefore less training data in order to converge on an optimal solution. 

Additionally, word embeddings also provide semantic similarity between word vectors 

where neighbors within the embedding space implies similar word meaning. The positive 

impact on accuracy for entity extraction tasks has been well documented in literature 

(Bojanowski, 2017; Mikolov et al, 2013; Pennington et al, 2014; Pyysalo et al, 2013). 

There are several well-known drawbacks with using word embedding including 

missing the underlying semantic meaning that underlie the words in a sentence (Lucy and 

Gauthier, 2017), out-of-vocab problem (when words are not in the embedding space), 

inability to represent phrases (2 or more words), unable to distinguish multi-sense words 

(polysemy). See (Young et al, 2018) for a recent review of modern word embedding 

methods and limitations.  

Current research into relationship extraction tasks have focused on LSTM 

architecture using Word Embedding layers as a promising approach that has demonstrated 

higher performance and robustness when compared to earlier pattern-based matching or 

classical feature-based machine learning algorithms. Lamurias & Couto (2019) propose a 

novel LSTM-based architecture that incorporates an ontology-based concept embedding 

layer in addition to the frequently used word embedding layer. Lamurias & Couto postulate 

that the ontology serves as a representation of domain-specific knowledge that is not 

observable through the training data and therefore depriving the learning algorithm from 

observing additional patterns that exist behind the words. Specifically, the approach 

focuses on extracting ancestor concepts for each entity within the input text sequence and 

produce dense vectors representation based on the ancestor concepts within an ontology. 

This observation is supported by other researchers that have demonstrated successful 

results with incorporating domain-specific knowledge to supplement their training data 

(Xu, 2018; Li, 2016; Kong, 2013; and Deasigi, 2017). Lamurias & Couto demonstrated 

that including this embedding layer improves the accuracy of the relation extraction task. 

This was demonstrated by extending a baseline model from Zhang et al (2018) and 

comparing the performance of the model with and without an embedding layer. The results 

demonstrated an F1 improvement of .022 when evaluated against the SemEval 2013 DDI 
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benchmark. This adapted model was considered the second all-time highest performer in 

this benchmark with a .75 score. 

Barriers and Issues 

 The detection and classification of relations among entities within unstructured text 

is a complex task with dependencies on other subtasks such as entity detection, concept 

matching, and syntactic dependency parsing, among others. Although there have been 

significant improvements to performance on many of these tasks, relation extraction 

remains difficult. This study sought to identify additional improvements over the current 

state-of-the-art by incorporating additional embedding layers that enrich the model features 

with expert knowledge curated in the form of domain specific ontologies, such as ChEBI, 

that expose hidden salient patterns that can be learned by downstream RNN LSTM layers 

of a model. 

 During this investigation, several challenges were identified that required 

resolution to achieve the stated goals. These challenges span several areas of the 

methodology.  

1. The first challenge involves an efficient representation of a large ontology to 

support concept matching and traversing ontological relations. The data 

structure and algorithms must be able to scale to hundreds of thousands of 

concepts, millions of relations, and provide an efficient concept look-up using 

the canonical form and synonyms for concepts. This work sought to flatten and 

prune the ontology to only include the minimal metadata needed for performing 

concept matching and traversing relevant relationships. This means removing 

all other metadata such as definitions, spurious labels, provenance, and unused 

fields.  

2. The second challenge involves the ability to accurately identify and match 

concepts mentioned in the input text with the corresponding concepts within the 

ontology. This work explored the use of Concept Mapper as a tool for 

constructing a concept matching dictionary with several sophisticated 

algorithms for matching concepts. Additional experimentation evaluated 

alternatives to Concept Mapper. Concept matching is an important subtask 

required to support the ontology-concept embedding method presented in this 
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study. During experimentation, using a basic string-matching approach failed 

to match ~30% of the drug concepts in the training dataset. This is a significant 

false-negative rate and directly reduces the effectiveness of the Ontological 

embedding layer since a lack of a concept nullifies the effects of the layer on 

model performance. 

3. Another challenge involved the selection of the best concept among multiple 

possible concepts. Experiments using the SemEval DDI training dataset found 

that 78% of drug mentions resulted in more than one possible concept match 

using the ChEBI ontology and a basic string-matching between the mentioned 

drug and the canonical or synonyms of the concepts. This can result in a 

deleterious effect on the learning process if the wrong concept is selected in an 

inconsistent manner resulting in noise. 

4. Another challenge present when using the method proposed by Lamurias & 

Couto (2019) involved the situation when there is a lack of common ancestor 

relations between pairs of candidate drug entities. Theoretically this should not 

occur in an ontology that includes a top-level root concept that all concepts 

descend from within the is-a (subsumption) relation. However, when including 

other relation types, there is a strong likelihood that some pairs of drugs do not 

participate in the same relations and therefore have no common ancestry. This 

methodology explored the use of a single summary vector, called an Identity 

Vector, representing all the embedded relations.  

5. Another challenge involved multiple inheritance paths (multiple ancestors) 

within the ontology. During preliminary experimentation, a significant 

percentage of drug concepts descended from multiple parent concepts. This 

issue was not addressed by (Lamurias & Couto, 2019) or in the literature. This 

study evaluated a neural embedding strategy that traverses all direct and indirect 

ancestors along taxonomic (is-a) and semantic relations when training the 

embedding model. 

6. Class imbalance has been a consistent issue documented in the literature. There 

are several known methods that can be used to mitigate the impact of class 

imbalance including sample normalization and class weights. Data analysis 
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demonstrated a 5.9-to-1 ratio between negative and positive drug-drug 

interactions in the available training data and a much larger imbalance between 

classes such as the Int label class accounting for only 0.6% of the total samples 

(i.e. 189 of 27,756 samples). 

7. Throughout the literature, the use of pre-trained word embeddings 

demonstrated significant improvements in performance. One popular pre-

trained word vector is the Google News w2v that includes 2 million words. 

During experimentation, many out-of-vocab (OOV) errors occurred due to the 

nature of a medical dataset that features many rare words that are not 

encountered in the open domain. This study used a pre-trained word vector 

model that was trained using Medline corpus of 26 million documents and 

features a vocabulary of approximately 2 million words. The medical word 

vector embedding model resulted in far fewer OOV problems. When testing 

with the Medline sourced training data from SemEval DDI 2013, ~40 unique 

words were not found compared to ~1,700 unique words not found using 

Google News. Most of these missing words were drug names and domain-

specific terminology that is vital to understanding the DDI relation 

classification task. 

8. This study infused additional aspects of the ontology into the model through an 

embedding layer connected to an RNN/LSTM. This required a feature 

representation scheme of ontology relation information to train the embedding 

layer. During literature review, no specific solutions were found for this 

problem. 

9. High Computational requirements to train deeply layered RNN/LSTMs results 

in long training time and consumed significant computing resources. For 

example, training a single Epoch took between ~30-60 minutes and consumed 

~9GB of memory.  

 

Summary 

 This chapter defined the relation extraction task for unstructured text and outlined 

the corresponding challenges and significance of this problem in the context of the broader 
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natural language understanding field. The expressed goal of this research was to address 

numerous challenges and limitations such as accessing hidden information that is captured 

within domain specific ontologies and using that information to enrich the feature patterns 

exposed to the neural learning layers. This study builds upon the existing body of work and 

current-state-of-the-art in relation detection and classification by incorporating an ontology 

embedding layer that includes semantic relations found within biomedical ontologies such 

as ChEBI. The study used a comparative approach by establishing two baseline models as 

the control and evaluating the control and the enhanced model using the SemEval DDI 

2013 benchmark.   

 The rest of this dissertation report includes a thorough Literature Review of the 

problem and solution domain in Chapter 2, a detailed methodology description and 

approach discussed in Chapter 3, experiment results and findings in Chapter 4, and 

dissertation conclusion and future work in Chapter 5.  
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Chapter 2 

 

Literature Review 

 

 This chapter presents a thorough review of the relevant body of literature as it 

pertains to Relation Extraction within unstructured text. The following areas of literature 

are considered in scope and serve an integral role in the evolution of the problem and 

solutions for relation extraction tasks. Relation extraction remains a complex task and an 

active area of research given the critical role it plays in ascertaining the meaning of a text. 

This review will discuss the evolution of methodology beginning with early methods and 

ending with the current state-of-the-art. The review will compare the presented 

methodologies using well-established benchmarks for relation detection and classification 

within the biomedical domain. The review will conclude by providing observations 

including gaps and unexplored areas of the field. 

The formation of IE and NLP field, dates to the Message Understanding 

Conferences held in the 1980’s (MUC) where many of the NLP common tasks were 

defined along with common frameworks to evaluate their relative performance metrics. 

These conferences were utilized by government agencies like DARPA and industry to 

promote and motivate research into unexplored areas. This formalization of common tasks 

and corresponding benchmarks served as a catalyst for new research into algorithms that 

would serve as the foundation for many of today’s core NLP tasks such as syntactic parsers 

and NER. However, it was not until the MUC-7 conference (MUC-7, 1998), that relation 

extraction was formalized and research interest into the problem began to increase. The 

rise of the internet in the late 1990’s and into the early 2000 led to an expansion of online 

publications and scholarly journals that fueled a resurgence of interest into extracting 

knowledge and insights from a rapidly growing bodies of knowledge (Konstantinova, 

2014). The state-of-the-art methods at the time rarely yielded F-score performance above 

.60 on relation extraction tasks over open-domain datasets (Chiticariu, 2018). 
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Relation extraction tasks can be decomposed into two types of tasks. Relation 

Detection is a binary classification task where the presence of a given relation is detected. 

An example of relation detection could be to identify whether a pair of drugs mentioned in 

a statement are describe as having a DDI when taken together. Relation Classification can 

be a multilabel classification task that determines where there is a relation and what type 

of relation is present. An example of relation classification would be to determine the type 

of DDI relation between a pair of drug candidates mentioned in a statement.  

Both Relation Detection and Classification rely on first performing Entity 

Detection or Entity Recognition to identify the candidates being considered for 

participation within a relation. For the DDI example, these entities are drugs (i.e. 

medications) mentioned in text. The entity recognition task involves identifying the offset 

locations of the entities and the type of entity identified.  In the context of ML methods, 

entity recognition is modeled as a many-to-many sequence tagging task where a variable 

length input is presented to the model and each token is tagged with an entity type label. 

Entity recognition is a form of type of classification. The performance of entity recognition 

models using Deep Learning methods have achieved high performance over the last decade 

(Young, Hazarika, Poria, Cambria, 2018). 

The benchmarks presented in this study are isolated to evaluating the performance 

relation extraction models and assume that the candidate entities along with the 

corresponding input text are provided. This helps to rigorously evaluate and compare 

different relation extraction methodologies without interference from entity detection 

tasks. Further discussion of entity detection is out of scope for this review, see the recent 

review by Young et al (2019) for a survey into these other NLP tasks. 

 

Early Relation Extraction 

Early relation extraction methods were based on pattern-matching (Riloff and 

Jones, 1999), lexico-syntactic patterns (Hearst et al, 1992), cascading grammars 

(Boguraev, 2004), relational (Reiss, 2008; Krishnamurthy, 2009; Chiticariu, 2010), and 

others (Fukumoto et al, 1998; Garigliano et al 1998; Humphrey et al, 1998).  See (Bach 

and Badaskar, 2007) and (Konstantinova, 2014) for a comprehensive literature review of 

early relation extraction methods. All these approaches suffer from several drawbacks 
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including: lack of portability of rules (Konstantinova, 2014), inherent limitation in scaling 

large number of rules (Reiss, 2008), ambiguity when resolving overlapping rules 

(Chiticariu, 2010), and the labor involved in hand-crafting and maintaining many rules. 

 Other approaches for relation extraction are based on supervised learning methods 

such as: logistic regression (Kambhatla, 2004), kernel-based methods (Zhao and Grishman, 

2005; Bunescu and Mooney, 2006), Condition Random Field (Culotta, 2006) and semi-

supervised methods (Brin et al, 1998; Agichtein and Gravano, 2000; and Etzioni, 2005). 

Most of these methods are focused on extracting only binary relations. McDonald et al 

(2005) presents a method for extracting higher-order relationships.  

 

Standard Relation Extraction Benchmark 

The establishment of formal communities with well-defined common tasks and 

evaluation metrics with datasets and benchmarks have demonstrated a significant 

advancement in NLP methodology and performance (Segura-Bedmar et al, 2011). As NLP 

tooling and frameworks have become more mature, their adoption by industry and 

government has increased to assist with processing of large-scale datasets across a 

multitude of domains.  

However, much of the focus and progress of these methods were aimed at open-

domain topics that include news articles, social media posts, and consumer feedback 

reviews. These topics tend to have more bounded vocabulary and straightforward syntactic 

structures to appeal to a broad audience. Unfortunately, NLP tools were inadequate and 

insufficient for meaningful use within a scientific domain such as biomedical literature. 

The poor performance of these methods within the biomedical domain is attributed to the 

complex vocabulary of terms and concepts along with the underlying domain knowledge 

required to parse and interpret the meaning of a phrase or sentence.  

As such, a series of initiatives were formed by a consortium of biomedical 

organizations (BioCreative, BioNLP, ShARe/CLEF eHealth, i2b2, and SemEval) with the 

intent of bringing attention to this unexplored domain for NLP. These initiatives focused 

on formalizing entity recognition and relation extraction tasks within biomedical literature. 

To bolster research interest in the pharmacovigilance domain, a challenge was announced 

for detecting DDI relations from biomedical literature. The SemEval DDI 2011 (Segura-
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Bedmar, Martinez, & Sánchez Cisneros, 2011) and SemEval DDI 2013 (Segura-Bedmar, 

Martínez, & Herrero-Zazo, 2013) challenges feature an expert curated DDI corpus 

(Herrero-Zazo, Segura-Bedmar, Martínez, & Declerck, 2013) with a gold standard labeling 

sourced from Medline, a collection of over 26 million scientific journal articles, and 

DrugBank (Wishart, Knox, Guo, Cheng, 2008), a database of drug descriptions. The 

selection of these two separate sources of literature articles was intended to provide 

representation for different styles of writing (Herrero-Zazo et al, 2013). According to 

Herrero-Zazo et al (2013), DrugBank text is curated to have short and concise descriptions 

about drugs, whereas Medline articles tend to have long complex sentences with more 

scientific terminology.  

The DDI corpus was prepared using an XML format that includes a sentence from 

DrugBank or Medline article along with the labeled entities and labeled drug pairs with the 

corresponding DDI relation classification. The corpus was human annotated by subject 

matter experts and used an Inter-annotator agreement (IAA) score to ensure quality and 

consistency across the human labels (see Figure 2). The combined corpus includes 27,784 

training samples and 5,716 test samples  

 

Figure 2 - IAA scores by relation type for SemEval DDI 2013 dataset (Segura-Bedmar et al, 2013) 

 

 A total of 10 teams participated in the SemEval DDI 2011 challenge and 14 teams 

participated in the SemEval DDI 2013 challenge. The challenge featured two tasks, the 

first was a drug entity detection and the second a DDI relation extraction task. Teams were 

provided training data that could be used to train an ML model and submitted 3 separate 

output runs using a validation test set. Teams could choose to participate in the entity 

detection and/or the relation extraction task. During the SemEval DDI 2011 challenge, the 

DDI relation dataset was labeled as a binary classification task where each sentence and 
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pair of drug candidates were labeled as true, a DDI was identified, or false, no DDI was 

identified.  

During the SemEval DDI 2013 challenge, the dataset was updated to include a 

relation classification task that included labels for each type of DDI. The DDI class types 

are defined as follows:  

• Mechanism – a pharmacokinetic drug interaction 

• Effect – a pharmacodynamic drug interaction 

• Advice – a recommendation given about a drug interaction 

• Int – an unspecified interaction type 

Figure 3 shows several sample sentences taken from Medline articles and DrugBank 

descriptions. The first sentence (A) shows an example of a mechanism DDI between 4-

methylpyrazole and 1,3-difluoro-2-propanol. The second sentence (B) and the first line in 

(C) show an example of an effect DDI between estradiol and endotoxin and between the 

enumerated set of drugs starting with CNS depressant drugs and Inapsine. The second line 

in (C) shows an example of advice DDI between Inapsine and CNS depressant drugs. 

 

Figure 3 - Example of DDI interaction types; (A) mechanism, (B) effect, (C) first line: effect and second 

line: advice 

 

Early DDI Relation Extraction Methods 

 The first known method to detect DDI through binary classification over 

biomedical literature was presented by Segura-Bedmar, Martinez, and Pablo-Sanchez 

(2011) using a kernel-based Support Vector Machine (SVM) (Cortes & Vapnik, 1995) 

classifier. Their SVM classifier utilized a shallow linguistic parse kernel to capture 

syntactic feature patterns from a sentence featuring one or more drug entities. They used a 
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pre-processing pipeline that leveraged UMLS (Bodenreider, 2004) metathesaurus for 

identifying drug types mentioned in the input text. Their method achieved an f1 measure 

of .6001 on what would later become the SemEval 2011 DDI benchmark. Segura-Bedmar 

et al (2011)’s contribution was significant, establishing the first baseline for DDI relation 

extraction and formalizing what would become a standard benchmark for relation 

classification (Segura-Bedmar et al, 2011; Segura-Bedmar et al, 2014). Additionally, their 

work also established the significance of DDI and helped attract research interest into 

biomedical literature.  

 During the first SemEval DDI 2011 challenge, a total of 10 teams participated. Each 

team was provided the DDI training set that included sentences with drug pair candidates 

along with a binary classification label of true or false. The winner of the challenge was 

(Thomas, Neves, Solt, Tikk, & Leser, 2011) with a DDI detection f1 performance of .6574. 

All participants utilized an SVM classifier approach that either used feature-based or 

kernel-based methods. Thomas et al (2011) used multiple lexical and syntactic kernels with 

a majority vote scheme that outperformed the rest of the participants (Chowdhury, Abacha, 

Lavelli, & Zweigenbaum, 2011; Chowdhury & Lavelli, 2011; Bjorne, Airola, Pahikkala, 

& Salakoski, 2011). 

 In (Segura-Bedmar et al, 2011) a meta-analysis is presented of the SemEval DDI 

2011 participants methods. This analysis found that kernel-based methods outperformed 

feature-based methods and that most methods relied on syntactic information, but no 

method made use of semantic information. Given level of interest and participation of this 

challenge, Segura-Bedmar et al (2011) announced a second DDI challenge featuring a 

larger dataset and a multiclass classification task DDI relation extraction. 

During the SemEval DDI 2013 challenge, a total of 8 teams participated in the DDI 

Relation Extraction task. Each team submitted 3 runs that were then evaluated by the 

challenge judges (Segura-Bedmar et al, 2014). The winning team for this challenge was 

Chowdhury & Lavelli (2013) with the overall best f-score of .8 for the Relation Detection 

task and .65 for the Relation Classification task. Their model, called FBK-irst, employed a 

two-stage model that used a binary SVM model for relation detection to separate positive 

DDI from negative DDI. This stage was trained using linguistic features such as negation 
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triggers and shallow parse of the sentence. They also employed several filtering heuristics, 

known as “negative instance filtering” that looked for instances where both drug pairs were 

the same drug, when drugs were listed consecutively such as in a coordinate conjunction 

list (such as a list of drugs separated by comma ‘,’, ‘and’, or ‘or’). The first heuristic 

eliminates the case where a drug does not interact with itself. The second eliminates the 

case where a brand or generic drug is immediately followed by a synonym of the drug such 

as: “Advil (Ibuprofen)”. In this case, the second mention is simply an alternate variant and 

therefore can be excluded. 

 Chowdhury & Lavelli (2013) used a second stage hybrid SVM that combined 

feature-based kernel with a shallow linguistic kernel and path encoded tree kernel and then 

a second stage that classified positive DDI into one of the 4 DDI types. This model made 

use of several tools including the Stanford Parser (De Marneffe, & Manning, 2008) and 

Charniak-Johnson reranking parser (Charniak & Johnson, 2005) tuned for biomedical text.  

 All participants utilized SVM for their learning algorithm, half utilized feature-

based and the other half used kernel-based models. Overall, the kernel-based models 

outperformed feature-based model. Most participants utilized Stanford Parser and 

Charniak-Johnson Reranking parser for syntactic features, but only Chowdhury & Lavelli 

(2013) utilized negation triggers. Figure 4 and Figure 5 shows the ranked order of 

participants for both the Relation Detection and Relation Classification tasks where 

Chowdhury & Lavelli’s FBK-irst model outperformed the other models on both tasks 

(Segura-Bedmar et al, 2014). 
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Figure 4 – Table showing ranked order of the SemEval 2013 challenge for Relation Detection task (Segura-

Bedmar et al, 2014) 

 

Figure 5 - Table showing the ranking for SemEval 2013 DDI Relation Classification task (Segura-Bedmar 

et al, 2013) 

 Because SVM is a binary classifier, all participants used a “one against all” SVM 

classifier approach where one classifier is trained per class label (He, Yang, Zhao, Lin, & 

Li, 2013; Chowdhury et al, 2013; Segura-Bedmar et al, 2014). For the DDI classification 

task, there are 5 possible labels (i.e. Advice, Mechanism, Effect, Int, and No DDI) and 

therefore 5 classifiers are trained as an ensemble of binary classifiers.  

 In Segura-Bedmar et al’s (2014), a meta-analysis of the results of the challenge is 

presented. The report finds that all participants used feature-based or kernel-based SVM. 
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The kernel-based methods outperformed the feature-based methods overall. Additionally, 

the report states that all models performed better on the DrugBank source text samples of 

the dataset compared to the Medline text samples. (Sergura-Bedmar et al, 2014)’s analysis 

finds that Medline text tends to have long complex sentences that feature scientific 

language when compared to DrugBank sentences that have shorter and concise sentences. 

In their error analysis, they determined that the root cause for most of the false-negative 

misclassifications were due to lack of cataphora and anaphora resolution. They also 

identify additional causes of misclassification due to lack of detection for coordinate 

structure (i.e. conjunction lists of drugs) and the variability in expressing DDIs with 

different lexical and syntactic expressions. Additionally, most methods performed poorly 

in samples that leveraged domain terminology to implicitly indicate the presence of a DDI 

relation.  They conclude that the primary reason for (Chowdhury et al, 2013) top 

performance in the challenge was attributed to their use of negation triggers and their 

negative instance filtering. Again in this challenge, Segura-Bedmar et al (2014), note that 

no use of semantic information such as ontologies were used by the participants and 

suggest this as an area worthy of future exploration to address some of the common 

misclassification causes. The only biomedical domain-specific resource leveraged was an 

extension to the Charniak-Johnson reranking parser used by the top performing models. 

This parser takes the output of a syntactic parse and applies additional reranking heuristics 

that were tuned for a biomedical corpus. Lastly, Segura-Bedmar et al (2014) attempt to 

construct an ensemble classifier using various combination of top performing models for 

the DDI challenge but were unable to beat the top performing model. 

 Following the success of the two SemEval DDI challenges, the DDI relation 

extraction task has become a standard benchmark for assessing and comparing relation 

extraction methods. (Lamurias, Ferreira, & Couto, 2014) presents a 2-stage kernel-based 

SVM with an Ensemble approach building upon the previous model presented in 

(Chowdhury et al, 2013) and extending it with an entity detection module that uses ChEBI 

ontology. Their model, however, fell short of matching the state-of-the-art model by 

Chowdhury et al, 2013 with an f1 score of .6402 (vs .651). 

 (Kim, Liu, Yeganova, & Wilbur, 2015) demonstrate that a linear kernel-based SVM 

model using lexical positional features can yield competitive results when compared to the 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

29 
 

popular non-linear kernel based methods used by most-all participants in the DDI 

challenges. Their interest in linear kernels stem from their computational efficiency 

compared to non-linear. Their results demonstrated the best f1 performance against the 

DDI benchmark surpassing (Chowdhury et al, 2013) with a score of .67 (vs .651). 

 (Zheng, Lin, Zhao, Xu, Zhang, Yang & Wang, 2016) proposed a context vector 

method using a graph-kernel. Their context vector served as a representation of the 

sentence, also known as a summary vector. This approach of levering a summary vector 

for down-stream classification would later be incorporated as an essential aspect of modern 

neural classifiers. Their work demonstrated a new high f1 score of .684 on the DDI relation 

classification task. They also demonstrated a new best f1 score of .818 for the DDI 

detection task surpassing (Chowdhury et al, 2013)’s detection model for the first time.  

 

Resurgence of Neural Networks 

 The era of Deep Neural Networks (DNN) began after several significant 

developments in image processing and handwriting recognition during the 2010’s. In their 

classic textbook on Deep Learning Bengio, Goodfellow, & Courville (2017) explain a key 

motivation for shifting away from SVM to NN involved the need for large-scale training 

data needed for achieving better performance on a range of tasks, such as image processing. 

The scalability limitations of SVM kernels due were due to the computational complexity 

caused by the curse of dimensionality problem. 

In 2006, Chellapilla, Puri, and Simard demonstrated an implementation of a 

Convolutional Neural Network (CNN) that could be trained 60 times faster than using a 

conventional CPU. Ciresan, Meier, Gambardella, & Schmidhuber (2011) demonstrated 

human-level performance on image recognition tasks such as MNIST and CIFAR10. 

Krizhevsky, Sutskever, & Hinton (2012) wins the ImageNet challenge followed by a 

Microsoft team in 2015 featuring a CNN with 100 layers. 

 These successive achievements have positioned Deep Learning and Neural 

Networks (NN) at the forefront of research ensuing in the exploration of Deep Learning 

methods into other fields including NLP tasks.  NN are a branch of Machine Learning that 

utilize the concept of a neuron that has an incoming and outgoing connection to other 

neurons collectively forming a neural network. The first layer of neurons in a NN is known 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

30 
 

as the input layer. The input to the first layer is in the form of a vector that represents the 

feature space. The network can have one or more layers, known as hidden layers, that can 

be connected using different network architectures. The most basic neural network is 

known as a Perceptron (Rosenblatt, 1960) where a single layer is used in the network. 

These neural networks can grow with multiple layers known as Multi-Layer Perceptron 

(MLP) or Feed-forward networks. As the number of layers increase, the total number of 

neurons (i.e. parameters) of the model increases. This increases the depth of computation 

required to evaluate a given input vector. Recent advances in NN include Convolutional 

Neural Networks (CNN) (LeCun, 1989) which apply a kernel (filter) to a sweeping window 

generating a new representation of the feature space for the next layer to process. CNN are 

considered the state-of-the-art for tackling several types of classification tasks such as 

image classification, among others. Each of these neurons in the network apply a non-linear 

activation function, such as Rectified Linear Unit (ReLU) (Jarrett et al., 2009; Nair and 

Hinton, 2010; Glorot et al., 2011a), Hyperbolic Tangent (tanh), or Sigmoid functions, to 

an incoming value and update its weight and propagates the value forward to the next layer. 

Using a method called Back-Propagation (Rumelhart et al., 1986a), a neural network can 

be trained by updating the weights of each neuron by minimizing a loss function using 

optimization algorithms such as Stochastic Gradient Descent (SGD) (Yuan & Yu, 2012). 

 

Neural Network Feature Representation 

One attractive aspect of DNN involve their ability to perform iterative feature 

extraction from layer to layer within the network starting with latent features presented to 

the input layer. For many tasks, such as image classification, the data is already represented 

as scalar values. These values are typically normalized to conform to the restricted range 

of activation functions. The two most common intervals are real values between -1 and +1 

or 0 and +1. Once the vectorization of the original input is encoded and normalized, it is 

presented as vectors to the input layer of the NN.  

When applying NN to NLP tasks, additional encoding is required to convert words, 

symbols, and/or sentences into feature vectors. This encoding process is generally referred 

to as text representation, a form of feature vectorization, and an active area of research. 

There are exist various methods to encode text into a feature vector including one-hot 
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encoding, integer encoding, bag-of-words or n-grams. These feature vectors can also 

represent positional features of the words, such as word-distances or frequency counts, 

such as Term Frequency (TF) and/or IDF (Inverse Document Frequency) that represent the 

popularity of the word within a corpus or document.  

 

Representation Learning and Word Embeddings 

The study of Representation Learning has contributed to significant performance 

improvements of NN models trained on NLP tasks. Representation Learning is a semi-

supervised learning process that learns the distributional representations of words used 

within the training corpus. Words sharing similar context are clustered closer together than 

words with different context. This is known as the Distributional Hypothesis (Young et al, 

2019). In their work with Neural Language Models, (Bengio, Ducharme, Vincent, and 

Jauvin, 2003) proposed the word embeddings as a dimensionality reduction of a high-

dimensional and sparse feature space to a low-dimensional and dense embedding space. 

Salakhutdinov & Hinton (2006) presented a view of NN as a series of representation 

learning layers (i.e. the hidden layers) followed by a final classification layer. Conceptually 

these hidden layers represent an embedding that can be used to project the input feature 

space into the target embedded feature space. Several important improvements in neural 

word embedding by (Ronan & Jason, 2008) on pre-trained embeddings and by (Mikolov 

et al, 2013) presented two efficient Neural Embedding algorithms called Skip-gram 

Negative Sampling (SGNS) and Continuous Bag-of-words (CBOW). The former 

demonstrated higher accuracy. The use of Mikolov et al’s word2vec tool is pervasive in 

the field of NLP. Other word embedding models have been proposed to address various 

limitations such as GloVe (Pennington, 2014), FastText (Joulin, Grave, Bojanowski, 

Douze, Jégou, & Mikolov, 2016) and (Hasimoto et al, 2014). 

Word embedding have been essential in NLP models but have several limitations. 

The biggest limitation involves the out-of-vocab (OOV) problem. This occurs when a word 

is not found within the embedding space. Since all OOV are mapped to a constant vector 

representation (such as all zeros) the model is unable to learn from those words. Another 

issue deals with the problem of word sense disambiguation. Some words are polysemy and 

require context to derive its meaning. Unfortunately, the embedding will map the word 
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regardless of context into the same vector representation. This can also confuse the learning 

of a model in fields where the same word is used with different meanings. Another issue 

with word embedding involves the lack of normalization for semantical similar but 

morphologically different words. Recent word embedding models attempt to resolve some 

of these issues by embedding at the sub-word level to account for morphology (Joulin et 

al, 2016). Word embeddings and language models is an important and active area of 

research. Further discussion into word embeddings is considered out of scope for this 

review. 

 

Early Neural Relation Classification 

 One of the earliest applications of NN in relation classification was presented by 

Socher, Huval, Manning, and Ng (2012). Their work featured a recursive neural network 

trained to classify semantic relations in text (Hendrickx, Kim, Kozareva, … et al, 2019). 

Socher et al (2012) presented a novel sentence vectorization encoding based on their 

observation that single word vectors do not capture the meaning of a sentence. Socher et al 

(2012) refer to (Frege, 1892)’s observation that in natural language, meaning is conveyed 

through both the individual meaning of words and their arrangement within a linguistic 

structure. In (Socher et al, 2012) they define a matrix-vector to present the meaning of a 

sentence. This approach relied on the Stanford Parser to produce a syntactic parse of a 

sentence and then a recursive traversal of the dependency paths between the two candidate 

entities of a relation. Their method was evaluated on an open-domain corpus using the 

SemEval 2010 (Hendrickx et al, 2019) and achieved 2nd highest performance using only a 

sentence matrix-vector as the model input feature. They achieved the highest performance 

when they additionally included syntactic features along with their sentence matrix-vector. 

 Applying CNN on relation extraction tasks began with (Zeng, Liu, Lai, Zhou, & 

Zhao, 2014) which included positional and syntactic features such as Shortest Dependency 

Path (SDP) between candidate entities, a method used by early relation classifiers (Bunescu 

and Mooney, 2005).  Their work demonstrated new best f1 performance on SemEval 2010 

open-domain semantic relation task. Santos, Xiang, & Zhou (2015) and Wang, Cao, De 

Melo, & Liu (2016) each achieved new state-of-the-art performance on the SemEval 2010 

benchmark by building upon the work of (Zeng et al 2014). (Wang et al, 2016) 
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demonstrated the performance impact of leveraging an input Attention mechanism 

(Bahdanau, Chorowski, Serdyuk, Brakel, & Bengio, 2016).  

 

Early Neural Relation Classification on DDI Benchmark 

Research into applying CNN-based models on the SemEval 2013 DDI benchmark 

was pioneered by (Liu, Tan, Chen, & Wang, 2016) and demonstrated a new best f1 of .6975 

(compared to the previous high of .684 that used graph-kernel-based method). Liu et al 

(2016) trained a word embedding using the Medline biomedical corpus featuring a 

vocabulary of 1.99 million medical words. Liu et al (2016) argued that a competitive 

performance on relation tasks could be achieved without relying on special NLP tools to 

extract syntactic features. Figure 6, depicts the CNN architecture proposed by Liu et al 

showing word and position embeddings and the well-known pattern of convolutional layer 

followed by max pooling for down-sampling and a softmax classifier as the output layer. 

 

Figure 6 - CNN DDI relation model with word embeddings (Liu et al, 2016) 

Although Liu et al (2016) did not directly incorporate any features derived from an NLP 

tool, their pre-processing did make use of NLTK tool for tokenizing of the sentence. 

 The convolutional sweep over the word vectors is conceptually equivalent to 

extracting n-grams. According to the kernel size (i.e. window size) of the convolutional 

layer, the length of the n-gram will vary. This has the effect of weighing the importance of 

an n-gram of words with respect to the relation type. This approach is intuitive and 

resembles techniques used by early statistical learning methods of relation extraction. 

  Quan, Hua, Sun, & Bai (2016) expand the work of (Liu et al, 2016) by introducing 

the concept of multiple embedded channels for relation extraction models where each 

channel of input is embedded differently. Their model uses a total of 5 input channels where 
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each channel embeds the words in the input text using a different word embedding trained 

on different corpus. Their approach makes use of 4 word vector weight matrix produced 

by Pyysalo, Ginter, Moen, Salakoski, & Ananiadou (2013) on PubMed, PubMed Central, 

Medline, and Wikipedia using Mikolov et al’s (2013) Skip-gram with Negative Sampling 

(SGNS) algorithm and word2vec tool for loading word vectors. Quan et al (2016) also 

trained their own word embedding using (Mikolov et al, 2013) Continuous Bag of Words 

(CBOW) algorithm over the Medline corpus. Quan et al’s model achieved an f1 of .702 on 

the SemEval 2013 DDI benchmark establishing the new state-of-the-art performance on 

the benchmark. Their results supported Liu et al (2016)’s observation that high-

performance could be achieved using only word embedding feature representations without 

reliance on additional syntactic information. Figure 7 depicts the architecture proposed by 

Quan et al (2016). Their model included two convolutional layers that used different kernel 

sizes of 3 (red) and 4 (yellow). As previously mentioned, this is equivalent to considering 

3-gram and 4-gram phrases. The rest of the model follows Liu et al (2016) method using a 

Max Pooling and Softmax Classifier output layer. 

 

Figure 7 - Quan et al (2016) architecture featuring multiple embedding channels 

 Zhao, Yang, Lou, Lin, and Wang (2016) propose a CNN model that features a 
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syntactic word features that are embedded using (Mikolov et al, 2013)’s word2vec tool. 

This embedding differs from (Quan et al, 2016) and (Liu et al, 2016) because it uses a 

syntactic parser to produce the part-of-speech tags and dependency path between pairs of 

drug candidates. These feature vectors are concatenated and presented to the model as a 

single channel. Their model achieves a high f1 of .686 on the SemEval DDI 2013 

benchmark (.0115 less than Liu et al, 2016 and .016 less than Quan et al, 2016). Zhao et al 

(2016) claims to achieve the highest f1 on the DDI benchmark by comparing their model 

to the pre-neural model by (Zheng et al, 2016). Zhao et al (2016) was likely unaware of 

(Liu et al, 2016) and (Quan et al, 2016) work. 

 

Recurrent Neural Networks 

The application of CNN models on NLP tasks, such as relation extraction tasks, 

failed to demonstrate the same kind of performance impact that they had in the image 

processing and computer vision field. The f1 performance improvement of CNN on the 

SemEval 2013 DDI benchmark added .018 to the previous highest kernel-based methods. 

Unlike images, natural language is best modeled as a sequence problem. CNN work well 

because images can be represented as a fixed vector size where only the spatial ordering of 

the features are important to understand textures and patterns found in the rendering of the 

image. In natural language, the ordering of the words has major implication on the meaning 

being conveyed by a sentence. Because a CNN does not model time dimension, all the 

words are presented at once like a bag of words. The ordering of the words has no impact 

to how the model classifiers. 

Recurrent Neural Network (RNN) (Rumelhart et al, 1986a) is a family of NN that 

are designed to model time-series (or sequence) problems. The neural unit (cell) of an RNN 

can be unfolded to reveal hidden layers that preserves a memory of the weights from a 

previous time-step. The output weight from the current time-step is a function of the weight 

of the current activation and the weight from the previous time-step. This design allows 

RNN to remember and adjust their classification as a sequence is processed. Intuitively, 

this memory element of an RNN resembles how a human may process information taking 

into consideration the information that was previously seen.  

In practice, RNN suffer from various drawbacks including vanishing and exploding 
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gradients problem. The vanishing gradient problem occurs when the gradient (i.e. error) 

becomes increasingly smaller until it vanishes as Back-Propagation Through Time (BPTT) 

is applied to each of the hidden recurrent layers. This restricts the practical memory range 

that a RNN can model. To resolve this issue, the Long-Short Term Memory (LSTM) unit 

was proposed by Hochreiter and Schmidhuber (1997) with the goal of extending the range 

of memory for an RNN. The LSTM is a gated unit that is self-looped to control input, 

output, and forget gate. Figure 8 shows a depiction of the internal wiring of an LSTM unit 

with its input, output, and forget gates along with the standard input and output 

connections. 

 

Figure 8 - block diagram of an LSTM unit (Goodfellow et al, 2017) 

 

Recent Neural Relation Classification 

An early application of RNN/LSTM to relation extraction tasks was proposed by Xu, Mou, 

Li, Chen, Peng, and Jin (2015). Their proposed model utilized 4 input channels that 

included: word embedding, part-of-speech, Shortest Dependency Path (SDP), and 

WordNet (Lexical classes). They evaluated their model using the SemEval 2010 

benchmark, achieving the best f1 and outperforming the previous state-of-the-art model by 

(Santos et al 2015). Their model incorporated elements that demonstrated performance 

impact in previous work such as the usage of SDP (Bunescu and Mooney, 2005) along 

with word embeddings trained on a medical corpus. Their propose a split feature 

representation of the SDP by splitting the two paths between the pair of drug candidates as 
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separate feature vectors. Figure 9 shows an example of the SDP path between a pair of 

entities. Each path between the entity and the root is represented in a separate feature 

vector. 

 

Figure 9 - an example of the SDP between two entities: water and region (Xu et al, 2015) 

Xu et al also extract the WordNet lexical classes (hypernyms) using the Super-

Sense Tagging (SST) tool from (Ciaramita & Johnson, 2003) from the words represented 

in the SDP producing an equivalent vector representation embedded using the 45 WordNet 

classes. Figure 10 depicts the architecture proposed by (Xu et al, 2015) showing 4 different 

input embedding channels each with an LSTM layer that is then down-sampled by a 

pooling layer, a hidden fully-connected (dense) layer, and a Softmax classifier. This model 

serves as a reference and a baseline in the work of several models that build upon and 

incorporate many of these elements with some modifications. 

 

Figure 10 - The architecture for Xu et al (2015) relation classifier 

  

In (Wang, Yang X., Yang C., Guo, Zhang, & Wu, 2017) they propose a 

Bidirectional LSTM that experiments with different vector sequence ordering based on the 

dependency parse tree of the sentence. Bidirectional LSTM (or BiLSTM) are equivalent to 
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applying the LSTM layer to the normally ordered input sequence and the reverse order of 

the input sequence. In their work, present a model for vector ordering using a depth-first 

traversal and a breadth-first traversal of the tree nodes where each node represents a word 

that is embedded using word2vec. They also demonstrate that using an Averaging of the 

left and right LSTM outperforms using the classical concatenation of the left and right 

resulting output vector. They also note that the averaging is more computationally efficient 

since it does not double to dimensionality width of the resulting vector. Their approach 

demonstrates a new best f1 score for the SemEval 2013 DDI benchmark of .72 (compared 

to the previous high of .702 by Quan et al, 2016).  

In (Zheng, Lin, Luo, Zhao, Li, Zhang, … & Wang, 2017), they propose a BiLSTM 

model that incorporates an input Attention layer (Bahdanau et al, 2016). Their approach 

utilizes 3 input channels representing the word, part-of-speech, and position within the 

input text. Instead of treating each word vector with equal importance, the Attention 

mechanism applies an importance weight to the features. Bahdanau et al (2016) observed 

in their Neural Translation research that certain words were more important than others 

and should therefore be given additional importance (weight). The same could be said 

about relation classification problems such as the DDI extraction task. Certain words are 

more indicative of expressing an interaction and a layer (i.e. Attention layer) can be trained 

to apply weight to those words. Zheng et al (2017) demonstrated a major improvement in 

f1 on the SemEval 2013 DDI benchmark with a .773 on the classification and a .84 on the 

detection task. Both these scores place it at the all-time highest f1 metrics reported to-date 

on this benchmark. Their work built upon various elements of prior research on this task 

employing BiLSTM with multiple input channels representing word, positional, and 

syntactic features. Their work also demonstrated the benefits of using an Attention layer to 

apply importance to predictive words or features. Figure 11 depicts the architecture used. 
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Figure 11 - Zheng et al (2017) BiLSTM architecture with Attention layer 

 

 Additional work to improve upon the results of Zheng et al (2017) has continued 

but thus far failed to exceed the benchmark performance demonstrated by their model. In 

(Xu, Shi, Zhao, & Zheng, 2018), they propose the use of a concept embedding scheme 

using the MetaMap tool to perform a concept matching from words in the sample text to 

UMLS concepts. They demonstrate a competitive f1 score of .7115 but fall well short of 

the .773 produced by (Zheng et al, 2017).  

 In (Kavuluru, Rios, & Tran, 2017) they propose the inclusion of a character based 

BiLSTM in addition to the conventional word-based BiLSTM used by all recent proposed 

models for the DDI benchmark. Their work did not include a specific quantitative or 

qualitative analysis of their performance against the benchmark but reported an f1 of .7213 

on the classification task using an ensemble of 20 models all trained using the same 

architecture. They argue that the random parameter initialization could position a specific 

model instance in favorable global minima that may not be reproducible. They encourage 

future work to include average model performance over multiple training instances in 

addition to the best f1 score.  

 In (Zhang, Zheng, Lin, Wang, Yang, & Dumontier, 2018), they present two stacked 

(hierarchical) BiLSTM layers with input Attention layer. They present a split model where 
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the input sequence is embedded and projected through an Attention layer and then divided 

into 3 subsequences. The subsequence is defined as the sequence of words prior to the first 

drug candidate, the second sequence are the words between the first and second drug 

candidate, and the third sequence are the words that follow the second drug candidate. Each 

of these subsequences are sent to a separate BiLSTM layer. Additionally, a separate SDP 

sequence of the sentence is embedded and projected through a separate Attention layer and 

mapped to a fourth BiLSTM layer. Each of those 4 BiLSTM layers serve as inputs to a 

final hidden BiLSTM layer before the Softmax classification. This approach demonstrated 

a competitive f1 of .729 on the SemEval DDI 2013 benchmark falling short of the best 

recorded performance (.773 by Zheng et al, 2017).  

 In (Sahu & Anand, 2018), they present a Dual BiLSTM architecture with Max 

pooling and Attentive Pooling layer. Their approach does not rely on any NLP tools or 

syntactic features, instead their features include word, positional distance from drug1, and 

positional distance from drug2. Their experiments evaluated a Max Pooling vs Attentive 

Pooling vs both pooling types. Their results found that having both a Max Pooling layer 

and an Attentive Pooling layer that converge into a single dense (fully connected) layer 

yielded the best results. Their findings indicate that applying an Attention alone is not 

enough to produce the best results. Although their dual BiLSTM model approach with an 

f1 of .6939 on SemEval DDI 2013 benchmark failed to surpass Zheng et al (2017) they 

demonstrated that a competitive performance could be reached without sophisticated 

feature engineering that includes syntactic features such as the part-of-speech information 

leveraged by (Zheng et al, 2017). 

 In (Lim, Lee, & Kang, 2018), they revisit the method proposed in (Socher et al, 

2005) by leveraging a recursive NN design that features a tree-LSTM architecture based 

on (Tai KS., Socher R., Manning, 2017). Their model did not make use of any engineered 

features such as syntactic or semantic information and instead relied on word and positional 

features. Using the SemEval 2013 benchmark, they achieved an f1 of .735 on the 

classification task and .838 on detection task. Their results rank their model among the top 

models evaluated but falls short of surpassing the results by Zheng et al (2017). Their 

approach departs from the trending BiLSTM with pooling architecture trend in recent work 
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and instead revisits prior work with recursive NN structures that leverage LSTM units. See 

Figure 12 for a depiction of the tree-LSTM architecture. 

 

Figure 12 - Recursive tree-LSTM architecture (Lim et al, 2018) 

 

 Most recently, (Lamurias, Sousa, Clarke, & Couto, 2019) proposed a model that 

featured an ontology embedding layer using the ChEBI ontology. Their model is an 

extension of (Zhang et al, 2018) which uses a BiLSTM with Attention and additionally 

incorporates elements from prior work such as the use of external biomedical knowledge 

(Xu et al, 2018), multiple input channels (Quan et al, 2016), two-path SDP feature 

representation (Xu et al, 2015), and negative instance filtering (Chowdhury & Lavelli, 

2013). They propose their own concept-matching algorithm for looking up concepts within 

the ChEBI using the canonical form and synonyms over the words in the input text. They 

also propose a simple fuzzy matching method to attempt to improve the recall accuracy of 

the concept matching scheme. They additionally make use of the Medline word 

embeddings provided by (Pyysalo et al, 2013) as well as the use of WordNet lexical classes 

using the SuperSense Tagging utility by (Ciaramita et al, 2006). Their ontology embedding 

layer focuses on embedding the concatenation of common ancestor concepts between drug 

candidate pairs along the is-a (subsumption) relations define within ontology. They also 

experiment with including the sequence of concepts from leaf to root of the is-a relation 

hierarchy. Their model demonstrated the second best reported an f1 metric of .751 on the 

classification task and .6129 on the detection task using the SemEval 2013 benchmark. 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

42 
 

This methodology is further explained in Chapter 3 Methodology where it is used as the 

baseline control for evaluating the impact of this study. 

Observations and Gaps 

 After thoroughly reviewing the Relation Extraction literature with a focus on 

studies that utilized the DDI benchmarks for evaluation, several noteworthy observations 

and gaps can be revealed. The evolution of methodology in the field shifted towards Deep 

Neural Networks around the time of great advancement in the field of Image Processing 

and Computer Vision which benefited greatly from Deep Learning methods. Although the 

impact of Deep Neural Networks has had some statistically significant improvement to the 

accuracy of these models, they have not effectuated the same magnitude of improvements 

witnessed in other fields of study.  

The literature shows a clear convergence of methodology around RNN/LSTM 

building on the observation that natural language requires understanding of the meaning of 

a sentence which is largely influenced by the word ordering. The use of Bidirectional 

LSTM, which provides left-to-right and right-to-left processing of the input sequence has 

become the popular choice and the primary element responsible for significant 

improvements to the performance of these models. Other common elements within the 

recent work involves the use of Pooling layers that follow the LSTM layers. The use of 

Max Pooling and Attentive Pooling are present in the highest performing models. The 

pooling layer serves as a dimensionality reduction (down-sampling) by collapsing the time-

dimension by selecting the most important features from the sequence. Additionally, the 

Attention layer helps provide an importance weight to the features that has shown clear 

improvement in model performance. The combination of using LSTM with Pooling layers 

yields a summary feature representing the sentence to be classified by the down-stream 

classifier layer. The hyperparameters tuning across these models vary but share some 

common elements including the use of a drop out strategy that most commonly is set to .5 

(50% drop-out). The number of LSTM units (i.e. dimensionality of LSTM output layer) 

ranges between 100 and 1024 across the more recent models.  
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All Neural-based models converged on having a fully connected (dense) layer prior 

to the classifier output layer. Every neural model leveraged Softmax classifier and used 

Back-Propagation Through Time (BPTT) for training. All models performed weight 

initialization using either random or used weight initialization strategies such as Xavier 

(Glorot & Bengio, 2010). 

Other common elements include the use of Embedding layers for feature 

representation. Most studies found that random weight initialization of the embedding layer 

underperformed pre-trained embeddings. The use of word2vec (Mikolov et al, 2013) was 

the most common word embedding algorithm. Numerous studies found that the use of the 

Medical Word Embedding (Pyysalo et al, 2013) trained on a large medical corpus produced 

a better overall performance which is attributed to the significantly smaller number of out-

of-vocab instances encountered in the DDI dataset. A few studies noted that the 

dimensionality of the vector within the embedded space could have a slight impact to the 

performance of the model. They stipulate that too large of a dimension can introduce noise, 

while too small of a dimension can result in loss of informative features. The most common 

word vector dimension size used is 200. 

A common model architecture pattern observed was the use of multiple input 

channels. Prior to this approach, most studies relied on a single input channel that simply 

concatenated together multiple features into a single input vector. This approach 

demonstrated improvements on model performance. Different input features were used 

throughout the studies, but the most common included word vectors (as described earlier), 

positional vectors (measuring the distance of a word to the drug entity candidate), part-of-

speech, Shortest Dependency Path (SDP) of words between the first and second drug 

candidate pair, and WordNet lexical classes (using SST). 

Other common model architecture variations were one-stage vs two-stage 

pipelining of models. The former involves a single end-to-end model for performing 

relation classification, whereas the latter (two-stage) involves training a model optimized 

for the detection (binary classification) task and then optimizing another model for the 

multiclass classification task. Other model architectures involved joint models that use 

different layers that are then merged before a final hidden layer. These joint models tend 
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to leverage different NN layers, such as having a word-based and a character-based model 

side-by-side and then merged. Ensembling multiple models was popular during the early 

pre-Neural work and typically involved a majority or union voting scheme. For SVM-based 

models, having more than one model was required since SVM are binary classifiers and 

therefore require use of a “one-against-all” strategy. 

The ordering of word sequences was explored by several studies including using 

the syntactic tree and performing a recursive depth-first or breadth-first traversal to 

determine the ordering of the word vectors. Other experiments included splitting the 

sentence into two or three segments. The former is based on the SDP path between both 

drug candidate entities, the latter based on the words before, in between, and after the drug 

candidate entities. None of these elements have been demonstrated to contributing directly 

to a performance improvement. 

Some common pre-processing techniques for preparing the feature input were 

observed. One notable pre-processing step that consistently improves performance of any 

model is the known as “negative instance filtering” where certain negative DDI samples 

are discarded helping to balance the class representation in the training set. All studies 

noted the class imbalance of the DDI corpus having a negative effect on the model 

performance. Some classes such as Int were consistently the most misclassified across all 

studies. This is due to its underrepresentation in the training set vs the test set provided by 

the benchmark. While the negative class label is overrepresented in the training set.  This, 

however, is an intended design of the dataset and used to mitigate overfitted models that 

do not generalize well in the test dataset. Another consistent finding was the rate of 

misclassification for the Medline portion of the dataset. The Medline corpus is a large 

collection of scientific journals that contain very complex terminology and phrasing that 

have shown to be difficult to accurately classify. The DrugBank training samples feature 

brief and concise sentences intended for a broader non-expert audience to understand and 

relatively easier to classify. 

Another common pre-processing technique is to mask (or blind) the drug entity 

candidates from the input sequence to the model. This approach assumes that the actual 
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drug name is a variance that does not factor into the surrounding phrasing that indicates a 

DDI relation.   

The evaluation analysis of most studies presented their best model performance 

including recall, precision, and f1 performance. This however does not indicate whether 

the model is able to consistently reproduce the same performance. Kavuluru et al (2017) 

encourage future work to provide both the best and average model performance in their 

evaluation. In their work they noted that any given instance of a model can get lucky and 

achieve a high metric that cannot be reproduced. In addition to averaging f1 metrics over 

multiple models runs, another rigorous approach for establishing reproducibility is to use 

k-fold cross-validation. 

In (Segura-Bedmar et al, 2014) and (Segura-Bedmar et al, 2010), that included a 

review of methodologies for the original SemEval 2011 and 2013 challenge participants, 

the authors noted a surprising lack of semantic information being incorporated into the 

proposed models. Much of the focus was placed into syntactically derived features using 

various NLP tools, but no use of biomedical knowledge sources was incorporated into the 

models. This idea of incorporating external knowledge is still relatively unexplored. 

Lamurias et al (2014 & 2019) were the first to explore use of a biomedical ontology 

(ChEBI) on this DDI relation extraction task. Their model demonstrated the second overall 

best metrics on the SemEval 2013 DDI benchmark. In their work they discarded much of 

the ontology and only leveraged the is-a hierarchical relations to encode the drug candidate 

entities within the model. An ontology is a form of explicit knowledge that has been curated 

by domain experts helping to define the vocabulary and relations between concepts. 

Intuitively, the inclusion of ontologically driven knowledge together with the training 

dataset should yield additional information for the model to learn from. This dissertation 

will build upon the work from Lamurias et al (2019) and Zhang Y et al (2018) and continue 

to explore additional use of ontologies as an embedding layer within the relation 

classification model. 
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Summary 

 Since the formalization of NLP tasks by the MUC conferences there has been 

steady advancement in methodologies for performing NLP tasks such as entity and relation 

extraction. The creation of standard benchmarks has served as a key foundation driving 

research into complex problems such as relation extraction over biomedical benchmarks. 

Since the creation of the SemEval 2011 and 2013 DDI benchmark, over two dozen studies 

have been conducted evaluating various AI-based methodologies on the problem of 

Relation Detection and Classification within a 9-year span. The steady improvement of 

performance demonstrates the advancement of methodology on the task, raising the initial 

f1 metric from .6001 (Segura-Bedmar et al, 2011) to .773 (Zheng et al, 2017). These studies 

have reflected the latest advancement of AI methodology on NLP tasks. Starting with 

SVM-based methods in the early 2010’s and quickly shifting towards Deep Learning 

methods in the mid and late 2010’s. Although these Deep Learning methods have not had 

the same kind of impact in the NLP field as they have in image processing and computer 

vision field, they have demonstrated a significant improvement with an increase of f1 

metric of .103 over the SVM-based methods and  an increase of .173 since the inception 

of the benchmark. The literature provided an excellent trajectory to guide future work in 

this field and this review has identified gaps and unexplored areas that motivated the 

methods detailed in Chapter 3 Methodology.   
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Chapter 3 

 

Methodology 

For this dissertation, several extensions to the work of Lamurias & Couto (2019) 

and Zhang Y. et al (2018) were implemented with the goal of achieving a higher overall F1 

accuracy score on the SemEval 2013 Drug-Drug Interaction (DDI) benchmark (Segura-

Bedmar et al, 2014; Herrero-Zazo et al, 2013). The enhancements include modifications to 

the model architecture that features a new ontology neural embedding layer that supports 

multiple ontology relations. Additionally, an alternate method for matching words and 

phrases to the most specific and relevant concepts within an ontology was implemented. 

The longest-span match method helps with the selection of candidate concepts that are the 

most taxonomically specific within an ontology.  

As explained in Chapter 1 and 2, the DDI classification task involves the relation 

classification of a DDI type given a sentence text and a pair of candidate drug entities 

within the sentence. There are 5 possible classification labels: mechanism, effect, Int 

(unspecified DDI), Advice (advice about a DDI), and negative (no DDI present). The 

models process the input including a pair of drug entities and output one of the five class 

labels as a prediction. The following sections describe the two baseline models used 

throughout this study to compare and evaluate the methodology presented in this study.  

 

Baseline: Hierarchical RNN 

 Zhang Y. et al (2018) proposed a novel DDI classification model that uses five 

different input channels. The primary contribution over previous approaches is the use of 

a split input sequence with hierarchical RNN layers. This approach partitions the input 

sequence into left, middle, and right. Each of these subsequences undergoes a feature 

extraction to produce word vectors, part-of-speech tags, and positional distance from each 

word token to the two drug entities mentioned in the text. The partitioning of the 

subsequences is determined by the position of the drug entities. The words starting from 

the beginning of the sentence to the first entity (exclusive) represent the left sequence. The 

words between the first drug entity and the second drug entity (exclusive) represent the 

middle sequence. The words starting at the second drug entity to the end of the sentence 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

48 
 

represents the right sequence. Figure 13 illustrates the partitioning of a sample sentence 

into left, middle, and right subsequences excluding the pair of drug entities. 

 

Figure 13 - subsequence example (using sample text from DDI corpus) 

 

 The words in each subsequence are embedded using a pre-trained medical word 

embedding matrix using the Medline corpus of abstracts and the word2vec utility by 

Mikolov et al (2013) to produce embedding weights with 200-dimensional vector 

representation. Each word in the sequence is first encoded using a one-hot vector 

representation that is projected into the low-dimensional word vector representation using 

the pre-trained embedding weights within the embedding layer of the model. The use of 

word embedding as a method for text representation in natural language tasks is pervasive 

and its contribution to accuracy performance is significant and well documented in 

literature (Bengio et al, 2003; Mikolov et al, 2013; Pennington et al, 2014). 

 The part-of-speech for each word in the sequence is extracted using spaCy POS 

tagger. The part-of-speech is represented as a one-hot vector presented to an embedding 

layer that learns the embedding weights together with the rest of the model training. The 

dimensionality of this embedding layer is 10. Figure 14 shows an example of the part-of-

speech tags extracted for each word in a sample text. The use of part-of-speech tags for 

natural language tasks including relation extraction is pervasive and its positive 

contribution to accuracy is recognized in literature. 

 The two positional distance features per word are extracted by measuring the word 

distance from the first and second drug entity in the sentence. The distance features are 

represented as one-hot vectors and presented to an embedding layer that learns the 

embedding weights together with the rest of the model. The dimensionality of this 

embedding layer is 10 for each of the two distance features represented. Figure 14 shows 

an example of distance 1 and distance 2 extracted from a sample text. The motivation for 

using positional distance is based on the positive impact to accuracy reported in literature 
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by numerous studies (Liu et al, 2016; Zheng W. et al 2017; Zhang Y. et al 2018) (see 

Chapter 2 Literature Review).   

 

Figure 14 - Example of part-of-speech and distance features 

 Figure 15 shows the model architecture for Zhang et al’s Hierarchical RNN DDI 

classifier. Each subsequence is represented as an input channel with a feature group of 

words, part-of-speech, and two distance features. Each channel merges the embedded 

features and applies an importance weight learned using an Attention layer. This helps to 

differentiate the significance of each word in terms of the relation classification task. The 

use of Attention to weigh importance of features in DDI relation classifier was originally 

proposed by Wang L. et al (2016) and discussed in Chapter 2 Literature Review. Each 

channel is connected to a Bidirectional RNN layer with 100 units that outputs a 200-

dimensional vector representation. The max input sequence of each subsequence is 

determined by finding the longest subsequence length of the entire training dataset. 

 

Figure 15 - Zhang et al (2018) Model Architecture 
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 In addition to the left, middle, and right sequences, Zhang et al’s model includes a 

fourth input channel based on the Shortest-dependency path (SDP) between the pair of 

drug entities in the input sentence. Figure 16 shows an example of the SDP parse of the 

sentence “Cimetidine can inhibit the metabolism of chloroquine…” where cimetidine and 

chloroquine are the pair of drug entities and “cimetidine > inhibit > metabolism > of > 

chlorquine” is the SDP between the pair of drugs.  

 

Figure 16 - SDP Example 

The features of the SDP channel mirror the previous sequence channels including with 

words, part-of-speech, and positional distances extracted and embedded using the same 

methods described earlier. Like the other channels, the SDP channel features are merged 

and weighed using an Attention layer. The resulting feature representation is connected to 

a Bidirectional LSTM layer with 100 units that produces a 200-dimensional vector. Table 

1 shows the vocabulary size and output dimension for the embedding layers and Table 2  

shows the max sequence lengths used in this model.  

Embedding Features Input Dim 

(Vocab Size) 

Output Dim 

Words 685,000 200 

Part-of-Speech 32 10 

Distance 1 601 10 

Distance 2 601 10 

Table 1 - Embedding Dimensions for Zhang et al (2018) 

 

Channel Input Length 

(Max subsequence Length) 

Left 98 

Middle 107 

Right 144 

SDP 12 

Table 2 - Max subsequence lengths in Zhang et al (2018) 
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 The final hidden layers merge the output from the 4 RNN layers together with the 

word vector representation of the 2 drug entities in the input text. The merged vectors are 

presented as a sequence to a final Bidirectional LSTM layer and then to a Softmax classifier 

as the output layer. The LSTM is configured to 100 units producing a 200-dimensional 

vector that feeds the Softmax classifier which in turn outputs the probability distribution 

over a 5-dimensional vector (one for each class label). The model uses the Root Mean 

Squared (RMS) optimization algorithm with a learning rate configured to 0.001 and SGD 

with minibatch size of 64. Using this model architecture and hyperparameters, this study 

evaluated the performance of this model using the original source code and was able to 

reproduce the .729 F1 accuracy reported by Zhang Y. et al (2018). The next section 

discusses the enhancements made to this model to demonstrate the accuracy improvements 

of incorporating the ontology neural embedding layer. 

 

Enhancing Hierarchical RNN Model 

 The Hierarchical RNN model architecture by Zhang Y. et al (2018) is used in this 

study as one of two baseline models. The baseline models are used in a series of controlled 

experiments to evaluate the accuracy performance impact of a new neural ontology 

embedding layer proposed and presented in this study. This model is extended to include 

an embedding layer whose weights are initialized using a pre-trained embedding method 

discussed later in Concept Embedding Methods section of this chapter. Figure 17 shows 

the enhanced model architecture with the additional embedding layer trained using the 

ChEBI ontology and applied to the two drug entities of the input. The two drugs are mapped 

to a drug concept within the ChEBI ontology using the concept matching method discussed 

in Concept Matching Methods section of this chapter. The drug concept is embedded and 

presented to the final Bidirectional LSTM layer of the model.  
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Figure 17 - Hierarchical RNN with Neural Ontology Embedding layer 

 

Baseline:  Hierarchical RNN with BO-LSTM 

Lamurias & Couto proposed two variations of the BO-LSTM model to detect and 

classify the relationship between pairs of drug entities within medical literature. The first 

variation extended the model architecture proposed by Xu Y. (2015) and the second 

extended Zhang Y. et al’s (2018) Hierarchical RNN architecture presented in the previous 

section. The primary contribution over the previous work involves the use of an ontology 

embedding layer that uses the ChEBI ontology as a method to capture common ancestor 

concepts between drug entities that can reveal additional semantic information not 

otherwise available in the training data. The BO-LSTM model extending Zhang et al’s 

Hierarchical RNN demonstrated a significant improvement to accuracy by increasing the 

F1 from .729 to .751. As reviewed in Chapter 2 Literature Review, this is the second highest 

reported F1 accuracy and the highest independently reproducible F1 accuracy for the 

SemEval 2013 DDI benchmark.  
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 This variation of the BO-LSTM model architecture, shown in Figure 18, includes 

the original 4 input channels presented by Zhang et al along with an additional channel 

labeled Common Ancestors proposed by Lamurias & Couto (2019). This channel embeds 

the common ancestors for both drug entities in the input sentence along with the part-of-

speech and positional distance. Lamurias & Couto place a restriction on the ChEBI 

ontology by discarding all semantic relations except for the is-a relation (known as 

subsumption). The is-a relation is a directed and transitive relation that is considered a 

fundamental aspect of an ontology, providing the taxonomy that defines the classes of 

concepts within a domain. 

 

Figure 18 - BO-LSTM extension of (Zhang et al, 2018) Architecture 

 

The input processing for the concept embedding channel begins by performing a 

concept look-up of each drug entity in the input sequence within the ChEBI ontology. This 

step attempts to first find a matching concept within the ontology using the exact drug 

name. This may fail to produce a match and therefore a fuzzy match using Levenshtein 

distance is used to find the best matching concept within ChEBI. These matching concepts 

may or may not represent the correct drug concept. Failing to identify the correct and 

relevant concept has a negative effect on the accuracy of the model. 
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Lamurias & Couto experimented with several variations of the model but ultimately 

found the best performance is achieved when including information about a concept’s 

hierarchy. Lamurias & Couto (2019) define a restricted ontology as a directed graph O = 

(C, R) where C is the set of all concepts (e.g. all the drug concepts within ChEBI) and R is 

the set of all is-a relations (e.g. the concept hierarchy for ChEBI). The concept embedding 

approach used relies on obtaining the ancestors and then identifying the common ancestors 

between pairs of drug concepts found within the input sequence.  

The concepts are encoded into a sequence of one-hot vectors in order from generic 

to specific along the is-a hierarchy. These one-hot concept vectors have a dimensionality 

of 2,170 each dimension representing a unique concept. This is far fewer than the 114,000 

vocabulary of concepts within ChEBI. Lamurias & Couto restricted the working 

vocabulary size of concepts to those found within their training and test sets. This limiting 

assumption is a tactical decision to overcome a series of challenges including 

computational issues, large memory footprint, and very long training times. Unfortunately, 

this limitation results in lower accuracy when running in a real-world scenario where the 

documents and drugs mentions are not known in advanced.  

Lamurias & Couto evaluated two layers for concept feature representation: 

Common Ancestors and Concatenated Ancestor Concepts. The Common Ancestor 

Concepts layer is presented a sequence of the common ancestor concept vectors. The 

Concatenated Ancestor Concepts layer is presented the concatenation of the ancestors for 

each respective drug concept vector. This concatenation produces a sequence of vectors 

that list the ancestors of c1 followed by the ancestors for c2. The common ancestor’s method 

may not produce feature vectors due to instances where the pair of drug concepts do not 

share any common ancestors. In those instances, the channel fails to present information to 

the model. The Concatenated Ancestor Concepts approach, however, always produces 

information about each respective concept ancestor hierarchy.  

The vectors for the drug concepts are processed through an embedding layer that is 

initialized using random values and trained using back-propagation with gradient decent 

(SGD) together with the rest of the model. This embedding layer produces dense vectors 

with a fixed dimensionality of 300. This ontology-concept embedding is given by: E =

ℝ|𝐶|×𝐷 where E is the embedding matrix, D is the dimensionality of the embedding space 
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(50 in this case), and |C| is the number of concepts defined in the ontology (a vocabulary 

size of 2,170 concepts). The embedding of a concept vector into the ontology-embedding 

space can be defined by the function f: 𝑣𝑐 → 𝑣𝑒 𝑖𝑛 𝑬 and ve is the embedded vector 

produced by projecting (i.e. mapping) the concept vector vc into an embedding space E. 

Table 3 summarizes the hyperparameters used to train the embedding layers for both of 

these ChEBI concept embedding channels. 

Embedding Features Input Dim 

(Vocab Size) 

Output Dim 

Pre-trained Words 685,000 200 

Part-of-Speech 32 10 

Distance 1 601 10 

Distance 2 601 10 

ChEBI Common Ancestors 2,170 300 

Table 3 - Table showing the BO-LSTM embedding layers along with their 

input dimension, output dimension, and input length 

 All the channels are respectively connected to an Attention and Bidirectional LSTM 

layer where the channel output is merged using vector concatenation before proceeding to 

the final Bidirectional LSTM layer. The output layer is a Softmax classifier producing a 

probability distribution over a 5-dimensional vector using RMS optimizer with a learning 

rate of .001 and SGD using minibatch size of 64.  

 

Enhancing BO-LSTM Model 

 This BO-LSTM model that extends Hierarchical RNN is used as the second 

baseline model in a series of controlled experiments to evaluate the accuracy performance 

impact of the new neural ontology embedding layer proposed and presented next in this 

chapter.  

The primary enhancement to the BO-LSTM model involves changes to the ChEBI 

embedding layer labeled Common Ancestors in Figure 18 above and corresponding input 

pre-processing. The new embedding layer addresses the limitation where only is-a 

subsumption relations are supported by BO-LSTM model and all other semantic relations 

are discarded resulting in a loss of semantic information. Additionally, the new model 

changes allow for a larger vocabulary size in order to maximize the benefit from the 
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ontology embedding and therefore increases the generalization of the model by supporting 

the entire set of ChEBI concepts, reducing the occurrence of out-of-vocab when applying 

the model to unseen datasets. Figure 19 shows the enhanced model architecture with the 

improved layers outlined in red. 

 

Figure 19 - Enhanced BO-LSTM architecture with new Neural Ontology Embedding layers 

 

In addition to the improvements to the BO-LSTM Common Ancestors embedding layer, the 

improvements made to the Hierarchical RNN model are repeated here by including a 

ChEBI embedding layer for the two drug entities and connected to the final Bidirectional 

LSTM layer of the model. This is shown in a red outline on the top-left of Figure 19. 

Furthermore, an improved concept matching method to accompany the new embedding 

layers is presented later in this chapter. The following sections define and formalize these 

enhancements and explains the reasons why they improve the performance of the model. 
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Concept Embedding Method 

The concept embedding method presented and evaluated in this study improved 

upon Lamurias & Couto’s embedding approach by introducing a neural ontology 

embedding method that includes all relevant semantic relations from the ontology in 

addition to the taxonomic structure (i.e. is-a relations). These improvements demonstrated 

an increase to the model accuracy by including additional semantic information captured 

from the expanded support of semantic relations defined within the ontology. During this 

study, several variations of this method were evaluated before identifying the best 

performing method called: Ontology-learned Identity Vectors (OLIV) presented in this 

section. The description and evaluation for the alternative methods explored are presented 

in Appendix B. 

The OLIV embedding method defines an ontology as a directed graph O = (C, R) 

where C is the set of all concepts and R is a set of heterogenous relations such that 𝑅 =

𝑅1 ∪ 𝑅2 … ∪ 𝑅𝑛. Minimally an ontology is expected to provide the is-a relation that 

defines the taxonomy of concepts. Additionally, an ontology may define other meaningful 

relations within the domain called semantic relations. The set R1 is reserved for the 

taxonomic (is-a) relations and the sets R2 through Rn for the remaining relations. Examples 

of such relations might include has_role, synonym_of, or may_treat to represent the 

semantics of the specific domain. For the ChEBI ontology there are a total of 9 semantic 

relations defined. 

To leverage these additional relations defined within the ontology, the ontology 

graph is first partitioned into multiple subgraphs each comprised of a set of homogenous 

relations as follows: 

O = (C, 𝑅1 ∪ 𝑅2 … ∪ 𝑅𝑛) →  

{ 𝑂1 = (𝐶1, 𝑅1), 𝑂2 = (𝐶2, 𝑅2), …, and 𝑂𝑛 = (𝐶𝑛, 𝑅𝑛) }  

where { 𝐶1, 𝐶2, …, 𝐶𝑛} ⊂ C and each 𝑅𝑖 is comprised of homogenous relations.  
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Figure 20 – Decomposition of Ontology into Subgraphs 

 

For each ci ϵ C, a unique vector is assigned using a one-hot vector encoding scheme. Once 

all concepts have been assigned a vector, a new embedding matrix E is trained such that E 

= ℝ|𝐶|×𝐷 where |𝐶| represents the number of concepts defined within the ontology graph 

O and D the dimensionality of the embedding space. The dimensionality D of the target 

embedding space was refined through experimentation and set to 300 and |𝐶| represents 

the vocabulary size of 114,000, the number of concepts defined in ChEBI.  

The OLIV embedding method is used to learn the weights of the embedding matrix 

E using an unsupervised ontology-guided pre-training approach. The approach starts by 

constructing an identity set Vi for each concept ci ϵ C. Vi represents a concept’s identity in 

terms of its inherited and related concepts across the ontology O. The corresponding 

identity vector vi for a concept ci can be expressed as a k-hot vector encoding f: 𝑉𝑖 → 𝑣𝑖 

where k is the dimensionality of vi and equal to the vocabulary size of the embedding. The 

identity vector, vi, is used to fit a neural network trained to predict f: 𝑐𝑖 → 𝑣𝑖 .  

The identity Vi for a concept ci is defined as follows: 

(1) Vi  Gather the ancestors of ci within the taxonomy (is-a) relations in R1 

(2) Vi  For ci and each ancestor gathered in (1), gather the related (i.e. connected) 
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concepts in R2 through Rn  

For this study, the number of ancestors gathered for ci in (1) was limited to a 

maximum of 6 traversals (i.e. distance) from ci. A limit was initially chosen based on 

intuition and refined through experimentation to balance accuracy with computational 

efficiency. Because all concepts share a common ancestry within the ontology, these very 

common ancestors are not informative in differentiating one concept from another. As 

such, a limit was used to reduce the number of ancestors considered in the identity 

resolution of a concept. Also note that the identity set definition for a concept does not 

include the concept itself. This reduces the number of unique concepts represented across 

all identity sets and therefore reduces the dimensionality required to encode the identity 

vector vi. This reduction of ancestors and concepts helps reduce the computational cost to 

compute the set identity set V. 

Once the identity vector vi for every ci in the ontology has been resolved, the OLIV 

model can be trained. Figure 21 shows the OLIV embedding model along with an example 

depicting the Amoxicillin concept as input to the model and the corresponding identity 

vector as the expected output. Figure 21 also shows the correlation of the identity vector 

for Amoxicillin using two ChEBI ontology subgraphs of is-a and has_role relations. This 

model is trained using a hidden dense layer with the Identity activation function and a 

Softmax output layer. For this study, the model was trained using 100 epochs over the 

entire set of 114,000 concepts using SGD and minibatch size of 16. 

 

Figure 21 - OLIV Neural Ontology Embedding Model 
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The OLIV method differs from other approaches because it uses the ontology to 

guide the training of the embedding. Prior work by (Bengio et al, 2003, Mikolov et al, 

2013, Pennington et al, 2014, Hill et al, 2016) among others use an unsupervised corpus-

guided approach to train the embedding using word context-prediction tasks. Other 

embedding techniques, such as Autoencoders (Hinton & Zemel, 1994), are trained to 

reconstruct the input vector using several hidden encoder layers that perform 

dimensionality reduction of the input vector. Other common approaches learn the 

embedding together with the classification model. The embedding weights are randomly 

initialized and then learned using a task-based supervised training approach. These 

different approaches were evaluated during this study and their results are presented in 

Chapter 4 Results and their descriptions in Appendix B.  

 

Summary of Model Architecture Changes 

 The primary changes to the Hierarchical RNN architecture occurs to the two drug 

entity channels while the changes to the BO-LSTM model occurs within the Common 

Ancestors embedding channel where the embedding layer used is replaced with the trained 

OLIV embeddings. The other channels remain unchanged and follow the same methods 

used by Zhang et al and Lamurias & Couto as described in the above sections. The ontology 

embedding channels use a pre-trained concept vector embedding using OLIV (discussed 

in the previous section).   

 

Concept Matching using Longest-Span Match 

Like a thesaurus, ontologies provide synonyms for each concept that may include 

strings that serve as alternate forms of describing a concept. These synonym strings are not 

guaranteed to be unique to a concept and therefore may occur among many concepts. 

Additionally, these synonym strings may occur as a substring of another longer synonym 

for a different concept. This means that a substring of a given input text may produce one 

or more overlapping concepts after performing concept matching. The presence of 

overlapping concepts presents an ambiguity since one of these concepts must be chosen as 

the best matching concept.  

To address this ambiguity, the following resolution is applied: Select the concept 
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where the matching synonym string S has a greater length than all other substrings S’ that 

match a concept. This matching concept is considered the longest spanning concept. For 

example, the phrase “... vitamin A and medications with retinoic acid receptor alpha 

antagonists must be avoided …” has many words that can represent concepts such as ‘Acid’ 

or ‘Receptor’ or ‘Retinoic Acid’, but the most specific concept match would be ‘Retinoic 

Acid Receptor Alpha Antagonists’. This longer spanning match therefore covers the other 

sub-sequence matches. The longest spanning match is considered a well-known 

optimization for dictionary matching algorithms and should be leveraged as part of this 

model to improve the underlying accuracy of identifying the correct concept prior to 

encoding. Figure 22 shows an example where multiple concepts share the same words (top) 

and an example sentence with multiple matching concept spans including the longest-span.  

 

Figure 22 - (top) Example of concepts with shared words (bottom) overlapping concept 

spans  

 This study implemented and evaluated several different concept matching methods. 

The best performing method was based on Concept Mapper (Tanenblatt, Coden, & 

Sominksy, 2010) which was reimplemented to decouple it from the UIMA framework to 

evaluate the method in isolation. The other two methods evaluated were a basic string-

matching that served as a baseline comparison and a finite state transducer implementation 

that constructed a finite state machine from the ChEBI ontology and performs a character-

level state transition as it scans the input text where each state can hold zero or more 

concepts.  

 The Concept Mapper method utilizes an efficient data structure that can represent 
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a large dictionary of concepts and supports an efficient matching algorithm. The dictionary 

representation uses a nested Tree Map data structure that is keyed based on the first word 

of a concept’s lemma or synonym entry and then keyed by the word length of the concept 

entry. An important goal of concept matching is to represent the dictionary entries in a 

memory efficient way so that it can scale to millions of entries. Additionally, the dictionary 

representation supports an efficient matching algorithm. Figure 23 shows an example of a 

dictionary data structure representation (right) and a small example of ChEBI concept 

entries used to generate the dictionary (left).  

 

Figure 23 - Example showing the dictionary data structure representation (right) given a set of ChEBI 

concepts (left) 

Figure 24 shows a sample text with multiple overlapping concepts denoted as underlines. 

The Concept Mapper matching algorithm uses a greedy approach to identity only the 

longest spanning concepts in the text. For this sample, “Vitamin A” and “retinoic acid 

receptor alpha antagonists” represent the two longest spanning concepts. 

 

Figure 24 - Sample text showing several overlapping concepts 

Figure 25 shows the concept matching algorithm steps as it processes the text using the 

example dictionary representation shown in Figure 23. The algorithm attempts to match 

the entire text span and incrementally reduces the text span length until a match is found 

and the starting position of the search span is advanced forward.  



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

63 
 

 

Figure 25 - Example execution of Concept Mapper algorithm over sample text 

The results of the concept matching experiments are presented in Chapter 4 Results – 

Concept Matching Methods. 

 

Experimental Design 

 This study performed several experiments to evaluate the optimal ontology 

embedding model design, parameters, and experiment settings. The results from these 

experiments helped answer research questions regarding the barriers and issues previously 

mentioned in this document. Furthermore, answers to these research questions helped to 

guide overall methodology presented in this dissertation and advance the state-of-the-art in 

the study of Relation Classification and establish a new area of exploration in Neural 

Ontology Embedding. 

 

Ontology Embedding Method Experiments: 

 This study evaluated 4 different proposed neural ontology embedding methods. The 

purpose of these experiments was to identify the method that demonstrated most promising 

results using two comparative test tasks designed to assess the quality of the concept 

embedding. The first test is labeled the DDI Detection Test and uses a subset of the DDI 

benchmark dataset to measure the binary classification accuracy using a baseline model 

where each embedding method is measured. The baseline model architecture included the 

pre-trained ontology embedding as the input layer and a SoftMax with Cross-Entropy loss 

function as the output layer. The max F1 metric for each embedding method was collected 

and compared. The OLIV embedding method demonstrated the best performance for this 
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test. 

 The second test, labeled Ontology distance Test, measured and compared the 

relative distance between concepts within the ontology space and the embedding space. 

The purpose of the test was to identify which embedding method preserved the relative 

distances between concepts within the embedding space. The intuition underlying this test 

is based on the idea that the ontology serves as a source of truth for each concept and can 

be used as a ground truth to measure the mean error between the embedded distances and 

the ontology distance between a pair of concepts. Appendix B defines the evaluation task 

in detail and Chapter 4 - Results presents the results for both tests.  

 Additional tests were performed to measure the optimal OLIV embedding 

dimensionality by training the embedding layer using 50, 100, 200, and 300 dimensions 

and evaluating the relative F1 accuracy performance using the Zhang et al (2018) model as 

a baseline. 

 

Concept Matching Method Experiments: 

 These experiments will evaluate an optimal concept matching method. The 

proposed methodology relies on the ability to accurately match concepts to represent their 

ontological relations as features within the model. Preliminary experimentation found that 

a significant percentage of concepts are missed (~30%) using basic string matching. These 

experiments will evaluate methods for improving the concept matching using alternative 

methods that will be compared. Another finding during preliminary experimentation found 

that a significant number of drug names matched more than one concept using basic string 

matching over canonical and synonym forms within the ChEBI ontology. This suggests 

the need for an algorithm to select the best match. 

1. Does Concept Mapper provide better recall accuracy when compared to basic 

string-matching algorithm used during preliminary experimentation?  

2. Does a Finite-State Transducer representation of the dictionary and concept 

matching algorithm improve the runtime performance of the system? 

3. How does a Finite-State Transducer recall accuracy compare to Concept 

Mapper and Basic String-matching?  
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Ontology Enhanced Models vs Baseline Experiments: 

 To evaluate the overall accuracy performance impact of the Ontology embedding 

layer within a DDI Relation Classification model, a series of controlled experiments were 

conducted using the Zhang (Zhang et al, 2018) and Lamurias & Couto (2019) BO-LSTM 

as baseline control models.  This experiment first established the baseline accuracy for each 

of the two control models using the original source code for both models. The experiment 

ran 10 trial runs of each model using the best performing hyperparameter configuration 

reported in their respective studies. The baseline accuracy for each trial run was established 

by running each model to identify the best F1 score using a validation test set. The reported 

F1 score for each baseline model was reproduced or marginally exceeded in this study. 

Chapter 4 Results presents a summary of these findings.   

 Once the baseline accuracy was established, each baseline was extended using the 

OLIV embedding layer. OLIV was identified as the best performing ontology embedding 

method using the previously described Ontology Embedding Method Experiments and the 

results are presented in Chapter 4 Results – Ontology Embedding Method Results. Each 

baseline model was treated with the OLIV embedding layer and 10 trial runs were 

conducted each trained for 100 epochs using an 80/20 training and validation split. Using 

the DDI Test set, the F1 score was measured using the best performing model on the 

validation set for each trial run. 

The controlled baseline trials and treated baseline trials are evaluated using the min, 

max, and mean F1 metrics collected from the 10 trial runs to determine whether the treated 

baseline trials exhibited an improved F1 accuracy. This experiment was used to support the 

primary hypothesis of this study that the inclusion of an ontological-concept embedding 

layer contributes a significant improvement to the F1 accuracy. 

 

Additional Experiments: 

 Additional experiments were conducted to help answer additional research 

questions raised during this study. During this study, a Java implementation of several 

different DDI Classifier models were implemented along with supporting function. The 

experiments in this section were conducted using this Java framework labeled: DDI 

workbench (see Appendix D for source availability). The following experiments were 
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conducted: 

• An implementation of the Lamurias & Couto (2018) BO-LSTM standalone model 

based on (Xu Y. et al, 2017)’s SDP features and ChEBI concatenated ancestors 

• Applying the intuition that the structure of the DDI sentence text contains 

informative clues towards the classification task, a feature labeled as Structure was 

evaluated. This feature performs a symbol masking for all words, numbers, and 

drug entities. The feature significance was evaluated using the DDI benchmark 

• Evaluate the impact of performing full-masking vs partial-masking of drug entities 

within the DDI sentence text. The intuition is that some feature groups that are 

primarily focused on the contextual clues, such as word phrasing and sentence 

structure, benefit from masking the drug words and instead using a symbol masking 

to hide the words from the learning algorithm.  

• Evaluate a multi-stage model architecture were each stage is optimized for 

classifying a subset of the DDI classes. This approach is based on the insight gained 

from studying the interrelationships between the DDI class types and elaborated 

further in Chapter 4 Results.  

• Evaluate other model architecture strategies such as pre-merging vs post-merging 

of feature groups, where different input feature channels are concatenated before or 

after the RNN layer. Measure the impact of different LSTM units used within the 

RNN layer of the model.  

• Evaluate the feature significance of the SDP feature channel. The use of SDP has 

become a common trend in recent literature based on the intuition that it reduces 

the complexity of the sentence by focusing on the dependency path between the 

pair of drug entities and discarding the remaining words in the sentence.  

 

The above questions were evaluated, and their results are presented in Chapter 4 

Results along with additional insights gained from the experiments. 
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Evaluation 

This proposal seeks to demonstrate an overall accuracy improvement over the 

baseline BO-LSTM model using the SemEval 2013 Drug-Drug Interaction (DDI) 

benchmark (Segura-Bedmar et al, 2014, Herrero-Zazo, 2013). This is a well-known 

benchmark used by the NLP community to assess the performance of a model’s ability to 

detect and classify relations from biomedical text and is the benchmark used the baseline 

models used in this study (Lamurias & Couto, 2019; Zhang Y. et al, 2018). 

The focus of this evaluation will be on the F1 score achieved when evaluating the 

model on the DDI benchmark. Specifically, the DDI relation classification and detection 

tasks. The F1 score is defined as the harmonic mean of recall and precision for classifying 

the DDI relations in the validation test set of the challenge. The recall is defined as the 

number of True-Positive observations over the sum of True-Positive and False-Negative 

observations. Precision is defined as the number of True-Positive observations over the 

sum of True-Positive and False-Positive observations. The following formulation for F1, 

Recall, and Precision will be used: 

F1 =  2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Recall = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

Precision = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

The methods presented in this study improved upon the F1 accuracy documented by 

Lamurias & Couto (2019) of .751 for DDI classification and Zhang et al (2018) of .729 

resulting in a new state-of-the-art performance for this benchmark. Throughout the 

literature review, virtually all studies (except one) reported their accuracy in terms of the 

best F1 score achieved. This study will report the best F1 score and additionally conduct 10 

trial runs for each model evaluated to demonstrate reproducibility of the results. 

 This study reproduced the documented results from Lamurias & Couto (2019) and 

Zhang Y. et al (2018) using their original source code including their evaluation function 

used to compute accuracy metrics. The baseline models were extended with the methods 

presented in this chapter with minimal changes to the model architecture and 

hyperparameters. A Java implementation of various DDI models were implemented along 

with supporting function to evaluate model performance using the DDI benchmark. 
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Resources 

 The following section describes the required software packages and computing 

hardware requirements for supporting the experiments in this study. All the software 

packages listed in this section are available as open-source and can be used at no cost for 

research.  

Software 

 During this study, two different Neural Network environments were utilized. The 

first environment is based on python using the same learning framework and computational 

back-end used by Zhang Y. et al (2018) and Lamurias & Couto (2019) model source code. 

This environment was used to perform a controlled comparison to each model using the 

original environment. The following packages were used in this environment: 

• Python 2.7 and Python 3.7 

• Keras 2.3.1 and Keras 2.4.1 

• Theano 1.0.5 and TensorFlow 2.x 

• DiShIn – semantic database 

• Obonet – Obo ontology parser 

• Networkx – RDF graph parser 

• GenSim – word vector utility 

The second environment uses the Java programming language and DeepLearning4J 

framework with ND4J computational backend. The motivation for porting this work to 

Java is two-fold. First, the availability and maturity of NLP tools and Ontology parsers are 

well established and easily available as Java packages. This includes packages such as 

Apache UIMA with Concept Mapper for performing concept matching and Apache Jena 

and Riot for Ontology OWL and OBO format parsers, and the Stanford Parser referenced 

ubiquitously throughout the literature of prior work. Secondly, this implementation will be 

developed to serve as an experimental workbench and made available to facilitate future 

work by the community of Java developers and researchers (see Appendix D). The 

following is the list of software packages were used to develop the workbench: 

• Java OpenJDK 

• Apache Jena and Apache Riot – Ontology parsing 

• SST Light Utility for Princeton’s WordNet Lexical class tagging 

• Stanford Parser - Dependency Graph Parser 

• Medline Pre-trained Word Vectors (Pyysalo et al, 2013) 

• GenSim vector deserializer – used to convert Medline pre-trained word vector 

format 
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• Apache Concept Mapper and Apache UIMA framework – to perform concept 

matching 

• DL4J for Deep Learning Framework 

• ND4J Tensor Computation Back-end 

• Microsoft Code for IDE with RedHat Java extensions 

• Apache Maven dependency Management to resolve the above mentioned open-

source packages 

• Apache Spark for Distributed Computing – for distributed training 

 

Hardware 

To develop, train, and evaluate the methods in this study, an adequate computing 

environment was needed. The use of 3 different systems were used to train and run trial 

experiments. These systems included Apple Book Pro with 16GB RAM and 8-core 

CPU; Lenovo W500 with 16GB and 8-core CPU; and Acer Predator with 16GB RAM, 

6-core CPU, and Nvidia GeForce RTX 2060 GPU. For GPU-based training, the Nvidia 

RTX 2060 GPU was used along with the Nvidia CUDA Toolkit version 11.2, Nvidia 

Driver version 460.20, and Nvidia Docker Container toolkit. See Appendix D for 

additional information on environment and project configuration. 
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Chapter 4 

 

Results 

 During this study, a series of controlled experiments were conducted to empirically 

identify the optimal methods and associated hyperparameters for several key aspects of the 

model. These experiments, defined in Chapter 3 Methodology, were used to comparatively 

evaluate the performance impact of different ontology-concept embedding approaches and 

supporting methods, such as concept matching. The results and intuition gained from these 

experiments guided the final design for the concept-ontology embedding layer and 

supporting methods. 

 A final set of controlled experiments were performed to comparatively evaluate the 

overall effectiveness of the final DDI classification model against two state-of-the-art 

baseline models. The SemEval 2013 DDI (Segura-Bedmar et al, 2014) classification 

benchmark was used to evaluate the relative performance of each model. This chapter will 

summarize the experiments, results, and document the key findings and insights applied 

towards the final implementation of the model. This chapter is organized into 3 sections:  

• Ontology Embedding Layer Experiment Results 

• Concept Matching Experiment Results 

• Enhanced models vs Baseline Experiment Results 

 

Ontology Embedding Layer Experiments 

 The purpose of this experiment was to evaluate several different methods for 

encoding the ontology into a low-dimensional embedding space that could be used within 

the enhanced models. The ontology-concept embedding layer is considered a key focus of 

this dissertation. This layer encodes ontological knowledge represented within a domain 

ontology into the features for the DDI classification model to learn from. For this study, 

the Chemical Entities of Biological Interest (ChEBI) ontology (Hill et al, 2013) was 

selected due to its domain relevance to drug and chemical entities. Several embedding 

methods were evaluated and compared. The evaluation of each method was conducted on 

two different tasks.  

The first task is defined as the DDI Detection Test. The goal of this task is to 
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determine the presence or absence of a DDI relation between a pair of drug entities. Using 

a subset of the SemEval DDI benchmark, the test measures the F1 score in detecting a 

positive or negative DDI for a given sample sourced from a DDI hold-out set. An 80/20 

split of the training data was used to conduct Task 1-DDI Detection test. 

 The second task is defined as the Ontological-Distance Preservation Test. The goal 

of this task is to measure the preservation of relative distances between pairs of embedded 

drug concepts when compared to their corresponding ontological distance. Intuitively, a 

quality embedding should position semantically similar concepts near each other within 

the embedding space, and dissimilar concepts should be positioned further apart. For this 

test, the ontology serves as the ground truth to evaluate how each embedding method 

positions concept relative to each other.  

To compare the positioning of concepts within the embedding space to the 

positioning within the ontology, this test first constructs a ranked order of the concepts 

based on their distances from a selected reference concept. Using a pool of 100 randomly 

sampled drug concepts from the SemEval DDI training set, each concept takes a turn as 

the reference concept. For each reference concept, two lists are generated, each with 99 

entries. Each entry represents one of the 99 concepts. The concepts are sorted based on 

their distance from the reference concept. Each of the two lists are ordered using a different 

distance measurement discussed later in this section.  

These two ordered lists are then compared to a third ordered list generated using 

the ontological path distance between the reference concept and the other 99 concepts in 

the pool. The ontological path distance is defined as the sum of vertex traversals required 

to reach a given concept from the reference concept within the ontology graph. An error 

can be calculated by comparing the ordered lists produced from the embedding space to 

the list generated using the ontology. This error measures the rank displacement between 

a concept in one of the two lists generated from the embedding space and the third list 

generated using the ontology which serves as the ground truth. The difference in the rank 

(i.e. list position) of a concept in the ontology-generated list to the embedding-generated 

list represents the error.  

Before this error can be computed and the ordered lists generated, each of the 100 

concepts are projected onto the embedding space yielding a vector coordinate. The distance 
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between two concept vectors is measured using two commonly used distance measures. 

The first measure is Cosine distance which measures the angle between two vectors 

irrespective of the magnitude of the vectors. Equation 1 shows the cosine distance between 

two vectors x and y. 

𝑥 ⋅ 𝑦

√𝑥 ⋅ 𝑥√𝑦 ⋅ 𝑦
 

Equation 1 - Cosine distance between two vectors x and y 

The second measure is Euclidean distance which measures the geometric distance between 

two vectors. Unlike Cosine distance, Euclidean distance considers the magnitude of the 

vectors. Equation 2 shows the Euclidean distance between two vectors x and y where i 

represents the vector component and n the dimensionality of the vectors. 

√∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Equation 2 - Euclidean distance between two vectors x and y 

Both Cosine and Euclidean distances were used to evaluate the distance from the reference 

concept to the other concepts within the embedding space. Since Cosine and Euclidean 

distance are known to measure different quality characteristics of the embedding space, 

both are used in this test. As explained earlier in this section, each ordered list is generated 

by sorting the concepts based on their distances from the reference concept. One list sorts 

the concepts based on the Cosine distance while the other list is sorted using the Euclidean 

distance. The two ordered lists can then be compared to a third ordered list generated using 

the ontology distances to compute the error. This process is repeated for each of the 100 

sampled concepts in the pool. The following algorithm was used for this test: 
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The Mean Squared Error (MSE) is used to compute the error of the rank displacements. 

MSE is considered a good error metric for this task because it penalizes large rank 

displacements more heavily than small rank displacements (Twomey & Smith, 1997; 

Twomey & Smith, 1995). Since the quality goal of the ontology embedding is defined as 

positioning semantically similar concepts closer together and dissimilar concepts further 

away, the MSE is a valid error metric for this objective. Equation 1 shows the definition of 

MSE used to compute the error. 

OntologyDistancePreservationTest:  

1. P Select 100 random drug concepts mentioned in the DDI Training dataset 

2. For each concept c1 in P: 

a. For each concept c2 in P where c1 ≠ c2: 

i. donto Compute Ontological distance between c1 and c2 

ii. v1  Embed c1 using the Embedding Method under evaluation 

iii. v2  Embed c2 using the Embedding Method under evaluation  

iv. deuc  Compute Euclidean distance between v1 and v2 

v. dcos  Compute Cosine distance between v1 and v2 

vi. Add donto to OntoList 

vii. Add deuc to EucList 

viii. Add dcos to CosList 

3. Sort OntoList, EucList, and CosList 

4. Euc_Err  Call Compute_Error(OntoList, EucList)  

5. Cos_Err  Call Compute_Error(OntoList, CosList)  

 

OUTPUT: Average(Euc_Err and Cos_Err) 

 

Compute_Error: 

INPUT: List1, List2 

1. For each item in List1: 

a. Rank1  Get concept Rank in List1 

b. Rank2  Get concept Rank in List2 

c. AccumulatedError  AccumulatedError + (Rank1 – Rank2)2 

d. Count  Count + 1 

OUPUT: AccumulatedError / Count 
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𝑀𝑆𝐸 =  
1

𝑛
∑(𝑋𝑖 − 𝑌𝑖)

2

𝑛

𝑖=0

 

Equation 3 - Mean Absolute Error where X represents the rank position for the ith concept from the 

embedding space and Y represents the correct rank position of the ith concept using the Ontology; n 

represents the total number of concepts in the ordered lists (i.e. 99) 

The accumulated MSE for the Euclidean and Cosine lists are averaged and normalized for 

the entire pool of concepts. Table 3 shows the computed error under the Task 2 column for 

each of the following embedding methods evaluated in this study: 

1. Classic Embedding – uses a dense layer with an identity function that learns the 

distribution of the concept vector embedding space based on the training task 

2. Concept Identity Vector Encoding – constructs a k-hot identity vector for a concept 

where each feature position represents a characteristic of the concept within the 

ontology. (See Chapter 3 Methodology for definition of identity vector) 

3. Autoencoding of Concept Identity Vector – compresses a concept identity vector to 

a low-dimensional space using an unsupervised input reconstruction model  

4. Ontologically Learned Identity Vectors (OLIV) – learns a concept embedding by 

fitting an unsupervised model that is trained to predict the identity vector for a 

concept. (See Chapter 3 Methodology for detailed description). 

See Appendix B for a detailed description of each embedding method evaluated in this 

experiment. 

  Method Task 1: DDI Detection Test F1 Task 2: Ontology distance Test ME 

1. Classic Embedding 0.093  0.43   

2.  Concept Identity Vector (CIV) 0.135   0.33   

3. Autoencoded CIV 0.110   0.50   

4. OLIV 0.350   0.24   

Table 4 - Ontology Embedding Performance Results 

 

Experiment Findings 

These experiments were successful in helping to identify the best concept 

embedding method along with the optimal hyperparameters. Error analysis was conducted 

to understand the cause for the relatively low scores by all the embedding methods on Task 

1. The error analysis concluded that an essential aspect of determining the presence of a 

DDI is based on linguistic features such as negation which are absent in this test. Since the 
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models trained for Task 1 only included the embedded drug concepts and no other syntactic 

or structural features, the models perform poorly when compared to the feature-rich models 

evaluated later in this chapter.  

The Ontology-learned Identity Vector (OLIV) demonstrated better performance to 

the alternative embedding methods on both the DDI Detection (Task 1) and Ontology-

distance test (Task 2). This result aligns with the intuition that guided the approach. This 

technique, as detailed in Chapter 3 Methodology - Ontology Embedding Method section, 

leveraged the ontology by resolving an identity vector for each concept and learned an 

embedding through the training of a model that predicts the identity vector for a given 

concept. This approach differs from other corpus-guided word embedding methods 

(Bengio et al, 2003, Mikolov et al, 2013, Pennington et al, 2014, Hill et al, 2016) because 

it uses the ontology to guide the training of the embedding. By leveraging a concept’s 

ancestors and semantically related concepts within the ontology, this approach produces a 

richer concept embedding that can present additional patterns, otherwise hidden, to the 

classification layer of the model. Additionally, unlike other approaches (Lamurias & 

Couto, 2019), this approach demonstrated that it could scale to embed the entire vocabulary 

of ChEBI concepts making it a better choice for real world application.  

To identify the optimal dimensionality of the embedding space, the OLIV 

embedding algorithm was run using 50, 100, 200, and 300 dimensions. For each embedding 

dimension, the Zhang et al (2018) baseline model was extended to use the trained 

embedding layer and the performance impact of each embedding dimension was compared. 

The 300-dimensional embedding space demonstrated the largest impact (+.06) to F1 

accuracy when compared to the other dimensions. See Ontology Enhanced Model vs 

Baseline Experiments section for a detailed description of the controlled experiment 

results. 

Concept Matching Experiments 

 The purpose of this experiment is to evaluate the performance of 3 different concept 

matching methods. Concept matching is an important supporting function of the Ontology 

Embedding Layer that converts the text representation of drug entities or other words and 

phrases within the input text into normalized concepts matched within the ontology. This 

experiment evaluated 3 different implementations of concept matching including: Basic 
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String-matching, an implementation of the Concept Mapper, and a Finite-State Transducer 

implementation. 

 Each concept matching method was evaluated for concept matching accuracy, 

memory footprint, and runtime performance. Each method was evaluated using the DDI 

training dataset using a ChEBI dictionary generated from the ChEBI ontology. Each 

method uses its own data structure to represent the dictionary and its own matching 

algorithm to identify the matching concepts and offset spans over the text. The methods 

were configured to produce the longest matching concept over the drug entity text provided 

by the DDI training dataset. Several metrics were collected for each run of the method. 

Since the algorithms used for concept matching are deterministic (not stochastic) the 

accuracy metric was consistent across multiple trial runs. To gather the matching runtime 

performance and dictionary load time of each method, 3 trial runs were conducted for each 

method and the median metric was selected. The DDI training set, which includes 27,784 

samples featuring 14,748 drug entities, was used to measure the runtime performance of 

each concept matching method.  

 

Results  

Table 5 shows the results for each concept matching method using the SemEval 

2013 DDI training dataset. The concept match accuracy was computed based on the 

accumulated average coverage for each drug entity in the dataset. The coverage metric 

measures the percentage of the drug entity span that was matched by the concept matching 

method. Equation 4 shows the equation for computing the accumulated coverage accuracy 

used in this experiment. The matching algorithm runtime was measured by the elapsed 

number of milliseconds (ms) to process the entire dataset. Additionally, the memory 

footprint was measured by checking the change in memory increase before and after the 

dictionary is loaded. 

∑
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
𝑛
1

𝑛
 

Equation 4 - Match Coverage accuracy equation where 𝒏 represents the number of drug entities in the 

SemEval 2013 DDI training dataset 
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  Method Match 

Accuracy 

Dictionary 

Load Time 
Match Time Memory 

Footprint 

1. Basic String-Matching 0.603 2816ms 10ms 138MB 

2. Concept Mapper (based on Apache Concept Mapper) 0.832 1082ms 61ms 186MB 

3. Concept Matcher using Finite State Transducer 0.833 6694ms 75ms 2GB 

Table 5 - Concept Matching Quality Test 

 

Experiment Findings  

 The results demonstrated that Concept Mapper and Concept Matcher methods 

achieved the best match accuracy, while the Basic String-Matching method achieved the 

best match time and demonstrated the lowest memory footprint of the 3 methods. The 

match accuracy, dictionary load time, and match time results were in line with 

expectations. One unexpected result was the large memory footprint for the Concept 

Matcher (using Finite State Transducer) method. The Finite State Transducer constructs a 

data structure that avoids storing identical subsequences of text by representing sequences 

as character state transitions, while the Basic String-Matching and the Concept Mapper 

both store every string in the dictionary at least one time. The Concept Mapper additionally 

utilizes several TreeMaps used to organize the dictionary entries by length and then by the 

first token of a phrase (Tanenblatt et al, 2010). The Basic String Method was used as a 

baseline comparison using a HashMap to perform string looks ups in a greedy fashion 

looking for the longest string match first before proceeding to substrings. The basic string-

match demonstrated the worse match coverage accuracy. Overall, these results met the 

expectations for the experiment and Concept Mapper was chosen over Concept Matcher as 

the method of choice for concept matching due to its better match time and significantly 

smaller memory footprint while achieving high accuracy on the concept matching quality 

tests. The remainder of this study utilized Concept Mapper to support the ontological 

embedding method results discussed in the next section. 

 

Ontology Enhanced Model vs Baseline Experiments 

 The purpose of this experiment is to evaluate the performance impact of the 

ontology embedding layer using two different state-of-the-art baseline models as a control. 

Using the provided source code for each model, the models were trained and evaluated 
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against the SemEval 2013 DDI benchmark to establish the baseline performance. The DDI 

training dataset was partitioned into a training and validation set using an 80/20 split. The 

same training and validation split were used to fit and evaluate each model configurations 

for 100 epochs using SGD with minibatch size of 64. The training and validation of a model 

configuration represents a trial run. The best model from each trial run was selected by 

evaluating the model performance on the validation set on each epoch and saving the 

weights for the highest F1 validation score. The best performing model from each trial run 

was then evaluated on the DDI test set and the F1 performance is reported later in this 

section.  

The random seed used for model weight initialization was changed on each trial 

run to evaluate the reproducibility of model performance and avoid the known issue of 

“lucky” weight initialization that can position the model weights near the global minima 

of the loss function. Each baseline model was evaluated using the published 

hyperparameters and model architecture.   

 The first baseline model used is the Zhang Y. et al (2018) Hierarchical RNN model. 

This model achieved the 3rd highest reported performance results on the SemEval 2013 

DDI benchmark. The reported results were reproduced during this study, achieving an 

average max F1 of .72 when evaluated against the Test dataset. The results will refer to this 

model as the Zhang baseline. 

 The second baseline model used is the Lamurias & Couto (2019) Zhang+BO-LSTM 

model. This model achieved the 2nd highest reported performance results on the SemEval 

2013 DDI benchmark. The reported results were reproduced during this study, achieving 

an average best F1 of .75 when evaluated against the Test dataset. The results will refer to 

this model as the Zhang+BO-LSTM baseline.  

 At the time of this study, Zheng W. et al (2017) reported the highest performance 

for the SemEval 2013 DDI benchmark of .77 best F1 score. However, as noted in Chapter 

2 – Literature Review, the model source code is not available for review and prior attempts 

by other studies failed to reproduce those results with a similar model. 

After establishing and reproducing the baseline model accuracy performance using 

the DDI benchmark, an extension, referred to as a treatment, is made to each model to 

incorporate the Ontology Embedding layer with the OLIV trained ChEBI concept vectors. 
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This treatment to each baseline model is performed in a controlled fashion by preserving 

all other hyperparameters, model architecture, and input features intact with exception to 

the treated drug entities to be embedded.  

Two different treatments were defined for this experiment. The first treatment, 

labeled Treatment A, replaces the word vector embedding method used by both baseline 

models to embed the drug entities with the ontology embedding method presented in this 

study. The ontology embedding layer method and related parameters are independently 

tuned and optimized using two comparative test experiments discussed in the earlier 

section: Ontology Embedding Layer Experiments. The treatment is applied by 

incorporating the ontology embedding layer to the model and initialized with the pre-

trained embedding weights. 

The second treatment, labeled Treatment B, modifies the Zhang+BO-LSTM 

concept ancestor channel of the model to use the embedded ChEBI concepts produced by 

this study instead of the classic embedding layer used by the Zhang+BO-LSTM model. 

Treatment B is only applicable to the Zhang+BO-LSTM baseline model since it is the only 

baseline model that includes a concept feature channel representing the is-a ancestors for 

each drug entity candidate. 

Figure 26 depicts the locations within the baseline model architecture where the 

treatment is applied. Treatment A is applied to both the Zhang baseline model and 

Zhang+BO-LSTM. Treatment B is applied only to Zhang+BO-LSTM.  
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Figure 26 - Location of Treatment A in Zhang baseline model 

 

 

Figure 27 - Location of Treatment A and B in Zhang+BO-LSTM model 

 

 

Treatment A 

Treatment A Treatment B 
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 Figure 28 through Figure 33 shows the Keras model summary for the Zhang+BO-

LSTM baseline model which extends the Zhang baseline model with the additional 

Common Ancestors input channel. Figure 28 shows each of the inputs to the model 

including the words, part-of-speech, and the positional distance from the drug entities for 

each of the subsequences left, middle, right, and SDP channels.  

 

Figure 28 – Model Inputs for the Zhang+BO-LSTM baseline model 

 

Figure 29 shows the embedding layers used for word, part-of-speech, distance, and the BO-

LSTM ancestor concepts. The changes made to the model when applying Treatment A and 

B are focused in this area of the model. Figure 30 shows where the embedded input features 

are concatenated together to form separate feature groups. 
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Figure 29 - Embedding layers for Zhang+BO-LSTM baseline model 

 

 

Figure 30 - Feature group concatenation and dropout layers for Zhang+BO-LSTM baseline model 
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Figure 31 - Forward and Back LSTM and Concatenation of Forward and Back for Zhang+BO-LSTM 

baseline model 

 

Figure 31 shows the LSTM layers for each of the feature groups. There are two LSTM 

layers used, one that processes the sequence forward and the other in reverse (i.e. 

backwards). The concatenation of the forward and backwards LSTM is known as a 

Bidirectional LSTM. Figure 32 shows the reshaping of each of the resulting outputs from 

the first layer of LSTM, which are concatenated and passed into a final Bidirectional LSTM 

layer. The final output layers for the model are shown in Figure 33 along with the total 

number of trainable model parameters. 
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Figure 32 - Reshaping and concatenation of all channels and final LSTM Forward and Back Concatenation 

for Zhang+BO-LSTM baseline model 

 

 

Figure 33 - Output layer for Zhang+BO-LSTM baseline model 

Figure 34 shows the original BO-LSTM embedding layer taken from the model summary 

above (top) and the changes made to the Zhang+BO-LSTM model when applying the 

OLIV trained embedding layer to the two drug entities and the common ancestors input 

channels (bottom). 

 

Figure 34 - (Top) Compares the original embedding used for common ancestors. (Bottom) shows the OLIV 

embedding layer used to embed both drug entities labeled input_entity_0 and input_entity_1 and the common 

ancestors labeled common_input. 
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Results 

 The results of evaluating each model configuration on the SemEval 2013 DDI Test 

set is shown in Table 6. The best performing model from each trial run was selected based 

on the best validation F1 score during training. Table 6 shows the scores for each trial run 

and provides the min, max, mean, and standard deviation measures for the 10 trials runs. 

The results of the experiments demonstrated that applying Treatment A to the Zhang 

baseline model produced the overall highest F1 performance of .781. The second overall 

highest observed F1 of .780 was produced by applying Treatment A and B to the 

Zhang+BO-LSTM baseline model. These F1 scores represent the highest reported F1 scores 

on the Sem Eval 2013 DDI benchmark at the time of this study. Additionally, the Zhang 

with Treatment A model outperformed the other models on min, max, and mean F1 

measures.  

Both Treatment A and B when applied to the corresponding baseline model 

outperformed the baseline across min, max, and mean F1 measures. Interestingly, 

Treatment A applied to the Zhang baseline model outperformed all other models including 

slightly better results than Zhang+BO-LSTM with Treatment A & B. This finding may 

indicate that the additional model complexity of the BO-LSTM  Ancestors channel does not 

provide additional informative patterns to the model classifier beyond what the OLIV 

embedded concepts provide to a simpler model such as the Zhang baseline.  

Since a higher accuracy is achieved when applying the corresponding treatment to the 

baseline model, this implies that the OLIV Ontology Embedding approach, presented in 

this study, contributes an improvement to the model accuracy for this relation classification 

task. 
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Zhang with OLIV 
Treatment A 

Zhang 
Baseline 

Zhang+BO-LSTM  
with OLIV  

Treatment A & B 

Zhang+BO-LSTM 
Baseline 

Trial # F1 F1 F1 F1 

1 0.77415 0.74408 0.77958 0.75901 

2 0.77136 0.74769 0.76965 0.75325 

3 0.77830 0.73725 0.77497 0.76368 

4 0.77596 0.74074 0.78065 0.76201 

5 0.77010 0.75121 0.77325 0.76558 

6 0.77098 0.75434 0.77453 0.75984 

7 0.77758 0.74427 0.77320 0.76169 

8 0.78167 0.74916 0.77402 0.76014 

9 0.77601 0.73666 0.77203 0.76764 

10 0.77612 0.73560 0.77521 0.76276 

Min 0.77010 0.73560 0.76965 0.75325 

Max 0.78167 0.75434 0.78065 0.76764 

Mean 0.77522 0.74410 0.774709 0.76156 

StdDev 0.00345 0.00616 0.003114 0.00374 

Table 6 - Trial results and statistics using SemEval DDI 2013 Test dataset 

 

Error Analysis 

 To better understand the effects of the new ontology embedding layer within the 

improved model, an error analysis was conducted using the best performing model run for 

each of the model variants considered during the experimentation. The analysis was 

focused on intersecting the correct and wrong prediction on the DDI test set for each model. 

Using this approach, it is possible to reveal which test samples are uniquely predicted 

correctly by each model configuration. Additional analysis can be conducted on test 

instances that were incorrectly classified by all models to better understand the nature of 

the remaining problem space.  

 Figure 35 and Figure 36 show a Venn diagram indicating the set of correct and 

incorrect classifications. Using this visualization, the number of unique correct and 

incorrect samples along with the intersection of correct and incorrect samples can be 

observed. Figure 35 shows a comparison of the treated and untreated Zhang baseline model 

with the Ontology Embedding method presented in this study (i.e. Treatment A). The 

treated model had 194 unique correct classifications that the baseline model misclassified 
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and 149 unique incorrect answers that the baseline model classified correctly. Both the 

treated and untreated model correctly classified the same 3,324 samples and incorrectly 

classified the same 339 samples. 

 

Figure 35 - Error Analysis of Zhang with Treatment A compared to Zhang baseline 

 

 Figure 36 shows the comparison of the treated and untreated Zhang+BO-LSTM 

baseline model. The treated model correctly classified 167 samples that were misclassified 

by the baseline model and misclassified 129 samples that were correctly classified by the 

baseline model. 

 

Figure 36 - Error Analysis of Zhang+BO-LSTM with Treatment A compared to Zhang baseline 

  

 These results demonstrate additional opportunity for accuracy improvement if the 

methods were tuned to capture more of the unique correct classifications by the baseline 

models. Additional analysis can explore common patterns of the unique correct and 

incorrect classifications for each model configuration to gain additional intuition that can 

led to future model improvements. 
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Additional Experiments 

 During this research study, a Java implementation of several different DDI 

Classifier models along with a collection of utilities that including Ontology parser, NLP 

parser, DDI Dataset parser, Concept matchers, feature extractors and vectorizers, and 

model source code. See Appendix D for information on obtaining access to the source code 

and resources. This section reviews additional experiments for models implemented using 

Java and DeepLearning4J along with a framework implemented during this study to 

facilitate the training and evaluation of the SemEval 2013 DDI benchmark. 

 Several different alternative model configurations were explored including an 

implementation of Lamurias & Couto BO-LSTM model. The performance of this model 

against the DDI benchmark was .57 F1, underperforming the Zhang+BO-LSTM baseline 

model.  

Applying insights and learnings from the previous experiments, an additional 

experiment was conducted to explore a model that included additional feature groups and 

layers. The first addition included the UMLS ontology as an additional ontology 

embedding layer that can replace the general word vector feature group and pre-trained 

using the ontology OLIV embedding method that achieved the best performance. The 

intuition for this addition involves the ability to normalize phrases within the sentence to 

concepts. This can also serve as a noise filter by excluding words that are not defined within 

the ontology and therefore assumed to not be important within the domain. Results of 

including UMLS as a feature embedding did not demonstrate a competitive accuracy 

improvement. The results for models featuring UMLS as the primary feature along with a 

combination of Part-of-speech, Word Distance from Drug Entity ranged between .459 and 

.669 F1 accuracy. 

Another feature idea explored whether the structural elements of a sentence was 

important and predictive within the DDI task. A feature called Structure was implemented 

by masking all words, numbers, and drug entity names with symbols. The feature included 

14 different possible symbols including: WORD, COMMA, PAREN, WORD-INPAREN, 

DRUG1, and DRUG2 among others. The following is an example of a sentence that has 

been included into the Structure feature representation: 

[WORD]|[WORD]|[DRUG1]|[AND]|[WORD]|DRUG2]|[PERIOD]| 
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The intuition behind the Structure feature is that the occurrence of the two drugs within the 

sentential structure is an important predictor for negative DDI relations. When the pair of 

drugs are both located within the same coordinated conjunction list, the DDI relation is 

always negative since the items within the conjunction lists are not being compared to each 

other, but rather to another drug outside of the coordinate list. Similarly, clues such the pair 

of drugs occurring immediately after the other within parenthesis is an indication of a 

synonym of the other and therefore is also always a negative DDI. The Structure feature 

was evaluated within several different model configurations that included other features 

such as Word Vectors, Part-of-Speech, Distance to Drug entity, and with the UMLS 

embedding defined earlier. The results for models that included the Structure feature 

ranged from .458 to .460. This feature also underperformed expectations.  

 Various other model configurations were evaluated including: pre and post merging 

feature groups, full and partial masking of drug entities mentioned in text, different number 

of LSTM units used within the hidden layers, and different learning rates. From these 

various configurations, the masking of the drug entities demonstrated the most impact to 

the F1 metric of a model. This result aligned with expectations given the intuition that for 

many DDI samples, the drug names not under consideration in a given sample do not 

contribute to, but rather detract from the performance of the model given the additional 

sequence length and noise introduced by the additional drug names. The optimal masking 

configuration included using one mask symbol replacement for the two drugs under 

consideration and a different mask symbol for the other drugs mentioned within the sample 

text. Note that masking was only performed for feature groups that were not undergoing 

an ontology embedding but rather were using a general word vector embedding. The 

unmasked drug name is required by the ontology embedding layer presented in this study. 

 Another model configuration idea explored was a multi-staged model where each 

stage was optimized towards classifying a subset of the DDI classes. The intuition behind 

this method is based on the insight gained by carefully studying the DDI task and the 

meaning behind each class label. The presence of interclass relationships may be confusing 

the learning algorithm since similar patterns are encountered for different DDI classes. For 

example, DDI relations labeled as Advice may include the mention of an Effect or 

Mechanism with the addition of some advice given to mitigate the DDI. This means that 
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the model will see very similar patterns that sometimes are considered Advice and other 

times they are considered a specific DDI type. Another example of these interclass relations 

include Effect and Mechanism are both a type of DDI relation while Int is also a DDI 

relation but was not specifically qualified as Effect or Mechanism. This implies a 

hierarchical classification scheme. These heterogenous class labels can be partitioned in a 

way that allows a more optimal model to perform class partitioning and leverages these 

interclass relations to its advantage. This model can decompose into a stage that classifies 

Positive vs Negative DDI, a stage that classifies between Int, Effect, and Mechanism, and 

a stage that classifies the presence of Advice within the text. This decomposition 

maximizes the amount of training data that can be used to learn the boundary between these 

classes for each respective stage. The model is trained as 3 separate classifiers that are run 

in sequential order. This model configuration demonstrated an F1 score of .764. This result 

underperformed expectations but additional error analysis and fine-tuning may yield better 

results. 

 Another investigation involved the significance of the SDP feature channel within 

the models. Both the Zhang and Lamurias & Couto models leverage an SDP channel that 

is used to reduce the sentence to the shortest dependency path between the two drug entities 

under consideration. Intuitively this feature appears to be a very important feature since it 

discards irrelevant words that are not part of the linguistic parse between the two drug 

words of interest. This also has the added benefit of reducing the sequence length presented 

to the RNN/LSTM layer which is known to improve the accuracy and avoids exploding 

and vanishing gradient problems during back propagation of deep hidden layers. 

Intuitively, SDP should be a primary feature within the model that contribute a significant 

performance improvement. However, during experimentation, models featuring SDP word 

channels without the presence of other input channels that included the full sentence 

sequence underperformed significantly. Error analysis identified the root cause as the 

absence of important contextual trigger words, such as negation, from the SDP parse 

returned by parser such as Stanford Parser and SpaCy. These trigger words are critically 

important to determining the separation between Positive and Negative DDI classes.   

 After experimenting with different model architectures, Zhang’s hierarchical RNN 

architecture consistently demonstrated the best performance. Additional experiments with 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

91 
 

Zhang’s hierarchical RNN such as removing the SDP feature channel (-.006 to F1) and 

removing the Attention Pooling layer (-.009 to F1) resulted in minimal impact to the model 

performance. This demonstrates that the hierarchical RNN architecture is robust to the 

absence of features that have been reported in the literature as contributing significant 

improvements to accuracy for relation extraction tasks. When comparing the performance 

of the hierarchical RNN architecture to a baseline RNN model that includes the same 

features (Word, Part-of-Speech, and Distance to Drug entity), the hierarchical RNN 

performs +.166 F1 over the baseline. These results demonstrate that modeling a solution 

architecture based on the structure of the problem is effective. The hierarchical RNN is 

modeled as 3 separate input channels that each represents a subsequence of the sample text. 

The left channel represents the sequence of words from the beginning of the sentence to 

the first drug entity, the middle channel represents the sequence between the first and 

second drug entity, and the right channel represents the sequence of words from the second 

drug entity to the end of the sample text. Each channel is processed by an independent 

Bidirectional LSTM. The output of the LSTM layer is merged and processed by a final 

Bidirectional LSTM layer before a final Softmax Classification layer.  
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Chapter 5 

Conclusion 

  Relation extraction remains a complex natural language task. Modern 

neural relation classifiers have demonstrated significant improvements to the accuracy 

performance of relation classification tasks. Most recently, the use of external knowledge 

resources, such as ontologies, together with Recurrent Neural Network architectures have 

demonstrated state-of-the-art performance on these tasks. This study examined the impact 

of expanding the use of ontologies within neural relation classifiers to reveal additional 

hidden patterns not available within the training data. This study presented an ontology 

concept embedding layer that can be trained on the taxonomic and semantic axioms defined 

within a domain ontology. The results gathered during this study support the primary 

hypothesis that incorporating ontological knowledge in addition to the training data, results 

in a repeatable and statistically significant accuracy improvement.   

Using the SemEval 2013 DDI dataset as an established benchmark for measuring 

relation extraction performance, the Ontologically Learned Identity Vector (OLIV) 

embedding method demonstrated higher F1 accuracy when applied to two different state-

of-the-art baseline models. This result demonstrates a new state-of-the-art performance for 

the DDI benchmark. Additionally, the pre-trained OLIV embedding method required 

significantly less trainable model parameters when compared to the corresponding baseline 

model. This results in a smaller model that can be trained faster and less likely to overfit 

the training data. 

Implications 

 Complex fields such as medicine and pharmacology require deep technical 

knowledge of the domain’s concepts and the semantic relations between the concepts.  

Human subject matter experts are trained for many years to learn and master these domains. 

Training machine learning models to match or exceed human performance on tasks within 

these complex domains has proven to be very difficult. The use of neural networks has 

demonstrated some improvements in the performance of these tasks. High-Performance 

computing (HPC) and the use of GPU have allowed neural networks to reach billions of 

trainable parameters. Unfortunately, the amount of training data required to train models 
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of such capacity is scarce and difficult to acquire when operating within regulated 

industries such as healthcare and life sciences research.   

This presents a new challenge that cannot be overcome by improved hardware, but 

instead requires improved algorithms and methods. An additional complication arises from 

the rare class problem that is frequently present within these complex domain tasks. Rare 

events, such as uncommon diseases, present a challenge to the model design due to 

significant class imbalances present in the available training data. Since obtaining 

additional computing capacity and massive data sets are not viable options, the need for 

new methods are required to deliver improved accuracy on these complex tasks.  

This study contributes to several new areas of research that helps to address these 

constraints by leveraging ontologies as an external knowledge source that is used to 

augment training data. Ontologies already serve as a rich source of expertly curated 

knowledge about a domain. By learning an embedding based on all the concepts and 

relations within the ontology, this study demonstrated an improvement to the accuracy of 

a drug-drug interaction classification model with fewer trainable parameters using the same 

amount of training data. 

 

Future Work 

 Natural Language Processing remains an active area of research. Relation 

extraction is a fundamental NLP task that enables higher-order Language Understanding 

tasks. The results of this study open new areas of future research in neural relation 

extraction. The following is a list of additional research areas: 

 

• Several different ontology-based embedding methods were explored during the 

course of this study including using different neural embedding model architectures 

trained to either reconstruct an identity vector of ontological features or to predict 

similar concepts within the ontology graph across different relationship types. 

Future work can explore alternative methods to training the embedding layer to 

capture additional salient information within the ontology such as semantic types 

and other domain specific attributes. 
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• During this study, the ChEBI served as the primary ontology used for training the 

embedding layer given its relevance to the DDI task. Additional experiments were 

performed using UMLS ontology as an additional ontology layer. Unlike the 

ChEBI ontology, it was trained using an Embedding layer together with the DDI 

classifier. Additional work can explore using the OLIV embedding method on the 

UMLS ontology.  

• Ontology-concept embedding depends on effective Concept Matching to resolve 

the best concept match. This study evaluated 3 different concept matching methods 

including an implementation of Concept Mapper which demonstrated the best 

performance during concept matching experiments. During error analysis, a 

significant percentage of False-Negative were attributed to non-contiguous drug 

entity spans. Future work can explore the impact of a non-contiguous span 

matching algorithm to the immediate concept matching performance as well as the 

overall DDI task performance. 

• Several alternative model architectures were explored during this study that 

included different types of layers including Bidirectional LSTM, Dense, Max, 

Average, and Attentive Pooling. The Hierarchical RNN model architecture 

presented by Zhang et al (2018) demonstrates effectiveness towards the relation 

classification tasks studied in this dissertation. Future exploration of new model 

architectures may lead to greater improvements in accuracy on similar relation 

extraction tasks.   

• Shortest-dependency path (SDP) has been utilized by many relation extraction 

models reviewed in this study. The intuition for using SDP relies on the assumption 

that a sentence can be simplified using linguistic rules to discard irrelevant words 

while preserving the words that connect a pair of entities to each other. During 

feature significance analysis, the SDP feature performed poorly when compared to 

other features. Error analysis revealed the likely cause for this unexpected result as 

the absence of critical modifiers, such as negation terms, that are omitted from the 

shortest dependency path. Additional exploration of a dependency path method that 

preserves the salient terms within the sentence can help to simplify models such as 

(Zhang Y. et al, 2018) and (Xu B. et al, 2018) which include full sentence sequences 
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in addition to SDP. Models such as (Lamurias & Couto, 2019) that solely rely on 

SDP-based features miss out on important clues in classifying DDI relations and 

therefore significantly underperform comparable models. Work by (Liu, Y., Wei, 

F., Li, S., Ji, H., Zhou, M., & Wang, H, 2015) proposes a novel neural dependency 

parser that can be trained together with the relation classifier and learn the salient 

features that support the classification task. (Kiperwasser, & Goldberg, 2016) 

propose a standalone neural dependency parser that can be used in place of parsing 

utilities. The learned dependency approach is conceptually similar to Attention-

based methods (Bahdanau et al, 2016) that seek to learn an importance weight for 

words in neural translation tasks. Incorporating these approaches can lead to a 

simplified model that does not depend on external utilities for parsing and is more 

resilient to learning the salient features for a specific relation extraction task. 

• Due to the heterogeneity and implicit interclass relationships between the DDI class 

types, new approaches may benefit from leveraging multi-staged model 

architectures, hierarchical classification layers, or multi-task learning. These 

approaches may help improve the model’s ability to learn from overlapping patterns 

between related class types. This approach may also help mitigate the class 

imbalance problem present in the DDI dataset. For example, the Int class, which 

denotes unspecified DDI interaction type, represents only 0.6% (189 of 27,756) of 

the training dataset. However, the Int class can be thought of as the generic type for 

an Effect or Mechanism class. Another approach may be to frame the classification 

task as a multi-task problem where one or more class labels are assigned to each 

sample. Using a pre-processor to augment the provided training dataset, the Int 

label can be included to each Effect and Mech label. Similarly, the Advice label can 

be added to each Int labeled sample since a DDI interaction is implied on all 

samples classified as Advice. Applying these insights to the model design may 

improve the model performance through transfer learning on a larger sample set.   
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Appendix A 

List of DDI Relation Extraction Models and SemEval Benchmark Metrics 

Authors Year Algorithm Detection 

F1 

Classification 

F1 

Lamurias, A., Sousa, D., Clarke, 

L. A., & Couto, F. M 

2019 BiLSTM w/ Attention w/ 

SDP w/ ChEBI. Extends 

(Zhang Y et al, 2018) 

.6129 .751 

Lim, S., Lee, K., & Kang, J. 2018 Recursive Tree-LSTM w/ 

W2V 
.838 .735 

Sahu, S. K., & Anand, A. (2018). 2018 Dual BiLSTM w/ Attentive 

Pooling and Max Pool 
- .6939 

Zhang, Y., Zheng, W., Lin, H., 

Wang, J., Yang, Z., & Dumontier, 

M 

2018 Hierarchy BiLSTM w/ 

Attention w/ SDP - .729 

Xu, B., Shi, X., Zhao, Z., & 

Zheng, W 

2018 BiLSTM w/ Concept 

Matching MetaMap 
- .7115 

Kavuluru, R., Rios, A., & Tran, T 2017 Char-BiLSTM and Word-

BiLSTM 
 .7213 

Zheng, W., Lin, H., Luo, L., 

Zhao, Z., Li, Z., Zhang, Y., ... & 

Wang, J. 

2017 BiLSTM w/ Input 

Attention w/ Word 

Embedding and Position 

Embedding 

.84 .773 

Wang, W., Yang, X., Yang, C., 

Guo, X., Zhang, X., & Wu, C. 

2017 Multichannel BiLSTM w/ 

DFT/BFT dependency 

parse 

- .72 

Quan, C., Hua, L., Sun, X., & 

Bai, W. 

2016 MultiChannel CNN 
.79 .702 

Zhao, Z., Yang, Z., Luo, L., Lin, 

H., & Wang, J 

2016/7 CNN w/ Word Embedding 
.772 .686 

Liu, S., Tang, B., Chen, Q., & 

Wang, X. 

2016 

(2015 

/12) 

CNN+Word Embedding 

and Position Embedding 
- .6975 

Zheng, W., Lin, H., Zhao, Z., Xu, 

B., Zhang, Y., Yang, Z., & Wang, 

J. 

2016 

(2015) 

Context Vector Graph-

Kernel .818 .684 
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Kim, S., Liu, H., Yeganova, L., & 

Wilbur, W. J. 

2015 SVM w/ Linear kernel 
- .67 

Lamurias, A., Ferreira, J. D., & 

Couto, F. M 

2014 2-stage Kernel-based SVM 

w/ Ensemble  
.7457 .6402 

Chowdhury, M. F. M., & Lavelli, 

A. 

2013 Kernel-based SVM w/ 2-

stages 
.8 .651 

He, L., Yang, Z., Zhao, Z., Lin, 

H., & Li, Y 

2013 Feature-based and Kernel-

based SVM 
.6924 - 

Björne, J., Airola, A., Pahikkala, 

T., & Salakoski, T. 

2011 Feature-based SVM w/ 

syntactic features 
.6299  

Chowdhury, M. F. M., & Lavelli, 

A. 

2011 SVM w/ Shallow 

Linguistic Parse Kernel 
.6370  

Chowdhury, M. F. M., Abacha, 

A. B., Lavelli, A., & 

Zweigenbaum, P 

2011 Feature-based SVM 

.6398  

Thomas, P., Neves, M., Solt, I., 

Tikk, D., & Leser, U 

2011 Kernel-base SVM w/ 

multiple kernels 
.6574  

Segura-Bedmar, I., Martinez, P., 

& de Pablo-Sánchez, C. 

2011 SVM w/ Shallow 

Linguistic Parse Kernel 
.6001  
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Appendix B 

Embedding Methods and Findings 

  This appendix provides a description of five different ontology embedding 

methods explored during this study. The embedding methods evaluated fall into three 

different categories of embeddings: Corpus-guided, Ontology-guided, and Task-guided. 

The first category is corpus-guided embedding. This form of embedding is similar 

to other neural word embedding methods such as Mikolov et al (2013) and Pennington et 

al (2014) that rely on a corpus of data used to guide the unsupervised embedding algorithm. 

Instead of using a corpus of words, the corpus is processed using a concept matching 

method to extract the sequence of concepts over the words and phrases in the corpus. 

Concept matching over the corpus text produces a reduction in the amount of information 

by normalizing domain relevant concepts based on the ontology used by the concept 

matching algorithm. This approach has the added effect of denoising the data by 

eliminating words that do not match a concept and therefore is deemed irrelevant within 

the domain. This approach, however, does not leverage the semantic relations of the 

ontology and therefore its use was only evaluated as part of preliminary experiments and 

with the inclusion of additional Ontologies such as UMLS.  

 The second category of embeddings explored in this study is an ontology-guided 

embedding. This form of embedding relies solely on the ontology data to learn the concept 

embedding. This novel technique was explored as a method to encode the identifying 

attributes of each concept within its taxonomy (is-a hierarchy) and semantic relations to 

other concepts. This approach attempts to cluster similar concepts within a low-

dimensional embedding space where each dimension within the embedding space 

represents semantic properties learned from the ontology. 

 The third category of embeddings described as task-guided does not rely on a 

corpus or an ontology, but instead trained as part of a classification model on a specific 

task. This approach can be considered the classical form of neural embeddings first 

proposed by Bengio et al (2003). 

The following section provides a description of each embedding method evaluated in the 

study: 
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Classic Embedding (Dense Layer) 

 This embedding layer is based on the classic neural embedding by (Hill, Cho, Jean, 

Devin, & Bengio, 2014). This approach was evaluated first and serves as a baseline to 

compare the relative performance of other more sophisticated embedding methods. The 

approach utilizes a dense (fully connected) input layer to the model. The layer’s input 

dimension V is equal to the number of concepts (i.e. vocabulary) within the ontology. This 

dense layer uses the Identity function as its activation function to propagate the incoming 

connection weights V into the D dimensional outgoing weights. Using this approach, 

pretraining the embedding layer is possible by saving the dense layers weights and 

restoring the weights within a target model.  

 This approach was evaluated on embedding task 1 and 2, defined in Chapter 4 

Results - Ontology Embedding Experiments section, by first training the embedding layer 

within a shallow neural network model trained to detect DDI for a pair of candidate drug 

entities. Table 4 shows the results of this experiment. This approach performed poorly 

relative to the other methods evaluated for both the task 1 and task 2. The F1 metric for task 

1 was .093 and .43 average mean error for task 2. 

 These results demonstrate that a conventional embedding approach is not sufficient 

and does not take advantage of the knowledge encoded within the ontology since it only 

relies on the normalized concepts and learns the embedding based on the task definition. 

This further demonstrates that it is not possible to learn the semantics axioms expressed by 

the ontology through specific task such as task 1 (DDI detection).  

 

Concept Identity Vector Encoding 

 This approach uses the ontology to produce a k-hot vector representation for the 

concept’s identity vector. The vector features represent the characteristics of the concept 

within the ontology. These characteristics include the ancestor concepts within the 

taxonomy as well as other concepts it relates to. This idea of an identity vector is leveraged 

by other embedding methods that follow. In this method, the identify vector is used as the 

input to a shallow classification model that is trained on task 1 and evaluated on both task 

1 and task 2. The classifier layer used Softmax with Cross-Entropy loss function as the 
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output layer and the identify vector for each of the two drug entities were concatenated and 

passed to the classifier layer of the model. Additional variations of the model were explored 

such as adding a fully connected dense layer before the output layer. Concatenation of the 

identity vector before and after the dense layer was evaluated. This approach demonstrated 

slightly better performance when compared to the Classical Embedding method on task 1, 

with an F1 metric of .135 and performed significantly better on task 2, with an average 

mean error of .330. 

 Figure 37 shows an example of an identity vector for a concept within the ChEBI 

ontology. Each vector feature (component) represents an ontological attribute for the 

concept. The identify vector is computed by traversing the ontology for each concept and 

setting the feature position flag for each of the taxonomic ancestors as well as the related 

concepts. For this experiment, only the matching concepts from the training dataset were 

used to compute the identity vector. Later experiments build upon this idea of a concept 

identity vector. 

 

Figure 37 - Concept Identity Vector 

 

Autoencoding of Ontological Identity Vector 

 This method explores the use of an unsupervised Autoencoder model trained using 

the concept identity vectors generated from the previous method (Concept Identity Vector 

Encoding). The goal of this task-guided method is to produce a compact representation of 

the k-hot identity vector by reducing the dimensionality and increasing the density of the 

vector positions within the encoded embedding space. Figure 38 shows an illustration of 

the Autoencoder model architecture. An autoencoder (Hinton & Zemel, 1994) employs 



CLASSIFYING RELATIONS USING RECURRENT NEURAL NETWORK WITH ONTOLOGICAL-CONCEPT 
EMBEDDING 

111 
 

several hidden dense layers called the encoder that decrease the dimensionality of the input 

vector until it reaches the target decoder dimensionality. The decoder layers then increase 

the dimensionality until it reaches the original input vector dimensional width. This is at 

times referred to in literature as a funnel architecture. The funnel serves as a compression 

of information that can be trained to efficiently represent features within a reduced 

dimensional feature space. The autoencoder model is trained using an unsupervised input 

reconstruction task that attempts to produce an output vector that matches the input vector. 

This model used the Mean Squared Error (MSE) loss function and a Logistic-Sigmoid 

activation function to bound output range of 0 and 1. 

 

Figure 38 - Autoencoder for Ontological Identity Vector 

 Several experiments were conducted with different number of hidden dense layers 

that reduced the original input vector width to different target dimensionality. The best 

performing model configuration was selected based on its performance in reconstructing 

the input feature. The selected model was then evaluated using task 1 and task 2 for 

comparison to other embedding methods. The results demonstrated relatively poor 

performance in task 1 and average performance for task 2.  
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Ontologically Learned Identity Vectors (OLIV) 

 This method uses a novel unsupervised ontology-guided training approach to 

produce a concept embedding. First a pre-processing step traverses the ontology graph 

visiting each concept node within the graph. For each concept node, the ancestor and 

related concepts are gathered. The method utilizes a max traversal distance from the current 

visited concept. The intuition for limiting the distance is based on the observations that all 

concepts eventually converge on a small number of common ancestors that do not provide 

any distinguishing clues about the concepts. For example, Chemical Entity concept is the 

root for most all concepts in ChEBI and does not provide any informative value. Instead, 

the focus is placed on the concepts most proximal to the target concept. Using a recursive 

graph traversal and dynamic programming algorithm that tracks distance and caches partial 

path results, the pre-processing step can quickly compute related concepts for each concept 

visited in the ontology. For this experiment, the entire ChEBI ontology (114,000 concepts) 

was processed.  

 Next, a shallow neural network model is designed with the goal of predicting for 

each given concept the related concepts that were preprocessed. Using an unsupervised 

training approach to fit the model in such a way that for each one-hot vector representation 

of a given concept the model predicts the likelihood of related concepts in the output. The 

model is trained using SGD with back-propagation. A single dense hidden layer is used 

with the identity function for its activation representing the embedding weights. Figure 39 

shows the model architecture. Several experiments were conducted to evaluate the optimal 

embedding dimension width based on the related-concept task used to train the embedding.  

Table 4 shows that this method demonstrated the best performance for task 1 and task 2 

with an F1 of .35 and .200 average mean error. This approach was selected as the 

embedding method used for the remaining experiments in this study. 
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Figure 39 - OLIV Embedding Model 

 

Ontological Path-encoded Vectors (OPEV) 

 This method uses a heuristic algorithm to construct a path-encoding vector 

representation for each concept. Each vector position represents a distance from the root 

concept. The vector values are normalized using min-max scaling. Figure 40 shows an 

example of the encoding for the Amoxicillin concept. During preliminary experimentation 

with this approach using the ChEBI ontology, several issues were encountered with the 

method. These issues included: multiple inheritance by some concepts, disjoint ontology 

graph where not all paths lead to a root concept, and cycles within some paths where a 

concept node can occur more than one tine providing multiple paths to the root node. 

Lastly, this approach requires one vector representation for each relation type within the 

ontology. For the ChEBI ontology, this is manageable since it only has 9 semantic relations 

in addition to the is-a taxonomic relation. However, other ontologies such as UMLS have 

hundreds of semantic relations requiring hundreds of path-encoded vectors per relation. 

During experimentation and metric gathering using ChEBI, it was found that the average 

number of relations that a concept participates in is 3. This means that most of the concept’s 

vectors representing these relations will have zero values. This sparsity in values is known 

to have a negative impact to neural network activation and ability for the model to learn. 

As such, this approach was abandoned, and no further experimentation was performed. 

 Another drawback of using the OPEV method for concept embedding involves the 

additional complexity introduced to the final DDI model. The approach requires an 

additional input channel for each ontology relation with the input dimensionality of the 
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concept vector. The concept embedding layers would then require a merging strategy 

resulting in a large increase in the total number of trainable parameters required by the 

model. This increase in model capacity can lead to overfitting issues as well as a significant 

increase in training time. 

 

Figure 40 - OPEV Encoding 

 

Ontology Embedding Tests 

 The following section provides an overview and description of the test 

methodology and algorithm used for comparatively evaluating the embedding methods. 

Two different tests were defined to assess the performance of each method. The results of 

each test were collected and analyzed to determine the best performing Ontology 

Embedding method used for the remainder of the study. 

 

Task 1: DDI Detection Test 

The first test is defined as Task1: DDI Detection Test. This test uses a subset of the 

SemEval 2013 DDI Benchmark dataset to evaluate the F1 accuracy metric using only the 

embedding as feature inputs to a shallow neural network featuring a single Dense layer. 

This test evaluates the performance of the embedded drug entities towards the DDI relation 

extraction task. The F1 metric is collected for each embedding method evaluated using this 

test. 

 

Task 2: Ontological Distance Preservation Test 

 The second test is defined as Task2: Ontological Distance Preservation Test. This 

test measures how well the embedding layer can represent relative distances between the 

ontological space (pre-embedding) and the embedding space. This test measures the 
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average of the accumulated error (MSE) using two different distance functions compared 

to the ontological path distance between a pair of concepts. The first distance used is the 

Cosine Distance between a pair of concepts within the embedding space. The second is the 

Euclidean distance between a pair of concepts within the embedding space. 

 The test selects 100 random drug concepts mentioned in the DDI Training dataset. 

Each drug concept is paired with the other 99 concepts and three distances are computed: 

Ontological distance, Cosine distance, and Euclidean distance. The list of distances is 

sorted to produce a ranked list for each respective distance type (i.e. 3 sorted lists of 

concepts ranked by distance). The MSE is computed by using the ranked Ontological 

distance as a reference to compare to the corresponding ranked Cosine distance and ranked 

Euclidean distance. This error is accumulated and averaged over the total number of pair 

permutations produced from the pool of 100 randomly sampled concepts. 

 This test is repeated using the same pool of sampled concepts for each embedding 

method producing an average error based on the Cosine distance and Euclidean distance 

errors.  
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Appendix C 

Experiment Results 

 

  The experiment results for the experiments conducted as part of this study have 

been compiled into an Excel Spreadsheet format. The Java DDI framework, Python 

models, and experiment results are available at: http://mjlorenzo.com/research/ddi/ 

  Each sheet within the experiment spreadsheet includes the metrics with a 

description of each trial run along with model configuration and hyperparameters used. 

The table is organized by experiment numbers. Experiments are re-run multiple times to 

ensure reproducibility and to establish baseline averages to compare against. Blank or 

‘N/A’ values imply that the parameter represented by the column does not apply to that 

experiment.  

 

 

 

  

http://mjlorenzo.com/research/ddi/
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Appendix D 

Source Code and Materials Availability 

 The source code developed for this study along with the preprocessed data for both 

Python and Java are available at: http://mjlorenzo.com/research/ddi/ 

The Python project includes the implementation of the two baseline control models 

used during the experiments. This includes the Zhang Y. (2018) and the Lamurias & Couto 

(2019) DDI Classification Models based on Keras 2.3.1 and Theano 1.0.5 computational 

backend. The project includes the enhanced version of these baseline models with the 

parameter option to run either the baseline or the augmented model which features the 

ChEBI pre-trained embedding layer presented in this study. 

 The Java project includes a port of the Zhang Y and the Lamurias & Couto models 

based on the DeepLearning4J and ND4J computational backend. Additionally, several 

variations of DDI Classification models, including different input channels, are included. 

The code structure is divided into model code, that represents the Neural Network 

Computation Graph along with its hyperparameters; Vectorizers, that transform the 

intermediate feature input format into a vectorized tensor for use with the corresponding 

model; Extractors, used to convert the DDI dataset into intermediate representation of the 

features; SemEval data model for parsing the train and test dataset; and utilities, for parsing 

and traversing the ChEBI and UMLS ontology, Concept Mapper implementation for 

concept matching, and NLP utility for parsing sentences using Stanford NLP Parser.  

 Additionally, the OLIV trained ChEBI concept embedding weights are available 

for download at http://mjlorenzo.com/research/ddi/chebi_300.bin along with the binary 

dictionary representation of ChEBI ontology for use with Concept Mapper at 

http://mjlorenzo.com/research/ddi/chEBI.dic. 

 

http://mjlorenzo.com/research/ddi/
http://mjlorenzo.com/research/ddi/chebi_300.bin
http://mjlorenzo.com/research/ddi/chEBI.dic
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