

Adaptive Batch Size Selection in Active Learning for Regression

by

Anthony Faulds

A dissertation report submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Science

College of Computing and Engineering
Nova Southeastern University

2020

We hereby certify that this dissertation, submitted by Anthony Faulds conforms to acceptable
standards and is fully adequate in scope and quality to fulfill the dissertation requirements for
the degree of Doctor of Philosophy.

___ ________________
Sumitra Mukherjee, Ph.D. Date
Chairperson of Dissertation Committee

___ ________________
Michael J. Laszlo Ph.D. Date
Dissertation Committee Member

___ ________________
Francisco J. Mitropoulos, Ph.D. Date
Dissertation Committee Member

Approved:

___ ________________
Meline Kevorkian, Ed.D. Date
Dean, College of Computing and Engineering

College of Computing and Engineering
Nova Southeastern University

2020

July 27, 2020

July 27, 2020

July 27, 2020

July 27, 2020

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor in Philosophy

Adaptive Batch Size Selection in Active Learning for Regression

by
Anthony Faulds

May 2020

Training supervised machine learning models requires labeled examples. A judicious
choice of examples is helpful when there is a significant cost associated with assigning
labels. This dissertation aims to improve upon a promising extant method – Batch-mode
Expected Model Change Maximization (B-EMCM) method – for selecting examples to
be labeled for regression problems. Specifically, it aims to develop and evaluate alternate
strategies for adaptively selecting batch size in B-EMCM, named adaptive B-EMCM
(AB-EMCM).

By determining the cumulative error that occurs from the estimation of the stochastic
gradient descent, a stop criteria for each iteration of the batch can be specified to ensure
that selected candidates are the most beneficial to model learning. This new methodology
is compared to B-EMCM using mean absolute error and root mean square error over ten
iterations using benchmark machine learning data sets.

Using multiple data sets and metrics across all methods, one of the variations of AB-
EMCM, that uses the max bound of the accumulated error (AB-EMCM Max),
showed the best results for an adaptive batch approach. It achieved better root mean
squared error (RMSE) and mean absolute error (MAE) than the other adaptive and non-
adaptive batch methods while reaching the result in nearly the same number of iterations
as the non-adaptive batch methods.

Acknowledgments

I would like to thank my committee chair, Dr Sumitra Mukherjee, for all his help through
the process and research. Thank you to my committee, Dr Francisco Mitropoulos and Dr
Michael Laszlo. Without them, I would not have the proper guidance to properly research
and share with the world my addition to the world’s body of knowledge. I hope to take
the inquisitive nature I have learned and research oriented processes through the rest of
my career.

Thank you to my wife, Melanie, for your consistent support in pursuing my PhD. You
inspired me to finally go after this achievement. I would not have started this process
without you.

I would like to thank my parents, Vivian Challen and Gary Challen. They have supported
me for many years letting me know that I can do anything I put my mind to. Mom, thanks
for cultivating my interest in math and computers. I would not be the person I am today
without you.

I would like to thank Holly Dreier for her tireless work and dedication with proofreading,
formatting and general help in getting my dissertation cleaned up and complete. I would
not have finished this without you.

Finally, thank you to everyone who has supported me. It means a lot to achieve this and
to be surrounded by people who want to see me succeed.

 v

Table of Contents

Abstract iii
Acknowledgements iv
List of Tables vii
List of Figures viii

Chapters

1. Introduction 1

Background 1
Problem Statement 3
Dissertation Goal 4
Relevance and Significance 4

2. Review of the Literature 6

Overview 6
Active Learning 6
Batch vs Sequential 7
Active Learning for Regression 7
EMCM Method 8
B-EMCM Method 10
Adaptive Batch 13

3. Methodology 14

Overview 1 4
Metrics 14
Data Sets 16
Scaling Results 18
Stop Criteria for Batch Size 20
Linear Increase/Decrease Stop Criteria 21
Max Bound Stop Criteria 22
Relative Change Stop Criteria 24
Estimated vs Actual Stop Criteria 25
Summary 26

 vi

4. Results 27

Overview 27
Comparison of RMSE 27
Comparison of MAE 33
Comparison of Iterations 35
Runtimes 40

5. Conclusions, Implications, Recommendations, and Summary 44

Conclusions 44
Implications 45
Recommendations .45
Summary 46

References 47

 vii

List of Tables

Tables

1. Statistics about Evaluation Data Sets 17

2. Example of Hot Encoding of Categorical Variable 18

3. Iteration Count per Algorithm and Data Set when 40% Data is Labeled 38

4. Average Runtimes per Algorithm and per Data Set 42

5. Ratio of Runtime of each Data Set to PM10 ??

 viii

List of Figures

Figures

1. B-EMCM for Linear Regression 11

2. AB-EMCM for Linear Regression 21

3. Comparison of estimate and actual 24

4. One loop of estimated vs actual 27

5. Averaged RMSE for each batch method 30

6. Averaged MAE for each batch method 35

7. Average number of items in each batch 39

 1

Chapter 1

Introduction

Background

 Supervised machine learning for classification problems is a well-researched topic.

There are many useful techniques to train and to predict from labeled data. In an

academic setting it is easy to devise supervised learning problems in which 100% of the

labels are known. In real-world applications all labels are not known. It is costly and time

consuming to derive the correct labels, often requiring human intervention. The problem

is exacerbated if the data set is very large or if the labels require specializations such as a

doctor’s diagnosis.

 One approach that has proven to work well is the selection of unlabeled data to be

labeled, active learning. This approach has been studied extensively for classification

problems (Lewis and Gale 1994; Settles and Craven 2008; Freund, Seung, Shamir, and

Tishby 1997), but has limited coverage for regression problems (Cai, Zhang & Zhang

2017).

 In recent research (Cai, Zhang, and Zhou 2013), the concept of Expected Model

Change Maximization (EMCM) was introduced, demonstrating how unlabeled data can

be chosen using stochastic gradient descent (SGD). This method defines the chosen

candidates to be labeled as ones that cause the largest change in linear regression

 2

generalized error with respect to the model parameters. They showed that this method of

selection not only worked well with linear regression models, but also generalized to

gradient boosted tree models.

 Then Cai et al (2017) took the research one step further introducing batch-mode

EMCM (B-EMCM). Since it is not practical in the real world to label one item at a time

and retrain, either because training takes too long or because in some instances there is

access to many labelers who can label in parallel, the research was extended to select a

batch of unlabeled data that had the largest effect on SGD while minimizing correlation

between candidates. Essentially this algorithm selects the candidates with little to no

duplicate information that will have the largest change in the model trained parameters.

 The process of selecting candidates in batch is similar to the single item approach, but

instead of labeling and learning from the newly labeled data, the process uses each

accepted candidate to estimate a new model’s generalized error. Adding a subsequent

candidate takes into account previous candidates and an estimation of what is learned

from them.

 Cai et al (2017) assumes a fixed batch selection size, , and recognizes through further

research that selecting an adaptive batch size may increase the accuracy in selecting

candidates that most affect generalized error. Since each element in a batch is selected

based on the accumulated estimate of the change in model parameters, this estimate has

error associated with it and, therefore, the accumulation of change will have an

accumulating error that grows with each addition to the batch. To address the

accumulated error, this dissertation examines several different approaches to selecting an

adaptive batch size.

 3

Problem Statement

 For EMCM, the selection of each element is based on the maximum stochastic

gradient of a linear regression model. As each new element is introduced to the labeled

data, the equations are reevaluated using the new element and its label. B-EMCM takes

the base concept of EMCM and estimates the stochastic gradient of the additional

element. For the batch method, the labels are unknown until the batch is complete and

annotated by humans based on stochastic gradient of the first elements. The

purpose of this is to allow elements to be identified without retraining or evaluating the

changes of SGD linear regression model while taking into account the value of the

element relative to the first elements. Cai et al (2017) identified an issue where “the

estimate accuracy in the model change may decrease with the increase in the size of the

batch, resulting in error accumulation.” They go on to propose “one possible solution to

this problem is to adaptively determine the batch size taking.” The true label is unknown

so this method must use some estimation of the true label in calculating the change in

parameters. Calculating just one element of the batch introduces error. Calculating

elements of a batch introduces an accumulative and compounding error. Since there is

diminishing accuracy of the stochastic gradient, then there is diminishing accuracy that

the element will yield the maximum model parameter change. Therefore, if an

adaptive batch size can be determined, then the chance of selecting non-optimal elements

is reduced. This works in two ways: 1) reducing the batch size when the accumulated

error is big which in turn reduces wasted effort in labeling suboptimal elements, and 2)

increasing batch size when the accumulated error is small to allow for more labeling

between retraining which can reduce the number of batch cycles. If it is shown that the

 4

accumulated error is very small, the batch size could be increased to label more data in

between each model retraining.

Dissertation Goal

 The goal improves upon B-EMCM by developing and evaluating methods for

adaptively selecting batch size; the proposed method is termed AB-EMCM (Adaptive

Batch-mode Expected Model Change Maximization). The B-EMCM method is used as

the control in the experimentation. Overall and final MAE and RMSE over ten iterations

is used to compare AB-EMCM to the control method using standard data sets from UCI

Machine Learning Repository and Carnegie Mellon University data set archive, StatLib.

Relevance and Significance

 Active learning has largely focused on classification problems and there is a scarcity

of active learning research on regression problems. This dissertation develops improved

active learning methods for regression. The approach may be applied to classification

problems that predict class probabilities.

 Most machine learning problems have only partially labeled data due to the sheer

volume of data. For example, forecasting housing prices requires finding housing

historical sales through different systems. It is difficult to get all sales prices for all

houses. A faster way is to get the historical housing sale prices that best help predict for

each area. Although some of this data is publicly available, much of it must be researched

and often requires time and domain expertise. The problem of labeling this data is

complicated by foreclosures or other outliers that must be accounted for when predicting

a sale cost. Another example is building a machine learning model to predict the

emergency room visits. It would consider the careful annotation from subject matter

 5

expertise, using claim data or doctors' notes. It is important to label the date of and reason

for the visit and note its association with other visits stemming from a recurring diagnosis

or injury. AB-EMCM can be used to solve real world problems like these.

 Finally, there is a need to manage resources wisely. There are labeling processes in a

company (or third party companies) to use skilled labelers in a parallel asynchronous

fashion. Although some active learning methods are the fastest to converge in theory,

they often are serial and require only one label per iteration. Or the algorithm chosen has

labelers doing duplicate work which can be an inefficient use of time and money. These

shortcomings can be addressed with B-EMCM and further optimized by making the

batch sizes adaptive.

 6

Chapter 2

Review of the Literature

Overview

 Here active learning is introduced to show the types of real world problems it can

solve. The research of active learning in regression is presented. And finally, EMCM and

B-EMCM are described in detail to set the background knowledge that was needed for

this research.

Active Learning

 Through their history, active learning algorithms have evolved, making a more

accurate system to address problems with partially labeled data. The research by

Campigotto, Passerini, and Battiti (2013) was used to solve many interesting problems or

to readdress older problems with newer, less computationally intensive solutions. de

Fortuny and Martens (2015) used active learning to create interpretable models that

explore and build out human understandable rules.

 Uncertainty sampling has been shown as a more effective method than random

sampling, according to Lewis and Gale (1994) and Settles and Craven (2008). For this,

candidates are selected by least confidence. Query by Committee (QBC) shows the

continued advance of active learning techniques, Freund, Seung, Shamir, and Tishby

(1997). Using multiple separate models trained on different sampling of the primary

training data set, the result is multiple models, each with slightly different results. In

 7

classification problems, the candidates with the most disagreement across the models is

the next item to be labeled. Vote entropy is one of the more popular methods used. For

regression, variance across model predictions is one of the more popular ways to pick up

disagreement.

Batch vs Sequential

 Most of the research in active learning centers around sequential labeling. This is

more optimal than batch because information about the chosen item can immediately be

used to select the new candidate. In practice this can be impractical. The type of problem

in which this researcher is interested considers the nontrivial amount of time or human

expertise to annotate the selected candidates. Therefore, it is practical to batch these

candidates for annotation. Because batch cannot outperform sequential, the unconstrained

optimal solution for batch is to select batch sizes of a single item.

Active Learning for Regression

 Regression is one part of active learning that does not have the amount of research

categorial prediction has. Although many problems can be mapped into categorical space,

having the detailed information that numerical prediction can provide is useful. One

difficult aspect of regression problems is many of active learning are non-parametric,

specifically tree-based algorithms. Taking the first derivative, or calculating descent, can

yield non-continuous results leading to results that do not converge to a solution.

 Given continuous outputs, Freund, Seung, Shamir, and Tishby (1997) remarked that

QBC could be used for regression. Yu, and Kim (2010) provided a method of passive

sampling with which the feature space of the candidates is used to select the best

candidate to label. This method was more efficient as it did not require the calculating or

 8

refreshing of the model. Cai, Zhang, and Zhou (2013) presented an approach to

regression problems that labels the example leading to the largest model change.

EMCM Method

 The goal in EMCM is to select the unlabeled item that reduces the error between

predicted values and true values . The first step is to begin with defined as the

loss function over the labeled training set . This is defined as general loss, , which is a

generic definition of the loss function for supervised machine learning algorithms.

 (1)

SGD is defined by Equation 1 where is the learning rate and is a vector of model

parameters.

 (2)

Using SGD, the change in parameters, , based on a chosen candidate, , can be

approximated by the single value of this sequence.

 (3)

The best candidate, , is chosen from the unlabeled data set, , where there is the largest

change in the model.

 (4)

 This is an estimation based on the current parameters, but the actual change in

parameters is based on all the labeled data and several iterations of this calculation. The

assumption to make this valid is the change with respect to is much greater at the

current then all other labeled data, .

 9

 The next step is to simplify the system and start with linear regression, where is a

vector of the features .

 (5)

For EMCM we want to know which unlabeled item will cause the largest reduction in

generalized error, with respect to change in parameters. For linear regression the squared

error loss is used for the generalized error. is the error over the training set, is the

true value of .

 (6)

Adding an element from the unlabeled data set to the labeled data set results in a squared

error loss of the following:

 (7)

Therefore, the largest change in linear regression parameters using SGD is:

 (8)

Since y is not explicitly known, the purpose of the system is to select the next candidate

to determine y; then an ensemble of bootstraps is used to

estimate . The candidate that results in the largest change in

parameters becomes:

 10

 (9)

where are models trained with bootstrap data from , averaged to estimate the possible

label for each value. This is the single item EMCM step finding the next unlabeled item

to label.

B-EMCM Method

 This research starts with the Bk-EMCM model and extends to develop AB-EMCM. By

including an adaptive batch, each step maximizes the derivative of the loss function.

Bounds placed on the loss function, or on the batch size, stop it from going to one

unlabeled item. This would default the solution to the original EMCM model. Despite

this interesting result, it defeats the purpose of building a practical system for use with

real world problems.

 The B-EMCM algorithm changes this logic into a batch process. After the first item is

selected, the linear regression model changes. That change is estimated by Equation 2:

 (10)

 11

The derivation of the second item’s derivative of change of parameters is:

 (11)

This demonstrates that the derivative of the change of parameters at the second candidate

 is obtained with the current model without retraining, meaning new parameters

of need not to be calculated with each selection in the batch. Each subsequent selection

is selected based on:

 (12)

 12

Figure 1

B-EMCM for Linear Regression
Input:	
				 	Initial	labeled	data	set	
				 	-	Unlabeled	data	set	
				 	-	Ensemble	of	linear	regression	models	based	on	bootstrap	D	
				 	-	Size	of	batch	
Steps:	
1.	Initialize	 	
2.	Calculate	ensemble	bootstrap	 	based	on	labeled	data	
3.	While	 	do	
4.				For	each	x	in	U	do	
5.							 	
6.							Calculate	the	model	change	

										 	
7.				End	for	
8.				Select	 	having	the	greatest	model	change	
9.				 	
10.	End	while	
Output:	
				 	
Note: in pseudo code
 The process of selecting items in the batch is similar to the single item approach, but

the effect of adding each unlabeled item to the labeled set is unknown. Cai et al (2017)

built an estimation of the change to calculate the effect of each subsequent addition. This

change considered some of the item-to-item correlation, so the batch did not include

similar candidates.

 They compared three new techniques to the existing one. The first was the ideal of

batch size equal to one (N1-EMCM), which defaulted to the basic EMCM that they

introduced in the previous research; no batching, just single element retraining. The

second they compared to the naively derived Nk-EMCM, which follows N1-EMCM, but

instead of selecting one element for a batch, it selected k elements. Unfortunately, this

approach did not take into account correlation or information overlap of elements inside

 13

the batch. The third was the B-EMCM method. This was similar to Nk-EMCM, yet it

included an estimation of how each item would affect the model. Therefore, it attempted

to remove items that are correlated or could have added the same information to the

model. This research showed the effectiveness of the batch approach that did not require

recalculation of the model parameters in order to obtain each member of the batch. The

batch approach outperformed other algorithms like random selection, Greedy selection,

QBC, bias variance, full variance and even the naive approach of the single EMCM

selecting the top per loop.

 The previous research used a static value for . Similar to other algorithms that have a

batch, iteration, or step size, calculating an optimal dynamic batch size is shown to

handle a larger set of problems without prior knowledge.

Adaptive Batch

 Batch mode algorithms, like EMCM, have been optimized further by adaptive batch

sizing. Chakraborty, S., Balasubramanian, V., & Panchanathan, S. (2014) introduced a

batch mode active learning (BMAL) framework that combined batch size and candidate

selection into a single algorithm. By varying the batch size, the error can be reduced

faster than the non-adaptive batch method while maintaining the same computational

complexity. This indicates some of the direction of this research to explore adaptive batch

for B-EMCM.

 14

Chapter 3

Methodology

Overview

 The methodology section describes the steps for the different approaches and assures

an accurate and fair assessment of the approach. Metrics are described with advantages

and disadvantages for each, followed by the data sets used for the research then, the

different stop criteria for the batch size are detailed with assumptions and explanations

why and how the methods work.

Metrics

 Starting with the B-EMCM approach used by Cai et al (2017), this research replicated

it to verify the claims, then a baseline model was built for variation comparisons. This

research explored an approach for adaptively selecting batch sizes for the EMCM

algorithm applied to linear and non-linear regression. It provided a selection of possible

adaptive selection algorithms and defined which was best by using standard data sets

measuring its MAE and RMSE and the number of iterations that attained the smallest

error.

 (13)

 (14)

 15

 As discovered in Chai and Draxler (2014), results based on both MAE and RMSE

added similar but varied information related to average, variance and general distribution

of the results. Therefore, this dissertation used both the analysis and comparison of the

results.

 One important metric that was not evaluated in previous research was the standard

deviation of MAE and RMSE. The training of the model was stochastic, so it took several

runs, and averaged results, to determine the effectiveness of the model. In practical

application, the system would run through just once to train and label data. It was

important to understand if most of the solutions had similar MAE as the average or if one

solution had very different MAE, then it would not yield the best results. If there were

two solutions with similar averages but the standard deviation was smaller for one, it was

the better solution.

 To make the methods more comparable, each run across different methods started

with the same labeled, unlabeled and test data sets. Different data sets were used across

different runs to study whether the method was robust under different starting conditions.

Each method ran ten times with different sets, yet both the first and second methods had

the same starting conditions in their respective first runs, as well as in their second runs.

 Another metric not captured in previous research was the variance of MAE and

RMSE. In practical applications, the user could not train the model multiple times and

choose the average model, as it would not yield the same MAE as the average MAE of

all the models. Therefore, running the model once in a practical application had to yield a

MAE plus (or minus) the researched MAE, verifying if the variance of the different

approaches was small. The best solution, given two solutions with similar MAE, was that

 16

with the smaller variance; as in practical situations, a single trained model was likely to

be closer to the predicted MAE.

 The two measures used to evaluate the benefits of this system were MAE and RMSE.

These were evaluated over each iteration of the batch method and calculated on the test

set. These values reduced the MAE or RMSE more quickly in early iterations; yet

comparing after the tenth iteration, it remained superior.

Data Sets

 Because this was a continuation of other work intending to compare methods, this

research used the same data sets as Cai et al (2017). These data sets were studied

thoroughly and provided a valid set of variation showing the ability of the algorithm.

They have been used extensively in regression analysis as shown by Dong and

Taslimitehrani (2015).

 The algorithms were validated using data sets from UCI and StatLib. These cover a

range of regression data types and have been used by the active learning community to

validate new models and processes. Table 1 shows the data sets by name, along with the

data set size and number of features.

 17

Table 1

Statistics about Evaluation Data Sets

Data set Num Examples Num Features Source

Concrete 1,030 8 UCI

CPS 537 8 StatLib

Forest 517 10 UCI

Housing 506 13 UCI

PM10 500 7 StatLib

Redwine 1,599 11 UCI

Whitewine 4,898 11 UCI

 We explored several methodologies for selecting batches per iteration. A pitfall of the

optimization was strictly minimizing MAE. When this was done, the optimal batch size

of resulted. This was shown in Cai et al (2017) work and was intuitive because

 batch size used exact calculation of change in the model parameters with each label

chosen, as opposed to batch which estimated each subsequent step. The goal was to select

the largest value of while performing as well as or equal to the B-EMCM method.

 For these different data sets, the goal was to attain the minimum number of unlabeled

data to be labeled achieving each of the expected results. We took each data set and

determined the least average MAE with different combinations of data. Knowing the

practical minimum of MAE over the iterations yielded an understanding of the level of

optimization of each of these systems.

 18

 To prepare this data for linear models, several transformations were applied. Each set

had categorical and numerical variables. For numerical variables, the data was

normalized using Equation 13.

 (13)

For categorical variables, if there were only two categories, it was converted to 1 and 0,

where each represents one of the categories. If there were more than two categories, the

values were hot encoded. The method for hot encoding was to create new variables,

where was the number of categories. Each variable represented one of the categories

and was set to 1 while the rest were set to 0. For instance, take the variable occupation

from the current population survey (CPS) data set which has values 1 for Management, 2

for Sales, 3 for Clerical, 4 for Service, 5 for Professional, and 6 for Other. This single

numerical variable was encoded into six separate variables as shown in Table 2.

Table 2

Example of Hot Encoding of Categorical Variables

Original
Value X1 X2 X3 X4 X5 X6

1 1 0 0 0 0 0

6 0 0 0 0 0 1

null 0 0 0 0 0 0

5 0 0 0 0 1 0

2 0 1 0 0 0 0

Scaling Results

 Direct comparison of batch method and adaptive batch method was not possible.

Using the earlier work, Cai et al (2017), the unit of the x-axis for the different runs was

 19

the number of iterations. If an iteration number was used, adaptive batch does not mean

the same number of training samples were used per iteration. It could have included all

unlabeled data in the first iteration, which would not have allowed further iterations. It

could have also only included one additional training data item, which was the non-batch

EMCM. The new method could end up labeling more or less than the other methods.

 Therefore, the preferred comparison was using the percent of training data compared

to the total data set size. We used the same amount of training data over the iteration and

determined the number of iterations each adaptive batch method used. All methods

started with 10% labeled data. The batch methods calculated ten iterations, where each

iteration used 3% additional labeled data, finishing with a total of 40% labeled data. The

comparison graphs showed percent labeled data versus RMSE and MAE to indicate what

each method looked like starting from 10% to 40% labeled data.

 This comparison was not yet completed, as the adaptive batch could have taken more

(or fewer) iterations to reach 40% labeled data. The final comparison that was used

calculated the number of iterations necessary to reach 40% labeled data. It was not

desirable to have an adaptive batch default to 1 item per batch, nor was it useful if the

adaptive batch includes all training data in the first iteration. The most desirable solution

was one in which the number of iterations was reduced, and the new solution had smaller

RMSE and MAE compared to batch at each iteration and each percent of labeled data. It

was expected that no solution provided all three items. There were advantages and

disadvantages of each, as discussed in the following section.

 20

Stop Criteria for Batch Size

 The methods explored to evaluate the effectiveness of adaptive batch size included

selecting batches that were potentially better than the B-EMCM method. Figure 1, Line 3

was replaced with specific stop criteria: instead of using a fixed , the stopping points for

a single batch were: linear increase (Linear+), linear decrease (Linear-), max bound

(Max), relative change (Rel), and estimated vs actual (EVA).

 Figure 2 conveys the steps for the new adaptive B-EMCM (AB-EMCM). The items of

change are both Step 3 and Step 10. During each loop the stop criteria was evaluated and,

if a threshold were reached, the loop immediately ended and the batch contained all items

added up to that point.

Figure 2

AB-EMCM for Linear Regression
Input:	

				 	Initial	labeled	data	set	
				 	-	Unlabeled	data	set	

				 	-	Ensemble	of	linear	regression	models	based	on	bootstrap	D	
Steps:	
1.	Initialize	 	

2.	Calculate	ensemble	bootstrap	 	based	on	labeled	data	
3.	While	not	STOP	CRITERIA	
4.				For	each	 	in	 	do	

5.							 	
6.							Calculate	the	model	change	

										 	
7.				End	for	
8.				Select	 	having	the	greatest	model	change	

9.				 	
10.			CALCULATE	STOP	CRITERIA	
11.	end	while	
Output:	

				 	
Note: in pseudo code

 21

Linear Increase/Decrease Stop Criteria

 For a simplified version of stop criteria, an algorithm was applied that worked for

most problems. Intuitively, the expectation was with few labeled data, the first data points

would change the model parameters more drastically than the ones in the final batch. This

method began with a lower number of labeled data added per iteration and linearly

increased the count. The expectation was that the first iteration would take a more

cautious step, adding fewer examples and acting closer to the single EMCM algorithm;

with each iteration taking bigger steps and acting more like the B-EMCM algorithm. Cai

et al (2017) showed that N1-EMCM, which is the single item EMCM method, performed

better than B-EMCM in all tests, as an estimation was used in calculating which item to

add to the batch, and the error in the estimation increased with the size of the batch. This

algorithm started with 1.8%, under the 3% of the batch algorithms, and increased by

0.24% with each iteration; the 10th iteration finished with 4.2% labeled data.

 To demonstrate the differences, the same algorithm was used, yet decreasing the batch

size with each iteration. This version of the stop criteria began 4.2% above the 3% of the

batch algorithms and decreased by 0.24% each iteration to have the 10th iteration finish

with 1.8% labeled data. These two simple versions were used as a baseline for adaptive

batch and as a comparison for the other versions that reacted to either each iteration or the

introduction of increasing error. These two were bound to ten iterations for comparison to

the static batch algorithms, and still included adding in 30% labeled data over those ten

iterations. The other algorithms, described below, were constrained by including 30%

labeled data over the iterations. They took more or less than the ten iterations to attain the

final stop.

 22

Max Bound Stop Criteria

 For Max Bound, when the accumulated error exceeded a set threshold, the current

iteration was terminated and the batch was complete. Equation 4 shows that the best

candidate was based on the one that had the largest change in the parameter vector. That

calculation was based on Equation 3 that introduced an estimation of the parameter

change. This stop criteria required the calculation of the sum of the total possible change.

The concept was to make each batch change the model in equal amounts. If there were

some candidates that created larger changes, only a few were used. If the candidates

created a small amount of change, more were included in the batch. This change was an

estimate. If the accumulated size was large, it was reasonable to assume that it increased

the error in the change calculation proportionally. Therefore, creating batches where the

error was similar made for better selection.

 Calculating a maximum bound for the error introduced by the assumption that the

change in the parameter vector for adding a single element using SGD was approximately

equal to the change in parameter vector based on one iteration of the single element.

Equation 2 shows that one step in SGD was the iteration of Equation 3 over all of the

training data. Assuming the parameters were in a local minimum based on the training

data, this loop should have resulted in zero change and adding one more item to the

training data caused the first step in the iteration of SGD to be equal to Equation 3. Yet

several iterations of the algorithm, often resulted in a different change in parameters,

which was caused by the method being stochastic.

 The actual value of when was added shown in Figure 3.

 23

Figure 3

Comparison of estimate and actual.
One	iteration	of	SGD	
1.	Sample	list	of	training	data	 	
2.	 	
3.	for	each	 	in	sample()	

4.				 	 	
5.	 	
	
Estimated	value	of	theta	for	B-EMCM	
1.	 	

2.	 	
3.	 	
	
 When added to the labeled data set, one item in the unlabeled data set took one to two

iterations to find a local minimum of the squared error, while another took several more

iterations and resulted in a larger overall change to the parameters. If a maximum

estimated error was derived, this was used as a stop criterion to reduce accumulated error

in the estimation and guarantee selected candidates were accurately chosen. If the

estimated error grew too large, the B-EMCM equations were no longer accurate for

finding the best candidate.

 Equation 14 was used to calculate the max bound. was the candidate selected in

each iteration and was the expected change in each iteration of selection.

 (14)

 24

When the bound, exceeded a prescribed value, the batch iteration ended.

Relative Change Stop Criteria

 The concept of this stop criteria was to batch changes together that were relatively the

same level. For most models, as more candidates were selected and labeled, there were

diminishing returns to label subsequent candidates. In a batch, the first element was

selected, then the second, to the element. For this stop criteria the ratio of the change

of the first element over the change of the element was calculated. If this ratio

exceeded a specified threshold, the batch was complete.

 (15)

 If that ratio of model change reached a certain threshold, we assumed that the error in

the first element was larger than the change of the value. Therefore, we stopped adding

elements to the batch. Each batch introduced items that had similar relative influence on

the model. When the change in parameters went above a prescribed threshold (for this we

used ten), then the new items were an order of magnitude lower in error. This method

included items of similar change to the model parameters. When we calculated the

change as an estimate, error was associated with that change. For an item that had a

change that was 10 - 100 times larger than another change, the error of that estimate was

approximately at the same scale as the change of the second item. Therefore, we wanted

to include items of similar scale before going to items that had “the next tier down” in

change.

 The detailed equation for this method is shown in Equation 16:

 (16)

 25

When this value exceeded a prescribed ratio, then the batch was complete for that

iteration.

Estimated vs Actual Stop Criteria

 As Cai et al (2017) suggested in further research, a stop criteria could be formed that

uses estimate of the change in and actual change in after each batch iteration to

determine the batch size of the next step. A large difference indicated that the estimation

was far from actual, and thus the batch size had to be reduced. A small difference

indicates that the estimation matched the actual change and the batch size was increased.

 This method began with an initial batch size, . The value of was adjusted by

comparing the estimated change in , the model parameters, with the actual change of the

model parameters, as described in Figure 3. If this value was zero, than the estimate was

the same as the actual change, in which case we can increased the batch size, . If the

value was significantly positive or negative, it indicated the estimate in change was

incorrect, which invalidated the B-EMCM candidate selection logic and assumptions.

Therefore, the batch size, , was decreased to increase the chance of estimate being

equal to the actual parameter change. To keep the first iterations of this algorithm simple,

this approach increased the batch size by 25% if the difference was within a prescribed

amount. If the difference exceeded the prescribed amount, then the batch size decreased

by 25%.

 26

Figure 4

One loop of estimated vs actual
1.	 	(an	initial	batch	size)	
2.	
3.	For	loop	

4.				
5.	Theta_before	=	current	model	parameters
6.	Retrain	model	with	selected	batch
7.	Theta_after	=	model	parameters	after	training

8.	
9.	if	diff	>	m
10.				
11.	Else
12.			

Summary

 For this research, RMSE and MAE were established as useful metrics to compare the

new algorithms to previously researched algorithms. The algorithms were applied to data

sets from UCI and StatLib used in previous research. The ability to scale the results for

adaptive batch as a batch was a simplified approach, and adaptive batch changed the

number of candidates with each iteration. Using B-EMCM as a starting point, several

different stop criteria were explained. They included several different methods that kept

the errors consistent in each iteration while others reduced the difference of errors of

different candidates in the same iteration.

 27

Chapter 4

Results

Overview

 The different stop criteria have been simulated over several runs. The results of the

different methods were compared to each other and to several baseline algorithms. Each

data set was examined using RMSE and MAE. The methods were then compared by the

number of iterations used to reach 40% labeled data. Finally, runtime was examined and

all four measures were used to determine the best algorithm.

Comparison of RMSE

 The algorithms used for comparison included: Random, Greedy, QBC, B-EMCM,

AB-EMCM Linear +, AB-EMCM Linear -, AB-EMCM Max, AB-EMCM Rel, and AB-

EMCM Eva. Random, Greedy and QBC were calculated as batches so their results would

be compared to the proposed batch algorithm. The results are shown in Figure 5. As seen

in Figure 5, the RMSE decreased over the entire training period for all algorithms.

 28

Figure 5

Averaged RMSE for each batch method:
(a) Concrete (b) CPS (c) Forest (d) Housing (e) PM10 (f) Redwine (g) Whitewine

(a) (b) (c)

(d) (e) (f)

(g)

Note: In Figures 5, 6, and 7, the following colors are used to represent each algorithm:
Blue - AB-EMCM Expected vs Actual (EVA)
Orange - AB-EMCM Linear Increase (Linear+)
Green - AB-EMCM Linear Decrease (Linear-)
Red - AB-EMCM Max Bound (Max)
Purple - AB-EMCM Relative Change (Rel)
Brown - B-EMCM
Pink - Greedy
Grey - QBC
Olive - Random

 The training method for the machine learning model was statistical based on the

selection of training data and the order in which they were used with each iteration. The

RMSE was averaged over twenty runs to determine trends in the different approaches. As

 29

new training data was introduced to the model, the RMSE calculated on the validation set

was sometimes higher than the previous training cycle. What occurred was the new

training data pushed the model out of a local minimum into its optimization to reduce

error in the training set. This was an expected result.

 Figure 5a, shows the different methods as applied to Concrete. The models that stood

out below 20% labeled data were AB-EMCM Linear+ and AB-EMCM Max. Both

quickly jumped to low RMSE values. As the data approached 40% labeled data, AB-

EMCM Linear+ and AB-EMCM Max maintained the lowest RMSE, but B-EMCM

began to gain ground, making up for early higher RMSE. By 40%, AB-EMCM Linear+

had the best RMSE, with B-EMCM and AB-EMCM Linear- closely behind.

 Figure 5b, the results for the methods on CPS, AB-EMCM Linear+ and AB-EMCM

Max had an early advantage with a lower RMSE. AB-EMCM Max lost this advantage

and became worse in the final steps of the iterations. Several other algorithms had an

issue after the second or third iteration in which RMSE increased before decreasing

again, including B-EMCM, AB-EMCM Linear-, AB-EMCM Rel, and AB-EMCM EVA.

This was because the algorithms quickly found a local minimum for the training error

function and then new training pushed it out of that local minimum; it took an iteration to

find a better minimum with the new data.

 For the Forest data, Figure 5c, interesting results happened. The algorithms all

converged fairly quickly. AB-EMCM Max had the highest RMSE and got to the lowest

by 40% labeled data. For this data set, it was much more difficult to draw a solid

conclusion on the results.

 30

 Figure 5d and Figure 5f, Housing and Redwine, yielded similar results to Figure 5a,

Concrete. Again, AB-EMCM Linear+ and AB-EMCM Max reduced RMSE quickly

within the first set of labeled data. AB-EMCM Max stayed well below all algorithms for

all labeled data. It was clearly the best for these two data sets.

 Figure 5e showed PM10 with slightly different results. AB-EMCM Linear+ reduced

RMSE at a much quicker rate than all the algorithms with less data. It outperformed all

algorithms at almost every percentage of labeled data. One interesting note is that AB-

EMCM Max had been performing very well at low labeled percentages, yet for this data

set it was not the lowest RMSE at the beginning or end of the iteration; only for a short

time around 25% labeled. AB-EMCM EVA performed poorly here. The expected vs

actual value was too large. It caused very few items to be chosen. The model started to

reduce the error for the training set, but the RMSE of the validation set grew large.

Basically, AB-EMCM EVA algorithm caused the model to overfit in the beginning

iterations until it received enough diverse training candidates to generalize the model

better.

 Whitewine, Figure 5g, was the only set where AB-EMCM Linear+ did not perform

better than the rest. AB-EMCM Max, on the other hand, gained and maintained a lower

RMSE for the entire run. While training on the whitewine data set, most of the algorithms

had noisy RMSE values; they did not reduce RMSE every iteration. Almost every

algorithm either found local minimums or overfit and broke out of the local minimums

once new training data was introduced.

 It should be noted the B-EMCM, the main algorithm against which we are interested

in comparing, performed well in all of these runs. B-EMCM was regularly the third or

 31

fourth best algorithm related to RMSE on the data sets. For most of the data sets B-

EMCM was slower to converge. It had a higher RMSE on the first 2 to 5 iterations, but

after the fifth, it started to yield the same as AB-EMCM Max and the other algorithm.

 One pattern that can be seen in all of these is that many of the algorithms converged to

the same result by the 40% labeled data. As the pool of candidates reduce, the batch and

adaptive batch algorithms tend to select the same candidates. Therefore, as the active

learning model received more data to train, the algorithms tended toward each other. This

was expected in the absolute case. When 100% of the data was labeled, all the algorithms

would have included all of the data in the training . For 40%, we have labeled all the

possible data left. The reasons why all of the algorithms do not result in the same model

or same RMSE is the stochastic nature of the algorithm and getting stuck in the training

data error local minimum.

 AB-EMCM Linear+ and AB-EMCM Linear- performed as expected. These methods

started with a lower batch count than the static batch methods and increased batch size

linearly with each iteration; or started higher and decreased batch size. These methods

both iterated the same amount of times as the static batch methods and covered the same

amount of labeled data. Intuitively starting with a smaller batch and increasing would do

better than starting a larger batch and decreasing. The model changed more drastically in

the first iterations and its RMSE was much higher. Therefore, the error, or the ability for

the model to predict, was poor. Also, the assumptions made in B-EMCM included a

rounding error in Equation 3 that grew as the batch increased in size. As training samples

were added, the parameters of the model changed more dramatically on the first iterations

than it did on the last iterations.

 32

 AB-EMCM Max performed well on all data sets. Its selection followed the pattern of

AB-EMCM Linear+; starting with smaller sets of batches and increasing the batch size

over the iteration. Where it deviated from AB-EMCM Linear+ was that AB-EMCM Max

was reactive to the data and prediction itself. AB-EMCM Linear+ increased batch sizes at

a steady rate regardless of the data. AB-EMCM Max increased only as the difference of

the expected y value and actual y values of the model decreased. AB-EMCM Max, for

some runs, increased batch size and then decreased batch size if too many of the

candidates caused too much new or unlearned information to be introduced. AB-EMCM

Max outperformed in the first iterations because it took smaller batch sizes. It continued

to outperform because the model learned more without overfitting each step of the

iteration.

 AB-EMCM EVA did not perform well in any of the runs. It took too many small

steps, which proved useful in the first few iterations, yet caused too many similar

examples to be chosen as candidates. This resulted in the model getting many examples

of things similar to what it already learned, so it learned at a slower rate.

 AB-EMCM Rel performed very similarly to B-EMCM relative to RMSE. The cutoff

of ten iterations was used to indicate when the error changed by one order of magnitude

and to end that iteration. This made for similarly sized items to be in the same batch. For

some of the data sets, this was an advantage for the first few iterations, but after that, this

technique became worse. It caused the batches to get too large. To increase the

effectiveness of this algorithm related to RMSE, the cutoff needed to decay over the

iterations. That is something left for further research.

 33

 It appears from this first analysis that AB-EMCM Max was reliably the best method to

reduce RMSE in the first few iterations over the other algorithms; it kept the RMSE

while still reducing RMSE as new candidates were introduced. If the algorithm stopped

prior to the 10th iteration, it would be considered the best in relative to almost all of the

data sets. It typically had the lowest RMSE at each iteration. It also asymptotically

decreased for most data sets which showed the stability and ability to not calculate local

minimums as it learned the data set. That was resolved by the reactive varying of batch

sizes.

Comparison of MAE

 For this analysis and in the previous work, RMSE and MAE are two important

metrics to review. While they both provide similar information on the error of the model

on the validation set, they have differences that are important to understand. As a

comparison it is similar to the way that mean and median are two different statistical

values that contain some similar information individually, but together they represent a

more complete picture. Since RMSE squares values, large individual error values skew

the RMSE. Therefore RMSE is ideal when single, or a few, outlier large errors are

present. RMSE penalizes on the variance of errors which can exaggerate the error. As

demonstrated in Chai and Draxler (2014), even if half of the data has no error, RMSE can

produce the same result as data with all errors, just with a low error variance.

 34

Figure 6

Averaged MAE for each batch method:
(a) Concrete (b) CPS (c) Forest (d) Housing (e) PM10 (f) Redwine (g) Whitewine

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6 shows all of the same algorithms and data sets as Figure 5, but using MAE to

analyze the results. The results are similar to those of Figure 5. The AB-EMCM Max

algorithm reduces RMSE in the first percent of labeled data, and then continues to keep

RMSE lower than the other algorithms. AB-EMCM Linear+ performs at a similar level

to AB-EMCM at times. B-EMCM performs at an average compared to the other

algorithms employed. AB-EMCM EVA performs the worst, as it did with RMSE.

 35

 There are some noticeable differences between RMSE and MAE as it relates to these

algorithms. In several of the data sets, including most notably Concrete Figure 5a and

Figure 6a, the algorithms AB-EMCM EVA and AB-EMCM Linear- had iterations that

increased the RMSE. These errors were exaggerated more in the MAE results. This

would indicate that the variance of errors was small, but the actual error was large for this

model. QBC for Figures 5b and 6b, CPS, also showed a large RMSE regression when

analyzing using MAE. There are just a few cases where the results differed. AB-EMCM

Max showed to be the best algorithm for most data sets when compared to MAE.

Comparison of Iterations

 The RMSE and MAE has been discussed, both in this research and the previous

research. The new metric that was introduced in this research was the difference between

iterations and amount of labeled data. The batch jobs started with 10% labeled data,

added 3% for 10 iterations. For an adaptive batch, it was not reasonable to analyze only

ten iterations. The 10th iteration could have included all possible labeled data, or none at

all. Therefore, for each method, it was important to examine both the number of iterations

and amount of data per iteration. We were most interested in algorithms that optimized

batch sizing. We did not want an algorithm that defaulted to include all data in the first

batch, or one element per batch. Although interesting to note, it did not fit the practical

goals of developing an algorithm useful for annotation that is nontrivial.

Table 3 shows the average number of iterations taken to reach 40% labeled data.

 36

Table 3

Iteration Count per Algorithm and Data Set when 40% Data is Labeled

 AB-EMCM

 Random Greedy QBC B-EMCM Linear+ Linear- Max Rel EVA

Concrete 10 10 10 10 10 10 8 14 24

CPS 10 10 10 10 10 10 12 19 37

Forest 10 10 10 10 10 10 12 16 30

Housing 10 10 10 10 10 10 13 14 19

PM10 10 10 10 10 10 10 14 14 23

Redwine 10 10 10 10 10 10 19 17 33

Whitewine 10 10 10 10 10 10 19 19 37

 The static batch methods all took ten iterations to go from 10% labeled data to 40%

labeled data, using 3% each iteration. AB-EMCM Linear+ and AB-EMCM Linear- were

specifically designed as ten iterations, yet having varying batch size. AB-EMCM EVA

took approximately two to six times the number of iterations as the static methods. This

was accomplished by setting the threshold of the result of Equation 17 to control the

acceptable error. For this research, AB-EMCM Max and AB-EMCM Rel thresholds were

chosen by running tests for the algorithm and determined which yielded the best end of

run RMSE, without exceeding 50 iterations. AB-EMCM Max and AB-EMCM Rel were

less than two times the number of iterations as the static methods. An interesting note was

that AB-EMCM Max took less iterations for Concrete, and in the RMSE and MAE

graphs, outperformed all algorithms except AB-EMCM Linear+. AB-EMCM EVA had

the highest number of iterations. Also note as larger data sets are introduced, like

Whitewine, the number of iterations grew more quickly than linear. The AB-EMCM

EVA algorithm had difficulty scaling to large problems.

 37

Figure 7

Average number of items in each batch:
(a) Concrete (b) CPS (c) Forest (d) Housing (e) PM10 (f) Redwine (g) Whitewine

(a) (b) (c)

(d) (e) (f)

(g)

 Figure 7 a-g shows each algorithm and compares the iteration step with the number of

candidates included in that iteration. Random, QBC, Greedy, and B-EMCM all

overlapped, taking ten iterations, each step using 3% or 0.03 of the candidates to label,

although not every graph shows exactly 3% for these static methods. The data size of

each data set varied, and in order to take 3% of an integer, for some of the data sets, it

required rounding up to the next integer. Therefore, these graphs show the actual percent

of candidates labeled with each iteration.

 38

 AB-EMCM Linear+ shows a constant increase, adding about 2.4% labeled data at the

start, and ending with adding 3.8% labeled data. AB-EMCM Linear- shows a similar

increase, but started by adding 3.8% labeled data and decreased until adding 2.4% labeled

data.

 The reactive algorithms are when these graphs get more interesting. AB-EMCM EVA

started selecting below 3%, but immediately increased to 6% with each step. This

algorithm was too greedy and tried to include most of the training data in each iteration.

With too large of an addition to the training set, the EMCM algorithm lost its validity as

related to the estimated parameter in Equation 2. AB-EMCM Max, in every case, started

with a small batch size and almost immediately increased to take the biggest batch sizes

possible without negatively affecting RMSE. It adjusted with each step, increasing and

decreasing the batch size. This was very different from AB-EMCM Linear+, which was

always increasing. Finally AB-EMCM Rel started below 3% in all cases and stayed low

for the entire iteration, causing this algorithm to take twice as many iterations as the static

to reach 40% labeled data.

 In Figure 5, the AB-EMCM Max significantly outperformed the other algorithms in

Housing (d), Redwine (f), and Whitewine (g). It performed similarly to the second and

third best algorithm for Concrete (a), CPS (b), and PM10 (e). We explored batch size

across all iterations, seeking a pattern for when the algorithm performed well and when it

performed poorly. For Concrete and CPS, AB-EMCM Max started low and oscillated

back and forth between adding about 2% to 6%. Concrete settled at adding 6% for the

last few iterations, but CPS added under 2% for the last few iterations. For PM10, the

 39

batch sizes were not quite as large, yet every iteration jumped between 2.5% and 5%. The

last few iterations added 1.5% until jumping to 3% for the last iteration.

 In contrast, the data sets on which the model performed well tended to stay around 3%

for several iterations or more before changing. Housing started at 2%, jumped to 6% and

then settled below 3.3% for the remaining iterations. Redwine started with very few

candidates per iteration and grew as data was introduced. These large fluctuations at the

final iterations indicated new data or outliers to that training being introduced, which

changed the model significantly. The algorithm was aggressive when adding new data

and then conservative when the model changed too much. Whitewine showed a

progression of conservative batch sizes and then large batch sizes when the errors were

low enough to introduce more data. The data sets for AB-EMCM Max best results were

when it gradually changed batch sizes.

 Another important aspect is that most of the adaptive algorithms took over ten

iterations; they took smaller steps which can increase the effectiveness of the algorithm.

However, the entire advantage was not due to small steps or more iterations. Updating B-

EMCM to twenty iterations with 1.5% added each time increased RMSE effectiveness

slightly. At the extremes, it has been demonstrated that a single element batch resulted in

the best RMSE. Mainly selecting more items to join the batch resulted in error

accumulation. The single element, or non-batch EMCM algorithm, only had the single

error introduced by the estimation in Equation 2. The batch and adaptive batch algorithms

had accumulated errors that were created by estimating the model result based on each

candidate added to the batch.

 40

Runtimes

 Each of the different runs were timed to compare relative speed. The calculations were

completed on a Windows Surface with 1.9GHz processor and 8GB of RAM. These

numbers were not used to determine absolute runtime as better CPUs could reduce

runtime, yet the purpose is to understand the relative runtime between the different

algorithms. Table 4 shows the runtimes of the different algorithms amongst the data sets.

We examined both the relative runtimes of the different algorithms against each other and

how the algorithm scaled up with the varying size of the data in each of the data sets.

Table 4

Average Runtimes per Algorithm and per Data Set

 AB-EMCM

 Random Greedy QBC B-EMCM Linear+ Linear- Max Rel EVA

Concrete 0.080 1.130 3.100 0.870 0.970 0.803 4.400 4.500 9.700

CPS 0.030 0.663 1.010 0.470 0.500 0.500 2.050 3.100 4.775

Forest 0.045 0.650 0.903 0.600 0.575 0.498 1.860 1.950 2.585

PM10 0.035 0.795 1.020 0.450 0.590 0.475 1.785 1.162 2.482

Housing 0.043 0.800 1.065 0.540 0.690 0.533 2.900 2.390 4.560

Redwine 0.130 1.995 7.710 2.020 3.655 2.795 5.363 6.050 13.565

Whitewine 0.273 6.518 74.190 6.050 6.527 6.090 12.065 15.4225 79.472

Note: in seconds

 Table 4 shows that Random was by far the fastest and simplest to calculate. Greedy, B-

EMCM, AB-EMCM Linear+ and AB-EMCM Linear-, which are all fairly lightweight

algorithms, are all the same order of magnitude and took about ten times longer than

Random. Greedy required a minimal amount of calculation for each iteration. B-EMCM

required just one equation per candidate. AB-EMCM Linear+ and AB-EMCM Linear-

 41

are an extension of B-EMCM with a changing batch size that required very little

computation to recalculate. AB-EMCM Max and AB-EMCM Rel are also extensions of

B-EMCM with more complicated calculations than AB-EMCM Linear+, therefore, the

runtime was slightly longer still. QBC had one of the longest as it required model training

of the committee models. AB-EMCM EVA took the longest yet did not have

significantly more calculations than the other AB-EMCM introduced. AB-EMCM

generally took smaller steps which caused more iterations. Each iteration had some

variable time calculations based on additional candidates and some fixed time calculation

based on the current training set. More iterations lead to more model training from the

training set. From this, Random was the best by overall time, B-EMCM was the best of

the batch solutions. If restricted to just the adaptive batch solutions, AB-EMCM Linear+

and AB-EMCM Linear- have the best runtime.

 Another aspect that was examined was the runtimes and how they relate to the size of

each data set. This explored the scalability of each algorithm. Table 1 shows the size of

the data sets in number of examples and number of features. Table 5 shows the relative

runtime of each algorithm and data set relative to PM10, the smallest data set. Therefore,

the ratio in QBC-Concrete was the runtime of QBC-Concrete divided by the runtime of

QBC-PM10. Table 1 and Table 5 were examined together comparing how the algorithms

scaled with data size.

 42

Table 5

Ratio of Runtime of each Data Set to PM10

 AB-EMCM

 Random Greedy QBC B-EMCM Linear+ Linear- Max Rel EVA

Concrete 2.286 1.421 3.039 1.933 1.644 1.691 2.465 3.873 3.908

CPS 0.857 0.834 0.990 1.044 0.847 1.053 1.148 2.668 1.924

Forest 1.286 0.818 0.885 1.333 0.975 1.048 1.042 1.678 1.041

PM10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Housing 1.229 1.006 1.044 1.200 1.169 1.122 1.625 2.057 1.837

Redwine 3.714 2.509 7.559 4.489 6.195 5.884 3.004 5.207 5.465

Whitewine 7.800 8.199 72.735 13.444 11.063 12.821 6.759 13.272 32.019

CPS, Forest, Housing, and PM10 have similar data size and their runtimes across all

algorithms relative to PM10 are nearly 1.0. This shows the algorithms all start from a

similar base runtime. When that is compared to AB-EMCM Rel and AB-EMCM EVA, it

can be seen that the runtimes across these data sets are close to 2.0. These algorithms

produce a higher baseline relative to PM10 and are more sensitive to small increases in

data size. Where the ratio started to diverge is Concrete. That data was 2.0 times larger

than PM10. Several of the relative runtimes are 2.0 times longer, but AB-EMCM Rel,

AB-EMCM EVA and QBC showed an exponential growth in runtime. Redwine, whose

relative size is 3.2 times larger, had 5.207, 5.465 and 7.559 increase in runtime. All the

other algorithms started to show better than linear growth of runtime. Whitewine is the

most pronounced. A ten times increase in data size led to a 13.272, 32.019, and 72.735

times increase in runtime. The best AB-EMCM algorithms relative to runtime were

Linear+, Linear-, and Max. AB-EMCM Max exhibited better than linear behavior as the

data set increased.

 43

 The static batch algorithms have equal batch size and equal number of iterations.

When moving to an adaptive batch, the algorithm can choose varying batch sizes, which

result in a varying number of iterations to reach the 40% labeled data size. The runtime

was partially due to complexity of the algorithm and partly due to batch size choice as the

B-EMCM algorithm itself has overhead each iteration. More iterations lead to longer

runtimes.

 44

Chapter 5

Conclusions, Implications, Recommendations and Summary

Conclusions

 Active learning is an essential part of practical problems. With active learning, the

resources used to label real life examples is not trivial. Selecting the candidates that

reduce the estimated error has been shown to be the best for regression problems using

the EMCM.

 Summarizing the different metrics together, AB-EMCM Linear+ and AB-EMCM

Max showed the best results when looking at RMSE and MAE. When comparing the

number of iterations, all the static batch algorithms, along with both AB-EMCM Linear+

and Linear- finished in 10 iterations. Of the adaptive batch, AB-EMCM Max was closest

to ten iterations, and less than ten in the case of Concrete. Finally, in the analysis of

runtime, both AB-EMCM Linear+ and Linear- and B-EMCM performed the best; they

were the fastest although AB-EMCM Max was not significantly higher in runtime. AB-

EMCM Max also showed better than linear growth as the data size grew: this indicates

the ability of the algorithm to scale. Considering all these aspects, AB-EMCM Max is the

most well rounded algorithm, the most important attribute being its ability to reduce

RMSE to its lowest, with the fastest runtimes during the iterations. As well, it had the

fewest number of iterations to achieve 40% labeled data. fastest runtime. In direct

comparison to B-EMCM, AB-EMCM Max performed better in almost every respect. It is

 45

a substantial addition to B-EMCM to adaptively grow and shrink batch to accommodate

accumulated error.

Implications

 B-EMCM shows that adaptive batch methods can increase the effectiveness of a batch

method. This method does not outperform the single item or non-batch method. But with

a batch, it is useful to real world scenarios where labelers have time to annotate more

than one candidate before retraining the model. The adaptive batch updates the sizes of

the batch with little effect to batch size, yet a large effect to model error when training.

 This research demonstrates that batch size selection and continued work in this area

could result in progressively better EMCM algorithms. AB-EMCM Max used the

accumulated error to determine cutoff for batch sizes. This implies that the increase in

accumulated error does decrease the ability to select the next best candidate.

Recommendations

 The method for max bound stop criteria could be explored further by adding a

reduction factor in the accumulated error. Since the error became smaller with each

iteration, we could reduce the acceptable accumulated threshold to consistently increase

accuracy in the example selection.

 Another item that is open for further research is determining stop criteria in a more

systematic manner. Several algorithms, including the best one as shown in this research

AB-EMCM Max, required the determination of a threshold which is relative in value to

the error and to predicted values of the model. The best value for the threshold was

determined by test runs calculating the best output related to RMSE. For practical

problems, it would be better if this value was a percentage or an absolute value that could

 46

be selected before a run. Learning rate in machine learning is a good example of a value

that is set and determines the ability of a model to learn and converge, but traditionally

has a value that can be recommended before a run.

 When analyzing batch sizes per iterations, it was noted that gradual changes in batch

size led to better results relative to RMSE of the validation set. For further research it

may be advantageous to build damping into the stop criteria equation so that batch sizes

do not change so radically from one iteration to the next. When the errors are low and the

batch size is increased drastically; this could stop too many candidates being added which

can cause the error to increase drastically in proportion to the batch size. Large errors

cause the next batch size to be too small and effectively useless.

Summary

 The research of active learning history was presented leading to the latest work of

EMCM and B-EMCM. Using B-EMCM as a starting point, adaptive batch and stop

criteria were introduced to increase the effectiveness of B-EMCM. Several different stop

criteria were introduced including all AB-EMCM: Linear+, Linear-, Max, Rel, and EVA.

Each of these methods explored a different error as candidates are added to the batch.

These methods were used on the Statlib and Y data sets, and compared against B-EMCM

and several non-batch methods. Analyzing RMSE, MAE, runtime, and number of

iterations, resulted in AB-EMCM Max being the best adaptive batch method to use.

 47

References

Basu, S., Bilenko, M., & Mooney, R. (2004). A Probabilistic Framework for
Semisupervised Clustering. In Proceedings from 10th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (pp. 59–68). Seattle, WA: Association
for Computing Machinery.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

In Proceedings from the 11th Annual Conference on Computational Learning
Theory (pp. 92–100). Madison, WI: Association for Computing Machinery.

Cai, W., Zhang, Y., & Zhou, J. (2013). Maximizing Expected Model Change for Active

Learning in Regression. In Data Mining (ICDM), 2013 IEEE 13th International
Conference on Data Mining (pp. 51-60). IEEE.

Cai, W., Zhang, M., & Zhang, Y. (2017). Batch Mode Active Learning for Regression

With Expected Model Change. IEEE Transactions on Neural Networks and
Learning Systems, 28(7), 1668-1681.

Campigotto, P., Passerini, A., & Battiti, R. (2013). Active learning of Pareto fronts. IEEE

Transactions on Neural Networks and Learning Systems, 25(3), 506-519.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute

error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific
Model Development, 7(3), 1247-1250.

Chakraborty, S., Balasubramanian, V., & Panchanathan, S. (2014). Adaptive Batch Mode

Active Learning. IEEE Transactions on Neural Networks and Learning Systems,
26(8), 1747-1760.

Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., & Tseng, B.

(2011). Boosted multi-task learning. Machine Learning, 85(1-2), 149-173.

de Fortuny, E. J., & Martens, D. (2015). Active Learning-Based Pedagogical Rule

Extraction. IEEE Transactions on Neural Networks and Learning Systems,
26(11), 2664-2677.

Dong, G., & Taslimitehrani, V. (2015). Pattern-Aided Regression Modeling and

Prediction Model Analysis. IEEE Transactions on Knowledge and Data
Engineering, 27(9), 2452-2465.

Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective Sampling Using the

Query by Committee Algorithm. Machine Learning, 28(2-3), 133-168.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of Statistics, 1189-1232.

 48

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning

(Vol. 1, No. 10). New York: Springer series in statistics.

Guillamuni, M., Verbeek, J., & Schmid, C. (2010). Multimodal semi-supervised learning

for image classification. Proceedings from 23rd IEEE Conference: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (pp. 902-909). San
Francisco, CA: IEEE.

Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the Theory of Neural

Computation. Addison Wesley.

Lewis, D. D., & Gale, W. A. (1994, August). A Sequential Algorithm for Training Text

Classifiers. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 3-12).
Springer-Verlag New York, Inc..

Nagy, G., & Shelton, G. (1966). Self-Corrective Character Recognition System. IEEE

Transactions on Information Theory, 12(2), 215–222.

Nigam, K., & Ghani, R. (2000). Analyzing the Effectiveness and Applicability of Co-

training. In Proceedings from the Ninth International Conference on Information
and, Knowledge Management (pp. 86–93). McLean, VA: Association for
Computing Machinery.

Schwenker, F., & Trentin, E. (2014). Pattern classification and clustering: A review of

partially supervised learning approaches. Pattern Recognition Letters, 37(SI), 4-
14.

Settles, B. (2010). Active Learning Literature Survey. Computer Sciences Technical

Report 1648, Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI. Retrieved from
https://hci.cs.uwaterloo.ca/faculty/elaw/cs889/reading/SL/settles.activelearning.pd
f

Settles, B., & Craven, M. (2008, October). An Analysis of Active Learning Strategies for

Sequence Labeling Tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (pp. 1070-1079). Association for
Computational Linguistics.

Verikas, A., Gelzinis, A., & Malmqvist, K. (2001). Using Unlabelled Data to Train a

Multilayer Perceptron. Neural Processing Letters, 14(3), 179–201.

Wagstaff, K. L. (2010). Constrained clustering. In C. Sammut & G. I. Webb (Eds.),

Encyclopedia of Machine Learning (pp. 220–221). Sydney, Australia: Springer.

 49

Yu, H., & Kim, S. (2010, December). Passive Sampling for Regression. In 2010 IEEE
International Conference on Data Mining (pp. 1151-1156). IEEE.

Žliobaitė, I., Bifet, A., Pfahringer, B., & Holmes, G. (2013). Active Learning With

Drifting Streaming Data. IEEE Transactions on Neural Networks and Learning
Systems, 25(1), 27-39.

