
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

A Hierarchical Temporal Memory Sequence Classifier for A Hierarchical Temporal Memory Sequence Classifier for

Streaming Data Streaming Data

Jeffrey Barnett

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Hierarchical Temporal Memory Sequence Classifier
for Streaming Data

by

Jeffrey V. Barnett

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in
Computer Science

College of Computing and Engineering
Nova Southeastern University

2020

07/30/2020

We herct'I) ccrtif~ 1ha 1 this dissertation. submitted b) Jcffrc) Barnell conforms 10 acceptable
standards and i fully adequate in scope and quality to fulfill the dissertation requirements for
the degree of Doctor of Philosophy.

/J; /·,
I ·- (..-v /(_/1-

Wci Li. Ph .D.
Dissertation Comm ittcc Member

lxiang I iu. Ph.D.
Dissertation Cornrnillce Member

Approved:

Meline Kevorkian. Ed.D.
Dean. College of Computing and Engineering

Date

Date

Date

College of Computing and Engineering
Nova Southea~tem Unh er~i t)

202()

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Hierarchical Temporal Memory Sequence Classifier
for Streaming Data

by
Jeffrey V. Barnett

2020

Real-world data streams often contain concept drift and noise. Additionally, it is often the
case that due to their very nature, these real-world data streams also include temporal
dependencies between data. Classifying data streams with one or more of these
characteristics is exceptionally challenging. Classification of data within data streams is
currently the primary focus of research efforts in many fields (i.e., intrusion detection,
data mining, machine learning). Hierarchical Temporal Memory (HTM) is a type of
sequence memory that exhibits some of the predictive and anomaly detection properties
of the neocortex. HTM algorithms conduct training through exposure to a stream of
sensory data and are thus suited for continuous online learning. This research developed
an HTM sequence classifier aimed at classifying streaming data, which contained concept
drift, noise, and temporal dependencies. The HTM sequence classifier was fed both
artificial and real-world data streams and evaluated using the prequential evaluation
method. Cost measures for accuracy, CPU-time, and RAM usage were calculated for
each data stream and compared against a variety of modern classifiers (e.g., Accuracy
Weighted Ensemble, Adaptive Random Forest, Dynamic Weighted Majority, Leverage
Bagging, Online Boosting ensemble, and Very Fast Decision Tree). The HTM sequence
classifier performed well when the data streams contained concept drift, noise, and
temporal dependencies, but was not the most suitable classifier of those compared against
when provided data streams did not include temporal dependencies. Finally, this research
explored the suitability of the HTM sequence classifier for detecting stalling code within
evasive malware. The results were promising as they showed the HTM sequence
classifier capable of predicting coding sequences of an executable file by learning the
sequence patterns of the x86 EFLAGs register. The HTM classifier plotted these
predictions in a cardiogram-like graph for quick analysis by reverse engineers of
malware. This research highlights the potential of HTM technology for application in
online classification problems and the detection of evasive malware.

Acknowledgments

First and foremost, my appreciation goes out to my wife Hanan, whose support was

unwavering, and understanding and compassion went beyond anything that a husband

could ever expect.

Secondly, my heartfelt thanks go out to my dissertation committee of Drs. Cannady,

Liu, and Li for agreeing to support my research and for giving their time, talents, and

feedback. A special thanks to Dr. Cannady, who first inspired me with his course on

Artificial Intelligence in 2003 and has made a lifelong impact on my interest in academia.

I’d also like to thank several of my students who provided various forms of support:

Joshua for explaining some of the nuances of Python, Felix, and Jacob for helping me

record the statistical results from hundreds of output files. Finally, this work would not

have been possible without the many HTM tutorial videos and live data streams provided

by Numenta’s Matt Taylor, whose recent passing shocked the HTM community. As Matt

would often say, “its time for HTM school!”

v

Table of Contents

Approval ii
Abstract iii
Acknowledgments iv
List of Tables vii
List of Figures ix
List of Equations xii

Chapters

1. Introduction 1
Background 1
Problem Statement 3
Goals 5
Objectives 6
Relevance and Significance 6
Barriers and Issues 7
Definition of Terms 9
Summary 15

2. Literature Review 17
Overview 17
Current State of Classifiers 17
Current Approaches for Addressing Concept Drift 18
Temporal Patterns in Data Streams 23
Evasive Malware 25
Malware Evasion Techniques 31
Hierarchical Temporal Memory 37
Summary 46

3. Methodology 47
Overview 47
Classification 47
Data Sets 48
HTM Classifier 50
HTM Algorithm 50
HTM Classifier Encoders 51
Experiments 52
Statistical Significance Validation 58
Computing Resources Used 59

vi

Summary 60

4. Results 62
Experiment I (Artificial Data Streams) 63
Experiment II (Real-world Data Streams) 72
Experiment III (Simulated Malware) 76
Statistical Analysis 89
Comparisons to Other Literature 91
Summary of Results 96

5. Conclusions, Implications, Recommendations, & Summary 97

Conclusions 97
Summary 98
Implications 100
Recommendations 101

Appendices 103
A: Hyperplane Features Description for Experiment I 103
B: LED Features Description for Experiment I 104
C: Random Tree Features Description for Experiment I 105
D: SEA Features Description for Experiment I 106
E: Electricity Features Description for Experiment II 107
F: Airlines Features Description for Experiment II 108
G: Poker Features Description for Experiment II 109
H: SDR Encoder Dictionaries 110
I: Electricity Spatial Pooler, and Temporal Memory Specs 112
J: Simulated Malware using Stalling Code 113
K: Assembly Language Sorting Algorithm 114
L: IDAPro Python script to disassemble x86 executables 132
M: Executable Spatial Pooler and Temporal Memory Specifications 135
N: HTM Classifer (EFLAGS Version) Python Code 136

Reference List 152

vii

List of Tables
Tables

1. Classifier Server Hardware 60

2. Malware Analysis Software 60

3. HTM Classifier Accuracy - Artificial Data sets with 0% noise 64

4. HTM Classifier Accuracy - Artificial Data sets with 10% noise 65

5. HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 0% noise 66

6. HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 10% noise 66

7. HTM Classifier Avg. RAM-Usage (K) - Artificial Data sets with 0% noise 67

8. HTM Classifier Avg. RAM-Usage (K) - Artificial Data sets with 10% noise 68

9. Accuracy (%) of the Classifiers with Real-World Data 74

10. Average run-time (in seconds) of the Classifiers with Real-World Data 75

11. Average RAM usage (in K) of the Classifiers with Real-World data sets 75

12. HTM classifier Malware Analysis EFLAGS prediction accuracy % 1-step 76

13. HTM classifier Malware Analysis EFLAGS prediction accuracy % 5-step 76

14. HTM classifier Malware Analysis RAM usage in K 77

15. Average classifier rank including Artificial and Real-World data sets 90

16. Nemenyi p-values, with no further adjustment 91

17. Comparison to Other Research - Average Accuracy 92

18. Comparison to Other Research - Average CPU run-time (seconds) 94

19. Hyperplane Features Description for Experiment I 103

20. LED Features Description for Experiment I 104

21. Random Tree Features Description for Experiment I 105

22. SEA Features Description for Experiment I 106

viii

23. Electricity Features Description for Experiment II 107

24. Airlines Features Description for Experiment 108

25. Poker Features Description for Experiment II 109

ix

List of Figures
Figures

1. Major Milestones in the Evolution of Evasive Techniques 26

2. SDR Overlap set. Showing random SDR y not matching x' 42

3. Classifier Server Applications and File Structure 54

4. x86 EFLAGS diagram 56

5. Malware Analysis Machine 57

6. Malware Analysis Network 58

7. Abrupt and Recurrent concept drift – SEA data with 0% noise 69

8. Gradual and recurrent concept drift– SEA data with 0% noise 70

9. Abrupt and Recurrent concept drift – SEA data with 10% noise 71

10. Gradual and recurrent concept drift– SEA data with 10% noise 71

11. Electricity dataset: HTM Accuray – 1 and 5 step predictions 73

12. Stalling code: HTM Carry Flag Accuracy - 1 and 5 step predictions 78

13. Sorting code: HTM Carry Flag Accuracy - 1 and 5 step predictions 78

14. Stalling code: HTM Parity Flag Accuracy - 1 and 5 step predictions 79

15. Sorting code: HTM Parity Flag Accuracy - 1 and 5 step predictions 80

16. Stalling code: HTM Auxiliary Flag Accuracy - 1 and 5 step predictions 81

17. Sorting code: HTM Auxiliary Flag Accuracy - 1 and 5 step predictions 81

18. Stalling code: HTM Zero Flag Accuracy - 1 and 5 step predictions 82

19. Sorting code: HTM Zero Flag Accuracy - 1 and 5 step predictions 83

20. Stalling code: HTM Sign Flag Accuracy - 1 and 5 step predictions 84

21. Sorting code: HTM Sign Flag Accuracy - 1 and 5 step predictions 84

22. Stalling code: HTM Trap Flag Accuracy - 1 and 5 step predictions 85

x

23. Sorting code: HTM Trap Flag Accuracy - 1 and 5 step predictions 86

24. Stalling code: HTM Direction Flag accuracy - 1 and 5 step predictions 87

25. Sorting code: HTM Direction Flag accuracy - 1 and 5 step predictions 87

26. Stalling code: HTM Overflow Flag accuracy - 1 and 5 step predictions 88

27. Sorting code: HTM Overflow Flag accuracy - 1 and 5 step predictions 89

28. Nemenyi test results with a 90% confidence level 91

xi

List of Equations

Equations

1. Match 11

2. Overlap 11

3. Friedman statistic 59

1

Chapter 1

Introduction

Background

 The process of analyzing data to discover hidden relationships and predict future

trends has a lengthy history. Commonly referred to as knowledge discovery in databases

before the 1990s (Fayyad et al., 1996), the term is now more widely known as data

mining. Data mining comprises three intertwined scientific disciplines: statistics, artificial

intelligence, and machine learning.

 Over the last twenty years, advances in processing power and speed have enabled

consumers of big data to move beyond manual, tedious, and time-consuming practices to

rapid, effortless, and computerized data analysis. The more complicated the data sets

gathered, the more potential there is to discover relevant insights. Telecommunications

providers, retailers, banks, manufacturers, and insurers are just a few examples of users

with interest in using data mining to find relationships in streaming data. Everything from

price optimization, demographics to how the economy, risk, competition, and social

media are affecting their business models, revenues, and customer relationships.

 Data mining makes heavy use of models generated by classifiers. Unfortunately,

these generated models become quickly obsolete due to the occurrence of changes, also

known as "concept drift" (Mouchaweh, 2016). More formally, concept drift is a term

used to describe changes in the statistical properties of an object or learned structure that

occur over time, which eventually leads to a drastic drop in classification accuracy.

Concept drifts are generally categorized as being either abrupt, gradual, or recurrent

(Bifet et al., 2017; Mouchaweh, 2016). Abrupt or sudden concept drift occurs when the

2

distribution of a concept has remained unchanged for a long time, then changes in a few

steps to a significantly different one).

 An example of this would be the sudden shift of customers’ shopping habits from

one product to another based on some personal change in taste. Gradual concept drift

occurs when the new concept replaces the old slowly over time (Bifet et al., 2017). All

forms of concept drift are a significant issue, especially when learning from data streams

as it requires learners to be adaptive to dynamic changes (Wang et al., 2017).

 The limitation of existing classifiers is that almost all assume that the distribution

of the data is independent and identical (IID) (Bifet et al., 2017; Duong et al., 2018). In a

streaming environment, no part of the IID assumption remains valid. Many of the

modern-day data streams, by there very nature, contain temporal features (e.g., electricity

usage, airline flight data, intrusion detection, stock market prices). It is also often the case

that for specific periods the labels or classes of instances are correlated (aka temporal

dependence) (Bifet et al., 2017).

 In 2004, Jeff Hawkins, a renowned neuroscientist and software developer,

designed the Hierarchical Temporal Memory (HTM) framework as a type of neural

network. HTM represents a shift away from the artificial neuron typically used in

machine learning and artificial neural networks (Hawkins et al., 2017). The HTM

framework consists of artificial neurons that mimic their biological counterparts' use of

binary synapses and learns by modeling the growth of new synapses and the decay of

unused synapses. As a result, HTM receives its training through exposure to a stream of

sensory data; this exposure is what determines the HTMs' capabilities (Hawkins, 2011a).

This research builds upon earlier work by (Hawkins et al., 2017), leveraging the

underlying neocortical theories resident within the HTM framework. Based on studies of

3

the neocortex, HTM regions make inference and prediction on complex data streams.

HTM algorithms also learn temporal sequences (dependencies) that exists in a data

stream. Hawkins (2011c) states that identifying temporal dependencies is difficult

because (a) the system may not know when sequences start and end. (b) there may be

overlapping sequences occurring at the same time. (c) learning has to occur continuously

and has to happen in the presence of noise.

 Hawkins (2011c) further goes on to explain that inference in an HTM region

continuously analyzes streaming data and matches them to previously learned sequences.

An HTM region can identify temporal patterns, but usually, it is more fluid, analogous to

how you can recognize a melody starting from anywhere. Because HTM regions use

distributed representations, its use of sequence memory and inference make HTMs a

viable solution for handling concept drifts, noisy data, and finding temporal dependencies

within in streaming data.

 This report described an HTM sequence classifier that can classify streaming data

that contains concept drift, noise, and temporal dependencies. Such a classifier is

potentially applicable to a wide array of real-world applications, including the detection

of malware that utilizes evasion techniques such as stalling.

Problem Statement

 There currently does not exist an effective method for classifying sequential data

in data streams. The overwhelming volume of data coupled with concept drift, noise, and

temporal dependencies leads to a drastic drop in classification accuracy (Dongre &

Malik, 2014). A great deal of active research utilizing Deep Learning techniques is

currently underway in an attempt to address this problem; however, an effective sequence

classifier continues to elude researchers.

4

 Many fields such as cybersecurity, weather forecasting, and data mining would

benefit a great deal if an effective sequence classifier capable of identifying anomalies in

streaming data existed. Government agencies, private institutions, and citizens rely

heavily on computer networks to store their private information. The problem with this

dependency is that it creates a critical area of vulnerability that is exploited by malware

authors. According to Jadhav, Vidyarthi, and Hemavathy (2016), the advent of malware

that can modify itself using evasion techniques threatens to undermine the integrity,

safety, and security of information that is needed by every organization. Cannady (2013)

stated that while researchers have conducted a great deal of research in intrusion

detection, a reliable solution has yet to surface. The Commander of United States Cyber

Command testified before the Senate Armed Services Committee that, "Cyber-attacks

could hamper our military forces, interfering with deployments, command, and control,

and supply functions, in addition to the broader impact such events could have across our

society" (Rogers, 2016, p. 2).

 The effectiveness of evasive malware and its associated financial costs are

substantial. According to Gandel (2015), Beale chief executive officer of Lloyds, a

British insurance company that is known for specializing in obscure risks such as hack

coverage, reports that cyberattacks cost businesses as much as $400 billion a year. Beale

goes on to report that the demand for cyber insurance has grown considerably in recent

years. The costs of evasive malware are more than just financial; it can also have high

political costs as well. According to McAfee (2017), the US Democratic National

Committee attack in the fall of 2016 was likely conducted using a well-known password-

stealing virus named Fareit that had been modified to use one or more evasion

techniques.

5

 Understanding the methods and techniques employed by malware authors is

crucial to the development of software that is capable of defending against evasive

malware (Barria et al., 2016). In this regard, anti-malware vendors make extensive use of

signature-based techniques for identifying malware. Intrusion detection systems can only

monitor processes for a limited amount of time before labeling them as benign.

According to Osorio et al. (2015), the problem is that evasive malware can take

advantage of this limitation by delaying their harmful behavior long enough to exceed the

intrusion detection systems window for identifying malicious behavior. Evasive malware

often employs methods such as implementing do nothing code (stalling code), waiting for

user interaction or invoking sleep calls to alter the timing sequence of its behavior as a

means to evading detection by intrusion detection systems.

 In response to this problem, this research developed an HTM sequence classifier

that classifies streaming data with concept drift, noise, and temporal dependencies. Also,

this research evaluated the HTM classifier for its potential as a solution for detecting

malware, which utilizes stalling code (trivial instructions) to alter its timing sequence as a

means of avoiding detection by intrusion detection systems.

Dissertation Goal

 The goal of this research was to develop a sequence classifier that can classify

data in a data stream containing concept drift, noise, and temporal dependencies. The

HTM sequence classifier was compared against other concept drift oriented classifiers

using four artificial and three real-world data streams that contained concept drift, noise,

and temporal dependencies. This research also examined the use of the HTM sequence

classifier as a potential solution for detecting evasive malware by training it on a toy

model that contained stalling code.

6

Objectives

 Three objectives were achieved based on the stated goal:

1. Analyze and compare the HTM sequence classifier against other well-known

concept drift oriented sequence classifiers on artificial data streams that contain concept

drift (i.e., abrupt, gradual, and recurrent), noise, but without temporal dependencies.

2. Analyze and compare the HTM sequence classifier against other well-known

concept drift oriented sequence classifiers on real-world data streams that contain concept

drift (i.e., abrupt, gradual, and recurrent), noise, and temporal dependencies.

3. Test the HTM sequence classifier as a potential solution for identifying evasive

malware containing stalling code.

Relevance and Significance

Despite recent advancements in machine learning, modern classifiers are still

susceptible to concept drift. According to Madireddy et al. (2019), high-performance

computing (HPC) systems, used to solve complex computational problems, suffered from

concept drift stemming from root causes such as disk-hog, network-hog, disk-busy, and

packet-loss faults. According to Park, Seo, Jeong, and Kim (2018), many network

intrusion detection systems have to rebuild their models, which are computationally

expensive due to concept drift. Adding to the problem, the detection of concept drift itself

is a challenging subject that is popular in current academic research efforts.

According to (Jadhav et al., 2016), sandboxing (dynamic malware detection) also

has suffered from its own set of limitations stemming from concept drift. Malware writers

often embed in their code the ability to discover virtualized environments by checking for

live internet access, or specific system properties inherent to virtualized environments.

Malware writers often employ a "wait and seek" (aka dormant malware), a technique

7

where knowing the execution time limitations of sandboxes, the malware waits until this

time has passed (Osorio et al., 2015).

Osorio et al. (2015) also showed that malware that uses polymorphic and

metamorphic obfuscation techniques combined with "sandboxing evasion techniques"

reduced the effectiveness of both static detection (signature matching), and dynamic

detection (sandboxing).

Barriers and Issues

 According to Lavin & Ahmad (2015), detecting anomalies in streaming data is a

difficult task, because it requires detectors to process data and to make decisions in real-

time. Though the academic community has proposed a wide variety of anomaly-based

classifiers, benchmarking these techniques adequately concerning their strengths and

weaknesses has fallen short of that needed by industry to warrant investment interest

(Tavallaee et al., 2010). Drew et al., (2016) add that the problem of detecting malware is

made even more difficult due to malware developers attempting to avoid the detection of

their polymorphic software by constantly changing the algorithm's appearance while

keeping its functionality. According to Jadhave et al. (2016), evasive malware generally

falls into two main categories, polymorphic and metamorphic. Polymorphic malware can

change its appearance, whereas metamorphic malware can automatically re-code itself

each time it propagates or is distributed (Jadhav et al., 2016). Evasive malware makes the

job of the Intrusion Detection Systems (IDS) even more difficult as current-day solutions

struggle to keep pace. Cheng, Tay, and Huang (2012) found that machine learning

methods like support vector machines (SVMs) and neural networks used for intrusion

detection, generally suffer from long training times, require parameter tuning, and do not

perform well in identifying evasive malware.

8

Earlier research conducted by Wong and Stamp (2006) support Cheng et al.,

(2012) findings as they discovered that several malware authors had released virus

creation kits capable of producing viruses which shared only a small amount of similarity

thereby making them extremely difficult to reproduce and thus difficult to detect.

Strategies to mitigate the risks associated with this barrier are currently under

consideration by looking for candidate solutions that focus on the evasive technique itself

rather than the malicious software.

 Another potential barrier is that training data is difficult to obtain, especially test data

that adequately simulates real-world attacks by evasive malware. According to Moustafa

and Slay (2015), the traditional data sets KDD98, KDDCUP99, and NSLKDD used for

evaluating the effectiveness of Network Intrusion Detections Systems (NIDS) are out of

date and do not reflect modern-day network attacks. The website VirusShare.com

contains 33,892,901 samples of the real world viruses in the form of executable files.

These samples are packaged into and cataloged into chunks of 65,535 zipped samples per

chunk.

Assumptions

 The majority of real-world data streams inherently contain a combination of one or

more variants of concept drift (e.g., abrupt, gradual, or recurrent), noise, and temporal

dependencies.

 Originally an assumption was made that HTM architecture can not accurately

classify data without temporal dependencies. It turned out that while this was true, the

HTM architecture was able to detect concept drift.

 There is a concern as to how much memory and CPU processing power/time will be

required to implement an HTM sequence classifier in a real-time data stream, along with

9

the continuous learning capability that is needed to identify novel attacks. The three cost

measures (Accuracy, CPU Run-Time, and RAM Usage) will be used to monitor this

concern.

Limitations

 I was unable to find malware labeled as containing stalling code. The sheer

number of data samples available from VirusShare.com (33,892,901) made manual

reverse engineering efforts impractical.

Delimitations

One of the goals of this research was to seek a potential solution for the detection

of evasive malware that utilized stalling code to evade Intrusion Detections Systems

(IDS). The Rombertik malware code snippets published by Giron and Kolbitsch (2015)

provide a real-world example of evasive malware that employs the stalling code behavior

to evade detection.

Definition of Terms

Active duty cycle: A moving average denoting the frequency of column activation

(Hawkins et al., 2017).

AND: See “Intersection” (Hawkins et al., 2017).

Binary vector: An array of bits. SDRs are represented as a binary vector. For the

purposes of this research, SDRs are binary vectors, using the notation 𝐱𝐱 = [𝑏𝑏0, … ,

𝑏𝑏𝑛𝑛−1] for an SDR 𝑥𝑥 (Hawkins et al., 2017).

Bit: A single element of an SDR. Can be in either ON (1) or OFF (0) states (Hawkins et

al., 2017).

10

Concept Drift: Žliobaite, Pechenizkiy, and Gama (2016) state that “Concept drift in

machine learning and data mining refers to the change in the relationships between

input and output data in the underlying problem over time” (p. 1).

Column: An HTM region is organized in columns of cells. The Spatial Pooler (SP)

operates at the column-level, where a column of cells function as a single

computational unit (Hawkins et al., 2017).

Distal dendrite segment: Forms synapses with cells within the layer. Every cell has many

distal dendrite segments. If the sum of the active synapses on a distal segment exceeds

a threshold, then the associated cell enters the predicted state. Since there are multiple

distal dendrite segments per cell, a cell’s predictive state is the logical OR operation of

several constituent threshold detectors. (Hawkins et al., 2017).

Encoder: Converts the native format of data into an SDR that can be fed into an HTM

system (Hawkins et al., 2017).

Hierarchical Temporal Memory (HTM): A theoretical framework for both biological

and machine intelligence (Hawkins et al., 2017).

HTM learning algorithms: Describes the set of algorithms in HTM (Hawkins et al.,

2017).

Inhibition: The mechanism for maintaining sparse activations of neurons. (Hawkins et

al., 2017).

Inhibition radius: The size of a column’s local neighborhood, within which columns

may inhibit each other from becoming active. (Hawkins et al., 2017).

11

Intersection: Of two sets A and B, the intersection is the set that contains all elements of

A that also belong to B, but no other elements; the AND operation, denoted A ∩ B

(Hawkins et al., 2017).

Matching: A match between two SDRs is determined by checking if the two encodings

overlap sufficiently. See “Overlap” definition below. For two SDRs 𝐱𝐱 and 𝐲𝐲:

 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙,𝒚𝒚|𝜽𝜽) ≡ 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒙𝒙,𝒚𝒚) ≥ 𝜽𝜽 (𝟏𝟏)

If 𝐱𝐱 and 𝐲𝐲 have the same cardinality 𝑤𝑤, an exact match can be determined by setting 𝜃𝜃

= 𝑤𝑤 (number of active bits chosen to be on).

Mini-column: See “Column.”

Noise: Meaningless or corrupt data. In SDRs this manifests as randomly flipped ON and

OFF bits (Hawkins et al., 2017).

NuPIC: Numenta Platform for Intelligent Computing. An open-source community

working on HTM (Hawkins et al., 2017).

OR: See “Union” (Hawkins et al., 2017).

Overlap duty cycle: A moving average denoting the frequency of the column’s overlap

value being at least equal to the proximal segment activation threshold (Hawkins et al.,

2017).

Overlap: The similarity between two SDRs is determined using an overlap score. The

overlap score is the number of ON bits in common, or in the same locations, between

the vectors. If 𝐱𝐱 and 𝐲𝐲 are two SDRs, then the overlap can be computed as the dot

product:

𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝐱𝐱,𝐲𝐲) ≡ 𝐱𝐱 ∙ 𝐲𝐲 (𝟐𝟐)

12

Permanence threshold: If a synapse’s permanence is above this value, it is considered to

be fully connected (Hawkins et al., 2017).

Proximal dendrite segments. Forms synapses with feed-forward inputs. The active

synapses on this type of segment are linearly summed to determine the feed-forward

activation of a column (Hawkins et al., 2017).

Receptive field: The input space that column can potentially connect to (Hawkins et al.,

2017).

Sparse distributed representation (SDR): Binary representations of data comprised of

many bits with a small percentage of the bits active (1's). The bits in these

representations have semantic meaning and that meaning is distributed across the bits

(Hawkins et al., 2017).

Sparsity: In a binary vector, the ON bits as a percentage of total bits. Sparsity: At any

point in time, a fraction of the 𝑛𝑛 bits in vector 𝐱𝐱 will be ON and the rest will be OFF.

Let 𝑠𝑠 denote the percent of ON bits. Generally, in sparse representations, 𝑠𝑠 will be

substantially less than 50%. (Hawkins et al., 2017).

Spatial Pooler: One of the HTM learning algorithms. In an HTM region, the Spatial

Pooler learns the connections to each column from a subset of the inputs, determines

the level of input to each column and uses inhibition to select a sparse set of active

columns (Hawkins et al., 2017).

Spatial Pooling: a learning mechanism fundamental to both the neocortex and

Hierarchical Temporal Memory (HTM) tasked with processing inputs from many

different sources without any prior knowledge of what these inputs represent, how

many input bits there will be, and what spatial patterns may exist in the input. The

13

Spatial Pooler does this by accepting an input vector and translating it into an output

vector of a different size with a sparse number of activated bits. The output vector of

the Spatial Pooler represents mini-columns (Hawkins et al., 2017).

Synapse: A junction between cells. In the Spatial Pooling algorithm, synapses on a

column’s dendritic segment connect to bits in the input space (Hawkins et al., 2017). A

synapse can be in the following states:

• Connected – permanence is above the threshold.

• Potential – permanence is below the threshold.

• Unconnected – does not have the ability to connect.

Temporal Memory: Learns sequences of patterns over time, and predicts the next pattern

as an SDR at the level of cells in columns (Hawkins et al., 2017).

Temporal Pooler: One of the HTM learning algorithms. The Temporal Pooler groups

together SDRs that are predictable by the lower layer, forming a single representation

for many different SDRs (Hawkins et al., 2017).

Union: The union of two sets A and B is the set of elements which are in A, in B, or in

both A and B; the OR operation, denoted A ∪ B (Hawkins et al., 2017).

Vector cardinality: The number of non-zero elements in a vector, or the l0-norm. Let 𝑤𝑤

denote the vector cardinality, which is defined as the total number of ON bits in the

vector. If the percent of ON bits in vector 𝐱𝐱 is 𝑠𝑠, then 𝑤𝑤𝐱𝐱 = 𝑠𝑠×𝑛𝑛 = ‖𝐱𝐱‖0. (Hawkins et al.,

2017).

Vector size: Number of elements in a 1-dimensional vector. In an SDR 𝐱𝐱 = [𝑏𝑏0, … , 𝑏𝑏𝑛𝑛−1],

𝑛𝑛 denotes the size of a vector. Equivalently, we say 𝑛𝑛 represents the total number of

14

positions in the vector, the dimensionality of the vector, or the total number of bits.

(Hawkins et al., 2017).

List of Acronyms

APK: Android App Packages

ANN: Artificial Neural Network

ARF: Adaptive Random Forest

AWE: Accuracy Weighted Ensemble

AWS: Amazon Web Services

CAN: Controller Area Network

DBN: Deep Belief Neural

DoS: Denial of Service

DWM: Dynamic Weighted Majority

ESN: Echo State Network

EVB: Encrypted Virus program Body

FCG: Function Call Graphs

HMM: Hidden Markov Model

HPC: High-Performance Computing

HTM: Hierarchical Temporal Memory

HQSOM: Hierarchical Quilted Self-Organizing Map

IDS: Intrusion Detection System

IP: Internet Protocol

IPS: Intrusion Prevention System

LevBag: Leveraging Bag

LSTM: Long Short-Term Memory

15

MPF: Memory-Prediction Framework

ML: Machine Learning

NAB: Numenta Anomaly Benchmark

NIDS: Network Intrusion Detection System

OBoost: Online Boosting

RBC: Rule-Based Classifier

RBM: Restricted Boltzmann Machine

SDM: Sparse Distributed Memory

SDR: Sparse Distributed Representation

SOM: Self-Organizing Map

SP: Spatial Pooler

SQL: Structured Query Language

SYN: Synchronization

SVM: Support Vector Machine

TCP: Transmission Control Protocol

TP: Temporal Pooler

UDP: User Datagram Protocol

VDR: Virus Decryption Routine

VFDT: Very Fast Decision Tree

VM: Virtual Machine

Summary

This chapter provided an overview of the problem of designing a sequence

classifier for sequential data in data streams. As depicted earlier, much of the modern

data streams contain concept drift, noise, and temporal dependencies. This research

16

leveraged the underlying theoretical framework of HTM, which utilizes memory that

records time changing or "temporal" patterns. This research overcame the primary

limitation of finding labeled malware that contained stalling code by creating an

executable based on the Rombertik malware published by Lastline.com. This

research has developed a new classifier based on the HTM architecture that can classify

data within a data stream containing concept drift, noise, and temporal dependencies.

17

Chapter 2

Review of the Literature

Overview

This research focused primarily on exploring the appropriateness of HTM toward

developing a sequence classifier capable of classifying data within data streams

containing concept drift, noise, and temporal dependencies. Because of its ability to learn

sequences over time, HTM will enable the sequence classifier algorithm to identify

programs that use stalling code. The following areas of literature are essential to the

proposed research:

• The current state of classifiers

• Current approaches to addressing concept drift

• Temporal patterns in real-world data streams

• Evasive Malware

• Malware evasion techniques

• Hierarchical Temporal Memory

Current State of Classifiers

The classification problem continues to receive a great deal of attention within the

research community. However, most modern approaches to the classification problem

incorrectly assume that data is stationary (Bifet et al., 2017). Current classification and

data mining literature by Bifet et al., (2017), Mouchaweh (2016), and others have

published that most real-world data streams consist of (possibly infinite) sequences of

items, each having a timestamp and therefore a temporal order. Temporal dependencies

18

within data streams present two main algorithmic challenges, with the first challenge

being the need to extract information in real-time, resulting in approximated solutions to

use less time and memory. The second challenge is that the data often evolves, so

classifier models must adapt when there are changes in the data.

Barcelo-Rico et al. (2016), developed a semi-supervised classification system for

detecting Advanced Persistent Threats (APT) to large organizations. They employed a

process that involved a human expert to first label the training data, followed by training

their classifier on both labeled and unlabeled data. The authors trained the classifier using

three computational intelligence methods: genetic programming, decision trees, and

support vectors. Their solution achieved an 80% accuracy rating. However, their solution

required human expert labeling and did not address concept drift, noise, or temporal

dependencies.

Current Approaches for Addressing Concept Drift

Ghomeshi et al. (2019) developed an ensemble-based concept drift sensitive

classifier named Evolutionary Adaptation to Concept Drifts (EACD). Ghomeshi et al.

(2019) utilized random subspaces of features from a pool of features to create different

classifiers for the ensemble. Each classifier consists of decision trees that were built at

various times over the data stream. Ghomeshi et al. (2019) then employed replicator

dynamics, a popular evolution and prestige-biased learning in game theory, along with a

genetic algorithm that mutates existing classifier models to adapt to different concept

drifts. Those classifiers with higher performance stay in the ensemble while with a lower

performance are gradually removed. Ghomeshi et al. (2019) compared the EACD

classifier with various other classifiers (i.e., ARF, DWM, LevBag, OAUE, and OSBoost

classifiers over four artificial and five real-world data set. Ghomeshi et al. (2019)

19

reported that the EACD demonstrated performances comparable to that of the other

classifiers in their experiments.

Gözüaçik et al. (2019) developed an unsupervised method for detecting concept

drift, Discriminative Drift Detector (D3). D3 uses a sliding window to monitor changes in

the feature space and requires an existing classifier (one without a drift adaptation

mechanism). D3 uses a fixed sliding window of the latest data divided into two sets: the

old and the new. An arbitrary classifier then distinguishes between the two groups based

on the classifiers’ overall performance on the two sets. Gözüaçik et al. (2019) reported

that the D3 scored an accuracy of 86.69% with the Electricity data set, 75.59% Poker

hand data set, and 85.29% with rotating hyperplane dataset. Gözüaçik et al. (2019)

acknowledged that D3 could not detect real concept drifts that are caused by changes

only in conditional distributions of P(y|X). Furthermore, the authors recognize that D3

detects drifts unnecessarily when the change in the P(X) does not affect P(y|X).

Madireddy et al. (2019), address concept drift using a model that identifies the

location of events that lead to the concept drift through an online Bayesian changepoint

detection method, followed by retraining the model on the data collected just before the

drift. Madireddy et al. (2019) address the temporal learning problem through the use of

long short-term-memory-based recurrent neural networks to build the model. Madireddy

et al. (2019) reported that their concept-drift-aware models obtained 58.8% accuracy

improvement. The authors acknowledge that their model requires a large shift in the drift

to be effective.

Goel & Batra (2019) developed the Ensemble-based Online Diversified Drift

detection (En-ODDD) algorithm for detecting concept drift. En-ODDD uses a trigger-

based drift detection mechanism on a block-based ensemble framework. The ensemble

20

addresses concept drift by building experts based on their current performance on the

most recent data chunks. The experts are then updated by pruning using a sliding-window

based deterioration scheme based on how well it is currently performing. Goel & Batra

(2019) augmented the usual incremental classifier training for the En-ODDD by

incorporating an online bagging approach that then updates the ensemble experts. Goel &

Batra state that online bagging increases the predictive accuracy of their ensemble

because diverse learners are better suited at handling concept drift. Goel & Batra (2019)

experiments consisted of nine other block-based classifiers (i.e., DDD, OzaBag, AUE2,

ACE, DWM, WMA, LevBag, ARF, NSE). Goel & Batra’s (2019) experiments utilized

cost measures consisting of prediction accuracy, model cost, training time, and testing

time with 12 artificial and three real-world datasets and report that En-ODDD

outperformed all of the classifiers in their experiments.

Zhang & Chen (2019) developed the Weighted classification and Update

algorithm for data streams based on Concept Drift Detection (WUDCDD) classifier.

WUDCDD uses emerging patterns to build and update the base classifier based on

computing a performance value that combined the Mahalanobis and µ detection standards

for determining error rates. The general process is to (a) build several integration

classifiers (b) determine if concept drift has occurred and (c) update the classifiers based

on the classification error rate derived from the Mahalanobis and µ detection methods.

Zhang & Chen (2019) solution is a form of the basic sliding window algorithm popular in

many classifier solutions.

Pesaranghader et al. (2018) employ a pool-based classifier solution (TORNADO)

for classifying data within data streams that experience concept drift. Their framework

implements a reservoir of diverse classifiers that operate in parallel paired together with a

21

variety of drift detection algorithms. At any point in time, they select the classifier-drift

detection pair, which currently yields the best performance. When determining the best

performing classifier/drift-detection pair, Pesaranghader et al. (2018) take into

consideration memory usage, runtime, drift detection delay, along with the number of

false positives and false negatives. Additionally, Pesaranghader et al. (2018) developed

two drift detection algorithms (e.g., FHDDMS, and FHDDMSadd). The FHDDMS

algorithm creates a stack of sliding windows of different sizes. The windows monitor the

streams using bitmaps and signal an alarm for concept drift based on threshold values.

Pesaranghader et al. (2018) propose that the detection of concept drift occurs faster and is

more accurate occurs when using sliding windows of various sizes. The FHDDMSadd

drift detection algorithm is a variant of FHDDMS that employs data summaries, instead

of bitwise operations.

Yang et al. (2018) developed an ensemble Extreme Learning Machine (ELM) to

address both gradual and abrupt concept drifts (CELM). CELM takes advantage of the

speed that ELMs typically provide and applies Locally Linear Embedding (LLE) to

reduce the dimensions of data blocks. Learning is achieved via an online sequential

learning mechanism that updates the classifiers when the change of data stream is small,

only retraining the entire model when necessary. CELM then categorizes the current data

stream into one of three types: stable, warning, and concept drift, with the difference

being the amount of the current error percentage that the classifier(s) are experiencing.

Yang et al. (2018) report that CELM can detect both gradual and abrupt concept drifts by

using their online sequential learning and concept drift detection mechanisms. However,

Yang et al. (2018) also acknowledge that CELM still has some scalability problems with

the number of hidden nodes and their learning algorithm.

22

Sun et al. (2016) designed a pool-based classifier focused on handling recurrent

concept drift. To aid in the detection of recurrent concept, Sun et al. (2016) develop the

Distribution-Based Detection Method (DBDM), which detects changes by comparing the

distribution of data in different time windows based on the Bernstein inequality which

associates the expected value with variance. Additionally, Sun et al. (2016) developed an

algorithm for dealing with previously seen concept drifts (recurring) named the Recurrent

Detection and Prediction (RDP). Each time a concept drift is detected, RDP first looks to

see if the current concept drift matches any contained in the current graph model; if not,

the new concept drift is added to the graph model.

Zhang et al. (2016) developed a concept drift resilient classifier based on the

calculation of correlation coefficients and information entropy. The correlation

coefficient, also known as the Pearson correlation coefficient, describes the relationship

between the two equal interval variables; information entropy is then used as a tool for

fitting their classification models. The generalized procedure is to (a) process the data

stream in blocks, (b) determine if concept drift has occurred using the correlation

coefficients of the current block and comparing it to that of previous blocks which

provides an entropy value, and (c) after updating the model, it is saved in a classifier pool

to describe previous concepts for use in detecting recurring concept drifts.

Dehghan et al. (2016) also ensemble-based classifier similar to that of Zhang et al.

(2016). Dehghan et al. (2016) employ methods that explicitly detect changes and adapts

the learner to cope with the new concept. The detection of concept drifts is done by

processing samples one by one and monitoring the error of the ensemble classification

method. Dehgan et al. (2016) then count the number of samples with the possibility of

drift and measuring the distances between these samples. If the classifier detects concept

23

drift, it will then be trained on the new concept and added to the pool of existing

classifiers.

It is noteworthy to mention that none of the research in this section addressed

temporal dependencies. While managing concept drift is an essential aspect in the design

of a classifier for data streams, the next section identifies the importance of also

addressing temporal dependencies.

Temporal Patterns in Data Streams

Zhong et al. (2019) developed a deep learning-based classification framework for

remotely sensed time series for California economic crops. Zhong et al. (2019) classified

summer crops using Landsat Enhanced Vegetation Index (EVI) time series using two

deep learning models, Long ShortTerm Memory (LSTM), and one-dimensional

convolutional (Conv1D) layers. The LSTM model remembers values over arbitrary time

intervals, either long or short. Zhong et al. (2019) report that the LSTM improved the

efficiency of depicting temporal patterns at various frequencies, which was a desirable

feature in the analysis of crop growing cycles that often consist of varying lengths. The

Conv1D model employed one-dimensional filters to capture the temporal pattern or shape

of the input series. Zhong et al. (2019) reported that the optimized Conv1D model had the

highest test set accuracy of 85.54% when compared to other deep learning and non-deep

learning models and the LSTM model performing the worst with 82.41% accuracy.

Zhong et al. (2019) concluded that the LSTM was not an appropriate model for their

classification experiment

Lange et al. (2019) describe a proof-of-concept for classifying news articles using

features defined by extracting and normalizing temporal expressions. Lange et al. (2019)

propose using temporal expressions and their characteristics for feature selection used in

24

their classification approach. Lange et al. (2019) use WEKA, an open source machine

learning software, to train k-Nearest-Neighbours and Decision Trees on the features

previously selected. Using datasets consisting of both English and German newspapers,

Lange et al. (2019) reported that their experiments resulted in 69.3% accuracy for a

decision tree and 68.2% accuracy for a 9-NN classifier. These results were achieved

using the generalized normalized values extended with their temporal relation to the

publication date.

Amine et al. (2019) developed an approach for discovering temporal information

within raw data obtained from camera sensors. Their algorithm, Complex Temporal

Dependencies (CTD)-Miner, searched for temporal dependencies between state streams

by transforming raw sensor data sequences into a symbolic time-interval series

representation known as Temporal Abstraction (TA). While the authors' work

demonstrated that it is possible to integrate video analysis methods into a data analysis

process, they did not address concept drift nor the classification problem.

Chiba et al. (2018) developed the DOMAINPROFILER for discovering malicious

domain names that are likely to be used by malware authors in the future. Chiba et al.

(2018) research focused on exploiting temporal variation patterns (TVPs) that exist

within domain names. Chiba et al. (2018) define TVPs as the time-series behavior of each

domain name within various domain name lists, and they observed that both legitimate

and malicious domain names vary dramatically in domain name lists over time. The

DOMAINPROFILER is comprised of a monitoring and profiling module. The

monitoring module collects three types of information for use in profiling module: (i)

domain name lists, (ii) historical DNS logs which contain time series collections of the

mappings between domain names and IP addresses, and (iii) the ground truth used to

25

label the training dataset. The profiler module consists of three steps that utilize the

information collected from the monitoring module:

1. Identify the TVPs for each input target domain.

2. Append DNS-based features to the output of step 1. This consist of target

domain names with identified TVPs.

3. Apply a Random Forest machine learning algorithm for detecting/predicting

possible malicious domain names.

Chiba et al. (2018) report that DOMAINPROFILER predicted malicious domain

names 220 days beforehand with a true positive rate of 0.985.

One of the more recent research efforts with finding temporal dependencies in

data streams was conducted by (Duong et al., 2018). Their work focused on spotting

concept drift by finding change points within the data stream using linear higher-order

Markov processes. The authors developed a k-order Candidate Change Point (CCP)

model that exploits the temporal dependencies between data within the stream. Their

model employs a sliding window approach to calculate the probability of finding change

points using the time-based dependency information or factors between different

observed data points in a stream. Duong et al. (2018) experiments proved to be extremely

fast and accurate over large data streams. However, their research design was for

detecting temporal dependencies and not as a classifier.

Evasive Malware

 The first virus software attack against a computer network occurred in 1971 with

the Creeper Virus written by Bob Thomas at BBN Technologies (Rajesh et al., 2015;

Barría and Cubillos 2016). This attack was an experimental program that self-replicated

and infected DEC PDP-10 computers that used the TENEX Operating System. The

26

Reaper, the first antivirus software, was then developed to delete this virus. Now, more

than 40 years later, the sophistication of both Intrusion Detection Systems (IDS) and

malware has significantly increased with malware authors employing an ever-increasing

number of evasion tactics aimed at avoiding detection of their malware. A technological

war has ensued since this time between the authors of malware and the developers of

intrusion detection applications (Rajesh et al. 2015; Jadhav et al. 2016).

 As reported by McAfee Labs (2017), the first known virus that attempted to

defend itself from anti-malware was the MS-DOS virus Cascade. This virus encrypted

part of its code, thereby making its contents unreadable by security analysts. Figure 1

depicts the first large-scale use of obfuscation by evasive malware was the PowerShell

virus, which utilized Windows commands to hide.

Figure 1. Major Milestones in the Evolution of Evasive Techniques. McAfee Labs
Threats Report (2017), p. 11.

 Malware detection solutions fall primarily into two broad categories: knowledge-

based (inclusive of signature-based) and anomaly-based. Signature-based detection relies

27

on an existing signature database to detect known malware infections, and anomaly-based

detection identifies abnormal behaviors in the data or system. According to Cannady

(2000), anomaly detection comes with a cost of high false-positive rates because any

deviation from the norm results in an alert to the administrator. The primary advantage of

anomaly-based intrusion detection is the capability to detect new or unknown attacks

since the new malware (whose signature is not available) would also generate abnormal

behaviors.

Yaacob et al. (2010) pursued an approach for detecting network attacks based on

a time series model. They presented a model named Autoregressive Integrated Moving

Average (ARIMA) to predict regular network traffic that triggered an early warning if

anomalous network traffic behavior occurred. ARIMA detects abnormal activity by

employing a probability model that utilizes statistical functions that reside within the

International Mathematics and Statistics Library (IMSL) C Numerical Library. Yaacob et

al. (2010) claimed that by comparing forecasted network traffic to real-time network

traffic that it is possible to raise an alert if the specific difference exceeds a preset

threshold; in their implementation, they set a limit of 15% for the threshold. Yaacob et al.

(2010) focused their solution on User Datagram Protocol (UDP) flooding and

Transmission Control Protocol (TCP) synchronization (SYN) attacks. UDP flooding was

identified by measuring the volume of incoming and outgoing traffic and defining the

model of normality. ARIMA detected TCP SYN flooding by predicting the correct ratio

of SYN packets to the number of completed TCP handshaking sessions. Yaacob et al.

(2010) showed that ARIMA successfully identifies DoS (Denial of Service) attacks as

abnormal data. However, they acknowledged that ARIMA does not perform well in low

volume networks consisting of less than 1 Megabytes of traffic per second.

28

 Network attacks that distribute themselves over time are difficult to detect.

Cannady (2013) addressed this problem by taking an approach that recognizes temporally

distributed attacks based on a modified Hierarchical Quilted Self-Organizing Map

(HQSOM). HQSOMs are an extension of the original Self-Organizing Map (SOM)

algorithm written by Kohonen (2001). Cannady's (2013) primary motivation behind using

the HQSOM was to implement an algorithm that realized the concepts described in the

Memory-Prediction Framework (MPF). MPFs include feedback loops that facilitate

prediction, similar to the idea that there are structures in the brain that are responsible for

processing a variety of different signals and share many structural similarities.

 Cannady (2013) utilized a "leaky integrator," which combined an adaptive

learning parameter with variable spatial and temporal clustering to associate the

components of the attack. During the evaluation of the prototype, Cannady (2013)

injected the attack patterns for three network attacks (e.g., Internet Protocol (IP)

Spoofing, Low-rate DoS, and Teardrop) into the network data stream at three distinct

periods of temporal distribution (e.g., 200, 500, and 800 milliseconds). Cannady (2013)

then evaluated the HQSOMs ability to identify attack patterns at different levels of

temporal distribution. Cannady (2013) reported that the accuracy of the HQSOM in

detecting attack patterns was highest when the decay rate was at the lowest setting and

lowest when the decay rate was at the highest setting. Cannady (2013) also reported that

by enabling the leaky nodes to decay more slowly, the indicators of the temporally

distributed attack patterns could be more easily detected. Cannady's (2013) work

demonstrated the ability of HQSOM to identify temporally distributed network attacks by

utilizing leaking nodes effectively.

29

 Jadhav et al. (2016) state that there does not exist a signature-based solution that

is not susceptible to trivial obfuscation techniques by evasive malware, and that can

accurately adapt its signature database. Due to this inherent weakness with signature-

based solutions, anti-malware vendors are not able to keep pace with malware authors

who utilize evasion techniques. Vendors struggle to generate and implement innovations

capable of detecting altered or new forms of malware, thus creating a need for constant

patching, which equates to an endless cycle of adaptation-patching between the malware

author and anti-malware vendor. Anti-malware vendors do not currently have a means for

breaking this adapt/patch cycle as the current signature-based solution paradigm is

susceptible to malware evasion techniques and requires constant updating, often after the

damage is already done (Marpaung et al., 2012). Similar research by Singh et al. (2012)

concurs that Machine Learning (ML) methods are not effective against malware with

characteristics that change over time, because they require the ML model to retrain

continually. Research by Canfora et al. (2015) supported Singh et al. (2012) findings in

that they showed that obfuscation methods that perform trivial code transformations

thwarted current signature-based detection solutions. Also, Canfora et al. (2015)

concluded that signature-based techniques for identifying malware are susceptible to a

variety of malware evasion techniques, thus locking anti-malware developers and

malware developers into a never-ending cycle of adaptation-patching.

Even non-signature-based solutions for intrusion detection have their drawbacks,

as Alom et al. (2015) reported that the primary disadvantage of anomaly-based intrusion

detection is that it is more prone to generating false positives. Alom et al. (2015) explored

an approach that applies a Deep Belief Neural (DBN) network to the intrusion detection

problem that stacks a Restricted Boltzmann Machine (RBM) and a generative stochastic

30

Artificial Neural Network (ANN) that learns a probability distribution over its set of

inputs. Alom et al. (2015) built upon work previously done by Hinton and Salakhutdinov

(2006), which showed that RBMs can be stacked and trained greedily to form what is

now called DBNs. Hinton and Salakhutdinov explained that DBNs are graphical models

that learn to extract a deep hierarchical representation of the training data. Alom et al.

(2015) reported that the resulting DBN network identifies any unknown attack in a

dataset supplied to it with an approximately 97.5% success rate.

 Moh et al. (2016) employed a hybridized strategy to address attacks that attempt

to evade detection by making small changes to their signatures. Moh et al. (2016)

combined the real-time efficiency of signature-based pattern matching that doesn't require

training with the ability to detect new attack patterns that supervised machine learning

methods provide. Moh et al. (2016) focused on Structured Query Language (SQL)-

injection attacks and combined the two strategies by implementing a multi-stage log

analysis architecture. The resulting prototype combined traditional Bayes Net algorithms

with Kibana, a commercial application from Amazon Web Services (AWS). Bayes Net

provided machine learning characteristics, and Kibana provided pattern matching

characteristics. The architecture of the prototype consisted of three main parts: Log

Generation, Data Preprocessing, and Detection. Moh et al. (2016) alternated the strategy

order of the two-stage system as well to determine if this made any difference in the

accuracy of their approach. Moh et al. (2016) reported that their experimental results

showed that the hybridized two-stage system detected significantly more SQL injections

than either a standalone or a single-stage system.

 Evasive malware is also commonly grouped into other descriptive categories,

such as the ones listed in the McAfee Labs Threats Report (2017), which categorized

31

evasion techniques into three broad categories (Anti-security, Anti-sandbox, and Anti-

analyst). Regardless of the numerous malware categories that are prevalent in the current

literature, the fact remains that evasive malware has proven effective against modern

detection techniques employed by IDS and Intrusion Prevention Systems (IPS).

Malware Evasion Techniques

Rouse (2010) reported that polymorphic malware commonly changes itself by

employing a virus decryption routine (VDR) to alter its code using any variety of

techniques. The resulting Encrypted Virus program Body (EVB) deploys; however,

Rouse (2010) comments that the EVB remains the same after each iteration through the

VDR, which makes this type of malware a little easier to identify.

Later research by Rastogi et al. (2014) supports that from Rouse (2010) that once

a computer is infected, metamorphic malware constantly rewrites itself so that each

succeeding version of the code looks different than the previous one but still has the same

behavior. Signature-based Network Intrusion Detection Systems (NIDS) have a difficult

time recognizing that the various versions of the malware are the same program. The

longer the malware stays in a computer, the more versions it produces, making it

increasingly difficult for the NIDS to detect, quarantine, and disinfect (Canfora et al.

2015; Rastogi et al. 2013; & Rouse 2010).

Canfora et al. (2015) findings also support that of Rastogi et al. (2014) and Rouse

(2010) that modern NIDS strategies can not keep pace with evolving malware. Canfora et

al. (2015) compared 57 anti-malware solutions against a dataset of 5560 malware attacks.

The authors developed a transformation engine and subjected the dataset of malware

attacks to it. Their transformation engine performed the following transformations on

each attack:

32

1. Disassembled the original program, reorganizing its contents, and then

reassembled the program.

2. Repacked the code by embedding a unique developer signature key.

3. Changed the package name, which altered the package and class names.

4. Renamed the identifiers through a random string generator

5. Encoded the strings and arrays within the code using a cipher.

6. Call indirection that changed the call graph of the application.

7. Code reordering that modified the instruction order of the code by inserting

simple goto instructions without losing the original runtime execution trace.

8. Embedded junk code that did not affect the overall functionality of the code

(i.e., no-op instructions).

Canfora et al. (2015) reported that a broad set of antimalware tools did not detect

the transformed malware even when, before applying the transformations, they did.

Sosha et al. (2012) examined the use of constructing malware signatures based on

their execution profiles. Sosha et al. (2012) extracted the execution profiles from kernel

data structure objects as opposed to the traditional signature generation method that relies

on byte sequence matching. The authors posited that kernel objects are an equal

representation of code executed in the operating system kernel. Thus characteristics of

kernel objects' can provide the basis for deriving evasion-resistant malware signatures.

Sosha et al. (2012) presented a prototype signature generation tool (SigGENE) which

utilized malware profiles built using the profiling process developed in Windows 7 SP1.

The authors reported that, out of 63 test samples, their prototype detected 100% of the

33

evasive malware with 0 false positives. They also acknowledged the following

deficiencies in their approach:

• Computationally expensive in the profiling stage.

• Ineffective against evasive malware that uses behavior monitoring strategies to

avoid detection.

• They are limited in scope to only kernel Objects. Authors recommend

expanding the approach to include file objects.

Marpaung et al. (2012) also surveyed malware evasion techniques employed by

malware developers to evade detection by NIDS. They examined a variety of evasion

techniques such as obfuscation, fragmentation and session splicing, application-specific

violations, protocol violations, inserting traffic at IDS, and reuse attack evasion methods.

Marpaung et al. (2012) asserted that sandboxing is the most effective countermeasure

against evasive malware. They explained that sandboxing is effective against obfuscation

techniques such as polymorphic code and encrypted sessions because it separates

untrusted programs, users, and websites into a limited virtual environment with tightly

controlled resources. Marpaung et al. (2012) concluded that simple string matching

signature-based detection methods are no longer adequate and that evasion techniques are

constantly evolving at a faster pace than detection strategies for detecting them. However,

Kruegal (2013) contradicts Marpaung et al. (2012), in that malware authors can exploit

several vulnerabilities of sandboxing through the use of stalled code in which the

malware performs some useless computation that gives the appearance of normal activity.

Lim and Nicsen (2015) surveyed the most frequent types of malware found in

network traffic and found that approximately 86% of the malware was evasive. Their

34

findings showed that nearly 75% of the evasive malware used a runtime compression

algorithm (packed); 86% possessed an anti-debugging capability, and 1% employed anti-

Virtual Machine (VM) techniques. Lim and Nicsen (2015) presented a model for the

detection of evasive malware (MAL-Eve), which utilized several of the most popular

evasion techniques used by malware authors: packing, anti-debugging, and anti-

virtualization. Lim and Nicsen (2015) demonstrated that their model was capable of

detecting various evasive malware with an accuracy of 98.16% and a false positive rate

of 1.45% with an average processing time of 3.22 seconds for file sizes below 100

Kbytes. Lim and Nicsen (2015) acknowledged that the primary drawback of their model

is that it is static, requiring resampling and retraining for any modification to existing

evasive malware or new malware altogether. They posited that using a combination of

static and behavior features might improve their models' detection capability.

Instead of focusing on malware signatures, Sosha et al. (2015) studied how

evasive malware can thwart both static signature-based and dynamically based methods

of detection. Sosha et al. (2015) successfully demonstrated that malware could

overwhelm static IDS solutions with a large volume of signatures for a single attack.

They also showed that malware could thwart sandboxing solutions by analyzing the

machine environment. To address these evasion methods, Sosha et al. (2015) presented

an automaton model for polymorphic and metamorphic detection that combined a

mixture of static and dynamic malware detection methods called "segmented

sandboxing." The first step in their approach was to determine if the potentially malicious

code is a direct or polymorphic match to any seminal malware byte string in their

malware signature database. Sosha et al. (2015) then utilized a controlled environment to

35

compare the effects that the malicious code had on system behavior and looked for

similarities with other known malicious behavior patterns. The authors reported detection

rates ranging from 82% to 100% and false positive and false negative rates, typically

under 4%.

Similar to Sosha et al. (2015), Barria and Cubillos (2016) also studied the

methods, techniques, procedures, and tools that malicious code authors use to update

their malware against new detection measures utilized by IPS/IDS vendors. Barria and

Cubillos (2016) found that malware authors used one or more of the following techniques

to obfuscate their code, encryption, polymorphism, or metamorphism. The authors also

found that encryption techniques require malware authors to update their code manually

and are extremely difficult to maintain. In contrast, those that are automated

(polymorphic, metamorphic) are relatively easy and becoming more popular with

malware authors. Barria and Cubillos (2016) concluded that the development of a

classification system that can classify malware into one or more of these groups is critical

in the design of any future IPS/IDS. Similar research by Bushan et al. (2016) showed that

malware authors, realizing the effectiveness of encryption in avoiding detection, take

advantage of Self-Extracting Archive (SFX) to bypass antivirus software. SFX files

contain within itself the software needed to extract the encrypted file(s) that it contains.

Additionally, Bushan et al. (2016) reported that if those files are password

protected that the antivirus software is unable to examine the contents and thus are

rendered ineffective. Bushan et al. (2016) also reported that malware authors sometimes

employ a silent SFX technique, where an infected archive can self-extract and self-

execute the malware contained within it without triggering any antivirus software or

36

alerting the user. Bushan et al. (2016) concluded that most current antivirus software is

not capable of detecting malware packed using the silent-SFX techniques and that SFX is

an advantageous method in the delivery of malicious code.

Jadhav et al. (2016) also examined and categorized evasion techniques which they

found in current evasive malware. Jadhav et al. (2016) grouped the evasive malware into

four primary evasion categories (Environment Awareness, Obfuscating internal data,

Timing based evasion, and Confusing automated tools). Additionally, they identified the

strategy by malware designers to searching online databases to see if their malware

signatures' were present and, if found, would utilize custom encryption routines to

obfuscate their malware so that it hardly resembled the original code signature. Jadhav et

al. (2016) concluded that polymorphic and metamorphic coding effectively defeats

signature-based IDS' by altering malware machine code sequences, thereby making the

signatures useless.

Choliy and Gao (2017) studied evasion techniques that malware authors used to

evade detection. The authors' research centered around the use of Function Call Graphs

(FCG) extracted from Android App Packages (APK) in the discovery of malware on

devices that utilize the Android mobile operating system. Choliy and Gao (2017) focused

primarily on a method known as ACTS (App topologiCal signature through graphleT

Sampling), which is commonly used by antivirus software developers for identifying

malware. ACTS works by extracting graphlet statistics from an FCG and differentiates

between benign app samples and malware. Choliy and Gao (2017) observed that malware

authors were able to circumvent ACTS by creating function calls to manipulate the FCG

of their software to resemble a legitimate app.

37

Choliy and Gao (2017) concluded that by adding edges or nodes and edges, that

they were able to manipulate a malicious FCG to sufficiently change its graphlet

frequency distribution vector enough to fool ACTS into classifying it as legitimate

software.

Hierarchical Temporal Memory

 Hawkins and Blakeslee (2004) promoted that there are many things humans find

easy to do that are beyond that of modern-day computers. Tasks such as visual pattern

recognition, understanding spoken language, recognizing a musical piece based solely on

a few notes, are easy for humans. Despite nearly 50 years of research, we have few viable

algorithms for achieving human-like performance on a computer (Numenta, 2011) for

these types of recognition problems. In humans, the neocortex performs these recognition

tasks. HTM is a biologically-constrained theory of intelligence based on neuroscience

and the physiology and interaction of pyramidal neurons in the neocortex of the

mammalian brain (Hawkins and Blakeslee 2004).

Early realization of HTMs in malware detection

 Bonhoff (2007) researched the application of HTM and CLA theories (Hawkins

and Blakeslee; 2004) as a solution for intrusion detection. Bonhoff (2007) implemented

an early beta version of the HTM software under extremely prohibitive research licensing

agreement referred to as "Zeta1". Unlike later versions published by Numenta Inc, Zeta1

did not incorporate a feedback mechanism, which is fundamental to Hawkins' HTM

theories. While Bonhoff (2007) highlighted flaws in the 2004 implementation of HTM

theory, he did not find flaws in the HTM theory itself. Khangamwa (2010), conducted

similar research to that of Bonhoff (2007) on the application of Hawkins et al. (2004)

HTM and CLA theories as a solution for intrusion detection utilizing Numenta's NuPIC

38

version 1.6.1. Unlike the Zeta1 version implemented by Bonhoff (2007), this version

included a feedback loop and more effective Spatial Pooling (SP) and Temporal Pooling

(TP) algorithms. Khangamwa concluded that the NuPIC platform was suitable for solving

the problem of intrusion detection through either an anomaly-based detection approach or

a misuse detection based approach. However, Khangamwa (2010) reported that the

anomaly-based detection approach provided a better solution than misuse detection.

Sparse Distributed Memory

 Sparse Distributed Memory (SDM) began in 1974 as a paper written by Penttii

Kanerva for a class on human memory given by Gordon Bower of Standford's

psychology department (Kanerva, 1990). Flynn et al. (1989) later formalized the

definition of SDM as:

a generalized random-access memory (RAM) for long binary words (1000 bits or

longer). The main attribute of the memory is sensitivity to similarity, meaning that

a word can be read back not only by giving the original write address but also by

giving one close to it as measured by the Hamming distance between addresses.

(p. 1)

Sparse Distributed Representations

 Hawkins (2011), derived a data structure similar to the sparse distributed memory

proposed by Kanerva (1990). Hawkins (2011a) speculated that despite neurons in the

neocortex being highly interconnected, inhibitory neurons guaranteed that only a small

percentage of the neurons are active at one time, implying that only a tiny percentage of

active neurons represented information in the brain. This kind of encoding is called a

sparse distributed representation (SDR). Hawkins (2011a) goes on to state that

39

"Sparse means that only a small percentage of neurons are active at one time.

Distributed means that the activations of many neurons are required to represent

something. A single active neuron conveys some meaning, but it must be

interpreted within the context of a population of neurons to convey the full

meaning.” (p. 11)

Formal Definitions and Notation

 The following formal definitions and notations come from Ahmad & Hawkins,

2015, p. 2.

SDR: Given a population of n neurons, their instantaneous activity is represented

as an n-dimensional vector of binary components, e.g., x = [b0, … bn-1].

Typically these vectors are highly sparse, i.e., a small percentage of the

components are 1. We use wx to denote the number of components in x that are 1.

Overlap: Similarity between two SDR encodings is determined using an overlap

score. The overlap score is the number of bits that are ON in the same locations in

both vectors. If 𝑥𝑥 and 𝑦𝑦 are two binary SDRs, then the overlap can be computed

as the dot product as per equation (2). Notice the absence of typical distance

metrics (i.e., Hamming, Euclidean) to quantify similarity. The overlap function

derives some useful properties (i.e., union, intersection), which would not hold

with these distance metrics (Hawkins et al., 2017).

Matching: A match between two SDRs is recognized if their overlap exceeds

some threshold 𝜃𝜃 as shown in equation (1) where typically 𝜃𝜃 is set such that 𝜃𝜃 ≤

wx and 𝜃𝜃 ≤wy. (p. 2)

40

Example usage of SDR, Overlap, and Matching

 For two SDRs x and y, given equation (1), if x and y have the same cardinality 𝑤𝑤,

an exact match can be determined by setting 𝜃𝜃 = 𝑤𝑤 (number of active bits chosen to be

on). When designing an encoder, we must choose the number of active bits, w, to have in

each representation (SDR). The number of active bits does not change regardless of the

input. In this case, if 𝜃𝜃 is less than w, the overlap score will indicate a mismatch.

Consider an example of two SDR vectors:

𝐱𝐱 = [0100000000000000000100000000000110000000]

𝐲𝐲 = [1000000000000000000100000000000110000000]

Both vectors have size 𝑛𝑛 = 40, 𝑠𝑠 = 0.1, and 𝑤𝑤 = 4 (active bits). The overlap between 𝑥𝑥

and 𝑦𝑦 is 3; i.e., there are three ON bits in common positions of both vectors. Thus the two

vectors match when the threshold is set at θ = 3, but they are not an exact match. Note

that a threshold larger than either vector’s cardinality (i.e., 𝜃𝜃 > 𝑤𝑤) implies a match is not

possible (Hawkins et al., 2017).

It is important to note that w represents the number of active bits “on.” The

encoder ensures that every SDR has w bits activated bits. Notice that this formula does

not use a typical distance metric, such as Hamming or Euclidean, to quantify similarity.

The absence of a distance metric is a significant difference between SDR's and SDM's.

With this type of overlap, some useful union and difference properties are derived, which

would not hold with Hamming or Euclidean distance metrics. Consider an example of

two SDR vectors:

x = [0100 0000 0000 0000 0011 0000 0000 0001 1000 0000]
y = [1000 0000 0000 0000 0011 0000 0000 0001 1000 0000]

41

Both vectors have size n = 40, and 𝑤𝑤 = 5. The overlap between 𝑥𝑥 and 𝑦𝑦 is 4, and thus the

two vectors match when 𝜃𝜃 = 4. Parameters typical of current HTM implementations are

listed below.

HTM parameters:

n = 1024 to 65,536, representing the length of an SDR vector.

w = 10 to 40, representing the number of ON bits in an SDR vector.
s = 0.05% to 2.0%, representing the sparsity, where s = w/n (Ahmad & Hawkins,
2015).

Theta (𝜃𝜃) is the minimum number of overlapping bits from SDR x and some

random SDR y before we consider SDR y to be a match of SDR x.

 According to Ahmad and Hawkins (2015), it is not necessary to keep track of all w

bits in the original SDR x when checking for overlap (Figure 2). SDRs provide the ability

to compare against a subsampled version of a vector reliably. That is, recognizing a large

distributed pattern by matching a small subset of the active bits within the larger pattern.

As stated by Ahmad and Hawkins (2015), Let 𝑥𝑥 be an SDR vector and let 𝑥𝑥′ be a

subsampled version of 𝑥𝑥, such that 𝑤𝑤x' ≤ 𝑤𝑤x. The subsampled vector 𝑥𝑥′ will always match

𝑥𝑥, as long as 𝜃𝜃 ≤ 𝑤𝑤 x', but as you increase the subsampling, the chance of false-positive

increases.

42

Figure 2. SDR Overlap set. Showing random SDR y not matching x'.

Evasive malware semantic similarity: Is defined as a similarity (overlap) score of an

algorithms' behavior(s) that is ≥ 𝜃𝜃 to that of stalling code.

General guidelines for encoding SDRs.

According to Purdy (2015), four essential properties of SDRs must hold true when

encoding data:

1. Semantically similar data should result in SDRs with overlapping active bits.

2. The same input should always produce the same SDR as output.

3. The output should have the same dimensionality (total number of bits) for all

inputs.

4. The output should have similar sparsity for all inputs and have enough one-bits

to handle noise and subsampling.

Recent advancements in HTM technology.

Numenta Inc. (2011) incorporated a feedback loop into their algorithms, which

allowed Ahmad and Hawkins (2015) to further research aimed at deriving the

mathematical properties of HTMs. Ahmad and Hawkins sought to take advantage of

specific features that HTMs possess, such as bounds and scaling laws, performance

43

characteristics, and ideal parameters. Ahmad and Hawkins (2015) showed that SDRs

could be used to perform robust classification despite the noise and random deletions by

using the union property. They concluded that under the right conditions, SDRs enable a

massive capacity to learn temporal sequences and form the basis for highly robust

classification systems.

According to Cui, Surpur et al. (2016), Cui, Ahmad, et al. (2016), and Ahmad and

Hawkins (2015), HTM sequence memory lends itself to continuous online learning as

well as handling branching temporal sequences by maintaining multiple predictions until

there is sufficient disambiguating evidence. These features are ideal in an online

environment with streaming live data that may contain a lot of noise as well as ambiguity.

Cui, Surpur, et al. (2016) analyzed the properties of HTM sequence memory and applied

them to sequence learning and prediction problems that utilized streaming data. Cui,

Surpur, et al. (2016) reported the following findings:

• HTM does not require the use of sliding windows for learning.

• HTMs learn from each data point using unsupervised Hebbian-like associative

learning mechanisms.

• The SDRs used in HTM possess a very large coding capacity and allow

simultaneous representations of multiple predictions with minimal collisions.

• HTM sequence memory achieved performance comparable to that of Long Short-

Term Memory (LSTM) networks.

• As a strict one-pass algorithm with access to only the current input, it may take

HTMs longer to learn sequences with very long-term dependencies.

Cui, Ahmad, et al. (2016), reported that HTM sequence memory achieved

comparable prediction accuracy to four statistical and machine learning techniques:

44

ARIMA, a statistical method for time-series forecasting; extreme learning machine

(ELM), a feedforward network with sequential online learning and two recurrent

networks LSTM and Echo State Network (ESN).

These findings suggest that an HTM solution would apply to detect evasive

malware. HTMs are not just limited to the detection of malware. Fu et al. (2015) used an

HTM solution for the diagnosis of diseases in patients. In their work, the Fu et al. (2015)

encoded patient medical data into SDR's, which included up to 49 different symptoms

(i.e., sneezing, flu, tonsillitis, etc.). Their experimental results showed that they were able

to predict diseases with an accuracy of 86.1%.

HTM suitability as a classifier.

Irmanova et al. (2018) conducted preliminary research using circuits based on

HTMs for sequence learning of handwritten character images. In their simulation, they

showed that HTM algorithms suitable for symbol order recognition and learning

sequences from character images. Irmanova et al. (2018) intend to use the results of this

preliminary research as a step towards using HTMs for solving sequence learning tasks

(i.e., spell checking). A direct correlation can be made between recognizing words with

recognizing stalling code in that they both refer to language, the former written human

language, and the later being machine language.

Wang et al. (2018) conducted preliminary research that developed a distributed

anomaly detection system using HTMs to enhance the security of a vehicular controller

area network bus. The goal of their study was to detect attacks on a car's network in real-

time as it was being driven. HTMs were used for detecting abnormal sequences on the

Controller Area Network (CAN) bus of the vehicle. The data on CAN bus data consisted

of a list of (ID, data payload) pairs indexed with timestamps. This work also

45

demonstrated the strong propensity for HTMs to be used as a classifier for identifying

stalling code given the similarities between its streaming data and that of the running

executables (e.g., Program Counter, Register Values).

 According to Ahmad (personal communication, April 18, 2018), Numenta Vice

President of Research, Numenta has not attempted to build a sequence classifier for

malware yet but has an interest in doing so; however, Ahmad acknowledges the reason

that this is difficult is that building SDRs that capture the behavior of malware over time

is extremely tedious.

 Lavin and Ahmad (2015) observed that existing benchmarks are designed for static

datasets and are not suitable for evasive malware. They added that most academic

research in intrusion detection involves an artificial separation of training and test sets;

unfortunately, this artificiality does not correctly capture the characteristics of real-time

streaming data. Lavin and Ahmad (2015) went on to develop an evaluation benchmark

that they assert is suitable for the evaluation of real-time anomaly detection algorithms,

the NAB (Numenta Anomaly Benchmark). A concern is that depending solely on the

benchmark developed by Numenta, the developers of Hierarchical Temporal Memory

(HTM) technology, may not be entirely objective. The amount of system resources that

will be required to implement an HTM solution that will be robust enough for practical

use as an Intrusion Detection System is an unknown (Khangamwa, 2010). Also, Cui et al.

(2016) state that "Real-world sequence learning deals with noisy data sources where

sensor noise, data transmission errors and inherent device limitations frequently result in

inaccurate or missing data" (pp. 1531). Therefore, the HTM sequence classifier and any

SDR must be capable of filtering out the noise.

46

Summary

A tremendous amount of research in the development of classifiers for streaming

data is currently underway. However, much of this research focuses exclusively on either

concept drift, noise, or temporal dependencies in isolation. Similarly, a great deal of ML

research is also underway in detecting anomalous activities within data streams indicative

of malicious malware.

Thus, the design of an application that takes into account the effect of concept

drift, noise, and temporal dependencies would help to fill a gap in modern classifier

literature.

47

Chapter 3

Methodology

The goal of this research was to develop a sequence classifier that can classify

data in a data stream containing concept drift, noise, and temporal dependencies. The

approach this research utilized was an HTM framework with SDRs constructed for each

of the respective data sets.

Classification

Bifet et al. (2017) formally define the classification problem as:

given a set of labeled instances or examples of the form (x,y), where x = x1, …, xk

is a vector of feature or attribute values, and y is one of nC different classes, also

regarded as the value of a discrete attribute called the class. The classifier building

algorithm builds a classifier or model f such that y = f(x) is the predicted class

value for any unlabeled example x. (p. 85)

Classifier Evaluation

According to Bifet et al. (2017), the main challenge in evaluating classifiers is

knowing when a classifier is outperforming another classifier only by chance, and when

there is a statistical significance to that claim. As recommended by Bifet et al. (2017), the

classifier evaluation framework for this research included the following parts:

Error estimation method. According to Bifet et al. (2017), the traditional

method of splitting the dataset into disjoint training and test sets is computationally too

expensive in a stream setting. Therefore this research implemented the prequential

method for error estimation, which takes into account that more recent examples are more

important than older ones. This evaluation method requires a sliding window.

48

Cost measure of the process. As recommended by Bifet et al. (2017), in addition

to accuracy %, estimation for the combined cost of performing the learning and

prediction process in terms of time and memory are added in the form of CPU Run-Time

and RAM-Usage.

The Data Sets

The data sets in this research consisted of artificial and real-world data streams,

along with simulated and real-world malware. Both the manufactured and real-world data

streams contained temporal and non-temporal data sets. According to (Bifet et al., 2017),

two essential characteristics of any classification method in the stream setting are: (1)

limitations exist in terms of memory and time and (2) classification models must be able

to adapt to possible changes in the distribution of the incoming data. Therefore, in all

experiments, the inspection of the data sets was restricted to a single pass for each

classifier, and concept drifts inserted into each artificial data stream. The real-world data

streams may or may not contain there own unique forms of concept drift unique to their

application. The real-world data sets do contain temporal dependencies also based on

their individual use.

Artificial Data Streams

The following four data stream generators provided by the python package scikit-

multiflow were employed to simulate data streams containing abrupt, gradual, and

recurrent concept drifts: the SEA generator (Street & Kim, 2001), the Hyperplane

generator (Hulten et al., 2001), the Random Tree (RT) generator (Hulten & Domingos,

2002), and the LED generator (Breiman et al., 1984).

Using the research conducted by Ghomeshi et al., (2019) as a template, each

generator created ten different stream variants (files) containing one million data sets

49

each. Additionally, each respective generator created an additional set of 10 variants

containing 10% noise as well. Each generator introduced abrupt, gradual, and recurrent

concept drifts into each variant via its respective default parameters. A different random

seed parameter for each run ensured unique variants. For the Hyperplane generator, the

parameters were: noise percentage, random seed, number of drifting attributes, and

magnitude of changes (Appendix A). For the LED generator, different variants were built

by tweaking the number of attributes that have concept drift and the random seed number

(Appendix B). For the RT generator, the parameters were: random seed number, along

with the number of features and classes (Appendix C). Finally, for the SEA generator, the

parameters were: noise percentage, random seed, and classification parameters for each

variant, which served to introduce noise and concept drift (Appendix D).

Real-World Data Streams

Three real-world data streams were selected for experiment II. following real-

world data streams were selected:

Electricity data set. The electricity data set by Harries (1999) collected from the

Australian New South Wales electricity market is a popular ML dataset that contains

temporal dependencies. This data set reflects market prices that are not fixed but rather

affected by demand and supply. The Electricity dataset contains 45,312 instances.

Each instance contains eight attributes, and the target class specifies the change of the

price (whether it goes up or down) according to its moving average over the last 24

hours (Appendix E).

Airlines data set. This data set consists of flight arrival and departure details for

all commercial flights within the USA, from October 1987 to April 2008 (Appendix F).

50

This data set is a smaller subset consisting of 539,383 instances out of the original 120

million instances.

Poker data set. This data set from the UCI Machine Learning Repository consists

of 1,000,000 instances and 11 attributes (Appendix G). The UCI repository describes the

data set as follows:

Each record is an example of a hand consisting of five playing cards drawn from a

standard deck of 52. Each card is described using two attributes (suit and rank),

for a total of 10 predictive attributes. There is one Class attribute that describes

the "Poker Hand." The order of cards is important, which is why there are 480

possible Royal Flush hands as compared to 4.

HTM Classifier

Bifet et al. (2017) explain that classification seeks to predict which group a new

instance may belong to and that two important characteristics of any classification

method in the stream setting are (a) that limitations exist in terms of memory and time,

and (b) that classification models must be able to adapt to possible changes in the

distribution of the incoming data. Therefore, any design of the HTM classifier must

possess these two characteristics to be suited to the stream setting.

HTM Algorithm

This research implemented v2.0.22 of the Community Fork of the nupic.core C++

repository, with Python bindings, which can be found at https://github.com/htm-

community/htm.core. This repository maintains an actively developed C++ core library

and implements the theory as described by Hawkins et al. (2017).

51

HTM Classifier Encoders

The nupic.core C++ repository comes with several default encoders as described

by Purdy (2016). This research utilized the basic scalar, date, and category encoders

along with creating custom encoders for the airlines and poker data sets built by

combining the existing basic encoders (Appendix H).

Scalar Encoder

 A scalar encoder encodes a numeric (floating point) value into an array

 of bits. A scalar encoder with a range from 0 to 100 with n=12 and w=3 will produce the

following encodings:

• 1 becomes 111000000000

• 7 becomes 111000000000

• 15 becomes 011100000000

• 36 becomes 000111000000

The first thing to notice is that values that fall into the same bucket are represented

identically as with 1 and 7. The second thing to notice is that for values that fall into

separate buckets (i.e. 7 and 15), the closest buckets share the most overlapping bits. So 7

and 15 share two overlapping bits while 15 and 36 share only one bit and 7 and 36 do not

share any bits.

Date Encoder

The date encoder encodes a date according to encoding parameters specified in

 its constructor. The input to a date encoder is a datetime.datetime object. The output is

the concatenation of several sub-encodings, each of which encodes a different aspect of

the date. Various optional parameters are available (i.e. season, dayOfWeek, weekend,

holiday).

52

Category Encoder

The category encoder encodes a list of discrete categories (described by strings)

that aren't related to each other. Except for the poker data set, the remaining real-world

data sets contained binary ‘0’ or ‘1’ categories. In contrast, the poker data set contained a

range of classes from ‘0’ to ‘9’ as described earlier.

Construction of Additional Encoders

Purdy (2015) stated that "the first step to designing an encoder is to determine

each of the aspects of the data that you want to capture … that the encoder should create

representations that overlap for inputs that are similar in one or more of the

characteristics chosen" (p. 2). For this research, specialized encoders were designed for

the airline dataset that replaced airport names with SDRs of the latitude/longitude,

altitude, and airport size (small, medium, large) for each airport in the dataset (Appendix

H). The electricity and poker data sets utilized existing scalar and category encoders.

Experiments

Three groups of experiments were conducted and referenced as experiments I, II,

and III. Experiments I and II utilized artificial and real-world data streams, respectively.

At the same time, Experiment III employed a simulated malware sample derived from

code snippets of the Rombertik virus provided by Giron and Kolbitsch (2015) and an

Assembly language sorting algorithm written by Sag (2012) for comparison.

Experiments I (artificial data streams) and II (real-world data streams) compared

the HTM classifier against several state-of-the-art classifiers for non-stationary data

stream classification (Ghomeshi et al., 2019). The list of classifiers included the

Accuracy Weighted Ensemble (AWE) (Wang et al., 2003), Adaptive Random Forest

(ARF) (Gomes & Enembreck, 2014), Dynamic Weighted Majority (DWM) (Kolter &

53

Maloof, 2007), Leveraging Bag (LevBag) (Bifet et al., 2010), Online Boosting (OBoost)

(Wang & Pineau, 2016), and the Very Fast Decision Tree (VFDT) (Hulten et al., 2001).

 Experiments I and II, implemented the classifier evaluation framework, including

error estimation, performance evaluation measures, statistical significance, and cost

measure recommended by Bifet et al. (2017). The classifier server was a stand-alone

machine for experiments I and II (Figure 3) and are not networked to the malware

analysis lab (Figure 5). Experiment III connected the classifier server to a malware

analysis machine that provided two Virtual Machine Environment (VME) guest machines

running on Windows 8.1 and Windows 10 Operating Systems, respectively (Figure 4).

Experiment I Data Set Generation

Expanding on the research of Ghomeshi et al. (2017), which did not include noise,

this experiment generated two data sets consisting of 0% and 10% noise, respectively, for

every artificial data stream using the previously mentioned generators. Additionally, to

create a sufficient amount of data, each data set consisted of 10 different variants (files)

containing 1,000,000 data points each, with each classifier tested on all variants. The

three forms of concept drift (abrupt, gradual, and recurrent) were manually introduced

into each variant in the instance numbers 200K, 400K, 600K, and 800K. The first five

variants of each data set contained two abrupt concept drifts with a width (width of

concept drift change) of one at the instance numbers 200K, 600K, and two recurrent

concept drifts with the same width at instance numbers 400K and 800K. The second five

variants of each data set contained two gradual concept drifts with a width of 10,000 at

the instance numbers 200K, 400K, and 600K, and one recurrent concept drift with the

same width are added at the instance number 800K. There were two different evaluation

54

runs for this experiment. The first run utilized the data sets containing 0% noise, and the

second run utilized the data sets containing 10% noise.

Experiment II Data Set

 As described earlier, experiment II utilized the popular ML data sets of electricity,

airlines, and poker hand (Appendices E, F, and G). Using Ghomeshi et al., (2019)

research as a guide, each experiment was repeated ten times over the same data stream.

This research assumes that concept drift, noise, and temporal dependencies inherently

exists within these three real-world data sets.

Figure 3. Classifier Server Applications and File Structure.

Experiment III Predicting Stalling Code

 This research postulates that registers within a Von Neumann based machine

accurately describe its machine state at any given time. This research also proposes that a

running executable creates temporal dependencies between its machine states.

The purpose of experiment III was to assess the predictive performance of the

HTM classifier against a known example of stalling code. This analysis was achieved by

55

providing the HTM classifier the EIP, EAX, EBX, ECX, EDX, and EFLAGS register

values resulting from executing each Line of Code (LOC) during dynamic disassembly of

the executable. The HTM classifier then made a 1-step prediction for each of the

individual flag bit values in the EFLAGS register for the next machine state. A plot of the

HTM classifiers’ accuracy for each flag bit (Figure 4) after receiving each machine state

was generated (see Chapter 4) for visual inspection.

Additionally, a 5-step prediction plot was generated for analysis to address Cui et

al. (2016) claim that HTMs are capable of making multiple simultaneous predictions. Cui

et al. (2016) go on to state that a good sequence learning algorithm should be able to

make multiple predictions due to different temporal contexts creating multiple possible

future outcomes. An example of this would be the American patriotic song “America,”

with lyrics written by Samuel Francis Smith having the same melody as that of the

national anthem of the United Kingdom, "God Save the Queen.”

Figure 4 shows a detailed diagram of the EFLAGS register. “The EFLAGS

register consists of individual binary bits that control the operation of the CPU or reflect

the outcome of some CPU operation. Some instructions test and manipulate individual

processor flags.” (Irvine, 1999, p.40)

The flags within the EFLAGS register divided into two groups (e.g., Control and

Status flags). Irvine (1999) states, “The control flags control the CPU’s operation (i.e.,

cause the CPU to break after every instruction executes, interrupt when arithmetic

overflow is detected, enter virtual-8086 mode, and enter protected mode).” (p. 40)

The control flags are the Trap and Direction flags.

56

The status flags reflect the outcomes of arithmetic and logical operations

performed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and

Carry flags.

Figure 4. x86 EFLAGS diagram. Reprinted from Windows Malware Analysis Essentials
(p. 70), by Marak (2015). Windows Malware Analysis Essentials. Packt Publishing.
Kindle Edition.

An exhaustive search for labeled malware executables containing stalling code

was unsuccessfully conducted. While the Virusshare.com malware repository contained

nearly 34 million examples of malware executables, none of these were explicitly labeled

as containing stalling code. Manually reverse engineering these files was impractical,

even with the reverse engineering tools provided by IDAPro. In this case, snippets of a

variant of the Rombertik virus provided by lastline authors Giron and Kolbitsch (2015)

served to create a simulated malware example for analysis (Appendix J). It was observed

that the Rombertik virus employs stalling logic that contains two very large looping

constructs that are each 𝑂𝑂(𝑛𝑛) complexity at labels loc_4EEFD2 and loc_4EEFE2,

comprising 30 million and 7.6 billion iterations respectively (Appendix J). Giron and

Kolbitsch (2015) identify these sections of the Rombertik virus as stalling code. An

57

assembly language sorting algorithm of 𝑂𝑂(𝑛𝑛2) complexity written by Sag (2012) and

modified to suit the requirements of this research was implemented for comparison

(Appendix K).

A malware analysis environment was created to prevent live malware undergoing

reverse engineering from infecting the classifier server. The host machine ran VM

Workstation Pro 15.0 and created two VME Guest for malware analysis and running the

IDAPro python scripts that performed dynamic disassembly of the executable and fed the

resulting machine states to a local HTM Input Stream Server which forwarded the

machine states to the classifier server via a socket as depicted in Figures 4 and 5.

Figure 5. Malware Analysis Machine

58

Figure 6. Malware Analysis Network

Statistical Significance Validation

As was mentioned earlier by Bifet et al. (2017), research has shown that in most

cases, streaming data is not independently and identically distributed (IID). Therefore, a

non-parametric test (sometimes called a distribution-free test) was implemented. While

Bifet et al., (2017) recommended the McNemar (1947) statistic for determining the

statistical significance of differences between classifiers, it is only designed to compare

two classifiers against one another. Like Ghomeshi et al., (2019), this research utilized

the Friedman omnibus test for this comparison as it is better suited for comparing more

than two classifiers. The Friedman test ranks the classifiers separately, with the best

59

performing algorithm getting the rank of 1, the second-best rank of 2, and so on. The

formal definition of the Friedman test comes from Demsar (2006) as described below.

Let 𝑟𝑟𝑖𝑖
𝑗𝑗 be the rank of the j-th of k algorithms on the i-th of n data sets. The

Friedman test compares the average ranks of algorithms, 𝑅𝑅𝑗𝑗 = − 1
𝑁𝑁
∑ 𝑟𝑟𝑖𝑖

𝑗𝑗
𝑖𝑖 . Under

the null hypothesis, which states that all the algorithms are equivalent and so their

ranks Rj should be equal, the Friedman statistic

𝜒𝜒𝐹𝐹2 =
12𝑁𝑁

𝑘𝑘(𝑘𝑘 + 1) ��𝑅𝑅𝑗𝑗2 −
𝑘𝑘(𝑘𝑘 + 1)2

4
𝑗𝑗

� (3)

is distributed according to 𝜒𝜒𝐹𝐹2 with k − 1 degrees of freedom, when N and k are big

enough (as a rule of a thumb, N > 10 and k > 5). (p. 11)

 The Nemenyi posthoc test was implemented to find the groups of classifiers that

differed after the Friedman test rejected the null hypothesis that the performance of the

classifiers was the same.

Computing Resources Used

This research was conducted using the classifier server hardware listed in Table 1

running on an Ubuntu 18.04 Server Operating System and a Windows 10 PC with a 4.00

GHz Intel Core i7-6700K Central Processing Unit, 64 Gigabytes of Random Access

Memory, and a 2 Terabyte hard drive using the malware analysis software in Table 2.

60

Table 1

Classifier Server Hardware

Item Description
StarTech.com 12U AV Rack Cabinet
TYAN S7076GM2NR Tyan Motherboard
CORSAIR AX1600i, 1600 Watt, Digital Power Supply
Asus 24x DVD-RW Serial-ATA Internal OEM Optical Drive
2 x Intel Xeon E5-2697 v3 2.6 GHz LGA 2011-3 Server Processors
SAMSUNG 970 EVO M.2 2280 2TB PCIe Internal Solid State Drive
Micron 5200 5210 Ion 3.84 TB Solid State Drive - SATA 600-2.5" Drive
Crucial with 512GB (16 x 32GB) DDR4 PC4-21300 2666MHz RDIMM
APC UPS 1500VA Smart-UPS
LG 27UD88-W 27-inch 4K Ultra HD IPS LED-lit Computer Monitor
Rybozen 7-Port USB 3.0 Hub
TRIPP LITE 1U Rackmount Keyboard with KVM Cable Kit
2 x AC Infinity CLOUDPLATE T1, Rack Mount Fan Panel 1U
AC Infinity CONTROLLER 12, Thermal Fan Controller, Rack Mount 1U
XFX Radeon RX 560 1295MHz,4gb GDDR5
StarTech.com 1U Server Rack Rails
StarTech.com 1U Adjustable Vented Server Rack Mount Shelf
C-Zone Front Panel USB Hub
2 x Noctua NH-U9DX i4, Premium CPU Cooler

Table 2

Malware Analysis Software

Item Description
IDA Pro 32 bit and 64 bit version
VM Workstation Pro 15.0
Windows 8 (VM)
Windows 10 (VM)

Summary

 This section described the research methodology utilized by this research for

designing and evaluating an HTM classifier for streaming data. Both artificial and real-

world data sets were identified along with a process for developing simulated evasive

61

malware containing stalling code. Finally, this section described the statistical techniques

for determining the statistical significance of the HTM classifier and identified the

resources needed to conduct the experiments.

62

Chapter 4

Results

This chapter provides the results of the experiments designed to evaluate the

appropriateness of the HTM sequence classifier as an application in classifying artificial

and real-world data streams containing concept drift, noise, and temporal dependencies.

Additionally, this chapter provides the results of evaluating the HTM classifier as a

possible technology for the detection of stalling code. The experimental design followed

similar research conducted by Ghomeshi et al. (2019), as described in chapter 3.

Experiment I used the prequential evaluation method to evaluate the HTM

sequence classifier on the following artificial (synthetic) data streams containing abrupt,

gradual, and recurrent concept drift: Hyperplane, LED, RT, and SEA. The HTM

classifier was then evaluated against the ARF, AWE, DWM, LevBag, OBoost, and

VFDT classifiers using cost measures consisting of accuracy, memory consumption, and

processor time.

Experiment II used the prequential evaluation method to evaluate the HTM

sequence classifier on the following real-world data streams: Electricity, Airlines, and

Poker. In similar fashion to experiment I, the HTM classifier was then evaluated against

the ARF, AWE, DWM, LevBag, OBoost, and VFDT classifiers using the same cost

measures as previously mentioned.

Experiment III explored the use of the HTM sequence classifier in recognizing

stalling code within an executable file containing simulated evasive malware. This

experiment depicted the potential of HTM sequence classifiers as a possible method for

analyzing the behaviors of malware.

63

Experiment I (Artificial Data Streams)

 Experiment I implemented the classifier evaluation framework developed by Bifet

et al. (2017) to evaluate the performance of all the previously listed classifiers on

artificial data streams. It is important to note that even though the artificial data streams

contained various forms of concept drift, they lacked temporal dependencies. Experiment

I consisted of two separate runs with data sets containing 0% and 10% noise,

respectively.

Accuracy

 Tables 3 and 4 show the average accuracy for the classifiers over the four

artificial data sets using the prequential error estimation approach. As can be seen from

the tables, the HTM classifiers' best performance came in at 56% and 54% accuracy on

the SEA datasets containing 0% and 10% noise, respectively. The HTM classifiers’

higher accuracy rating on the SEA data set may be attributed to it consisting of only two

features and one label, as opposed to the Random Tree data set containing 29 features and

one label. It is interesting to note that the HTM classifiers’ accuracy performance of 52%

on the RT data set (which has a high degree of randomness) is comparable to that of the

AWE, DWM, LevBag, and OBoost classifiers’ accuracy percentage despite the absence

of temporal dependencies within the data. This result would suggest that HTMs are more

resilient to noise and randomness than traditional classifiers.

The HTM classifiers’ poor performance on the synthetically generated data

streams is likely due to the absence of temporal dependencies. As stated by Hawkins

(2011a), “Time plays a crucial role in learning, inference, and prediction.” (p. 12). In HTM,

the Temporal Memory algorithm implements sequence memory. The algorithm learns

64

sequences of Sparse Distributed Representations (SDRs) formed by the Spatial Pooling

algorithm and makes predictions of what the next input SDR will be (Hawkins et al.,

2017). Therefore when the data stream is missing temporal dependencies, the Temporal

Memory algorithm is unable to learn, thus affecting performance.

Table 3

HTM Classifier Accuracy - Artificial Data sets with 0% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM

Hyper Ave. 0.943 0.974 0.997 0.770 0.820 0.972 0.501
 σ 0.021 0.003 0.001 0.002 0.002 0.017 0.000
 Min 0.917 0.971 0.996 0.769 0.818 0.951 0.500
 Max 0.976 0.979 0.998 0.773 0.825 0.995 0.501

LED Ave. 0.998 0.998 1.000 0.630 0.837 1.000 0.500
 σ 0.001 0.001 0.000 0.022 0.004 0.000 0.000
 Min 0.997 0.997 1.000 0.622 0.834 1.000 0.500
 Max 1.000 1.000 1.000 0.692 0.848 1.000 0.500

RT Ave. 0.814 0.593 0.609 0.648 0.674 0.874 0.522
 σ 0.004 0.000 0.000 0.095 0.002 0.008 0.001
 Min 0.809 0.592 0.608 0.618 0.673 0.878 0.522
 Max 0.821 0.594 0.609 0.919 0.679 0.859 0.523

SEA Ave. 0.995 0.962 0.949 0.938 0.957 0.955 0.560
 σ 0.001 0.001 0.000 0.001 0.001 0.001 0.001
 Min 0.995 0.961 0.948 0.937 0.956 0.954 0.559
 Max 0.996 0.964 0.950 0.939 0.958 0.956 0.562

Table 4 depicts the performance of the classifiers when 10% noise is introduced

into the data streams. It was found that the HTMs’ best performance was with the SEA

data stream, with an average accuracy of 54%. It is observed in Table 4 the degradation

of accuracy throughout all of the classifiers. The most significant drop being that of the

LevBag classifier on the LED data stream with an average accuracy of 40%. It was also

observed that as noise was introduced, the HTM classifier remained relatively stable as

compared to the other classifiers.

65

Table 4

HTM Classifier Accuracy - Artificial Data sets with 10% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM
Hyper Ave. 0.860 0.884 0.879 0.682 0.697 0.884 0.500

 σ 0.019 0.002 0.002 0.001 0.001 0.013 0.000
 Min 0.838 0.882 0.876 0.680 0.696 0.868 0.500
 Max 0.889 0.886 0.881 0.684 0.700 0.902 0.500

LED Ave. 0.758 0.762 0.562 0.404 0.526 0.763 0.509
 σ 0.001 0.001 0.002 0.000 0.000 0.001 0.005
 Min 0.758 0.761 0.560 0.404 0.525 0.761 0.506
 Max 0.760 0.763 0.564 0.405 0.527 0.764 0.513

RT Ave. n/a n/a n/a n/a n/a n/a n/a
 σ n/a n/a n/a n/a n/a n/a n/a
 Min n/a n/a n/a n/a n/a n/a n/a
 Max n/a n/a n/a n/a n/a n/a n/a

SEA Ave. 0.904 0.886 0.885 0.795 0.767 0.870 0.541
 σ 0.000 0.001 0.000 0.001 0.001 0.000 0.001
 Min 0.903 0.885 0.884 0.794 0.765 0.869 0.540
 Max 0.905 0.887 0.886 0.796 0.769 0.871 0.542

Note: The Random Tree (RT) data set was excluded from this run as it inherently
contains noise.

CPU run-times

 Tables 5 and 6 show the average run-time for the classifiers over the four artificial

data sets using the prequential error estimation approach. As can be seen from Table 5,

the HTM classifier run-time ranks 4th, 3rd, 3rd, and 6th on the Hyperplane, LED, RT, and

SEA data sets containing 0% noise, respectively. The HTM classifiers’ performance was

relatively fast, compared to the other classifiers, which is likely due to the efficiency of

the Temporal Memory algorithm. As per Cui et al., (2016), the Temporal Memory

algorithm needs to continuously learn from the data streams and is designed to rapidly

adapt to changes to learn new patterns.

66

Table 5

HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 0% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Hyper 13776.03 4417.03 1209.69 28610.06 50473.21 331.73 10346.99
LED 29842.33 43475.40 3792.89 73243.41 61545.17 422.19 9439.73
RT 16115.15 14213.91 4735.79 92246.17 123796.25 458.20 11832.48

SEA 12469.20 2814.93 843.76 21311.02 25690.63 181.13 22659.88

Table 6 shows the impact of CPU run-time with the data sets containing 10%

noise. The HTM classifier ranking changed very little; however, it is interesting to note

that the AWE, VFDT, and HTM classifiers' performance remained relatively the same,

while the ARF, DWM, LevBag, and OBoost classifiers suffered performance losses.

Especially impacted was the ARF classifier, doubling the amount of CPU-time to

complete its runs on all four data sets.

Table 6

HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 10% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Hyper 22446.87 4498.01 1425.74 30333.96 52635.70 327.41 9600.14
LED 60329.59 43803.50 8385.59 69143.31 98845.17 1300.78 10872.84
RT n/a n/a n/a n/a n/a n/a n/a

SEA 24038.47 2530.06 844.74 21844.44 27593.68 177.85 23423.78

Note: The Random Tree (RT) data set was excluded from this run as it inherently
contains noise.

RAM usage

Tables 7 and 8 show the average RAM usage for the classifiers over the four

artificial data sets using the prequential error estimation approach. Out of all of the cost

measures considered, average RAM usage turned out to be the Achilles heel for HTM.

67

The HTM classifier required nearly 132 GBs of RAM for the Hyperplane, LED, and SEA

data sets, respectively, and 722 GBs for the RT data sets, thereby resulting in heavy usage

of SWAP memory. Although not recorded as a cost measure, it was noticed that CPU

temperatures reached as high as 190 degrees Fahrenheit during the majority of these runs.

Much of the memory consumption can be attributed to the size of the SDRs needed to

represent the data. Higher sparsity in the SDRs of the data improved the HTMs’

performance, but at higher consumption of memory.

Table 7

HTM Classifier Avg. RAM-Usage (in K) - Artificial Data sets with 0% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Hyper 51856.63 618.60 52.87 5257.62 5401.25 4586.66 131198722.66
LED 3888.89 3779.19 262.47 10714.83 7098.88 318.66 131191578.13
RT 71710.50 1747.54 234.87 13060.88 13227.31 17164.55 722070304.84

SEA 10076.32 228.57 30.89 2522.09 2649.77 1184.90 131690084.23

Table 8 shows the impact of adding 10% noise to the data streams. The HTM,

AWE, LevBag classifiers RAM consumption remained relatively the same throughout all

3 data sets, while the ARF, DWM, OBoost, and VFDT saw sizable increases.

In summary, Tables 3 – 8 suggest that the introduction of noise into the artificial

data streams resulted in a decrease in the cost measures of average accuracy, and an

increase in both run-time and RAM usage for all but the HTM classifier. These results

suggest the HTM classifier is relatively scalable to large data sets. However, the poor

performance in both accuracy and RAM usage likely rules out the HTM classifier as a

practical solution for classifying artificial data sets missing temporal dependencies.

68

Table 8

HTM Classifier Avg. RAM-Usage (in K) - Artificial Data sets with 10% noise
Containing Abrupt, Gradual, Recurrent Concept Drifts
Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Hyper 150370.67 618.55 85.29 5264.65 5373.65 6013.00 131199908.20
LED 30208.44 3836.24 524.63 10713.23 10898.32 1300.78 131201768.03
RT n/a n/a n/a n/a n/a n/a n/a

SEA 197398.28 228.65 30.60 2529.93 2657.64 2301.57 131721509.55

Note: The Random Tree (RT) data set was excluded from this run as it inherently
contains noise.

Concept drift

Figure 7 shows the effect of concept drift on the HTM classifiers’ accuracy

percentages over the SEA data stream at both 1-step and 5-step predictions with 0%

noise. As described in Chapter 3, abrupt and recurrent concept drifts were manually

inserted into the data stream, at instance numbers 200K, 400K, 600K, and 800K. The

data stream began with the SEA function f0 and abruptly shifted to f1 with a width (width

of concept drift change) of one at the instance number 200K and experienced a shift back

to the function f0 at 400K thereby creating a recurrent concept drift. There was another

abrupt concept drift at 600K with a function shift from f0 to f2, and a final recurrent

concept drift was encountered at 800K with a function shift from f2 back to f1.

It is observed that in Figure 7, at instance 200K, where the first abrupt concept

drift occurred (f1), resulted in the HTM classifiers' average accuracy percentage to begin a

gradual drop from ~56% down to ~54%. The classifier did not cope well with the first

drift. However, once the first recurrent drift occurred at instance 400K (f0), the HTM

classifier’s accuracy percentage began to improve to nearly 57%. The accuracy

percentage dropped once again when the next abrupt concept drift (f2) occurred at the

600K point, but surprisingly a gradual improvement was noticed beginning at the 700K

69

mark. The sudden improvement at the 700K mark implies that the HTM classifier is

becoming more sensitive to concept drifts and alters its predictions accordingly. Finally,

the last recurrent concept drift was experienced at the 800K mark without a drop in

average accuracy. This suggests that the HTM classifier’s temporal memory was better

able to deal with the transition since it had seen (f1) earlier.

When comparing the accuracy percentages for the 1-step and 5-step predictions, it

was surprising to observe that the HTM classifiers’ average accuracy percentages were

relatively identical. These results support the claim by Cui et al. (2016) that HTM

technology is capable of making multiple simultaneous predictions.

Figure 7. Abrupt and Recurrent concept drift accuracy – SEA data with 0% noise - 1 and
5 step predictions.

The same observations are made from Figure 8, which plotted the HTM

classifiers’ performance with gradual and recurrent concept drift. As with Figure 7, the

data stream begins with the SEA function f0 and gradually shifted to f1 with a width of

10000 centered at instance number 200K and experienced a recurrent concept drift

70

centered at 400K back to function f0; followed another gradual concept drift centered at

600K to function f0 and finally the last recurrent concept drift occurring at the 800K mark

with a shift in function from f2 back to the previously seen function of f1.

Figure 8. Gradual and recurrent concept drift accuracy – SEA data with 0% noise - 1 and
5 step predictions.

The behavior of the HTM classifier with gradual and recurrent concept drift

(Figure 8), is nearly identical to that of abrupt and recurrent concept drift (Figure 7). The

primary difference being that the slopes of the drops and increases in accuracy percentage

are not as steep.

Figures 9 (abrupt and recurrent) and 12 (gradual and recurrent) depicted the HTM

classifiers' behavior when 10% noise was introduced into the SEA data stream. Aside

from the early randomness of the accuracy percentage, attributed to the random

instantiation of temporal memory algorithm, the behavior of the HTM classifier is

relatively the same as that shown in Figures 6 and 7.

71

Figure 9. Abrupt and recurrent concept drift accuracy – SEA data with 10% noise - 1 and
5 step predictions.

Figure 10. Gradual and recurrent concept drift accuracy – SEA data with 10% noise - 1
and 5 step predictions.

72

Experiment II (Real-world Data Streams)

Experiment II was nearly identical to Experiment I, with the primary difference

being that the data sets came from real-world data streams, and concept drift and noise

were not manually added. Instead of variants, each experiment was repeated ten times

over the same data stream.

Electricity Price Predictions (Up/Down)

As shown in Table 9 and Figure 11, the HTM classifier achieved an average

accuracy of 75%. While only 6th best when compared to the other classifiers, the HTM

classifiers’ performance of 75% was comparable to that of the OBoost (79%) and VFDT

(80%) classifiers; and superior to that of the AWE (72%) classifier. It is likely that the

HTM classifier would have performed better had the electricity data set contained more

than 45k records.

Figure 11 plots the price prediction accuracy of the HTM classifier on the

electricity data set. It was observed that the HTM classifiers’ accuracy percentage for the

1-step prediction begins at 74% but drops to ~70% near the 2500 instance number. This

drop is due to the HTM classifiers’ temporal memory algorithm learning the temporal

dependencies within the data. It was observed at instance number 8000, that the HTM

classifier began to steadily improve the accuracy of its predictions consistently until the

end of the data stream. It is interesting to note that the 5-step prediction accuracy is

relatively the same as that of the 1-step with the primary difference coming at the

beginning of the data stream in which the two predictions converge near the 8000

instance number.

73

Figure 11. Electricity Price Predictions (Up/Down) Accuracy – 1 and 5 step predictions

Airline Flight Predictions (On-Time/Late)

As shown in Table 9, the HTM classifier ranked 4th in average accuracy on the

airlines data set. The HTM classifiers’ average accuracy of 60% out-performed that of the

AWE (57%), LevBag (56%), and the OBoost (55%) classifiers; and gave comparable

results to those of the ARF (66%), DWM (61%), and VFDT (64%) classifiers. It was

likely that the HTM classifiers’ better performance was attributable to temporal

dependencies and the customized SDR encoder for the airport field in the data. As

detailed in Appendix A, the airport data field was transformed from a text string in the

original file to an SDR encoding, which consisted of the actual latitude/longitude,

altitude, and size (small, medium, large) of each airport. It is speculated that increasing

the sparsity (size) of the encodings and temporal memory settings may have improved the

accuracy percentage of the HTM classifier but likely at the expense of the CPU run-time

(Table 10) and RAM-Usage (Table 11) cost measures.

74

Poker Hand Predictions

 As shown in Table 9, the HTM classifier ranked last amongst the classifiers tested

on the poker data set, its average accuracy percentage of 44% was comparable to that of

all but the ARF and VFDT. The poor accuracy percentage likely was due to the poker

data set containing ten classes (Appendix H).

Table 9

Accuracy (%) of the Classifiers with Real-World Data
Compared using the Prequential Error Estimation Method
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM
Airlines Ave. 0.66 0.57 0.61 0.56 0.55 0.64 0.60

 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.01
 Min 0.66 0.57 0.61 0.56 0.55 0.64 0.59
 Max 0.67 0.57 0.61 0.56 0.55 0.64 0.60

Elec Ave. 0.88 0.72 0.80 0.85 0.79 0.80 0.75
 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 Min 0.88 0.72 0.80 0.85 0.78 0.80 0.75
 Max 0.89 0.72 0.80 0.85 0.79 0.80 0.75

Poker Ave. 0.54 0.48 0.47 0.46 0.47 0.52 0.44
 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.01
 Min 0.53 0.48 0.47 0.46 0.47 0.52 0.43
 Max 0.54 0.48 0.47 0.46 0.47 0.52 0.44

CPU run-times

Table 10 shows the average CPU run-time of the classifiers on the real-world data

sets. The HTM classifier ranked 4th for the airlines data set, 7th for the electricity data set,

and 4th for the poker data set. It is likely that the HTM’s 7th place ranking for the

electricity data set is due to its small number of records (45K). It was observed that the

larger data sets of airlines and poker, with 539K and 1000K respectively, demanded more

CPU time as shown by the ARF’s, LevBag’s, and OBoost’s results.

75

Table 10

Average CPU run-time (in seconds) of the Classifiers with Real-World Data

Compared using the Prequential Error Estimation Method

Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Airlines 10527.6 2393.76 1529.12 14301.71 20546.3 206.789 7082.84

Electricity 502.912 136.094 56.083 1217.428 1624.033 10.375 1967.761

Poker 29044.56 24.60 6334.51 31327.38 49277.20 1767.51 10593.25

RAM usage

Table 11 shows the average RAM usage in Kilobytes consumed by each of the

classifiers over the real-world data sets. It was observed that the HTM classifier

performed the poorest of all the classifiers, even with the smaller electricity data set. This

was attributed to the large SDR needed to encode the features of the data sets along with

the large memory requirements for the Spatial and Temporal poolers (Appendix I). The

large memory requirements of the HTM classifier were not unexpected. Ahmad and

Scheinkman (2019) demonstrated the benefits of high dimensional sparse representations;

however, an increase in sparsity directly increases memory consumption. The sparsity of

the SDRs had to be significantly increased (Appendix H) to obtain the accuracy

percentages recorded in Table 9. As Table 11 shows, the increase in SDR size resulted in

a drastic increase in memory consumption.

Table 11

Average RAM usage (in K) of the Classifiers with Real-World data sets
Compared using the Prequential Error Estimation Method

Dataset ARF AWE DWM LevBag OBoost VFDT HTM

Airlines 43471.83 450.16 59.25 4100.61 4211.00 2384.37 33593500
Electricity 7638.76 507.22 66.83 4461.69 4482.07 291.33 5214611.33
Poker 47235.76 570.19 124.62 124.62 5269.99 5416.49 66683675.8

76

Experiment III (Simulated Malware)

The purpose of experiment III was to assess the predictive performance of the

HTM classifier against a known example of stalling code. This analysis was achieved by

providing the HTM classifier the EIP, EAX, EBX, ECX, EDX, and EFLAGS register

values resulting from executing each Line of Code (LOC) during dynamic disassembly of

an executable via a IDAPro Python script and plotting the results. The next step was to

provide the HTM classifier an executable from a sorting algorithm and plot the results.

The resulting plots (Figures 12 – 27) were then compared against each other for analysis.

As can be seen in Tables 12 and 13, the HTM achieved high accuracy scores in

predicting all eight flags bits. Furthermore, Table 13 demonstrates the multi-prediction

capabilities of the HTM classifier by delivering high accuracy scores for 5-step

predictions.

Table 12

HTM classifier Malware Analysis EFLAGS prediction accuracy %
1-step predictions

Algorithm CARRY PARITY AUX ZERO SIGN TRAP DIR OVERFLOW

Stalling 0.99 0.89 0.97 0.99 0.93 1 1 1

Sorting 0.97 0.89 0.97 0.97 0.98 1 1 0.99

Table 13

HTM classifier Malware Analysis EFLAGS prediction accuracy %
5-step predictions

Algorithm CARRY PARITY AUX ZERO SIGN TRAP DIR OVERFLOW
Stalling 0.99 0.88 0.94 1.00 0.93 1.00 1.00 1.00
Sorting 0.95 0.76 0.95 0.92 0.96 1.00 1.00 0.99

 Table 14 shows the RAM usage of the HTM classifier for both the stalling code

and the sorting algorithm. It was observed that the sorting algorithm required consumed

77

nearly twice the amount of RAM as that of the stalling algorithm despite having the same

SDR encoders, Spatial and Temporal Pooler parameters (Appendices H and M). It was

likely that this was the result of the learning process of the Temporal Pooler, as the

sorting algorithm had of 𝑂𝑂(𝑛𝑛2) while the stalling code had 𝑂𝑂(𝑛𝑛) complexity. Simply

stated, it was harder for the HTM classifier to learn the temporal dependencies of the

sorting algorithm.

Table 14

HTM classifier Malware
Analysis
RAM usage in K

Algorithm RAM
Stalling 9469554.69
Sorting 17830265.63

 The following list of Figures (12 – 27) is the result of the HTM classifier

predicting each flag bit of the x86 EFLAGS register given the state of the machine by the

IDAPro Python script for each LOC that was disassembled for both the stalling and

sorting algorithms.

Findings: Carry Flag

As per Irvine (1999), “The Carry flag (CF) is set when the result of an unsigned

arithmetic operation is too large to fit into the destination.” (p. 40)

Figures 12 and 13 depict the HTM classifiers' accuracy of prediction the CF for

both the stalling code and sorting algorithm. It was observed that the stalling code

quickly flatlined, while the sorting algorithm fluctuated throughout the entirety of its

execution.

78

Figure 12. Stalling code: HTM Carry Flag Accuracy - 1 and 5 step predictions

Figure 13. Sorting code: HTM Carry Flag Accuracy - 1 and 5 step predictions.

Findings: Parity Flag

As per Irvine (1999),

The Parity flag (PF) is set if the least-significant byte in the result contains an

even number of 1 bits. Otherwise, PF is clear. In general, it is used for error

79

checking when there is a possibility that data might be altered or corrupted. (p.

41)

Figures 14 and 15 depict the HTM classifiers' prediction accuracy of the PF for

both the stalling code and sorting algorithms. Although somewhat similar, subtle

fluctuations in the sorting algorithm plot can be seen, while those of the stalling code

approach a flatline.

Figure 14. Stalling code: HTM Parity Flag accuracy - 1 and 5 step predictions.

80

Figure 15. Sorting code: HTM Parity Flag accuracy - 1 and 5 step predictions.

Auxiliary Flag

As per Irvine (1999), “The Auxiliary Carry flag (AC) is set when an arithmetic

operation causes a carry from bit 3 to bit 4 in an 8-bit operand.” (p. 41)

Figures 16 and 17 depict the HTM classifiers AC prediction accuracies. It was

observed that both the stalling code and sorting algorithm had similar results; however,

subtle fluctuations can be seen in the plot of the sorting algorithm.

81

Figure 16. Stalling code: HTM Auxiliary Flag accuracy - 1 and 5 step predictions.

Figure 17. Sorting code: HTM Auxiliary Flag accuracy - 1 and 5 step predictions.

82

Findings: Zero Flag

 As per Irvine (1999), “The Zero flag (ZF) is set when the result of an arithmetic

or logical operation generates a result of zero.”

 Figures 18 and 19 show the results of plotting the HTM classifiers’ ZF accuracy

predictions. It was observed that the stalling code continues its trend of flatlining

EFLAGS register, while the sorting algorithm shows heavy use.

Figure 18. Stalling code: HTM Zero Flag accuracy - 1 and 5 step predictions.

83

Figure 19. Sorting code: HTM Zero Flag accuracy - 1 and 5 step predictions.

Findings: Sign Flag

As per Irvine (1999), “The Sign flag (SF) is set when the result of an arithmetic or

logical operation generates a negative result.” (p. 40)

Figures 20 and 21 depict the behavior of the SF for the stalling code and sorting

code executables. It is observed that the stalling code plot gradually flatlined at ~92%,

while the sorting algorithm fluctuated a great deal until the 20K LOC mark, at which

point it begins to stabilize. These figures reinforce the idea that stalling code doesn’t want

to draw attention to itself by performing a large amount of ALU computations.

84

Figure 20. Stalling code: HTM Sign Flag accuracy - 1 and 5 step predictions.

Figure 21. Sorting code: HTM Sign Flag accuracy - 1 and 5 step predictions.

85

Findings: Trap Flag

As defined by Sikorski et al. (2012), “The trap flag (TF) is used for debugging.

The x86 processor will execute only one instruction at a time if this flag is set.” (p. 72)

Figures 17 and 18 show the behavior of the TF for the stalling code and sorting

code executables. When the TF was set, the processor executes one instruction and then

generates an exception (Sikorski & Honig, 2012), also known as single-stepping. It was

observed that the TF is set immediately upon executing the simulated malware example

in both Figures 17 and 18. The IDAPro disassembler likely sets the TF flag to step

through and disassemble each instruction and record the state of the machine. A common

malware evasion technique is to check the TF during run-time and cease its malicious

behavior if this flag is set or to turn it off to prevent dynamic analysis.

Figure 22. Stalling code: HTM Trap Flag accuracy - 1 and 5 step predictions.

86

Figure 23. Sorting code: HTM Trap Flag accuracy - 1 and 5 step predictions.

Findings: Direction Flag

 As stated by Irvine (1999) “The Direction Flag (DF) determines whether the

index register is incremented or decremented during each iteration of a string primitive

instruction.” (p. 383)

Figures 17 and 18 depict the behavior of the DF flag for the stalling code and

sorting code executables. The DF flag is primarily used for string operations where the

source and destination registers are incremented if the flag is set to 0 and decremented if

it is set to 1. Neither the stalling code nor the sorting code performed any string

operations. Therefore little observation can be made from these two figures.

87

Figure 24. Stalling code: HTM Direction Flag accuracy - 1 and 5 step predictions.

Figure 25. Sorting code: HTM Direction Flag accuracy - 1 and 5 step predictions.

Findings: Overflow Flag

As defined by Irvine (1999), “The Overflow flag (OF) is set when the result of a

signed arithmetic operation is too large or too small to fit into the destination.” (p. 41)

88

Figures 21 and 22 show the behavior of the OF for the stalling code and sorting

code executables. It was observed that the stalling code OF was immediately set and

never changed, while that of the sorting algorithm fluctuated throughout the entirety of

the experiment, resulting in lower accuracy. The results of Figures 21 and 22 implies that

stalling code has the tendency to flatline the OF, while that of the sorting algorithm

fluctuates more frequently. This is likely due to malware authors not wanting to draw too

much attention to their malware.

Figure 26. Stalling code: HTM Overflow Flag accuracy - 1 and 5 step predictions.

89

Figure 27. Sorting code: HTM Overflow Flag accuracy - 1 and 5 step predictions.

Statistical Analysis

As stated by (Bifet et al., 2017), the main challenge in classifier analysis is to

know when a classifier is outperforming another classifier only by chance, and when

there is a statistical significance to that claim. Thus in order to show that the HTM

classifier was statistically significant when compared to other classifiers, we first show

that the null hypothesis is false.

Claim: All seven classifiers have the same probability distribution.

HO: x̃ARF = x̃AWE = x̃DWM = x̃LevBag = x̃OBoost = x̃VFDT = x̃HTM

HA: at least two classifiers differ from each other.

Table 15 shows the average rank of each classifier included in the experiments I

and II. Note that for k = 7 and N = 7, as there are seven classifiers and seven different

datasets, the resulting value of the Friedman test statistic is : 𝜒𝜒𝐹𝐹2 = 22.54 with 6 degrees of

90

freedom at significance level α = 0.05. The resulting p-value of 0.000965 allowed for the

rejection of the omnibus null hypothesis that all samples (groups) are from the same

distribution. Thus we can conclude that the accuracy values of the 7 seven classifiers are

significantly different as the value of 22.54 is greater than the critical value of 12.5916.

After the null-hypothesis was rejected, I proceeded with the Nemenyi posthoc

test. The critical value with k = 7 and α = 0.10 is q0.10 = 3.11. The performance of any

two classifiers is considered significantly different if their corresponding average ranks

differ by at least the critical difference (CD). Figure 28 graphically represents the

comparison of the classifiers based on their critical differences, and Table 15 shows the

classifier rankings in table format. Both Figure 28 and Table 15 shows that the HTM

classifier is significantly different than the ARF, DWM, and VFDT classifiers but not

significantly different from the AWE, LevBag, and OBoost classifiers.

Table 15

Average classifier rank including Artificial and Real-World data sets

ARF AWE DWM LevBag OBoost VFDT HTM

1.93 4.04 3.29 5.14 4.71 2.43 6.43

Table 16 shows the resulting Nemenyi p-values. Post-hoc p-values of all possible

pairs (classifiers) are compactly represented as a lower triangular matrix. Each numerical

entry is the p-value of row/column pair, i.e., the null hypothesis that the classifier

represented by its particular column name is different from the classifier represented by

its particular row name.

91

Figure 28. Nemenyi test results with a 90% confidence level.

Table 16

Nemenyi p-values, with no further adjustment

 ARF AWE DWM LevBag OB VFDT
AWE 0.51 - - - - -
DWM 0.9036 0.9937 - - - -
LevBag 0.0789 0.9682 0.677 - - -
OB 0.1931 0.9979 0.8797 1 - -
VFDT 0.9995 0.7897 0.9899 0.22 0.43
HTM 0.0019 0.3884 0.0928 0.92 0.75 0.01

Note: Nemenyi p-values computed using tools from https://astatsa.com/FriedmanTest/

Comparison to Other Literature

This research followed that of Ghomeshi et al. (2019), who developed a classifier

based on evolutionary algorithms to cope with different types of concept drifts in non-

stationary data streams. It is noteworthy that Ghomeshi et al. (2019) generated their

artificial data sets and ran their classifier experiments using MOA, which is an open-

source framework for data stream mining and is a Java-based service. In contrast, this

research utilized the data generation and classifier tools provided by scikit multi-flow,

which is a Python add-in package. Tables 24 and 25below are reprinted from Ghomeshi

et al. (2019). Incorporated into Tables 24 and 25 are the results of this research for

comparison purposes.

Ghomeshi et al. (2019) classifier accuracy results were similar to that of this

research conducted. However, there was a trend for their results to be more in alignment

https://astatsa.com/FriedmanTest/

92

with this research’ runs that contained 10% noise. Ghomeshi et al. (2019) did not mention

inserting noise in their publication.

It was observed that there was a great deal of difference in the average CPU run-

times between Ghomeshi et al. (2019) and this work for all experiments conducted. The

contrast in results for both classifier accuracy and CPU run-times was likely due to

architectural and implementation differences between MOA and scikit multiflow.

Table 17

Comparison to Other Research

Average Accuracy

Reference Data Set Classifier Accuracy

Ghomeshi et al. (2019) Hyper. ARF 88.17
This Research (from Table 3 0% noise) Hyper. ARF 94.30

This Research (from Table 4 10% noise) Hyper. ARF 86.00
Ghomeshi et al. (2019) LED ARF 74.05

This Research (from Table 3 0% noise) LED ARF 99.80
This Research (from Table 4 10% noise) LED ARF 76.00

Ghomeshi et al. (2019) RT ARF 78.24
This Research (from Table 3 0% noise) RT ARF 81.40

This Research (from Table 4 10% noise) RT ARF --
Ghomeshi et al. (2019) SEA ARF 88.67

This Research (from Table 3 0% noise) SEA ARF 99.50
This Research (from Table 4 10% noise) SEA ARF 90.40

Ghomeshi et al. (2019) Airlines ARF 63.53
This Research (from Table 9) Airlines ARF 66.00

Ghomeshi et al. (2019) Elec ARF 92.17
This Research (from Table 9) Elec ARF 88.00

Ghomeshi et al. (2019) Poker ARF 84.19
This Research (from Table 9) Poker ARF 54.00

Ghomeshi et al. (2019) Hyper. DWM 89.64
This Research (from Table 3 0% noise) Hyper. DWM 99.70

This Research (from Table 4 10% noise) Hyper. DWM 87.90
Ghomeshi et al. (2019) LED DWM 75.05

This Research (from Table 3 0% noise) LED DWM 99.98
This Research (from Table 4 10% noise) LED DWM 56.20

93

Ghomeshi et al. (2019) RT DWM 59.49
This Research (from Table 3 0% noise) RT DWM 60.90

This Research (from Table 4 10% noise) RT DWM --
Ghomeshi et al. (2019) SEA DWM 87.72

This Research (from Table 3 0% noise) SEA DWM 94.90
This Research (from Table 4 10% noise) SEA DWM 88.20

Ghomeshi et al. (2019) Airlines DWM 63.97
This Research (from Table 9) Airlines DWM 61.00

Ghomeshi et al. (2019) Elec DWM 75.73
This Research (from Table 9) Elec DWM 80.00

Ghomeshi et al. (2019) Poker DWM 74.37
This Research (from Table 9) Poker DWM 47.00

Ghomeshi et al. (2019) Hyper. LevBag 91.03
This Research (from Table 3 0% noise) Hyper. LevBag 77.00

This Research (from Table 4 10% noise) Hyper. LevBag 68.20
Ghomeshi et al. (2019) LED LevBag 74.22

This Research (from Table 3 0% noise) LED LevBag 63.00
This Research (from Table 4 10% noise) LED LevBag 40.40

Ghomeshi et al. (2019) RT LevBag 90.91
This Research (from Table 3 0% noise) RT LevBag 64.80

This Research (from Table 4 10% noise) RT LevBag --
Ghomeshi et al. (2019) SEA LevBag 87.59

This Research (from Table 3 0% noise) SEA LevBag 93.80
This Research (from Table 4 10% noise) SEA LevBag 79.50

Ghomeshi et al. (2019) Airlines LevBag 59.42
This Research (from Table 9) Airlines LevBag 56.00

Ghomeshi et al. (2019) Elec LevBag 92.09
This Research (from Table 9) Elec LevBag 85.00

Ghomeshi et al. (2019) Poker LevBag 88.52
This Research (from Table 9) Poker LevBag 46.00

Ghomeshi et al. (2019) Hyper. OBoost 85.85
This Research (from Table 3 0% noise) Hyper. OBoost 82.00

This Research (from Table 4 10% noise) Hyper. OBoost 69.70
Ghomeshi et al. (2019) LED OBoost 74.15

This Research (from Table 3 0% noise) LED OBoost 83.70
This Research (from Table 4 10% noise) LED OBoost 52.60

Ghomeshi et al. (2019) RT OBoost 85.30
This Research (from Table 3 0% noise) RT OBoost 67.40

This Research (from Table 4 10% noise) RT OBoost --
Ghomeshi et al. (2019) SEA OBoost 85.56

This Research (from Table 3 0% noise) SEA OBoost 95.70

94

This Research (from Table 4 10% noise) SEA OBoost 76.70
Ghomeshi et al. (2019) Airlines OBoost 61.98

This Research (from Table 9) Airlines OBoost 55.00
Ghomeshi et al. (2019) Elec OBoost 88.02

This Research (from Table 9) Elec OBoost 79.00
Ghomeshi et al. (2019) Poker OBoost 84.31

This Research (from Table 9) Poker OBoost 47.00

Table 18

Comparison to Other Research

Average CPU run-time (seconds)

Reference Data Set Classifier CPU run-time

Ghomeshi et al. (2019) Hyper. ARF 208.00
This Research (from Table 3 0% noise) Hyper. ARF 13776.03

This Research (from Table 4 10% noise) Hyper. ARF 22446.87
Ghomeshi et al. (2019) LED ARF 188.00

This Research (from Table 3 0% noise) LED ARF 29842.33
This Research (from Table 4 10% noise) LED ARF 60329.59

Ghomeshi et al. (2019) RT ARF 394.00
This Research (from Table 3 0% noise) RT ARF 16115.15

This Research (from Table 4 10% noise) RT ARF --
Ghomeshi et al. (2019) SEA ARF 751.00

This Research (from Table 3 0% noise) SEA ARF 12469.20
This Research (from Table 4 10% noise) SEA ARF 24038.47

Ghomeshi et al. (2019) Airlines ARF 495.00
This Research (from Table 9) Airlines ARF 10527.60

Ghomeshi et al. (2019) Elec ARF 7.73
This Research (from Table 9) Elec ARF 502.91

Ghomeshi et al. (2019) Poker ARF 167.00
This Research (from Table 9) Poker ARF 29044.56

Ghomeshi et al. (2019) Hyper. DWM 130.00
This Research (from Table 3 0% noise) Hyper. DWM 1209.69

This Research (from Table 4 10% noise) Hyper. DWM 1425.74
Ghomeshi et al. (2019) LED DWM 851.00

This Research (from Table 3 0% noise) LED DWM 3792.89
This Research (from Table 4 10% noise) LED DWM 8385.59

Ghomeshi et al. (2019) RT DWM 195.00
This Research (from Table 3 0% noise) RT DWM 4735.79

This Research (from Table 4 10% noise) RT DWM --

95

Ghomeshi et al. (2019) SEA DWM 98.00
This Research (from Table 3 0% noise) SEA DWM 843.76

This Research (from Table 4 10% noise) SEA DWM 844.74
Ghomeshi et al. (2019) Airlines DWM 66.00

This Research (from Table 9) Airlines DWM 1529.12
Ghomeshi et al. (2019) Elec DWM 1.48

This Research (from Table 9) Elec DWM 56.08
Ghomeshi et al. (2019) Poker DWM 46.00

This Research (from Table 9) Poker DWM 6334.51
Ghomeshi et al. (2019) Hyper. LevBag 144.00

This Research (from Table 3 0% noise) Hyper. LevBag 28610.06
This Research (from Table 4 10% noise) Hyper. LevBag 30333.96

Ghomeshi et al. (2019) LED LevBag 246.00
This Research (from Table 3 0% noise) LED LevBag 73243.41

This Research (from Table 4 10% noise) LED LevBag 69143.31
Ghomeshi et al. (2019) RT LevBag 207.00

This Research (from Table 3 0% noise) RT LevBag 92246.17
This Research (from Table 4 10% noise) RT LevBag --

Ghomeshi et al. (2019) SEA LevBag 409.00
This Research (from Table 3 0% noise) SEA LevBag 21311.02

This Research (from Table 4 10% noise) SEA LevBag 21844.44
Ghomeshi et al. (2019) Airlines LevBag 531.00

This Research (from Table 9) Airlines LevBag 14301.71
Ghomeshi et al. (2019) Elec LevBag 5.12

This Research (from Table 9) Elec LevBag 1217.43
Ghomeshi et al. (2019) Poker LevBag 81.00

This Research (from Table 9) Poker LevBag 31327.38
Ghomeshi et al. (2019) Hyper. OBoost 93.00

This Research (from Table 3 0% noise) Hyper. OBoost 50473.21
This Research (from Table 4 10% noise) Hyper. OBoost 52635.70

Ghomeshi et al. (2019) LED OBoost 174.00
This Research (from Table 3 0% noise) LED OBoost 61545.17

This Research (from Table 4 10% noise) LED OBoost 98845.17
Ghomeshi et al. (2019) RT OBoost 148.00

This Research (from Table 3 0% noise) RT OBoost 123796.25
This Research (from Table 4 10% noise) RT OBoost --

Ghomeshi et al. (2019) SEA OBoost 162.00
This Research (from Table 3 0% noise) SEA OBoost 25690.63

This Research (from Table 4 10% noise) SEA OBoost 27593.68
Ghomeshi et al. (2019) Airlines OBoost 74.00

This Research (from Table 9) Airlines OBoost 20546.30

96

Ghomeshi et al. (2019) Elec OBoost 2.06
This Research (from Table 9) Elec OBoost 1624.03

Ghomeshi et al. (2019) Poker OBoost 64.00
This Research (from Table 9) Poker OBoost 31327.38

Summary of Results

Experiment I showed that although the HTM classifier’s accuracy percentages

were in the mid 50% range, the classifier was sensitive to abrupt, gradual, and recurrent

concept drift and noise. Furthermore, it can be concluded that even without temporal

dependency within the data stream, the HTM classifier demonstrated an ability to learn

new patterns relatively quickly. These observations suggest that despite the lack of

temporal dependencies within the SEA data stream, the HTM classifier showed an ability

to learn new patterns and adjust to concept drift, and noise within artificial data streams.

The results of experiment II demonstrated the HTM classifier suitable for

classifying real-world data in two out of the three cost measures (i.e., average accuracy

and CPU run-time). However, the high cost in memory usage, which coincided with that

of experiment I, is something that must be considered.

Experiment III successfully identified the behavioral tendencies of the Rombertik

virus through the machine states that resulted from executing its code. The plots derived

from tracing the HTM classifiers’ performance on all eight flag bits demonstrate a new

tool that can aid reverse engineers of malware to identify whether an executable contains

stalling code.

97

Chapter 5

Conclusions, Summary, Implications, & Recommendations

This research demonstrated an HTM sequence classifier capable of classifying

data within a data stream containing concept drift, noise, and temporal dependencies. The

HTM sequence classifier was evaluated on both artificially generated data streams (e.g.,

Hyperplane, LED, Random Tree, and SEA) and real-world data streams (e.g., Airlines,

Electricity, and Poker), and compared its performance against several modern classifiers

(e.g., ARF, AWE, DWM, LevBag, Online-Boost, and VFDT) using the cost metrics of

average accuracy percentage, CPU run-time, and RAM usage. Additionally, this research

evaluated the potential of an HTM classifier for malware analysis via a simulated

example of the Rombertik stalling code within an executable file.

Conclusions

The HTM classifier proved effective in detecting abrupt, gradual and recurrent

concept drift within artificial data streams, including those with 10% noise as shown in

Figures 7, 8, 9 and 10 of experiment I. However, the HTM classifiers’ accuracy metric

was poor due to the data streams lacking temporal dependencies as shown in Tables 3

and 4.

The application of noise to the artificial data streams provided surprising results in

that it was unexpected to see the significant drop in the accuracy of many of the other

classifiers. The OBoost classifier suffered the most significant reduction in accuracy from

83.71% down to 52.6%, while LevBag dropped from 62.96% down to 40.41% for the

LED data stream (Table 4). Meanwhile, the HTM classifier remained relatively stable at

98

50%. The HTMs’ stable performance could imply that the HTM classifier exhibits a

behavior that is resistant to noise.

Experiment II showed that the HTM classifier performed reasonably well when

predicting real-world data using the cost measures of average accuracy and average CPU

run-time; however, the HTM classifiers’ average RAM usage was exceptionally high.

Experiment III showed that the HTM classifier is well suited to predicting

machine states (i.e., CPU Flags), as shown in Figures 12 – 27. The HTM classifier was

capable of producing plotting graphs, similar to that of an electrocardiogram, with a high

accuracy percentage, thereby providing a valuable analysis tool in malware analysis.

Summary

The primary purpose of this research was to develop a new sequence classifier

that can classify data in a data stream that contained concept drift, noise, and temporal

dependencies. This research demonstrated that a sequence classifier based on HTM

architecture achieved this goal but is better suited to data streams that contain temporal

dependencies.

As Bifet et al. (2017) pointed out, most streaming environments contain

temporally related data that, during certain periods, their labels correlate (i.e., network

attack and intrusion detection). However, despite recent research that advanced the

discovery of novel cyber-attacks such as that conducted by Burgio (2019), there still

exists a gap in the published literature on streams that contain temporal dependencies.

This research demonstrated that an HTM based approach is applicable toward classifying

data within data streams that contain temporalness as experiments I, II, and III show. This

research also showed that the HTM based approach is capable of detecting concept drift.

99

Finally, the secondary goal of this research was to explore the potential of HTM

as a solution for detecting evasive malware that contains stalling code. As demonstrated

in experiment III, this research generated a sample executable that contained stalling code

based on the Rombertik virus, and successfully analyzed the live executable via a

combination of an IDA Pro Python script and an HTM classifier that generated an

electrocardiography style plot that can be utilized to study and identify behavior patterns

of programs.

An implied goal of this research was to determine the fitness of HTM

technologies as a classifier capable of classifying all data streams. As experiments I and

II demonstrated, the HTM classifier is more suitable for temporal data streams than non-

temporal data streams. This determination came by using the four-part classifier

evaluation framework, described by Bifet et al. (2017). The first part, error estimation,

was accomplished using the prequential approaches for error estimation.

 The fourth part, identifying cost measures, identified classifier accuracy, CPU

time, and RAM usage to measure the HTM sequence classifiers’ performance against the

ARF, AWE, DWM, LevBag, Online-Boost, and VFDT classifiers.

Experiment I

Showed that HTMs are not suitable for classifying artificial data streams;

however, it did prove that the HTM classifier is capable of detecting concept drift. It also

highlights the fact that many efficient classifiers already exist for classifying artificially

generated data that contain concept drift. Finally, experiment I showed that with the

introduction of 10% noise, the test set of classifiers' performance in accuracy, CPU-time,

and RAM-usage began to degrade sharply.

100

Experiment II

Results showed the HTM classifier was capable of classifying data within data

streams containing temporal data. While the accuracy results of experiment II were

average in comparison to the other classifiers, it was encouraging to see that this

technology is sensitive to temporal data streams within real-world data. As such, this

approach offers a new option for classifying streaming data that contain temporal

dependencies.

Experiment III

Experiment III outlined a process for using HTM technology in dynamic malware

analysis. This experiment demonstrated the potential of HTMs in analyzing malware with

the specific behavior of utilizing stalling code as a means of avoiding detection. This

experiment compared the simulated stalling executable against a normal sorting

executable. Comparing the EFLAG graphs of the two algorithms showed the stalling

code to behave very predictably, leading to the HTM classifier to obtain high accuracy

predictions quickly. The resulting plots showed that the Rombertik stalling code flatlined

the EFLAGS, making it very recognizable.

Implications

Given the ever-increasing level of temporal dependencies that exist within real-

world data streams, the need for classifiers that can find and apply temporal dependencies

when labeling data quickly would be of great benefit. Furthermore, the effectiveness of

evasive malware at evading detection by IDS through the use of simple tactics such as

stalling code forces classifiers to frequently retrain, resulting in a degradation of

performance and an increase in the consumption of system resources. However, as

discussed, finding temporal dependencies within real-world data streams (including

101

network traffic), could allow IDS and classifiers to avoid performance degradation and

consumption of system resources. Thus, the use of HTM technologies in finding temporal

dependencies might help to improve the effectiveness of these applications.

Recommendations

 While this research has highlighted the potential of HTM based classifiers in

classifying real-world streaming data, there is ample opportunity to extend this research

to improve the HTM classifiers’ accuracy and for use in multiple machine learning

domains. The HTM classifiers’ accuracy is highly dependent upon modifying the

parameters for the Temporal Memory and Spatial Pooler, along with highly customized

encoders unique to each data stream. One such example was the simple attempt by this

research to create a geospatial encoder for use in the Airline dataset. Improving the

robustness and quality of the geospatial encoder while maintaining the four essential SDR

properties, as described by Purdy (2015), would be useful in real-world data streams that

contain features for geospatial locations.

In the domain of malware analysis, finding labeled malware stalling examples does

not exist. Researchers must individually reverse engineer known malware executables to

search for the existence of stalling code, which is time-intensive. The lack of labeled

stalling code will offer an opportunity to extend experiment III by labeling real-world

malware samples from online repositories such as Virusshare.com for the presence of

stalling code. The labeling of this repository for the existence of stalling code would

benefit evasive malware researchers by providing a rich pool of malware examples

without the need for individually reverse engineering each one.

Currently, standard statistical functions (e.g., ROC, AUC, Friedmans’ Test) for

HTM’s do not exist. Common statistical software applications (e.g., R, MATLAB, SAS,

102

Python, Java) contain a rich repository of statistical analytical tools that would be useful

in evaluating the performance of HTM classifiers. Adding HTM statistical functions to

any of these applications would allow the researcher to focus on improving the

performance of HTMs rather than concentrating on designing customized methods for

producing common statistical measurements and graphs.

 Another avenue of inquiry would be to allow for the provision of advanced

parallelism of HTM. Parallelism could help in improving the amount of time needed for

the Temporal Memory algorithm to learn sequential patterns. Applications such as

https://dask.org/ could provide the necessary infrastructure to parallelize HTMs. Finally,

my research demonstrated the potential of HTM in the implementation of machine

learning and data mining.

https://dask.org/

103

Appendix A

Hyperplane Features Description for Experiment I (10 files ea. 1 million data pts)

(Hulten et al., 2001)

Table 19

Hyperplane Feature List

No. Name Type Description
1 n_features int (Def: 10) The number of attributes to generate. Higher than 2.
2 n_drift_features int (Def: 2) The number of attributes with drift. Higher than 2.
3 mag_change float (Def: 0.0) Magnitude of the change for every example. 0.0 to 1.0
4 noise_% float (Def: 0.05) % of noise to add to the data. 0.0 to 1.0
5 sigma_% int (Def: 0.1) % of prob.that the direction of change is reversed. 0.0 to 1.0

104

Appendix B

LED Features Description for Experiment I (10 files ea. 1 million data pts)

(Breiman et al., 1984)
Table 20

LED Feature List

No. Name Type Description

1 random_state

 int,
RandomState
instance or None,
optional
(default=None)

If int, random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If None,
the random number generator is the RandomState instance used by np.random.

2 noise_percentage float (Default:
0.0)

The probability that noise will happen in the generation. At each new sample
generated, a random probability is generated, and if that probability is equal or
less than the noise_percentage, the selected data will be switched

3 has_noise bool (Default:
False) Adds 17 non relevant attributes to the stream.

105

Appendix C

Random Tree Features Description for Experiment I (10 files ea. 1 million data pts)

https://scikit-

multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.data.RandomTreeGen

erator.html#skmultiflow.data.RandomTreeGenerator

Table 21

Random Tree Feature List

No. Name Type Description
1 tree_random_state int (Default: None) Seed for random generation of tree.

2 sample_random_state int (Default: None) Seed for random generation of instances.

3 n_classes int (Default: 2) The number of classes to generate.

4 n_cat_features: int (Default: 5)

The number of categorical features to generate.
Categorical features are binary encoded, the actual
number of categorical features
is n_cat_featuresxxn_categories_per_cat_feature

5 n_num_features int (Default: 5) The number of numerical features to generate.

6 n_categories_per_cat_feature int (Default: 5) The number of values to generate per categorical
feature.

7 max_tree_depth int (Default: 5) The maximum depth of the tree concept.

8 min_leaf_depth int (Default: 3) The first level of the tree above MaxTreeDepth that can
have leaves.

9 fraction_leaves_per_level float (Default:
0.15)

The fraction of leaves per level from min_leaf_depth
onwards.

106

Appendix D

SEA Features Description for Experiment I (10 files ea. 1 million data pts)

(Street & Kim, 2001)

Table 22

SEA Feature List

No. Name Type Description

1 classification_function int (Default: 0)

Which of the four classification functions to use for the
generation. This value can vary from 0 to 3, and the
thresholds are, 8, 9, 7 and 9.5.

2 random_state:

int, RandomState
instance or None,
optional
(default=None)

If int, random_state is the seed used by the random
number generator; If RandomState instance,
random_state is the random number generator; If None,
the random number generator is the RandomState
instance used by np.random.

3 balance_classes bool (Default:
False)

Whether to balance classes or not. If balanced, the class
distribution will converge to a uniform distribution.

4 noise_percentage float (Default: 0.0)

The probability that noise will happen in the generation. At
each new sample generated, a random probability is
generated, and if that probability is higher than the noise
percentage, the chosen label will be switched. From 0.0 to
1.0.

107

Appendix E

Electricity Features Description for Experiment II (45,312 instances)

(Harries et al., 2003)

Table 23

Electricity Feature List
No. Name Type Description
1 class (target) nominal change of the price (UP or DOWN) (1 or 0)

2 date numeric date between 7 May 1996 to 5 December 1998. Here
normalized between 0 and 1

3 day numeric day of the week (1-7)

4 period numeric time of the measurement (1-48) in half hour intervals
over 24 hours. Here normalized between 0 and 1

5 nswprice numeric New South Wales electricity price, normalized
between 0 and 1

6 nswdemand numeric New South Wales electricity demand, normalized
between 0 and 1

7 vicprice numeric Victoria electricity price, normalized between 0 and 1

8 vicdemand numeric Victoria electricity demand, normalized between 0
and 1

9 transfer numeric scheduled electricity transfer between both states,
normalized between 0 and 1

108

Appendix F

Airlines Features Description for Experiment II (539,381 instances)

http://stat-computing.org/dataexpo/2009/
Table 24

Airlines Feature List
No. Name Type Description

1 Year int (normalized) 1987-2008
2 Month int (normalized) 12-Jan
3 DayofMonth int (normalized) 31-Jan
4 DayOfWeek int (normalized) 1 (Monday) - 7 (Sunday)
5 DepTime int (normalized) actual departure time (local, hhmm)
6 CRSDepTime int (normalized) scheduled departure time (local, hhmm)
7 ArrTime int (normalized) actual arrival time (local, hhmm)
8 CRSArrTime int (normalized) scheduled arrival time (local, hhmm)
9 UniqueCarrier int (normalized) unique carrier code

10 FlightNum int (normalized) flight number
11 TailNum int (normalized) plane tail number
12 ActualElapsedTime int (normalized) in minutes
13 CRSElapsedTime int (normalized) in minutes
14 AirTime int (normalized) in minutes
15 ArrDelay int (normalized) arrival delay, in minutes
16 DepDelay int (normalized) departure delay, in minutes
17 Origin int (normalized) origin IATA airport code

18 Dest int (normalized) destination IATA airport code

19 Distance int (normalized) in miles
20 TaxiIn int (normalized) taxi in time, in minutes
21 TaxiOut int (normalized) taxi out time in minutes
22 Cancelled int (normalized) was the flight cancelled?

23 CancellationCode int (normalized)
reason for cancellation (A = carrier, B = weather, C =
NAS, D = security)

24 Diverted int (normalized) 1 = yes, 0 = no
25 CarrierDelay int (normalized) in minutes
26 WeatherDelay int (normalized) in minutes
27 NASDelay int (normalized) in minutes
28 SecurityDelay int (normalized) in minutes
29 LateAircraftDelay int (normalized) in minutes

http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html

109

Appendix G

Poker Features Description for Experiment II (999,999 instances)

https://archive.ics.uci.edu/ml/datasets/Poker+Hand
Table 25

Poker Feature List
No. Name Type Description

1 S1 "Suit of card #1" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs}

2 C1 "Rank of card #1" Numerical (1-13) (Ace, 2, 3, ... , Queen, King)

3 S2 "Suit of card #2" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs}

4 C2 "Rank of card #2" Numerical (1-13) (Ace, 2, 3, ... , Queen, King)

5 S3 "Suit of card #3" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs}

6 C3 "Rank of card #3" Numerical (1-13) (Ace, 2, 3, ... , Queen, King)

7 S4 "Suit of card #4" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs}

8 C4 "Rank of card #4" Numerical (1-13) (Ace, 2, 3, ... , Queen, King)

9 S5 "Suit of card #5" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs}

10 C5 "Rank of card 5" Numerical (1-13) (Ace, 2, 3, ... , Queen, King)

11 CLASS "Poker Hand" Ordinal (0-9) "Poker Hand"
 0: Nothing in hand; not a recognized poker hand
 1: One pair; one pair of equal ranks within five cards
 2: Two pairs; two pairs of equal ranks within five

cards
 3: Three of a kind; three equal ranks within five

cards
 4: Straight; five cards, sequentially ranked with no

gaps
 5: Flush; five cards with the same suit
 6: Full house; pair + different rank three of a kind
 7: Four of a kind; four equal ranks within five cards
 8: Straight flush; straight + flush
 9: Royal flush; {Ace, King, Queen, Jack, Ten} + flush

110

Appendix H

SDR Encoder Dictionaries

Hyperplane

'encoderDictionary': {
 "scalerXY":
 {'size': 100, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
 },

LED

'encoderDictionary': {
 "scalerXY":
 {'size': 10, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5},

 },

RT

'encoderDictionary': {
 "scalerInt":
 {'size': 10, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
 "scalerFloat":
 {'resolution': 0.88, 'size': 700, 'sparsity': 0.02},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5},
 },

SEA

'encoderDictionary': {
 "scalerXY":
 {'size': 100, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},

 },

Airlines

'encoderDictionary': {
 "airline":
 {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 17, 'activeBits': 4},
 "flight_no":
 {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 7814, 'activeBits': 4},
 "lat":
 {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 13, 'maximum': 72, 'activeBits': 8},

111

 "long":
 {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': -177, 'maximum': 145, 'activeBits':
8},
 "alt":
 {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': -54, 'maximum': 9070, 'activeBits':
8},
 "airport_size":
 {'size': 16, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 2, 'activeBits': 5},
 "length_of_flight":
 {'size': 2048, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 655, 'activeBits': 5},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
 "time":
 {'timeOfDay': (30, 1), 'weekend': 21}

 }

Electricity

'encoderDictionary': {
 "scalerXY":
 {'size': 2048, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
 "time":
 {'timeOfDay': (30, 1), 'weekend': 21}
 },

Poker

'encoderDictionary': {
 "suit":
 {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 4, 'activeBits': 5},
 "rank":
 {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 13, 'activeBits': 3},
 "category":
 {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5}
 },

Executables

'encoderDictionary': {
 "register":
 {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1000000, 'maximum': 4967295,
'activeBits': 3},
 "flag":
 {'size': 16, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 2},
 },

112

Appendix I

Real-World Dataset Spatial Pooler, and Temporal Memory

Specifications

'predictor': {'sdrc_alpha': 0.0005},

'sp': {'boostStrength': 9.0,
 'columnCount': 8192,
 'localAreaDensity': 0.04395604395604396,
 'potentialPct': 0.85,
 'synPermActiveInc': 0.04,
 'synPermConnected': 0.13999999999999999,
 'synPermInactiveDec': 0.006},

 'tm': {'activationThreshold': 10,
 'cellsPerColumn': 64,
 'initialPerm': 0.21,
 'maxSegmentsPerCell': 2048,
 'maxSynapsesPerSegment': 256,
 'minThreshold': 5,
 'newSynapseCount': 32,
 'permanenceDec': 0.1,
 'permanenceInc': 0.1},

 'anomaly': {
 'likelihood':
 { 'probationaryPct': 0.1,
 'reestimationPeriod': 100
 } # These settings are copied from NAB
 }

113

Appendix J

Simulated Malware using Stalling Code

https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-
evasive-malware/

;***
; Program Name: stall.asm
; Programmer: Jeffrey V. Barnett
; Class: PH D Dissertation
; Date: February 12, 2017
; Purpose:
; Simulate Stalling Code
;***
 .486
 .model flat, stdcall
 .stack 100h

 ExitProcess PROTO Near32 stdcall, dwExitCode:dword ; capitalization not necessary
 ; capitalization not necessary

 .data ; this is the data area
iX dword 0
ptrB dword iX

sY word 4 dup(5,22)
bVal byte 'GEORGE WASHINGTON'
qVal qword -55
iY dword 3 dup(25,67)

 .code ; this is the code area
_start:
 mov ebx, ptrB

loc_4EEFD2:
 mov edx, edx
 inc dword ptr [ebx]
 cmp dword ptr [ebx], 1C9C381h
 jnz short loc_4EEFD2
 xor eax, eax
 mov [ebx], eax

loc_4EEFE2:
 mov ecx, ecx
 inc dword ptr [ebx]
 cmp dword ptr [ebx], 376EAC81h
 jnz short loc_4EEFE2

 INVOKE ExitProcess,0
 PUBLIC _start
 END
 end

https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-evasive-malware/
https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-evasive-malware/

114

Appendix K

Assembly Language Sorting Algorithm

https://github.com/beckysag/masm-random-integers/blob/master/prog05.asm

TITLE Prog05.asm)

; Original Author: Rebecca Sagalyn
; Modified by Jeff Barnett 02/08/2020
; Course / Project ID: CS271 #05 Date: 2/28/13
; Description:
; 1. Introduce the program.
; 2. Get a user request in the range [min=10 .. max=200].
; 3. Generate request random integers in the range [lo=100 ..
hi=999], storing them in consecutive elements of an array.
; 4. Display the list of integers before sorting, 10 numbers per
line.
; 5. Sort the list in descending order (i.e., largest first).
; 6. Calculate and display the median value, rounded to the nearest
integer.
; 7. Display the sorted list, 10 numbers per line.

;***

;* SHARED
DATA *
;***

 .486
 .model flat, stdcall
 .stack 1000h

 includelib ..\..\Irvine\kernel32.lib
 include ..\..\Irvine\Irvine32.inc
 include ..\..\Irvine\VirtualKeys.inc
 include ..\..\Irvine\macros.inc
 includelib ..\..\Irvine\User32.lib
 includelib ..\..\Irvine\Irvine32.lib

 ; Win32 Console handle
 ;STD_OUTPUT_HANDLE EQU -11 ; predefined Win API constant
(magic)
 ;FILE_ATTRIBUTE_NORMAL equ 80h
 ;OPEN_EXISTING EQU 3 ;Parameter for opening an existing file
 ;NULL EQU 0
 ; get standard handle
 ; type of console handle
 GetStdHandle PROTO, nStdHandle:DWORD

https://github.com/beckysag/masm-random-integers/blob/master/prog05.asm

115

 ExitProcess PROTO Near32 stdcall, dwExitCode:dword ;
capitalization not necessary
 GetProcessHeap PROTO
 HeapAlloc PROTO,mHeap:HANDLE, dwFlags:DWORD,
dwBytes:DWORD ; number of bytes to allocate
 HeapFree PROTO,mHeap:HANDLE,
dwFlags:DWORD,lpMem:DWORD

 ; capitalization not necessary
 local_1 EQU DWORD PTR [ebp-4]
 local_2 EQU DWORD PTR [ebp-8]
 local_3 EQU DWORD PTR [ebp-12]
 MIN = 10
 MAX = 400
 LO = 100
 HI = 999
.data
 intro1 BYTE "Sorting Random Integers
 Original Becky Sag, Modified by Jeff Barnett",02h,0Dh,0Ah,0Ah
 BYTE "This program generates 999
random numbers in the range [100 .. 999], ",0Dh, 0Ah
 BYTE "displays the original list,
sorts the list, and calculates the median value.",0Dh, 0Ah
 BYTE "Finally, it displays the list
sorted in desc order.",0Dh,0Ah,0Dh,0Ah,0
 prompt BYTE 0Dh, 0Ah,"How many numbers should be
generated? [100 .. 999]: ",0
 err_str BYTE "Invalid input",0
 strUn BYTE "The unsorted random numbers:",0
 SIZE_UN = ($ - strUn)
 prompt2 BYTE "The median is: ",0
 strSort BYTE "The sorted list:",0
 SIZE_SORT = ($ - strSort)
 request DWORD ?
 ;arr DWORD MAX DUP(?)
 lf DWORD ?
 rt DWORD ?
 outHandle DWORD ?
 ; handle to standard
console output device
 fHandle DWORD ?
 ; handle to output file
 fname BYTE
"C:\Users\barnettjv\Desktop\numbers.txt",0 ; file
name
 buff BYTE 5 DUP(0)
 ; buffer pointer

 hHeap HANDLE ?
 pArray DWORD ? ; pointer to array

;***

116

;*
PROCEDURES *
;***

.code

;---

main PROC
 INVOKE GetStdHandle, STD_OUTPUT_HANDLE
 ; init handle
 mov [outHandle], eax
 ; store handle in outHandle
; Intro
 push OFFSET intro1
 ; @intro1
 call intro
 ; Introduce program
; Get number from user, store in request

 push OFFSET err_str
 ; @err_str
 push OFFSET prompt
 ; @prompt
 push OFFSET request
 ; @request
 call getData
 ; Get user data
 ;exit
; Generate random numbers into file, one per line

 call Randomize
 push OFFSET buff
 ; @buff

 push OFFSET fhandle
 ; @fhandle
 push OFFSET fname
 ; @fname (file to write to)
 push request
 ; request
 call writeNums
; Read numbers from file into array

 INVOKE GetProcessHeap
 .IF eax == NULL ; cannot get handle
 jmp finished
 .ELSE
 mov hHeap,eax ; handle is OK
 .ENDIF

 INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, 900000
 .IF eax == NULL

117

 mWrite "HeapAlloc failed"
 jmp finished
 .ELSE
 mov pArray,eax
 .ENDIF
 ;malloc ptrHeap, ecx ; Allocate space
for our new string
 push OFFSET buff
 ; @buff
 push pArray
 ; @arr
 push OFFSET fname
 ; @fname (file to write to)
 push request
 ; request
 call readNums
; Display unsorted list
 ;push OFFSET strUn
 ;push pArray
 ;push request
 ;call displayList
; Sort List
 ;push pArray
 ; @arr
 ;push request
 ; request
 ;call sortList
; Display sorted list
 push OFFSET strSort
 push pArray
 push request
 call displayList

; Display median
; Calculate and display the median value, rounded to the nearest
integer.
finished:
 ;INVOKE CloseHandle, fHandle
 ;close file handle
main ENDP

;---

intro PROC
; Introduces program and programmer, and describes program.
; Receives: [ebp+8] = @intro1
; Returns: nothing
; Proconditions: none
; Registers changed: none
;---

 push ebp
 mov ebp, esp

118

 push edx
 mov edx, [ebp+8]
 ; introduce program & programmer
 call WriteString
 pop edx
 pop ebp
 ret 4
intro ENDP

;---

getData PROC
; Prompts user to enter number of integers, in range [min..max],
then validates number
; Receives: [ebp+8] = @request, [ebp+12] = @prompt, [ebp+16] =
@err_str
; Returns: number entered by user in request
; Proconditions:none
; Registers changed: none
;---

 push ebp
 mov ebp, esp
 pushad
 mov edi, [ebp+8]
 ; @request in edi

RequestNum:
 mov edx, [ebp+12]
 ; edx = @prompt
 ;call WriteString
 ; tell user to enter a number
 ;call ReadDec
 ; save number in eax
 mov eax, MAX

; verify: request >= MIN && request <= MAX
 cmp eax, MIN

 jl InvalidRequest
 ; if request < MIN, reprompt
 cmp eax, MAX
 jg InvalidRequest
 ; if request > MAX, reprompt
 jmp ValidRequest
 ; else, continue

InvalidRequest:
 mov edx, [ebp+16]
 ; edx = @err_str
 call WriteString
 call Crlf

119

 jmp RequestNum
 ; re-prompt

ValidRequest:
 mov [edi], eax
 ; store number in request

 popad
 pop ebp
 ret 12
getData ENDP
;---

;---

DecToASCII PROC
; input = 3 digits dec number
; buff = 4 byte array of BYTES
; uses: eax, ebx, ecx, edx, esi, ebp
; reg changed: eax, ebx, edx, esi
;---

 push ebp
 mov ebp, esp
 pushad

 mov ax, [ebp+8] ;
ebx = dec num
 mov edx, [ebp+12] ; @buff in
edx
 mov ecx, 3 ;
loop counter
L1:
; loop sets buff[0], buff[1], buff[2]
 mov bl, 10 ;
bl = 10
 div bl
 ; AH = digit (7), AL = quotient (65)
 mov bl, ah ;
bl = ah = 7
 add bl, 48 ;
bl = ascii form of digit
 mov ah, 0 ;
ax = 65 (for next DIV instruction)
 mov [edx+ecx-1], bl ;
buff[ecx] = ascii digit
 loop L1

; set buff[3], buff[4]
 mov al, 13

120

 mov [edx+3], al
 mov al, 10
 mov [edx+4], al

 popad
 pop ebp
 ret 8
DecToASCII ENDP
;---

;---

readNums PROC
; Description: Read numbers from file into array
; Receives: ebp+8 = request, ebp+12 = @fname, ebp+16 = @arr
; Returns: arr, with request numbers read from file
; Proconditions: numbers are written one per line in file [fname]
; numbers are all 3 digits (leading
zeros if needed)
; console handle has been initialized
; Registers changed: none
;---

 LOCAL pFname:DWORD
 LOCAL filehandle: DWORD
 pushad
 mov eax, [ebp+12]
 ; @fname
 mov pFname, eax
 ; @fname
 mov esi, [ebp+16]
 ; @arr

 INVOKE CreateFile,
 ; open file [fname] for reading
 pFname, GENERIC_READ,
 DO_NOT_SHARE, NULL,OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, 0
 mov filehandle, eax
 ; store file handle in fhandle

 mov ecx, [ebp+8]
 ; init ecx (loop counter) to request
L1:
 ; for i = request, i >0, i--
 pushad
 INVOKE ReadFile,
 ; Read number from file into buffer
 filehandle,
 ; handle
 [ebp+20],
 ; buffer pointer

121

 5,
 ; number of bytes to read
 NULL,
 ; num bytes read
 0
 ; overlapped execution flag

 popad

 mov edi, [ebp+20]
 ; edi = @buff
 mov eax, 0
 ; get hundreds digit into edx
 mov al, [edi]
 sub al, 48
 ; hundreds digit
 mov bl, 100
 mul bl
 ; eax = hundreds digit *
100
 mov edx, eax
 ; store in edx
 inc edi
 ; get tens digit into edx
 mov eax, 0
 mov al, [edi]
 sub al, 48
 ; eax = digit in tens place
 mov bl, 10
 mul bl
 ; eax = tens digit * 10
 add edx, eax
 ; add to edx, edx = first two
digits
 inc edi
 ; get ones digit into edx
 mov al, [edi]
 sub al, 48
 ; eax = digit in ones place
 add edx, eax
 ; add to edx (edx = all 3
digits)
 ; store in array
 mov [esi], edx

 add esi, 4
 ; esi points to next array
element
 loop L1
 ; loop

 INVOKE CloseHandle, fHandle
 ;close file handle
 popad

122

 ret 16
readNums ENDP
;---

;---

writeNums PROC
; Description: Generate random numbers and write to file, one number
per line
; Receives: ebp+8 = request, ebp+12 = @fname, ebp+16 = @fhandle,
ebp+20 = @buff
; Returns: none
; Proconditions: request != null
; console handle has been initialized
; Registers changed: none
;---

 push ebp
 mov ebp, esp
 sub esp, 4
 ; make space for 1 local var
 push esi
 push eax
 push ebx
 push ecx
 push edx
 mov esi, [ebp+16]
 ; store @fhandle in esi
 mov ecx, [ebp+8]
 ; store request in ecx (loop counter)

 ; range = hi - lo + 1
 mov eax, HI
 sub eax, LO
 inc eax
 ; eax = hi - lo + 1
 mov local_1, eax
 ; store "range" in local1

 push ecx
 ; save ecx before Win API function
 INVOKE CreateFile,
 ; create/overwite file [fname] for writing
 [ebp+12], GENERIC_WRITE,
 DO_NOT_SHARE, NULL,OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, 0
 pop ecx
 mov [esi], eax
 ; store file handle in fhandle

L1:
 ; while count < request

123

 mov eax, local_1
 ; eax = range
 call RandomRange
 ; random num in eax

 push [ebp+20]
 ; @buff
 push eax
 ; random number
 call DecToASCII
 ; convert random num to ascii digits

 push ecx
 ; save ecx before Win API function
 INVOKE WriteFile,
 ; write to file
 [esi],
 ; file handle
 [ebp+20],
 ; buffer pointer
 5,
 ; number of bytes to write
 NULL,
 ; num bytes written
 0
 ; overlapped execution flag
 pop ecx
 loop L1
 ; sub 1 from ecx, or leave if ecx == 0
LeaveArr:
 INVOKE CloseHandle, fHandle
 pop edx
 pop ecx
 pop ebx
 pop eax
 pop esi
 mov esp, ebp
 ; reset esp, remove local var
 pop ebp
 ret 16
 ; clean up 4 32-bit variables
writeNums ENDP
;---

;---

sortList PROC
; Description:
; Receives: 2 params
; Returns:
; Proconditions:
; Registers changed:

124

;---

 push ebp
 mov ebp, esp
 push esi
 push eax
 push ebx
 push ecx
 mov edi, esp ;
edi points to location before adding array

 ;mov esi, [ebp+12] ; store @arr in
esi
 mov ebx, [ebp+8] ; store
request in ebx (size)
 mov eax, ebx ;
move size to eax
 mov ecx, 4 ;
move 4 to ecx
 mul ecx
 ; multiple array size * 4 to get total size
 add eax, 4 ;
space for 1 more DWORD variable
 sub esp, eax ;
make space for array
 ; now edi - 4 is single variable ; edi - eax is start of
array
 mov esi, esp ;
esi points to start of result array

 push [ebp+12] ; @arr
 push 0 ; start
 push [ebp+8] ; size
 push esi ; @result
 call merge

 mov esp, edi
 pop ecx
 pop ebx
 pop eax
 pop esi
 ;mov esp, ebp ; reset esp,
remove local var
 pop ebp
 ret 8
sortList ENDP
;---

;---

merge PROC
;---

125

 ;push ebp ; these two lines done
by OS
 ;mov ebp, esp ;
 LOCAL left:DWORD
 LOCAL right:DWORD
 LOCAL i:DWORD
 LOCAL len:DWORD
 LOCAL dist:DWORD
 LOCAL r:DWORD
 LOCAL l:DWORD ; l and r are to the positions
in the left and right subarrays
 push eax
 push ebx
 push edi
 push ecx
 push edx
 push esi

 ; ebp + 8 = @result
 ; ebp + 12 = right
 ; ebp + 16 = left
 ; ebp + 20 = @arr

 mov edi, [ebp+20] ; store @arr in
edi
 mov esi, [ebp+8] ; store @result
in esi
 mov eax, [ebp+12]
 mov right, eax ; store
right
 mov eax, [ebp+16]
 mov left, eax ; store
left
 mov l, eax ; l = left

; base case: one element (if r == l+1, return)
 add eax, 1 ; add 1 to left
(in eax)
 cmp eax, right
 je LeaveProc ; if left+1 =
right, exit

 ; else
 ; set len = right - left
 mov eax, right
 sub eax, left ; right - left in
eax
 mov len, eax ; length = right
- left

 ; set dist = right - left / 2
 mov ebx, 2 ; ebx = 2
 mov edx, 0

126

 div ebx ; eax =
(right - left) / 2
 mov dist, eax ; dist = (right -
left) / 2

 ; set r = left + mid_distance
 mov ebx, left ; ebx =
left
 add ebx, eax ; ebx =
left + dist
 mov r, ebx ; r = left
+ dist

; sort each subarray
 ; push parameters for first call
 push [ebp+20] ; @arr
 push left ; left
 push r ;left +
dist
 push [ebp+8] ; @result
 call merge ; recursive call
on left subarray (from 0 -> midpoint)

 ; push parameters for second call
 push [ebp+20] ; @arr
 push r ; left +
dist
 push right ; right
 push [ebp+8] ; @result
 call merge ; recursive call
on right subarray (from midpoint -> max)

; merge arrays together
 ; Check to see if any elements remain in the left array;
 ; if so, we check if there are any elements left in the right
array;
 ; if so, we compare them.
 ; Otherwise, we know that the merge must use take the element
from the left array

 mov i, 0
 ; i = 0
 BeginFor:
 ;---
 ; for(i = 0; i < len; i++)
 mov ebx, i
 mov eax, len
 cmp i, eax
 ; compare i to len
 jge LeaveFor
 ; if i >= len, exit for-loop

127

 ;if (l < left + dist) AND (r == right || max(arr[l],
arr[r]) == arr[l])
 ; if l >= r
 mov eax, left
 add eax, dist
 ; eax = left + dist
 cmp l, eax
 ; compare l to left+dist
 jge FromRight

 ; if here, first part is true, now check
second part
 ; (r == right || max(arr[l], arr[r]) ==
arr[l])
 ; if either one is true, whole thing is true,
and go to FromLeft
 ; (r == right)
 ; edi ->arr
 ; esi ->result

 ; check: (max(arr[l], arr[r]) == arr[l])
 ; find max(arr[l], arr[r])
 mov eax, l
 mov ebx, 4
 mul ebx
 mov ecx, eax
 ; ecx = l * 4
 mov eax, r
 mul ebx
 mov edx, eax
 ; edx = r * 4

 mov eax, [edi+ecx]
 ; arr[l] in eax
 mov ebx, [edi+edx]
 ; arr[r] in ebx
 cmp eax, ebx
 jge LeftMax
 ; if left >= right
 RightMax:
 ; arr[r] > arr[l]
 mov eax, [edi+edx]
 LeftMax:
 ;arr[l] >= arr[r]

 ; eax = max
already

 ; is max == arr[l]?
 cmp eax, [edi+ecx]
 je FromLeft
 ; if true, FromLeft

128

 ; else check
second condition

 ; check: r == right
 mov eax, r
 mov ebx, right
 cmp eax, ebx
 je FromLeft
 ; if this isnt true, then second
condition is false, so whole condition is false
 ; go to FromRight
 jmp FromRight

 FromLeft:
 ;result[i] = arr[l];
 mov eax, l
 mov ebx, 4
 mul ebx
 ; eax = l * 4
 mov ecx, [edi+eax]
 ; move arr[l] to ecx

 mov eax, i
 mul ebx
 ; eax = i * 4
 mov [esi+eax], ecx
 ; result[i] = arr[l]
 ;l++;
 add l, 1
 jmp ContinueFor

 ;else
 FromRight:
 ;result[i] = arr[r];
 mov eax, r
 mov ebx, 4
 mul ebx
 ; eax = r * 4
 mov ecx, [edi+eax]
 ; move arr[r] to ecx

 mov eax, i
 mul ebx
 ; eax = i * 4
 mov [esi+eax], ecx
 ; result[i] = arr[r]
 mov ebx, [esi+eax]

 ;r++;
 add r, 1

 ContinueFor:
 add i, 1

129

 jmp BeginFor
 ; end for-loop
 ;---
 LeaveFor:

 mov eax, left
 mov i, eax ; i = left
 mov lf, eax
 mov ebx, right
 mov rt, ebx
 mov eax, [esi]
 For2:
 ;---
 ; Copy the sorted subarray back to the input
 ; for(i = left; i < right; i++)
 mov eax, i
 cmp eax, right
 jge Leave2 ; if i >= right,
leave loop

 ; arr[i] = result[i - left];
 mov eax, i
 sub eax, left
 ; eax = i - left
 mov ebx, 4
 mul ebx
 ; eax = 4 * (i - left)
 mov ecx, eax
 ; ecx = 4 * (i - left)
 mov eax, i
 mul ebx
 ; eax = 4 * i
 mov edx, eax
 ; edx = 4 * i

 mov eax, [esi+ecx]
 ;eax = result[i - left]
 mov [edi+edx], eax
 ;arr[i] = result[i - left]

 add i, 1
 jmp For2
 ;---
 Leave2:

LeaveProc:
 pop esi
 pop edx
 pop ecx
 pop edi
 pop ebx
 pop eax
 ret 16 ; remove 4
parameters from stack

130

merge ENDP
;---

;---

displayMed PROC
; Description:
; Receives:
; Returns:
; Proconditions:
; Registers changed:
;---

 ret
displayMed ENDP
;---

;---

displayList PROC
; Description:
; Receives:
; Returns:
; Proconditions:
; Registers changed:
;---

 push ebp
 mov ebp, esp
 sub esp, 12 ; make space for
local vars
 push esi
 push eax
 push ebx
 push ecx
 push edx
 mov edx, [ebp+16] ; store @title in
edx
 mov esi, [ebp+12] ; store @arr in
esi
 mov ebx, [ebp+8] ; store request
in ebx
 mov local_1, 1 ;
"columnCount", initialized to 1
 call Crlf
 call Crlf
 call WriteString ; print title
 call Crlf

 mov local_2, 00202020h ; move 3 spaces
to local_2

131

 mov local_3, 1 ;
"columnCount" in local_3
 mov ecx, 0 ; set
"count" to 0 in ecx
L1:
 cmp ecx, ebx ; while
count < request
 jge LeaveArr
 cmp local_3, 10 ; check
colCount to see if new line needed
 jle SameLine ; if
colCount > 10, new line
 mov local_3, 1 ; reset
colCount to 1
 call Crlf ; move to new
line
SameLine:
 mov eax, [esi] ;
arr[count]
 call WriteDec
 mov edx, ebp
 sub edx, 8 ; move
address of local variable to edx
 call WriteString
 add esi, 4 ; esi
points to next index
 add ecx, 1 ;
increment index number
 add local_3, 1
 jmp L1 ;
loop
LeaveArr:
 call Crlf
 pop edx
 pop ecx
 pop ebx
 pop eax
 pop esi
 mov esp, ebp ; reset esp,
remove local var
 pop ebp
 ret 12
displayList ENDP
;---

END main

132

Appendix L

IDAPro Python script to disassemble x86 executables

#!/usr/bin/env python3

"""
This script demonstrates using the low-level tracing hook (dbg_trace)
It can be run like: ida[t].exe -B -Strace.py -Ltrace.log file.exe
"""

import socket
import sys
import time

from idaapi import *
from idautils import *
from idc import *
import idautils
import ida_ua

class TraceHook(DBG_Hooks):

 def __init__(self):
 DBG_Hooks.__init__(self)
 # calculate the limits before actually running the process so min_ea and max_ea
 # store the limits of the current database's segments
 self.min_ea = get_inf_attr(INF_MIN_EA)
 self.max_ea = get_inf_attr(INF_MAX_EA)
 self.traces = 0
 self.epReached = False
 def dbg_trace(self, tid, ea):
 #def dbg_trace(self, tid, ea, sock):
 # Log all traced addresses
 if ea < self.min_ea or ea > self.max_ea:
 raise Exception("Received a trace callback for an address outside this database!")
 eax = get_reg_val("EAX")
 ecx = get_reg_val("ECX")
 edx = get_reg_val("EDX")
 ebx = get_reg_val("EBX")
 esp = get_reg_val("ESP")
 ebp = get_reg_val("EBP")
 esi = get_reg_val("ESI")
 edi = get_reg_val("EDI")
 eip = get_reg_val("EIP")

 self.traces += 1

 out = idc.GetDisasm(ea)
 cf = idc.get_reg_value("CF")
 pf = idc.get_reg_value("PF")
 af = idc.get_reg_value("AF")
 zf = idc.get_reg_value("ZF")

133

 sf = idc.get_reg_value("SF")
 tf = idc.get_reg_value("TF")
 df = idc.get_reg_value("DF")
 of = idc.get_reg_value("OF")
 print("%08X %08X %08X %08X %08X %d%d%d%d%d%d%d%d" %

(ea,eax,ebx,ecx,edx,cf,pf,af,zf,sf,tf,df,of))

 instr = idautils.DecodeInstruction(ea)
 # log disassembly and ESP for call instructions
 #if instr and instr.itype in [NN_callni, NN_call, NN_callfi]:
 #print("call insn: %s" % generate_disasm_line(ea,

GENDSM_FORCE_CODE|GENDSM_REMOVE_TAGS))
 #print("ESP=%08X" % get_reg_val("ESP"))

 return 1

 def dbg_run_to(self, pid, tid=0, ea=0):
 # this hook is called once execution reaches temporary breakpoint set by run_to(ep) below
 if not self.epReached:
 refresh_debugger_memory()
 print("reached entry point at 0x%X" % cpu.Eip)
 print("current step trace options: %x" % get_step_trace_options())
 self.epReached = True

 # enable step tracing (single-step the program and generate dbg_trace events)
 request_enable_step_trace(1)
 # change options to only "over debugger segments" (i.e. library functions will be traced)
 request_set_step_trace_options(ST_OVER_DEBUG_SEG)
 request_continue_process()
 run_requests()

 def dbg_process_exit(self, pid, tid, ea, code):
 print("process exited with %d" % code)
 print("traced %d instructions" % self.traces)
 return 0

def do_trace():

 debugHook = TraceHook()
 debugHook.hook()

 # Start tracing when entry point is hit
 ep = get_inf_attr(INF_START_IP)
 enable_step_trace(1)
 set_step_trace_options(ST_OVER_DEBUG_SEG|ST_OVER_LIB_FUNC)
 run_to(ep)

 while get_process_state() != 0:
 wait_for_next_event(1, 0)

 if not debugHook.epReached:
 raise Exception("Entry point wasn't reached!")

 if not debugHook.unhook():
 raise Exception("Error uninstalling hooks!")

134

 del debugHook
 # we're done; exit IDA
 qexit(0)

load debugger module so that rest of the script works
load_debugger("linux", 0)
load_debugger("mac", 0)
load_debugger("win32", 0)
do_trace()

Command prompt command to run script:

ida.exe -B -Shtm_trace.py -Ltrace2.log stall2.exe

135

Appendix M

Executable Spatial Pooler and Temporal Memory Specifications

'predictor': {'sdrc_alpha': 0.0001},
 'sp': {'boostStrength': 3.0,
 'columnCount': 2048,
 'localAreaDensity': 0.04395604395604396,
 'potentialPct': 0.85,
 'synPermActiveInc': 0.04,
 'synPermConnected': 0.13999999999999999,
 'synPermInactiveDec': 0.006},

 'tm': {'activationThreshold': 10,
 'cellsPerColumn': 32,
 'initialPerm': 0.21,
 'maxSegmentsPerCell': 64,
 'maxSynapsesPerSegment': 32,
 'minThreshold': 5,
 'newSynapseCount': 20,
 'permanenceDec': 0.1,
 'permanenceInc': 0.1},

 'anomaly': {
 'likelihood':
 { # 'learningPeriod': int(math.floor(self.probationaryPeriod / 2.0)),
 # 'probationaryPeriod': self.probationaryPeriod-
default_parameters["anomaly"]["likelihood"]["learningPeriod"],
 'probationaryPct': 0.1,
 'reestimationPeriod': 100
 } # These settings are copied from NAB
 }

136

Appendix N

HTM Classifer (EFLAGS Version) Python Code

HTM Classifier
Customized for EFLAGS
Author: Jeffrey V. Barnett
Based on the Numenta hotgym.py example
Date 02/Aug/2020

import time
from memory_profiler import memory_usage

import csv
import datetime
import os
import numpy as np
import random
import math
import array as arr

from htm.bindings.sdr import SDR, Metrics
from htm.encoders.rdse import RDSE, RDSE_Parameters
from htm.encoders.scalar_encoder import ScalarEncoder,
ScalarEncoderParameters

from htm.bindings.algorithms import SpatialPooler
from htm.bindings.algorithms import TemporalMemory
from htm.algorithms.anomaly_likelihood import \
 AnomalyLikelihood # FIXME use TM.anomaly instead, but it gives
worse results than the py.AnomalyLikelihood now
from htm.bindings.algorithms import Predictor
import matplotlib.pyplot as plt
from htm.bindings.algorithms import Classifier

_EXAMPLE_DIR = os.path.dirname(os.path.abspath(__file__))
#_INPUT_FILE_PATH = os.path.join(_EXAMPLE_DIR,
"\SEA_Variant50_00.csv")
_INPUT_FILE_PATH = "/mnt/faststorage/Real World Data
Streams/Malware/dump1000.csv"
default_parameters = {

 'encoderDictionary': {
 "register":
 {'size': 1024, 'radius': 0, 'category': 0, 'resolution':
0, 'minimum': 1000000, 'maximum': 4967295, 'activeBits': 3},
 "flag":
 {'size': 16, 'radius': 0, 'category': 0, 'resolution':
0, 'minimum': 0, 'maximum': 1, 'activeBits': 2},

137

 },

 'predictor': {'sdrc_alpha': 0.0001},
 'sp': {'boostStrength': 3.0,
 'columnCount': 2048,
 'localAreaDensity': 0.04395604395604396,
 'potentialPct': 0.85,
 'synPermActiveInc': 0.04,
 'synPermConnected': 0.13999999999999999,
 'synPermInactiveDec': 0.006},
 'tm': {'activationThreshold': 10,
 'cellsPerColumn': 32,
 'initialPerm': 0.21,
 'maxSegmentsPerCell': 64,
 'maxSynapsesPerSegment': 32,
 'minThreshold': 5,
 'newSynapseCount': 20,
 'permanenceDec': 0.1,
 'permanenceInc': 0.1},
 'anomaly': {
 'likelihood':
 { # 'learningPeriod':
int(math.floor(self.probationaryPeriod / 2.0)),
 # 'probationaryPeriod': self.probationaryPeriod-
default_parameters["anomaly"]["likelihood"]["learningPeriod"],
 'probationaryPct': 0.1,
 'reestimationPeriod': 100
 } # These settings are copied from NAB
 }

}

#@profile
def main(parameters=default_parameters, argv=None, verbose=True):
 np.seterr(divide='ignore', invalid='ignore')
 start_time = time.time()
 random.seed(time.time())
 HTMseed = int(time.time())
 if verbose:
 import pprint
 print("Parameters:")
 pprint.pprint(parameters, indent=4)
 print("")

 # Read the input file.
 records = []
 print("Reading file ...")
 with open(_INPUT_FILE_PATH, "r") as fin:
 reader = csv.reader(fin)
 headers = next(reader)
 next(reader)
 next(reader)

138

 for record in reader:
 records.append(record)

 # Make the Encoders. These will convert input data into binary
representations.

 registerEncoderParams = ScalarEncoderParameters()
 registerEncoderParams.size =
parameters["encoderDictionary"]["register"]["size"]
 registerEncoderParams.radius =
parameters["encoderDictionary"]["register"]["radius"]
 registerEncoderParams.category =
parameters["encoderDictionary"]["register"]["category"]
 registerEncoderParams.resolution =
parameters["encoderDictionary"]["register"]["resolution"]
 registerEncoderParams.minimum =
parameters["encoderDictionary"]["register"]["minimum"]
 registerEncoderParams.maximum =
parameters["encoderDictionary"]["register"]["maximum"]
 registerEncoderParams.activeBits =
parameters["encoderDictionary"]["register"]["activeBits"]
 registerEncoder = ScalarEncoder(registerEncoderParams)

 flagEncoderParamsCat = ScalarEncoderParameters()
 flagEncoderParamsCat.size =
parameters["encoderDictionary"]["flag"]["size"]
 flagEncoderParamsCat.radius =
parameters["encoderDictionary"]["flag"]["radius"]
 flagEncoderParamsCat.category =
parameters["encoderDictionary"]["flag"]["category"]
 flagEncoderParamsCat.resolution =
parameters["encoderDictionary"]["flag"]["resolution"]
 flagEncoderParamsCat.minimum =
parameters["encoderDictionary"]["flag"]["minimum"]
 flagEncoderParamsCat.maximum =
parameters["encoderDictionary"]["flag"]["maximum"]
 flagEncoderParamsCat.activeBits =
parameters["encoderDictionary"]["flag"]["activeBits"]
 flagEncoder = ScalarEncoder(flagEncoderParamsCat)

 encodingWidth = ((5 * registerEncoder.size) + (6 *
flagEncoder.size))
 enc_info = Metrics([encodingWidth], 999999999)

 # Make the HTM. SpatialPooler & TemporalMemory & associated
tools.
 spParams = parameters["sp"]
 sp = SpatialPooler(
 inputDimensions=(encodingWidth,),
 columnDimensions=(spParams["columnCount"],),
 potentialPct=spParams["potentialPct"],
 potentialRadius=encodingWidth,
 globalInhibition=True,
 localAreaDensity=spParams["localAreaDensity"],

139

 synPermInactiveDec=spParams["synPermInactiveDec"],
 synPermActiveInc=spParams["synPermActiveInc"],
 synPermConnected=spParams["synPermConnected"],
 boostStrength=spParams["boostStrength"],
 wrapAround=True
)
 sp_info = Metrics(sp.getColumnDimensions(), 999999999)

 tmParams = parameters["tm"]
 tm = TemporalMemory(
 columnDimensions=(spParams["columnCount"],),
 cellsPerColumn=tmParams["cellsPerColumn"],
 activationThreshold=tmParams["activationThreshold"],
 initialPermanence=tmParams["initialPerm"],
 connectedPermanence=spParams["synPermConnected"],
 minThreshold=tmParams["minThreshold"],
 maxNewSynapseCount=tmParams["newSynapseCount"],
 permanenceIncrement=tmParams["permanenceInc"],
 permanenceDecrement=tmParams["permanenceDec"],
 predictedSegmentDecrement=0.0,
 seed=HTMseed,
 maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
 maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"]
)
 tm_info = Metrics([tm.numberOfCells()], 999999999)

 # setup likelihood, these settings are used in NAB
 anParams = parameters["anomaly"]["likelihood"]
 print(len(records))
 probationaryPeriod =
int(math.floor(float(anParams["probationaryPct"]) * len(records)))
 learningPeriod = int(math.floor(probationaryPeriod / 2.0))
 CF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])

 PF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])

 AF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

140

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])

 ZF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])
 SF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])
 TF_anomaly_history =
AnomalyLikelihood(learningPeriod=learningPeriod,

estimationSamples=probationaryPeriod - learningPeriod,

historicWindowSize=len(records),

reestimationPeriod=anParams["reestimationPeriod"])

 CF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])
 PF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])
 AF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])
 ZF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])
 SF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])
 TF_predictor = Predictor(steps=[1, 5],
alpha=parameters["predictor"]['sdrc_alpha'])

 predictor_resolution = 1

 # Iterate through every datum in the dataset, record the inputs
& outputs.
 CF_inputs = []
 PF_inputs = []
 AF_inputs = []
 ZF_inputs = []
 SF_inputs = []
 TF_inputs = []

141

 CF_anomaly = []
 CF_anomalyProb = []
 CF_predictions = {1: [], 5: []}

 PF_anomaly = []
 PF_anomalyProb = []
 PF_predictions = {1: [], 5: []}

 AF_anomaly = []
 AF_anomalyProb = []
 AF_predictions = {1: [], 5: []}

 ZF_anomaly = []
 ZF_anomalyProb = []
 ZF_predictions = {1: [], 5: []}

 SF_anomaly = []
 SF_anomalyProb = []
 SF_predictions = {1: [], 5: []}

 TF_anomaly = []
 TF_anomalyProb = []
 TF_predictions = {1: [], 5: []}

 encoding_time = time.time()

 A = SDR(registerEncoder.size)
 B = SDR(registerEncoder.size)
 C = SDR(registerEncoder.size)
 D = SDR(registerEncoder.size)
 E = SDR(registerEncoder.size)
 F = SDR(flagEncoder.size)
 G = SDR(flagEncoder.size)
 H = SDR(flagEncoder.size)
 I = SDR(flagEncoder.size)
 J = SDR(flagEncoder.size)
 K = SDR(flagEncoder.size)

 prevPrediction = float('nan')

 print("Prequential Evaluation")
 print("Evaluating 1 target(s).")
 print("Evaluating...\n")
 for count, record in enumerate(records):
 EIP = int(record[0],16)
 EAX = int(record[1],16)
 EBX = int(record[2],16)
 ECX = int(record[3],16)
 EDX = int(record[4],16)
 CFLAG = int(record[5])
 PFLAG = int(record[6])
 AFLAG = int(record[7])
 ZFLAG = int(record[8])
 SFLAG = int(record[9])

142

 TFLAG = int(record[10])

 CF_inputs.append(CFLAG)
 PF_inputs.append(PFLAG)
 AF_inputs.append(AFLAG)
 ZF_inputs.append(ZFLAG)
 SF_inputs.append(SFLAG)
 TF_inputs.append(TFLAG)

 if (count % 1000 == 0):
 print ("Count: %s" % count)
 # print("EIP\t\tEAX\t\tEBX\t\tECX\t\tEDX\t\tFlags: C P A Z
S T")
 # print("%s %s %s %s %s \t\t%s %s %s %s %s %s" %
(EIP,EAX,EBX,ECX,EDX,CFLAG,PFLAG,AFLAG,ZFLAG,SFLAG,TFLAG))

 # Call the encoders to create bit representations for each
value. These are SDR objects.
 EIPBits = registerEncoder.encode(EIP)
 EAXBits = registerEncoder.encode(EAX)
 EBXBits = registerEncoder.encode(EBX)
 ECXBits = registerEncoder.encode(ECX)
 EDXBits = registerEncoder.encode(EDX)
 CBits = flagEncoder.encode(CFLAG)
 PBits = flagEncoder.encode(PFLAG)
 ABits = flagEncoder.encode(AFLAG)
 ZBits = flagEncoder.encode(ZFLAG)
 SBits = flagEncoder.encode(SFLAG)
 TBits = flagEncoder.encode(TFLAG)

 A = EIPBits
 B = EAXBits
 C = EBXBits
 D = ECXBits
 E = EDXBits
 F = CBits
 G = PBits
 H = ABits
 I = ZBits
 J = SBits
 K = TBits

 L = SDR(2 * registerEncoder.size).concatenate(A, B)
#Concatenate EIP, EAX
 M = SDR(3 * registerEncoder.size).concatenate(L, C)
 N = SDR(4 * registerEncoder.size).concatenate(M, D)
 O = SDR(5 * registerEncoder.size).concatenate(N, E)
 P = SDR((5 * registerEncoder.size) +
(flagEncoder.size)).concatenate(O, F)
 Q = SDR((5 * registerEncoder.size) + (2 *
flagEncoder.size)).concatenate(P, G)
 R = SDR((5 * registerEncoder.size) + (3 *
flagEncoder.size)).concatenate(Q, H)

143

 S = SDR((5 * registerEncoder.size) + (4 *
flagEncoder.size)).concatenate(R, I)
 T = SDR((5 * registerEncoder.size) + (5 *
flagEncoder.size)).concatenate(S, J)
 # print("A= %s" % A)
 # print("B= %s" % B)
 # print("C= %s" % C)
 # print("D= %s" % D)

 encoding = SDR(encodingWidth).concatenate(T, K)
 # print("encoded = %s" % encoding)
 enc_info.addData(encoding)

 # Create an SDR to represent active columns, This will be
populated by the
 # compute method below. It must have the same dimensions as
the Spatial Pooler.
 activeColumns = SDR(sp.getColumnDimensions())

 # Execute Spatial Pooling algorithm over input space.
 sp.compute(encoding, True, activeColumns)
 sp_info.addData(activeColumns)

 # Execute Temporal Memory algorithm over active mini-
columns.
 tm.compute(activeColumns, learn=True)
 tm_info.addData(tm.getActiveCells().flatten())
 #print("Active Cells: %s" % tm.getActiveCells().flatten())
 # Predict what will happen, and then train the predictor
based on what just happened.
 CF_pdf = CF_predictor.infer(tm.getActiveCells())
 PF_pdf = PF_predictor.infer(tm.getActiveCells())
 AF_pdf = AF_predictor.infer(tm.getActiveCells())
 ZF_pdf = ZF_predictor.infer(tm.getActiveCells())
 SF_pdf = SF_predictor.infer(tm.getActiveCells())
 TF_pdf = TF_predictor.infer(tm.getActiveCells())
 for n in (1, 5):
 if CF_pdf[n]:
 CF_predictions[n].append(np.argmax(CF_pdf[n]) *
predictor_resolution)
 else:
 CF_predictions[n].append(float('nan'))

 if PF_pdf[n]:
 PF_predictions[n].append(np.argmax(PF_pdf[n]) *
predictor_resolution)
 else:
 PF_predictions[n].append(float('nan'))

 if AF_pdf[n]:
 AF_predictions[n].append(np.argmax(AF_pdf[n]) *
predictor_resolution)
 else:
 AF_predictions[n].append(float('nan'))

144

 if ZF_pdf[n]:
 ZF_predictions[n].append(np.argmax(ZF_pdf[n]) *
predictor_resolution)
 else:
 ZF_predictions[n].append(float('nan'))

 if SF_pdf[n]:
 SF_predictions[n].append(np.argmax(SF_pdf[n]) *
predictor_resolution)
 else:
 SF_predictions[n].append(float('nan'))

 if TF_pdf[n]:
 TF_predictions[n].append(np.argmax(TF_pdf[n]) *
predictor_resolution)
 else:
 TF_predictions[n].append(float('nan'))

 CF_anomalyLikelihood =
CF_anomaly_history.anomalyProbability(CFLAG, tm.anomaly)
 CF_anomaly.append(tm.anomaly)
 CF_anomalyProb.append(CF_anomalyLikelihood)
 CF_predictor.learn(count, tm.getActiveCells(), int(CFLAG /
predictor_resolution))

 PF_anomalyLikelihood =
PF_anomaly_history.anomalyProbability(PFLAG, tm.anomaly)
 PF_anomaly.append(tm.anomaly)
 PF_anomalyProb.append(PF_anomalyLikelihood)
 PF_predictor.learn(count, tm.getActiveCells(), int(PFLAG /
predictor_resolution))

 AF_anomalyLikelihood =
AF_anomaly_history.anomalyProbability(AFLAG, tm.anomaly)
 AF_anomaly.append(tm.anomaly)
 AF_anomalyProb.append(AF_anomalyLikelihood)
 AF_predictor.learn(count, tm.getActiveCells(), int(AFLAG /
predictor_resolution))

 ZF_anomalyLikelihood =
ZF_anomaly_history.anomalyProbability(ZFLAG, tm.anomaly)
 ZF_anomaly.append(tm.anomaly)
 ZF_anomalyProb.append(ZF_anomalyLikelihood)
 ZF_predictor.learn(count, tm.getActiveCells(), int(ZFLAG /
predictor_resolution))

 SF_anomalyLikelihood =
SF_anomaly_history.anomalyProbability(SFLAG, tm.anomaly)
 SF_anomaly.append(tm.anomaly)
 SF_anomalyProb.append(SF_anomalyLikelihood)
 SF_predictor.learn(count, tm.getActiveCells(), int(SFLAG /
predictor_resolution))

145

 TF_anomalyLikelihood =
TF_anomaly_history.anomalyProbability(TFLAG, tm.anomaly)
 TF_anomaly.append(tm.anomaly)
 TF_anomalyProb.append(TF_anomalyLikelihood)
 TF_predictor.learn(count, tm.getActiveCells(), int(TFLAG /
predictor_resolution))

 #print("Count: %s" % count)

 # Print information & statistics about the state of the HTM.
 # print("Encoded Input", enc_info)
 # print("")
 # print("Spatial Pooler Mini-Columns", sp_info)
 # print(str(sp))
 # print("")
 # print("Temporal Memory Cells", tm_info)
 # print(str(tm))
 # print("")
 print("Shifting predictions")
 # Shift the predictions so that they are aligned with the input
they predict.
 for n_steps, CF_pred_list in CF_predictions.items():
 for x in range(n_steps):
 CF_pred_list.insert(0, float('nan'))
 CF_pred_list.pop()

 for n_steps, PF_pred_list in PF_predictions.items():
 for x in range(n_steps):
 PF_pred_list.insert(0, float('nan'))
 PF_pred_list.pop()

 for n_steps, AF_pred_list in AF_predictions.items():
 for x in range(n_steps):
 AF_pred_list.insert(0, float('nan'))
 AF_pred_list.pop()

 for n_steps, ZF_pred_list in ZF_predictions.items():
 for x in range(n_steps):
 ZF_pred_list.insert(0, float('nan'))
 ZF_pred_list.pop()

 for n_steps, SF_pred_list in SF_predictions.items():
 for x in range(n_steps):
 SF_pred_list.insert(0, float('nan'))
 SF_pred_list.pop()

 for n_steps, TF_pred_list in TF_predictions.items():
 for x in range(n_steps):
 TF_pred_list.insert(0, float('nan'))
 TF_pred_list.pop()

 print("Calculating accuracies")

146

 # Calculate the predictive accuracy, Root-Mean-Squared
 CF_accuracy = {1: 0, 5: 0}
 CF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(CF_inputs):
 for n in CF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = CF_predictions[n][idx]
 if not math.isnan(val):
 CF_accuracy[n] += (inp - val) ** 2

 for n in sorted(CF_predictions):
 CF_accuracy[n] = (CF_accuracy[n] / CF_accuracy_samples[n])
** .5
 print("CF Predictive Error (RMS)", n, "steps ahead:",
CF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("CF_anomaly Mean", np.mean(CF_anomaly))
 print("CF_anomaly Std ", np.std(CF_anomaly))

 # Calculate the predictive accuracy, Root-Mean-Squared
 PF_accuracy = {1: 0, 5: 0}
 PF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(PF_inputs):
 for n in PF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = PF_predictions[n][idx]
 if not math.isnan(val):
 PF_accuracy[n] += (inp - val) ** 2
 PF_accuracy_samples[n] += 1
 for n in sorted(PF_predictions):
 PF_accuracy[n] = (PF_accuracy[n] / PF_accuracy_samples[n])
** .5
 print("PF Predictive Error (RMS)", n, "steps ahead:",
PF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("PF_anomaly Mean", np.mean(PF_anomaly))
 print("PF_anomaly Std ", np.std(PF_anomaly))

 # Calculate the predictive accuracy, Root-Mean-Squared
 AF_accuracy = {1: 0, 5: 0}
 AF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(AF_inputs):
 for n in AF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = AF_predictions[n][idx]
 if not math.isnan(val):
 AF_accuracy[n] += (inp - val) ** 2
 AF_accuracy_samples[n] += 1

147

 for n in sorted(AF_predictions):
 AF_accuracy[n] = (AF_accuracy[n] / AF_accuracy_samples[n])
** .5
 print("AF Predictive Error (RMS)", n, "steps ahead:",
AF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("AF_anomaly Mean", np.mean(AF_anomaly))
 print("AF_anomaly Std ", np.std(AF_anomaly))

 # Calculate the predictive accuracy, Root-Mean-Squared
 ZF_accuracy = {1: 0, 5: 0}
 ZF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(ZF_inputs):
 for n in ZF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = ZF_predictions[n][idx]
 if not math.isnan(val):
 ZF_accuracy[n] += (inp - val) ** 2
 ZF_accuracy_samples[n] += 1
 for n in sorted(ZF_predictions):
 ZF_accuracy[n] = (ZF_accuracy[n] / ZF_accuracy_samples[n])
** .5
 print("ZF Predictive Error (RMS)", n, "steps ahead:",
ZF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("ZF_anomaly Mean", np.mean(ZF_anomaly))
 print("ZF_anomaly Std ", np.std(ZF_anomaly))

 # Calculate the predictive accuracy, Root-Mean-Squared
 SF_accuracy = {1: 0, 5: 0}
 SF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(SF_inputs):
 for n in SF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = SF_predictions[n][idx]
 if not math.isnan(val):
 SF_accuracy[n] += (inp - val) ** 2
 SF_accuracy_samples[n] += 1
 for n in sorted(SF_predictions):
 SF_accuracy[n] = (SF_accuracy[n] / SF_accuracy_samples[n])
** .5
 print("SF Predictive Error (RMS)", n, "steps ahead:",
SF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("SF_anomaly Mean", np.mean(SF_anomaly))
 print("SF_anomaly Std ", np.std(SF_anomaly))

 # Calculate the predictive accuracy, Root-Mean-Squared
 TF_accuracy = {1: 0, 5: 0}

148

 TF_accuracy_samples = {1: 0, 5: 0}

 for idx, inp in enumerate(TF_inputs):
 for n in TF_predictions: # For each [N]umber of time steps
ahead which was predicted.
 val = TF_predictions[n][idx]
 if not math.isnan(val):
 TF_accuracy[n] += (inp - val) ** 2
 TF_accuracy_samples[n] += 1
 for n in sorted(TF_predictions):
 TF_accuracy[n] = (TF_accuracy[n] / TF_accuracy_samples[n])
** .5
 print("TF Predictive Error (RMS)", n, "steps ahead:",
TF_accuracy[n])

 # Show info about the anomaly (mean & std)
 print("TF_anomaly Mean", np.mean(TF_anomaly))
 print("TF_anomaly Std ", np.std(TF_anomaly))

 print("CF Accuracy: %s" % CF_accuracy)
 #Plot the Predictions and Anomalies.
 if verbose:
 try:
 import matplotlib.pyplot as plt
 except:
 print("WARNING: failed to import matplotlib, plots
cannot be shown.")
 return -CF_accuracy[5]

 plt.figure(1)
 plt.subplot(1, 1, 1)
 plt.title("CARRY FLAG Accuracy")
 plt.xlabel("LOC")
 plt.ylabel("Accuracy")
 plt.plot(np.arange(len(CF_accuracy[1])), CF_accuracy[1],
'bs')
 plt.legend(labels=('C Flag Accuracy'))
 plt.show()

 plt.figure(1)
 plt.subplot(2, 1, 1)
 plt.title("CARRY FLAG Predictions")
 plt.xlabel("LOC")
 plt.ylabel("C Flag")
 plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k:',
 np.arange(len(CF_inputs)), CF_predictions[1], 'bs',
 np.arange(len(CF_inputs)), CF_predictions[5],
'green', linestyle='dashed', alpha=0.75)
 plt.legend(labels=('C Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("CARRY FLAG Anomaly Score")
 plt.xlabel("LOC")

149

 plt.ylabel("CARRY FLAG")
 CF_inputs = np.array(CF_inputs) / max(CF_inputs)
 plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k',
 np.arange(len(CF_inputs)), CF_anomaly, 'blue')
 plt.legend(labels=('Input', 'CF_anomaly Score'))

 plt.figure(2)
 plt.subplot(2, 1, 1)
 plt.title("CARRY FLAG Predictions")
 plt.xlim(500, 600)
 plt.xlabel("LOC")
 plt.ylabel("C Flag")
 plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k:',
 np.arange(len(CF_inputs)), CF_predictions[1], 'bs',
 np.arange(len(CF_inputs)), CF_predictions[5],
'green', linestyle='dashed', alpha=0.75)
 plt.legend(labels=('C Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("CARRY FLAG Anomaly Score")
 plt.xlabel("LOC")
 plt.ylabel("CARRY FLAG")
 CF_inputs = np.array(CF_inputs) / max(CF_inputs)
 plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k',
 np.arange(len(CF_inputs)), CF_anomaly, 'blue')
 plt.legend(labels=('Input', 'CF_anomaly Score'))

 plt.figure(3)
 plt.subplot(2, 1, 1)
 plt.title("PARITY FLAG Predictions")
 plt.xlabel("LOC")
 plt.ylabel("PARITY FLAG")
 plt.plot(np.arange(len(PF_inputs)), PF_inputs, '^k',
 np.arange(len(PF_inputs)), PF_predictions[1], 'bs',
 np.arange(len(PF_inputs)), PF_predictions[5],
'green', linestyle='dashed', alpha=0.75)
 plt.legend(labels=('P Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("PARITY FLAG Anomaly Score")
 plt.xlabel("LOC")
 plt.ylabel("P Flag")
 PF_inputs = np.array(PF_inputs) / max(PF_inputs)
 plt.plot(np.arange(len(PF_inputs)), PF_inputs, '^k',
 np.arange(len(PF_inputs)), PF_anomaly, 'blue',)
 plt.legend(labels=('Input', 'PF_anomaly Score'))
 plt.show()

 plt.subplot(2, 1, 1)
 plt.title("AF_predictions")
 plt.xlabel("LOC")
 plt.ylabel("A Flag")

150

 plt.plot(np.arange(len(AF_inputs)), AF_inputs, 'red',
 np.arange(len(AF_inputs)), AF_predictions[1],
'blue',
 np.arange(len(AF_inputs)), AF_predictions[5],
'green',)
 plt.legend(labels=('A Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("AF_anomaly Score")
 plt.xlabel("LOC")
 plt.ylabel("A Flag")
 AF_inputs = np.array(AF_inputs) / max(AF_inputs)
 plt.plot(np.arange(len(AF_inputs)), AF_inputs, 'red',
 np.arange(len(AF_inputs)), AF_anomaly, 'blue',)
 plt.legend(labels=('Input', 'AF_anomaly Score'))
 plt.show()

 plt.subplot(2, 1, 1)
 plt.title("ZF_predictions")
 plt.xlabel("LOC")
 plt.ylabel("Z Flag")
 plt.plot(np.arange(len(ZF_inputs)), ZF_inputs, 'red',
 np.arange(len(ZF_inputs)), ZF_predictions[1],
'blue',
 np.arange(len(ZF_inputs)), ZF_predictions[5],
'green',)
 plt.legend(labels=('Z Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("ZF_anomaly Score")
 plt.xlabel("LOC")
 plt.ylabel("Z Flag")
 ZF_inputs = np.array(ZF_inputs) / max(ZF_inputs)
 plt.plot(np.arange(len(ZF_inputs)), ZF_inputs, 'red',
 np.arange(len(ZF_inputs)), ZF_anomaly, 'blue',)
 plt.legend(labels=('Input', 'ZF_anomaly Score'))
 plt.show()

 plt.subplot(2, 1, 1)
 plt.title("SF_predictions")
 plt.xlabel("LOC")
 plt.ylabel("S Flag")
 plt.plot(np.arange(len(SF_inputs)), SF_inputs, 'red',
 np.arange(len(SF_inputs)), SF_predictions[1],
'blue',
 np.arange(len(SF_inputs)), SF_predictions[5],
'green',)
 plt.legend(labels=('S Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("SF_anomaly Score")

151

 plt.xlabel("LOC")
 plt.ylabel("S Flag")
 SF_inputs = np.array(SF_inputs) / max(SF_inputs)
 plt.plot(np.arange(len(SF_inputs)), SF_inputs, 'red',
 np.arange(len(SF_inputs)), SF_anomaly, 'blue',)
 plt.legend(labels=('Input', 'SF_anomaly Score'))
 plt.show()

 plt.subplot(2, 1, 1)
 plt.title("TF_predictions")
 plt.xlabel("LOC")
 plt.ylabel("T Flag")
 plt.plot(np.arange(len(TF_inputs)), TF_inputs, 'red',
 np.arange(len(TF_inputs)), TF_predictions[1],
'blue',
 np.arange(len(TF_inputs)), TF_predictions[5],
'green',)
 plt.legend(labels=('T Flag', '1 Step Prediction, Shifted 1
step', '5 Step Prediction, Shifted 5 steps'))

 plt.subplot(2, 1, 2)
 plt.title("TF_anomaly Score")
 plt.xlabel("LOC")
 plt.ylabel("T Flag")
 TF_inputs = np.array(TF_inputs) / max(TF_inputs)
 plt.plot(np.arange(len(TF_inputs)), TF_inputs, 'red',
 np.arange(len(TF_inputs)), TF_anomaly, 'blue',)
 plt.legend(labels=('Input', 'TF_anomaly Score'))

 plt.show()
 return -CF_accuracy[5]

if __name__ == '__main__':
 #main()
 mem_usage = memory_usage(main)
 print("HTM - Prequential - Size(kB): %4f" % (max(mem_usage) *
1000))

152

References

Ahmad, S., & Luiz, S. (2019). How can we be so dense? The benefits of using highly

sparse representations. Cornell University. Retrieved 2020, from

http://arxiv.org/abs/1903.11257

Ahmad, S., & Hawkins, J. (2015). Properties of sparse distributed representations and

their application to hierarchical temporal memory. Retrieved 2020, from

https://arxiv.org/abs/1503.07469

Alom, M., Venkata, R., B, & Taha, T. (2015). Intrusion detection using deep belief

networks. 2015 National Aerospace and Electronics Conference (NAECON),

339–344.

Amine El Ouassouli, Robinault, L., & Scuturici, V. (2019). Mining complex temporal

dependencies from heterogeneous sensor data streams. In Proceedings of the 23rd

International Database Applications & Engineering Symposium (IDEAS '19),

(23), 1–10.

Barcelo-Rico, F., Esparcia-Alcazar, A., & Villalon-Huerta, A. (2016). Semi-supervised

classification system for the detection of advanced persistent threats. Recent

Advances in Computational Intelligence in Defense and Security, Studies in

Computational Intelligence, 621, 225–248.

Barria, C., Cordero, D., Cubillos, C., & Palma, M. (2016). Proposed classification of

malware based on obfuscation. 2016 6th International Conference on Computers

Communications and Control (ICCCC), 37–44

Bifet, A., Gavaldá, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data

streams: with practical examples in MOA (Adaptive computation and machine

learning series). MIT Press.

153

Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data

streams. ECML PKDD 2010: Machine Learning and Knowledge Discovery in

Databases, 135–150.

Bonhoff, G. (2007). Using hierarchical temporal memory for detecting anomalous

network activity. Retrieved 2020, from

http://www.dtic.mil/dtic/tr/fulltext/u2/a482820.pdf

Breiman, L., Friedman, J., Stone, C. J., & Olshe, R. (1984). Classification and regression

trees (Wadsworth Statistics/Probability). Chapman and Hall.

Bushan, S., Kumar, P., Kumar, A., & Sharma, V. (2016). Scan time antivirus evasion and

malware deployment using Silent-SFX, 2016 Spring International Conference on

Advances in Computing, 1–4.

Canfora, G., Sorbo, A. D., Mercaldo, F., & Visaggio, C. A. (2015). Obfuscation

techniques against signature-based detection: A case study. 2015 Mobile Systems

Technologies Workshop, 21–26.

Cannady, J. (2013). The detection of temporally distributed network attacks using an

adaptive hierarchical neural network. 2013 World Congress on Nature and

Biologically Inspired Computing, 5–9.

Cannady, J. (2000). Next generation intrusion detection: autonomous reinforcement

learning of network attacks. In Proceedings of the 23rd National Information

Systems Security Conference, 1-12.

Cheng, C., Tay, W. T., & Huang, G. (2012). Extreme learning machines for intrusion

detection. The 2012 International Joint Conference on Neural Networks (IJCNN),

1–8.

154

Chiba, D., Yagi, T., Akiyama, M., Shibahara, T., Mori, T., & Goto, S. (2018). Domain

profiler toward accurate and early discovery of domain names. International

Journal of Information Security, (17), 661–680.

Choliy, A., Li, F., & Gao, T. (2017). Obfuscating function call topography to test

structural malware detection against evasion attacks, 2017 International

Conference on Computing, 808–813.

Cui, Y., Ahmad, S., & Hawkins, J. (2016). Continuous online sequence learning with an

unsupervised neural network model. Neural Computation, 28(11), 2474–2504.

Cui, Y., Surpur, C., Ahmad, S., & Hawkins, J. (2016). A comparative study of HTM and

other neural network models for online sequence learning with streaming data.

2016 International Joint Conference on Neural Networks (IJCNN), 1530–1538.

Dehghan, M., Beigy, H., & ZareMoodi, P. (2016). A novel concept drift detection

method in. Intelligent Data Analysis, 20, 1329–1350.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7, 1–30.

Dongre, P., & Malik, L. (2014). A review on real time data stream classification and

adapting to various concept drift scenarios, 2014 IEEE International Advance

Computing Conference (IACC) , 533-537.

Drew, J., Hahsler, M., & Moore, T. (2017). Polymorphic malware detection using

sequence classification methods and ensembles. EURASIP Journal on

Information Security, (55). Retrieved 2020, from http://doi.org/10.1186/s13635-

017-0055-6

Duong, Q., Ramampiaro, H., & Norvag, K. (2018). Applying temporal dependence to

detect changes in streaming data. Applied Intelligence, 4805–4823.

155

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI Magazine V, 17, 37–54.

Flynn, M., Kanerva, P., & Bhadkamkar, N. (1989). Sparse Distributed Memory:

Principles and Operation. Retrieved 2020, from

http://i.stanford.edu/pub/cstr/reports/csl/tr/89/400/CSL-TR-89-400.pdf

Fu, Y., Guo, X., Xie, Y., Zhang, D., & Li, H. (2015). Disease diagnosis supported by

hierarchical temporal memory. 2015 IEEE 15th Intl Conf on Scalable Computing

and Communications and Its Associated Workshops (UIC-ATC-ScalCom), 863–

870.

Gandel, S. (2015). Lloyd’s CEO: Cyber attacks cost companies $400 billion every year.

Retrieved 2020, from http://fortune.com/2015/01/23/cyber-attack-insurance-

lloyds/

Ghomeshi, H., Gaber, M., Medhat, & Kovalchuk, Y. (2019). EACD: Evolutionary

adaptation to concept drifts in data streams. Data Mining and Knowledge

Discovery, 33, 663–694.

Giron, J., & Kolbitsch, C. (2015). Exposing Rombertik – turning the tables on evasive

malware. Lastline. Retrieved 2020, from

http://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-

evasive-malware/

Goel, K., & Batra, S. (2019). Dynamically updated diversified ensemble-based approach

for handling concept. Turkish Journal of Electrical Engineering & Computer

Sciences, 28, 556–574.

Gözüaçik, Ö., Büyükçakir, A., Bonab, H., & Can, F. (2019). Unsupervised concept drift

detection with a discriminative classifier. In Proceedings of the 28th ACM

156

International Conference on Information and Knowledge Management (CIK M

'19), 2365–2368. Retrieved 2020, from https://doi.org/10.1145/3357384.3358144

Harries, M. (1999), SPLICE-2 comparative evaluation: electricity pricing. Technical

report, The University of South Wales. https://www.openml.org/d/151

Hawkins, J., Lewis, M., Klukas, M., Purdy, S., & Ahmad, S. (2019). A framework for

intelligence and cortical function based on grid cells in the neocortex. Frontiers in

Neural Circuits, 12, 121, 1-14.

Hawkins, J., Ahmad, S., Purdy, S., & Lavin, A. (2017). Biological and Machine

Intelligence (BAMI). [Unpublished manuscript].

Hawkins, J. (2011a). Hierarchical Temporal Memory (HTM) Whitepaper. Numenta

Research Papers. http://numenta.com/neuroscience-research/research-

publications/papers/hierarchical-temporal-memory-white-paper/

Hawkins, J. (2011b). Hierarchical Temporal Memory, including HTM Cortical Learning

Algorithms. Hierarchical Temporal Memory (HTM) Whitepaper. Retrieved 2020,

from http://numenta.com/assets/pdf/whitepapers/hierarchical-temporal-memory-

cortical-learning-algorithm-0.2.1-en.pdf

Hawkins, J., & Blakeslee, S. (2004). On Intelligence. New York, NY: Henry Holt and

Company, LLC.

Hinton, G., & Salakhutdinov, S. (2006). Reducing the dimensionality of data with neural

networks. Science, 313(5786), 504–507.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and

applications. Neurocomputing, 70(1-3), 489–501.

Hulten, G., & Domingos, P. (2002). Mining complex models from arbitrarily large

databases in constant time. In Proceedings of the eighth ACM SIGKDD

157

international conference on Knowledge discovery and data mining (KDD ’02),

525–531.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In

Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’01), 97–106.

Irvine, K. R. (1999). Assembly language for Intel-based computers (3rd ed.). Prentice-

Hall.

Irmanova, A., Krestinskaya, O., & James, A. (2018). Image-based HTM word recognizer

for language processing. 2018 IEEE International Conference on Consumer

Electronics-Asia, 206–212.

Jadhav, A., Vidyarthi, D., & Hemavathy, M. (2016). Evolution of evasive malwares: A

Survey. 2016 International Conference on Computational Techniques in

Information and Communication Technologies (ICCTICT), 641–646.

Kanerva, P. (1990). Sparse distributed memory. MIT Press.

Khangamwa, G. (2010). Detecting network intrusions using hierarchical temporal

memory. Social Informatics and Telecommunications Engineering, 64, 41–48.

Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: an ensemble method

for drifting concepts. Journal of Machine Learning Research, (8), 2755–2790.

Kruegel, C. (2015). Evasive malware exposed and deconstructed. RSA Conference 2015.

Retrieved 2020, from

https://www.rsaconference.com/writable/presentations/file_upload/crwd-

t08evasive-malware-exposed-and-deconstructed.pdf

158

Lange, L., Alonso, O., & Strötgen, J. (2019). The power of temporal features for

classifying news articles. In Companion Proceedings of The 2019 World Wide

Web Conference (WWW ’19). Association for Computing Machinery, 1159–1160.

Lavin, A., & Ahmad, S. (2015). Evaluating Real-Time anomaly detection algorithms --

The Numenta anomaly benchmark. 2015 IEEE 14th International Conference on

Machine Learning and Applications (ICMLA), 38–44.

Lim, C., & Nicsen. (2015). Mal-EVE: Static detection model for evasive malware, 10th

EAI International Conference on Communications and Networking in China,

283–288.

Madireddy, S., Balaprakash, P., Carns, P., Latham, R., Lockwood, G. K., Ross, R.,

Snyder, S., & Stefan, M. W. (2019). Adaptive learning for concept drift in

application performance modeling. In Proceedings of the 48th International

Conference on Parallel Processing (ICPP 2019), (79), 1–11.

Marak, V. (2015). Windows malware analysis essentials. Packt Publishing and

Birmingham.

Marpaung, S., Sain, M., & Lee, H. (2012). Survey on malware evasion techniques: state

of the art and challenges. 14th International Conference on Advanced

Communication Technology (ICACT), 744–749.

McAfee Labs. (2017). McAfee labs threats report June 2017. Retrieved 2020, from

https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf

McNemar, Q. (1947). Note on the sampling error of the difference between correlated

proportions or percentages. Psychometrika, 12(2), 153–157.

159

Moh, M., Pininti, S., Doddapaneni, S., & Moh, T. (2016). Detecting web attacks using

multi-stage log analysis. International Advanced Computing Conference 2016

IEEE 6th International Conference on Advanced Computing, 733–738.

Mouchaweh, S. (2016). Learning from data streams in dynamic environments. Springer.

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set). Conference: Military

Communications and Information Systems Conference (MilCIS), 1–8.

Numenta Inc. (2011). Hierarchical temporal memory, including HTM cortical learning

algorithms. Retrieved from

http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf

Osorio, F. C., Qiu, H., & Arrott, A. (2015). Segmented sandboxing - A novel approach to

Malware polymorphism detection. 2015 10th International Conference on

Malicious and Unwanted Software (MALWARE), 59–68.

Park, S., Seo, S., Jeong, C., & Kim, J. (2018). Network intrusion detection through online

transformation of eigenvector reflecting concept drift. In Proceedings of the First

International Conference on Data Science, E-learning and Information Systems

(DATA '18), (17), 1–4.

Pesaranghader, A., Viktor, H., & Paquet, E. (2018). Reservoir of diverse adaptive

learners and stacking fast hoeffding drift detection methods for evolving data

streams. Mach Learn, (107), 1711–1743.

Purdy, S. (2015). Encoding Data for HTM Systems, Numenta, Inc, Redwood City, CA,.

Retrieved 2020, from https://arxiv.org/abs/1602.05925

160

Rajesh, B., Reddy, Y., & Reddy, B. (2015). A survey paper on malicious computer

worms. International Journal of Advanced Research in Computer Science &

Technology, 3(2), 161–167.

Rastogi, V., Chen, Y., & Jiang, X. (2014). Catch me if you can: Evaluating android anti-

malware against transformation attacks. IEEE Transactions on Information

Forensics and Security, 9(1), 99–108.

Rogers, M. S. (2016). Statement of Admiral Michael S. Rogers Commander United

States Cyber Command before the Senate Armed Services Committee, Retrieved

2020, from https://www.armed-services.senate.gov/imo/media/doc/Rogers_04-

0516.pdf

Rouse, M. (2010). Metamorphic and polymorphic malware. Metamorphic; polymorphic

malware. http://searchsecurity.techtarget.com/definition/metamorphic-and-

polymorphicmalware

Sag, B. (2012). MASM Random Number Sorter. http://github.com/beckysag/masm-

random-integers

Sikorski, M., & Honig, A. (2012). Practical malware analysis. William Pollock; San

Francisco.

Singh, A., Walenstein, A., & Lakhotia, A. (2012). Tracking concept drift in malware

families. In Proceedings of the 5th ACM workshop on Security and artificial

intelligence, 81–92.

Sosha, A., Liu, C., Gladyshev, P., & Matten, M. (2012). Evasion-Resistant Malware

Signature Based on Profiling Kernel Data Structure Objects, 2012 7th

International Conference on Risks and Security of Internet and Systems, 1–8.

161

Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale

classification In. Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, 377–382.

Tavallaee, M., Stakhanova, N., & Ghorbani, A. (2010). Toward credible evaluation of

anomaly-based intrusion-detection methods. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 40(5), 516–524.

Sun, Y., Wang, Z., Bai, Y., Dai, H., & Nahavandi, S. (2018). A classifier graph based

recurring concept detection and prediction approach, 2018, 1–13.

Wang, C., Zhao, Z., Gong, L., Zhu, L., Liu, Z., & Cheng, x. (2017). A distributed

anomaly detection system for In-Vehicle network using HTM. IEEE Access, 6,

9091–9098.

Wang, B., & Pineau, J. (2016). Online Bagging and Boosting for Imbalanced Data

Streams. in IEEE Transactions on Knowledge and Data Engineering, vol. 28, no.

12, pp. 3353-3366, 28(12), 3353–3366.

Wang, H., Fan, W., Yu, P. S., & Ha, J. (2003). Mining concept-drifting data streams

using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD ’03),

226–235.

Wong, W., & Stamp, M. (2006). Hunting for metamorphic engines. Journal in Computer

Virology, 2, 211–229.

Yaacob, A., Tan, I., Chien, S., & Tan, H. (2010). ARIMA based network anomaly

detection, Second International Conference on Communication Software and

Networks, 2010. ICCSN '10, 205-209.

162

Yang, R., Xu, S., Feng, L., & Feng, L. (2018). An ensemble extreme learning machine

for data stream classification. Algorithms, 11(107), 1–16.

Zhang, B., & Chen, Y. (2019). Research on detection and integration. EURASIP Journal

on Wireless Communications and Networking, 86, 1–7.

Zhang, B., Xue, L., Wang, W., Qin, S., & Wang, D. (2016). Model updating mechanism

of concept drift detection in data stream based on classifier pool. EURASIP

Journal on Wireless Communications and Networking, 217, 1–8.

Zhong, L., Hu, L., & Zhou, H. (2019). Deep learning based multi-temporal crop

classification. Remote Sensing of Environment, 221, 430–443.

Žliobaite I, Pechenizkiy, M., & Gama, J. (n.d.). (2016) An Overview of Concept Drift

Applications. An overview of concept drift applications. Big Data Analysis: New

Algorithms for a New Society. Studies in Big Data, vol 16. Springer, Cham.

	A Hierarchical Temporal Memory Sequence Classifier for Streaming Data
	Share Feedback About This Item

	Acknowledgments
	Table of Contents
	Chapters
	3. Methodology 47

	List of Tables
	Tables

	List of Figures
	Figures

	List of Equations
	Equations

	Chapter 1
	Introduction
	Background
	Problem Statement
	Dissertation Goal
	Objectives
	Relevance and Significance
	Barriers and Issues
	Assumptions
	Limitations
	Delimitations

	Definition of Terms
	List of Acronyms

	Summary

	Chapter 2
	Review of the Literature
	Overview
	Current State of Classifiers
	Current Approaches for Addressing Concept Drift
	Temporal Patterns in Data Streams
	Evasive Malware
	Malware Evasion Techniques
	Hierarchical Temporal Memory
	Early realization of HTMs in malware detection
	Sparse Distributed Memory
	Sparse Distributed Representations
	Formal Definitions and Notation
	Example usage of SDR, Overlap, and Matching
	General guidelines for encoding SDRs.
	Recent advancements in HTM technology.
	HTM suitability as a classifier.

	Summary

	Chapter 3
	Methodology
	Classification
	Classifier Evaluation
	Cost measure of the process. As recommended by Bifet et al. (2017), in addition to accuracy %, estimation for the combined cost of performing the learning and prediction process in terms of time and memory are added in the form of CPU Run-Time and RAM...

	The Data Sets
	Artificial Data Streams
	Real-World Data Streams

	HTM Classifier
	HTM Algorithm
	HTM Classifier Encoders
	Scalar Encoder
	Date Encoder
	Category Encoder
	Construction of Additional Encoders

	Experiments
	Experiment I Data Set Generation
	Experiment II Data Set
	Experiment III Predicting Stalling Code

	Statistical Significance Validation
	Computing Resources Used
	Summary

	Chapter 4
	Results
	Experiment I (Artificial Data Streams)
	Accuracy
	CPU run-times
	RAM usage
	Concept drift

	Experiment II (Real-world Data Streams)
	Electricity Price Predictions (Up/Down)
	Airline Flight Predictions (On-Time/Late)
	Poker Hand Predictions
	CPU run-times
	RAM usage

	Experiment III (Simulated Malware)
	Findings: Carry Flag
	Findings: Parity Flag
	Auxiliary Flag
	Findings: Zero Flag
	Findings: Sign Flag
	Findings: Trap Flag
	Findings: Direction Flag
	Findings: Overflow Flag

	Statistical Analysis
	Comparison to Other Literature
	Summary of Results

	Chapter 5
	Conclusions, Summary, Implications, & Recommendations
	Conclusions
	Summary
	Experiment I
	Experiment II

	Implications
	Recommendations

	Appendix A
	Hyperplane Features Description for Experiment I (10 files ea. 1 million data pts)
	(Hulten et al., 2001)

	Appendix B
	LED Features Description for Experiment I (10 files ea. 1 million data pts)
	(Breiman et al., 1984)

	Appendix C
	Random Tree Features Description for Experiment I (10 files ea. 1 million data pts)
	https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.data.RandomTreeGenerator.html#skmultiflow.data.RandomTreeGenerator

	Appendix D
	SEA Features Description for Experiment I (10 files ea. 1 million data pts)
	(Street & Kim, 2001)

	Appendix E
	Electricity Features Description for Experiment II (45,312 instances)
	(Harries et al., 2003)

	Appendix F
	Airlines Features Description for Experiment II (539,381 instances)
	http://stat-computing.org/dataexpo/2009/

	Appendix G
	Poker Features Description for Experiment II (999,999 instances)
	https://archive.ics.uci.edu/ml/datasets/Poker+Hand

	Appendix H
	SDR Encoder Dictionaries
	Hyperplane

	LED
	RT
	'encoderDictionary': {
	"scalerInt":
	{'size': 10, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5},
	"scalerFloat":
	{'resolution': 0.88, 'size': 700, 'sparsity': 0.02},
	"category":
	{'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5},
	},
	SEA
	Airlines
	Electricity
	Poker
	Executables

	Appendix I
	Real-World Dataset Spatial Pooler, and Temporal Memory Specifications
	Appendix J
	Simulated Malware using Stalling Code
	https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-evasive-malware/

	Appendix K
	Assembly Language Sorting Algorithm
	Appendix L
	IDAPro Python script to disassemble x86 executables
	Appendix M
	Appendix N
	References

