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Real-world data streams often contain concept drift and noise. Additionally, it is often the 
case that due to their very nature, these real-world data streams also include temporal 
dependencies between data. Classifying data streams with one or more of these 
characteristics is exceptionally challenging. Classification of data within data streams is 
currently the primary focus of research efforts in many fields (i.e., intrusion detection, 
data mining, machine learning). Hierarchical Temporal Memory (HTM) is a type of 
sequence memory that exhibits some of the predictive and anomaly detection properties 
of the neocortex. HTM algorithms conduct training through exposure to a stream of 
sensory data and are thus suited for continuous online learning. This research developed 
an HTM sequence classifier aimed at classifying streaming data, which contained concept 
drift, noise, and temporal dependencies. The HTM sequence classifier was fed both 
artificial and real-world data streams and evaluated using the prequential evaluation 
method. Cost measures for accuracy, CPU-time, and RAM usage were calculated for 
each data stream and compared against a variety of modern classifiers (e.g., Accuracy 
Weighted Ensemble, Adaptive Random Forest, Dynamic Weighted Majority, Leverage 
Bagging, Online Boosting ensemble, and Very Fast Decision Tree). The HTM sequence 
classifier performed well when the data streams contained concept drift, noise, and 
temporal dependencies, but was not the most suitable classifier of those compared against 
when provided data streams did not include temporal dependencies. Finally, this research 
explored the suitability of the HTM sequence classifier for detecting stalling code within 
evasive malware. The results were promising as they showed the HTM sequence 
classifier capable of predicting coding sequences of an executable file by learning the 
sequence patterns of the x86 EFLAGs register. The HTM classifier plotted these 
predictions in a cardiogram-like graph for quick analysis by reverse engineers of 
malware. This research highlights the potential of HTM technology for application in 
online classification problems and the detection of evasive malware. 
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Chapter 1 

Introduction 

 

Background 

 The process of analyzing data to discover hidden relationships and predict future 

trends has a lengthy history. Commonly referred to as knowledge discovery in databases 

before the 1990s (Fayyad et al., 1996), the term is now more widely known as data 

mining. Data mining comprises three intertwined scientific disciplines: statistics, artificial 

intelligence, and machine learning.  

 Over the last twenty years, advances in processing power and speed have enabled 

consumers of big data to move beyond manual, tedious, and time-consuming practices to 

rapid, effortless, and computerized data analysis. The more complicated the data sets 

gathered, the more potential there is to discover relevant insights. Telecommunications 

providers, retailers, banks, manufacturers, and insurers are just a few examples of users 

with interest in using data mining to find relationships in streaming data. Everything from 

price optimization, demographics to how the economy, risk, competition, and social 

media are affecting their business models, revenues, and customer relationships. 

 Data mining makes heavy use of models generated by classifiers. Unfortunately, 

these generated models become quickly obsolete due to the occurrence of changes, also 

known as "concept drift" (Mouchaweh, 2016). More formally, concept drift is a term 

used to describe changes in the statistical properties of an object or learned structure that 

occur over time, which eventually leads to a drastic drop in classification accuracy. 

Concept drifts are generally categorized as being either abrupt, gradual, or recurrent 

(Bifet et al., 2017; Mouchaweh, 2016). Abrupt or sudden concept drift occurs when the 
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distribution of a concept has remained unchanged for a long time, then changes in a few 

steps to a significantly different one ). 

 An example of this would be the sudden shift of customers’ shopping habits from 

one product to another based on some personal change in taste. Gradual concept drift 

occurs when the new concept replaces the old slowly over time (Bifet et al., 2017). All 

forms of concept drift are a significant issue, especially when learning from data streams 

as it requires learners to be adaptive to dynamic changes (Wang et al., 2017).  

 The limitation of existing classifiers is that almost all assume that the distribution 

of the data is independent and identical (IID) (Bifet et al., 2017; Duong et al., 2018). In a 

streaming environment, no part of the IID assumption remains valid. Many of the 

modern-day data streams, by there very nature, contain temporal features (e.g., electricity 

usage, airline flight data, intrusion detection, stock market prices). It is also often the case 

that for specific periods the labels or classes of instances are correlated (aka temporal 

dependence) (Bifet et al., 2017). 

 In 2004, Jeff Hawkins, a renowned neuroscientist and software developer, 

designed the Hierarchical Temporal Memory (HTM) framework as a type of neural 

network. HTM represents a shift away from the artificial neuron typically used in 

machine learning and artificial neural networks (Hawkins et al., 2017). The HTM 

framework consists of artificial neurons that mimic their biological counterparts' use of 

binary synapses and learns by modeling the growth of new synapses and the decay of 

unused synapses.  As a result, HTM receives its training through exposure to a stream of 

sensory data; this exposure is what determines the HTMs' capabilities (Hawkins, 2011a). 

This research builds upon earlier work by (Hawkins et al., 2017), leveraging the 

underlying neocortical theories resident within the HTM framework. Based on studies of 
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the neocortex, HTM regions make inference and prediction on complex data streams. 

HTM algorithms also learn temporal sequences (dependencies) that exists in a data 

stream. Hawkins (2011c) states that identifying temporal dependencies is difficult 

because (a) the system may not know when sequences start and end. (b) there may be 

overlapping sequences occurring at the same time. (c) learning has to occur continuously 

and has to happen in the presence of noise. 

 Hawkins (2011c) further goes on to explain that inference in an HTM region 

continuously analyzes streaming data and matches them to previously learned sequences. 

An HTM region can identify temporal patterns, but usually, it is more fluid, analogous to 

how you can recognize a melody starting from anywhere. Because HTM regions use 

distributed representations, its use of sequence memory and inference make HTMs a 

viable solution for handling concept drifts, noisy data, and finding temporal dependencies 

within in streaming data.  

 This report described an HTM sequence classifier that can classify streaming data 

that contains concept drift, noise, and temporal dependencies.  Such a classifier is 

potentially applicable to a wide array of real-world applications, including the detection 

of malware that utilizes evasion techniques such as stalling. 

Problem Statement 

 There currently does not exist an effective method for classifying sequential data 

in data streams. The overwhelming volume of data coupled with concept drift, noise, and 

temporal dependencies leads to a drastic drop in classification accuracy (Dongre & 

Malik, 2014). A great deal of active research utilizing Deep Learning techniques is 

currently underway in an attempt to address this problem; however, an effective sequence 

classifier continues to elude researchers.  
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 Many fields such as cybersecurity, weather forecasting, and data mining would 

benefit a great deal if an effective sequence classifier capable of identifying anomalies in 

streaming data existed. Government agencies, private institutions, and citizens rely 

heavily on computer networks to store their private information. The problem with this 

dependency is that it creates a critical area of vulnerability that is exploited by malware 

authors. According to Jadhav, Vidyarthi, and Hemavathy (2016), the advent of malware 

that can modify itself using evasion techniques threatens to undermine the integrity, 

safety, and security of information that is needed by every organization. Cannady (2013) 

stated that while researchers have conducted a great deal of research in intrusion 

detection, a reliable solution has yet to surface. The Commander of United States Cyber 

Command testified before the Senate Armed Services Committee that, "Cyber-attacks 

could hamper our military forces, interfering with deployments, command, and control, 

and supply functions, in addition to the broader impact such events could have across our 

society" (Rogers, 2016,  p. 2).  

 The effectiveness of evasive malware and its associated financial costs are 

substantial. According to Gandel (2015), Beale chief executive officer of Lloyds, a 

British insurance company that is known for specializing in obscure risks such as hack 

coverage, reports that cyberattacks cost businesses as much as $400 billion a year. Beale 

goes on to report that the demand for cyber insurance has grown considerably in recent 

years. The costs of evasive malware are more than just financial; it can also have high 

political costs as well. According to McAfee (2017), the US Democratic National 

Committee attack in the fall of 2016 was likely conducted using a well-known password-

stealing virus named Fareit that had been modified to use one or more evasion 

techniques. 



 

5 
 

 Understanding the methods and techniques employed by malware authors is 

crucial to the development of software that is capable of defending against evasive 

malware (Barria et al., 2016). In this regard, anti-malware vendors make extensive use of 

signature-based techniques for identifying malware. Intrusion detection systems can only 

monitor processes for a limited amount of time before labeling them as benign. 

According to Osorio et al. (2015), the problem is that evasive malware can take 

advantage of this limitation by delaying their harmful behavior long enough to exceed the 

intrusion detection systems window for identifying malicious behavior. Evasive malware 

often employs methods such as implementing do nothing code (stalling code), waiting for 

user interaction or invoking sleep calls to alter the timing sequence of its behavior as a 

means to evading detection by intrusion detection systems.  

 In response to this problem, this research developed an HTM sequence classifier 

that classifies streaming data with concept drift, noise, and temporal dependencies. Also, 

this research evaluated the HTM classifier for its potential as a solution for detecting 

malware, which utilizes stalling code (trivial instructions) to alter its timing sequence as a 

means of avoiding detection by intrusion detection systems. 

Dissertation Goal 

 The goal of this research was to develop a sequence classifier that can classify 

data in a data stream containing concept drift, noise, and temporal dependencies. The 

HTM sequence classifier was compared against other concept drift oriented classifiers 

using four artificial and three real-world data streams that contained concept drift, noise, 

and temporal dependencies. This research also examined the use of the HTM sequence 

classifier as a potential solution for detecting evasive malware by training it on a toy 

model that contained stalling code. 



 

6 
 

Objectives 

 Three objectives were achieved based on the stated goal:  

1. Analyze and compare the HTM sequence classifier against other well-known 

concept drift oriented sequence classifiers on artificial data streams that contain concept 

drift (i.e., abrupt, gradual, and recurrent), noise, but without temporal dependencies. 

2. Analyze and compare the HTM sequence classifier against other well-known 

concept drift oriented sequence classifiers on real-world data streams that contain concept 

drift (i.e., abrupt, gradual, and recurrent), noise, and temporal dependencies. 

3. Test the HTM sequence classifier as a potential solution for identifying evasive 

malware containing stalling code.  

Relevance and Significance 

Despite recent advancements in machine learning, modern classifiers are still 

susceptible to concept drift. According to Madireddy et al. (2019), high-performance 

computing (HPC) systems, used to solve complex computational problems, suffered from 

concept drift stemming from root causes such as disk-hog, network-hog, disk-busy, and 

packet-loss faults. According to Park, Seo, Jeong, and Kim (2018), many network 

intrusion detection systems have to rebuild their models, which are computationally 

expensive due to concept drift. Adding to the problem, the detection of concept drift itself 

is a challenging subject that is popular in current academic research efforts.  

According to (Jadhav et al., 2016), sandboxing (dynamic malware detection) also 

has suffered from its own set of limitations stemming from concept drift. Malware writers 

often embed in their code the ability to discover virtualized environments by checking for 

live internet access, or specific system properties inherent to virtualized environments. 

Malware writers often employ a "wait and seek" (aka dormant malware), a technique 
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where knowing the execution time limitations of sandboxes, the malware waits until this 

time has passed (Osorio et al., 2015).  

Osorio et al. (2015) also showed that malware that uses polymorphic and 

metamorphic obfuscation techniques combined with "sandboxing evasion techniques" 

reduced the effectiveness of both static detection (signature matching), and dynamic 

detection (sandboxing).       

Barriers and Issues  

 According to Lavin & Ahmad (2015), detecting anomalies in streaming data is a 

difficult task, because it requires detectors to process data and to make decisions in real-

time. Though the academic community has proposed a wide variety of anomaly-based 

classifiers, benchmarking these techniques adequately concerning their strengths and 

weaknesses has fallen short of that needed by industry to warrant investment interest 

(Tavallaee et al., 2010). Drew et al., (2016) add that the problem of detecting malware is 

made even more difficult due to malware developers attempting to avoid the detection of 

their polymorphic software by constantly changing the algorithm's appearance while 

keeping its functionality. According to Jadhave et al. (2016), evasive malware generally 

falls into two main categories, polymorphic and metamorphic. Polymorphic malware can 

change its appearance, whereas metamorphic malware can automatically re-code itself 

each time it propagates or is distributed (Jadhav et al., 2016). Evasive malware makes the 

job of the Intrusion Detection Systems (IDS) even more difficult as current-day solutions 

struggle to keep pace. Cheng, Tay, and Huang (2012) found that machine learning 

methods like support vector machines (SVMs) and neural networks used for intrusion 

detection, generally suffer from long training times, require parameter tuning, and do not 

perform well in identifying evasive malware.  
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Earlier research conducted by Wong and Stamp (2006) support Cheng et al., 

(2012) findings as they discovered that several malware authors had released virus 

creation kits capable of producing viruses which shared only a small amount of similarity 

thereby making them extremely difficult to reproduce and thus difficult to detect. 

Strategies to mitigate the risks associated with this barrier are currently under 

consideration by looking for candidate solutions that focus on the evasive technique itself 

rather than the malicious software. 

     Another potential barrier is that training data is difficult to obtain, especially test data 

that adequately simulates real-world attacks by evasive malware. According to Moustafa 

and Slay (2015), the traditional data sets KDD98, KDDCUP99, and NSLKDD used for 

evaluating the effectiveness of Network Intrusion Detections Systems (NIDS) are out of 

date and do not reflect modern-day network attacks. The website VirusShare.com 

contains 33,892,901 samples of the real world viruses in the form of executable files. 

These samples are packaged into and cataloged into chunks of 65,535 zipped samples per 

chunk. 

Assumptions 

 The majority of real-world data streams inherently contain a combination of one or 

more variants of concept drift (e.g., abrupt, gradual, or recurrent), noise, and temporal 

dependencies.  

 Originally an assumption was made that HTM architecture can not accurately 

classify data without temporal dependencies. It turned out that while this was true, the 

HTM architecture was able to detect concept drift. 

 There is a concern as to how much memory and CPU processing power/time will be 

required to implement an HTM sequence classifier in a real-time data stream, along with 
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the continuous learning capability that is needed to identify novel attacks. The three cost 

measures (Accuracy, CPU Run-Time, and RAM Usage) will be used to monitor this 

concern. 

Limitations 

 I was unable to find malware labeled as containing stalling code. The sheer 

number of data samples available from VirusShare.com (33,892,901) made manual 

reverse engineering efforts impractical. 

Delimitations 

One of the goals of this research was to seek a potential solution for the detection 

of evasive malware that utilized stalling code to evade Intrusion Detections Systems 

(IDS). The Rombertik malware code snippets published by Giron and Kolbitsch (2015) 

provide a real-world example of evasive malware that employs the stalling code behavior 

to evade detection. 

 
Definition of Terms 

Active duty cycle: A moving average denoting the frequency of column activation 

(Hawkins et al., 2017). 

AND: See “Intersection” (Hawkins et al., 2017). 

Binary vector: An array of bits. SDRs are represented as a binary vector. For the 

purposes of this research, SDRs are binary vectors, using the notation 𝐱𝐱 = [𝑏𝑏0, … , 

𝑏𝑏𝑛𝑛−1] for an SDR 𝑥𝑥 (Hawkins et al., 2017). 

Bit: A single element of an SDR. Can be in either ON (1) or OFF (0) states (Hawkins et 

al., 2017). 
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Concept Drift: Žliobaite, Pechenizkiy, and Gama (2016) state that “Concept drift in 

machine learning and data mining refers to the change in the relationships between 

input and output data in the underlying problem over time” (p. 1). 

Column: An HTM region is organized in columns of cells. The Spatial Pooler (SP) 

operates at the column-level, where a column of cells function as a single 

computational unit (Hawkins et al., 2017). 

Distal dendrite segment: Forms synapses with cells within the layer. Every cell has many 

distal dendrite segments. If the sum of the active synapses on a distal segment exceeds 

a threshold, then the associated cell enters the predicted state. Since there are multiple 

distal dendrite segments per cell, a cell’s predictive state is the logical OR operation of 

several constituent threshold detectors. (Hawkins et al., 2017). 

Encoder: Converts the native format of data into an SDR that can be fed into an HTM 

system (Hawkins et al., 2017). 

Hierarchical Temporal Memory (HTM): A theoretical framework for both biological 

and machine intelligence (Hawkins et al., 2017). 

HTM learning algorithms: Describes the set of algorithms in HTM (Hawkins et al., 

2017). 

Inhibition: The mechanism for maintaining sparse activations of neurons. (Hawkins et 

al., 2017). 

Inhibition radius: The size of a column’s local neighborhood, within which columns 

may inhibit each other from becoming active. (Hawkins et al., 2017). 
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Intersection: Of two sets A and B, the intersection is the set that contains all elements of 

A that also belong to B, but no other elements; the AND operation, denoted A ∩ B 

(Hawkins et al., 2017). 

Matching: A match between two SDRs is determined by checking if the two encodings 

overlap sufficiently. See “Overlap” definition below. For two SDRs 𝐱𝐱 and 𝐲𝐲: 

 

 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙,𝒚𝒚|𝜽𝜽) ≡  𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒙𝒙,𝒚𝒚) ≥  𝜽𝜽                                 (𝟏𝟏) 

If 𝐱𝐱 and 𝐲𝐲 have the same cardinality 𝑤𝑤, an exact match can be determined by setting 𝜃𝜃 

= 𝑤𝑤 (number of active bits chosen to be on). 

Mini-column: See “Column.” 

Noise: Meaningless or corrupt data. In SDRs this manifests as randomly flipped ON and 

OFF bits (Hawkins et al., 2017). 

NuPIC: Numenta Platform for Intelligent Computing. An open-source community 

working on HTM (Hawkins et al., 2017). 

OR: See “Union” (Hawkins et al., 2017). 

Overlap duty cycle: A moving average denoting the frequency of the column’s overlap 

value being at least equal to the proximal segment activation threshold (Hawkins et al., 

2017). 

Overlap: The similarity between two SDRs is determined using an overlap score. The 

overlap score is the number of ON bits in common, or in the same locations, between 

the vectors. If 𝐱𝐱 and 𝐲𝐲 are two SDRs, then the overlap can be computed as the dot 

product: 

𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝐱𝐱,𝐲𝐲) ≡  𝐱𝐱 ∙  𝐲𝐲                                                      (𝟐𝟐)     
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Permanence threshold: If a synapse’s permanence is above this value, it is considered to 

be fully connected (Hawkins et al., 2017). 

Proximal dendrite segments. Forms synapses with feed-forward inputs. The active 

synapses on this type of segment are linearly summed to determine the feed-forward 

activation of a column (Hawkins et al., 2017). 

Receptive field: The input space that column can potentially connect to (Hawkins et al., 

2017). 

Sparse distributed representation (SDR): Binary representations of data comprised of 

many bits with a small percentage of the bits active (1's). The bits in these 

representations have semantic meaning and that meaning is distributed across the bits 

(Hawkins et al., 2017). 

Sparsity: In a binary vector, the ON bits as a percentage of total bits. Sparsity: At any 

point in time, a fraction of the 𝑛𝑛 bits in vector 𝐱𝐱 will be ON and the rest will be OFF. 

Let 𝑠𝑠 denote the percent of ON bits. Generally, in sparse representations, 𝑠𝑠 will be 

substantially less than 50%. (Hawkins et al., 2017). 

Spatial Pooler: One of the HTM learning algorithms. In an HTM region, the Spatial 

Pooler learns the connections to each column from a subset of the inputs, determines 

the level of input to each column and uses inhibition to select a sparse set of active 

columns (Hawkins et al., 2017). 

Spatial Pooling: a learning mechanism fundamental to both the neocortex and 

Hierarchical Temporal Memory (HTM) tasked with processing inputs from many 

different sources without any prior knowledge of what these inputs represent, how 

many input bits there will be, and what spatial patterns may exist in the input. The 
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Spatial Pooler does this by accepting an input vector and translating it into an output 

vector of a different size with a sparse number of activated bits. The output vector of 

the Spatial Pooler represents mini-columns (Hawkins et al., 2017). 

Synapse: A junction between cells. In the Spatial Pooling algorithm, synapses on a 

column’s dendritic segment connect to bits in the input space (Hawkins et al., 2017). A 

synapse can be in the following states:  

• Connected – permanence is above the threshold. 

• Potential – permanence is below the threshold. 

• Unconnected – does not have the ability to connect. 

Temporal Memory: Learns sequences of patterns over time, and predicts the next pattern 

as an SDR at the level of cells in columns (Hawkins et al., 2017). 

Temporal Pooler: One of the HTM learning algorithms. The Temporal Pooler groups 

together SDRs that are predictable by the lower layer, forming a single representation 

for many different SDRs (Hawkins et al., 2017). 

Union: The union of two sets A and B is the set of elements which are in A, in B, or in 

both A and B; the OR operation, denoted A ∪ B (Hawkins et al., 2017). 

Vector cardinality: The number of non-zero elements in a vector, or the l0-norm. Let 𝑤𝑤 

denote the vector cardinality, which is defined as the total number of ON bits in the 

vector. If the percent of ON bits in vector 𝐱𝐱 is 𝑠𝑠, then 𝑤𝑤𝐱𝐱 = 𝑠𝑠×𝑛𝑛 = ‖𝐱𝐱‖0. (Hawkins et al., 

2017). 

Vector size: Number of elements in a 1-dimensional vector. In an SDR 𝐱𝐱 = [𝑏𝑏0, … , 𝑏𝑏𝑛𝑛−1], 

𝑛𝑛 denotes the size of a vector. Equivalently, we say 𝑛𝑛 represents the total number of 
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positions in the vector, the dimensionality of the vector, or the total number of bits. 

(Hawkins et al., 2017). 

List of Acronyms 

APK: Android App Packages 

ANN: Artificial Neural Network 

ARF: Adaptive Random Forest 

AWE: Accuracy Weighted Ensemble 

AWS: Amazon Web Services 

CAN: Controller Area Network 

DBN: Deep Belief Neural 

DoS: Denial of Service 

DWM: Dynamic Weighted Majority 

ESN: Echo State Network 

EVB: Encrypted Virus program Body 

FCG: Function Call Graphs 

HMM: Hidden Markov Model 

HPC: High-Performance Computing 

HTM: Hierarchical Temporal Memory 

HQSOM: Hierarchical Quilted Self-Organizing Map 

IDS: Intrusion Detection System 

IP: Internet Protocol 

IPS: Intrusion Prevention System 

LevBag: Leveraging Bag 

LSTM: Long Short-Term Memory 
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MPF: Memory-Prediction Framework 

ML: Machine Learning 

NAB: Numenta Anomaly Benchmark 

NIDS: Network Intrusion Detection System 

OBoost: Online Boosting 

RBC: Rule-Based Classifier 

RBM: Restricted Boltzmann Machine 

SDM: Sparse Distributed Memory 

SDR: Sparse Distributed Representation 

SOM: Self-Organizing Map 

SP: Spatial Pooler 

SQL: Structured Query Language 

SYN: Synchronization 

SVM: Support Vector Machine 

TCP: Transmission Control Protocol 

TP: Temporal Pooler 

UDP: User Datagram Protocol 

VDR: Virus Decryption Routine 

VFDT: Very Fast Decision Tree 

VM: Virtual Machine 

 
Summary 

This chapter provided an overview of the problem of designing a sequence 

classifier for sequential data in data streams. As depicted earlier, much of the modern 

data streams contain concept drift, noise, and temporal dependencies. This research 
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leveraged the underlying theoretical framework of HTM, which utilizes memory that 

records time changing or "temporal" patterns. This research overcame the primary 

limitation of finding labeled malware that contained stalling code by creating an 

executable based on the Rombertik malware published by Lastline.com. This 

research has developed a new classifier based on the HTM architecture that can classify 

data within a data stream containing concept drift, noise, and temporal dependencies. 
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Chapter 2 

Review of the Literature 

 
Overview 

This research focused primarily on exploring the appropriateness of HTM toward 

developing a sequence classifier capable of classifying data within data streams 

containing concept drift, noise, and temporal dependencies. Because of its ability to learn 

sequences over time, HTM will enable the sequence classifier algorithm to identify 

programs that use stalling code. The following areas of literature are essential to the 

proposed research: 

• The current state of classifiers 

• Current approaches to addressing concept drift 

• Temporal patterns in real-world data streams 

• Evasive Malware 

• Malware evasion techniques 

• Hierarchical Temporal Memory 

Current State of Classifiers 

The classification problem continues to receive a great deal of attention within the 

research community. However, most modern approaches to the classification problem 

incorrectly assume that data is stationary (Bifet et al., 2017). Current classification and 

data mining literature by Bifet et al., (2017), Mouchaweh (2016), and others have 

published that most real-world data streams consist of (possibly infinite) sequences of 

items, each having a timestamp and therefore a temporal order. Temporal dependencies 
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within data streams present two main algorithmic challenges, with the first challenge 

being the need to extract information in real-time, resulting in approximated solutions to 

use less time and memory. The second challenge is that the data often evolves, so 

classifier models must adapt when there are changes in the data.  

Barcelo-Rico et al. (2016), developed a semi-supervised classification system for 

detecting Advanced Persistent Threats (APT) to large organizations. They employed a 

process that involved a human expert to first label the training data, followed by training 

their classifier on both labeled and unlabeled data. The authors trained the classifier using 

three computational intelligence methods: genetic programming, decision trees, and 

support vectors. Their solution achieved an 80% accuracy rating. However, their solution 

required human expert labeling and did not address concept drift, noise, or temporal 

dependencies. 

Current Approaches for Addressing Concept Drift 

Ghomeshi et al. (2019) developed an ensemble-based concept drift sensitive 

classifier named Evolutionary Adaptation to Concept Drifts (EACD).  Ghomeshi et al. 

(2019) utilized random subspaces of features from a pool of features to create different 

classifiers for the ensemble. Each classifier consists of decision trees that were built at 

various times over the data stream. Ghomeshi et al. (2019) then employed replicator 

dynamics, a popular evolution and prestige-biased learning in game theory, along with a 

genetic algorithm that mutates existing classifier models to adapt to different concept 

drifts. Those classifiers with higher performance stay in the ensemble while with a lower 

performance are gradually removed. Ghomeshi et al. (2019) compared the EACD 

classifier with various other classifiers (i.e., ARF, DWM, LevBag, OAUE, and OSBoost 

classifiers over four artificial and five real-world data set. Ghomeshi et al. (2019) 
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reported that the EACD demonstrated performances comparable to that of the other 

classifiers in their experiments. 

Gözüaçik et al. (2019) developed an unsupervised method for detecting concept 

drift, Discriminative Drift Detector (D3). D3 uses a sliding window to monitor changes in 

the feature space and requires an existing classifier (one without a drift adaptation 

mechanism). D3 uses a fixed sliding window of the latest data divided into two sets: the 

old and the new. An arbitrary classifier then distinguishes between the two groups based 

on the classifiers’ overall performance on the two sets. Gözüaçik et al. (2019) reported 

that the D3 scored an accuracy of 86.69% with the Electricity data set, 75.59% Poker 

hand data set, and 85.29% with rotating hyperplane dataset. Gözüaçik et al. (2019) 

acknowledged that D3 could not detect real concept drifts that are caused by changes 

only in conditional distributions of P(y|X). Furthermore, the authors recognize that D3 

detects drifts unnecessarily when the change in the P(X) does not affect P(y|X).  

Madireddy et al. (2019), address concept drift using a model that identifies the 

location of events that lead to the concept drift through an online Bayesian changepoint 

detection method, followed by retraining the model on the data collected just before the 

drift. Madireddy et al. (2019) address the temporal learning problem through the use of 

long short-term-memory-based recurrent neural networks to build the model. Madireddy 

et al. (2019) reported that their concept-drift-aware models obtained 58.8% accuracy 

improvement. The authors acknowledge that their model requires a large shift in the drift 

to be effective. 

Goel & Batra (2019) developed the Ensemble-based Online Diversified Drift 

detection (En-ODDD) algorithm for detecting concept drift. En-ODDD uses a trigger-

based drift detection mechanism on a block-based ensemble framework. The ensemble 
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addresses concept drift by building experts based on their current performance on the 

most recent data chunks. The experts are then updated by pruning using a sliding-window 

based deterioration scheme based on how well it is currently performing. Goel & Batra 

(2019) augmented the usual incremental classifier training for the En-ODDD by 

incorporating an online bagging approach that then updates the ensemble experts. Goel & 

Batra state that online bagging increases the predictive accuracy of their ensemble 

because diverse learners are better suited at handling concept drift. Goel & Batra (2019) 

experiments consisted of nine other block-based classifiers (i.e., DDD, OzaBag, AUE2, 

ACE, DWM, WMA, LevBag, ARF, NSE). Goel & Batra’s (2019) experiments utilized 

cost measures consisting of prediction accuracy, model cost, training time, and testing 

time with 12 artificial and three real-world datasets and report that En-ODDD 

outperformed all of the classifiers in their experiments. 

Zhang & Chen (2019) developed the Weighted classification and Update 

algorithm for data streams based on Concept Drift Detection (WUDCDD) classifier. 

WUDCDD uses emerging patterns to build and update the base classifier based on 

computing a performance value that combined the Mahalanobis and µ detection standards 

for determining error rates. The general process is to (a) build several integration 

classifiers (b) determine if concept drift has occurred and (c) update the classifiers based 

on the classification error rate derived from the Mahalanobis and µ detection methods. 

Zhang & Chen (2019) solution is a form of the basic sliding window algorithm popular in 

many classifier solutions. 

Pesaranghader et al. (2018) employ a pool-based classifier solution (TORNADO) 

for classifying data within data streams that experience concept drift. Their framework 

implements a reservoir of diverse classifiers that operate in parallel paired together with a 
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variety of drift detection algorithms. At any point in time, they select the classifier-drift 

detection pair, which currently yields the best performance. When determining the best 

performing classifier/drift-detection pair, Pesaranghader et al. (2018) take into 

consideration memory usage, runtime, drift detection delay, along with the number of 

false positives and false negatives. Additionally, Pesaranghader et al. (2018) developed 

two drift detection algorithms (e.g., FHDDMS, and FHDDMSadd). The FHDDMS 

algorithm creates a stack of sliding windows of different sizes. The windows monitor the 

streams using bitmaps and signal an alarm for concept drift based on threshold values. 

Pesaranghader et al. (2018) propose that the detection of concept drift occurs faster and is 

more accurate occurs when using sliding windows of various sizes. The FHDDMSadd 

drift detection algorithm is a variant of FHDDMS that employs data summaries, instead 

of bitwise operations. 

Yang et al. (2018) developed an ensemble Extreme Learning Machine (ELM) to 

address both gradual and abrupt concept drifts (CELM). CELM takes advantage of the 

speed that ELMs typically provide and applies Locally Linear Embedding (LLE) to 

reduce the dimensions of data blocks. Learning is achieved via an online sequential 

learning mechanism that updates the classifiers when the change of data stream is small, 

only retraining the entire model when necessary. CELM then categorizes the current data 

stream into one of three types: stable, warning, and concept drift, with the difference 

being the amount of the current error percentage that the classifier(s) are experiencing. 

Yang et al. (2018) report that CELM can detect both gradual and abrupt concept drifts by 

using their online sequential learning and concept drift detection mechanisms. However, 

Yang et al. (2018) also acknowledge that CELM still has some scalability problems with 

the number of hidden nodes and their learning algorithm. 
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Sun et al. (2016) designed a pool-based classifier focused on handling recurrent 

concept drift. To aid in the detection of recurrent concept, Sun et al. (2016) develop the 

Distribution-Based Detection Method (DBDM), which detects changes by comparing the 

distribution of data in different time windows based on the Bernstein inequality which 

associates the expected value with variance. Additionally, Sun et al. (2016) developed an 

algorithm for dealing with previously seen concept drifts (recurring) named the Recurrent 

Detection and Prediction (RDP). Each time a concept drift is detected, RDP first looks to 

see if the current concept drift matches any contained in the current graph model; if not, 

the new concept drift is added to the graph model. 

Zhang et al. (2016) developed a concept drift resilient classifier based on the 

calculation of correlation coefficients and information entropy. The correlation 

coefficient, also known as the Pearson correlation coefficient, describes the relationship 

between the two equal interval variables; information entropy is then used as a tool for 

fitting their classification models. The generalized procedure is to (a) process the data 

stream in blocks, (b) determine if concept drift has occurred using the correlation 

coefficients of the current block and comparing it to that of previous blocks which 

provides an entropy value, and (c) after updating the model, it is saved in a classifier pool 

to describe previous concepts for use in detecting recurring concept drifts. 

Dehghan et al. (2016) also ensemble-based classifier similar to that of Zhang et al. 

(2016). Dehghan et al. (2016) employ methods that explicitly detect changes and adapts 

the learner to cope with the new concept. The detection of concept drifts is done by 

processing samples one by one and monitoring the error of the ensemble classification 

method.  Dehgan et al. (2016) then count the number of samples with the possibility of 

drift and measuring the distances between these samples. If the classifier detects concept 
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drift, it will then be trained on the new concept and added to the pool of existing 

classifiers. 

It is noteworthy to mention that none of the research in this section addressed 

temporal dependencies. While managing concept drift is an essential aspect in the design 

of a classifier for data streams, the next section identifies the importance of also 

addressing temporal dependencies. 

Temporal Patterns in Data Streams 

Zhong et al. (2019) developed a deep learning-based classification framework for 

remotely sensed time series for California economic crops. Zhong et al. (2019) classified 

summer crops using Landsat Enhanced Vegetation Index (EVI) time series using two 

deep learning models, Long ShortTerm Memory (LSTM), and one-dimensional 

convolutional (Conv1D) layers.  The LSTM model remembers values over arbitrary time 

intervals, either long or short. Zhong et al. (2019) report that the LSTM improved the 

efficiency of depicting temporal patterns at various frequencies, which was a desirable 

feature in the analysis of crop growing cycles that often consist of varying lengths. The 

Conv1D model employed one-dimensional filters to capture the temporal pattern or shape 

of the input series. Zhong et al. (2019) reported that the optimized Conv1D model had the 

highest test set accuracy of 85.54% when compared to other deep learning and non-deep 

learning models and the LSTM model performing the worst with 82.41% accuracy. 

Zhong et al. (2019) concluded that the LSTM was not an appropriate model for their 

classification experiment 

Lange et al. (2019) describe a proof-of-concept for classifying news articles using 

features defined by extracting and normalizing temporal expressions. Lange et al. (2019) 

propose using temporal expressions and their characteristics for feature selection used in 



 

24 
 

their classification approach. Lange et al. (2019) use WEKA, an open source machine 

learning software, to train k-Nearest-Neighbours and Decision Trees on the features 

previously selected. Using datasets consisting of both English and German newspapers, 

Lange et al. (2019) reported that their experiments resulted in 69.3% accuracy for a 

decision tree and 68.2% accuracy for a 9-NN classifier. These results were achieved 

using the generalized normalized values extended with their temporal relation to the 

publication date.  

Amine et al. (2019) developed an approach for discovering temporal information  

within raw data obtained from camera sensors. Their algorithm, Complex Temporal 

Dependencies (CTD)-Miner, searched for temporal dependencies between state streams 

by transforming raw sensor data sequences into a symbolic time-interval series 

representation known as Temporal Abstraction (TA). While the authors' work 

demonstrated that it is possible to integrate video analysis methods into a data analysis 

process, they did not address concept drift nor the classification problem. 

Chiba et al. (2018) developed the DOMAINPROFILER for discovering malicious 

domain names that are likely to be used by malware authors in the future. Chiba et al. 

(2018) research focused on exploiting temporal variation patterns (TVPs) that exist 

within domain names. Chiba et al. (2018) define TVPs as the time-series behavior of each 

domain name within various domain name lists, and they observed that both legitimate 

and malicious domain names vary dramatically in domain name lists over time. The 

DOMAINPROFILER is comprised of a monitoring and profiling module. The 

monitoring module collects three types of information for use in profiling module: (i)  

domain name lists, (ii) historical DNS logs which contain time series collections of the 

mappings between domain names and IP addresses, and (iii) the ground truth used to 
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label the training dataset. The profiler module consists of three steps that utilize the 

information collected from the monitoring module: 

1. Identify the TVPs for each input target domain. 

2. Append DNS-based features to the output of step 1. This consist of target 

domain names with identified TVPs. 

3. Apply a Random Forest machine learning algorithm for detecting/predicting 

possible malicious domain names. 

Chiba et al. (2018) report that DOMAINPROFILER predicted malicious domain 

names 220 days beforehand with a true positive rate of 0.985.  

One of the more recent research efforts with finding temporal dependencies in 

data streams was conducted by (Duong et al., 2018). Their work focused on spotting 

concept drift by finding change points within the data stream using linear higher-order 

Markov processes. The authors developed a k-order Candidate Change Point (CCP) 

model that exploits the temporal dependencies between data within the stream. Their 

model employs a sliding window approach to calculate the probability of finding change 

points using the time-based dependency information or factors between different 

observed data points in a stream. Duong et al. (2018) experiments proved to be extremely 

fast and accurate over large data streams. However, their research design was for 

detecting temporal dependencies and not as a classifier. 

Evasive Malware 

 The first virus software attack against a computer network occurred in 1971 with 

the Creeper Virus written by Bob Thomas at BBN Technologies (Rajesh et al., 2015; 

Barría and Cubillos 2016). This attack was an experimental program that self-replicated 

and infected DEC PDP-10 computers that used the TENEX Operating System. The 
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Reaper, the first antivirus software, was then developed to delete this virus. Now, more 

than 40 years later, the sophistication of both Intrusion Detection Systems (IDS) and 

malware has significantly increased with malware authors employing an ever-increasing 

number of evasion tactics aimed at avoiding detection of their malware. A technological 

war has ensued since this time between the authors of malware and the developers of 

intrusion detection applications (Rajesh et al. 2015; Jadhav et al. 2016). 

 As reported by McAfee Labs (2017), the first known virus that attempted to 

defend itself from anti-malware was the MS-DOS virus Cascade. This virus encrypted 

part of its code, thereby making its contents unreadable by security analysts. Figure 1 

depicts the first large-scale use of obfuscation by evasive malware was the PowerShell 

virus, which utilized Windows commands to hide.  

 

 

Figure 1. Major Milestones in the Evolution of Evasive Techniques. McAfee Labs 
Threats Report (2017), p. 11. 

 Malware detection solutions fall primarily into two broad categories: knowledge-

based (inclusive of signature-based) and anomaly-based. Signature-based detection relies 
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on an existing signature database to detect known malware infections, and anomaly-based 

detection identifies abnormal behaviors in the data or system. According to Cannady 

(2000), anomaly detection comes with a cost of high false-positive rates because any 

deviation from the norm results in an alert to the administrator. The primary advantage of 

anomaly-based intrusion detection is the capability to detect new or unknown attacks 

since the new malware (whose signature is not available) would also generate abnormal 

behaviors. 

Yaacob et al. (2010) pursued an approach for detecting network attacks based on 

a time series model. They presented a model named Autoregressive Integrated Moving 

Average (ARIMA) to predict regular network traffic that triggered an early warning if 

anomalous network traffic behavior occurred. ARIMA detects abnormal activity by 

employing a probability model that utilizes statistical functions that reside within the 

International Mathematics and Statistics Library (IMSL) C Numerical Library. Yaacob et 

al. (2010) claimed that by comparing forecasted network traffic to real-time network 

traffic that it is possible to raise an alert if the specific difference exceeds a preset 

threshold; in their implementation, they set a limit of 15% for the threshold. Yaacob et al. 

(2010) focused their solution on User Datagram Protocol (UDP) flooding and 

Transmission Control Protocol (TCP) synchronization (SYN) attacks. UDP flooding was 

identified by measuring the volume of incoming and outgoing traffic and defining the 

model of normality. ARIMA detected TCP SYN flooding by predicting the correct ratio 

of SYN packets to the number of completed TCP handshaking sessions. Yaacob et al. 

(2010) showed that ARIMA successfully identifies DoS (Denial of Service) attacks as 

abnormal data. However, they acknowledged that ARIMA does not perform well in low 

volume networks consisting of less than 1 Megabytes of traffic per second. 
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 Network attacks that distribute themselves over time are difficult to detect. 

Cannady (2013) addressed this problem by taking an approach that recognizes temporally 

distributed attacks based on a modified Hierarchical Quilted Self-Organizing Map 

(HQSOM). HQSOMs are an extension of the original Self-Organizing Map (SOM) 

algorithm written by Kohonen (2001). Cannady's (2013) primary motivation behind using 

the HQSOM was to implement an algorithm that realized the concepts described in the 

Memory-Prediction Framework (MPF). MPFs include feedback loops that facilitate 

prediction, similar to the idea that there are structures in the brain that are responsible for 

processing a variety of different signals and share many structural similarities. 

 Cannady (2013) utilized a "leaky integrator," which combined an adaptive 

learning parameter with variable spatial and temporal clustering to associate the 

components of the attack. During the evaluation of the prototype, Cannady (2013) 

injected the attack patterns for three network attacks (e.g., Internet Protocol (IP) 

Spoofing, Low-rate DoS, and Teardrop) into the network data stream at three distinct 

periods of temporal distribution (e.g., 200, 500, and 800 milliseconds). Cannady (2013) 

then evaluated the HQSOMs ability to identify attack patterns at different levels of 

temporal distribution. Cannady (2013) reported that the accuracy of the HQSOM in 

detecting attack patterns was highest when the decay rate was at the lowest setting and 

lowest when the decay rate was at the highest setting. Cannady (2013) also reported that 

by enabling the leaky nodes to decay more slowly, the indicators of the temporally 

distributed attack patterns could be more easily detected. Cannady's (2013) work 

demonstrated the ability of HQSOM to identify temporally distributed network attacks by 

utilizing leaking nodes effectively. 
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 Jadhav et al. (2016) state that there does not exist a signature-based solution that 

is not susceptible to trivial obfuscation techniques by evasive malware, and that can 

accurately adapt its signature database. Due to this inherent weakness with signature-

based solutions, anti-malware vendors are not able to keep pace with malware authors 

who utilize evasion techniques. Vendors struggle to generate and implement innovations 

capable of detecting altered or new forms of malware, thus creating a need for constant 

patching, which equates to an endless cycle of adaptation-patching between the malware 

author and anti-malware vendor. Anti-malware vendors do not currently have a means for 

breaking this adapt/patch cycle as the current signature-based solution paradigm is 

susceptible to malware evasion techniques and requires constant updating, often after the 

damage is already done (Marpaung et al., 2012). Similar research by Singh et al. (2012) 

concurs that Machine Learning (ML) methods are not effective against malware with 

characteristics that change over time, because they require the ML model to retrain 

continually. Research by Canfora et al. (2015) supported Singh et al. (2012) findings in 

that they showed that obfuscation methods that perform trivial code transformations 

thwarted current signature-based detection solutions. Also, Canfora et al. (2015) 

concluded that signature-based techniques for identifying malware are susceptible to a 

variety of malware evasion techniques, thus locking anti-malware developers and 

malware developers into a never-ending cycle of adaptation-patching. 

Even non-signature-based solutions for intrusion detection have their drawbacks, 

as Alom et al. (2015) reported that the primary disadvantage of anomaly-based intrusion 

detection is that it is more prone to generating false positives. Alom et al. (2015) explored 

an approach that applies a Deep Belief Neural (DBN) network to the intrusion detection 

problem that stacks a Restricted Boltzmann Machine (RBM) and a generative stochastic 



 

30 
 

Artificial Neural Network (ANN) that learns a probability distribution over its set of 

inputs. Alom et al. (2015) built upon work previously done by Hinton and Salakhutdinov 

(2006), which showed that RBMs can be stacked and trained greedily to form what is 

now called DBNs. Hinton and Salakhutdinov explained that DBNs are graphical models 

that learn to extract a deep hierarchical representation of the training data. Alom et al. 

(2015) reported that the resulting DBN network identifies any unknown attack in a 

dataset supplied to it with an approximately 97.5% success rate.  

 Moh et al. (2016) employed a hybridized strategy to address attacks that attempt 

to evade detection by making small changes to their signatures. Moh et al. (2016) 

combined the real-time efficiency of signature-based pattern matching that doesn't require 

training with the ability to detect new attack patterns that supervised machine learning 

methods provide. Moh et al. (2016) focused on Structured Query Language (SQL)-

injection attacks and combined the two strategies by implementing a multi-stage log 

analysis architecture. The resulting prototype combined traditional Bayes Net algorithms 

with Kibana, a commercial application from Amazon Web Services (AWS). Bayes Net 

provided machine learning characteristics, and Kibana provided pattern matching 

characteristics. The architecture of the prototype consisted of three main parts: Log 

Generation, Data Preprocessing, and Detection. Moh et al. (2016) alternated the strategy 

order of the two-stage system as well to determine if this made any difference in the 

accuracy of their approach. Moh et al. (2016) reported that their experimental results 

showed that the hybridized two-stage system detected significantly more SQL injections 

than either a standalone or a single-stage system. 

 Evasive malware is also commonly grouped into other descriptive categories, 

such as the ones listed in the McAfee Labs Threats Report (2017), which categorized 
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evasion techniques into three broad categories (Anti-security, Anti-sandbox, and Anti-

analyst). Regardless of the numerous malware categories that are prevalent in the current 

literature, the fact remains that evasive malware has proven effective against modern 

detection techniques employed by IDS and Intrusion Prevention Systems (IPS). 

Malware Evasion Techniques 

Rouse (2010) reported that polymorphic malware commonly changes itself by 

employing a virus decryption routine (VDR) to alter its code using any variety of 

techniques. The resulting Encrypted Virus program Body (EVB) deploys; however, 

Rouse (2010) comments that the EVB remains the same after each iteration through the 

VDR, which makes this type of malware a little easier to identify. 

Later research by Rastogi et al. (2014) supports that from Rouse (2010) that once 

a computer is infected, metamorphic malware constantly rewrites itself so that each 

succeeding version of the code looks different than the previous one but still has the same 

behavior. Signature-based Network Intrusion Detection Systems (NIDS) have a difficult 

time recognizing that the various versions of the malware are the same program. The 

longer the malware stays in a computer, the more versions it produces, making it 

increasingly difficult for the NIDS to detect, quarantine, and disinfect (Canfora et al. 

2015; Rastogi et al. 2013; & Rouse 2010).  

Canfora et al. (2015) findings also support that of Rastogi et al. (2014) and Rouse 

(2010) that modern NIDS strategies can not keep pace with evolving malware. Canfora et 

al. (2015) compared 57 anti-malware solutions against a dataset of 5560 malware attacks. 

The authors developed a transformation engine and subjected the dataset of malware 

attacks to it. Their transformation engine performed the following transformations on 

each attack:  
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1. Disassembled the original program, reorganizing its contents, and then 

reassembled the program.  

2. Repacked the code by embedding a unique developer signature key. 

3. Changed the package name, which altered the package and class names. 

4. Renamed the identifiers through a random string generator 

5. Encoded the strings and arrays within the code using a cipher. 

6. Call indirection that changed the call graph of the application. 

7. Code reordering that modified the instruction order of the code by inserting 

simple goto instructions without losing the original runtime execution trace. 

8. Embedded junk code that did not affect the overall functionality of the code 

(i.e., no-op instructions). 

Canfora et al. (2015) reported that a broad set of antimalware tools did not detect 

the transformed malware even when, before applying the transformations, they did. 

Sosha et al. (2012) examined the use of constructing malware signatures based on 

their execution profiles. Sosha et al. (2012) extracted the execution profiles from kernel 

data structure objects as opposed to the traditional signature generation method that relies 

on byte sequence matching. The authors posited that kernel objects are an equal 

representation of code executed in the operating system kernel. Thus characteristics of 

kernel objects' can provide the basis for deriving evasion-resistant malware signatures. 

Sosha et al. (2012) presented a prototype signature generation tool (SigGENE) which 

utilized malware profiles built using the profiling process developed in Windows 7 SP1. 

The authors reported that, out of 63 test samples, their prototype detected 100% of the 
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evasive malware with 0 false positives. They also acknowledged the following 

deficiencies in their approach: 

• Computationally expensive in the profiling stage. 

• Ineffective against evasive malware that uses behavior monitoring strategies to 

avoid detection. 

• They are limited in scope to only kernel Objects. Authors recommend 

expanding the approach to include file objects. 

Marpaung et al. (2012) also surveyed malware evasion techniques employed by 

malware developers to evade detection by NIDS. They examined a variety of evasion 

techniques such as obfuscation, fragmentation and session splicing, application-specific 

violations, protocol violations, inserting traffic at IDS, and reuse attack evasion methods. 

Marpaung et al. (2012) asserted that sandboxing is the most effective countermeasure 

against evasive malware. They explained that sandboxing is effective against obfuscation 

techniques such as polymorphic code and encrypted sessions because it separates 

untrusted programs, users, and websites into a limited virtual environment with tightly 

controlled resources. Marpaung et al. (2012) concluded that simple string matching 

signature-based detection methods are no longer adequate and that evasion techniques are 

constantly evolving at a faster pace than detection strategies for detecting them. However, 

Kruegal (2013) contradicts Marpaung et al. (2012), in that malware authors can exploit 

several vulnerabilities of sandboxing through the use of stalled code in which the 

malware performs some useless computation that gives the appearance of normal activity. 

Lim and Nicsen (2015) surveyed the most frequent types of malware found in 

network traffic and found that approximately 86% of the malware was evasive. Their 
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findings showed that nearly 75% of the evasive malware used a runtime compression 

algorithm (packed); 86% possessed an anti-debugging capability, and 1% employed anti-

Virtual Machine (VM) techniques. Lim and Nicsen (2015) presented a model for the 

detection of evasive malware (MAL-Eve), which utilized several of the most popular 

evasion techniques used by malware authors: packing, anti-debugging, and anti-

virtualization. Lim and Nicsen (2015) demonstrated that their model was capable of 

detecting various evasive malware with an accuracy of 98.16% and a false positive rate 

of 1.45% with an average processing time of 3.22 seconds for file sizes below 100 

Kbytes. Lim and Nicsen (2015) acknowledged that the primary drawback of their model 

is that it is static, requiring resampling and retraining for any modification to existing 

evasive malware or new malware altogether. They posited that using a combination of 

static and behavior features might improve their models' detection capability. 

Instead of focusing on malware signatures, Sosha et al. (2015) studied how 

evasive malware can thwart both static signature-based and dynamically based methods 

of detection.  Sosha et al. (2015) successfully demonstrated that malware could 

overwhelm static IDS solutions with a large volume of signatures for a single attack. 

They also showed that malware could thwart sandboxing solutions by analyzing the 

machine environment. To address these evasion methods, Sosha et al. (2015) presented 

an automaton model for polymorphic and metamorphic detection that combined a 

mixture of static and dynamic malware detection methods called "segmented 

sandboxing." The first step in their approach was to determine if the potentially malicious 

code is a direct or polymorphic match to any seminal malware byte string in their 

malware signature database. Sosha et al. (2015) then utilized a controlled environment to 
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compare the effects that the malicious code had on system behavior and looked for 

similarities with other known malicious behavior patterns. The authors reported detection 

rates ranging from 82% to 100% and false positive and false negative rates, typically 

under 4%. 

Similar to Sosha et al. (2015), Barria and Cubillos (2016) also studied the 

methods, techniques, procedures, and tools that malicious code authors use to update 

their malware against new detection measures utilized by IPS/IDS vendors. Barria and 

Cubillos (2016) found that malware authors used one or more of the following techniques 

to obfuscate their code, encryption, polymorphism, or metamorphism. The authors also 

found that encryption techniques require malware authors to update their code manually 

and are extremely difficult to maintain. In contrast, those that are automated 

(polymorphic, metamorphic) are relatively easy and becoming more popular with 

malware authors. Barria and Cubillos (2016) concluded that the development of a 

classification system that can classify malware into one or more of these groups is critical 

in the design of any future IPS/IDS. Similar research by Bushan et al. (2016) showed that 

malware authors, realizing the effectiveness of encryption in avoiding detection, take 

advantage of Self-Extracting Archive (SFX) to bypass antivirus software. SFX files 

contain within itself the software needed to extract the encrypted file(s) that it contains.  

Additionally, Bushan et al. (2016) reported that if those files are password 

protected that the antivirus software is unable to examine the contents and thus are 

rendered ineffective. Bushan et al. (2016) also reported that malware authors sometimes 

employ a silent SFX technique, where an infected archive can self-extract and self-

execute the malware contained within it without triggering any antivirus software or 
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alerting the user. Bushan et al. (2016) concluded that most current antivirus software is 

not capable of detecting malware packed using the silent-SFX techniques and that SFX is 

an advantageous method in the delivery of malicious code. 

Jadhav et al. (2016) also examined and categorized evasion techniques which they 

found in current evasive malware. Jadhav et al. (2016) grouped the evasive malware into 

four primary evasion categories (Environment Awareness, Obfuscating internal data, 

Timing based evasion, and Confusing automated tools). Additionally, they identified the 

strategy by malware designers to searching online databases to see if their malware 

signatures' were present and, if found, would utilize custom encryption routines to 

obfuscate their malware so that it hardly resembled the original code signature. Jadhav et 

al. (2016) concluded that polymorphic and metamorphic coding effectively defeats 

signature-based IDS' by altering malware machine code sequences, thereby making the 

signatures useless.  

Choliy and Gao (2017) studied evasion techniques that malware authors used to 

evade detection. The authors' research centered around the use of Function Call Graphs 

(FCG) extracted from Android App Packages (APK) in the discovery of malware on 

devices that utilize the Android mobile operating system. Choliy and Gao (2017) focused 

primarily on a method known as ACTS (App topologiCal signature through graphleT 

Sampling), which is commonly used by antivirus software developers for identifying 

malware. ACTS works by extracting graphlet statistics from an FCG and differentiates 

between benign app samples and malware. Choliy and Gao (2017) observed that malware 

authors were able to circumvent ACTS by creating function calls to manipulate the FCG 

of their software to resemble a legitimate app.  
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Choliy and Gao (2017) concluded that by adding edges or nodes and edges, that 

they were able to manipulate a malicious FCG to sufficiently change its graphlet 

frequency distribution vector enough to fool ACTS into classifying it as legitimate 

software.  

Hierarchical Temporal Memory  

 Hawkins and Blakeslee (2004) promoted that there are many things humans find 

easy to do that are beyond that of modern-day computers. Tasks such as visual pattern 

recognition, understanding spoken language, recognizing a musical piece based solely on 

a few notes, are easy for humans. Despite nearly 50 years of research, we have few viable 

algorithms for achieving human-like performance on a computer (Numenta, 2011) for 

these types of recognition problems. In humans, the neocortex performs these recognition 

tasks. HTM is a biologically-constrained theory of intelligence based on neuroscience 

and the physiology and interaction of pyramidal neurons in the neocortex of the 

mammalian brain (Hawkins and Blakeslee 2004).  

Early realization of HTMs in malware detection 

 Bonhoff (2007) researched the application of HTM and CLA theories (Hawkins 

and Blakeslee; 2004) as a solution for intrusion detection. Bonhoff (2007) implemented 

an early beta version of the HTM software under extremely prohibitive research licensing 

agreement referred to as "Zeta1". Unlike later versions published by Numenta Inc, Zeta1 

did not incorporate a feedback mechanism, which is fundamental to Hawkins' HTM 

theories. While Bonhoff (2007) highlighted flaws in the 2004 implementation of HTM 

theory, he did not find flaws in the HTM theory itself. Khangamwa (2010), conducted 

similar research to that of Bonhoff (2007) on the application of Hawkins et al. (2004) 

HTM and CLA theories as a solution for intrusion detection utilizing Numenta's NuPIC 
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version 1.6.1. Unlike the Zeta1 version implemented by Bonhoff (2007), this version 

included a feedback loop and more effective Spatial Pooling (SP) and Temporal Pooling 

(TP) algorithms. Khangamwa concluded that the NuPIC platform was suitable for solving 

the problem of intrusion detection through either an anomaly-based detection approach or 

a misuse detection based approach. However, Khangamwa (2010) reported that the 

anomaly-based detection approach provided a better solution than misuse detection.  

Sparse Distributed Memory 

 Sparse Distributed Memory (SDM) began in 1974 as a paper written by Penttii 

Kanerva for a class on human memory given by Gordon Bower of Standford's 

psychology department (Kanerva, 1990). Flynn et al. (1989) later formalized the 

definition of SDM as:  

a generalized random-access memory (RAM) for long binary words (1000 bits or 

longer). The main attribute of the memory is sensitivity to similarity, meaning that 

a word can be read back not only by giving the original write address but also by 

giving one close to it as measured by the Hamming distance between addresses. 

(p. 1) 

Sparse Distributed Representations 

 Hawkins (2011), derived a data structure similar to the sparse distributed memory 

proposed by Kanerva (1990). Hawkins (2011a) speculated that despite neurons in the 

neocortex being highly interconnected, inhibitory neurons guaranteed that only a small 

percentage of the neurons are active at one time, implying that only a tiny percentage of 

active neurons represented information in the brain. This kind of encoding is called a 

sparse distributed representation (SDR). Hawkins (2011a) goes on to state that  
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"Sparse means that only a small percentage of neurons are active at one time. 

Distributed means that the activations of many neurons are required to represent 

something. A single active neuron conveys some meaning, but it must be 

interpreted within the context of a population of neurons to convey the full 

meaning.” (p. 11) 

Formal Definitions and Notation 

 The following formal definitions and notations come from Ahmad & Hawkins, 

2015, p. 2. 

SDR: Given a population of n neurons, their instantaneous activity is represented 

as an n-dimensional vector of binary components, e.g., x = [b0, … bn-1 ]. 

Typically these vectors are highly sparse, i.e., a small percentage of the 

components are 1. We use wx to denote the number of components in x that are 1. 

Overlap: Similarity between two SDR encodings is determined using an overlap 

score. The overlap score is the number of bits that are ON in the same locations in 

both vectors. If 𝑥𝑥 and 𝑦𝑦 are two binary SDRs, then the overlap can be computed 

as the dot product as per equation (2). Notice the absence of typical distance 

metrics (i.e., Hamming, Euclidean) to quantify similarity. The overlap function 

derives some useful properties (i.e., union, intersection), which would not hold 

with these distance metrics (Hawkins et al., 2017). 

Matching: A match between two SDRs is recognized if their overlap exceeds 

some threshold 𝜃𝜃 as shown in equation (1) where typically 𝜃𝜃 is set such that 𝜃𝜃 ≤ 

wx and 𝜃𝜃 ≤wy. (p. 2) 
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Example usage of SDR, Overlap, and Matching  

 For two SDRs x and y, given equation (1), if x and y have the same cardinality 𝑤𝑤, 

an exact match can be determined by setting 𝜃𝜃 = 𝑤𝑤 (number of active bits chosen to be 

on). When designing an encoder, we must choose the number of active bits, w, to have in 

each representation (SDR). The number of active bits does not change regardless of the 

input. In this case, if 𝜃𝜃 is less than w, the overlap score will indicate a mismatch. 

Consider an example of two SDR vectors: 

𝐱𝐱 = [0100000000000000000100000000000110000000] 

𝐲𝐲 = [1000000000000000000100000000000110000000] 

Both vectors have size 𝑛𝑛 = 40, 𝑠𝑠 = 0.1, and 𝑤𝑤 = 4 (active bits). The overlap between 𝑥𝑥 

and 𝑦𝑦 is 3; i.e., there are three ON bits in common positions of both vectors. Thus the two 

vectors match when the threshold is set at θ = 3, but they are not an exact match. Note 

that a threshold larger than either vector’s cardinality (i.e., 𝜃𝜃 > 𝑤𝑤) implies a match is not 

possible (Hawkins et al., 2017). 

It is important to note that w represents the number of active bits “on.” The 

encoder ensures that every SDR has w bits activated bits. Notice that this formula does 

not use a typical distance metric, such as Hamming or Euclidean, to quantify similarity. 

The absence of a distance metric is a significant difference between SDR's and SDM's. 

With this type of overlap, some useful union and difference properties are derived, which 

would not hold with Hamming or Euclidean distance metrics. Consider an example of 

two SDR vectors: 

 
x = [0100 0000 0000 0000 0011 0000 0000 0001 1000 0000] 
y = [1000 0000 0000 0000 0011 0000 0000 0001 1000 0000] 
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Both vectors have size n = 40, and 𝑤𝑤 = 5. The overlap between 𝑥𝑥 and 𝑦𝑦 is 4, and thus the 

two vectors match when 𝜃𝜃 = 4. Parameters typical of current HTM implementations are 

listed below.  

HTM parameters: 

n = 1024 to 65,536, representing the length of an SDR vector. 

w = 10 to 40, representing the number of ON bits in an SDR vector. 
s = 0.05% to 2.0%, representing the sparsity, where s = w/n (Ahmad & Hawkins, 
2015). 

 

Theta (𝜃𝜃) is the minimum number of overlapping bits from SDR x and some 

random SDR y before we consider SDR y to be a match of SDR x.  

     According to Ahmad and Hawkins (2015), it is not necessary to keep track of all w 

bits in the original SDR x when checking for overlap (Figure 2). SDRs provide the ability 

to compare against a subsampled version of a vector reliably. That is, recognizing a large 

distributed pattern by matching a small subset of the active bits within the larger pattern. 

As stated by Ahmad and Hawkins (2015), Let 𝑥𝑥 be an SDR vector and let 𝑥𝑥′ be a 

subsampled version of 𝑥𝑥, such that 𝑤𝑤x' ≤ 𝑤𝑤x. The subsampled vector 𝑥𝑥′ will always match 

𝑥𝑥, as long as 𝜃𝜃 ≤ 𝑤𝑤 x', but as you increase the subsampling, the chance of false-positive 

increases. 
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Figure 2. SDR Overlap set. Showing random SDR y not matching x'. 
 

Evasive malware semantic similarity: Is defined as a similarity (overlap) score of an 

algorithms' behavior(s) that is ≥ 𝜃𝜃 to that of stalling code. 

General guidelines for encoding SDRs. 

According to Purdy (2015), four essential properties of SDRs must hold true when 

encoding data: 

1. Semantically similar data should result in SDRs with overlapping active bits. 

2. The same input should always produce the same SDR as output. 

3. The output should have the same dimensionality (total number of bits) for all 

inputs. 

4. The output should have similar sparsity for all inputs and have enough one-bits 

to handle noise and subsampling. 

Recent advancements in HTM technology. 

Numenta Inc. (2011) incorporated a feedback loop into their algorithms, which 

allowed Ahmad and Hawkins (2015) to further research aimed at deriving the 

mathematical properties of HTMs. Ahmad and Hawkins sought to take advantage of 

specific features that HTMs possess, such as bounds and scaling laws, performance 
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characteristics, and ideal parameters. Ahmad and Hawkins (2015) showed that SDRs 

could be used to perform robust classification despite the noise and random deletions by 

using the union property. They concluded that under the right conditions, SDRs enable a 

massive capacity to learn temporal sequences and form the basis for highly robust 

classification systems. 

According to Cui, Surpur et al. (2016), Cui, Ahmad, et al. (2016), and Ahmad and 

Hawkins (2015), HTM sequence memory lends itself to continuous online learning as 

well as handling branching temporal sequences by maintaining multiple predictions until 

there is sufficient disambiguating evidence. These features are ideal in an online 

environment with streaming live data that may contain a lot of noise as well as ambiguity. 

Cui, Surpur, et al. (2016) analyzed the properties of HTM sequence memory and applied 

them to sequence learning and prediction problems that utilized streaming data. Cui, 

Surpur, et al. (2016) reported the following findings: 

• HTM does not require the use of sliding windows for learning.  

• HTMs learn from each data point using unsupervised Hebbian-like associative 

learning mechanisms. 

• The SDRs used in HTM possess a very large coding capacity and allow 

simultaneous representations of multiple predictions with minimal collisions. 

• HTM sequence memory achieved performance comparable to that of Long Short-

Term Memory (LSTM) networks. 

• As a strict one-pass algorithm with access to only the current input, it may take 

HTMs longer to learn sequences with very long-term dependencies. 

Cui, Ahmad, et al. (2016), reported that HTM sequence memory achieved 

comparable prediction accuracy to four statistical and machine learning techniques: 
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ARIMA, a statistical method for time-series forecasting; extreme learning machine 

(ELM), a feedforward network with sequential online learning and two recurrent 

networks LSTM and Echo State Network (ESN).  

These findings suggest that an HTM solution would apply to detect evasive 

malware. HTMs are not just limited to the detection of malware. Fu et al. (2015) used an 

HTM solution for the diagnosis of diseases in patients. In their work, the Fu et al. (2015) 

encoded patient medical data into SDR's, which included up to 49 different symptoms 

(i.e., sneezing, flu, tonsillitis, etc.). Their experimental results showed that they were able 

to predict diseases with an accuracy of 86.1%. 

HTM suitability as a classifier. 

Irmanova et al. (2018) conducted preliminary research using circuits based on 

HTMs for sequence learning of handwritten character images. In their simulation, they 

showed that HTM algorithms suitable for symbol order recognition and learning 

sequences from character images. Irmanova et al. (2018) intend to use the results of this 

preliminary research as a step towards using HTMs for solving sequence learning tasks 

(i.e., spell checking). A direct correlation can be made between recognizing words with 

recognizing stalling code in that they both refer to language, the former written human 

language, and the later being machine language. 

Wang et al. (2018) conducted preliminary research that developed a distributed 

anomaly detection system using HTMs to enhance the security of a vehicular controller 

area network bus. The goal of their study was to detect attacks on a car's network in real-

time as it was being driven. HTMs were used for detecting abnormal sequences on the 

Controller Area Network (CAN) bus of the vehicle. The data on CAN bus data consisted 

of a list of (ID, data payload) pairs indexed with timestamps. This work also 
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demonstrated the strong propensity for HTMs to be used as a classifier for identifying 

stalling code given the similarities between its streaming data and that of the running 

executables (e.g., Program Counter, Register Values). 

 According to Ahmad (personal communication, April 18, 2018), Numenta Vice 

President of Research, Numenta has not attempted to build a sequence classifier for 

malware yet but has an interest in doing so; however, Ahmad acknowledges the reason 

that this is difficult is that building SDRs that capture the behavior of malware over time 

is extremely tedious. 

 Lavin and Ahmad (2015) observed that existing benchmarks are designed for static 

datasets and are not suitable for evasive malware. They added that most academic 

research in intrusion detection involves an artificial separation of training and test sets; 

unfortunately, this artificiality does not correctly capture the characteristics of real-time 

streaming data. Lavin and Ahmad (2015) went on to develop an evaluation benchmark 

that they assert is suitable for the evaluation of real-time anomaly detection algorithms, 

the NAB (Numenta Anomaly Benchmark). A concern is that depending solely on the 

benchmark developed by Numenta, the developers of Hierarchical Temporal Memory 

(HTM) technology, may not be entirely objective. The amount of system resources that 

will be required to implement an HTM solution that will be robust enough for practical 

use as an Intrusion Detection System is an unknown (Khangamwa, 2010). Also, Cui et al. 

(2016) state that "Real-world sequence learning deals with noisy data sources where 

sensor noise, data transmission errors and inherent device limitations frequently result in 

inaccurate or missing data" (pp. 1531). Therefore, the HTM sequence classifier and any 

SDR must be capable of filtering out the noise.  
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Summary 

A tremendous amount of research in the development of classifiers for streaming 

data is currently underway. However, much of this research focuses exclusively on either 

concept drift, noise, or temporal dependencies in isolation. Similarly, a great deal of ML 

research is also underway in detecting anomalous activities within data streams indicative 

of malicious malware.  

Thus, the design of an application that takes into account the effect of concept 

drift, noise, and temporal dependencies would help to fill a gap in modern classifier 

literature. 
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Chapter 3 

Methodology 

 

The goal of this research was to develop a sequence classifier that can classify 

data in a data stream containing concept drift, noise, and temporal dependencies. The 

approach this research utilized was an HTM framework with SDRs constructed for each 

of the respective data sets. 

Classification 

Bifet et al. (2017) formally define the classification problem as: 

given a set of labeled instances or examples of the form (x,y), where x = x1, …, xk 

is a vector of feature or attribute values, and y is one of nC different classes, also 

regarded as the value of a discrete attribute called the class. The classifier building 

algorithm builds a classifier or model f such that y = f(x) is the predicted class 

value for any unlabeled example x. (p. 85) 

Classifier Evaluation 

According to Bifet et al. (2017), the main challenge in evaluating classifiers is 

knowing when a classifier is outperforming another classifier only by chance, and when 

there is a statistical significance to that claim. As recommended by Bifet et al. (2017), the 

classifier evaluation framework for this research included the following parts: 

Error estimation method. According to Bifet et al. (2017), the traditional 

method of splitting the dataset into disjoint training and test sets is computationally too 

expensive in a stream setting. Therefore this research implemented the prequential 

method for error estimation, which takes into account that more recent examples are more 

important than older ones. This evaluation method requires a sliding window. 
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Cost measure of the process. As recommended by Bifet et al. (2017), in addition 

to accuracy %, estimation for the combined cost of performing the learning and 

prediction process in terms of time and memory are added in the form of CPU Run-Time 

and RAM-Usage.  

The Data Sets 

The data sets in this research consisted of artificial and real-world data streams, 

along with simulated and real-world malware. Both the manufactured and real-world data 

streams contained temporal and non-temporal data sets. According to (Bifet et al., 2017), 

two essential characteristics of any classification method in the stream setting are: (1) 

limitations exist in terms of memory and time and (2) classification models must be able 

to adapt to possible changes in the distribution of the incoming data. Therefore, in all 

experiments, the inspection of the data sets was restricted to a single pass for each 

classifier, and concept drifts inserted into each artificial data stream. The real-world data 

streams may or may not contain there own unique forms of concept drift unique to their 

application. The real-world data sets do contain temporal dependencies also based on 

their individual use. 

Artificial Data Streams 

The following four data stream generators provided by the python package scikit-

multiflow were employed to simulate data streams containing abrupt, gradual, and 

recurrent concept drifts: the SEA generator (Street & Kim, 2001), the Hyperplane 

generator (Hulten et al., 2001), the Random Tree (RT) generator (Hulten & Domingos, 

2002), and the LED generator (Breiman et al., 1984).  

Using the research conducted by Ghomeshi et al., (2019) as a template, each 

generator created ten different stream variants (files) containing one million data sets 
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each. Additionally, each respective generator created an additional set of 10 variants 

containing 10% noise as well. Each generator introduced abrupt, gradual, and recurrent 

concept drifts into each variant via its respective default parameters. A different random 

seed parameter for each run ensured unique variants. For the Hyperplane generator, the 

parameters were: noise percentage, random seed, number of drifting attributes, and 

magnitude of changes (Appendix A). For the LED generator, different variants were built 

by tweaking the number of attributes that have concept drift and the random seed number 

(Appendix B). For the RT generator, the parameters were: random seed number, along 

with the number of features and classes (Appendix C). Finally, for the SEA generator, the 

parameters were: noise percentage, random seed,  and classification parameters for each 

variant, which served to introduce noise and concept drift (Appendix D).  

Real-World Data Streams 

Three real-world data streams were selected for experiment II. following real-

world data streams were selected: 

Electricity data set. The electricity data set by Harries (1999) collected from the 

Australian New South Wales electricity market is a popular ML dataset that contains 

temporal dependencies. This data set reflects market prices that are not fixed but rather 

affected by demand and supply. The Electricity dataset contains 45,312 instances. 

Each instance contains eight attributes, and the target class specifies the change of the 

price (whether it goes up or down) according to its moving average over the last 24 

hours (Appendix E). 

Airlines data set. This data set consists of flight arrival and departure details for 

all commercial flights within the USA, from October 1987 to April 2008 (Appendix F). 
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This data set is a smaller subset consisting of 539,383 instances out of the original 120 

million instances. 

Poker data set. This data set from the UCI Machine Learning Repository consists 

of 1,000,000 instances and 11 attributes (Appendix G). The UCI repository describes the 

data set as follows: 

Each record is an example of a hand consisting of five playing cards drawn from a 

standard deck of 52. Each card is described using two attributes (suit and rank), 

for a total of 10 predictive attributes. There is one Class attribute that describes 

the "Poker Hand." The order of cards is important, which is why there are 480 

possible Royal Flush hands as compared to 4. 

HTM Classifier 

Bifet et al. (2017) explain that classification seeks to predict which group a new 

instance may belong to and that two important characteristics of any classification 

method in the stream setting are (a) that limitations exist in terms of memory and time, 

and (b) that classification models must be able to adapt to possible changes in the 

distribution of the incoming data. Therefore, any design of the HTM classifier must 

possess these two characteristics to be suited to the stream setting. 

HTM Algorithm 

This research implemented v2.0.22 of the Community Fork of the nupic.core C++ 

repository, with Python bindings, which can be found at https://github.com/htm-

community/htm.core. This repository maintains an actively developed C++ core library 

and implements the theory as described by Hawkins et al. (2017).  
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HTM Classifier Encoders 

The nupic.core C++ repository comes with several default encoders as described 

by Purdy (2016). This research utilized the basic scalar, date, and category encoders 

along with creating custom encoders for the airlines and poker data sets built by 

combining the existing basic encoders (Appendix H). 

Scalar Encoder 

 A scalar encoder encodes a numeric (floating point) value into an array 

  of bits. A scalar encoder with a range from 0 to 100 with n=12 and w=3 will produce the 

following encodings: 

• 1   becomes 111000000000 

• 7   becomes 111000000000 

• 15 becomes 011100000000 

• 36 becomes 000111000000 

The first thing to notice is that values that fall into the same bucket are represented 

identically as with 1 and 7. The second thing to notice is that for values that fall into 

separate buckets (i.e. 7 and 15), the closest buckets share the most overlapping bits. So 7 

and 15 share two overlapping bits while 15 and 36 share only one bit and 7 and 36 do not 

share any bits. 

Date Encoder 

The date encoder encodes a date according to encoding parameters specified in 

  its constructor. The input to a date encoder is a datetime.datetime object. The output is 

the concatenation of several sub-encodings, each of which encodes a different aspect of 

the date. Various optional parameters are available (i.e. season, dayOfWeek, weekend, 

holiday). 
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Category Encoder 

The category encoder encodes a list of discrete categories (described by strings) 

that aren't related to each other. Except for the poker data set, the remaining real-world 

data sets contained binary ‘0’ or ‘1’ categories. In contrast, the poker data set contained a 

range of classes from ‘0’ to ‘9’ as described earlier.  

Construction of Additional Encoders 

Purdy (2015) stated that "the first step to designing an encoder is to determine 

each of the aspects of the data that you want to capture … that the encoder should create 

representations that overlap for inputs that are similar in one or more of the 

characteristics chosen" (p. 2). For this research, specialized encoders were designed for 

the airline dataset that replaced airport names with SDRs of the latitude/longitude, 

altitude, and airport size (small, medium, large) for each airport in the dataset (Appendix 

H). The electricity and poker data sets utilized existing scalar and category encoders. 

Experiments 

Three groups of experiments were conducted and referenced as experiments I, II, 

and III. Experiments I and II utilized artificial and real-world data streams, respectively. 

At the same time, Experiment III employed a simulated malware sample derived from 

code snippets of the Rombertik virus provided by Giron and Kolbitsch (2015) and an 

Assembly language sorting algorithm written by Sag (2012) for comparison. 

Experiments I (artificial data streams) and II (real-world data streams) compared 

the HTM classifier against several state-of-the-art classifiers for non-stationary data 

stream classification (Ghomeshi et al., 2019). The list of classifiers included the 

Accuracy Weighted Ensemble (AWE) (Wang et al., 2003), Adaptive Random Forest 

(ARF) (Gomes & Enembreck, 2014), Dynamic Weighted Majority (DWM) (Kolter & 
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Maloof, 2007), Leveraging Bag (LevBag) (Bifet et al., 2010), Online Boosting (OBoost) 

(Wang & Pineau, 2016), and the Very Fast Decision Tree (VFDT) (Hulten et al., 2001).  

 Experiments I and II, implemented the classifier evaluation framework, including 

error estimation, performance evaluation measures, statistical significance, and cost 

measure recommended by Bifet et al. (2017). The classifier server was a stand-alone 

machine for experiments I and II (Figure 3) and are not networked to the malware 

analysis lab (Figure 5). Experiment III connected the classifier server to a malware 

analysis machine that provided two Virtual Machine Environment (VME) guest machines 

running on Windows 8.1 and Windows 10 Operating Systems, respectively (Figure 4).  

Experiment I Data Set Generation 

Expanding on the research of Ghomeshi et al. (2017), which did not include noise, 

this experiment generated two data sets consisting of 0% and 10% noise, respectively, for 

every artificial data stream using the previously mentioned generators. Additionally, to 

create a sufficient amount of data, each data set consisted of 10 different variants (files) 

containing 1,000,000 data points each, with each classifier tested on all variants. The 

three forms of concept drift (abrupt, gradual, and recurrent) were manually introduced 

into each variant in the instance numbers 200K, 400K, 600K, and 800K. The first five 

variants of each data set contained two abrupt concept drifts with a width (width of 

concept drift change) of one at the instance numbers 200K, 600K, and two recurrent 

concept drifts with the same width at instance numbers 400K and 800K. The second five 

variants of each data set contained two gradual concept drifts with a width of 10,000 at 

the instance numbers 200K, 400K, and 600K, and one recurrent concept drift with the 

same width are added at the instance number 800K. There were two different evaluation 
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runs for this experiment. The first run utilized the data sets containing 0% noise, and the 

second run utilized the data sets containing 10% noise. 

Experiment II Data Set 

 As described earlier, experiment II utilized the popular ML data sets of electricity,  

airlines, and poker hand (Appendices E, F, and G). Using Ghomeshi et al., (2019) 

research as a guide, each experiment was repeated ten times over the same data stream. 

This research assumes that concept drift, noise, and temporal dependencies inherently 

exists within these three real-world data sets. 

 

 

Figure 3. Classifier Server Applications and File Structure. 

Experiment III Predicting Stalling Code 

 This research postulates that registers within a Von Neumann based machine 

accurately describe its machine state at any given time. This research also proposes that a 

running executable creates temporal dependencies between its machine states.  

The purpose of experiment III was to assess the predictive performance of the 

HTM classifier against a known example of stalling code. This analysis was achieved by 
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providing the HTM classifier the EIP, EAX, EBX, ECX, EDX, and EFLAGS register 

values resulting from executing each Line of Code (LOC) during dynamic disassembly of 

the executable. The HTM classifier then made a 1-step prediction for each of the 

individual flag bit values in the EFLAGS register for the next machine state. A plot of the 

HTM classifiers’ accuracy for each flag bit (Figure 4) after receiving each machine state 

was generated (see Chapter 4) for visual inspection.  

Additionally, a 5-step prediction plot was generated for analysis to address Cui et 

al. (2016) claim that HTMs are capable of making multiple simultaneous predictions. Cui 

et al. (2016) go on to state that a good sequence learning algorithm should be able to 

make multiple predictions due to different temporal contexts creating multiple possible 

future outcomes. An example of this would be the American patriotic song “America,” 

with lyrics written by Samuel Francis Smith having the same melody as that of the 

national anthem of the United Kingdom, "God Save the Queen.”  

Figure 4 shows a detailed diagram of the EFLAGS register. “The EFLAGS 

register consists of individual binary bits that control the operation of the CPU or reflect 

the outcome of some CPU operation. Some instructions test and manipulate individual 

processor flags.” (Irvine, 1999, p.40) 

The flags within the EFLAGS register divided into two groups (e.g., Control and 

Status flags). Irvine (1999) states, “The control flags control the CPU’s operation (i.e., 

cause the CPU to break after every instruction executes, interrupt when arithmetic 

overflow is detected, enter virtual-8086 mode, and enter protected mode).” (p. 40) 

The control flags are the Trap and Direction flags. 
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The status flags reflect the outcomes of arithmetic and logical operations 

performed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and 

Carry flags. 

 

  

 
Figure 4. x86 EFLAGS diagram. Reprinted from Windows Malware Analysis Essentials 
(p. 70), by Marak (2015). Windows Malware Analysis Essentials. Packt Publishing. 
Kindle Edition. 

An exhaustive search for labeled malware executables containing stalling code 

was unsuccessfully conducted. While the Virusshare.com malware repository contained 

nearly 34 million examples of malware executables, none of these were explicitly labeled 

as containing stalling code. Manually reverse engineering these files was impractical, 

even with the reverse engineering tools provided by IDAPro. In this case, snippets of a 

variant of the Rombertik virus provided by lastline authors Giron and Kolbitsch (2015) 

served to create a simulated malware example for analysis (Appendix J). It was observed 

that the Rombertik virus employs stalling logic that contains two very large looping 

constructs that are each 𝑂𝑂(𝑛𝑛) complexity at labels loc_4EEFD2 and loc_4EEFE2, 

comprising 30 million and 7.6 billion iterations respectively (Appendix J). Giron and 

Kolbitsch (2015) identify these sections of the Rombertik virus as stalling code. An 
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assembly language sorting algorithm of 𝑂𝑂(𝑛𝑛2) complexity written by Sag (2012) and 

modified to suit the requirements of this research was implemented for comparison 

(Appendix K). 

A malware analysis environment was created to prevent live malware undergoing 

reverse engineering from infecting the classifier server. The host machine ran VM 

Workstation Pro 15.0 and created two VME Guest for malware analysis and running the 

IDAPro python scripts that performed dynamic disassembly of the executable and fed the 

resulting machine states to a local HTM Input Stream Server which forwarded the 

machine states to the classifier server via a socket as depicted in Figures 4 and 5.  

  

 

Figure 5. Malware Analysis Machine 
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Figure 6. Malware Analysis Network 

Statistical Significance Validation 

As was mentioned earlier by Bifet et al. (2017), research has shown that in most 

cases, streaming data is not independently and identically distributed (IID). Therefore, a 

non-parametric test (sometimes called a distribution-free test) was implemented. While 

Bifet et al., (2017) recommended the McNemar (1947) statistic for determining the 

statistical significance of differences between classifiers, it is only designed to compare 

two classifiers against one another. Like Ghomeshi et al., (2019), this research utilized 

the Friedman omnibus test for this comparison as it is better suited for comparing more 

than two classifiers. The Friedman test ranks the classifiers separately, with the best 
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performing algorithm getting the rank of 1, the second-best rank of 2, and so on. The 

formal definition of the Friedman test comes from Demsar (2006) as described below. 

Let 𝑟𝑟𝑖𝑖
𝑗𝑗 be the rank of the j-th of k algorithms on the i-th of n data sets. The 

Friedman test compares the average ranks of algorithms, 𝑅𝑅𝑗𝑗 = − 1
𝑁𝑁
∑ 𝑟𝑟𝑖𝑖

𝑗𝑗
𝑖𝑖 . Under 

the null hypothesis, which states that all the algorithms are equivalent and so their 

ranks Rj should be equal, the Friedman statistic 

 

𝜒𝜒𝐹𝐹2 =  
12𝑁𝑁

𝑘𝑘(𝑘𝑘 + 1) ��𝑅𝑅𝑗𝑗2 −
𝑘𝑘(𝑘𝑘 + 1)2

4
𝑗𝑗

�                                            (3)  

is distributed according to 𝜒𝜒𝐹𝐹2 with k − 1 degrees of freedom, when N and k are big 

enough (as a rule of a thumb, N > 10 and k > 5). (p. 11) 

 The Nemenyi posthoc test was implemented to find the groups of classifiers that 

differed after the Friedman test rejected the null hypothesis that the performance of the 

classifiers was the same. 

Computing Resources Used 

This research was conducted using the classifier server hardware listed in Table 1 

running on an Ubuntu 18.04 Server Operating System and a Windows 10 PC with a 4.00 

GHz Intel Core i7-6700K Central Processing Unit, 64 Gigabytes of Random Access 

Memory,  and a 2 Terabyte hard drive using the malware analysis software in Table 2. 
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Table 1 

 
Classifier Server Hardware 

Item Description 
StarTech.com 12U AV Rack Cabinet 
TYAN S7076GM2NR Tyan Motherboard 
CORSAIR AX1600i, 1600 Watt, Digital Power Supply 
Asus 24x DVD-RW Serial-ATA Internal OEM Optical Drive 
2 x Intel Xeon E5-2697 v3 2.6 GHz LGA 2011-3 Server Processors 
SAMSUNG 970 EVO M.2 2280 2TB PCIe Internal Solid State Drive 
Micron 5200 5210 Ion 3.84 TB Solid State Drive - SATA 600-2.5" Drive 
Crucial with 512GB (16 x 32GB) DDR4 PC4-21300 2666MHz RDIMM  
APC UPS 1500VA Smart-UPS 
LG 27UD88-W 27-inch 4K Ultra HD IPS LED-lit Computer Monitor 
Rybozen 7-Port USB 3.0 Hub 
TRIPP LITE 1U Rackmount Keyboard with KVM Cable Kit 
2 x AC Infinity CLOUDPLATE T1, Rack Mount Fan Panel 1U 
AC Infinity CONTROLLER 12, Thermal Fan Controller, Rack Mount 1U 
XFX Radeon RX 560 1295MHz,4gb GDDR5 
StarTech.com 1U Server Rack Rails 
StarTech.com 1U Adjustable Vented Server Rack Mount Shelf 
C-Zone Front Panel USB Hub 
2 x Noctua NH-U9DX i4, Premium CPU Cooler 

 
Table 2 

 
Malware Analysis Software 

Item Description 
IDA Pro 32 bit and 64 bit version 
VM Workstation Pro 15.0 
Windows 8 (VM) 
Windows 10 (VM) 

 

Summary 

 This section described the research methodology utilized by this research for 

designing and evaluating an HTM classifier for streaming data.  Both artificial and real-

world data sets were identified along with a process for developing simulated evasive 
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malware containing stalling code. Finally, this section described the statistical techniques 

for determining the statistical significance of the HTM classifier and identified the 

resources needed to conduct the experiments.  
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Chapter 4  

Results 

 
This chapter provides the results of the experiments designed to evaluate the 

appropriateness of the HTM sequence classifier as an application in classifying artificial 

and real-world data streams containing concept drift, noise, and temporal dependencies. 

Additionally, this chapter provides the results of evaluating the HTM classifier as a 

possible technology for the detection of stalling code. The experimental design followed 

similar research conducted by Ghomeshi et al. (2019), as described in chapter 3. 

Experiment I used the prequential evaluation method to evaluate the HTM 

sequence classifier on the following artificial (synthetic) data streams containing abrupt, 

gradual, and recurrent concept drift: Hyperplane, LED, RT, and SEA. The HTM 

classifier was then evaluated against the ARF, AWE, DWM, LevBag, OBoost, and 

VFDT classifiers using cost measures consisting of accuracy, memory consumption, and 

processor time. 

Experiment II used the prequential evaluation method to evaluate the HTM 

sequence classifier on the following real-world data streams: Electricity, Airlines, and 

Poker. In similar fashion to experiment I, the HTM classifier was then evaluated against 

the ARF, AWE, DWM, LevBag, OBoost, and VFDT classifiers using the same cost 

measures as previously mentioned.  

Experiment III explored the use of the HTM sequence classifier in recognizing 

stalling code within an executable file containing simulated evasive malware. This 

experiment depicted the potential of HTM sequence classifiers as a possible method for 

analyzing the behaviors of malware. 
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Experiment I (Artificial Data Streams) 

 Experiment I implemented the classifier evaluation framework developed by Bifet 

et al. (2017) to evaluate the performance of all the previously listed classifiers on 

artificial data streams. It is important to note that even though the artificial data streams 

contained various forms of concept drift, they lacked temporal dependencies. Experiment 

I consisted of two separate runs with data sets containing 0% and 10% noise, 

respectively. 

Accuracy  

  Tables 3 and 4 show the average accuracy for the classifiers over the four 

artificial data sets using the prequential error estimation approach. As can be seen from 

the tables, the HTM classifiers' best performance came in at 56% and 54% accuracy on 

the SEA datasets containing 0% and 10% noise, respectively. The HTM classifiers’ 

higher accuracy rating on the SEA data set may be attributed to it consisting of only two 

features and one label, as opposed to the Random Tree data set containing 29 features and 

one label. It is interesting to note that the HTM classifiers’ accuracy performance of 52%  

on the RT data set (which has a high degree of randomness) is comparable to that of the 

AWE, DWM, LevBag, and OBoost classifiers’ accuracy percentage despite the absence 

of temporal dependencies within the data. This result would suggest that HTMs are more 

resilient to noise and randomness than traditional classifiers. 

The HTM classifiers’ poor performance on the synthetically generated data 

streams is likely due to the absence of temporal dependencies. As stated by Hawkins 

(2011a), “Time plays a crucial role in learning, inference, and prediction.” (p. 12). In HTM, 

the Temporal Memory algorithm implements sequence memory. The algorithm learns 
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sequences of Sparse Distributed Representations (SDRs) formed by the Spatial Pooling 

algorithm and makes predictions of what the next input SDR will be (Hawkins et al., 

2017). Therefore when the data stream is missing temporal dependencies, the Temporal 

Memory algorithm is unable to learn, thus affecting performance. 

Table 3         
         
HTM Classifier Accuracy - Artificial Data sets with 0% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM 

Hyper Ave. 0.943 0.974 0.997 0.770 0.820 0.972 0.501 
 σ 0.021 0.003 0.001 0.002 0.002 0.017 0.000 
 Min 0.917 0.971 0.996 0.769 0.818 0.951 0.500 
 Max 0.976 0.979 0.998 0.773 0.825 0.995 0.501 

LED Ave. 0.998 0.998 1.000 0.630 0.837 1.000 0.500 
 σ 0.001 0.001 0.000 0.022 0.004 0.000 0.000 
 Min 0.997 0.997 1.000 0.622 0.834 1.000 0.500 
 Max 1.000 1.000 1.000 0.692 0.848 1.000 0.500 

RT Ave. 0.814 0.593 0.609 0.648 0.674 0.874 0.522 
 σ 0.004 0.000 0.000 0.095 0.002 0.008 0.001 
 Min 0.809 0.592 0.608 0.618 0.673 0.878 0.522 
 Max 0.821 0.594 0.609 0.919 0.679 0.859 0.523 

SEA Ave. 0.995 0.962 0.949 0.938 0.957 0.955 0.560 
 σ 0.001 0.001 0.000 0.001 0.001 0.001 0.001 
 Min 0.995 0.961 0.948 0.937 0.956 0.954 0.559 
 Max 0.996 0.964 0.950 0.939 0.958 0.956 0.562 

 

Table 4 depicts the performance of the classifiers when 10% noise is introduced 

into the data streams. It was found that the HTMs’ best performance was with the SEA 

data stream, with an average accuracy of 54%. It is observed in Table 4 the degradation 

of accuracy throughout all of the classifiers. The most significant drop being that of the 

LevBag classifier on the LED data stream with an average accuracy of 40%. It was also 

observed that as noise was introduced, the HTM classifier remained relatively stable as 

compared to the other classifiers.  
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Table 4         
         
HTM Classifier Accuracy - Artificial Data sets with 10% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM 
Hyper Ave. 0.860 0.884 0.879 0.682 0.697 0.884 0.500 

 σ 0.019 0.002 0.002 0.001 0.001 0.013 0.000 
 Min 0.838 0.882 0.876 0.680 0.696 0.868 0.500 
 Max 0.889 0.886 0.881 0.684 0.700 0.902 0.500 

LED Ave. 0.758 0.762 0.562 0.404 0.526 0.763 0.509 
 σ 0.001 0.001 0.002 0.000 0.000 0.001 0.005 
 Min 0.758 0.761 0.560 0.404 0.525 0.761 0.506 
 Max 0.760 0.763 0.564 0.405 0.527 0.764 0.513 

RT Ave. n/a n/a n/a n/a n/a n/a n/a 
 σ n/a n/a n/a n/a n/a n/a n/a 
 Min n/a n/a n/a n/a n/a n/a n/a 
 Max n/a n/a n/a n/a n/a n/a n/a 

SEA Ave. 0.904 0.886 0.885 0.795 0.767 0.870 0.541 
 σ 0.000 0.001 0.000 0.001 0.001 0.000 0.001 
 Min 0.903 0.885 0.884 0.794 0.765 0.869 0.540 
 Max 0.905 0.887 0.886 0.796 0.769 0.871 0.542 

 
Note: The Random Tree (RT) data set was excluded from this run as it inherently 
contains noise. 

CPU run-times 

 Tables 5 and 6 show the average run-time for the classifiers over the four artificial 

data sets using the prequential error estimation approach. As can be seen from Table 5, 

the HTM classifier run-time ranks 4th, 3rd, 3rd, and 6th on the Hyperplane, LED, RT, and  

SEA data sets containing 0% noise, respectively. The HTM classifiers’ performance was 

relatively fast, compared to the other classifiers, which is likely due to the efficiency of 

the Temporal Memory algorithm. As per Cui et al., (2016), the Temporal Memory 

algorithm needs to continuously learn from the data streams and is designed to rapidly 

adapt to changes to learn new patterns. 
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Table 5        
        
HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 0% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Hyper 13776.03 4417.03 1209.69 28610.06 50473.21 331.73 10346.99 
LED 29842.33 43475.40 3792.89 73243.41 61545.17 422.19 9439.73 
RT 16115.15 14213.91 4735.79 92246.17 123796.25 458.20 11832.48 

SEA 12469.20 2814.93 843.76 21311.02 25690.63 181.13 22659.88 

  
Table 6 shows the impact of CPU run-time with the data sets containing 10% 

noise. The HTM classifier ranking changed very little; however, it is interesting to note 

that the AWE, VFDT, and  HTM classifiers' performance remained relatively the same, 

while the ARF, DWM, LevBag, and OBoost classifiers suffered performance losses. 

Especially impacted was the ARF classifier, doubling the amount of CPU-time to 

complete its runs on all four data sets. 

Table 6        
        
HTM Classifier Avg. Run-Time (secs) - Artificial Data sets with 10% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Hyper 22446.87 4498.01 1425.74 30333.96 52635.70 327.41 9600.14 
LED 60329.59 43803.50 8385.59 69143.31 98845.17 1300.78 10872.84 
RT n/a n/a n/a n/a n/a n/a n/a 

SEA 24038.47 2530.06 844.74 21844.44 27593.68 177.85 23423.78 

Note: The Random Tree (RT) data set was excluded from this run as it inherently 
contains noise. 

RAM usage 

Tables 7 and 8 show the average RAM usage for the classifiers over the four 

artificial data sets using the prequential error estimation approach. Out of all of the cost 

measures considered, average RAM usage turned out to be the Achilles heel for HTM. 
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The HTM classifier required nearly 132 GBs of RAM for the Hyperplane, LED, and SEA 

data sets, respectively, and 722 GBs for the RT data sets, thereby resulting in heavy usage 

of SWAP memory. Although not recorded as a cost measure, it was noticed that CPU 

temperatures reached as high as 190 degrees Fahrenheit during the majority of these runs. 

Much of the memory consumption can be attributed to the size of the SDRs needed to 

represent the data. Higher sparsity in the SDRs of the data improved the HTMs’ 

performance, but at higher consumption of memory.  

Table 7        
        
HTM Classifier Avg. RAM-Usage (in K) - Artificial Data sets with 0% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Hyper 51856.63 618.60 52.87 5257.62 5401.25 4586.66 131198722.66 
LED 3888.89 3779.19 262.47 10714.83 7098.88 318.66 131191578.13 
RT 71710.50 1747.54 234.87 13060.88 13227.31 17164.55 722070304.84 

SEA 10076.32 228.57 30.89 2522.09 2649.77 1184.90 131690084.23 

Table 8 shows the impact of adding 10% noise to the data streams. The HTM, 

AWE, LevBag classifiers RAM consumption remained relatively the same throughout all 

3 data sets, while the ARF, DWM, OBoost, and VFDT saw sizable increases. 

In summary, Tables 3 – 8 suggest that the introduction of noise into the artificial 

data streams resulted in a decrease in the cost measures of average accuracy, and an 

increase in both run-time and RAM usage for all but the HTM classifier. These results 

suggest the HTM classifier is relatively scalable to large data sets. However, the poor 

performance in both accuracy and RAM usage likely rules out the HTM classifier as a 

practical solution for classifying artificial data sets missing temporal dependencies.  
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Table 8        
        
HTM Classifier Avg. RAM-Usage (in K) - Artificial Data sets with 10% noise 
Containing Abrupt, Gradual, Recurrent Concept Drifts 
Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Hyper 150370.67 618.55 85.29 5264.65 5373.65 6013.00 131199908.20 
LED 30208.44 3836.24 524.63 10713.23 10898.32 1300.78 131201768.03 
RT n/a n/a n/a n/a n/a n/a n/a 

SEA 197398.28 228.65 30.60 2529.93 2657.64 2301.57 131721509.55 

Note: The Random Tree (RT) data set was excluded from this run as it inherently 
contains noise. 

Concept drift 

Figure 7 shows the effect of concept drift on the HTM classifiers’ accuracy 

percentages over the SEA data stream at both 1-step and 5-step predictions with 0% 

noise. As described in Chapter 3, abrupt and recurrent concept drifts were manually 

inserted into the data stream, at instance numbers 200K, 400K, 600K, and 800K. The 

data stream began with the SEA function f0 and abruptly shifted to f1 with a width (width 

of concept drift change) of one at the instance number 200K and experienced a shift back 

to the function f0  at 400K thereby creating a recurrent concept drift. There was another 

abrupt concept drift at 600K with a function shift from f0 to f2, and a final recurrent 

concept drift was encountered at 800K with a function shift from  f2 back to f1. 

It is observed that in Figure 7, at instance 200K, where the first abrupt concept 

drift occurred (f1), resulted in the HTM classifiers' average accuracy percentage to begin a 

gradual drop from ~56% down to ~54%. The classifier did not cope well with the first 

drift. However, once the first recurrent drift occurred at instance 400K (f0), the HTM 

classifier’s accuracy percentage began to improve to nearly 57%. The accuracy 

percentage dropped once again when the next abrupt concept drift (f2) occurred at the 

600K point, but surprisingly a gradual improvement was noticed beginning at the 700K 
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mark. The sudden improvement at the 700K mark implies that the HTM classifier is 

becoming more sensitive to concept drifts and alters its predictions accordingly. Finally, 

the last recurrent concept drift was experienced at the 800K mark without a drop in 

average accuracy. This suggests that the HTM classifier’s temporal memory was better 

able to deal with the transition since it had seen (f1) earlier.  

When comparing the accuracy percentages for the 1-step and 5-step predictions, it 

was surprising to observe that the HTM classifiers’ average accuracy percentages were 

relatively identical. These results support the claim by Cui et al. (2016) that HTM 

technology is capable of making multiple simultaneous predictions. 

 

 
Figure 7. Abrupt and Recurrent concept drift accuracy – SEA data with 0% noise - 1 and 
5 step predictions. 

The same observations are made from Figure 8, which plotted the HTM 

classifiers’ performance with gradual and recurrent concept drift. As with Figure 7, the 

data stream begins with the SEA function f0 and gradually shifted to f1 with a width of 

10000 centered at instance number 200K and experienced a recurrent concept drift 
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centered at 400K back to function  f0; followed another gradual concept drift centered at 

600K to function f0 and finally the last recurrent concept drift occurring at the 800K mark 

with a shift in function from f2 back to the previously seen function of f1.  

 

 
Figure 8. Gradual and recurrent concept drift accuracy – SEA data with 0% noise - 1 and 
5 step predictions. 

The behavior of the HTM classifier with gradual and recurrent concept drift 

(Figure 8), is nearly identical to that of abrupt and recurrent concept drift (Figure 7). The 

primary difference being that the slopes of the drops and increases in accuracy percentage 

are not as steep.  

Figures 9 (abrupt and recurrent) and 12 (gradual and recurrent) depicted the HTM 

classifiers' behavior when 10% noise was introduced into the SEA data stream. Aside 

from the early randomness of the accuracy percentage, attributed to the random 

instantiation of temporal memory algorithm, the behavior of the HTM classifier is 

relatively the same as that shown in Figures 6 and 7. 
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Figure 9. Abrupt and recurrent concept drift accuracy – SEA data with 10% noise - 1 and 
5 step predictions. 

 

 
Figure 10. Gradual and recurrent concept drift accuracy – SEA data with 10% noise - 1 
and 5 step predictions. 
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Experiment II (Real-world Data Streams) 

Experiment II was nearly identical to Experiment I, with the primary difference 

being that the data sets came from real-world data streams, and concept drift and noise 

were not manually added. Instead of variants, each experiment was repeated ten times 

over the same data stream. 

Electricity Price Predictions (Up/Down) 

As shown in Table 9 and Figure 11, the HTM classifier achieved an average 

accuracy of 75%. While only 6th best when compared to the other classifiers, the HTM 

classifiers’ performance of 75% was comparable to that of the OBoost (79%) and VFDT 

(80%) classifiers; and superior to that of the AWE (72%) classifier. It is likely that the 

HTM classifier would have performed better had the electricity data set contained more 

than 45k records.  

Figure 11 plots the price prediction accuracy of the HTM classifier on the 

electricity data set. It was observed that the HTM classifiers’ accuracy percentage for the 

1-step prediction begins at 74% but drops to ~70% near the 2500 instance number. This 

drop is due to the HTM classifiers’ temporal memory algorithm learning the temporal 

dependencies within the data. It was observed at instance number 8000, that the HTM 

classifier began to steadily improve the accuracy of its predictions consistently until the 

end of the data stream. It is interesting to note that the 5-step prediction accuracy is 

relatively the same as that of the 1-step with the primary difference coming at the 

beginning of the data stream in which the two predictions converge near the 8000 

instance number. 
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Figure 11. Electricity Price Predictions (Up/Down) Accuracy – 1 and 5 step predictions 

Airline Flight Predictions (On-Time/Late) 

As shown in Table 9, the HTM classifier ranked 4th in average accuracy on the 

airlines data set. The HTM classifiers’ average accuracy of 60% out-performed that of the 

AWE (57%), LevBag (56%),  and the OBoost (55%) classifiers; and gave comparable 

results to those of the ARF (66%), DWM (61%), and VFDT (64%) classifiers. It was 

likely that the HTM classifiers’ better performance was attributable to temporal 

dependencies and the customized SDR encoder for the airport field in the data. As 

detailed in Appendix A, the airport data field was transformed from a text string in the 

original file to an SDR encoding, which consisted of the actual latitude/longitude, 

altitude, and size (small, medium, large) of each airport. It is speculated that increasing 

the sparsity (size) of the encodings and temporal memory settings may have improved the 

accuracy percentage of the HTM classifier but likely at the expense of the CPU run-time 

(Table 10) and RAM-Usage (Table 11) cost measures. 
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Poker Hand Predictions 

 As shown in Table 9, the HTM classifier ranked last amongst the classifiers tested 

on the poker data set, its average accuracy percentage of 44% was comparable to that of 

all but the ARF and VFDT. The poor accuracy percentage likely was due to the poker 

data set containing ten classes (Appendix H).  

 
Table 9         
         
Accuracy (%) of the Classifiers with Real-World Data 
Compared using the Prequential Error Estimation Method 
Dataset Criteria ARF AWE DWM LevBag OBoost VFDT HTM 
Airlines Ave. 0.66 0.57 0.61 0.56 0.55 0.64 0.60 

 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
 Min 0.66 0.57 0.61 0.56 0.55 0.64 0.59 
 Max 0.67 0.57 0.61 0.56 0.55 0.64 0.60 

Elec Ave. 0.88 0.72 0.80 0.85 0.79 0.80 0.75 
 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Min 0.88 0.72 0.80 0.85 0.78 0.80 0.75 
 Max 0.89 0.72 0.80 0.85 0.79 0.80 0.75 

Poker Ave. 0.54 0.48 0.47 0.46 0.47 0.52 0.44 
 σ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
 Min 0.53 0.48 0.47 0.46 0.47 0.52 0.43 
 Max 0.54 0.48 0.47 0.46 0.47 0.52 0.44 

 

CPU run-times 

Table 10 shows the average CPU run-time of the classifiers on the real-world data 

sets. The HTM classifier ranked 4th for the airlines data set, 7th for the electricity data set, 

and 4th for the poker data set. It is likely that the HTM’s 7th place ranking for the 

electricity data set is due to its small number of records (45K). It was observed that the 

larger data sets of airlines and poker, with 539K and 1000K respectively, demanded more 

CPU time as shown by the ARF’s, LevBag’s, and OBoost’s results.  
 



 

75 
 

Table 10        

        

Average CPU run-time (in seconds) of the Classifiers with Real-World Data 

Compared using the Prequential Error Estimation Method 

Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Airlines 10527.6 2393.76 1529.12 14301.71 20546.3 206.789 7082.84 

Electricity 502.912 136.094 56.083 1217.428 1624.033 10.375 1967.761 

Poker 29044.56 24.60 6334.51 31327.38 49277.20 1767.51 10593.25 

RAM usage 

Table 11 shows the average RAM usage in Kilobytes consumed by each of the 

classifiers over the real-world data sets. It was observed that the HTM classifier 

performed the poorest of all the classifiers, even with the smaller electricity data set. This 

was attributed to the large SDR needed to encode the features of the data sets along with 

the large memory requirements for the Spatial and Temporal poolers (Appendix I). The 

large memory requirements of the HTM classifier were not unexpected. Ahmad and 

Scheinkman (2019) demonstrated the benefits of high dimensional sparse representations; 

however, an increase in sparsity directly increases memory consumption. The sparsity of 

the SDRs had to be significantly increased (Appendix H) to obtain the accuracy 

percentages recorded in Table 9. As Table 11 shows, the increase in SDR size resulted in 

a drastic increase in memory consumption. 

Table 11        
        
Average RAM usage (in K) of the Classifiers with Real-World data sets 
Compared using the Prequential Error Estimation Method 

Dataset ARF AWE DWM LevBag OBoost VFDT HTM 

Airlines 43471.83 450.16 59.25 4100.61 4211.00 2384.37 33593500 
Electricity 7638.76 507.22 66.83 4461.69 4482.07 291.33 5214611.33 
Poker 47235.76 570.19 124.62 124.62 5269.99 5416.49 66683675.8 
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Experiment III (Simulated Malware) 

The purpose of experiment III was to assess the predictive performance of the 

HTM classifier against a known example of stalling code. This analysis was achieved by 

providing the HTM classifier the EIP, EAX, EBX, ECX, EDX, and EFLAGS register 

values resulting from executing each Line of Code (LOC) during dynamic disassembly of 

an executable via a IDAPro Python script and plotting the results. The next step was to 

provide the HTM classifier an executable from a sorting algorithm and plot the results. 

The resulting plots (Figures 12 – 27) were then compared against each other for analysis. 

As can be seen in Tables 12 and 13, the HTM achieved high accuracy scores in 

predicting all eight flags bits. Furthermore, Table 13 demonstrates the multi-prediction 

capabilities of the HTM classifier by delivering high accuracy scores for 5-step 

predictions.  
 

Table 12         
         

HTM classifier Malware Analysis EFLAGS prediction accuracy % 
1-step predictions 

Algorithm CARRY PARITY AUX ZERO SIGN TRAP DIR OVERFLOW 

Stalling 0.99 0.89 0.97 0.99 0.93 1 1 1 

Sorting 0.97 0.89 0.97 0.97 0.98 1 1 0.99 

 
Table 13         
         

HTM classifier Malware Analysis EFLAGS prediction accuracy % 
5-step predictions 

Algorithm CARRY PARITY AUX ZERO SIGN TRAP DIR OVERFLOW 
Stalling 0.99 0.88 0.94 1.00 0.93 1.00 1.00 1.00 
Sorting 0.95 0.76 0.95 0.92 0.96 1.00 1.00 0.99 

 Table 14 shows the RAM usage of the HTM classifier for both the stalling code 

and the sorting algorithm. It was observed that the sorting algorithm required consumed 
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nearly twice the amount of RAM as that of the stalling algorithm despite having the same 

SDR encoders, Spatial and Temporal Pooler parameters (Appendices H and M). It was 

likely that this was the result of the learning process of the Temporal Pooler, as the 

sorting algorithm had of 𝑂𝑂(𝑛𝑛2) while the stalling code had 𝑂𝑂(𝑛𝑛) complexity. Simply 

stated, it was harder for the HTM classifier to learn the temporal dependencies of the 

sorting algorithm. 

 
Table 14  
  
HTM classifier Malware 
Analysis 
RAM usage in K 

Algorithm RAM 
Stalling 9469554.69 
Sorting 17830265.63 

 The following list of Figures (12 – 27) is the result of the HTM classifier 

predicting each flag bit of the x86 EFLAGS register given the state of the machine by the 

IDAPro Python script for each LOC that was disassembled for both the stalling and 

sorting algorithms. 

Findings: Carry Flag 

As per Irvine (1999), “The Carry flag (CF) is set when the result of an unsigned 

arithmetic operation is too large to fit into the destination.” (p. 40) 

Figures 12 and 13 depict the HTM classifiers' accuracy of prediction the CF for 

both the stalling code and sorting algorithm. It was observed that the stalling code 

quickly flatlined, while the sorting algorithm fluctuated throughout the entirety of its 

execution. 
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Figure 12. Stalling code: HTM Carry Flag Accuracy - 1 and 5 step predictions 

 

 

Figure 13. Sorting code: HTM Carry Flag Accuracy - 1 and 5 step predictions.  

Findings: Parity Flag 

As per Irvine (1999),  

The Parity flag (PF) is set if the least-significant byte in the result contains an 

even number of 1 bits. Otherwise, PF is clear. In general, it is used for error 
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checking when there is a possibility that data might be altered or corrupted. (p. 

41) 

Figures 14 and 15 depict the HTM classifiers' prediction accuracy of the PF for 

both the stalling code and sorting algorithms. Although somewhat similar, subtle 

fluctuations in the sorting algorithm plot can be seen, while those of the stalling code 

approach a flatline. 

 

 

Figure 14. Stalling code: HTM Parity Flag accuracy - 1 and 5 step predictions. 
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Figure 15. Sorting code: HTM Parity Flag accuracy - 1 and 5 step predictions. 

Auxiliary Flag 

As per Irvine (1999), “The Auxiliary Carry flag (AC) is set when an arithmetic 

operation causes a carry from bit 3 to bit 4 in an 8-bit operand.” (p. 41) 

Figures 16 and 17 depict the HTM classifiers AC prediction accuracies. It was 

observed that both the stalling code and sorting algorithm had similar results; however, 

subtle fluctuations can be seen in the plot of the sorting algorithm. 
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Figure 16. Stalling code: HTM Auxiliary Flag accuracy - 1 and 5 step predictions. 

 

 

Figure 17. Sorting code: HTM Auxiliary Flag accuracy - 1 and 5 step predictions. 
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Findings: Zero Flag 

 As per Irvine (1999), “The Zero flag (ZF) is set when the result of an arithmetic 

or logical operation generates a result of zero.” 

 Figures 18 and 19 show the results of plotting the HTM classifiers’ ZF accuracy 

predictions. It was observed that the stalling code continues its trend of flatlining 

EFLAGS register, while the sorting algorithm shows heavy use. 

 

Figure 18. Stalling code: HTM Zero Flag accuracy - 1 and 5 step predictions. 
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Figure 19. Sorting code: HTM Zero Flag accuracy - 1 and 5 step predictions. 

Findings: Sign Flag 

As per Irvine (1999), “The Sign flag (SF) is set when the result of an arithmetic or 

logical operation generates a negative result.” (p. 40) 

Figures 20 and 21 depict the behavior of the SF for the stalling code and sorting 

code executables. It is observed that the stalling code plot gradually flatlined at ~92%, 

while the sorting algorithm fluctuated a great deal until the 20K LOC mark, at which 

point it begins to stabilize. These figures reinforce the idea that stalling code doesn’t want 

to draw attention to itself by performing a large amount of ALU computations.  
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Figure 20. Stalling code: HTM Sign Flag accuracy - 1 and 5 step predictions. 

 

 

Figure 21. Sorting code: HTM Sign Flag accuracy - 1 and 5 step predictions. 
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Findings: Trap Flag 

As defined by Sikorski et al. (2012), “The trap flag (TF) is used for debugging. 

The x86 processor will execute only one instruction at a time if this flag is set.” (p. 72) 

Figures 17 and 18 show the behavior of the TF for the stalling code and sorting 

code executables. When the TF was set, the processor executes one instruction and then 

generates an exception (Sikorski & Honig, 2012), also known as single-stepping. It was 

observed that the TF is set immediately upon executing the simulated malware example 

in both Figures 17 and 18. The IDAPro disassembler likely sets the TF flag to step 

through and disassemble each instruction and record the state of the machine. A common 

malware evasion technique is to check the TF during run-time and cease its malicious 

behavior if this flag is set or to turn it off to prevent dynamic analysis. 

 

 

Figure 22. Stalling code: HTM Trap Flag accuracy - 1 and 5 step predictions. 
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Figure 23. Sorting code: HTM Trap Flag accuracy - 1 and 5 step predictions. 

Findings: Direction Flag 

 As stated by Irvine (1999) “The Direction Flag (DF) determines whether the 

index register is incremented or decremented during each iteration of a string primitive 

instruction.” (p. 383) 

Figures 17 and 18 depict the behavior of the DF flag for the stalling code and 

sorting code executables. The DF flag is primarily used for string operations where the 

source and destination registers are incremented if the flag is set to 0 and decremented if 

it is set to 1. Neither the stalling code nor the sorting code performed any string 

operations. Therefore little observation can be made from these two figures.  
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Figure 24. Stalling code: HTM Direction Flag accuracy - 1 and 5 step predictions. 

 

Figure 25. Sorting code: HTM Direction Flag accuracy - 1 and 5 step predictions. 

Findings: Overflow Flag 

As defined by Irvine (1999), “The Overflow flag (OF) is set when the result of a 

signed arithmetic operation is too large or too small to fit into the destination.” (p. 41) 
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Figures 21 and 22 show the behavior of the OF for the stalling code and sorting 

code executables. It was observed that the stalling code OF was immediately set and 

never changed, while that of the sorting algorithm fluctuated throughout the entirety of 

the experiment, resulting in lower accuracy. The results of Figures 21 and 22 implies that 

stalling code has the tendency to flatline the OF, while that of the sorting algorithm 

fluctuates more frequently. This is likely due to malware authors not wanting to draw too 

much attention to their malware. 

 

Figure 26. Stalling code: HTM Overflow Flag accuracy - 1 and 5 step predictions. 
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Figure 27. Sorting code: HTM Overflow Flag accuracy - 1 and 5 step predictions. 

   

Statistical Analysis 

As stated by (Bifet et al., 2017), the main challenge in classifier analysis is to 

know when a classifier is outperforming another classifier only by chance, and when 

there is a statistical significance to that claim. Thus in order to show that the HTM 

classifier was statistically significant when compared to other classifiers, we first show 

that the null hypothesis is false. 

Claim: All seven classifiers have the same probability distribution. 

HO: x̃ARF = x̃AWE = x̃DWM = x̃LevBag = x̃OBoost = x̃VFDT = x̃HTM 

HA: at least two classifiers differ from each other. 

Table 15 shows the average rank of each classifier included in the experiments I 

and II. Note that for k = 7 and N = 7, as there are seven classifiers and seven different 

datasets, the resulting value of the Friedman test statistic is : 𝜒𝜒𝐹𝐹2 = 22.54 with 6 degrees of 
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freedom at significance level α = 0.05. The resulting p-value of 0.000965 allowed for the 

rejection of the omnibus null hypothesis that all samples (groups) are from the same 

distribution. Thus we can conclude that the accuracy values of the 7 seven classifiers are 

significantly different as the value of 22.54 is greater than the critical value of 12.5916.  

After the null-hypothesis was rejected, I proceeded with the Nemenyi posthoc 

test. The critical value with k = 7 and α = 0.10 is q0.10 = 3.11. The performance of any 

two classifiers is considered significantly different if their corresponding average ranks 

differ by at least the critical difference (CD). Figure 28 graphically represents the 

comparison of the classifiers based on their critical differences, and Table 15 shows the 

classifier rankings in table format. Both Figure 28 and Table 15 shows that the HTM 

classifier is significantly different than the ARF, DWM, and VFDT classifiers but not 

significantly different from the AWE, LevBag, and OBoost classifiers.  

Table 15       
       
Average classifier rank including Artificial and Real-World data sets 

ARF AWE DWM LevBag OBoost VFDT HTM 

1.93 4.04 3.29 5.14 4.71 2.43 6.43 
 

Table 16 shows the resulting Nemenyi p-values. Post-hoc p-values of all possible 

pairs (classifiers) are compactly represented as a lower triangular matrix. Each numerical 

entry is the p-value of row/column pair, i.e., the null hypothesis that the classifier 

represented by its particular column name is different from the classifier represented by 

its particular row name. 
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Figure 28. Nemenyi test results with a 90% confidence level. 

 
Table 16       
       
Nemenyi p-values, with no further adjustment 

 ARF AWE DWM LevBag OB VFDT 
AWE 0.51 - - - - - 
DWM 0.9036 0.9937 - - - - 
LevBag 0.0789 0.9682 0.677 - - - 
OB 0.1931 0.9979 0.8797 1 - - 
VFDT 0.9995 0.7897 0.9899 0.22 0.43  
HTM 0.0019 0.3884 0.0928 0.92 0.75 0.01 

Note: Nemenyi p-values computed using tools from https://astatsa.com/FriedmanTest/  

Comparison to Other Literature 

This research followed that of Ghomeshi et al. (2019), who developed a classifier 

based on evolutionary algorithms to cope with different types of concept drifts in non-

stationary data streams. It is noteworthy that Ghomeshi et al. (2019) generated their 

artificial data sets and ran their classifier experiments using MOA, which is an open-

source framework for data stream mining and is a Java-based service.  In contrast, this 

research utilized the data generation and classifier tools provided by scikit multi-flow, 

which is a Python add-in package.  Tables 24 and 25below are reprinted from Ghomeshi 

et al. (2019). Incorporated into Tables 24 and 25 are the results of this research for 

comparison purposes. 

Ghomeshi et al. (2019) classifier accuracy results were similar to that of this 

research conducted. However, there was a trend for their results to be more in alignment 

https://astatsa.com/FriedmanTest/
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with this research’ runs that contained 10% noise. Ghomeshi et al. (2019) did not mention 

inserting noise in their publication.  

It was observed that there was a great deal of difference in the average CPU run-

times between Ghomeshi et al. (2019) and this work for all experiments conducted. The 

contrast in results for both classifier accuracy and CPU run-times was likely due to 

architectural and implementation differences between MOA and scikit multiflow.  

 
Table 17    
 
Comparison to Other Research 

Average Accuracy 

    
Reference Data Set Classifier Accuracy 

Ghomeshi et al. (2019) Hyper. ARF 88.17 
This Research (from Table 3 0% noise) Hyper. ARF 94.30 

This Research (from Table 4 10% noise) Hyper. ARF 86.00 
Ghomeshi et al. (2019) LED ARF 74.05 

This Research (from Table 3 0% noise) LED ARF 99.80 
This Research (from Table 4 10% noise) LED ARF 76.00 

Ghomeshi et al. (2019) RT ARF 78.24 
This Research (from Table 3 0% noise) RT ARF 81.40 

This Research (from Table 4 10% noise) RT ARF -- 
Ghomeshi et al. (2019) SEA ARF 88.67 

This Research (from Table 3 0% noise) SEA ARF 99.50 
This Research (from Table 4 10% noise) SEA ARF 90.40 

Ghomeshi et al. (2019) Airlines ARF 63.53 
This Research (from Table 9) Airlines ARF 66.00 

Ghomeshi et al. (2019) Elec ARF 92.17 
This Research (from Table 9) Elec ARF 88.00 

Ghomeshi et al. (2019) Poker ARF 84.19 
This Research (from Table 9) Poker ARF 54.00 

Ghomeshi et al. (2019) Hyper. DWM 89.64 
This Research (from Table 3 0% noise) Hyper. DWM 99.70 

This Research (from Table 4 10% noise) Hyper. DWM 87.90 
Ghomeshi et al. (2019) LED DWM 75.05 

This Research (from Table 3 0% noise) LED DWM 99.98 
This Research (from Table 4 10% noise) LED DWM 56.20 
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Ghomeshi et al. (2019) RT DWM 59.49 
This Research (from Table 3 0% noise) RT DWM 60.90 

This Research (from Table 4 10% noise) RT DWM -- 
Ghomeshi et al. (2019) SEA DWM 87.72 

This Research (from Table 3 0% noise) SEA DWM 94.90 
This Research (from Table 4 10% noise) SEA DWM 88.20 

Ghomeshi et al. (2019) Airlines DWM 63.97 
This Research (from Table 9) Airlines DWM 61.00 

Ghomeshi et al. (2019) Elec DWM 75.73 
This Research (from Table 9) Elec DWM 80.00 

Ghomeshi et al. (2019) Poker DWM 74.37 
This Research (from Table 9) Poker DWM 47.00 

Ghomeshi et al. (2019) Hyper. LevBag 91.03 
This Research (from Table 3 0% noise) Hyper. LevBag 77.00 

This Research (from Table 4 10% noise) Hyper. LevBag 68.20 
Ghomeshi et al. (2019) LED LevBag 74.22 

This Research (from Table 3 0% noise) LED LevBag 63.00 
This Research (from Table 4 10% noise) LED LevBag 40.40 

Ghomeshi et al. (2019) RT LevBag 90.91 
This Research (from Table 3 0% noise) RT LevBag 64.80 

This Research (from Table 4 10% noise) RT LevBag -- 
Ghomeshi et al. (2019) SEA LevBag 87.59 

This Research (from Table 3 0% noise) SEA LevBag 93.80 
This Research (from Table 4 10% noise) SEA LevBag 79.50 

Ghomeshi et al. (2019) Airlines LevBag 59.42 
This Research (from Table 9) Airlines LevBag 56.00 

Ghomeshi et al. (2019) Elec LevBag 92.09 
This Research (from Table 9) Elec LevBag 85.00 

Ghomeshi et al. (2019) Poker LevBag 88.52 
This Research (from Table 9) Poker LevBag 46.00 

Ghomeshi et al. (2019) Hyper. OBoost 85.85 
This Research (from Table 3 0% noise) Hyper. OBoost 82.00 

This Research (from Table 4 10% noise) Hyper. OBoost 69.70 
Ghomeshi et al. (2019) LED OBoost 74.15 

This Research (from Table 3 0% noise) LED OBoost 83.70 
This Research (from Table 4 10% noise) LED OBoost 52.60 

Ghomeshi et al. (2019) RT OBoost 85.30 
This Research (from Table 3 0% noise) RT OBoost 67.40 

This Research (from Table 4 10% noise) RT OBoost -- 
Ghomeshi et al. (2019) SEA OBoost 85.56 

This Research (from Table 3 0% noise) SEA OBoost 95.70 
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This Research (from Table 4 10% noise) SEA OBoost 76.70 
Ghomeshi et al. (2019) Airlines OBoost 61.98 

This Research (from Table 9) Airlines OBoost 55.00 
Ghomeshi et al. (2019) Elec OBoost 88.02 

This Research (from Table 9) Elec OBoost 79.00 
Ghomeshi et al. (2019) Poker OBoost 84.31 

This Research (from Table 9) Poker OBoost 47.00 

 
Table 18    
 
Comparison to Other Research 

Average CPU run-time (seconds) 

    
Reference Data Set Classifier CPU run-time 

Ghomeshi et al. (2019) Hyper. ARF 208.00 
This Research (from Table 3 0% noise) Hyper. ARF 13776.03 

This Research (from Table 4 10% noise) Hyper. ARF 22446.87 
Ghomeshi et al. (2019) LED ARF 188.00 

This Research (from Table 3 0% noise) LED ARF 29842.33 
This Research (from Table 4 10% noise) LED ARF 60329.59 

Ghomeshi et al. (2019) RT ARF 394.00 
This Research (from Table 3 0% noise) RT ARF 16115.15 

This Research (from Table 4 10% noise) RT ARF -- 
Ghomeshi et al. (2019) SEA ARF 751.00 

This Research (from Table 3 0% noise) SEA ARF 12469.20 
This Research (from Table 4 10% noise) SEA ARF 24038.47 

Ghomeshi et al. (2019) Airlines ARF 495.00 
This Research (from Table 9) Airlines ARF 10527.60 

Ghomeshi et al. (2019) Elec ARF 7.73 
This Research (from Table 9) Elec ARF 502.91 

Ghomeshi et al. (2019) Poker ARF 167.00 
This Research (from Table 9) Poker ARF 29044.56 

Ghomeshi et al. (2019) Hyper. DWM 130.00 
This Research (from Table 3 0% noise) Hyper. DWM 1209.69 

This Research (from Table 4 10% noise) Hyper. DWM 1425.74 
Ghomeshi et al. (2019) LED DWM 851.00 

This Research (from Table 3 0% noise) LED DWM 3792.89 
This Research (from Table 4 10% noise) LED DWM 8385.59 

Ghomeshi et al. (2019) RT DWM 195.00 
This Research (from Table 3 0% noise) RT DWM 4735.79 

This Research (from Table 4 10% noise) RT DWM -- 
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Ghomeshi et al. (2019) SEA DWM 98.00 
This Research (from Table 3 0% noise) SEA DWM 843.76 

This Research (from Table 4 10% noise) SEA DWM 844.74 
Ghomeshi et al. (2019) Airlines DWM 66.00 

This Research (from Table 9) Airlines DWM 1529.12 
Ghomeshi et al. (2019) Elec DWM 1.48 

This Research (from Table 9) Elec DWM 56.08 
Ghomeshi et al. (2019) Poker DWM 46.00 

This Research (from Table 9) Poker DWM 6334.51 
Ghomeshi et al. (2019) Hyper. LevBag 144.00 

This Research (from Table 3 0% noise) Hyper. LevBag 28610.06 
This Research (from Table 4 10% noise) Hyper. LevBag 30333.96 

Ghomeshi et al. (2019) LED LevBag 246.00 
This Research (from Table 3 0% noise) LED LevBag 73243.41 

This Research (from Table 4 10% noise) LED LevBag 69143.31 
Ghomeshi et al. (2019) RT LevBag 207.00 

This Research (from Table 3 0% noise) RT LevBag 92246.17 
This Research (from Table 4 10% noise) RT LevBag -- 

Ghomeshi et al. (2019) SEA LevBag 409.00 
This Research (from Table 3 0% noise) SEA LevBag 21311.02 

This Research (from Table 4 10% noise) SEA LevBag 21844.44 
Ghomeshi et al. (2019) Airlines LevBag 531.00 

This Research (from Table 9) Airlines LevBag 14301.71 
Ghomeshi et al. (2019) Elec LevBag 5.12 

This Research (from Table 9) Elec LevBag 1217.43 
Ghomeshi et al. (2019) Poker LevBag 81.00 

This Research (from Table 9) Poker LevBag 31327.38 
Ghomeshi et al. (2019) Hyper. OBoost 93.00 

This Research (from Table 3 0% noise) Hyper. OBoost 50473.21 
This Research (from Table 4 10% noise) Hyper. OBoost 52635.70 

Ghomeshi et al. (2019) LED OBoost 174.00 
This Research (from Table 3 0% noise) LED OBoost 61545.17 

This Research (from Table 4 10% noise) LED OBoost 98845.17 
Ghomeshi et al. (2019) RT OBoost 148.00 

This Research (from Table 3 0% noise) RT OBoost 123796.25 
This Research (from Table 4 10% noise) RT OBoost -- 

Ghomeshi et al. (2019) SEA OBoost 162.00 
This Research (from Table 3 0% noise) SEA OBoost 25690.63 

This Research (from Table 4 10% noise) SEA OBoost 27593.68 
Ghomeshi et al. (2019) Airlines OBoost 74.00 

This Research (from Table 9) Airlines OBoost 20546.30 
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Ghomeshi et al. (2019) Elec OBoost 2.06 
This Research (from Table 9) Elec OBoost 1624.03 

Ghomeshi et al. (2019) Poker OBoost 64.00 
This Research (from Table 9) Poker OBoost 31327.38 

 

Summary of Results 

Experiment I showed that although the HTM classifier’s accuracy percentages 

were in the mid 50% range, the classifier was sensitive to abrupt, gradual, and recurrent 

concept drift and noise. Furthermore, it can be concluded that even without temporal 

dependency within the data stream, the HTM classifier demonstrated an ability to learn 

new patterns relatively quickly. These observations suggest that despite the lack of 

temporal dependencies within the SEA data stream, the HTM classifier showed an ability 

to learn new patterns and adjust to concept drift, and noise within artificial data streams.  

The results of experiment II demonstrated the HTM classifier suitable for 

classifying real-world data in two out of the three cost measures (i.e., average accuracy 

and CPU run-time). However, the high cost in memory usage, which coincided with that 

of experiment I, is something that must be considered.  

Experiment III successfully identified the behavioral tendencies of the Rombertik 

virus through the machine states that resulted from executing its code. The plots derived 

from tracing the HTM classifiers’ performance on all eight flag bits demonstrate a new 

tool that can aid reverse engineers of malware to identify whether an executable contains 

stalling code.   
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Chapter 5 

Conclusions, Summary, Implications, & Recommendations 

 

This research demonstrated an HTM sequence classifier capable of classifying 

data within a data stream containing concept drift, noise, and temporal dependencies. The 

HTM sequence classifier was evaluated on both artificially generated data streams (e.g., 

Hyperplane, LED, Random Tree, and SEA) and real-world data streams (e.g., Airlines, 

Electricity, and Poker), and compared its performance against several modern classifiers 

(e.g., ARF, AWE, DWM, LevBag, Online-Boost, and VFDT) using the cost metrics of 

average accuracy percentage, CPU run-time, and RAM usage. Additionally, this research 

evaluated the potential of an HTM classifier for malware analysis via a simulated 

example of the Rombertik stalling code within an executable file. 

Conclusions 

The HTM classifier proved effective in detecting abrupt, gradual and recurrent 

concept drift within artificial data streams, including those with 10% noise as shown in 

Figures 7, 8, 9 and 10 of experiment I. However, the HTM classifiers’ accuracy metric 

was poor due to the data streams lacking temporal dependencies as shown in Tables 3 

and 4.  

The application of noise to the artificial data streams provided surprising results in 

that it was unexpected to see the significant drop in the accuracy of many of the other 

classifiers. The OBoost classifier suffered the most significant reduction in accuracy from 

83.71% down to 52.6%, while LevBag dropped from 62.96% down to 40.41% for the 

LED data stream (Table 4). Meanwhile, the HTM classifier remained relatively stable at 
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50%. The HTMs’ stable performance could imply that the HTM classifier exhibits a 

behavior that is resistant to noise. 

Experiment II showed that the HTM classifier performed reasonably well when 

predicting real-world data using the cost measures of average accuracy and average CPU 

run-time; however, the HTM classifiers’ average RAM usage was exceptionally high. 

Experiment III showed that the HTM classifier is well suited to predicting 

machine states (i.e., CPU Flags), as shown in Figures 12 – 27. The HTM classifier was 

capable of producing plotting graphs, similar to that of an electrocardiogram, with a high 

accuracy percentage, thereby providing a valuable analysis tool in malware analysis. 

Summary 

The primary purpose of this research was to develop a new sequence classifier 

that can classify data in a data stream that contained concept drift, noise, and temporal 

dependencies. This research demonstrated that a sequence classifier based on HTM 

architecture achieved this goal but is better suited to data streams that contain temporal 

dependencies. 

As Bifet et al. (2017) pointed out, most streaming environments contain 

temporally related data that, during certain periods, their labels correlate (i.e., network 

attack and intrusion detection). However, despite recent research that advanced the 

discovery of novel cyber-attacks such as that conducted by Burgio (2019), there still 

exists a gap in the published literature on streams that contain temporal dependencies. 

This research demonstrated that an HTM based approach is applicable toward classifying 

data within data streams that contain temporalness as experiments I, II, and III show. This 

research also showed that the HTM based approach is capable of detecting concept drift.  
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Finally, the secondary goal of this research was to explore the potential of HTM 

as a solution for detecting evasive malware that contains stalling code. As demonstrated 

in experiment III, this research generated a sample executable that contained stalling code 

based on the Rombertik virus, and successfully analyzed the live executable via a 

combination of an IDA Pro Python script and an HTM classifier that generated an 

electrocardiography style plot that can be utilized to study and identify behavior patterns 

of programs. 

An implied goal of this research was to determine the fitness of HTM 

technologies as a classifier capable of classifying all data streams. As experiments I and 

II demonstrated, the HTM classifier is more suitable for temporal data streams than non-

temporal data streams. This determination came by using the four-part classifier 

evaluation framework, described by Bifet et al. (2017). The first part, error estimation, 

was accomplished using the prequential approaches for error estimation.  

 The fourth part, identifying cost measures, identified classifier accuracy, CPU 

time, and RAM usage to measure the HTM sequence classifiers’ performance against the 

ARF, AWE, DWM, LevBag, Online-Boost, and VFDT classifiers.  

Experiment I  

Showed that HTMs are not suitable for classifying artificial data streams; 

however, it did prove that the HTM classifier is capable of detecting concept drift. It also 

highlights the fact that many efficient classifiers already exist for classifying artificially 

generated data that contain concept drift. Finally, experiment I showed that with the 

introduction of 10% noise, the test set of classifiers' performance in accuracy, CPU-time, 

and RAM-usage began to degrade sharply. 
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Experiment  II  

Results showed the HTM classifier was capable of classifying data within data 

streams containing temporal data. While the accuracy results of experiment II were 

average in comparison to the other classifiers, it was encouraging to see that this 

technology is sensitive to temporal data streams within real-world data. As such, this 

approach offers a new option for classifying streaming data that contain temporal 

dependencies. 

Experiment III 

Experiment III outlined a process for using HTM technology in dynamic malware 

analysis. This experiment demonstrated the potential of HTMs in analyzing malware with 

the specific behavior of utilizing stalling code as a means of avoiding detection. This 

experiment compared the simulated stalling executable against a normal sorting 

executable. Comparing the EFLAG graphs of the two algorithms showed the stalling 

code to behave very predictably, leading to the HTM classifier to obtain high accuracy 

predictions quickly. The resulting plots showed that the Rombertik stalling code flatlined 

the EFLAGS, making it very recognizable. 

Implications 

Given the ever-increasing level of temporal dependencies that exist within real-

world data streams, the need for classifiers that can find and apply temporal dependencies 

when labeling data quickly would be of great benefit. Furthermore, the effectiveness of 

evasive malware at evading detection by IDS through the use of simple tactics such as 

stalling code forces classifiers to frequently retrain, resulting in a degradation of 

performance and an increase in the consumption of system resources. However, as 

discussed, finding temporal dependencies within real-world data streams (including 
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network traffic), could allow IDS and classifiers to avoid performance degradation and 

consumption of system resources. Thus, the use of HTM technologies in finding temporal 

dependencies might help to improve the effectiveness of these applications.  

Recommendations 

 While this research has highlighted the potential of HTM based classifiers in 

classifying real-world streaming data, there is ample opportunity to extend this research 

to improve the HTM classifiers’ accuracy and for use in multiple machine learning 

domains. The HTM classifiers’ accuracy is highly dependent upon modifying the 

parameters for the Temporal Memory and Spatial Pooler, along with highly customized 

encoders unique to each data stream. One such example was the simple attempt by this 

research to create a geospatial encoder for use in the Airline dataset. Improving the 

robustness and quality of the geospatial encoder while maintaining the four essential SDR 

properties, as described by Purdy (2015), would be useful in real-world data streams that 

contain features for geospatial locations.  

In the domain of malware analysis, finding labeled malware stalling examples does 

not exist. Researchers must individually reverse engineer known malware executables to 

search for the existence of stalling code, which is time-intensive.  The lack of labeled 

stalling code will offer an opportunity to extend experiment III by labeling real-world 

malware samples from online repositories such as Virusshare.com for the presence of 

stalling code. The labeling of this repository for the existence of stalling code would 

benefit evasive malware researchers by providing a rich pool of malware examples 

without the need for individually reverse engineering each one. 

Currently, standard statistical functions (e.g., ROC, AUC, Friedmans’ Test) for 

HTM’s do not exist. Common statistical software applications (e.g., R, MATLAB, SAS, 
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Python, Java) contain a rich repository of statistical analytical tools that would be useful 

in evaluating the performance of HTM classifiers. Adding HTM statistical functions to 

any of these applications would allow the researcher to focus on improving the 

performance of HTMs rather than concentrating on designing customized methods for 

producing common statistical measurements and graphs.  

 Another avenue of inquiry would be to allow for the provision of advanced 

parallelism of HTM. Parallelism could help in improving the amount of time needed for 

the Temporal Memory algorithm to learn sequential patterns. Applications such as  

https://dask.org/ could provide the necessary infrastructure to parallelize HTMs. Finally, 

my research demonstrated the potential of HTM in the implementation of machine 

learning and data mining.   
  

https://dask.org/
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Appendix A 

Hyperplane Features Description for Experiment I (10 files ea. 1 million data pts) 

(Hulten et al., 2001) 

 
Table 19    
 
Hyperplane Feature List 

No. Name Type Description 
1 n_features int (Def: 10) The number of attributes to generate. Higher than 2. 
2 n_drift_features int (Def: 2) The number of attributes with drift. Higher than 2. 
3 mag_change float (Def: 0.0) Magnitude of the change for every example. 0.0 to 1.0 
4 noise_% float (Def: 0.05) % of noise to add to the data. 0.0 to 1.0 
5 sigma_% int (Def: 0.1) % of prob.that the direction of change is reversed. 0.0 to 1.0 
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Appendix B 

LED Features Description for Experiment I (10 files ea. 1 million data pts) 

(Breiman et al., 1984) 
Table 20    

 

LED Feature List 

No. Name Type Description 

1 random_state 

 int, 
RandomState 
instance or None, 
optional 
(default=None) 

If int, random_state is the seed used by the random number generator; If 
RandomState instance, random_state is the random number generator; If None, 
the random number generator is the RandomState instance used by np.random. 

2 noise_percentage float (Default: 
0.0) 

The probability that noise will happen in the generation. At each new sample 
generated, a random probability is generated, and if that probability is equal or 
less than the noise_percentage, the selected data will be switched 

3 has_noise  bool (Default: 
False) Adds 17 non relevant attributes to the stream. 
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Appendix C 

Random Tree Features Description for Experiment I (10 files ea. 1 million data pts) 

https://scikit-

multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.data.RandomTreeGen

erator.html#skmultiflow.data.RandomTreeGenerator 
 

Table 21    

 

Random Tree Feature List 

No. Name Type Description 
1 tree_random_state int (Default: None) Seed for random generation of tree. 

2 sample_random_state int (Default: None) Seed for random generation of instances. 

3 n_classes int (Default: 2) The number of classes to generate. 

4 n_cat_features: int (Default: 5) 

The number of categorical features to generate. 
Categorical features are binary encoded, the actual 
number of categorical features 
is n_cat_featuresxxn_categories_per_cat_feature 

5 n_num_features  int (Default: 5) The number of numerical features to generate. 

6 n_categories_per_cat_feature  int (Default: 5) The number of values to generate per categorical 
feature. 

7 max_tree_depth  int (Default: 5) The maximum depth of the tree concept. 

8 min_leaf_depth int (Default: 3) The first level of the tree above MaxTreeDepth that can 
have leaves. 

9 fraction_leaves_per_level float (Default: 
0.15) 

The fraction of leaves per level from min_leaf_depth 
onwards. 
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Appendix D 

SEA Features Description for Experiment I (10 files ea. 1 million data pts) 

(Street & Kim, 2001) 
 

Table 22    

 

SEA Feature List 

No. Name Type Description 

1 classification_function int (Default: 0) 

Which of the four classification functions to use for the 
generation. This value can vary from 0 to 3, and the 
thresholds are, 8, 9, 7 and 9.5. 
  

2 random_state: 

int, RandomState 
instance or None, 
optional 
(default=None) 

If int, random_state is the seed used by the random 
number generator; If RandomState instance, 
random_state is the random number generator; If None, 
the random number generator is the RandomState 
instance used by np.random. 
  

3 balance_classes bool (Default: 
False) 

Whether to balance classes or not. If balanced, the class 
distribution will converge to a uniform distribution. 
  

4 noise_percentage float (Default: 0.0) 

The probability that noise will happen in the generation. At 
each new sample generated, a random probability is 
generated, and if that probability is higher than the noise 
percentage, the chosen label will be switched. From 0.0 to 
1.0. 
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Appendix E 

Electricity Features Description for Experiment II (45,312 instances) 

(Harries et al., 2003) 
 

Table 23    
 

Electricity Feature List 
No. Name Type Description 
1 class (target) nominal change of the price (UP or DOWN) (1 or 0) 

2 date numeric date between 7 May 1996 to 5 December 1998. Here 
normalized between 0 and 1 

3 day numeric day of the week (1-7) 

4 period numeric time of the measurement (1-48) in half hour intervals 
over 24 hours. Here normalized between 0 and 1 

5 nswprice numeric New South Wales electricity price, normalized 
between 0 and 1 

6 nswdemand numeric New South Wales electricity demand, normalized 
between 0 and 1 

7 vicprice numeric Victoria electricity price, normalized between 0 and 1 

8 vicdemand numeric Victoria electricity demand, normalized between 0 
and 1 

9 transfer numeric scheduled electricity transfer between both states, 
normalized between 0 and 1 
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Appendix F 

Airlines Features Description for Experiment II (539,381 instances) 

http://stat-computing.org/dataexpo/2009/ 
Table 24    
 

Airlines Feature List 
No. Name Type Description 

1 Year int (normalized) 1987-2008 
2 Month int (normalized) 12-Jan 
3 DayofMonth int (normalized) 31-Jan 
4 DayOfWeek int (normalized) 1 (Monday) - 7 (Sunday) 
5 DepTime int (normalized) actual departure time (local, hhmm) 
6 CRSDepTime int (normalized) scheduled departure time (local, hhmm) 
7 ArrTime int (normalized) actual arrival time (local, hhmm) 
8 CRSArrTime int (normalized) scheduled arrival time (local, hhmm) 
9 UniqueCarrier int (normalized) unique carrier code 

10 FlightNum int (normalized) flight number 
11 TailNum int (normalized) plane tail number 
12 ActualElapsedTime int (normalized) in minutes 
13 CRSElapsedTime int (normalized) in minutes 
14 AirTime int (normalized) in minutes 
15 ArrDelay int (normalized) arrival delay, in minutes 
16 DepDelay int (normalized) departure delay, in minutes 
17 Origin int (normalized) origin IATA airport code 

18 Dest int (normalized) destination IATA airport code 

19 Distance int (normalized) in miles 
20 TaxiIn int (normalized) taxi in time, in minutes 
21 TaxiOut int (normalized) taxi out time in minutes 
22 Cancelled int (normalized) was the flight cancelled? 

23 CancellationCode int (normalized) 
reason for cancellation (A = carrier, B = weather, C = 
NAS, D = security) 

24 Diverted int (normalized) 1 = yes, 0 = no 
25 CarrierDelay int (normalized) in minutes 
26 WeatherDelay int (normalized) in minutes 
27 NASDelay int (normalized) in minutes 
28 SecurityDelay int (normalized) in minutes 
29 LateAircraftDelay int (normalized) in minutes 

  

http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html
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Appendix G 

Poker Features Description for Experiment II (999,999 instances) 

https://archive.ics.uci.edu/ml/datasets/Poker+Hand 
Table 25    
 

Poker Feature List 
No. Name Type Description 

1 S1 "Suit of card #1" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs} 

2 C1 "Rank of card #1" Numerical (1-13)  (Ace, 2, 3, ... , Queen, King) 

3 S2 "Suit of card #2" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs} 

4 C2 "Rank of card #2" Numerical (1-13)  (Ace, 2, 3, ... , Queen, King) 

5 S3 "Suit of card #3" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs} 

6 C3 "Rank of card #3" Numerical (1-13)  (Ace, 2, 3, ... , Queen, King) 

7 S4 "Suit of card #4" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs} 

8 C4 "Rank of card #4" Numerical (1-13)  (Ace, 2, 3, ... , Queen, King) 

9 S5 "Suit of card #5" Ordinal (1-4) {Hearts, Spades, Diamonds, Clubs} 

10 C5 "Rank of card 5" Numerical (1-13) (Ace, 2, 3, ... , Queen, King) 

11 CLASS "Poker Hand" Ordinal (0-9) "Poker Hand" 
   0: Nothing in hand; not a recognized poker hand 
   1: One pair; one pair of equal ranks within five cards 
   2: Two pairs; two pairs of equal ranks within five 

cards 
   3: Three of a kind; three equal ranks within five 

cards 
   4: Straight; five cards, sequentially ranked with no 

gaps 
   5: Flush; five cards with the same suit 
   6: Full house; pair + different rank three of a kind 
   7: Four of a kind; four equal ranks within five cards 
   8: Straight flush; straight + flush 
      9: Royal flush; {Ace, King, Queen, Jack, Ten} + flush 
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Appendix H 

SDR Encoder Dictionaries 

Hyperplane 

'encoderDictionary': { 
        "scalerXY": 
            {'size': 100, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
    }, 

LED 

'encoderDictionary': { 
        "scalerXY": 
            {'size': 10, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5}, 
 
    }, 

RT 

'encoderDictionary': { 
        "scalerInt": 
            {'size': 10, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
        "scalerFloat": 
            {'resolution': 0.88, 'size': 700, 'sparsity': 0.02}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5}, 
    }, 

SEA 

'encoderDictionary': { 
        "scalerXY": 
            {'size': 100, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
 
    }, 

Airlines 

'encoderDictionary': { 
        "airline": 
            {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 17, 'activeBits': 4}, 
        "flight_no": 
            {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 7814, 'activeBits': 4}, 
        "lat": 
            {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 13, 'maximum': 72, 'activeBits': 8}, 
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        "long": 
            {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': -177, 'maximum': 145, 'activeBits': 
8}, 
        "alt": 
            {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': -54, 'maximum': 9070, 'activeBits': 
8}, 
        "airport_size": 
            {'size': 16, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 2, 'activeBits': 5}, 
        "length_of_flight": 
            {'size': 2048, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 655, 'activeBits': 5}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
        "time": 
         {'timeOfDay': (30, 1), 'weekend': 21} 
 
    } 
 

Electricity 

'encoderDictionary': { 
        "scalerXY": 
            {'size': 2048, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 10, 'activeBits': 10}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 5}, 
        "time": 
            {'timeOfDay': (30, 1), 'weekend': 21} 
 }, 

Poker 

'encoderDictionary': { 
        "suit": 
            {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 4, 'activeBits': 5}, 
        "rank": 
            {'size': 128, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1, 'maximum': 13, 'activeBits': 3}, 
        "category": 
            {'size': 0, 'radius': 0, 'category': 1, 'resolution': 0, 'minimum': 0, 'maximum': 9, 'activeBits': 5} 
    }, 
 

Executables 
 
'encoderDictionary': { 
        "register": 
            {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 1000000, 'maximum': 4967295, 
'activeBits': 3}, 
        "flag": 
            {'size': 16, 'radius': 0, 'category': 0, 'resolution': 0, 'minimum': 0, 'maximum': 1, 'activeBits': 2}, 
    }, 
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Appendix I 

Real-World Dataset Spatial Pooler, and Temporal Memory 

Specifications 

 
'predictor': {'sdrc_alpha': 0.0005}, 
 
'sp': {'boostStrength': 9.0, 
           'columnCount': 8192, 
           'localAreaDensity': 0.04395604395604396, 
           'potentialPct': 0.85, 
           'synPermActiveInc': 0.04, 
           'synPermConnected': 0.13999999999999999, 
           'synPermInactiveDec': 0.006}, 
 
 'tm': {'activationThreshold': 10, 
           'cellsPerColumn': 64, 
           'initialPerm': 0.21, 
           'maxSegmentsPerCell': 2048, 
           'maxSynapsesPerSegment': 256, 
           'minThreshold': 5, 
           'newSynapseCount': 32, 
           'permanenceDec': 0.1, 
           'permanenceInc': 0.1}, 
 
 'anomaly': { 
        'likelihood': 
            {   'probationaryPct': 0.1, 
                'reestimationPeriod': 100 
            }  # These settings are copied from NAB 
    } 
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Appendix J 

Simulated Malware using Stalling Code 

https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-
evasive-malware/ 

 
;************************************************************************************* 
; Program Name:  stall.asm 
; Programmer:    Jeffrey V. Barnett 
; Class:         PH D Dissertation 
; Date:          February 12, 2017 
; Purpose: 
;        Simulate Stalling Code 
;*************************************************************************************   
 .486 
 .model flat, stdcall 
 .stack 100h 
  
 ExitProcess PROTO Near32 stdcall, dwExitCode:dword  ; capitalization not necessary 
  ; capitalization not necessary 
  
 .data      ; this is the data area 
iX  dword 0 
ptrB dword iX 
 
sY  word 4 dup(5,22) 
bVal byte 'GEORGE WASHINGTON' 
qVal qword -55 
iY  dword 3 dup(25,67) 
 
 .code      ; this is the code area 
_start: 
 mov ebx, ptrB 
  
loc_4EEFD2: 
 mov edx, edx 
 inc dword ptr [ebx] 
 cmp dword ptr [ebx], 1C9C381h 
 jnz short loc_4EEFD2 
 xor eax, eax 
 mov [ebx], eax 
  
loc_4EEFE2: 
  mov ecx, ecx 
  inc dword ptr [ebx] 
  cmp dword ptr [ebx], 376EAC81h 
  jnz short loc_4EEFE2 
  
  INVOKE ExitProcess,0 
  PUBLIC _start 
  END 
 end  

https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-evasive-malware/
https://www.lastline.com/labsblog/exposing-rombertik-turning-the-tables-on-evasive-malware/
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Appendix K 

Assembly Language Sorting Algorithm  
 

https://github.com/beckysag/masm-random-integers/blob/master/prog05.asm 
 
TITLE Prog05.asm) 
 
; Original Author: Rebecca Sagalyn 
; Modified by Jeff Barnett 02/08/2020 
; Course / Project ID: CS271 #05  Date: 2/28/13 
; Description: 
; 1. Introduce the program. 
; 2. Get a user request in the range [min=10 .. max=200]. 
; 3. Generate request random integers in the range [lo=100 .. 
hi=999], storing them in consecutive elements of an array. 
; 4. Display the list of integers before sorting, 10 numbers per 
line. 
; 5. Sort the list in descending order (i.e., largest first). 
; 6. Calculate and display the median value, rounded to the nearest 
integer. 
; 7. Display the sorted list, 10 numbers per line. 
 
;*******************************************************************
***************  
;*         SHARED 
DATA                             *  
;*******************************************************************
***************  
 .486 
 .model flat, stdcall 
 .stack 1000h 
  
  includelib ..\..\Irvine\kernel32.lib 
  include ..\..\Irvine\Irvine32.inc 
  include ..\..\Irvine\VirtualKeys.inc 
  include ..\..\Irvine\macros.inc 
  includelib ..\..\Irvine\User32.lib 
  includelib ..\..\Irvine\Irvine32.lib 
 
  
 ; Win32 Console handle 
 ;STD_OUTPUT_HANDLE EQU -11 ; predefined Win API constant 
(magic) 
 ;FILE_ATTRIBUTE_NORMAL equ 80h 
 ;OPEN_EXISTING EQU 3 ;Parameter for opening an existing file 
 ;NULL EQU 0 
 ; get standard handle 
 ; type of console handle 
 GetStdHandle PROTO, nStdHandle:DWORD  
 

https://github.com/beckysag/masm-random-integers/blob/master/prog05.asm
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 ExitProcess PROTO Near32 stdcall, dwExitCode:dword  ; 
capitalization not necessary 
 GetProcessHeap     PROTO 
 HeapAlloc      PROTO,mHeap:HANDLE, dwFlags:DWORD, 
dwBytes:DWORD ; number of bytes to allocate  
 HeapFree      PROTO,mHeap:HANDLE, 
dwFlags:DWORD,lpMem:DWORD 
  
 ; capitalization not necessary 
 local_1 EQU DWORD PTR [ebp-4] 
 local_2 EQU DWORD PTR [ebp-8] 
 local_3 EQU DWORD PTR [ebp-12] 
 MIN = 10 
 MAX = 400 
 LO = 100 
 HI = 999 
.data 
 intro1  BYTE "Sorting Random Integers 
 Original Becky Sag, Modified by Jeff Barnett",02h,0Dh,0Ah,0Ah 
    BYTE "This program generates 999 
random numbers in the range [100 .. 999], ",0Dh, 0Ah 
    BYTE "displays the original list, 
sorts the list, and calculates the median value.",0Dh, 0Ah 
    BYTE "Finally, it displays the list 
sorted in desc order.",0Dh,0Ah,0Dh,0Ah,0 
 prompt  BYTE 0Dh, 0Ah,"How many numbers should be 
generated?  [100 .. 999]:  ",0 
 err_str  BYTE "Invalid input",0 
 strUn  BYTE "The unsorted random numbers:",0 
 SIZE_UN = ($ - strUn) 
 prompt2  BYTE "The median is:  ",0 
 strSort  BYTE "The sorted list:",0 
 SIZE_SORT = ($ - strSort) 
 request  DWORD ? 
 ;arr   DWORD MAX DUP(?) 
 lf   DWORD ? 
 rt   DWORD ? 
 outHandle DWORD ?      
      ; handle to standard 
console output device 
 fHandle  DWORD ?      
      ; handle to output file 
 fname  BYTE 
"C:\Users\barnettjv\Desktop\numbers.txt",0   ; file 
name  
 buff  BYTE 5 DUP(0)     
     ; buffer pointer 
 
 
 hHeap   HANDLE ? 
 pArray   DWORD ? ; pointer to array 
  
;*******************************************************************
***************  
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;*         
PROCEDURES                              *  
;*******************************************************************
***************  
 
.code 
 
;-------------------------------------------------------------------
--------------- 
main PROC 
 INVOKE GetStdHandle, STD_OUTPUT_HANDLE   
  ; init handle 
 mov  [outHandle], eax    
    ; store handle in outHandle 
; Intro 
 push OFFSET intro1      
   ; @intro1 
 call intro       
    ; Introduce program 
; Get number from user, store in request    
  
 push OFFSET err_str      
   ; @err_str 
 push OFFSET prompt      
   ; @prompt 
 push OFFSET request      
   ; @request 
 call getData       
    ; Get user data 
 ;exit 
; Generate random numbers into file, one per line 
 
 call Randomize 
 push OFFSET buff      
    ; @buff 
  
 push OFFSET fhandle      
   ; @fhandle 
 push OFFSET fname      
   ; @fname (file to write to) 
 push request       
    ; request 
 call writeNums 
; Read numbers from file into array 
  
 INVOKE GetProcessHeap 
 .IF eax == NULL ; cannot get handle 
  jmp finished 
 .ELSE 
  mov hHeap,eax ; handle is OK 
 .ENDIF  
  
 INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, 900000 
 .IF eax == NULL 
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  mWrite "HeapAlloc failed" 
  jmp finished 
 .ELSE 
  mov pArray,eax 
 .ENDIF 
 ;malloc ptrHeap, ecx    ; Allocate space 
for our new string 
 push OFFSET buff      
   ; @buff 
 push pArray       
   ; @arr 
 push OFFSET fname      
   ; @fname (file to write to) 
 push request       
    ; request 
 call readNums 
; Display unsorted list 
 ;push OFFSET strUn 
 ;push pArray 
 ;push request 
 ;call displayList 
; Sort List 
 ;push pArray       
   ; @arr 
 ;push request       
    ; request 
 ;call sortList 
; Display sorted list 
 push OFFSET strSort 
 push pArray 
 push request 
 call displayList 
 
; Display median 
; Calculate and display the median value, rounded to the nearest 
integer. 
finished: 
 ;INVOKE CloseHandle, fHandle     
 ;close file handle 
main ENDP 
 
 
;-------------------------------------------------------------------
--------------- 
intro PROC 
; Introduces program and programmer, and describes program. 
; Receives: [ebp+8] = @intro1 
; Returns: nothing 
; Proconditions: none 
; Registers changed: none 
;-------------------------------------------------------------------
--------------- 
 push ebp 
 mov  ebp, esp 
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 push edx 
 mov  edx, [ebp+8]     
    ; introduce program & programmer 
 call WriteString  
 pop  edx 
 pop  ebp 
 ret  4 
intro ENDP 
 
 
;-------------------------------------------------------------------
--------------- 
getData PROC 
; Prompts user to enter number of integers, in range [min..max], 
then validates number 
; Receives: [ebp+8] = @request, [ebp+12] = @prompt, [ebp+16] = 
@err_str 
; Returns: number entered by user in request 
; Proconditions:none 
; Registers changed: none 
;-------------------------------------------------------------------
--- 
 push ebp 
 mov  ebp, esp 
 pushad 
 mov  edi, [ebp+8]     
   ; @request in edi 
  
RequestNum: 
 mov  edx, [ebp+12]     
   ; edx = @prompt 
 ;call WriteString      
   ; tell user to enter a number 
 ;call ReadDec       
   ; save number in eax 
 mov  eax, MAX 
 
; verify: request >= MIN && request <= MAX 
 cmp  eax, MIN     
     
 jl  InvalidRequest     
   ; if request < MIN, reprompt 
 cmp  eax, MAX 
 jg  InvalidRequest     
   ; if request > MAX, reprompt 
 jmp  ValidRequest     
   ; else, continue 
 
InvalidRequest: 
 mov  edx, [ebp+16]     
   ; edx = @err_str 
 call WriteString 
 call Crlf 
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 jmp  RequestNum     
    ; re-prompt 
 
ValidRequest: 
 mov  [edi], eax     
    ; store number in request 
 
 
 
 
 popad 
 pop  ebp 
 ret  12 
getData ENDP 
;-------------------------------------------------------------------
--- 
 
;-------------------------------------------------------------------
--- 
DecToASCII PROC 
; input = 3 digits dec number 
; buff = 4 byte array of BYTES 
; uses: eax, ebx, ecx, edx, esi, ebp 
; reg changed: eax, ebx, edx, esi 
;-------------------------------------------------------------------
--- 
 push ebp 
 mov  ebp, esp 
 pushad 
  
 mov  ax, [ebp+8]     ; 
ebx = dec num 
 mov  edx, [ebp+12]    ; @buff in 
edx 
 mov  ecx, 3      ; 
loop counter 
L1: 
; loop sets buff[0], buff[1], buff[2] 
 mov  bl, 10      ; 
bl = 10 
 div  bl      
 ; AH = digit (7), AL = quotient (65) 
 mov  bl, ah      ; 
bl = ah = 7 
 add  bl, 48      ; 
bl = ascii form of digit 
 mov  ah, 0      ; 
ax = 65 (for next DIV instruction) 
 mov  [edx+ecx-1], bl    ; 
buff[ecx] = ascii digit 
 loop L1 
 
; set buff[3], buff[4] 
 mov  al, 13 
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 mov  [edx+3], al 
 mov  al, 10 
 mov  [edx+4], al 
  
 popad  
 pop  ebp 
 ret  8 
DecToASCII ENDP 
;-------------------------------------------------------------------
--- 
 
;-------------------------------------------------------------------
--- 
readNums PROC 
; Description: Read numbers from file into array 
; Receives: ebp+8 = request, ebp+12 = @fname, ebp+16 = @arr 
; Returns: arr, with request numbers read from file 
; Proconditions: numbers are written one per line in file [fname] 
;     numbers are all 3 digits (leading 
zeros if needed) 
;     console handle has been initialized 
; Registers changed: none 
;-------------------------------------------------------------------
--- 
 LOCAL pFname:DWORD 
 LOCAL filehandle: DWORD 
 pushad 
 mov  eax, [ebp+12]     
   ; @fname 
 mov  pFname, eax     
    ; @fname 
 mov  esi, [ebp+16]     
   ; @arr 
 
 INVOKE CreateFile,      
   ; open file [fname] for reading 
  pFname, GENERIC_READ,  
  DO_NOT_SHARE, NULL,OPEN_EXISTING,  
  FILE_ATTRIBUTE_NORMAL, 0 
 mov  filehandle, eax    
    ; store file handle in fhandle 
 
 mov  ecx, [ebp+8]     
   ; init ecx (loop counter) to request 
L1:         
     ; for i = request, i >0, i-- 
 pushad 
 INVOKE ReadFile,      
   ; Read number from file into buffer 
  filehandle,      
    ; handle 
  [ebp+20],      
    ; buffer pointer 
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  5,       
     ; number of bytes to read 
  NULL,       
    ; num bytes read 
  0       
     ; overlapped execution flag 
  
 popad 
 
 mov  edi, [ebp+20]     
   ; edi = @buff 
 mov  eax, 0 
 ; get hundreds digit into edx 
  mov  al, [edi] 
  sub  al, 48     
     ; hundreds digit 
  mov  bl, 100 
  mul  bl     
      ; eax = hundreds digit * 
100 
  mov  edx, eax    
     ; store in edx 
  inc  edi 
 ; get tens digit into edx 
  mov  eax, 0 
  mov  al, [edi]   
  sub  al, 48     
     ; eax = digit in tens place 
  mov  bl, 10  
  mul  bl     
      ; eax = tens digit * 10 
  add  edx, eax    
     ; add to edx, edx = first two 
digits 
  inc  edi 
 ; get ones digit into edx 
  mov  al, [edi]   
  sub  al, 48     
     ; eax = digit in ones place 
  add  edx, eax    
     ; add to edx (edx = all 3 
digits) 
 ; store in array 
  mov  [esi], edx 
 
  add  esi, 4     
     ; esi points to next array 
element 
 loop L1       
    ; loop 
 
 INVOKE CloseHandle, fHandle     
 ;close file handle 
 popad 
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 ret 16 
readNums ENDP 
;-------------------------------------------------------------------
--- 
 
;-------------------------------------------------------------------
--- 
writeNums PROC 
; Description: Generate random numbers and write to file, one number 
per line 
; Receives: ebp+8 = request, ebp+12 = @fname, ebp+16 = @fhandle, 
ebp+20 = @buff 
; Returns: none 
; Proconditions: request != null 
;     console handle has been initialized 
; Registers changed: none 
;-------------------------------------------------------------------
--- 
 push ebp 
 mov  ebp, esp 
 sub  esp, 4      
  ; make space for 1 local var 
 push esi 
 push eax 
 push ebx 
 push ecx 
 push edx 
 mov  esi, [ebp+16]     
 ; store @fhandle in esi 
 mov  ecx, [ebp+8]     
 ; store request in ecx (loop counter) 
  
 ; range = hi - lo + 1 
 mov  eax, HI 
 sub  eax, LO 
 inc  eax      
   ; eax = hi - lo + 1 
  mov  local_1, eax     
 ; store "range" in local1 
  
 push ecx       
  ; save ecx before Win API function 
 INVOKE CreateFile,      
 ; create/overwite file [fname] for writing 
  [ebp+12], GENERIC_WRITE,  
  DO_NOT_SHARE, NULL,OPEN_ALWAYS,  
  FILE_ATTRIBUTE_NORMAL, 0 
 pop ecx 
 mov  [esi], eax     
  ; store file handle in fhandle 
  
L1:         
   ; while count < request 
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 mov  eax, local_1     
 ; eax = range 
 call RandomRange      
 ; random num in eax 
 
 push [ebp+20]       
 ; @buff 
 push eax       
  ; random number 
 call DecToASCII      
  ; convert random num to ascii digits 
 
 push ecx       
  ; save ecx before Win API function 
 INVOKE WriteFile,      
 ; write to file 
  [esi],       
  ; file handle 
  [ebp+20],      
  ; buffer pointer 
  5,       
   ; number of bytes to write 
  NULL,       
  ; num bytes written 
  0       
   ; overlapped execution flag 
 pop  ecx 
 loop L1       
  ; sub 1 from ecx, or leave if ecx == 0 
LeaveArr: 
 INVOKE CloseHandle, fHandle 
 pop  edx 
 pop  ecx 
 pop  ebx 
 pop  eax 
 pop  esi 
 mov  esp, ebp     
  ; reset esp, remove local var 
 pop  ebp 
 ret  16      
   ; clean up 4 32-bit variables 
writeNums ENDP 
;-------------------------------------------------------------------
--- 
 
;-------------------------------------------------------------------
--- 
sortList PROC 
; Description: 
; Receives: 2 params 
; Returns: 
; Proconditions: 
; Registers changed: 
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;-------------------------------------------------------------------
--- 
 push ebp 
 mov  ebp, esp 
 push esi 
 push eax 
 push ebx 
 push ecx 
 mov  edi, esp     ; 
edi points to location before adding array 
 
 ;mov  esi, [ebp+12]   ; store @arr in 
esi 
 mov  ebx, [ebp+8]    ; store 
request in ebx (size) 
 mov  eax, ebx     ; 
move size to eax 
 mov  ecx, 4      ; 
move 4 to ecx 
 mul  ecx      
 ; multiple array size * 4 to get total size 
 add  eax, 4      ; 
space for 1 more DWORD variable 
 sub  esp, eax     ; 
make space for array 
 ; now edi - 4 is single variable ; edi - eax is start of 
array 
 mov  esi, esp     ; 
esi points to start of result array 
 
 push [ebp+12] ; @arr 
 push 0   ; start 
 push [ebp+8]  ; size 
 push esi   ; @result 
 call merge 
 
 mov  esp, edi  
 pop  ecx 
 pop  ebx 
 pop  eax 
 pop  esi 
 ;mov  esp, ebp   ; reset esp, 
remove local var 
 pop  ebp 
 ret  8 
sortList ENDP 
;-------------------------------------------------------------------
--- 
;-------------------------------------------------------------------
--- 
merge PROC 
;-------------------------------------------------------------------
--- 
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 ;push ebp    ; these two lines done 
by OS 
 ;mov ebp, esp  ; 
 LOCAL left:DWORD 
 LOCAL right:DWORD 
 LOCAL i:DWORD 
 LOCAL len:DWORD 
 LOCAL dist:DWORD 
 LOCAL r:DWORD 
 LOCAL l:DWORD   ; l and r are to the positions 
in the left and right subarrays 
 push eax 
 push ebx 
 push edi 
 push ecx 
 push edx 
 push esi 
 
 ; ebp + 8 = @result  
 ; ebp + 12 = right 
 ; ebp + 16 = left 
 ; ebp + 20 = @arr 
 
 mov  edi, [ebp+20]   ; store @arr in 
edi 
 mov  esi, [ebp+8]   ; store @result 
in esi 
 mov  eax, [ebp+12] 
 mov  right, eax    ; store 
right 
 mov  eax, [ebp+16] 
 mov  left, eax    ; store 
left  
 mov  l, eax     ; l = left 
 
; base case: one element (if r == l+1, return) 
 add  eax, 1    ; add 1 to left 
(in eax) 
 cmp  eax, right 
 je  LeaveProc   ; if left+1 = 
right, exit 
  
 ; else 
 ; set len = right - left 
 mov  eax, right 
 sub  eax, left   ; right - left in 
eax 
 mov  len, eax   ; length = right 
- left 
 
 ; set dist = right - left / 2 
 mov  ebx, 2    ; ebx = 2 
 mov  edx, 0 



 

126 
 

 div  ebx     ; eax = 
(right - left) / 2 
 mov  dist, eax   ; dist = (right - 
left) / 2 
 
 ; set r = left + mid_distance 
 mov  ebx, left    ; ebx = 
left 
 add  ebx, eax    ; ebx = 
left + dist 
 mov  r, ebx     ; r = left 
+ dist  
 
; sort each subarray 
 ; push parameters for first call 
 push [ebp+20]    ; @arr 
 push left     ; left 
 push r      ;left + 
dist 
 push [ebp+8]     ; @result 
 call merge     ; recursive call 
on left subarray (from 0  -> midpoint) 
 
 ; push parameters for second call 
 push [ebp+20]    ; @arr 
 push r      ; left + 
dist 
 push right     ; right 
 push [ebp+8]     ; @result 
 call merge     ; recursive call 
on right subarray (from midpoint -> max) 
 
 
; merge arrays together 
 ; Check to see if any elements remain in the left array;  
 ; if so, we check if there are any elements left in the right 
array;  
 ; if so, we compare them.   
 ; Otherwise, we know that the merge must use take the element 
from the left array 
  
 mov  i, 0      
  ; i = 0 
 BeginFor: 
 ;------------------------------------------- 
 ; for(i = 0; i < len; i++) 
  mov ebx, i 
  mov  eax, len 
  cmp  i, eax     
   ; compare i to len 
  jge  LeaveFor    
   ; if i >= len, exit for-loop 
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  ;if (l < left + dist) AND (r == right || max(arr[l], 
arr[r]) == arr[l]) 
   ; if l >= r 
   mov  eax, left 
   add  eax, dist   
   ; eax = left + dist 
   cmp  l, eax    
   ; compare l to left+dist 
   jge  FromRight 
 
   ; if here, first part is true, now check 
second part 
   ; (r == right || max(arr[l], arr[r]) == 
arr[l]) 
   ; if either one is true, whole thing is true, 
and go to FromLeft 
   ; (r == right) 
   ; edi ->arr 
   ; esi ->result 
 
   ; check: (max(arr[l], arr[r]) == arr[l]) 
    ; find max(arr[l], arr[r]) 
    mov  eax, l 
    mov  ebx, 4 
    mul  ebx 
    mov  ecx, eax  
      ; ecx = l * 4 
    mov  eax, r 
    mul  ebx 
    mov  edx, eax  
      ; edx = r * 4 
 
    mov  eax, [edi+ecx]  
     ; arr[l] in eax 
    mov  ebx, [edi+edx]  
     ; arr[r] in ebx 
    cmp  eax, ebx 
    jge  LeftMax   
      ; if left >= right 
    RightMax:    
      ; arr[r] > arr[l] 
     mov  eax, [edi+edx] 
    LeftMax:    
      ;arr[l] >= arr[r] 
         
       ; eax = max 
already         
        
    ; is max == arr[l]? 
    cmp  eax, [edi+ecx] 
    je  FromLeft  
      ; if true, FromLeft 
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       ; else check 
second condition 
 
   ; check: r == right 
    mov  eax, r 
    mov  ebx, right 
    cmp  eax, ebx 
    je  FromLeft 
    ; if this isnt true, then second 
condition is false, so whole condition is false 
    ; go to FromRight 
    jmp  FromRight 
 
  FromLeft: 
    ;result[i] = arr[l]; 
    mov  eax, l 
    mov  ebx, 4 
    mul  ebx   
       ; eax = l * 4 
    mov  ecx, [edi+eax]  
     ; move arr[l] to ecx 
 
    mov  eax, i 
    mul  ebx   
       ; eax = i * 4 
    mov  [esi+eax], ecx  
     ; result[i] = arr[l] 
    ;l++; 
    add  l, 1 
    jmp  ContinueFor 
 
   ;else 
  FromRight: 
    ;result[i] = arr[r]; 
    mov  eax, r 
    mov  ebx, 4 
    mul  ebx   
       ; eax = r * 4 
    mov  ecx, [edi+eax]  
     ; move arr[r] to ecx 
 
    mov  eax, i 
    mul  ebx   
       ; eax = i * 4 
    mov  [esi+eax], ecx  
     ; result[i] = arr[r] 
    mov  ebx, [esi+eax] 
 
    ;r++; 
    add  r, 1 
 
 ContinueFor: 
  add  i, 1 
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  jmp  BeginFor 
 ; end for-loop 
 ;------------------------------------------- 
 LeaveFor: 
  
  mov  eax, left 
  mov  i, eax    ; i = left 
  mov  lf, eax 
  mov  ebx, right 
  mov  rt, ebx 
  mov eax, [esi] 
 For2: 
 ;------------------------------------------- 
 ; Copy the sorted subarray back to the input 
 ; for(i = left; i < right; i++)  
  mov  eax, i 
  cmp  eax, right 
  jge  Leave2   ; if i >= right, 
leave loop 
 
  ; arr[i] = result[i - left]; 
    mov  eax, i 
    sub  eax, left  
   ; eax = i - left 
    mov  ebx, 4 
    mul  ebx   
    ; eax = 4 * (i - left) 
    mov  ecx, eax  
   ; ecx = 4 * (i - left) 
    mov  eax, i 
    mul  ebx   
    ; eax = 4 * i 
    mov  edx, eax  
   ; edx = 4 * i 
         
    mov  eax, [esi+ecx]  
  ;eax = result[i - left] 
    mov  [edi+edx], eax  
  ;arr[i] = result[i - left]  
      
  add  i, 1 
  jmp  For2 
 ;------------------------------------------- 
 Leave2: 
 
LeaveProc: 
 pop  esi 
 pop  edx 
 pop  ecx 
 pop  edi 
 pop  ebx 
 pop  eax 
 ret  16     ; remove 4 
parameters from stack 
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merge ENDP 
;-------------------------------------------------------------------
--- 
 
 
;-------------------------------------------------------------------
--- 
displayMed PROC 
; Description: 
; Receives: 
; Returns: 
; Proconditions: 
; Registers changed: 
;-------------------------------------------------------------------
--- 
 ret 
displayMed ENDP 
;-------------------------------------------------------------------
--- 
 
;-------------------------------------------------------------------
--- 
displayList PROC 
; Description: 
; Receives: 
; Returns: 
; Proconditions: 
; Registers changed: 
;-------------------------------------------------------------------
--- 
 push ebp 
 mov  ebp, esp 
 sub  esp, 12    ; make space for 
local vars 
 push esi 
 push eax 
 push ebx 
 push ecx 
 push edx 
 mov  edx, [ebp+16]   ; store @title in 
edx 
 mov  esi, [ebp+12]   ; store @arr in 
esi 
 mov  ebx, [ebp+8]   ; store request 
in ebx 
 mov  local_1, 1    ; 
"columnCount", initialized to 1 
 call Crlf 
 call Crlf 
 call WriteString    ; print title 
 call Crlf 
 
 mov  local_2, 00202020h  ; move 3 spaces 
to local_2 
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 mov  local_3, 1    ; 
"columnCount" in local_3 
 mov  ecx, 0     ; set 
"count" to 0 in ecx 
L1:  
 cmp  ecx, ebx    ; while 
count < request 
 jge  LeaveArr 
 cmp  local_3, 10    ; check 
colCount to see if new line needed 
 jle  SameLine    ; if 
colCount > 10, new line 
 mov  local_3, 1    ; reset 
colCount to 1 
 call Crlf     ; move to new 
line 
SameLine: 
 mov  eax, [esi]    ; 
arr[count] 
 call WriteDec 
 mov  edx, ebp 
 sub  edx, 8     ; move 
address of local variable to edx 
 call WriteString  
 add  esi, 4     ; esi 
points to next index 
 add  ecx, 1     ; 
increment index number 
 add  local_3, 1 
 jmp  L1      ; 
loop 
LeaveArr: 
 call Crlf 
 pop  edx 
 pop  ecx 
 pop  ebx 
 pop  eax 
 pop  esi 
 mov  esp, ebp   ; reset esp, 
remove local var 
 pop  ebp 
 ret  12 
displayList ENDP 
;-------------------------------------------------------------------
--- 
 
 
END main  
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Appendix L 

IDAPro Python script to disassemble x86 executables 

 
#!/usr/bin/env python3 
 
""" 
This script demonstrates using the low-level tracing hook (dbg_trace) 
It can be run like: ida[t].exe -B -Strace.py -Ltrace.log file.exe 
""" 
 
import socket 
import sys 
import time 
 
from idaapi import * 
from idautils import * 
from idc import * 
import idautils 
import ida_ua 
 
class TraceHook(DBG_Hooks): 
 
  def __init__(self): 
    DBG_Hooks.__init__(self) 
    # calculate the limits before actually running the process so min_ea and max_ea 
    # store the limits of the current database's segments 
    self.min_ea = get_inf_attr(INF_MIN_EA) 
    self.max_ea = get_inf_attr(INF_MAX_EA) 
    self.traces = 0 
    self.epReached = False 
  def dbg_trace(self, tid, ea): 
  #def dbg_trace(self, tid, ea, sock): 
    # Log all traced addresses 
    if ea < self.min_ea or ea > self.max_ea: 
      raise Exception("Received a trace callback for an address outside this database!") 
    eax = get_reg_val("EAX") 
    ecx = get_reg_val("ECX") 
    edx = get_reg_val("EDX") 
    ebx = get_reg_val("EBX") 
    esp = get_reg_val("ESP") 
    ebp = get_reg_val("EBP") 
    esi = get_reg_val("ESI")     
    edi = get_reg_val("EDI") 
    eip = get_reg_val("EIP") 
 
    self.traces += 1 
     
    out = idc.GetDisasm(ea) 
    cf = idc.get_reg_value("CF") 
    pf = idc.get_reg_value("PF") 
    af = idc.get_reg_value("AF") 
    zf = idc.get_reg_value("ZF") 
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    sf = idc.get_reg_value("SF") 
    tf = idc.get_reg_value("TF") 
    df = idc.get_reg_value("DF") 
    of = idc.get_reg_value("OF")     
    print("%08X %08X %08X %08X %08X %d%d%d%d%d%d%d%d" % 

(ea,eax,ebx,ecx,edx,cf,pf,af,zf,sf,tf,df,of)) 
     
    instr = idautils.DecodeInstruction(ea) 
    # log disassembly and ESP for call instructions 
    #if instr and instr.itype in [NN_callni, NN_call, NN_callfi]: 
      #print("call insn: %s" % generate_disasm_line(ea, 

GENDSM_FORCE_CODE|GENDSM_REMOVE_TAGS)) 
      #print("ESP=%08X" % get_reg_val("ESP")) 
 
    return 1 
 
  def dbg_run_to(self, pid, tid=0, ea=0): 
    # this hook is called once execution reaches temporary breakpoint set by run_to(ep) below 
    if not self.epReached: 
      refresh_debugger_memory() 
      print("reached entry point at 0x%X" % cpu.Eip) 
      print("current step trace options: %x" % get_step_trace_options()) 
      self.epReached = True 
 
    # enable step tracing (single-step the program and generate dbg_trace events) 
    request_enable_step_trace(1) 
    # change options to only "over debugger segments" (i.e. library functions will be traced) 
    request_set_step_trace_options(ST_OVER_DEBUG_SEG) 
    request_continue_process() 
    run_requests() 
 
  def dbg_process_exit(self, pid, tid, ea, code): 
    print("process exited with %d" % code) 
    print("traced %d instructions" % self.traces) 
    return 0 
 
def do_trace(): 
     
  debugHook = TraceHook() 
  debugHook.hook() 
 
  # Start tracing when entry point is hit 
  ep = get_inf_attr(INF_START_IP) 
  enable_step_trace(1) 
  set_step_trace_options(ST_OVER_DEBUG_SEG|ST_OVER_LIB_FUNC) 
  run_to(ep) 
 
  while get_process_state() != 0: 
    wait_for_next_event(1, 0) 
 
  if not debugHook.epReached: 
    raise Exception("Entry point wasn't reached!") 
 
  if not debugHook.unhook(): 
    raise Exception("Error uninstalling hooks!") 
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  del debugHook 
  # we're done; exit IDA 
  qexit(0) 
 
# load debugger module so that rest of the script works 
# load_debugger("linux", 0) 
# load_debugger("mac", 0) 
load_debugger("win32", 0) 
do_trace() 

 
Command prompt command to run script:  

ida.exe -B -Shtm_trace.py -Ltrace2.log stall2.exe 
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Appendix M 

 
Executable Spatial Pooler and Temporal Memory Specifications 

 

 
'predictor': {'sdrc_alpha': 0.0001}, 
    'sp': {'boostStrength': 3.0, 
           'columnCount': 2048, 
           'localAreaDensity': 0.04395604395604396, 
           'potentialPct': 0.85, 
           'synPermActiveInc': 0.04, 
           'synPermConnected': 0.13999999999999999, 
           'synPermInactiveDec': 0.006}, 
 
    'tm': {'activationThreshold': 10, 
           'cellsPerColumn': 32, 
           'initialPerm': 0.21, 
           'maxSegmentsPerCell': 64, 
           'maxSynapsesPerSegment': 32, 
           'minThreshold': 5, 
           'newSynapseCount': 20, 
           'permanenceDec': 0.1, 
           'permanenceInc': 0.1}, 
 
    'anomaly': { 
        'likelihood': 
            {  # 'learningPeriod': int(math.floor(self.probationaryPeriod / 2.0)), 
                # 'probationaryPeriod': self.probationaryPeriod-
default_parameters["anomaly"]["likelihood"]["learningPeriod"], 
                'probationaryPct': 0.1, 
                'reestimationPeriod': 100 
            }  # These settings are copied from NAB 
    } 
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Appendix N 

 
HTM Classifer (EFLAGS Version) Python Code 

 

 
# HTM Classifier 
# Customized for EFLAGS 
# Author: Jeffrey V. Barnett 
# Based on the Numenta hotgym.py example 
# Date 02/Aug/2020 
 
import time 
from memory_profiler import memory_usage 
 
import csv 
import datetime 
import os 
import numpy as np 
import random 
import math 
import array as arr 
 
from htm.bindings.sdr import SDR, Metrics 
from htm.encoders.rdse import RDSE, RDSE_Parameters 
from htm.encoders.scalar_encoder import ScalarEncoder, 
ScalarEncoderParameters 
 
from htm.bindings.algorithms import SpatialPooler 
from htm.bindings.algorithms import TemporalMemory 
from htm.algorithms.anomaly_likelihood import \ 
    AnomalyLikelihood  # FIXME use TM.anomaly instead, but it gives 
worse results than the py.AnomalyLikelihood now 
from htm.bindings.algorithms import Predictor 
import matplotlib.pyplot as plt 
from htm.bindings.algorithms import Classifier 
 
_EXAMPLE_DIR = os.path.dirname(os.path.abspath(__file__)) 
#_INPUT_FILE_PATH = os.path.join(_EXAMPLE_DIR, 
"\SEA_Variant50_00.csv") 
_INPUT_FILE_PATH = "/mnt/faststorage/Real World Data 
Streams/Malware/dump1000.csv" 
default_parameters = { 
 
    'encoderDictionary': { 
        "register": 
            {'size': 1024, 'radius': 0, 'category': 0, 'resolution': 
0, 'minimum': 1000000, 'maximum': 4967295, 'activeBits': 3}, 
        "flag": 
            {'size': 16, 'radius': 0, 'category': 0, 'resolution': 
0, 'minimum': 0, 'maximum': 1, 'activeBits': 2}, 
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    }, 
 
 
    'predictor': {'sdrc_alpha': 0.0001}, 
    'sp': {'boostStrength': 3.0, 
           'columnCount': 2048, 
           'localAreaDensity': 0.04395604395604396, 
           'potentialPct': 0.85, 
           'synPermActiveInc': 0.04, 
           'synPermConnected': 0.13999999999999999, 
           'synPermInactiveDec': 0.006}, 
    'tm': {'activationThreshold': 10, 
           'cellsPerColumn': 32, 
           'initialPerm': 0.21, 
           'maxSegmentsPerCell': 64, 
           'maxSynapsesPerSegment': 32, 
           'minThreshold': 5, 
           'newSynapseCount': 20, 
           'permanenceDec': 0.1, 
           'permanenceInc': 0.1}, 
    'anomaly': { 
        'likelihood': 
            {  # 'learningPeriod': 
int(math.floor(self.probationaryPeriod / 2.0)), 
                # 'probationaryPeriod': self.probationaryPeriod-
default_parameters["anomaly"]["likelihood"]["learningPeriod"], 
                'probationaryPct': 0.1, 
                'reestimationPeriod': 100 
            }  # These settings are copied from NAB 
    } 
 
 
} 
 
#@profile 
def main(parameters=default_parameters, argv=None, verbose=True): 
    np.seterr(divide='ignore', invalid='ignore') 
    start_time = time.time() 
    random.seed(time.time()) 
    HTMseed = int(time.time()) 
    if verbose: 
        import pprint 
        print("Parameters:") 
        pprint.pprint(parameters, indent=4) 
        print("") 
 
    # Read the input file. 
    records = [] 
    print("Reading file ...") 
    with open(_INPUT_FILE_PATH, "r") as fin: 
        reader = csv.reader(fin) 
        headers = next(reader) 
        next(reader) 
        next(reader) 
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        for record in reader: 
            records.append(record) 
 
    # Make the Encoders.  These will convert input data into binary 
representations. 
 
    registerEncoderParams = ScalarEncoderParameters() 
    registerEncoderParams.size = 
parameters["encoderDictionary"]["register"]["size"] 
    registerEncoderParams.radius = 
parameters["encoderDictionary"]["register"]["radius"] 
    registerEncoderParams.category = 
parameters["encoderDictionary"]["register"]["category"] 
    registerEncoderParams.resolution = 
parameters["encoderDictionary"]["register"]["resolution"] 
    registerEncoderParams.minimum = 
parameters["encoderDictionary"]["register"]["minimum"] 
    registerEncoderParams.maximum = 
parameters["encoderDictionary"]["register"]["maximum"] 
    registerEncoderParams.activeBits = 
parameters["encoderDictionary"]["register"]["activeBits"] 
    registerEncoder = ScalarEncoder(registerEncoderParams) 
 
    flagEncoderParamsCat = ScalarEncoderParameters() 
    flagEncoderParamsCat.size = 
parameters["encoderDictionary"]["flag"]["size"] 
    flagEncoderParamsCat.radius = 
parameters["encoderDictionary"]["flag"]["radius"] 
    flagEncoderParamsCat.category = 
parameters["encoderDictionary"]["flag"]["category"] 
    flagEncoderParamsCat.resolution = 
parameters["encoderDictionary"]["flag"]["resolution"] 
    flagEncoderParamsCat.minimum = 
parameters["encoderDictionary"]["flag"]["minimum"] 
    flagEncoderParamsCat.maximum = 
parameters["encoderDictionary"]["flag"]["maximum"] 
    flagEncoderParamsCat.activeBits = 
parameters["encoderDictionary"]["flag"]["activeBits"] 
    flagEncoder = ScalarEncoder(flagEncoderParamsCat) 
 
    encodingWidth = ((5 * registerEncoder.size) + ( 6 * 
flagEncoder.size)) 
    enc_info = Metrics([encodingWidth], 999999999) 
 
    # Make the HTM.  SpatialPooler & TemporalMemory & associated 
tools. 
    spParams = parameters["sp"] 
    sp = SpatialPooler( 
        inputDimensions=(encodingWidth,), 
        columnDimensions=(spParams["columnCount"],), 
        potentialPct=spParams["potentialPct"], 
        potentialRadius=encodingWidth, 
        globalInhibition=True, 
        localAreaDensity=spParams["localAreaDensity"], 
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        synPermInactiveDec=spParams["synPermInactiveDec"], 
        synPermActiveInc=spParams["synPermActiveInc"], 
        synPermConnected=spParams["synPermConnected"], 
        boostStrength=spParams["boostStrength"], 
        wrapAround=True 
    ) 
    sp_info = Metrics(sp.getColumnDimensions(), 999999999) 
 
    tmParams = parameters["tm"] 
    tm = TemporalMemory( 
        columnDimensions=(spParams["columnCount"],), 
        cellsPerColumn=tmParams["cellsPerColumn"], 
        activationThreshold=tmParams["activationThreshold"], 
        initialPermanence=tmParams["initialPerm"], 
        connectedPermanence=spParams["synPermConnected"], 
        minThreshold=tmParams["minThreshold"], 
        maxNewSynapseCount=tmParams["newSynapseCount"], 
        permanenceIncrement=tmParams["permanenceInc"], 
        permanenceDecrement=tmParams["permanenceDec"], 
        predictedSegmentDecrement=0.0, 
        seed=HTMseed, 
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], 
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"] 
    ) 
    tm_info = Metrics([tm.numberOfCells()], 999999999) 
 
    # setup likelihood, these settings are used in NAB 
    anParams = parameters["anomaly"]["likelihood"] 
    print(len(records)) 
    probationaryPeriod = 
int(math.floor(float(anParams["probationaryPct"]) * len(records))) 
    learningPeriod = int(math.floor(probationaryPeriod / 2.0)) 
    CF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
                                        
historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
 
    PF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
                                        
historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
 
    AF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
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historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
 
    ZF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
                                        
historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
    SF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
                                        
historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
    TF_anomaly_history = 
AnomalyLikelihood(learningPeriod=learningPeriod, 
                                        
estimationSamples=probationaryPeriod - learningPeriod, 
                                        
historicWindowSize=len(records), 
                                        
reestimationPeriod=anParams["reestimationPeriod"]) 
 
    CF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
    PF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
    AF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
    ZF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
    SF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
    TF_predictor = Predictor(steps=[1, 5], 
alpha=parameters["predictor"]['sdrc_alpha']) 
 
    predictor_resolution = 1 
 
    # Iterate through every datum in the dataset, record the inputs 
& outputs. 
    CF_inputs = [] 
    PF_inputs = [] 
    AF_inputs = [] 
    ZF_inputs = [] 
    SF_inputs = [] 
    TF_inputs = [] 
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    CF_anomaly = [] 
    CF_anomalyProb = [] 
    CF_predictions = {1: [], 5: []} 
 
    PF_anomaly = [] 
    PF_anomalyProb = [] 
    PF_predictions = {1: [], 5: []} 
 
    AF_anomaly = [] 
    AF_anomalyProb = [] 
    AF_predictions = {1: [], 5: []} 
 
    ZF_anomaly = [] 
    ZF_anomalyProb = [] 
    ZF_predictions = {1: [], 5: []} 
 
    SF_anomaly = [] 
    SF_anomalyProb = [] 
    SF_predictions = {1: [], 5: []} 
 
    TF_anomaly = [] 
    TF_anomalyProb = [] 
    TF_predictions = {1: [], 5: []} 
 
    encoding_time = time.time() 
 
    A = SDR(registerEncoder.size) 
    B = SDR(registerEncoder.size) 
    C = SDR(registerEncoder.size) 
    D = SDR(registerEncoder.size) 
    E = SDR(registerEncoder.size) 
    F = SDR(flagEncoder.size) 
    G = SDR(flagEncoder.size) 
    H = SDR(flagEncoder.size) 
    I = SDR(flagEncoder.size) 
    J = SDR(flagEncoder.size) 
    K = SDR(flagEncoder.size) 
 
    prevPrediction = float('nan') 
 
    print("Prequential Evaluation") 
    print("Evaluating 1 target(s).") 
    print("Evaluating...\n") 
    for count, record in enumerate(records): 
        EIP = int(record[0],16) 
        EAX = int(record[1],16) 
        EBX = int(record[2],16) 
        ECX = int(record[3],16) 
        EDX = int(record[4],16) 
        CFLAG = int(record[5]) 
        PFLAG = int(record[6]) 
        AFLAG = int(record[7]) 
        ZFLAG = int(record[8]) 
        SFLAG = int(record[9]) 
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        TFLAG = int(record[10]) 
 
        CF_inputs.append(CFLAG) 
        PF_inputs.append(PFLAG) 
        AF_inputs.append(AFLAG) 
        ZF_inputs.append(ZFLAG) 
        SF_inputs.append(SFLAG) 
        TF_inputs.append(TFLAG) 
 
        if (count % 1000 == 0): 
            print ("Count: %s" % count) 
        # print("EIP\t\tEAX\t\tEBX\t\tECX\t\tEDX\t\tFlags:  C P A Z 
S T") 
        # print("%s %s %s %s %s \t\t%s %s %s %s %s %s" % 
(EIP,EAX,EBX,ECX,EDX,CFLAG,PFLAG,AFLAG,ZFLAG,SFLAG,TFLAG)) 
 
        # Call the encoders to create bit representations for each 
value.  These are SDR objects. 
        EIPBits = registerEncoder.encode(EIP) 
        EAXBits = registerEncoder.encode(EAX) 
        EBXBits = registerEncoder.encode(EBX) 
        ECXBits = registerEncoder.encode(ECX) 
        EDXBits = registerEncoder.encode(EDX) 
        CBits = flagEncoder.encode(CFLAG) 
        PBits = flagEncoder.encode(PFLAG) 
        ABits = flagEncoder.encode(AFLAG) 
        ZBits = flagEncoder.encode(ZFLAG) 
        SBits = flagEncoder.encode(SFLAG) 
        TBits = flagEncoder.encode(TFLAG) 
 
        A = EIPBits 
        B = EAXBits 
        C = EBXBits 
        D = ECXBits 
        E = EDXBits 
        F = CBits 
        G = PBits 
        H = ABits 
        I = ZBits 
        J = SBits 
        K = TBits 
 
        L = SDR(2 * registerEncoder.size).concatenate(A, B) 
#Concatenate EIP, EAX 
        M = SDR(3 * registerEncoder.size).concatenate(L, C) 
        N = SDR(4 * registerEncoder.size).concatenate(M, D) 
        O = SDR(5 * registerEncoder.size).concatenate(N, E) 
        P = SDR( (5 * registerEncoder.size) + 
(flagEncoder.size)).concatenate(O, F) 
        Q = SDR((5 * registerEncoder.size) + (2 * 
flagEncoder.size)).concatenate(P, G) 
        R = SDR((5 * registerEncoder.size) + (3 * 
flagEncoder.size)).concatenate(Q, H) 
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        S = SDR((5 * registerEncoder.size) + (4 * 
flagEncoder.size)).concatenate(R, I) 
        T = SDR((5 * registerEncoder.size) + (5 * 
flagEncoder.size)).concatenate(S, J) 
        # print("A= %s" % A) 
        # print("B= %s" % B) 
        # print("C= %s" % C) 
        # print("D= %s" % D) 
 
        encoding = SDR(encodingWidth).concatenate(T, K) 
        # print("encoded = %s" % encoding) 
        enc_info.addData(encoding) 
 
        # Create an SDR to represent active columns, This will be 
populated by the 
        # compute method below. It must have the same dimensions as 
the Spatial Pooler. 
        activeColumns = SDR(sp.getColumnDimensions()) 
 
        # Execute Spatial Pooling algorithm over input space. 
        sp.compute(encoding, True, activeColumns) 
        sp_info.addData(activeColumns) 
 
        # Execute Temporal Memory algorithm over active mini-
columns. 
        tm.compute(activeColumns, learn=True) 
        tm_info.addData(tm.getActiveCells().flatten()) 
        #print("Active Cells: %s" % tm.getActiveCells().flatten()) 
        # Predict what will happen, and then train the predictor 
based on what just happened. 
        CF_pdf = CF_predictor.infer(tm.getActiveCells()) 
        PF_pdf = PF_predictor.infer(tm.getActiveCells()) 
        AF_pdf = AF_predictor.infer(tm.getActiveCells()) 
        ZF_pdf = ZF_predictor.infer(tm.getActiveCells()) 
        SF_pdf = SF_predictor.infer(tm.getActiveCells()) 
        TF_pdf = TF_predictor.infer(tm.getActiveCells()) 
        for n in (1, 5): 
            if CF_pdf[n]: 
                CF_predictions[n].append(np.argmax(CF_pdf[n]) * 
predictor_resolution) 
            else: 
                CF_predictions[n].append(float('nan')) 
 
            if PF_pdf[n]: 
                PF_predictions[n].append(np.argmax(PF_pdf[n]) * 
predictor_resolution) 
            else: 
                PF_predictions[n].append(float('nan')) 
 
            if AF_pdf[n]: 
                AF_predictions[n].append(np.argmax(AF_pdf[n]) * 
predictor_resolution) 
            else: 
                AF_predictions[n].append(float('nan')) 
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            if ZF_pdf[n]: 
                ZF_predictions[n].append(np.argmax(ZF_pdf[n]) * 
predictor_resolution) 
            else: 
                ZF_predictions[n].append(float('nan')) 
 
            if SF_pdf[n]: 
                SF_predictions[n].append(np.argmax(SF_pdf[n]) * 
predictor_resolution) 
            else: 
                SF_predictions[n].append(float('nan')) 
 
            if TF_pdf[n]: 
                TF_predictions[n].append(np.argmax(TF_pdf[n]) * 
predictor_resolution) 
            else: 
                TF_predictions[n].append(float('nan')) 
 
        CF_anomalyLikelihood = 
CF_anomaly_history.anomalyProbability(CFLAG, tm.anomaly) 
        CF_anomaly.append(tm.anomaly) 
        CF_anomalyProb.append(CF_anomalyLikelihood) 
        CF_predictor.learn(count, tm.getActiveCells(), int(CFLAG / 
predictor_resolution)) 
 
        PF_anomalyLikelihood = 
PF_anomaly_history.anomalyProbability(PFLAG, tm.anomaly) 
        PF_anomaly.append(tm.anomaly) 
        PF_anomalyProb.append(PF_anomalyLikelihood) 
        PF_predictor.learn(count, tm.getActiveCells(), int(PFLAG / 
predictor_resolution)) 
 
        AF_anomalyLikelihood = 
AF_anomaly_history.anomalyProbability(AFLAG, tm.anomaly) 
        AF_anomaly.append(tm.anomaly) 
        AF_anomalyProb.append(AF_anomalyLikelihood) 
        AF_predictor.learn(count, tm.getActiveCells(), int(AFLAG / 
predictor_resolution)) 
 
        ZF_anomalyLikelihood = 
ZF_anomaly_history.anomalyProbability(ZFLAG, tm.anomaly) 
        ZF_anomaly.append(tm.anomaly) 
        ZF_anomalyProb.append(ZF_anomalyLikelihood) 
        ZF_predictor.learn(count, tm.getActiveCells(), int(ZFLAG / 
predictor_resolution)) 
 
        SF_anomalyLikelihood = 
SF_anomaly_history.anomalyProbability(SFLAG, tm.anomaly) 
        SF_anomaly.append(tm.anomaly) 
        SF_anomalyProb.append(SF_anomalyLikelihood) 
        SF_predictor.learn(count, tm.getActiveCells(), int(SFLAG / 
predictor_resolution)) 
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        TF_anomalyLikelihood = 
TF_anomaly_history.anomalyProbability(TFLAG, tm.anomaly) 
        TF_anomaly.append(tm.anomaly) 
        TF_anomalyProb.append(TF_anomalyLikelihood) 
        TF_predictor.learn(count, tm.getActiveCells(), int(TFLAG / 
predictor_resolution)) 
 
        #print("Count: %s" % count) 
 
    # Print information & statistics about the state of the HTM. 
    # print("Encoded Input", enc_info) 
    # print("") 
    # print("Spatial Pooler Mini-Columns", sp_info) 
    # print(str(sp)) 
    # print("") 
    # print("Temporal Memory Cells", tm_info) 
    # print(str(tm)) 
    # print("") 
    print("Shifting predictions") 
    # Shift the predictions so that they are aligned with the input 
they predict. 
    for n_steps, CF_pred_list in CF_predictions.items(): 
        for x in range(n_steps): 
            CF_pred_list.insert(0, float('nan')) 
            CF_pred_list.pop() 
 
    for n_steps, PF_pred_list in PF_predictions.items(): 
        for x in range(n_steps): 
            PF_pred_list.insert(0, float('nan')) 
            PF_pred_list.pop() 
 
    for n_steps, AF_pred_list in AF_predictions.items(): 
        for x in range(n_steps): 
            AF_pred_list.insert(0, float('nan')) 
            AF_pred_list.pop() 
 
    for n_steps, ZF_pred_list in ZF_predictions.items(): 
        for x in range(n_steps): 
            ZF_pred_list.insert(0, float('nan')) 
            ZF_pred_list.pop() 
 
    for n_steps, SF_pred_list in SF_predictions.items(): 
        for x in range(n_steps): 
            SF_pred_list.insert(0, float('nan')) 
            SF_pred_list.pop() 
 
    for n_steps, TF_pred_list in TF_predictions.items(): 
        for x in range(n_steps): 
            TF_pred_list.insert(0, float('nan')) 
            TF_pred_list.pop() 
 
 
    print("Calculating accuracies") 
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    # Calculate the predictive accuracy, Root-Mean-Squared 
    CF_accuracy = {1: 0, 5: 0} 
    CF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(CF_inputs): 
        for n in CF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = CF_predictions[n][idx] 
            if not math.isnan(val): 
                CF_accuracy[n] += (inp - val) ** 2 
 
 
    for n in sorted(CF_predictions): 
        CF_accuracy[n] = (CF_accuracy[n] / CF_accuracy_samples[n]) 
** .5 
        print("CF Predictive Error (RMS)", n, "steps ahead:", 
CF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("CF_anomaly Mean", np.mean(CF_anomaly)) 
    print("CF_anomaly Std ", np.std(CF_anomaly)) 
 
    # Calculate the predictive accuracy, Root-Mean-Squared 
    PF_accuracy = {1: 0, 5: 0} 
    PF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(PF_inputs): 
        for n in PF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = PF_predictions[n][idx] 
            if not math.isnan(val): 
                PF_accuracy[n] += (inp - val) ** 2 
                PF_accuracy_samples[n] += 1 
    for n in sorted(PF_predictions): 
        PF_accuracy[n] = (PF_accuracy[n] / PF_accuracy_samples[n]) 
** .5 
        print("PF Predictive Error (RMS)", n, "steps ahead:", 
PF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("PF_anomaly Mean", np.mean(PF_anomaly)) 
    print("PF_anomaly Std ", np.std(PF_anomaly)) 
 
    # Calculate the predictive accuracy, Root-Mean-Squared 
    AF_accuracy = {1: 0, 5: 0} 
    AF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(AF_inputs): 
        for n in AF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = AF_predictions[n][idx] 
            if not math.isnan(val): 
                AF_accuracy[n] += (inp - val) ** 2 
                AF_accuracy_samples[n] += 1 
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    for n in sorted(AF_predictions): 
        AF_accuracy[n] = (AF_accuracy[n] / AF_accuracy_samples[n]) 
** .5 
        print("AF Predictive Error (RMS)", n, "steps ahead:", 
AF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("AF_anomaly Mean", np.mean(AF_anomaly)) 
    print("AF_anomaly Std ", np.std(AF_anomaly)) 
 
    # Calculate the predictive accuracy, Root-Mean-Squared 
    ZF_accuracy = {1: 0, 5: 0} 
    ZF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(ZF_inputs): 
        for n in ZF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = ZF_predictions[n][idx] 
            if not math.isnan(val): 
                ZF_accuracy[n] += (inp - val) ** 2 
                ZF_accuracy_samples[n] += 1 
    for n in sorted(ZF_predictions): 
        ZF_accuracy[n] = (ZF_accuracy[n] / ZF_accuracy_samples[n]) 
** .5 
        print("ZF Predictive Error (RMS)", n, "steps ahead:", 
ZF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("ZF_anomaly Mean", np.mean(ZF_anomaly)) 
    print("ZF_anomaly Std ", np.std(ZF_anomaly)) 
 
    # Calculate the predictive accuracy, Root-Mean-Squared 
    SF_accuracy = {1: 0, 5: 0} 
    SF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(SF_inputs): 
        for n in SF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = SF_predictions[n][idx] 
            if not math.isnan(val): 
                SF_accuracy[n] += (inp - val) ** 2 
                SF_accuracy_samples[n] += 1 
    for n in sorted(SF_predictions): 
        SF_accuracy[n] = (SF_accuracy[n] / SF_accuracy_samples[n]) 
** .5 
        print("SF Predictive Error (RMS)", n, "steps ahead:", 
SF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("SF_anomaly Mean", np.mean(SF_anomaly)) 
    print("SF_anomaly Std ", np.std(SF_anomaly)) 
 
    # Calculate the predictive accuracy, Root-Mean-Squared 
    TF_accuracy = {1: 0, 5: 0} 



 

148 
 

    TF_accuracy_samples = {1: 0, 5: 0} 
 
    for idx, inp in enumerate(TF_inputs): 
        for n in TF_predictions:  # For each [N]umber of time steps 
ahead which was predicted. 
            val = TF_predictions[n][idx] 
            if not math.isnan(val): 
                TF_accuracy[n] += (inp - val) ** 2 
                TF_accuracy_samples[n] += 1 
    for n in sorted(TF_predictions): 
        TF_accuracy[n] = (TF_accuracy[n] / TF_accuracy_samples[n]) 
** .5 
        print("TF Predictive Error (RMS)", n, "steps ahead:", 
TF_accuracy[n]) 
 
    # Show info about the anomaly (mean & std) 
    print("TF_anomaly Mean", np.mean(TF_anomaly)) 
    print("TF_anomaly Std ", np.std(TF_anomaly)) 
 
    print("CF Accuracy: %s" % CF_accuracy) 
    #Plot the Predictions and Anomalies. 
    if verbose: 
        try: 
            import matplotlib.pyplot as plt 
        except: 
            print("WARNING: failed to import matplotlib, plots 
cannot be shown.") 
            return -CF_accuracy[5] 
 
        plt.figure(1) 
        plt.subplot(1, 1, 1) 
        plt.title("CARRY FLAG Accuracy") 
        plt.xlabel("LOC") 
        plt.ylabel("Accuracy") 
        plt.plot(np.arange(len(CF_accuracy[1])), CF_accuracy[1], 
'bs') 
        plt.legend(labels=('C Flag Accuracy')) 
        plt.show() 
 
        plt.figure(1) 
        plt.subplot(2, 1, 1) 
        plt.title("CARRY FLAG Predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("C Flag") 
        plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k:', 
                 np.arange(len(CF_inputs)), CF_predictions[1], 'bs', 
                 np.arange(len(CF_inputs)), CF_predictions[5], 
'green', linestyle='dashed', alpha=0.75) 
        plt.legend(labels=('C Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("CARRY FLAG Anomaly Score") 
        plt.xlabel("LOC") 
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        plt.ylabel("CARRY FLAG") 
        CF_inputs = np.array(CF_inputs) / max(CF_inputs) 
        plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k', 
                 np.arange(len(CF_inputs)), CF_anomaly, 'blue') 
        plt.legend(labels=('Input', 'CF_anomaly Score')) 
 
        plt.figure(2) 
        plt.subplot(2, 1, 1) 
        plt.title("CARRY FLAG Predictions") 
        plt.xlim(500, 600) 
        plt.xlabel("LOC") 
        plt.ylabel("C Flag") 
        plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k:', 
                 np.arange(len(CF_inputs)), CF_predictions[1], 'bs', 
                 np.arange(len(CF_inputs)), CF_predictions[5], 
'green', linestyle='dashed', alpha=0.75) 
        plt.legend(labels=('C Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("CARRY FLAG Anomaly Score") 
        plt.xlabel("LOC") 
        plt.ylabel("CARRY FLAG") 
        CF_inputs = np.array(CF_inputs) / max(CF_inputs) 
        plt.plot(np.arange(len(CF_inputs)), CF_inputs, '^k', 
                 np.arange(len(CF_inputs)), CF_anomaly, 'blue') 
        plt.legend(labels=('Input', 'CF_anomaly Score')) 
 
        plt.figure(3) 
        plt.subplot(2, 1, 1) 
        plt.title("PARITY FLAG Predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("PARITY FLAG") 
        plt.plot(np.arange(len(PF_inputs)), PF_inputs, '^k', 
                 np.arange(len(PF_inputs)), PF_predictions[1], 'bs', 
                 np.arange(len(PF_inputs)), PF_predictions[5], 
'green', linestyle='dashed', alpha=0.75) 
        plt.legend(labels=('P Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("PARITY FLAG Anomaly Score") 
        plt.xlabel("LOC") 
        plt.ylabel("P Flag") 
        PF_inputs = np.array(PF_inputs) / max(PF_inputs) 
        plt.plot(np.arange(len(PF_inputs)), PF_inputs, '^k', 
                 np.arange(len(PF_inputs)), PF_anomaly, 'blue', ) 
        plt.legend(labels=('Input', 'PF_anomaly Score')) 
        plt.show() 
 
        plt.subplot(2, 1, 1) 
        plt.title("AF_predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("A Flag") 
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        plt.plot(np.arange(len(AF_inputs)), AF_inputs, 'red', 
                 np.arange(len(AF_inputs)), AF_predictions[1], 
'blue', 
                 np.arange(len(AF_inputs)), AF_predictions[5], 
'green', ) 
        plt.legend(labels=('A Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("AF_anomaly Score") 
        plt.xlabel("LOC") 
        plt.ylabel("A Flag") 
        AF_inputs = np.array(AF_inputs) / max(AF_inputs) 
        plt.plot(np.arange(len(AF_inputs)), AF_inputs, 'red', 
                 np.arange(len(AF_inputs)), AF_anomaly, 'blue', ) 
        plt.legend(labels=('Input', 'AF_anomaly Score')) 
        plt.show() 
 
        plt.subplot(2, 1, 1) 
        plt.title("ZF_predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("Z Flag") 
        plt.plot(np.arange(len(ZF_inputs)), ZF_inputs, 'red', 
                 np.arange(len(ZF_inputs)), ZF_predictions[1], 
'blue', 
                 np.arange(len(ZF_inputs)), ZF_predictions[5], 
'green', ) 
        plt.legend(labels=('Z Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("ZF_anomaly Score") 
        plt.xlabel("LOC") 
        plt.ylabel("Z Flag") 
        ZF_inputs = np.array(ZF_inputs) / max(ZF_inputs) 
        plt.plot(np.arange(len(ZF_inputs)), ZF_inputs, 'red', 
                 np.arange(len(ZF_inputs)), ZF_anomaly, 'blue', ) 
        plt.legend(labels=('Input', 'ZF_anomaly Score')) 
        plt.show() 
 
        plt.subplot(2, 1, 1) 
        plt.title("SF_predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("S Flag") 
        plt.plot(np.arange(len(SF_inputs)), SF_inputs, 'red', 
                 np.arange(len(SF_inputs)), SF_predictions[1], 
'blue', 
                 np.arange(len(SF_inputs)), SF_predictions[5], 
'green', ) 
        plt.legend(labels=('S Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("SF_anomaly Score") 
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        plt.xlabel("LOC") 
        plt.ylabel("S Flag") 
        SF_inputs = np.array(SF_inputs) / max(SF_inputs) 
        plt.plot(np.arange(len(SF_inputs)), SF_inputs, 'red', 
                 np.arange(len(SF_inputs)), SF_anomaly, 'blue', ) 
        plt.legend(labels=('Input', 'SF_anomaly Score')) 
        plt.show() 
 
        plt.subplot(2, 1, 1) 
        plt.title("TF_predictions") 
        plt.xlabel("LOC") 
        plt.ylabel("T Flag") 
        plt.plot(np.arange(len(TF_inputs)), TF_inputs, 'red', 
                 np.arange(len(TF_inputs)), TF_predictions[1], 
'blue', 
                 np.arange(len(TF_inputs)), TF_predictions[5], 
'green', ) 
        plt.legend(labels=('T Flag', '1 Step Prediction, Shifted 1 
step', '5 Step Prediction, Shifted 5 steps')) 
 
        plt.subplot(2, 1, 2) 
        plt.title("TF_anomaly Score") 
        plt.xlabel("LOC") 
        plt.ylabel("T Flag") 
        TF_inputs = np.array(TF_inputs) / max(TF_inputs) 
        plt.plot(np.arange(len(TF_inputs)), TF_inputs, 'red', 
                 np.arange(len(TF_inputs)), TF_anomaly, 'blue', ) 
        plt.legend(labels=('Input', 'TF_anomaly Score')) 
 
 
        plt.show() 
    return -CF_accuracy[5] 
 
if __name__ == '__main__': 
    #main() 
    mem_usage = memory_usage(main) 
    print("HTM - Prequential - Size(kB): %4f" % (max(mem_usage) * 
1000)) 
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