
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

Reducing BitTorrent Download Time via Handshake-Based Reducing BitTorrent Download Time via Handshake-Based

Switching Switching

Elliotte Kim
Nova Southeastern University, elliotte_kim@hotmail.com

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item

NSUWorks Citation NSUWorks Citation
Elliotte Kim. 2020. Reducing BitTorrent Download Time via Handshake-Based Switching. Doctoral
dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Computing and
Engineering. (1113)
https://nsuworks.nova.edu/gscis_etd/1113.

This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Reducing BitTorrent Download Time via Handshake-Based Switching

by

Elliotte Kim

A dissertation submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy in Computer Science

College of Computing and Engineering

Nova Southeastern University

February 14, 2020

ii

An Abstract for a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Reducing BitTorrent Download Time via Handshake-Based Switching

by

Elliotte Kim

February 2020

Peer-to-peer networking overcomes the single point of failure and bandwidth limitations

inherent to the centralized server model of file-sharing. It is both a popular means of

sharing digital content and a major consumer of internet traffic, with BitTorrent being the

most-used protocol. As such, significant research has gone into improving peer-to-peer

performance in order to reduce both download times and networking costs. One aspect

that can affect performance is the client’s selection of peers to download from, as the

time spent downloading from even a single poor-performing peer can impact the overall

download duration.

A recent peer selection strategy explored having a client use historical knowledge

acquired through third-party sources, as well as its own first-hand experience with

previously visited peers, as a means of selecting likely good-performers, coupled with a

peer switching strategy that replaced peers whose post-selection downloads exhibited

poor performance contrary to what historical knowledge suggested in order to limit the

time spent downloading from said poor-performers Though this tactic demonstrated

reduced download times compared to various past works, it still suffered from poor peer

selection due to its historical knowledge not necessarily reflecting the current state of the

peers.

This work introduced and examined an enhancement to this hybrid peer selection and

switching strategy by adding current intelligence regarding a peer’s available bandwidth,

all the while avoiding the additional network costs associated with performing on-the-fly

probing or querying techniques utilized by other peer selection strategies to benchmark

prospective peers. With such on-the-fly knowledge about a peer’s current bandwidth

availability, this new enhanced strategy quickly replaced poor performers without waiting

for downloads to be performed and subsequently benchmarked, resulting in reduced

overall peer-to-peer download times.

The results of adding this pre-download peer switching enhancement demonstrated

improved download performance, particularly in early file transfer runs. However, as

more runs occurred and the benefits of the original strategy’s historical knowledge

became more pronounced, the time savings gained from this new enhancement

diminished.

iii

Acknowledgements

First, I would like to thank all my professors at Nova Southeastern University, whose

classes helped expand my range of knowledge and improve my research and writing

skills. In particular, I wish to thank:

 Dr. Gregory Simco, my supervisor, for all the guidance, feedback, and advice you

have provided me regarding this dissertation. The idea for my research was

conceived from one of your class assignments. I learned so much from you, and

that experience helped make the rest of my doctoral studies so much easier.

 Dr. Francisco Mitropoulos and Dr. Sumitra Mukherjee, for always teaching your

classes with such gusto and for serving on my dissertation committee. Your input

has been invaluable to me.

Next, there are a number of people from the Massachusetts Institute of Technology that

helped start me on this journey that I must thank:

 Myron “Fletch” Freeman, Dr. Duane Boning, and Dr. Eric Grimson, for providing

me with that initial opportunity at EECS. You made my dream of MIT possible

and gave me the flexibility to pursue it. I will forever be grateful to you all.

 Dr. Jim Bales, for always being available to give me advice and encouragement.

Thank you for continuing to be a sounding board for me, including on this work,

well after I was your student.

 Ayida Mthembu and Donna Friedman, for being the best deans I could ever ask

for. You always looked out for my well-being and made sure I not only survived,

but also flourished in my academic pursuits.

 Dr. Megumi Ando, for going above and beyond any other TA I have ever met. I

could not have survived MIT without you. You inspired me to pursue a doctorate,

and continue to inspire me to this day.

Finally, I would like to thank my friends and family for all their love and support over the

years. None of this would have been possible without them.

iv

Table of Contents

Abstract ii

List of Figures vi

List of Tables vii

Chapters

1. Introduction 1

 Background 2

 Problem Statement 5

 Research Goal 8

 Relevance and Significance 10

 Barriers and Issues 11

 Summary 12

2. Brief Review of the Literature 14

 Introduction 14

 Random-Based Peer Selection 14

 Parallel Downloads 15

 Peer-Switching Strategies 16

 Random Chunk-Based Switching 16

 Time-Based Switching 17

 Choke-Based Switching 18

 Other Peer Selection Strategies 18

 Peer Probing-Based Selection 19

 HP Algorithm 19

 Query-Based Selection 20

 Yasu & Bing’s Traceroute-Based Selection 20

 Historical Knowledge-Based Selection 21

 Varvello and Steiner’s Traffic-Localizing Selection 21

 Hybrid Strategies 22

 Adaptive and Efficient Peer Selection 22

 Hays & Simco’s Peer Selection 24

 Summary 27

3. Methodology 29

 Introduction 29

 Premise 30

v

 Handshaking-Based Peer Switching 31

 Handshake Switching-Enhanced Hays & Simco 35

 Simulation Environment 38

 Simulated Download 39

 Simulated Peers 40

 Simulated Client 42

 Simulation Trials 43

 Performance Evaluation 45

 Simulation Validation 46

 Results 47

 Conclusion 47

4. Results 48

 Introduction 48

 Simulation Validation 49

 Findings 54

 Summary of Results 56

5. Conclusions 58

 Conclusions 58

 Implications 59

 Future Work 60

 Summary 61

References 64

vi

List of Figures

Figures

1(a) Example of SpeedTest detecting upload speed of almost 20 Mbps 5

1(b) Almost 11 Mbps upload from same PC running BitTorrent running 5

2 Example of PC from Figure 1 with 50 Kbps BitTorrent upload throttle 6

3 Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy 9

4 Lifecycle of a peer-to-peer connection using proposed strategy 9

5 Lifecycle of a peer-to-peer connection using random-based peer selection 15

6 Lifecycle of a peer-to-peer connection using chunk-based peer switching 16

7 Lifecycle of a peer-to-peer connection using time-based peer switching 17

8 Lifecycle of a peer-to-peer connection using choke-based peer switching 18

9 Lifecycle of a peer-to-peer connection using HP probe-based peer selection 19

10 Lifecycle of a peer-to-peer connection using Ying & Basu’s peer selection 20

11 Lifecycle of a peer-to-peer connection using Varvello & Steiner’s peer selection 21

12 Lifecycle of a peer-to-peer connection using AEPS 23

13 Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy 24

14 Hays & Simco’s Advanced Knowledge-Based Peer Selection Strategy 25

vii

15 Lifecycle of a peer-to-peer connection using Handshake-based peer switching 33

16 Lifecycle of Handshake-Enhanced Hays & Simco peer-to-peer connection 36

17 Handshake-enhanced Hays & Simco Strategy 37

18 Console output for a random selection w/ time-based switching trial 49

19 Random selection and Hays & Simco w/ time or choke switching DL times 53

20 Results for Hays & Simco w/ time, choke, and handshake-based switching 56

viii

List of Tables

Tables

1 Random selection w/ time-based switching DL times for first 10 trials 50

2 Random selection w/ choke-based switching DL times for first 10 trials 51

3 Hays & Simco w/ time-based switching DL times for first 10 trials 51

4 Hays & Simco w/ choke-based switching DL times for first 10 trials 51

5 Random selection and Hays & Simco w/ time, choke switching average DL time 52

6 Handshake-enhanced Hays & Simco DL times for first 10 trials 54

7 Hays & Simco w/ time, choke, and handshake-based switching average DL times 55

1

Chapter 1

Introduction

Reducing the impact of poor-performing peers can result in faster peer-to-peer file

downloads (Ren, Liu, Zhou, Tang, Ci & Wang, 2013). The recently developed Hays &

Simco (2017) hybrid peer selection and peer switching strategy demonstrated shorter

download times compared to other prior works by coupling advanced knowledge, used to

avoid selecting potential poor-performers, with a choke, used to limit the impact of actual

poor-performers selected.

This work details the creation and subsequent testing of a new peer-switching

enhancement that, when coupled with Hays & Simco’s strategy, further reduced overall

BitTorrent download times. It accomplished this by providing the client with on-the-fly

bandwidth performance data about peers, without incurring the additional network

overhead typically inherent to the gathering of such information for other peer selection

(Hsiao et al., 2011; Li, 2012; Ying & Basu, 2006) or peer switching strategies (Chiu &

Eun, 2008; Lehrfeld & Simco, 2010). In so doing, the added download efficiency

achieved from this work can save more time for consumers and cut more costs for both

consumers and ISPs alike.

The remainder of this chapter provides background regarding this paper’s

research, as well as describes the problems that this work attempted to solve and the

issues that it had to contend with. Chapter 2 provides a review of literature that covers

Hays & Simco’s work, as well as other relevant prior techniques researched. Chapter 3

describes the premise and methodology this research used for augmenting Hays &

2

Simco’s strategy. It also outlines the simulation environment used to conduct

experiments, as well as success criteria. Chapter 4 provides the test results that both

validated the simulation environment and affirmed this work’s goal of having its new

enhanced strategy achieve reduced overall download times compared to Hays & Simco’s

original approach. Based on these observed results, Chapter 5 details the conclusions

drawn from this paper’s research, including the strengths and weaknesses of the enhanced

Hays & Simco strategy. Chapter 5 also discusses what other peer-to-peer strategies could

benefit more from this work’s enhancement than Hays & Simco’s hybrid strategy.

Background

With the scalability, redundancy, and failover that it provided, peer-to-peer

networking became a popular distributed application architecture, used for such purposes

as file-sharing, instant messaging, content delivery, and even digital crypto-currencies. A

significant portion of internet traffic has been attributed to peer-to-peer communications,

with file-sharing via the BitTorrent protocol making up a majority of this activity

(Schulze & Mochalski, 2009).

Unlike the traditional client-server networking model, which consists of clients

communicating solely with a central server, peer-to-peer networking is comprised of

peers that can share their resources directly with each other. A peer can act as both client

and server simultaneously, requesting resources from others while offering out what

resources it has at the same time (He, Dong, Zhao, Wang & Qiang, 2016).

Peer-to-peer has 2 major advantages over traditional client-server: scalability and

robustness. In the client-server model, adding more clients causes resource contention by

3

dividing up the server’s network bandwidth, thus making each client’s download time

longer. But peer-to-peer networking can overcome said bottleneck, having the client

download different pieces of the desired fire from various peers simultaneously and

assemble them together. This allows a client to aggregate, to the limits of its own

download capabilities, the service capacities of the various peers it communicates with

(Lua, Crowcroft, Pias, Sharma & Lim, 2005), rather than strictly compete with others

clients for a single server’s resources (Chiu, 2010). As such, so long as the client has not

saturated it download bandwidth, adding more peers that can contribute their respective

upload bandwidths in order to utilize the client’s available download bandwidth can

actually improve file transfer performance (Qiu & Srikant, 2004).

For example, in the traditional client-server model where the client has a 50 Mbps

connection and the server has a 20 Mbps connection, at best the download rate the client

can achieve would be 20 Mbps, less so if said server is sharing its bandwidth with other

clients. However, in the peer-to-peer model, a client could, for example, download from

100 peers simultaneously, each with a 1 Mbps connection. Even if only half of each

peer’s bandwidth is available, this would allow the client to achieve an aggregate

download rate of 50 Mbps and take full advantage of its download bandwidth.

Peer-to-peer network performance, typically measured from the client’s

perspective by how long it takes to download a file, is impacted by various factors,

including the service capacities of both client and peer’s respective internet connections,

the number of network hops between client and peer, physical distance, contention for a

peer’s bandwidth by other clients, even peer-to-peer specific bandwidth throttling

enforced by either the ISP or the peer itself.

4

A peer suffering from a slow internet connection, high latency, or heavy network

contention may be a poor-performer to download from (Xie, Yang, Krishnamurthy, Liu

& Silberschatz, 2008). Unfortunately, peer-to-peer systems are prone to poor peer

selection, since they operate at the application layer (Hays & Simco, 2017), constructing

overlaying network topology instead of having the underlying network topology

information available. Poor peer selection can make peer-to-peer networks less efficient

(Magharei, Rejaie, Rimac, Hilt & Hofmann, 2014), hampering clients with longer

download times (Ren, Liu, Zhou, Tang, Ci & Wang, 2013). As such, significant research

has gone into trying to reduce the impact of poor-performing peers and improve peer

selection.

Some performance-improving techniques researched, described in the next

chapter, probed peers to gauge their data transfer performance or performed queries that

measure the latency between client and peer in order to prune potential poor-performers

that demonstrated low available bandwidth or high network latency (Li, 2012; Hsiao, Hsu

& Miao, 2011), Such techniques helped clients make better-informed decisions regarding

which peers to select, though at the cost of introducing additional network overhead in

performing such on-the-fly probes or queries on top of the time spent establishing a peer-

to-peer connection and performing the download. As such, on-the-fly intelligence-

gathering approaches involved a trade-off, ideally cutting more download time by

providing better-performing peers than the cost added in collecting said information.

The work of Hays and Simco (2017) explored using prior knowledge for selecting

peers. In this strategy, historical service capacity and network locality data, collected in

advance and stored locally to the client so as to avoid the additional on-the-fly network

5

overhead associated with peer-probes or infrastructure-queries that could eat into

performance, were used to make better-informed decisions in selecting peers, while a

peer switching technique was employed to limit the impact of poor-performers that got

through peer-selection by replacing them after observing their download performance

firsthand.

Problem Statement

Hays and Simco’s advanced knowledge-based peer selection strategy attempted to

predict the service capacity and locality of peers by using historical information collected

in advance and stored locally to the client. However, this approach still suffered from

poor peer selection caused by incomplete or out-of-date information that no longer

reflected the current state of a peer’s performance, resulting in longer download times.

Figure 1: (a) Example of SpeedTest detecting upload speed of almost 20 Mbps.

 (b) Almost 11 Mbps upload from same PC with BitTorrent running.

The upload speed data gathered by OOKLA’s web-based SpeedTest utility did

not reflect any peer-to-peer specific bandwidth throttling limits that were configured on a

peer itself. For example, in Figure 1a, the home cable modem connection for a user

6

supported upload speeds of about 20 Mbps, as measured by SpeedTest. However, as

illustrated in Figure 2, the user could have configured his or her Vuze BitTorrent

application to limit uploads to only 50 Kbps. In this example, the 20 Mbps service

capacity as detected by SpeedTest could have led advanced knowledge peer selection to

conclude that this node was likely a good candidate, whereas in reality the 50 Kbps

throttling limit set on the BitTorrent application might have made this one a poor choice.

Figure 2: Example of PC from Figure 1 with 50 Kbps BitTorrent upload throttle.

Since a peer’s available bandwidth depends on the utilization demands of all the

other applications that share its network connection, changes in these demands may not

be reflected in historical knowledge. For example, SpeedTest data regarding a node’s

bandwidth capacity could have been gathered when there were no other networking

demands made on it (see Figure 1a), yet at the moment a client wanted to select said node

as a peer for downloading, it could have already been uploading to multiple other

BitTorrent clients (see Figure 1b). Even a peer with high service capacity when under no

load could end up being a poor-performer if it was already under heavy network

contention (Bolliger, Gross, & Hengartner, 1999).

Chunk-based peer switching, discussed in the next chapter, helped reduce the

impact of poor-performing peers by limiting the amount of time a client spent with any

7

poor-performing peers that might have been picked by whatever peer-selection strategy

was leveraged, rather than having the client maintain slow download connections with

poor-performers until the entire file was transferred (Lehrfeld & Simco, 2010). Chunk-

based switching built on top of time-based switching’s practice of replacing selected peer

every 5 minutes regardless of performance by adding bandwidth benchmarking and

replacement of selected peers that did not meet some threshold transfer rate that occurred

every minute. As such, choke-based switching retained the benefits of time-based

switching, but achieved performance gains by potentially identifying selected poor-

performing peers and replacing them after only 1 to 4 minutes instead of replacing all

peers after 5 minutes (Chiu & Eun, 2008; Lehrfeld & Simco, 2010).

However, peer-switching strategies still entailed potentially spending time

downloading from poor-performers prior to their replacement. Furthermore, it was

possible for a replacement peer to be a worse performer than the one switched out, as this

depended on the peer-selection strategy used to select said replacement. In the case of

Hays & Simco’s approach (2017), given that the historical knowledge it drew upon for

initial peer selection was, as mentioned above, susceptible to out-of-date or incorrect

intelligence, so too was subsequent peer selection invoked in replacing poor-performers.

For example, a prospective peer’s network load could have increased due to higher

demand from other clients, or its throttling settings could have been enabled or changed.

As such, under Hays & Simco, a poor-performing peer could become switched out for a

false positive, a peer that historical knowledge suggested was a high-capacity peer, but

was currently a poor-performer.

8

Furthermore, since the SpeedTest data did not reflect a peer’s current bandwidth

utilization or throttling settings, Hays and Simco’s approach (2017) suffered from some

of its initial selection and replacement peers being unwitting poor-performers, with

realized transfer rates differing significantly from what prior knowledge suggested. In

such a scenario, while prior knowledge was useful in identifying past poor performers to

consider avoiding, the list of peers initially thought to be good performers could have

actually contained a number of false positives.

Research Goal

This research set out to improve upon the hybrid advanced knowledge-based peer

selection and choke-based peer-switching strategy researched by Hays and Simco (2017).

Like the original, this new approach collected and locally-stored prior knowledge about

peer service capacity and network locality from such historical data sources as OOKLA’s

SpeedTest and MaxMind’s GeoLite ISP-mapping databases. This intelligence was

gathered in order to reduce and sort the list of available peers down to a ranked list of

potential good performers for selection, establish connections to and download from

selected peers, and update its prior service capacity knowledge with observed download

performance for subsequent re-ranking. Periodic replacement of the worst-performing

peers with potentially better ones was also conducted (see Figure 3 below).

9

Figure 3: Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy.

However, unlike the original, this new strategy incorporated on-the-fly

performance information about candidate peers to further prune those deemed likely

poor-performers. As such, it gained the benefits of peer-probing, accounting for such peer

service capacity factors as current network load and bandwidth throttling limits that

would otherwise not have been accounted for by advanced knowledge historical data

alone.

Figure 4: Lifecycle of a peer-to-peer connection using proposed strategy.

Furthermore, as shown in Figure 4, said information was provided by the peer to

the client during the connection-establishment or handshaking phase of the client-peer

connection lifecycle, rather than after the connection was already established and some

amount of downloading was performed, as was the case with both peer-switching

strategies and bandwidth-benchmarking peer-probing strategies.

10

In keeping with the goals of the original work, this research avoided adding

additional network overhead in gathering the on-the-fly performance information by

leveraging BitTorrent network activity already inherent to Hays and Simco’s approach.

By adding the benefits of peer-probing to Hays and Simco’s strategy at an earlier

stage in the peer connection lifecycle, this research aimed to further reduce the peer-to-

peer download times yielded by its predecessor by facilitating the pruning of poor-

performers without waiting for downloads to be subsequently performed and

benchmarked.

Relevance and Significance

 Taking up over 20% of the world’s network utilization (Bindal, Cao, Chan,

Medved, Suwala, Bates & Zhang, 2006), BitTorrent became a leading consumer of

internet traffic (Schulze et al., 2009). With people sharing files that easily hit gigabyte

sizes and BitTorrent having such a large audience (“BitTorrent and µTorrent”, 2012),

improving peer selection could make downloads more efficient by having clients connect

to peers that would reduce cross-ISP traffic and provide higher data transfer rates, thus

reducing costs for ISPs while saving time for consumers.

 Peer probing-based selection likely provided the most accurate information about

a peer’s immediate performance. By establishing a download connection and transferring

some probing data from the peer, whether it was generic benchmarking packets whose

intervening time gaps were measured (Hsiao et al., 2011) or a chunk of the desired file

itself whose download completion time was denoted, (Li, 2012), the client could gauge

the peer’s current transfer rate. This measurement specified the probe’s immediate

11

download performance, which reflected ISP line capacity, distance and latency,

utilization, and throttling. However, since a probe was itself a data download, its

completion time was also subject to the transfer performance between client and peer. As

such, probing a poor-performing peer to gauge its download performance would take

longer to complete than for a high-performing one.

Hays & Simco’s (2017) advanced knowledge peer selection strategy avoided

adding on-the-fly network overhead by relying on locally-stored historical information.

While such data could account for locality and past service capacity, it failed to consider

such transient factors as current peer network contention, where the peer could, for

example, have much more of its present upload capacity allocated to other clients

compared to when the historical data from SpeedTest’s assessment or the client’s

previous observation was recorded, and user-configured throttling, where SpeedTest’s

benchmarking was not hampered by bandwidth-limits set on BitTorrent-specific network

traffic, which could result in poor peer selection.

By taking advantage of current peer download performance information provided

during the handshake phase of the connection lifecycle, the client did not need to wait for

downloads to be performed in order to benchmark and subsequently prune poor-

performing peers, resulting in faster downloads

Barriers and Issues

Knowledge acquisition about peers has typically incurred a cost, generally in the

form of additional network overhead. This overhead could take the form of pings,

traceroutes, peers probes, and network infrastructure lookups. Despite providing

12

intelligence that could improve peer selection and decrease download times, such

overhead could cut into some of this time savings.

Hays & Simco’s strategy addressed this overhead issue by moving the

intelligence-gathering cost from when a peer-to-peer download actually occurred to a

point in time beforehand and stored this information locally. However, mistakes could

arise as such advanced knowledge failed to account for the here and now.

As Hays & Simco (2017) noted, it was difficult, if not impossible, to test peer

selection strategies in the real world. Either a BitTorrent application needed to be

modified or a new one created that utilized the proposed strategy. It then needed to be

deployed to multiple computers across the internet. Files-sharing performance needed to

be tested, yet the system had to be isolated to avoid contamination of experiments from

the outside. A consistent environment was important for scientific testing and evaluation,

making the internet a difficult setting to conduct experiments in (Hays & Simco, 2017).

As such, a simulation environment was needed, capable of representing peers

with diverse conditions, such as varying ISP service capacities, network utilization loads,

and possible network throttling.

Summary

This research set out to improve upon the hybrid advanced knowledge-based peer

selection and choke-based peer switching strategy developed by Hays & Simco (2017),

with the end goal of further reduced download times in peer-to-peer networks. It

accomplished this by pruning selected poor-performing peers before downloading even

commenced. By taking advantage of network activity that was already inherent in

13

BitTorrent using the original Hays & Simco strategy in order to gain on-the-fly peer

performance information, this research’s enhanced version avoided overhead costs that

could have otherwise cut into any time savings gained.

14

Chapter 2

Brief Review of the Literature

Introduction

 Since 1999, when Napster first popularized their use, peer-to-peer networks have

become one of the most prominent ways of sharing content across the internet (Grizzard

et al., 2007), accounting for 43% to 70% of world-wide network traffic, depending on the

location. Of this activity, BitTorrent has been the most popular protocol (Schulze et al.,

2009), ranging between 15 million and 27 million active nodes daily (Wang &

Kangasharju, 2013) and over 150 million users each month (“BitTorrent and µTorrent”,

2012). Even Microsoft integrated into Windows 10 a peer-to-peer client for receiving and

sharing operating system updates and software patches (Newman, 2015), thus increasing

the use of peer-to-peer technology by another 500 million active devices (Bott, 2017).

Considering the prevalence of peer-to-peer applications, it is no surprise that

much research has gone into improving and mitigating peer selection, as even a single

peer could influence the overall performance of a file-share, ultimately impacting the

client’s time spent waiting for a download to complete (Ren et al., 2013).

Random-Based Peer Selection

In random peer selection, the client would indiscriminately choose a peer to

connect to from a list of those available that host the desired file, handshake with said

chosen peer to establish a connection, and download the file, as depicted in Figure 5.

15

Since this approach was robust and simple to implement (Traverso et al, 2015), it became

the most commonly-used selection strategy (Sherman, Nieh & Sten, 2009).

Figure 5: Lifecycle of a peer-to-peer connection using random-based peer selection

However, since the random selection strategy did not do anything to reduce the

chance of picking poor-performing peers, using said approach often resulted in slow

downloads. Because of this, most peer-to-peer applications using random selection

improved on their performance by complementing the strategy with such techniques as

parallel downloading or peer-switching in order to reduce the time spent downloading

from poor-performing peers (Magharei, Rejaie, Rimac, Hilt & Hofmann, 2014).

Parallel Downloads

Parallel downloading entailed the client connecting to multiple peers

simultaneously in order to download a file, thereby aggregating the collective available

upload bandwidths of each connected peer to the limit of what the client’s own download

bandwidth was able to accommodate. Said file was divided into chunks, one equally-

sized chunk per connected peer.

For example, in the case of five connected peers each chosen by random peer

selection, a 1000 MB file was divided into five 200 MB chunks that the client

downloaded from each peer simultaneously. As such, how long the overall download

took to complete was determined by the time spent retrieving a chunk from the slowest

connected peer (Chiu & Eun, 2008).

16

Peer-Switching Strategies

Peer switching, on the other hand, involved the replacement of a peer after it was

already selected, a connection was established, and some amount of file transfer was

performed. The selection of a replacement peer generally called for the same strategy

used in the initial peer selection to be leveraged again.

Furthermore, peer switching strategies could be performed in conjunction with

parallel downloading. As such, a client could, for example, initially have selected 10

peers to download from simultaneously, and replaced one or more of those peers along

the way, depending on criteria that was set by the peer switching strategy used.

Random Chunk-Based Switching

Like parallel downloading, the random chunk based-switching strategy divided a

file into equally-sized chunks. In this case, however, numerous small chunks were

produced. The client downloaded each chunk individually and sequentially, with each

chunk assigned to a randomly-selected peer (Chiu & Eun, 2008). As illustrated in Figure

6, the cycle of peer selection, handshaking, chunk downloading, and peer switching was

repeated until the entire file was downloaded.

Figure 6: Lifecycle of a peer-to-peer connection using chunk-based peer switching

 Since chunks were intentionally small in size, the time spent with a particular

peer was limited, hopefully keeping the impact of poor-performing peers to a minimum.

17

However, a particularly poor-performing peer could still result in a chunk taking a long

time to download (Chiu & Eun, 2008).

Time-Based Switching

Time-based switching used the time spent downloading from a selected peer

rather than the completion of a chunk download as the basis for a peer switching strategy

(Chiu & Eun, 2008). As show in Figure 7, the client selected a peer to download from

and established a download connection. After retrieving as much of the desired file as

possible within a five minute span of time, the client dropped the peer and selected a new

one to continue downloading from. This process was repeated until the entire file was

retrieved.

Figure 7: Lifecycle of a peer-to-peer connection using time-based peer switching

Compared to chunk-based switching, time-based switching reduces the effect of a

poor-performing peer by limiting its impact to a 5 minute download window instead of

waiting for a chunk to complete, which could take longer. As such, time-based switching

has demonstrated shorter download times (Chiu & Eun, 2008). However, it is still

possible for a selected peer to transfer very little data during its allotted five minute

connection.

18

Choke-Based Switching

Choke-based switching (see Figure 8 below) took the time-based switching

strategy a step further by allowing peer connections to be dropped ahead of their

allocated durations. The realized rate of transfer between client and peer was compared to

some calculated choking threshold value. Every minute, download rates were checked.

Peers that did not meet said threshold were subsequently dropped and replaced with

newly-selected ones (Lehrfeld & Simco, 2010).

Figure 8: Lifecycle of a peer-to-peer connection using choke-based peer switching

By further reducing the time spent with poor-performing peers, the time-based

switching strategy augmented with choke-based switching demonstrated faster

downloads than time-based switching alone (Lehrfeld & Simco, 2010). A slow peer’s

individual impact could be confined to a single minute rather than five, though the

selection strategy used could still end up replacing a peer with another poor-performer.

Other Peer Selection Strategies

Various types of peer selection strategies have been developed, intent on

outperforming the download performance of random selection. Parallel downloading

became a mainstay for any peer-to-peer application. Some selection strategies benefitted

from peer-switching, either by working in conjunction with a replacement strategy or by

incorporating some aspect of peer-switching into their peer selection behavior. Still other

19

selection strategies relied on using historical knowledge or other intelligence-gathering

methodologies in order to weed out poor-performing peers or limit their impact.

Peer Probing-Based Selection

Selection strategies that performed bandwidth-benchmarking downloads or

probes on candidate peers for on-the-fly performance information could help clients

make better informed decisions regarding which peers to share from, resulting in faster

downloads.

HP Algorithm

Figure 9: Lifecycle of a peer-to-peer connection using HP probe-based peer selection

The High-capacity Peer (HP) algorithm was an example of a peer probing-based

peer strategy that combined peer selection with a form of chunk-based switching (Li,

2012). HP probed available peers to determine their respective throughputs. It

accomplished this by establishing a download connection and requesting a file chunk

from each available peer in order to gauge transfer performance. Once these probes were

completed and high-capacity peers were identified, the remaining chunks were

downloaded from the selected good-performing peers while poor-performing peers were

pruned, as shown in Figure 9.

HP did not guarantee reduced download times compared to random selection.

Case in point, a file could be so small that there are as many available peers as there are

20

chunks, resulting in all file chunks being received during the probing process (Li, 2012).

HP was arguably more a peer switching algorithm rather than a peer selecting one, since

a peer was dropped from further use only after a chunk of the desired file had already

been downloaded from it. No peer pruning was conducted prior to initiating chunk

downloads from each peer due to probes. Additionally, on its own, HP did not account

for any drop in a selected peer’s download performance that could occur after the probing

phase was completed, meaning that a client could have end up spending much of its time

downloading from poor-performing peers without a switching strategy accompanying it.

Query-Based Selection

 Various selection strategies leveraged on-the-fly queries to peers or networking

infrastructure in order to ascertain such download performance characteristics as locality

and latency for selecting peers.

Ying & Basu’s Traceroute-Based Strategy

Figure 10: Lifecycle of a peer-to-peer connection using Ying & Basu’s peer selection

Researchers from the University of Alberta proposed a query-based peer selection

algorithm that leveraged traceroute, a popular tool used to map out network topology,

detect and diagnose routing problems, and describe the path, the number of hops, and the

round-trip time (RTT) for each hop between two devices on the internet (Mao, Rexford,

Wang & Katz, 2003). In this approach, the client coordinated with a tracker to obtain a

list of peers to connect from. Using traceroute information collected from every peer,

21

candidates with RTTs and hop counts larger than some maximal threshold value were

removed from the list (Ying & Basu, 2006).

This traceroute query phase helped the selection phase of the lifecycle (see Figure

10) prune peers that had high latency or were located far away from the client prior to

establishing download connections with them. However, this strategy could still select

poor-performing local, low-latency peers with low bandwidth availability, as well as

introduce additional network overhead in conducting traceroute queries to candidate

peers, which could become appreciable when the list of available peers was large.

Historical Knowledge-Based Selection

 While probe and query-based peer selection strategies attempted to gain on-the-

fly knowledge about peers in order to weed out and replace selected poor-performers,

some strategies leveraged prior knowledge in order to eliminate peers before any

connection attempt to them was even initiated.

Varvello and Steiner’s Traffic-Localizing Selection

Figure 11: Lifecycle of a peer-to-peer connection using Varvello & Steiner’s peer selection

Bell Labs’ Varvello and Steiner (2011) explored a historical-knowledge-based

traffic-localizing strategy using MaxMind’s GeoLite database for peer selection (see

Figure 11). The benefit of having the client identify and download from localized peers

22

(peers that share the same ISP as the client) was that there was no cross-ISP traffic

involved in their interaction, which generally resulted in fewer network hops, less

latency, and avoidance of inter-ISP throttling (Pacifici, Lehrieder & Dán, 2016). As such,

localized peers were likely better performers for the client and a cheaper cost to the ISPs.

In their approach, a single client created 256 distinct logical entities that joined a

peer-to-peer network. Called sybils, these entities were assigned node IDs close in

proximity to the desired file’s info hash. By taking advantage of BitTorrent’s distributed

hash table (DHT) network topology, sybils were always made aware of those peers

hosting the file, as well as any requesting it. Using the GeoLite data to look up ISPs from

IP addresses, sybils could choose to work only with localized peer-sets. If too few

existed, external peers could also be included (Varvello & Steiner, 2011).

While the prior knowledge used by this strategy could ensure that localized peers

were prioritized for selection by the client, it did not guarantee that selected peers were

good-performers. On its own, the strategy did not account for the latency or available

upload bandwidth of those selected peers.

Hybrid Strategies

 Some peer selection strategies utilized multiple features from the approaches

mentioned earlier, combining their respective benefits to improve download performance.

Adaptive and Efficient Peer Selection

Adaptive and Efficient Peer Selection (AEPS) used a query-rank-then-probe

model (Hsiao et al., 2011). The client sent a query to each of the candidate peers and

23

waited for their reply, measuring the round-trip time for each. Peers were rank based on

those results, giving priority to candidates with the smallest RTT values. Priority

candidates were then probed for their available bandwidth (ABW) verification by having

each send some number of generic data packets to the client. The client measured the

time gaps between the probe packets it received from a peer and used that to calculate its

available bandwidth. AEPS selected those peers that meet a certain threshold (see Figure

12).

Figure 12: Lifecycle of a peer-to-peer connection using AEPS

Though AEPS outperformed methods that were solely random-based, RTT-based,

or ABW-based (Hsiao et al., 2011), it did introduce additional network overhead by

measuring RTT from a large list of initial peer candidates and by performing ABW

verification probes. Since every available peer was queried for their RTT in order to

prune candidates, a candidate-rich environment resulted in the client sending messages to

and waiting for responses from numerous peers. Furthermore, ABW verification probes

could run slowly, particularly when gauging peers with good round-trip times but little

available bandwidth throughput. And, like the HP Algorithm, on its own, AEPS did not

account for changes in download performance. Should a selected peer’s transfer rate

decline after the probing phase, the client could end up being stuck connected to poor-

performer.

24

Hays and Simco’s Peer Selection

Figure 13: Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy.

Like Varvello & Steiner’s historical knowledge-based strategy, the research by

Hays and Simco (2017) used MaxMind’s GeoLite database, as well as OOKLA’s

Speedtest data, thus gaining locality and bandwidth service capacity information in order

to make informed peer selection decisions. Such knowledge was acquired ahead of time

and stored locally, thereby avoiding additional on-the-fly network overhead associated

with queries or probes being introduced during the actual peer selection or file download

processes.

Using the GeoLite data, the algorithm divided the list of available peers into 2

smaller lists, one containing those peers sharing the same ISP locality as the client, the

other containing the rest (Figure 14, steps 5 & 6). The peers on both lists were sorted

based on historic service capacity, either from the initial OOKLA data acquired or from

first-hand downloading experience subsequently observed and saved by the client (Figure

14, step 7).

25

Beforehand…

Step 1: If prior peer-to-peer downloads were performed

then go to Step 4

else go to Step 2

Step 2: Retrieve GeoLite and SpeedTest data and store them locally

Step 3: Set peer’s historical performance value to its SpeedTest value

When ready to start peer-to-peer downloading…

Step 4: Retrieve list of available peers hosting desired file

Step 5: Use GeoLite data to determine the ISP of available peers from their IP addresses

Step 6: If available peer shares same ISP as client

then add to List A

else add to List B

Step 7: Sort peers in List A and in List B by their SpeedTest value in descending order

Let a = size of List A, b = size of List B, and n = number of allowed parallel downloads

Step 8: If n <= a

then selected peers = first n peers in List A

else selected peers = all the peers in List A plus the first (n – a) peers in List B

Let counter c = 0, incrementing by 1 every second

Let z = 300, representing the 5 minutes allocated for time-based peer switching in seconds

Let threshold = choke-based switching threshold

Step 9: Handshake with selected peers to establish download connection

Step 10: Start downloading a file chunk from each selected peer

Step 11: While c < z

Step 11a: If c is a multiple of 60 and peer’s observed performance < threshold

then update peer’s historical performance value with its observed performance

 re-sort List A and List B rankings

switch peer with highest ranked peer available

handshake with replacement peer to establish download connection

download remaining part of file chunk from replacement peer

Step 11b: If peer’s file chunk finished downloading

 then update peer’s historical performance value with its observed performance

re-sort List A and List B rankings

switch peer with highest ranked peer available

handshake with replacement peer to establish download connection

 retrieve another chunk from the highest ranked peer available (can be same peer)

 End while

Step 12: Update selected peers’ historical performance with their observed performances

Step 13: Re-sort List A and List B rankings

Step 14: Replace selected peers with the n highest ranked peers available (can be same peers)

Step 15: If all file chunks are completely downloaded

 then DONE

 else go to Step 8

Figure 14: Hays & Simco’s Advanced Knowledge-Based Peer Selection Strategy

Peer selection first pulled from the shared-ISP list. If said list had fewer peers

than the number of parallel downloads allowed, the other list was also utilized (Figure 14,

step 8). The performance of parallel downloads from selected peers was monitored, the

26

locally stored service capacity information about those peers was revised (Figure 14, step

12), and both list rankings were updated (Figure 14, step 13). Time-based and choke-

based peer switching were employed to prune worst performers in hopes of finding better

performing replacements (see Figure 13). As such, this made Hays & Simco’s approach

an integrated peer selection, peer replacement, and parallel download strategy.

Both Hays & Simco’s (2017) and Varvello & Steiner’s (2011) approaches drew

on prior knowledge in order to identify peers that were located in the same ISP as the

client. Fortunately, the mapping between IP address and ISP rarely changed over time,

making the knowledge gained from MaxMind data consistently useful in referencing

peers.

The peer’s current available service capacity, on the other hand, could change

from one moment to the next as demand on the peer’s resources by other clients changed.

Prior knowledge did not reflect a peer’s current bandwidth utilization. A peer capable of

20 Mbps uploads could experience heavy load, thus having little of its bandwidth

available for a new client. Even a peer with a high SpeedTest transfer rate could end up

being a poor-performer if it was experiencing heavy network contention.

Furthermore, bandwidth rates recorded by SpeedTest did not reflect throttle

settings configured on a peer, since the web-based data transferred between a PC and

SpeedTest to gauge performance would not restricted by a throttle setting configured on

that PC’s BitTorrent application. For example, a peer’s network connection could have

been rated at 20 Mbps uploads according to SpeedTest. However, current throttle settings

could have limited BitTorrent uploads to just 50 Kbps. In this scenario, the 20 Mbps

27

value reported by SpeedTest could have resulted in advanced knowledge-based peer

selection to incorrectly presume that a peer was a good performer, when in fact the 50

Kbps throttle setting could have made it a poor one

As such, Hays & Simco’s strategy, in using past historical bandwidth availability

data for peer selection, lacked current, up-to-date service capacity information that on-

the-fly probing techniques could provide to help prune poor performing peer. Instead, it

relied on choke-based peer switching’s one minute benchmarking interval to deal with

poor-performers that were selected.

Summary

This literature review denoted several different strategies developed to improve

the download performance of peer-to-peer networks above that of using mere random

selection, with each approach having its own set of advantages and disadvantages.

Some selection strategies performed benchmarking download probes to assess a

peer’s current bandwidth availability (Li, 2012), while others relied on queries or past

knowledge to make assumptions about a peer’s current desirability (Ying & Basu, 2006;

Varvello & Steiner, 2011). Switching strategies, on the other hand, attempted to reduce

the impact of poor-performing peers that made it through the selection process by

curtailing the amount of time spent downloading from them (Chiu & Eun, 2008; Lehrfeld

& Simco, 2010). And hybrid strategies emerged that combined aspects of other strategies

in order to further reduce download times (Hsiao et al., 2011; Hays & Simco, 2017).

However, despite these improvements over random selection, lack of accurate,

up-to-date bandwidth information have led selection strategies that rely on queries or

28

historical knowledge to inadvertently choose poor-performers, while probing and peer-

switching techniques have themselves been fettered by slow peers.

The new strategy described in this research built on the work of Hays & Simco

(2017), adding on-the-fly intelligence regarding a peer’s current bandwidth availability in

order to facilitate the replacement of poor-performers without waiting for the requisite

downloads inherent to conventional peer-switching techniques, and without introducing a

separate query or probe phase to the connection lifecycle.

29

Chapter 3

Methodology

Introduction

The goal of this research was to introduce a new strategy that could complement

other strategies to further reduce the average peer-to-peer download completion time of a

file for a BitTorrent client. To accomplish this goal, this research endeavored to improve

upon the approach of Hays & Simco (2017).

Hays & Simco’s (2017) work was chosen as a basis to complement as it was a

recently-developed strategy that already demonstrated reduced download times over prior

works by taking advantage of historical knowledge-based selection to both localize peers

and rank them based on past performance, and choke-based switching to limit the amount

of time spent with a selected poor-performing peer. As such, being able to further

improve upon Hays & Simco’s (2017) download performance was a challenge that, if this

research’s strategy was successful, would not only make the Hays & Simco’s (2017)

work even more cost-efficient for ISPs and convenient for consumers, but could also

result in similar or even greater reductions in download times when complemented with

less-advanced strategies.

The remainder of this chapter makes note of the premise upon which this paper’s

research was based upon, discusses how on-the-fly bandwidth availability intelligence

was gained and leveraged to quickly replace peers, how its integration into the hybrid

work of Hays & Simco (2017) produced a faster-downloading strategy, how a simulation

30

environment was used to conduct the study, and how data produced in said experiment

was analyzed and download performance was measured.

Premise

In reviewing the literature, this paper observed that having peer-switching

strategies further limit the amount of time a client spent downloading from a newly

selected poor-performing peer (going from the time spent downloading a complete

chunk, as in the case for chunk-based switching, down to a 5 minute interval, as in the

case for time-based switching (Chiu & Eun, 2008), and likewise from a 5 minute interval

down to a 1 minute benchmarking interval in going from time-based to choke-based

switching strategies (Chiu & Eun, 2008; Lehrfeld & Simco, 2010)) resulted in further

reduced overall download completion times.

As such, this research operated on the premise that overall download completion

times could be further reduced if the length of time the client spent downloading from

newly selected poor-performing peers could be cut down to zero. In other words, if poor-

performing peers that made it through the selection phase could be quickly replaced

without waiting for some amount of downloading from them to occur (as in the case with

past peer-switching strategies (Chiu & Eun, 2008; Lehrfeld & Simco, 2010)), then this

could further reduce the negative impact of poor-performing peers on BitTorrent peer-to-

peer downloads and improve the overall download performance experienced by the

client.

If this research was to be capable of immediately replacing newly-selected peers

that were poor-performers without waiting for benchmarking downloads to be performed,

31

as in the case of choke-based switching (Lehrfeld & Simco, 2010), then this new strategy

needed to provide the client with on-the-fly intelligence regarding a selected peer’s

current available bandwidth in order to be able to make such determinations, which past

strategies were only able to typically garner through probing downloads (Li, 2012; Hsiao

et al., 2011) or by making less accurate assumptions about through historical knowledge

(Varvello & Steiner, 2011) or round-trip latency measurement (Ying & Basu, 2006;

Hsiao et al., 2011).

However, this paper’s research introduced a new form of peer-switching that

gained probe-like intelligence regarding a peer’s currently available bandwidth without

the inclusion of a separate benchmarking download phase, provided the client with said

intelligence in a query-like manner from the peer without the addition of separate query

networking traffic to BitTorrent normal functionality, and allowed the client to replace

selected poor-performing peers prior to ever downloading from them, thereby further

limiting interactions with poor performers and reducing overall download times.

Handshake-Based Peer Switching

To facilitate the acquisition of on-the-fly intelligence regarding a peer’s available

bandwidth, which could have been be used by a BitTorrent client to assess and replace

newly-selected peers that were poor-performers prior to downloading from them, this

paper’s research introduced the concept of handshake-based switching.

If a normal BitTorrent client wanted to download a file from a peer, a TCP

connection would first be established. Via this connection, the client would send a

handshake message to the peer, which would then reply with its own handshake message

32

(Erman, Ilie & Popescu, 2005). If the client received this response and the peer ID and

info hash embedded within the handshake message were what the client expected, then

the connection would stay open and the actual file download would begin. Otherwise, the

client would drop the connection (“Bittorrent Protocol Specification”, 2017).

Note that the BitTorrent handshake message, besides containing a peer id and info

hash, has 8 reserved and unused bytes, all set to zero after the fixed headers (“The

BitTorrent Protocol”, 2017). Bram Cohen, designer of BitTorrent, indicated that these

reserved bytes could be used to change the protocol’s behavior (“Bittorrent Protocol

Specification”, 2017).

As such, this paper’s research took advantage of these reserved and unused bytes

by having peers encode their currently available bandwidth estimate into their handshake

message response to the client. This allowed the client to gauge a newly-selected client’s

available bandwidth without needing to wait for some amount of benchmarking

download to be performed between the client and peer, as in the case with probes or

choke-based switching, and immediately replaced poor-performers that did not meet a

chosen bandwidth threshold (see Figure 15).

Additionally, since this intelligence regarding a peer’s available bandwidth was

encoded into the handshake message, network traffic which was already inherent to both

standard BitTorrent and BitTorrent using Hays & Simco’s (2017) hybrid strategy, this

new enhancement did not introduce additional wait time for the client that would

otherwise have been created by the addition of a separate peer-querying or peer-probing

phase in order to gain information regarding a peer’s available bandwidth.

33

Figure 15: Lifecycle of a peer-to-peer connection using Handshake-based peer switching

A modified BitTorrent application was needed in order for a peer to estimate its

current bandwidth availability to be able to send to the client via its handshaking message

response.

On a peer, this modified application performed network benchmarking at startup

to measure its maximum realized upload throughput, prior to accepting request from

others and thus before other nodes began contending for its resources. Such an upload

benchmarking feature already existed in Vuze, a popular BitTorrent application, which

served as a similar basis for this paper’s research. Vuze’s benchmarking test entailed the

client interacting with auto-speed servers to gauge the median transmission rate of a

torrent file over the course of 20 seconds after a few seconds of ramp up to full speed,

with results that varied from the actual rates by about 10 percent (“Speed Test FAQ”,

2010).

This startup measurement was then used as the basis for the peer’s maximum

service capacity value. Then, by monitoring its current bandwidth usage during

BitTorrent file-sharing, the application running on a peer estimated its available service

capacity on-the-fly by subtracting its current upload utilization from its maximum

throughput value. The peer could update its maximum service capacity value on

occasion, such as when its current file-shares were uploading at a higher rate than said

34

value, or by performing additional benchmarks when utilization appeared to be low. The

peer’s modified BitTorrent application was also tasked with encoding its current

available bandwidth estimate into its handshaking message response to any clients

attempting to initiate a peer-to-peer connection with it. This maximum service capacity

value was utilized and updated over the course of a BitTorrent application instance’s

entire runtime, providing available bandwidth estimates in servicing multiple different

torrents either simultaneously or in tandem.

On a client, the modified application was tasked with checking the

aforementioned reserved bytes for an estimated available bandwidth encoding within

handshake message responses from peers and immediately terminated connections with

those peers whose estimates fell below a chosen threshold in order to prevent their

respective content downloads from initiating. As such, the client then leveraged whatever

peer-selection strategy it relied on in order to replace those dropped peers until it had

achieved its configured simultaneous number of peers setting value. Similarly, the client

also took advantage of any other peer-switching strategy or strategies to address

slowdowns in peer performance that occurred after content downloads had begun.

Since this handshake-based peer-switching strategy eliminated a poor-performing

peer immediately before content transfer began, it applied not only to initial peer

selection, but also to any subsequent selection of peers that took place because of peer-

switching that was invoked by this handshake-based strategy or any other peer-switching

strategy it was complemented with.

35

Another benefit of embedding estimated available bandwidth into the BitTorrent

handshake message response was that modified applications would still work normally

with standard BitTorrent. A client running regular BitTorrent could still download from a

peer running a modified version, as the client could simply disregard the peer’s

bandwidth embedding in its normally reserved and unused bytes of the handshake

message response, thus interacting with the peer per the standard BitTorrent protocol.

Similarly, a modified client could still download from a standard peer by not utilizing

handshake-based switching when the bandwidth estimate embedding was absent.

Handshake Switching-Enhanced Hays & Simco

While the handshake-based approach described above could merely be

complemented with Hays & Simco’s hybrid strategy to perform faster peer-switching of

newly-selected peers, it should be reiterated that Hays & Simco’s (2017) strategy also

took advantage of locally-stored bandwidth data, collected either from SpeedTest or

subsequently updated through first-hand download performance observations, to help

rank peers for possible selection. As such, in order to gain the most benefit from this

research’s handshake-based peer-switching strategy, the handshake-embedded bandwidth

estimates were also integrated with Hays & Simco’s strategy to update its locally-stored

historical data, so that not only was peer-switching performance improved, but also the

peer-selection process as well.

As in Hays & Simco’s (2017) strategy, MaxMind data was used by this

handshake-enhanced integration to separate the available peers list into 2 sub-lists, those

that shared the same ISP as the client and those that did not. Both sub-lists were then

36

initially sorted and ranked based on the OOKLA SpeedTest data. Once an initial set of

peers was selected, the client went through the process of BitTorrent handshaking in

order to establish connections with those selected peers.

Similar to how choke-based switching replaced connected peers not meeting some

calculated threshold, handshake-based switching also replaced poor-performers. But,

while a client with choke spent time slowly downloading from a poor performing peer

before switching, a minute in the case of Hays and Simco’s experiments (Hays & Simco,

2017), handshake-based selection immediately replaced a poor-performing peer that

made it through the selection process based on its provided bandwidth availability

estimate and immediately updated the client’s locally-stored historical knowledge

regarding a peer’s service capacity accordingly, as shown in Figure 16, so that those

poor-performers could be re-sorted for future selection. If this updating of the locally-

stored data with the handshake-encoded bandwidth estimates was not performed, then

this would have ran the risk of having the client immediately reselecting the poor-

performing peer since its ranking would have been unchanged.

Figure 16: Lifecycle of Handshake-Enhanced Hays & Simco peer-to-peer connection.

37

Beforehand…

Step 1: If prior peer-to-peer downloads were performed

then go to Step 4

else go to Step 2

Step 2: Retrieve GeoLite and SpeedTest data and store them locally

Step 3: Set peer’s historical performance value to its SpeedTest value

When ready to start peer-to-peer downloading…

Step 4: Retrieve list of available peers hosting desired file

Step 5: Use GeoLite data to determine the ISP of available peers from their IP addresses

Step 6: If available peer shares same ISP as client

then add to List A

else add to List B

Step 7: Sort peers in List A and in List B by their SpeedTest value in descending order

Let a = size of List A, b = size of List B, and n = number of allowed parallel downloads

Step 8: If n <= a

then selected peers = first n peers in List A

else selected peers = all the peers in List A plus the first (n – a) peers in List B

Let counter c = 0, incrementing by 1 every second

Let z = 300, representing the 5 minutes allocated for time-based peer switching in seconds

Let threshold = choke-based switching threshold

Step 9: Handshake with selected peers to establish download connection

Step 9a: If peer’s handshake-embedded estimated performance < threshold

 then update peer’s historical performance value with its handshake-embedded estimate

 re-sort List A and List B rankings

 switch peer with highest ranked peer available

 handshake with selected peer

 repeat Step 9a

 else go to Step 10

Step 10: Start downloading a file chunk from each selected peer

Step 11: While c < z

Step 11a: If c is a multiple of 60 and peer’s observed performance < threshold

then update peer’s historical performance value with its observed performance

 re-sort List A and List B rankings

switch peer with highest ranked peer available

handshake with replacement peer to establish download connection

download remaining part of file chunk from replacement peer

Step 11b: If peer’s file chunk finished downloading

 then update peer’s historical performance value with its observed performance

re-sort List A and List B rankings

switch peer with highest ranked peer available

handshake with replacement peer to establish download connection

 retrieve another chunk from the highest ranked peer available (can be same peer)

 End while

Step 12: Update selected peers’ historical performance with their observed performances

Step 13: Re-sort List A and List B rankings

Step 14: Replace selected peers with the n highest ranked peers available (can be same peers)

Step 15: If all file chunks are completely downloaded

 then DONE

 else go to Step 8

Figure 17: Handshake-enhanced Hays & Simco Strategy

38

All other aspects of the proposed strategy mirrored Hays & Simco’s original work

(see Figure 17). Both utilized parallel downloads. To address drops in transfer

performance after handshaking had been performed and downloading had commenced,

time-based peer switching, running at 5 minute intervals, replaced the worst performing

peer connection with the highest ranked available peer. Hays & Simco’s research tested

the inclusion and exclusion of choke-based switching running at 1 minute intervals, so

this paper did so as well for comparison. The client’s locally-stored prior knowledge was

updated with the observed transfer rates from selected peers that made it past handshake-

based switching, and used for subsequent peer selections.

Simulation Environment

Real-world testing of peer-to-peer strategies was difficult given the logistical

challenges and uncontrollable nature of the internet (Hays & Simco, 2017). Indeed,

various prior works, including those of Chiu & Eun (2008), Lehrfeld & Simco (2010) and

Hays & Simco (2017) all utilized simulation environments in order to assess their

respective strategies.

In order to evaluate the addition of handshake-based peer switching in reducing

download times, particularly of those achieved by Hays & Simco’s hybrid strategy, a

simulation environment was created that accounted for such file transfer performance

factors as locality, ISP service capacity, bandwidth throttling, and network utilization.

The simulation environment tested and compared the overall BitTorrent download

performance when the following strategies were utilized: random selection with time-

based switching, random selection with choke-based switching, Hays & Simco’s

advanced knowledge-based selection with time-based switching, Hays & Simco with

39

choke-based switching, and handshake-enhanced Hays & Simco with choke-based

switching.

Simulated Download

 Like Hays & Simco’s (2017) single client experiments, this research simulated a

BitTorrent client downloading a 150 MB file from a population of peers. For this

implementation, the client allowed simultaneous parallel downloads from up to 4 selected

peers. Additionally, the 150 MB file was divided into 20 evenly-sized chunks of 7.5 MB

each. As such, at the start of a simulation run, before any downloading had commenced,

the client had 20 inactive and incomplete (empty, in this case) chunks it needed to

populate.

After a simulation run had commenced, as many as 4 chunks were actively

downloading at any particular moment in time, with each chunk keeping track of which

selected peer it had been assigned to, what the file transfer rate of its assigned peer was,

and based on said rate and the amount of time spent transferring from the peer, how much

of its 7.5 MB capacity had been filled.

To accommodate time and choke-based peer-switching strategies, a chunk did not

have to be completed by a single peer. Rather, while a chunk could only be active with

and assigned to one peer at a time, it could end up being active and inactive multiple

times, accruing its content across multiple peers until completion. As such, each chunk

maintained Boolean flags that denoted if it was active, in order to prevent accidental

assignment to more than 1 peer at a time, and if it was complete, so as to prevent

completed chunks from occupying one of the 4 selected peers. Thus, at the end of a

40

simulation run, all 20 chunks were in an inactive and complete state, representing a

completed 150 MB file download with no active downloads from selected peers

occurring.

Simulated Peers

 At the start of the experiment, a population of 1000 peers were generated, of

which only a maximum of 4 were selected by the client and downloaded from at any

particular point in time. For ease of identification and tracking purposes, each peer was

assigned a unique ID. In order to represent the various real world factors that could

impact a peer’s download performance, each peer was assigned a variety of attributes,

including locality, maximum network upload capacity, and availability.

 In order to accommodate Hays & Simco’s (2017) strategy, which divides the list

of available peers into 2 smaller lists based on ISP locality, each peer was randomly

assigned a locality attribute value, designating whether it shared the same ISP locality as

the client or not. Whereas Hays & Simco’s experiments randomly assigned IP addresses

to simulated peers, which were then subsequently looked up to determine respective ISP

associations, this simulation environment simplified the process by skipping IP address

assignment and instead assigned ISP locality directly. Such a simplification was viable

since ISP lookup and localization of peers in Hays & Simco’s strategy were advanced

knowledge tasks performed well ahead of the peer-to-peer selection process and whose

time spent were not factored into the download performance measurement of the strategy.

 Each peer was randomly assigned a maximum capacity value, which represented

what the peer’s maximum upload rate was, not factoring in any throttling or network

41

contention caused by other nodes that attempted to download from it. Since throttling

could curtail how much of a peer’s maximum upload rate could actually be leveraged in a

real-world scenario, a Boolean throttling enabled attribute was also randomly assigned,

designating whether a peer was throttled. Similarly, a throttling capacity value was

randomly assigned to each throttled peer, denoting said peer’s maximum upload

bandwidth capacity.

 Since a peer on the internet could use some of its upload capacity for sharing with

other clients, a percent available attribute was randomly assigned to each peer, signifying

what percentage of its upload capacity was not being used. As such, the amount of upload

bandwidth available for a peer was calculated by multiplying the percentage available

attribute with the peer’s upload capacity (either the maximum capacity or the throttling

capacity if throttling was enabled). For convenience, this calculated value was also stored

into a peer’s actual performance attribute.

 Each peer also had a known performance attribute associated with it. This was

used to represent the locally-stored historical knowledge leveraged by the Hays & Simco

(2017) strategy that was either initially based on SpeedTest data or subsequently from

observed download performance measurement. This known performance attribute was

then used by the simulation environment as a basis for re-sorting the 2 ranked peer sub-

lists (those that were ISP local and those that were not) for subsequent peer selection.

However, for handshake-enhanced Hays & Simco simulations, selected peers that

were pruned because they had available bandwidth estimates that fell below the threshold

did not get the opportunity to have their download connection performance observed by

42

the client for subsequent updating of the locally-stored historical knowledge as per

original Hays & Simco (2017). Therefore, the available bandwidth estimate embedded in

a peer’s handshake message response was also used to update the local-stored historical

knowledge for subsequent peer ranking and selection, so as to prevent a pruned peer from

being immediately re-selected.

Simulated Client

The simulated BitTorrent client was tasked with dividing the list of available

peers based on their ISP locality into 2 smaller lists and then sorted said lists based on

their known performance attribute, as per the original Hays & Simco (2017) strategy. The

client selected 4 of the available peers to download from, choosing the highest ranked

peers from the list of local peers first.

Since all BitTorrent connection attempts entailed a handshaking exchange to be

performed between client and peer, whether or not available bandwidth estimates were

embedded into the handshake message (Erman, Ilie & Popescu, 2005), this experiment

arbitrarily assumed every newly selected peer incurred a 1 second overhead, to account

for the handshake protocol’s round-trip time cost.

Given that simulations running a strategy complemented with handshake-based

peer-switching could result in more frequent peer replacements compared to a strategy

without handshake-based switching, thus incurring more handshaking overhead costs,

this research acknowledged that using such handshaking overhead cost in the

experiment’s overall download time calculations could put the new handshake-based

switching strategy at a disadvantage. However, this research took the position that it was

43

better to underestimate the download speed improvement of the handshake-enhanced

Hays & Simco strategy, rather than overestimate its performance benefits.

At one second intervals, the client was tasked with updating the active chunks’

respective download progress status, based on their associated selected peer’s actual

upload rate. This was performed for each active chunk until its associated selected peer

was dropped due to either time-based or choke-based peer switching, in which case the

chunk was marked as inactive and kept in its incomplete state, or when the chunk in

question was fully downloaded, at which point the chunk was denoted as being both

inactive and complete.

Simulation Trials

This research defined a trial as a set of 10 simulated file download executions

performed in tandem. Each run, like in Hays & Simco’s research, simulated the peer-to-

peer downloading of a 150 MB file, divided into 20 equally-sized 7.5 MB chunks, with

each chunk keeping track of how much of its 7.5 MB content had been transferred.

At the start of a trial, a list of 1000 peers was randomly generated, with each peer

being assigned an ISP locality, a maximum service capacity ranging from 25 Kbps to 375

Kbps that was used to represent the peer’s initial known capacity value, whether

bandwidth throttling was currently being used, and if so, what the bandwidth throttle was

set to, and how much of the bandwidth capacity was currently available.

In the first simulated one-second interval of an execution run using random

selection, the available peer list was shuffled, whereas it was sorted when using the other

44

selection strategies. Four available file chunks were then selected to simulate parallel

downloads and assigned to the top four peers from the list.

For the handshake-based switching strategy, the handshake threshold was set to

200 Kbps, the midpoint of the maximum service capacity range. If a selected peer’s

estimated available bandwidth exceeded this handshake threshold, its chunk remained

assigned to it. Otherwise, the chunk was unassigned from its peer, the peer’s known

capacity was updated with its estimated availability, and the peer list was re-sorted.

Each chunk assigned to a selected peer incremented its download progress by how

much data would be transferred in 1 second based on said peer’s available bandwidth

value. When the chunk’s progress hit 7.5 MB, the chunk was marked as complete, no

longer available nor active, and unassigned from its peer.

In each subsequent simulated one-second interval, when there were fewer than 4

chunks actively downloading and other unfinished chunks remained, incomplete chunks

were assigned to available peers from the top of the list until 4 chunks were actively

downloading again. For the proposed strategy, handshake threshold checking was

performed on new connections. Chunk progress was incremented and monitored for

download completion.

The above simulated one-second interval process was repeated until all the

chunks completed downloading, with a few caveats. At simulated 300-second intervals,

time-based switching of the worst performing peer selected was performed, with the

peer’s known capacity value updated with its observed download performance.

45

At simulated 60-second intervals for those strategies using choke-based

switching, selected peers performing below the 200 Kbps threshold had their chunks

unassigned from them and their known available capacity updated with their observed

download performance. Said underperforming peers were then subsequently replaced

with the highest ranked available candidates.

 In between each of the 10 runs within a trial, the 20 file chunks were reset, but

the available peer list was not. This was performed in order to represent locally-stored

prior knowledge persisting between executions for both Hays & Simco’s approach and

the new strategy. However, the available bandwidth value for each peer in the list was

given a new value, reflecting transient changes to a peer’s network contention and

utilization.

Performance Evaluation

 At the end of a simulated run, the total number of 1-second intervals required by

the tested strategy to have all 20 chunks marked as both inactive and complete were

measured. This represented the overall download time it took for BitTorrent to transfer

the 150 MB file. 10 simulation runs were performed one after the other to form a single

trial, so that later simulation runs in the trial using either Hays & Simco (2017) or

handshake-enhanced Hays & Simco could benefit from knowledge gained in earlier runs

within said trial.

The simulation code printed to the console the observed download times for each

of the 10 runs for a simulated trial, which were subsequently recorded. Each simulated

46

trial was performed 100 times, in order to average out any random fluctuations observed

and to calculate the expected download time for each of the 10 simulation runs.

Simulation Validation

In order to validate the simulation environment created for this paper’s research,

the cost-averaged download times for each simulation run for strategies using random

selection with time-based switching, Hays & Simco with time-based switching, and Hays

& Simco with choke-based switching, were examined.

Cost-averaged download times for random selection with time-based switching

were considered to be consistent with Hays & Simco’s (2017) own reported results if said

times performed consistently across all simulation runs. In other words, this research

expected that a graph charting average download times vs. simulation runs generally

remained flat, not trending upward or downward over the course of each simulated run

interval.

Thanks to its use of prior knowledge for peer selection, Hays & Simco’s (2017)

strategy using time-based switching was expected to exhibit decreasing average

download times across successive simulation runs in order to be consistent with reported

results and validate this portion of the simulation environment.

Likewise, Hays & Simco with choke-based switching was also expected to trend

towards decreasing download times. However, said average download times were also

generally expected to be smaller than those of Hays & Simco employing time-based

switching at any particular simulation run, due to the use of choke.

47

Results

In order to help determine if this research’s proposed handshake enhancement

could improve upon Hays & Simco’s download performance, the aforementioned

download time averages for each simulated run were graphed. Said graph plotted average

download time vs. simulation run for Hays & Simco’s strategy with time-based

switching, Hays & Simco’s strategy with choke-based switching, and handshake-

enhanced Hays & Simco with choke-based switching.

This research considered the enhancement strategy a success if the cost-averaged

download times observed for handshake-enhanced Hays & Simco with choke-based

switching were smaller than those of Hays & Simco’s original strategy with choke-based

switching at each simulated run interval.

Conclusion

Through the use of the aforementioned simulation environment running

executions of both Hays & Simco’s original advanced knowledge-based peer selection

strategy and the handshake-enhanced version, this research hoped to see the new

approach demonstrate smaller simulated download times than those seen from Hays &

Simco alone, both with and without the use of choke, due to the pre-emptive pruning of

poor-performing selected peers prior to initiating chunk download and the avoidance of

non-inherent network activity for conveying performance information. The successful

simulated demonstration of this research would justify the development, deployment, and

real-world testing of a BitTorrent application that leverages this handshake-based peer

switching.

48

Chapter 4

Results

Introduction

This research investigated the use of BitTorrent’s handshake protocol as a conduit

for peers to send estimated available service capacities to clients as a means of improving

download times in Nicolas Hays & Gregory Simco’s original research, both in regards to

initial peer selection, as well as subsequent selection incurred during peer switching.

Prior works, like those mentioned in Chapter 2, have shown that lessening the

time spent downloading from a poor-performing peer can reduce the overall peer-to-peer

download time for a client (Chui & Eun, 2008; Lehrfeld & Simco, 2010; Wilkins &

Simco, 2013). As such, one goal of this paper’s research was to provide the client with

on-the-fly intelligence regarding its selected peers’ current estimated upload bandwidth

availability, so that said client could completely avoid downloading from those peers

whose estimates fell below its threshold by immediately pruning them.

One of Hays & Simco’s design goals was to avoid introducing additional network

overhead in gaining intelligence about peers. As such, their approach leveraged historical

knowledge, gained ahead of time, so as to avoid additional on-the-fly overhead that could

cut into the client’s download performance (Hays & Simco, 2017). In keeping with this

sentiment, another goal of this paper’s research was to provide the aforementioned

bandwidth availability estimates from selected peers to the client without incurring the

additional on-the-fly network overhead typically associated with other intelligence

49

gathering approaches downloads (Li, 2012; Hsiao et al., 2011; Ying & Basu, 2006) by

leveraging the network traffic already inherent in BitTorrent.

Chapter 3 described the new handshake-based enhancement to Hays & Simco’s

hybrid peer selection and peer switching strategy that was conceived during this paper’s

research in order to further improve upon the overall peer-to-peer download times

achieved by Hays & Simco’s original work. Chapter 3 also described the simulation

environment that was created and used by this paper’s research to evaluate the new

handshake-enhanced Hays & Simco strategy and compare its overall download times

with those of the original Hays & Simco work.

This chapter reviews the download times observed when recreating the strategies

of prior works in order to demonstrate the validity of the simulation environment, as well

as presents the results of the new strategy combining Hays & Simco’s approach with

handshake-based selection. A summary of the results concludes this chapter.

Simulation Validation

 The console output for 10 simulation runs, measured in seconds, of a trial of

random selection with time-based switching is shown in Figure 18.

Random Selection with Time-Based Switching
3978
3822
4701
3650
4080
3812
4264
4435
5143
4267

Figure 18: Console output for a random selection w/ time-based switching trial

50

From this console output and others like it, a large table was generated, which

recorded the observed download times for each of the 10 simulated runs across the 100

trials using random selection with time-based switching.

Table 1, a subset of the aforementioned large table, shows the download times for

the 10 simulation runs that were performed during the first 10 of the 100 trials conducted

using random selection with time-based switching. For example, in the first trial column,

the download times for the 10 simulation runs using random peer selection with time-

based peer switching were 3978, 3822, 4701, 3650, 4080, 3812, 4264, 4435, 5143, and

4267 seconds, respectively.

TRIAL 1 2 3 4 5 6 7 8 9 10

RUN
 1

3978 3956 4017 4076 5200 4079 5186 3956 5402 5460

2

3822 4705 4292 4035 4608 4372 4529 4656 4528 6414

3

4701 4319 6127 3937 4781 3164 4760 5552 5223 4483

4

3650 5156 3361 5203 4727 5437 4483 3727 3903 3690

5

4080 4872 3670 4517 3277 4238 4402 4515 5515 4607

6

3812 4965 4356 5991 5485 4287 4027 4216 4428 5165

7

4264 4027 4668 3803 5603 3947 3922 4997 4760 4360

8

4435 5139 4485 4401 4940 4570 4953 4049 5529 5162

9

5143 4165 4277 4623 4344 4032 5159 3753 3421 4869

10

4267 3938 5222 4810 5867 3711 6071 3807 3708 3896
Table 1: Random selection w/ time-based switching DL times for first 10 trials

Similar to Table 1, the corresponding download times results when the simulation

environment was using random selection with time and choke-based switching, Hays &

Simco’s advanced knowledge-based selection with time-based switching, and Hays &

Simco’s advanced knowledge-based selection with time and choke-based switching are

portrayed in Tables 2, 3, and 4, respectively.

51

TRIAL 1 2 3 4 5 6 7 8 9 10

RUN
 1

3165 3066 2920 3037 2619 2672 2564 2604 3207 2685

2

2941 2454 2703 3124 2790 3288 2738 3054 2656 2601

3

3449 3504 2868 2864 2737 2635 3008 2872 2966 2686

4

3017 2534 2783 2490 3059 2708 3263 3032 3064 2161

5

2770 3048 2851 3062 3186 2809 2591 2802 3087 2972

6

3507 3089 2793 2524 3132 2684 2221 2594 2925 2854

7

2692 2619 2617 3680 3170 2241 2590 2962 3218 3090

8

2914 2856 3199 2913 2195 2828 3398 2882 2866 2786

9

2976 2735 2806 2637 2323 2444 2368 2895 2852 3012

10

2391 2549 2735 2386 2695 2550 2045 2606 2686 2349
Table 2: Random selection w/ choke-based switching DL times for first 10 trials

TRIAL 1 2 3 4 5 6 7 8 9 10

RUN
 1

2108 1817 1762 1692 1644 1752 1325 2636 1873 2520

2

1762 1072 1531 1345 1636 2367 1253 1106 1224 1602

3

1529 1224 1279 1255 1349 2422 1826 1502 1026 2087

4

1019 1249 1141 1888 1213 1878 1708 1364 1221 1537

5

1032 1345 941 1234 1336 1288 2749 2283 1601 1635

6

1505 1376 1110 1182 964 1296 1288 1875 1929 1569

7

1569 1280 1519 1260 1246 1274 1561 1148 960 1095

8

1247 1204 1032 1053 1416 1125 1151 1279 960 1136

9

1648 961 1000 1032 1031 973 1009 1290 1024 1095

10

1569 966 989 1438 1239 1095 1045 1290 1018 1491
Table 3: Hays & Simco w/ time-based switching DL times for first 10 trials

TRIAL 1 2 3 4 5 6 7 8 9 10

RUN
 1

1462 1052 1355 1238 1325 1183 1270 1204 1188 1226

2

986 984 960 1033 1211 998 1250 1051 1044 1035

3

1295 1108 975 960 1014 922 1032 1158 1032 1139

4

1130 1234 960 960 1059 1032 1004 1110 1116 1110

 5

1326 1254 1110 1067 1032 1029 960 1052 1113 1010

6

1246 1110 1004 1188 1112 1032 1032 1095 1002 1031

7

1110 1122 960 1166 1032 1122 1054 1095 1025 1162

8

1125 1204 1180 1184 1032 1238 1032 1165 988 1000

9

1220 1155 1058 1095 974 1280 1037 1095 1015 986

10

1268 1176 960 1100 1033 1214 1143 1095 1074 1039
Table 4: Hays & Simco w/ choke-based switching DL times for first 10 trials

52

Table 5 shows what the average download time is for each of the 10 simulation

runs across their respective experiment’s 100 simulation trials, while Figure 19 presents

these download time averages as a graph.

As was expected, the inclusion of choke-based peer switching, here set to 200

Kbps and at 1 minute intervals, substantially limited the impact of poor-performing peers,

compared to time-based switching, set to 5 minute intervals. This was particularly evident

in the case of random peer selection, where the use of choke-based peer switching

reduced the download times achieved by time-based peer switching by 36.7%.

STRATEGY Random
w/ Time-based
Switching

Random w/
Choke-based
Switching

Hays & Simco w/
Time-based
Switching

Hays & Simco w/
Choke-based
Switching

RUN

 1 4496.17 2801.53 1942.21 1241.75

2 4475.29 2847.43 1564.83 1085.16

3 4367.06 2813.79 1454.57 1062.12

4 4564.89 2814.07 1352.06 1065.9

 5 4332.08 2843.01 1309.04 1070.79

6 4462.12 2817.88 1277.02 1072.32

7 4397.87 2841.81 1257.43 1072.66

8 4458.99 2806.39 1206.49 1086.41

9 4556.21 2807.48 1198.63 1077.76

10 4302.24 2742.1 1202.99 1082.1
Table 5: Random selection and Hays & Simco w/ time, choke-based switching average DL time

53

Figure 19: Random Selection and Hays & Simco w/ Time or Choke Switching DL Times

Hays & Simco’s hybrid strategy also behaved as expected. Its use of advanced

knowledge helped it avoid some poor performing peers that random selection could have

otherwise hit, which accounted for a significant reduction in download times over

random selection. Furthermore, Hays & Simco’s download times generally improved

over the course of a trial as the locally-stored prior knowledge regarding peers’ service

capacities got updated from one run to the next, which was also expected behavior.

As was the case in random selection, the addition of choke-based peer switching

to Hays & Simco’s strategy reduced download times over time-based switching alone.

The average download time improved by 36.1% for the first run, 30.7% for the second,

27.0% for the third, and progressively tapered down to 10.0% by the tenth run, as the

growing impact of prior knowledge updates reduced the effectiveness of the choke.

54

Based on these observed results adhering to expected behavior, this paper

concluded that the simulation environment developed for this research was sufficiently

validated and could be properly utilized for conducting experiments on the new

handshake-enhanced Hays & Simco strategy.

Findings

Table 6 lists the observed download times for the first 10 trials’ respective

sequence of 10 simulation runs conducted using the new handshake-enhanced strategy.

Table 7 presents the average download time across all 100 trials for the proposed

methodology, while Figure 20 displays them as a line graph, as well as provides the

corresponding download times for the two non-handshake-enhanced Hays & Simco

approaches.

TRIAL 1 2 3 4 5 6 7 8 9 10

RUN
 1

1070 994 1097 1049 938 960 885 981 1045 964

2

926 952 1062 981 860 909 1171 974 860 989

3

1006 938 960 1063 947 865 962 1026 1032 953

4

1032 922 960 1000 996 961 955 1010 1115 986

5

1027 922 1025 1045 921 1001 960 1032 1189 938

6

1146 935 1035 1134 860 1000 922 986 1093 1070

7

1078 1039 984 1144 1014 1000 922 1032 1077 998

8

1120 1056 1166 1032 960 998 946 1050 1038 1034

9

1178 966 1015 1201 960 980 1014 1110 1144 1033

10

1092 960 1050 1105 966 1120 986 1095 1130 1032
Table 6: Handshake-enhanced Hays & Simco DL times for first 10 trials

The download times observed for run #1 for the handshake-enhanced strategy

were 15.8% smaller than that of Hays & Simco’s strategy using choke-based peer

switching. An 8.5% improvement in download times was observed in run #2, 5.7% in run

55

#3, and 4.7% in run #4. The difference in download times between the new handshake-

enhanced strategy and Hays & Simco’s original strategy with choke-based switching

progressively decreased in successive simulated runs. While the handshake-enhanced

strategy consistently outperformed its predecessor, its advantage diminished down to just

1.8% by the 10
th

 and final run.

STRATEGY Hays & Simco w/
Time-based
Switching

Hays & Simco w/
Choke-based
Switching

Handshake-enhanced
Hays & Simco

RUN

1 1942.21 1241.75 1045.02

2 1564.83 1085.16 993.03

3 1454.57 1062.12 1001.76

4 1352.06 1065.9 1015.29

 5 1309.04 1070.79 1025.36

6 1277.02 1072.32 1040.6

7 1257.43 1072.66 1043.81

8 1206.49 1086.41 1056.76

9 1198.63 1077.76 1061.86

10 1202.99 1082.1 1062.11
Table 7: Hays & Simco w/ time, choke, and handshake-based switching average DL times

56

Figure 20: Results for Hays & Simco w/ Time, Choke, and Handshake-based Switching

Summary of Results

 The results observed from the simulation environment experiments

conducted showed that adding handshake-based peer selection to an approach that

already leveraged Hays & Simco’s advanced knowledge-based peer selection further

decreased peer-to-peer file download times.

This performance improvement was particularly apparent when comparing the

new strategy to Hays & Simco’s approach without choke, as handshake-based selection

effectively acted as an almost immediate and pre-emptive choke prior to fully

establishing a download stream with a peer. On the other hand, Hays & Simco’s approach

using just time-based switching suffered from connections to peer-performers that could

last as long as 5 minutes before switching peers.

57

Hays & Simco’s approach using choke-based switching partially bridged the gap

in performance. The use of choke-based switching reduced Hays & Simco’s time with a

selected poor-performing peer from 5 minutes down to potentially 1 minute.

Furthermore, this reduced time with poor performing peers resulted in more frequent peer

switches. Hence, the locally-stored prior service capacity knowledge used to select peers

was updated more frequently, increasing the effectiveness of Hays & Simco’s advanced

knowledge strategy. As such, with each successive run within a trial, the combination of

both choke-based switching and progressively-improving prior knowledge-based

selection appeared to have worn away at the advantage gained from adding handshake-

based selection, until after just 4 simulation runs the difference in download times

between Hays & Simco’s strategy with choke-based switching and its handshake-

enhanced counterpart was less than 5 percent.

58

Chapter 5

Conclusions

Conclusions

The results obtained over the course of this paper’s research supported the

hypothesis that, without introducing any additional network overhead in the process, the

overall download times achieved in the Hays & Simco (2017) advanced knowledge-

based peer selection and choke-based peer-switching hybrid strategy could be further

reduced by leveraging the reserved and unused bytes contained within the BitTorrent

protocol’s handshake message (“The BitTorrent Protocol”, 2017) as a conduit for passing

along a selected peer’s estimated available service capacity to the client and using said

information as a means of immediately replacing those peers whose estimates deemed

them to be poor-performers.

As demonstrated by both time-based and choke-based peer switching strategies,

reducing the amount of time the client spends downloading from a selected poor-

performing peer, from the completion of a chunk down to a 5 minutes, and from 5

minutes down to as little as 1 minute, respectively, can reduce overall peer-to-peer

download times (Chiu & Eun, 2008; Lehrfeld & Simco, 2010). The handshake-based

peer switching strategy researched in this paper successfully reduced a BitTorrent client’s

overall download times even further by decreasing the time spent downloading from

selected poor-performers to effectively zero, thus nearly mitigating their negative

performance impact.

59

The new handshake-enhanced approach’s download performance consistently

exceeded those of its predecessor, Hays & Simco’s hybrid historical knowledge-based

peer selection and choke-based peer switching strategy, particularly in early file

download runs when a client’s locally-stored knowledge regarding the service capacities

of peers was mostly derived from initial third-party data rather than more recently-

acquired, first-hand experience (Hays & Simco, 2017).

However, as the client’s first-hand experience updated the locally-stored data in

subsequent runs, prior knowledge-based peer selection became more effective. As such,

the client’s selection of poor-performing peers became less frequent, thus diminishing the

beneficial impact of faster peer switching.

Despite handshake-enhanced Hays & Simco’s advantage over the original Hays &

Simco strategy with choke-based switching becoming more and more negligible in latter

experiment runs, the early run benefits leads this paper to conclude that the new approach

serves as a suitable improvement to Hays & Simco’s original research.

Implications

BitTorrent file transfers make up a substantial portion of the internet’s overall

usage (Bindal, Cao, Chan, Medved, Suwala, Bates & Zhang, 2006; Schulze et al., 2009).

With its ability to make downloads more efficient, the research conducted in this paper

has wide-ranging implications to the field of peer-to-peer networking.

Faster BitTorrent downloads not only can be more convenient for the client’s user

in regards to time spent waiting for a file transfer to complete, but can also save the

client’s user money, particularly for those clients hosted on metered networks. Since the

60

handshake message leveraged by this paper’s new switching strategy for gathering

intelligence about peers is network activity already inherent to BitTorrent, this research’s

enhancement does not introduce additional network overhead, thus avoiding increased

delays and financial costs for the client.

This paper’s research could also reduce the strain on peers. By having clients

refrain from downloading from them, peers already contending with high demand and

little available upload bandwidth remaining need not have to take on even more network

load, particularly a load that would not be particularly satisfying for the client anyways.

. Given handshake-enhanced Hays & Simco’s performance improvement was

greatest during early simulation runs, this approach would be particularly effective for

those who perform large BitTorrent downloads on occasion, rather than for prolific

downloaders of smaller files.

Future Work

Though the addition of handshake-based peer switching was able to successfully

demonstrate improved download performance over the original Hays & Simco strategy,

this paper’s new handshake enhancement may be better served as a complement to

strategies that do not rely on locally-stored advanced knowledge, where successive

downloads do not strengthen such strategies’ peer selection performance that would

otherwise cut into the benefits of service capacity-encoded handshaking. For example,

handshake-based peer switching would likely work well paired with random peer

selection. As such, a possible line of research would be to conduct similar simulation

61

experiments that couple handshake-based peer switching with existing peer-selection

strategies.

A second avenue for future work could explore whether handshake-based peer

switching could outright replace probe-based peer selection, given that both approaches

help the client determine whether a peer has service capacity is sufficient to download

from (Li, 2002; Hsiao et al., 2011). However, considering that handshake-based peer-

switching does not need to perform an actual download to gauge a peer’s performance, a

download that could in and of itself be hampered by low bandwidth, it is possible that

this paper’s handshake-based enhancement could not only replace peer probing, but

outperform it as well.

Another area of research could investigate using the BitTorrent protocol’s

handshake message not only as a conduit for embedding a peer’s estimated available

bandwidth, but also as means of gauging a peer’s network latency. By having the client

measure the length of time between when it sends its handshake message to a peer and

when the peer’s handshake response is received, the client could effectively perform an

RTT query similar to that performed by AEPS (Hsaio et al., 2011) or traceroute-based

peer selection (Yang & Basu, 2006), without introducing a separate query that would add

network overhead. This could make the handshake-based enhancement even more useful

to those strategies that lack some form of peer localization.

Summary

Since its introduction over twenty years ago, peer-to-peer networking has become

a popular methodology for sharing files, streaming videos, delivering operating system

62

updates, and facilitating crypto-currencies. In particular, peer-to-peer file sharing

constitutes a significant percentage of the internet’s overall bandwidth usage. Given this

prevalence of peer-to-peer file sharing and the negative impact that poor performing

peers can have on such usage, finding ways of improving these peer-to-peer downloads

has become an important area of research for both network providers and their

consumers.

Work recently conducted by Nicolas Hays and Gregory Simco advanced this field

of scientific research, having explored combining historical knowledge regarding peer

performance and localization with choke-based peer switching as a means of both gaining

intelligence for improved peer selection without incurring additional on-the-fly network

overhead and further limiting the negative impact of those poor-performing peers that

were selected.

This paper’s research examined such prior works as time-based and choke-based

peer switching, and extended their shared premise of reducing the amount of time spent

downloading from poor-performing peers in order to create a new switching strategy.

This new approach was used to complement Hays & Simco’s hybrid strategy, imbuing it

with the benefits of past probe-based peer selection strategies, while retaining the original

work’s goal of avoiding additional network overhead.

While this handshake-based peer switching enhancement was successful in

reducing overall completion times for BitTorrent downloads using Hays & Simco’s

strategy, there is always room for improvement. The use of historical knowledge for peer

selection, as demonstrated in Hays & Simco’s approach, proves to be a powerful

63

performance enhancer that, once it is given the chance to learn and develop from recent

first-hand experience, can quickly compete with this research’s capabilities. As such,

while handshake-based peer switching can improve Hays & Simco’s download

performance, it shows the most promise when combined with those strategies that do not

benefit from prior knowledge.

64

References

Bindal, R., Cao, P., Chan, W., Medved, J., Suwala, G., Bates, T., & Zhang, A. (2006).

 Improving traffic locality in BitTorrent via biased neighbor selection.

 In Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International

 Conference on (pp. 66-66). IEEE.

BitTorrent and µTorrent Software Surpass 150 Million User Milestone; Announce New

 Consumer Electronics Partnerships. [Web press release] (2012, January 9).

 Retrieved February 13, 2018 from https://web.archive.org/web/20140326102305

 /http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users

Bittorrent Protocol Specification v1.0. [Wiki] (2017, February 1). Retrieved February 24,

 2018 from https://wiki.theory.org/index.php/BitTorrentSpecification

Bolliger, J., Gross, T., & Hengartner, U. (1999, March). Bandwidth modelling for

 network-aware applications. In IEEE INFOCOM'99. Conference on Computer

 Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE

 Computer and Communications Societies. The Future is Now (Cat. No.

 99CH36320) (Vol. 3, pp. 1300-1309). IEEE.

Bott, E. (2017, May 10). Windows 10 installed base hits 500 million. ZDNet. Retrieved

 February 15, 2018, from http://www.zdnet.com/article/windows-10-installed-

 base-hits-500-million/

Chiu, Y. M. (2010). On the performance of content delivery under competition in a

 stochastic unstructured peer-to-peer network. IEEE Transactions on Parallel and

 Distributed Systems, 21(10), 1487-1500.

Chiu, Y. M., & Eun, D. Y. (2008). Minimizing file download time in stochastic peer-to-

 peer networks. IEEE/ACM Transactions on Networking (TON), 16(2), 253-266.

DHT Protocol. [Web documentation] (2017, May 1). Retrieved February 23, 2018 from

 http://www.bittorrent.org/beps/bep_0005.html

Erman, D., Ilie, D., & Popescu, A. (2005). Bittorrent session characteristics and models.

 In 3rd International Conference HET-NETs' 05.

Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. (2007). Peer-to-Peer

 Botnets: Overview and Case Study. HotBots, 7, 1-1.

Hays, N., & Simco, G. (2017). Reducing the Download Time in Stochastic P2P Content

 Delivery Networks by Improving Initial Peer Selection. Proceedings of the ISCA

 30th International Conference on Computer Applications in Industry and

 Engineering (CAINE-2017).

He, Q., Dong, Q., Zhao, B., Wang, Y., & Qiang, B. (2016). P2P Traffic Optimization

 based on Congestion Distance and DHT. J. Internet Serv. Inf. Secur., 6(2), 53-69.

65

Hsiao, T. H., Hsu, M. H., & Miao, Y. B. (2011). Adaptive and Efficient Peer Selection in

 Peer-to-Peer Streaming Networks. 2011 IEEE 17th International Conference on

 Parallel and Distributed Systems (ICPADS), 753-758.

Lawey, A. Q., El-Gorashi, T., & Elmirghani, J. M. (2012, December). Energy-efficient

 peer selection mechanism for BitTorrent content distribution. In Global

 Communications Conference (GLOBECOM), 2012 IEEE (pp. 1562-1567). IEEE.

Lehrfeld, M. R., & Simco, G. (2010, March). Choke-based switching algorithm in

 stochastic P2P networks to reduce file download duration. In IEEE SoutheastCon

 2010 (SoutheastCon), Proceedings of the (pp. 127-130). IEEE.

Li, J. (2008). On peer-to-peer (P2P) content delivery. Peer-to-Peer Networking and

 Applications, 1(1), 45-63.

Li, K. (2012). Probing high-capacity peers to reduce download times in P2P file sharing

 systems with stochastic service capacities. International Journal of Foundations

 of Computer Science, 23(06), 1341-1369.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and

 comparison of peer-to-peer overlay network schemes. IEEE Communications

 Surveys & Tutorials, 7(2), 72-93.

Magharei, N., Rejaie, R., Rimac, I., Hilt, V., & Hofmann, M. (2014). ISP-friendly live

 P2P streaming. IEEE/ACM Transactions on Networking, 22(1), 244-256.

Newman, J. (2015, March 16). Microsoft may speed up Windows updates with peer-to-

 peer distribution. PC World. Retrieved February 15, 2018, from

 https://www.pcworld.com/article/2897275/microsoft-may-speed-up-windows-

 updates-with-peer-to-peer-distribution.html

Pacifici, V., Lehrieder, F., & Dán, G. (2016). Cache bandwidth allocation for P2P file-

 sharing systems to minimize inter-ISP traffic. IEEE/ACM Transactions on

 Networking (TON), 24(1), 437-448.

Qiu, D., & Srikant, R. (2004, August). Modeling and performance analysis of BitTorrent-

 like peer-to-peer networks. In ACM SIGCOMM computer communication

 review (Vol. 34, No. 4, pp. 367-378). ACM.

Ren, S., Liu, Y., Zhou, X., Tang, H., Ci, S., & Wang, M. (2013). A novel peer selection

 mechanism in heterogeneous wireless peer-to-peer networks. 2013 19th IEEE

 International Conference on Networks (ICON), 1-7.

Schulze, H., & Mochalski, K. (2009). Internet Study 2008/2009. Ipoque Report, 37, 351-

 362.

Sherman, A., Nieh, J., & Sten, C. (2009). FairTorrent: bringing fairness to peer-to-peer

 systems. Proceedings of the 5th international conference on Emerging

 networking experiments and technologies, 133-144. doi:

 10.1145/1658939.1658955

66

Speed Test FAQ. [Wiki] (2010, November 17). Retrieved August 22, 2019 from

 https://wiki.vuze.com/w/Speed_Test_FAQ

Speedtest-Intelligence. [Web documentation] (n.d.). Retrieved August 20, 2019 from

 https://www.ookla.com/speedtest-intelligence

Stainov, R., Goleva, R., Genova, V., & Lazarov, S. (2013). Peer port implementation for

 real-time and near real-time applications in distributed overlay networks. In 9th

 Annual International Conference on Computer Science and Education in

 Computer Science (Vol. 29, pp. 87-92).

The BitTorrent Protocol Specification. [Web documentation] (2017, February 4).

 Retrieved February 24, 2018 from http://www.bittorrent.org/beps/bep_0003.html

Traverso, S., Abeni, L., Birke, R., Kiraly, C., Leonardi, E., Lo Cigno, R., & Mellia, M.

 (2015). Neighborhood filtering strategies for overlay construction in P2P-TV

 systems: design and experimental comparison. IEEE/ACM Transactions on

 Networking (TON), 23(3), 741-754.

Varvello, M., & Steiner, M. (2011, May). Traffic localization for DHT-based BitTorrent

 networks. In International Conference on Research in Networking (pp. 40-53).

 Springer, Berlin, Heidelberg.

Wang, L., & Kangasharju, J. (2013, September). Measuring large-scale distributed

 systems: case of bittorrent mainline dht. In Peer-to-Peer Computing (P2P), 2013

 IEEE Thirteenth International Conference on (pp. 1-10). IEEE.

Xie, H., Yang, Y. R., Krishnamurthy, A., Liu, Y. G., & Silberschatz, A. (2008). P4P:

 Provider portal for applications. ACM SIGCOMM Computer Communication

 Review, 38(4), 351-362.

Ying, L., & Basu, A. (2006, December). Traceroute-based fast peer selection without

 offline database. In Eighth IEEE International Symposium on Multimedia

 (ISM'06) (pp. 609-614). IEEE.

Zhang, Y., Zhou, X., Tang, H., & Bai, F. (2011, March). Peer selection in mobile P2P

 systems over 3G cellular networks. In Pervasive Computing and Communications

 Workshops (PERCOM Workshops), 2011 IEEE International Conference on (pp.

 467-470). IEEE.

	Reducing BitTorrent Download Time via Handshake-Based Switching
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1591971979.pdf.2v9kE

