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by  

Hatem Yazbek 

 

Increasing energy costs and environmental issues related to the Internet and wired 

networks continue to be a major concern.  Energy-efficient or power-aware networks 

continue to gain interest in the research community.  Existing energy reduction 

approaches do not fully address all aspects of the problem.  We consider the problem of 

reducing energy by turning off network links, while achieving acceptable load balance, 

by adjusting link weights.  Changing link weights frequently can cause network 

oscillation or instability in measuring the resulting traffic load, which is a situation to be 

avoided.  In this research, we optimize two objectives, which are minimizing network 

power consumption by maximizing utilization of shortest paths, and at the same time 

achieving load-balance by minimizing network Maximum Link Utilization (MLU).   

 

Research to date has focused on the link level of traffic load balance, to minimize power 

consumption, while putting less focus on utilizing adaptive strategic techniques that 

optimize multi-objectives problems.  This research developed a new approach that relies 

on live data collected from wired networks, and performs Multi-Objective Optimization 

(MOO) using a Non-dominated Sorting Genetic Algorithm (NSGA-II) that applies 

alternative adaptive strategies in order to optimize those two objectives.  We also studied 

how adding delays between link weights adjustments can alleviate the network oscillation 

or instability without causing higher network power consumption and imbalanced 

network traffic. 

 

This work introduced a novel approach to select underutilized links to go to sleep using 

adaptive strategies of MOO that are aware of traffic changes.  Re-computing the 

algorithm takes less than a minute, while network traffic is frequently updated every few 

minutes.  The hybrid approach that we designed was able to reduce the power 

consumption by 35.24%, while reducing MLU by 42.86% for specific traffic pattern used 

in Abilene network topology.  For network instability, we introduced sequential_delay 

and wait_interval delay parameters that are implemented in conjunction with link weight 

settings.  We show reduction of instability measurement from 175% down to 8.6% for 

Abilene network topology when using a value of 1sec for both sequential_delay and 

wait_interval delay parameters. 

 

Keywords:  Shortest path, network traffic, link-weight setting, multi-objective 

optimization, traffic engineering, energy-aware, instability. 
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Chapter 1 - Introduction 

Background 

A considerable amount of recent research is focused on how to save energy in 

Internet Protocol (IP) networks while satisfying the network traffic demands and 

controlling its load balance.  The internet network power consumption is rapidly growing 

and is responsible for more than 5% of the total energy used in the world (Addis, Capone, 

Carello, Gianoli, & Sanso, 2012).  Many researchers approach this problem by proposing 

traffic management methods of saving energy using heuristic approach, and based on 

specific time periods of the network traffic. A heuristic approach is used for diverting the 

traffic from underutilized links into other links; therefore make those underutilized links 

go to sleep.  This research work focuses on continuous dynamic sampling of the network 

traffic state across time and applies an adaptive Multi-Objective Optimization (MOO) 

method in order to achieve reduced power consumption and acceptable link utilization in 

IP network.  

Research to date with respect to energy aware network optimization relies on 

measuring network traffic and matrices that are not dynamic nor changing as described in 

(Addis et al., 2012; Chiaraviglio, Mellia, & Neri, 2012).  Other research implemented an 

online approach in order to cover dynamic changing  network traffic but they do not 

consider energy aware concern as they focus on reducing routing congestion (Vallet & 

Brun, 2014).  Observing the prevailing traffic changes and adapting the optimization 

algorithm accordingly is what this research had attempted by using MOO with adaptive 

strategies.  

This dissertation report is organized as follows:  First, the problem statement and 

formalization are presented in Chapter 1.  Then the goal and questions of this research 
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along with its significance and relevance is discussed.  In addition, barriers and issues 

that this research needs to overcome are described.  In Chapter 2, a review of literature is 

compared and synthesized.  In Chapter 3, we describe the methodology of this research, 

including the methods and techniques of applying multi-objective optimization 

techniques in order to minimize both power consumption and Maximum Link Utilization 

(MLU).  We also examine and present a study and methodology of measuring and 

reducing network instability when altering link weights.  A brief description of resource 

requirements is given in the end of Chapter 3.  Chapter 4 contains the results of numerous 

experiments performed on two network topologies, including traffic flow inputs, and 

sensitivity analysis of the wait and delay times.  Chapter 5 concludes this dissertation, 

includes a discussion on how we achieved the research goals, and presents some future 

research opportunities.  

Problem Statement 

Energy-aware Networks 

Increasing energy costs and environmental issues related to internet and wired 

networks are becoming a major concern (Bianzino, Chaudet, Rossi, & Rougier, 2012).  

Reducing power consumption of network infrastructure and elements in the internet has 

been the subject of recent research.  Those studies focus on saving energy based on 

redundant network links and routers that are less used or under light traffic loads.  The 

network configurations can be re-computed in order to save energy (Vasić et al., 2011).  

The prime network infrastructure, such as routers, switches, and other devices, still lacks 

effective energy management solutions (Zhang, Yi, Liu, & Zhang, 2010).  Reducing 

power consumption has been an important part of networking research with less focus on 
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wired networks (Fisher, Suchara, & Rexford, 2010).  By 2020, European Telecoms are 

expected to consume around 35.8TWh of total network power annually, where the 

contribution of backbone networks out of total network power consumption will increase 

from 10% to 40% by 2020 (Francois, Wang, Moessner, Georgoulas, & Xu, 2014). 

 In order to tackle the increase in network power consumption, different 

approaches for managing the network load balance have been proposed such as GreenTE 

traffic engineering mechanism, Interior Gateway Protocol Weight Optimization (IGP-

WO), and Green Load-balancing Algorithm (GLA) by (Amaldi et al., 2013; Francois et 

al., 2014; Zhang et al., 2010).  A limited number of recent research works as shown in 

Energy-Aware Routing (EAR) research by Bianzino, Chaudet, Larroca, Rossi, and 

Rougier (2010) have been dedicated to energy-aware traffic engineering. 

Multi-Objective Optimization of Network Power Consumption and MLU 

In order to find optimal solutions to energy-aware routing, and to find candidate 

links that can be turned off or put to sleep, most recent approaches considered by 

researchers rely on heuristic methods as in (Fisher et al., 2010; Heller et al., 2010).  The 

majority of researchers formulate the energy-aware problem as Mixed Integer Linear 

Programming (MILP) models (Zhang et al., 2010).  Computing optimal solutions to 

energy-aware routing tables is an NP-hard problem (Vasić et al., 2011).  In this research 

we found good solutions to a multi-objective function that models both power 

consumption and MLU using evolutionary optimization techniques (Deb, Agrawal, 

Pratap, & Meyarivan, 2000).  The first objective is to reduce power consumption of the 

network, while the second objective is to reduce the MLU as part of achieving network 

load-balance.  The objective of energy reduction is achieved by using a set of shortest 
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paths that reduces the number of active links by adjusting their link weights, so network 

link utilization is increased as fewer links carry the traffic.  We developed an algorithm 

that uses MOO and reduces network power consumption while maintaining network 

MLU below certain allowed threshold.  In MOO, the objective functions are conflicting, 

and there are a (possibly infinite) number of Pareto-optimal solutions.  Each solution that 

is chosen out of a set of Pareto-optimal solutions presents a different trade-off between 

MLU and power reduction.  The upper limit and lower limit of MLU are selected based 

on the network traffic and topology, and are pre-determined by network operator.  We 

want the links to be well utilized, but not to exceed an upper limit for MLU.  On the other 

hand, the MLU lower limit is applied in order to reduce the number of solutions being 

generated.  No solutions with an MLU lower than MLU lower limit are considered. 

Problem Formulation 

 The symbols used for formulating the two objectives are defined in Table 1. 

Table 1 - Summary of Model Notations 

Notation Description 

Objective Functions 

𝑀𝐿𝑈 Maximum Link Utilization 

𝑃𝐶 Power Consumption 

Model Parameters 

𝐺(𝑁, 𝐿) Directed graph with set of nodes 𝑁 and set of links 𝐿 

𝑃𝑚 Node power consumption of router 𝑚 

𝑃𝑖𝑗 Power consumption of link 𝑙 from node  𝑖 to node 𝑗 

𝑢𝑖𝑗 Utilization of link 𝑙 from node  𝑖 to node 𝑗 

𝑐𝑖𝑗 Bandwidth capacity of link 𝑙 from node  𝑖 to node 𝑗 

𝐷𝑠𝑑 Traffic demand from node  𝑠 to node 𝑑 

𝛼 Maximum allowable utilization ratio of link capacity 

𝐾 Set of  all  |𝑁|2 Source-Destination (SD) pairs 

Decision Variables 

𝑥𝑖𝑗 1 if link 𝑙 from node  𝑖 to node 𝑗  is active, 0 otherwise 

𝑦𝑚 1 if node 𝑚 is active, 0 otherwise 

𝑓𝑖𝑗
𝑠𝑑 Traffic flow from node  𝑠 to node 𝑑 that traverses link 𝑙 

from node  𝑖 to node 𝑗 
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We model the network as a directed graph 𝐺 = (𝑁, 𝐿), where 𝑁 is the set of nodes 

(routers) and 𝐿 is the set of links (line cards).  We use a directed graph since the amount 

of network traffic flow can vary based on its direction, meaning a flow from node  i to 

node j can be different from the flow from node j to node i.  A link 𝑙 ∈ 𝐿 from node  i to 

node j  can be put to sleep if there is no traffic on the link, and a node 𝑚 ∈ 𝑁 or a router 

can be put to sleep if all of its links are asleep (Zhang et al., 2010).  Given network 

topology G and demand volumes D for all SD pairs, the model determines network 

topologies and link weights metrics comprised by active links.  Let K  denote the total set 

of SD pairs, which has  |𝑁|2 number of pairs.  For every SD pair (s, d) ∈ K, there exists a 

traffic demand 𝐷𝑠𝑑  , and for every link l from node  i to node j there is a traffic flow 𝑓𝑖𝑗
𝑠𝑑 , 

which is used as a decision variable as shown below. 

Decision variables: 

𝒙𝒊𝒋: Binary decision variable that represents the power status (on/off) of link 𝑙 

from node 𝑖 to node 𝑗.  A value of 1 indicates that link 𝑙 is active and 0 

otherwise. 

𝒚𝒎: Binary decision variable that represents the power status (on/off) of node 𝑚 

(router). A value of 1 indicates node 𝑚 is active and 0 otherwise. 

𝒇𝒊𝒋
𝒔𝒅: Traffic flow from node  𝑠 to node 𝑑 traversing link 𝑙 from node  i to node j.  

Objective functions: 

Joint optimization of network power using shortest paths and shutting down as 

many links and nodes as possible, while minimizing link utilization in order to achieve 

load balancing, can be formulated as a MILP with the following two objectives: 

minimize 𝑷𝑪 = ∑ 𝑃𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐿 + ∑ 𝑃𝑚𝑦𝑚
|𝑁|
𝑚=1     (1)  
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minimize MLU = max (
1

𝑐𝑖𝑗
 ∑ 𝑓𝑖𝑗

𝑠𝑑
(𝑠,𝑑)∈𝐾 ) ∀(𝑖, 𝑗) ∈ 𝐿  (2) 

Subject to following constraints: 

∑ 𝑓𝑖𝑗
𝑠𝑑   

|𝑁|

𝑗=1
−  ∑ 𝑓𝑗𝑖

𝑠𝑑  =
|𝑁|

𝑗=1
 {−

𝐷𝑠𝑑   ∀𝑠, 𝑑, 𝑖 = 𝑠

𝐷𝑠𝑑   ∀𝑠, 𝑑, 𝑖 = 𝑑
0  ∀𝑠, 𝑑, 𝑖 ≠ 𝑠, 𝑑

   (3) 

∑ 𝑓𝑖𝑗
𝑠𝑑

(𝑠,𝑑)∈𝐾 ≤ 𝛼𝑥𝑖𝑗𝑐𝑖𝑗       ∀(𝑖, 𝑗) ∈ 𝐿, 𝛼 ∈ [0,1]   (4) 

∑ 𝑓𝑖𝑗
𝑠𝑑

(𝑠,𝑑)∈𝐾 ≥ 0     ∀(𝑖, 𝑗) ∈ 𝐿       (5a) 

𝑥𝑖𝑗  = 1  𝑖𝑓𝑓   ∑ 𝑓𝑖𝑗
𝑠𝑑

(𝑠,𝑑)∈𝐾 > 0  , ∀(𝑖, 𝑗) ∈ 𝐿     (5b) 

𝑦𝑚  = 0  𝑖𝑓𝑓   (∑ ∑ 𝑓𝑖𝑚
𝑠𝑑

(𝑖,𝑚)∈𝐿(𝑠,𝑑)∈𝐾 +  ∑ ∑ 𝑓𝑚𝑗
𝑠𝑑

(𝑚,𝑗)∈𝐿(𝑠,𝑑)∈𝐾 ) = 0  

∀𝑚 ∈ [1, |𝑁|]       (5c) 

Equation 1 represents the first objective of MOO which minimizes the power 

consumption (PC) by moving traffic to shortest paths (fewer devices to turn on thus 

reducing power).  We measure the power consumption of the network as the total power 

consumption of active links and nodes at a specific time snapshot, and periodically 

sample the network power state after we execute our MOO.  Equation 2 represents the 

second objective of our MOO which minimizes the MLU of the network in order to 

achieve load-balancing.  The utilization of each link is calculated as the sum of all 

network flow through link 𝑙 flowing from node i to node 𝑗, divided by the link’s specified 

capacity.  Equation 3 represents the standard flow conservation constraint.  Equation 4 

determines that whenever a shortest path topology is used, all active links should have 

their utilization below a specific threshold α, and forcing the flow to 0 if the link 𝑙 from 

node i to node j is powered off.  So we must ensure that when a set of links is put to sleep 

mode, the MLU does not exceed the link capacity threshold α when link is active and it is 
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0 when the link is sleeping.  The flow on link 𝑙  from node  𝑖 to node 𝑗 is the sum of all 

flows for every SD pair that traverses link 𝑙.  The flow 𝑓𝑖𝑗
𝑠𝑑 exists only if the decision 

variable 𝑥𝑖𝑗 is 1.  The SD pair from node 𝑠 to node 𝑑 is a subset of all SD pairs ∈ 𝐾, 

which go through link 𝑙 from node 𝑖 to node 𝑗.  Equation 5a states the traffic flow carries 

a value equal or greater than zero, while equation 5b ensures that the link 𝑙  from node  𝑖 

to node 𝑗 is operated if and only if its flow does carry non-zero traffic, and thus 𝑥𝑖𝑗 = 1.  

Equation 5c constrains node 𝑚 to be inactive if and only if the sum of all traffic flowing 

through it is zero, and thus 𝑦𝑚= 0.  Both 𝑥𝑖𝑗 and  𝑦𝑚 are binary decision variables that can 

be set to 0 or 1 values. 

Network Traffic and Metrics 

Traffic metrics and network measurement methods are crucial for understanding 

network behavior, and for proposing effective solutions for saving energy (Gupta & 

Singh, 2003).  Researchers must be aware of the response time for waking the network 

device after putting it to sleep, and must account for traffic changes.  One of the 

difficulties in coming up with a valid solution or approach is that traffic patterns change 

very frequently (Heller et al., 2010).  A concept for measuring traffic, called traffic 

matrices is introduced in Zhang et al. (2010), where the authors demonstrate that a small 

number of those matrices are enough to perform network analysis.  The authors propose a 

complementary approach to utilize power management at the network level, by routing 

traffic through various paths in order to adjust the workload on individual links or 

routers.  They base their power saving assumptions on the fact that high path redundancy 

and low link utilization exist in today’s networks.  Their intra-domain traffic engineering 

mechanism is called GreenTE, which maximizes the number of links that can be put into 
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sleep under link utilization and packet delay constraints.  However, doing so requires 

frequent adjustment of network routing traffic status and raises the question of how often 

the adjusting of the traffic matrix is required. 

Dissertation Goal 

The goal of this research is to develop adaptive strategies for a multi-objective 

genetic algorithm such that objectives of both reduced network power consumption and 

load balance are achieved.  The Pareto-optimal front arises due to the presence of two 

objectives in the problem formulation (Francois et al., 2014).  The first objective for 

minimizing power consumption was achieved by increasing link utilization of the 

shortest paths, and putting underutilized links to sleep.  In return, the second objective of 

load-balance by minimizing MLU was affected, and gave rise to the Pareto-optimal front.   

This work achieved the goal of this research by using real time network traffic 

generated by Multi-Generator (MGEN), and by using similar traffic networks as in 

(Vasić et al., 2011; Zhang et al., 2010).  We performed the following research: 

 Investigated network traffic resources available for simulating a real network. 

 Explored network traffic engineering techniques, measurement and analysis of 

network metrics, and link weights management. 

 Investigated and developed alternative GA operators and strategies for MOO 

using NSGA-II, in order to find the Pareto-optimal front of a solution space. 

o Pareto-optimal solutions are selected such that load balance or MLU 

must meet < 50%-80%, while power consumption is reduced by 30%-

40% (Francois et al., 2014; Zhang et al., 2010). 

 Used and tested adaptive strategies for MOO based on various traffic states 
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o Traffic matrices are measured every 5 to 15 min. (Zhang et al., 2010) 

o We targeted our MOO algorithm to take less than one minute of 

runtime, while it runs every 5 to 15 minutes. 

Research Questions 

To address the above problem, several research questions were raised.   

1. Can network power consumption be reduced by applying our approach? 

2. How much can we tune network load-balance or increase MLU in order to 

save more power, and can network traffic load be balanced? 

3. How to change the network traffic link weights considering observed network 

online status and how often is adjusting of traffic matrix required?  

4. Can this research work for reducing network energy adapt efficiently to most 

types of network topologies? 

5. Traffic changes can cause oscillations, while concurrently changing routing of 

network paths by altering link weights on the fly.  Changing link weights does 

not consider if the changes can cause disruption.  Can we reduce network 

disruption when changing link weights? 

Relevance and Significance 

The resulting mechanism developed in this research can provide further benefit to 

energy aware network research, and increase the knowledge base related to existing 

benchmarks and use cases.  Most of the latest research on this topic use heuristic methods 

to find those candidate links that will be turned off or go to sleep, in order to save 

network energy.  Such research is discussed in Zhang et al. (2010), Chiaraviglio et al. 

(2012), Amaldi et al. (2013), and Moulierac and Phan (2014), with few research papers 
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using Multi-Objective Genetic Algorithm (MOGA) for solving the same problem 

(Francois et al., 2014). 

This approach considers dynamic traffic matrices and accounts for the traffic 

changes with respect to time periods.  The closest research that covers dynamic changing 

matrices was done by Vallet and Brun (2014), while not considering energy savings as its 

objective and rather focusing on reducing network congestion.  Other research considered 

changing traffic matrices by using robust optimization for reducing energy while using 

few types of traffic patterns and link weight OSPF settings (Moulierac & Phan, 2014). 

The goal of our research work is to address the energy reduction in computer 

networks using concurrent optimization of both energy reduction and minimizing MLU, 

which considers the changing traffic matrices.  Specifically, our approach extends the 

Interior Gateway Protocol (IGP) link weight optimization of joint energy efficiency and 

improving load balance (Francois et al., 2014).  Our approach can be adopted and 

leveraged by network operators for managing large networks, especially when scaled to 

use distributed computing. 

The ability to reconfigure the network topology in a dynamic and agile fashion, 

by adapting to continuous traffic changes would achieve great benefit in reducing power 

consumption in IP networks.  This method can be migrated and adopted by other types of 

traffic flows.  A possible drawback would be that major changes to the algorithm would 

be needed. 

Barriers and Issues 

This is a rather new area of research, with relatively scarce literature.  Most of the 

latest research focuses on heuristic approaches that adhere to a specific traffic 
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engineering scheme.  Few papers relate to using multi-objective optimization technique 

to tackle the problem except for (Francois et al., 2014).  Few papers treat both saving 

energy and simultaneously consider changing traffic flows and patterns (Capone, 

Cascone, Gianoli, & Sanso, 2013; Chiaraviglio et al., 2012; Vallet & Brun, 2014). 

Obtaining network flow data sets is a difficult task, and most of the research uses 

the same standard data.  Some of the data is even based on older use cases which are of 

academic type such as Abilene and GEANT network topologies.  Another issue is that 

datasets are not available and synthetic data were used in order to show the approach 

effectiveness.  Furthermore, energy values or power metrics for each network node and 

link will be difficult to obtain whenever we use a new network topology.  Most prior 

researchers used various existing data sets such as Abilene, Rocket-fuel, synthetic 

topologies, thus a standard format is not used.  A major study of test beds and test cases 

was certainly required in order to establish a solid experimental database for proving our 

approach. 

It is important to note that the success of this research did not result in a 

comprehensive energy aware network optimization system.  Instead, it results in a 

component of an autonomous optimization system that can dynamically adapt to network 

traffic changes with the aim of saving internet energy with minimal effect on MLU.  This 

method can respond quickly to specific traffic changes and events by using an adaptive 

MOGA algorithm. 

Limitations and Delimitations of Study 

In this dissertation, the effectiveness of our approach is affected by the quality of 

the network traffic inputs and topology used, as well as by mimicking a real IP network 
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traffic that can reliably provide energy aware candidate links that can go to sleep.  In 

addition, results are impacted by quality of Pareto front solutions obtained by the MOO. 

The type of networks and traffic generated, as well as representation of dynamic 

traffic that can change every few minutes, is another factor that influenced the obtained 

results.  It is difficult to capture all different kinds of network traffic scenarios by using 

few network generators, thereby some network patterns were not studied and our 

approach was not tested thoroughly. 

Definition of Terms 

Term Definition 

Genetic Algorithm A heuristic search method used in artificial intelligence and 

computing. It is used for finding optimized solutions to 

search problems based on the theory of natural selection 

and evolutionary biology. 

 

GreenTE 

 

Green Traffic Engineering. 

 

Maximum Link 

Utilization (MLU) 

 

This is the Maximum Link Utilization, which is the 

maximum utilization of all network links. 

  

Multi-Objective 

Optimization 

An optimization involves more than one objective function 

to be optimized at the same time.  It belongs to the area of 

multiple criteria decision making. 

 

NSGA-II 

 

A Non-dominated Sorting Genetic Algorithm – II which is a 

very famous multi-objective optimization algorithm that 

generates Pareto optimal solutions, or non-dominated 

solutions. 

 

Open Shortest Path First 

(OSPF) 

 

A routing protocol for Internet Protocol (IP) networks. It 

uses a link state routing (LSR) algorithm for traffic routing. 

  

Pareto Optimal Front It shows the number of solutions (possibly infinite) for the 

objective functions that are supposed to be conflicting. 

  

  

A popular protocol for network management. It is used for 

collecting information from, and configuring, network 
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Simple Network 

Management Protocol 

(SNMP) 

devices, such as servers, switches, and routers on an Internet 

Protocol (IP) network. 

 

Traffic Matrix 

 

A representation of the traffic demand between a set of 

origin and destination abstract nodes.  An abstract node can 

consist of one or more network elements. 

 

Traffic Flow 

 

A stream of packets between two end-points that can be 

characterized in a certain way and denoted as source and 

destination addresses. 

 

Traffic Monitoring 

 

The process of observing traffic characteristics at a given 

point in a network and collecting the traffic information for 

analysis and further action. 

 

Summary 

Energy aware networking is gaining more interest from network operators and 

researchers, as percentage of energy consumed by Internet networks out of global power 

consumption is rapidly increasing, and its projected to exceed 20% by 2030 (Idzikowski 

et al., 2016).  This research directly addresses the problem of saving energy in IP 

networks while keeping the network load balance under control.  The method of 

minimizing both the MLU and PC concurrently using MOO was rarely used in literature. 

Research to date yielded methods of using heuristic approach that cannot handle 

online changes of real traffic and relies on sampling the network at fixed time intervals, 

such as day/night time periods.  Those methods are not satisfactory enough to model a 

real IP network traffic and thus the optimization algorithm does not yield good solutions.  

In addition to the above, unfortunately the power consumption of current network device 

architectures and transmission technologies is almost traffic load independent (Addis, 

Capone, Carello, Gianoli, & Sanso, 2014). 
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This research introduces a new approach for optimizing both objectives of 

reducing MLU and reducing the energy or power consumed by the network, by using 

MOO along with customized GA operators, that are part of adaptive strategies which are 

aware of the dynamic network traffic. 
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Chapter 2 - Review of Literature 

The usage of Information and Communication Technology (ICT) and its impact 

on the environment have fueled a lot of interest among researchers, manufacturers, 

educators and designers (Zeadally, Khan, & Chilamkurti, 2012).  Several recent 

techniques and solutions have been proposed to minimize power consumption by 

network devices, protocols, networks, end user systems, and data centers.  The energy 

efficiency issue has also become a high priority objective for wired networks and service 

infrastructures (Bolla, Bruschi, Davoli, & Cucchietti, 2011).  Because of the potential 

economic benefits and its expected environmental impact, reducing power consumption 

is becoming a major concern in wired networks (Bianzino et al., 2012).  Therefore green 

networking has been drawing a lot of attention in the last years, emphasized in surveys of 

(Addis, Capone, Carello, Gianoli, & Sansò, 2016; Bianzino et al., 2012; Bolla et al., 

2011). 

There are several interesting investigations into different techniques that are used 

for reducing power and energy with regards to IP networks.  This review of literature 

does not attempt to cover all of the work conducted, but instead this chapter attempts to 

cover some of the accomplishments made as they relate to the problem of reducing power 

consumption in wired IP networks.  The remainder of this chapter discusses the 

management and schemes for energy aware networks, network energy efficiency, traffic 

engineering, online traffic measurements, routing instability and network oscillation, and 

it gives an overview of some of energy aware approaches and methods that are relevant 

to this work.  
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Management and Schemes of Energy Aware Networks 

Green networking strategies are described in detail in the work of (Bianzino et al., 

2012).  The authors individualize four classes of power-aware solutions, namely resource 

consolidation, virtualization, selective connectedness, and proportional computing. The 

authors do separate online solutions that act on runtime from offline solutions that act 

before runtime.  They classify the green network research into categories of Adaptive 

Link Rate (ALR), interface proxying, energy aware infrastructure, and applications.  

Most research of router power management is focused on component or link levels, 

treating routers as isolated devices.  The authors propose a complementary approach to 

utilize power management at the network level, by routing traffic through various paths 

in order to adjust the workload on individual links or routers.  They base their power 

saving assumptions on the fact that high path redundancy and low link utilization exist in 

today’s networks.  Their intra-domain traffic engineering mechanism is called GreenTE, 

which maximizes the number of links that can be put into sleep under link utilization and 

packet delay constraints.  However, doing so requires frequent adjustment of network 

routing traffic status and raises the question of how often adjusting of the traffic matrix is 

required. 

The idea of energy conservation in internet networks was first published in a 

position paper by (Gupta & Singh, 2003).  It suggests that components of network 

devices can be put to sleep in a coordinated manner with some changes in internet 

protocols.  Chabarek et al. (2008) extend this idea by using a more coarse-grained 

network design and routing approach that uses mixed integer optimization techniques to 

investigate power consumption.  Other researchers such as Fisher et al. (2010) combine 
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benefits of both coordinated and uncoordinated sleeping methods by depending on pre-

calculations of the best configuration. 

Fisher et al. (2010) address reducing power consumption by exploiting the fact 

that many links in core networks are actually “bundles” of multiple physical cables and 

line cards that can be shut down independently.  Removing entire links during periods of 

low demands, from topology reduces capacity but may cause disruptions in the routing 

protocol.  Garroppo, Giordano, Nencioni, and Scutellà (2013b) analyze a novel network-

wide power management problem, called PARND-B.  They consider both traffic 

throughput of the nodes and their power consumption in order to turn off both the chassis 

and Physical Interface Card (PIC).  The chassis is the frame that houses all routers and 

switch circuits inside it.  They evaluate their solution on real network scenarios while 

considering time to obtain solution, power of network elements, traffic load, Quality of 

Service (QoS) requirement, and number of routing paths for each traffic demand. 

Network Energy Efficiency  

Ethernet is the dominant wireline technology for LANs and is widely used in 

residences and in commercial buildings.  A working group started an effort back in 2006 

in order to improve what they called Energy Efficient Ethernet (EEE), which became an 

IEEE standard called 802.3az-2010 (Christensen et al., 2010).  Packet coalescing saves 

energy by aggregating traffic in burst like fashion, instead of sending small network 

packets.  EEE performance can be improved by packet coalescing in which a FIFO (First 

In First Out) queue is used to collect or coalesce many packets before sending them to a 

certain link as a back-to-back burst of packets.  The main motivation of developing this 

802.3az standard is to reduce power consumption of Ethernet interfaces that is widely 
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used in wired IP networks, and thus obtain large energy savings.  The most important fact 

indicated by authors is that the power consumption of an idle link is 10 percent of that of 

active link.  Figure 1 shows 5 graphs describing the relationship of power or energy use 

versus link utilization percentage (Christensen et al., 2010).  For no EEE case, the 

constant power usage would be 100 percent and its independent of link utilization. 

 

Figure 1 - Energy Usage vs. Link Utilization. 

The graph labeled as ideal shows the ideal case where power use is directly 

proportional to utilization with an offset of 10 percent power consumption in idle case.  

The first packet arriving to an empty queue initiates a timer (set to 𝑡𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒) and a packet 

counter, and if the maximum packet count (𝑚𝑎𝑥) is reached or the timer expires, then all 

packets in the coalescing queue are sent.  The EEE graph shows power use of EEE 

without coalescing, while the two remaining graphs labeled as coalesce-1 and coalesce-2 

show the results for coalescing with 𝑡𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒 = 12𝜇𝑠, and 𝑚𝑎𝑥 =10 packets, and 

with 𝑡𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒 = 120𝜇𝑠, and 𝑚𝑎𝑥 =100 packets, respectively.  We can see that coalescing 

improves energy efficiency while increasing packet delay, and with coaslece-2 the energy 
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efficiency is closer to ideal.  We learn from this analysis, that power usage is proportional 

to link utilization, while idle links do consume power and it is worthwhile turning them 

off and make them go to sleep in order to save energy. 

Traffic Engineering  

Gupta and Singh (2003) identified first the power traffic patterns and how traffic 

can be routed using energy aware Traffic Engineering (TE). They offered a powering 

down approach that prompted several researchers to search for new methods.  The 

authors quantify some of the savings that are possible due to inter-packet gaps (i.e., 

packets not continuously arriving at full speed). 

Energy aware networking or green networking follows certain traffic engineering 

(TE) schemes.  Network nodes adhere to different sorting rules, such as random (R), 

least-link (LL), least-flow (LF), and most-power (MP) as described in (Chiaraviglio et al., 

2012).  For example, the least-link (LL) heuristic sorts the nodes according to number of 

links that are sourced or sunk at each node, so nodes with a small number of links are 

considered first.  The least-flow (LF) heuristic considers first those nodes with smallest 

amount of traffic flowing through them, and most-power (MP) heuristic switches those 

nodes with the highest power consumption first.  In their approach, they change the 

heuristics based on time period, so for day time they use LF or MP TE scheme.  The best 

energy savings is obtained when using a heuristic algorithm that checks iteratively if a 

given node or link can be turned off, while sorting nodes first based on a specific TE 

scheme such as MP.  Nodes are turned off first since their energy savings are higher than 

when switching off single links (Gunaratne, Christensen, & Nordman, 2005).  



29 
 

Network Traffic Measurement and Online OSPF 

Network traffic metrics and measurements remain the most critical issue in 

evaluating energy efficiency and consumption of devices, hardware, software and various 

networking architectures, systems and communication protocols (Zeadally et al., 2012).  

We need to standardize a set of energy-aware metrics with finer granularity.  A concept 

for measuring traffic, called traffic matrices was introduced in (Zhang et al., 2010).  They 

demonstrated that a small number of those matrices are enough to perform network 

analysis.  Considering energy aware optimization  when traffic pattern changes in multi-

period fashion, where each time period corresponds to a traffic scenario, with inter-period 

constraints for IP networks was first introduced by (Addis et al., 2014).  The time periods 

(multi-periods) corresponding to different traffic scenarios need to be jointly considered 

in order to take into account the constraints on routing.  Within every time period (inter-

period) we can exhibit different routing constraints such as QoS (maximum utilization 

and maximum path length) and maximum number of link cards switching.  The routing 

can vary according to the different demand conditions, and power consumption is 

minimized while satisfying the demands in every time interval.  They developed a 

comprehensive Mixed Integer Linear Programming (MILP) formulation of the problem 

while optimization constraints guarantee that each demand is transported from its origin 

to its destination. 

Mahadevan, Sharma, Banerjee, and Ranganathan (2009) show that actual energy 

consumed by switches and routers depends on various factors, such as device 

configurations and traffic workload.  Energy and power vary significantly with different 

configuration settings, and thus these settings are needed when performing power 
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measurements.  They also show that ideal consumption of power is about 70-90% of the 

maximum power so it is not energy proportional.  The authors developed a benchmark 

that can be used to compare power for a variety of network devices, as they measured 

power using meters attached to each device.  It is a very difficult and inconsistent method 

to use, where in our approach we rely on power consumption extracted from real network 

paths and we often re-calculate its power behavior as traffic changes frequently. 

Optimizing link weights for energy efficiency in a changing world while 

considering stability in routing configuration is addressed in (Moulierac & Phan, 2014).  

Authors focus on the most widely used IGP in IP networks, named OSPF protocol, and 

utilize a link state approach that performs a calculation of shortest paths based on a set of 

link weights.  They use real-life network data and traffic traces, and aim to reduce serious 

oscillation in network caused by its reconfiguration.  They proposed a robust heuristic 

optimization with MILP and used the min-load link criteria in order to make the link 

sleep.  Another work that focuses on saving energy under routing domains where OSPF 

is adopted is shown in (Amaldi et al., 2013).  They came up with an offline traffic 

engineering strategy that considers the daily time intervals characterized by different 

traffic levels (night, morning, lunch break, afternoon), and they used greedy heuristic 

algorithms with a two-stage approach.  Furthermore, in order to manage the whole 

network power consumption in a coordinated fashion, switching links and nodes on and 

off dynamically should track traffic variations (Addis et al., 2014). 

Online OSPF weighting optimization in IP networks is key to addressing the high 

volatility or instability of traffic patterns, where dynamic and adaptive routing schemes 

are required in order to react to changing traffic (Vallet & Brun, 2014).  Their idea is to 
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deviate traffic from the most loaded links by using delta weight changes to network links.  

The work of Vallet and Brun (2014) adopts the idea of using delta change of link 

weights, and use reducing network congestion as an objective.  They used SNMP link 

counts for estimating the traffic demands.  Traffic changes every few minutes, while 

reconfiguring of the network link assignment takes a few seconds, and thus the green 

networking algorithm should take few seconds to reach a decision.  Combining off-line 

and on-line techniques to optimize OSPF link weights for an energy aware environment 

was introduced in (Capone et al., 2013).  The authors rely on pre-computed scenarios of 

network traffic, and on discrete time intervals that are not continuous.  In Okonor, Wang, 

Sun, and Georgoulas (2014) link sleeping and wake up optimization techniques based on 

OSPF were used for saving energy.  They consider links that create no traffic disruption 

as having high priority to sleep and wake-up in order to reduce traffic instability when it 

is diverted. 

Routing Instability and Network Oscillation 

Rapid fluctuation and routing instability in IP networks was addressed earlier by 

(da Silva & Mota, 2017) .  Authors emphasize that three primary effects identify network 

routing instability; packet loss, delay time for converging the network routing and 

resource overhead such that CPU, memory and other.  (da Silva & Mota, 2017) discusses 

and presents approached for limiting path exploration approach, where accelerating 

updates and propagation delays of the network paths can improve network instability and 

reduce fluctuations. 

There are several approaches for measuring instability in computer networks, or 

convergence delay in the internet (Roughan, Willinger, Maennel, Perouli, & Bush, 2011).  
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Authors emphasize the need to develop internet models that depend on public internet 

routing databases that can improve the measurement accuracy of the internet model.  

They show examples of discovery of oscillation and slow convergence in routing 

protocols, as well as understanding of route flap dampening.  An observation was 

denoted that when a routing congestion is removed, then not all routing entries return to 

original values (Varadhan, Govindan, & Estrin, 2000).  Authors also indicate that it may 

not be enough to avoid network instability since transit routers can fail and trigger 

widespread routing instability.  They nevertheless emphasize that routing instability is 

one of the most pathological problems in the internet that can cause loss of service and 

service degradation for QoS demanding applications.  

Shaikh, Varma, Kalampoukas, and Dube (2000) studied the effect of loss of 

routing protocol messages caused by routing congestion, which lead to route flaps and 

routing instabilities.  They demonstrate how important selective treatment of routing 

protocol messages from other traffic by using scheduling and other buffer management 

policies in the routers, in order to achieve stable and robust network operation.  Due to 

policy changes, such as link weights alteration in an OSPF network, then the topology 

changes and convergence process is triggered (da Silva & Mota, 2017).  If a stable state is 

not reached within a specific period, then packet losses and inconsistencies could occur.  

During such period, routing instability is identified as fluctuation in network reachability.  

Network Energy Aware Approaches and Methods 

Heuristic Approaches  

Existing approaches rely on heuristic methods in order to compute those energy-

aware critical paths, or calculate those links that can be put to sleep.  In Zhang et al. 
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(2010) and Vasić et al. (2011), the authors model the network as a directed graph 

G=(V,E), where V is a set of routers and E is the set of links.  They show that making 

online routing decision by finding optimal routing solution while the real traffic is 

flowing is an NP-hard problem and can be accomplished in a few hours for a medium-

sized network.  Accordingly, they recommend using pre-established paths that are 

constructed off-line in order to avoid long path computation time.  Although a power 

down approach is used in Vasić et al. (2011), turning routers off is not the main concern 

as they identify a few energy-critical paths off-line, install them into network elements, 

and use an online element to redirect the traffic such as large part of the network enters 

low power state.  Overall, they developed a new energy saving scheme that is based on 

identifying and using energy-critical path. 

Most of the approaches and algorithms found in the latest literature use heuristic 

approaches based on energy aware traffic criteria or rules as shown in (Amaldi et al., 

2013; Fisher et al., 2010; Zhang et al., 2010).  In a latest survey authors classify various 

approaches covering energy efficiency in core networks with respect to optimal 

formulations and heuristic solutions (Idzikowski et al., 2016). 

 Heller et al. (2010) have come up with ElasticTree, which optimizes the power 

consumption of Data Center Networks by turning off unnecessary links and switches 

during off-peak hours.  ElasticTree also models the problem based on the Multi-

Commodity Flow (MCF) model, but is focused on Fat-Tree or similar tree-based 

topologies.  ElasticTree considers link utilization and redundancy when calculating the 

minimum-power network subset, and is implemented using OpenFlow.  This approach 

leverages the tree-based nature of these networks (e.g., a Fat-Tree) and at runtime 
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computes a minimal set of network elements to carry the traffic.  This is similar to our 

approach where we re-compute energy critical paths to reduce power, which is calculated 

online or at runtime as traffic changes.  A modified version of OSPF protocol that 

reduces the number of active links by utilizing shared shortest paths trees is shown in 

(Cianfrani, Eramo, Listanti, Marazza, & Vittorini, 2010).  Their mechanism allows 

sharing a Shortest Path Tree (SPT) between adjacent routers, so the total number of 

active links can be reduced and in a distributed way.  Concentrating network traffic on a 

minimal subset of network resources was addressed in (Chiaraviglio et al., 2012).  In the 

latter approach, several backbone nodes get aggregated into one node and after finding an 

optimal solution for the reduced version of the network they have a method to revert the 

original nodes back.  Given the NP-hard formulation, the optimal solution using a 

heuristic approach and an Integer Linear Programming (ILP) solver is much more viable 

since number of nodes is reduced. 

Genetic Algorithms, and Other  

Use of Genetic Algorithms in solving network energy aware problem is limited in 

literature, but was successfully introduced in (Francois et al., 2014).  They used GA to 

find the link weights for the joint optimization of load balancing and energy efficiency, 

and modified the existing traffic engineering scheme for link sleeping based operations in 

order to improve end-to-end traffic delay performance.  Their work is based on sampling 

a few different traffic matrices (offline analysis), and found that IP networks have regular 

traffic patterns.  In our work, we build upon their work for customizing the GA operators 

for mutation and crossover, but in addition, we use adaptive GA strategies that are tuned 
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for handling dynamic and continuous traffic changes.  Those GA operators are part of 

MOO that uses Non-dominated Sorting Genetic Algorithm (NSGA-II). 

Adapting link data rates can reduce the power consumption of links and ports by 

decreasing their high link capacities. The powering down approach provides more energy 

saving than rate adaption, which is shown from studies of (Heller et al., 2010; Tucker, 

Baliga, Ayre, Hinton, & Sorin, 2008).  A router is turned off completely in order to 

accomplish higher energy savings.  A combined approach of rate-adaption and power-

aware routing, to show savings of significant fraction of network power was used by 

(Antonakopoulos, Fortune, & Zhang, 2010).  Nedevschi, Popa, Iannaccone, Ratnasamy, 

and Wetherall (2008) introduced the buffer-and-burst approach that shapes traffic into 

small bursts in order to create bigger opportunities for network components to sleep. 

They focus on link level solutions, and suggest the idea of rate-adaptation, which adjusts 

operating rates of links according to the traffic condition.  There are link-level solutions 

that put line-cards to sleep when the link has no traffic; nonetheless, the power saving 

from opportunistic sleeping is limited by the inter-arrival time of packets. 

Adapting the SDN (Software Defined Networking) approach in order to handle 

energy-aware routing and resource management for large scale Multiple Protocol Label 

Switching (MPLS) networks is described  in (Celenlioglu, Goger, & Mantar, 2014).  

They developed a controller using Pre-Established Label Switching Paths (PLSPs), which 

performs load balancing to minimize congestion in paths, and introduce a path 

virtualization concept.  An excellent description of SDN and its structure is found in 

(Feamster, Rexford, & Zegura, 2013).  They define SDN characteristics such as control 

and data planes and they show how in turn this facilitates network programmability.  A 
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framework and prototype called Responsive Energy-Proportional Networks (REsPoNse) 

have been introduced in  (Vasić et al., 2011).  It identifies the small number of energy-

critical paths offline, then installs them into network elements, and use an online element 

for redirecting the traffic, so a large part of the network elements enter a low power state.  

One major issue with the latest approach is that offline measurements may not be 

applicable when the network is active and running.  Focus on network wide power saving 

strategies like Power-Aware Routing is described in (Mahadevan et al., 2009).  Power-

Aware Network Design (PAND) is further discussed with details in (Garroppo, Giordano, 

Nencioni, & Scutellà, 2013a).  The authors combine both power and network with 

bundled links to achieve Power-Aware Routing and Network Design with Bundled Links 

(PARND-BL).  They examine powering a single Physical Interface Card (PIC) that is 

faster than powering on a link, since a link is a topological change that alters the network 

topology, while a single PIC is a local capability. 

Gelenbe and Mahmoodi (2011) use smarter networks using Cognitive Packet 

Network (CPN) protocol, where AI techniques of Random Neural Network (RNN) are 

used to save power, gather online QoS measurements and discover new routing paths.  

They offer an Energy Aware Routing Protocol (EARP) that respects QoS for each 

incoming flow while attempting to minimize power, so their approach has a combined 

objective, which is similar to that of Nedevschi et al. (2008) who determine whether to 

perform rate-adaptation or use sleep mode to save energy.  Smarter networks have been 

proposed to improve QoS and provide QoS-driven routing that performs distributed 

manner self-improvement by learning from experience of special packets (Sakellari, 

2009). 
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Summary of Literature 

 We have presented a comprehensive review of the literature related to energy-

aware networking or energy efficiency covering several aspects.  Latest research focuses 

on energy or power management systems and approaches for saving energy especially 

heuristic methods as shown in latest surveys of (Addis et al., 2016; Bianzino et al., 2012; 

Bolla et al., 2011; Idzikowski et al., 2016).  Most of existing management strategies for 

reducing energy focus on static analysis of offline and online traffic state, without 

considering the varying nature of Internet IP network traffic.  Network instability induced 

by changing link weights settings has been addressed by several researchers, especially in 

an OSPF network that triggers a network convergence process (da Silva & Mota, 2017).   

There are different optimizations approaches used in order to save energy which 

rely mostly on heuristic methods, using MILP modeling of the problem (Idzikowski et 

al., 2016).  These techniques do not take any dynamic traffic demands or multi-period 

traffic into considerations and merely rely on capturing the network state at a specific 

time. 
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Chapter 3 - Methodology  

The study builds upon the work of Francois et al. (2014) by using adaptive 

optimization methods, and by using a real time varying traffic.  We developed methods to 

model the network inputs, and capture the objective functions by using network simulator 

and emulator that outputs the power and MLU of the network.  We considered energy-

aware traffic engineering, along with the traffic matrices and traffic flow.  The remainder 

of this chapter describes the MOGA operators, GA encoding of solutions, illustrative 

example, traffic engineering schemes, the three approaches that we developed, the 

adaptive GA crossover and mutation operators, network instability algorithm using delay 

parameters, and the resources required to carry out the experiments of this study.  There 

are two types of datasets that are used corresponding to network traffic demands and 

network topologies.  

The new approach described in this research built upon the work conducted by 

Francois et al. (2014) by customizing the GA operators for mutation and crossover, but in 

our approach we further developed adaptive GA operators and strategies that can handle 

dynamic and continuous traffic changes.  This new approach uses MOO, while 

considering both objectives of reducing power consumption and keeping MLU under a 

certain limit 𝛼 achieving a steady conventional traffic engineering or network load 

balance performance 

Why NSGA-II for Multi-Objective Optimization? 

The MOGA uses NSGA-II algorithm with customized mutation and crossover 

operators.  NSGA-II is a multi-objective genetic algorithm that was first introduced by 
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(Deb, Pratap, Agarwal, & Meyarivan, 2002).  The performance of the algorithm is based 

on ranking and selecting the population fronts performed by two additional specialized 

multi-objective operators called non-dominance technique and a crowding distance. The 

next generation of solutions is created by combination of current population and the 

offspring generated according to non-dominance and crowding distance techniques. The 

non-dominated technique and crowding distance are described in the following sub 

sections. 

Non-dominance technique 

For a problem with 𝑘 objective functions, the solution 𝑥1dominates solution 𝑥2 

for all the objective functions if solution 𝑥1is not worse than 𝑥2 and for at least one of the 

𝑘 objective functions, 𝑥1is exactly better than 𝑥2.  Pareto front number 1 is made by all 

solutions that are not dominated by any other solutions and front number 2 is built by all 

solutions that are only dominated by solutions in front number 1 and the same goes for 

other fronts.  Therefore, we rank the population based on dominance depth, and which 

front is the individual located. 

Crowding Distance 

The crowding distance is used to measure the density of solutions. The crowding 

distance value is calculated for each individual in the population, and for a specific 

solution it is the average distance from the two neighboring solutions immediately before 

and after along each objective dimension.  Ranking among all of those belonging to a 

front is done where higher value of crowding distance is preferred.  To select solutions 

for the crossover and mutation operators, a binary tournament selection procedure is 

used.  First, the procedure selects two solutions from the population, and then selects the 
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better one according to non-dominated sorting technique and crowding distance value. If 

both solutions are selected from the same front, the solution with the higher crowding 

distance is selected. 

Optimal solutions to a multi-objective problem are non-dominated solutions, 

known as Pareto-optimal solutions, where depending on the optimization case, one point 

is preferred over the other (Srinivas & Deb, 1994).  NSGA-II works in a similar way as 

traditional genetic algorithms, but we chose it since it preserves elitism and diversity of 

the solutions space and has low computational complexity.  NSGA-II finds a Pareto 

optimal front of solution space due to the presence of two objectives in the above 

problem: minimizing both power consumption and MLU.  In this genetic algorithm (GA), 

the solution is encoded through a chromosome, which is created from a number of genes 

equal to the number of network links.  We introduce several more GA custom operators 

of crossover and mutation operators.  These latter operators should further enhance 

NSGA-II basic operators and make the search in the Pareto-optimal solution space more 

efficient. 

GA Solution Encoding, and Scheme Overview 

Each chromosome (population member) has 𝐿 genes where 𝐿 is the number of 

links.  Each gene is represented as an integer value within a range of [1,65535], which  is 

part of the link weights vector 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝐿), where 𝑤𝑖 ∈ [1,65535] for each link 

𝑖 = 1,2, … , 𝐿 (Ericsson, Resende, & Pardalos, 2002).  Each gene represents a link weight 

and is restricted to an integer value in the range of 1 to 65,535  (Fortz & Thorup, 2000).  

Links that are not used to carry traffic are selected to be put in sleep mode, by using a 

link weight value of 65,535.  However, the latter selection mechanism is up to the 
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network operator, as another scheme or range of link weights can be used to enforce 

putting links into sleep mode.  Each chromosome has two recognizable fitness functions 

in the NSGA-II algorithm that represent equation 1 and equation 2, respectively.  Figure 

2 shows the encoding of each chromosome and how each gene represents an integer 

value that corresponds to a link weight.  The higher the values of a link weight the lower 

probability that the network operator will select this link for carrying traffic.  The 

network operator can tune the integer link weights of the links, in order to compute 

shortest paths for carrying the network traffic  (Rexford, 2006).  Load balance uses Open 

Shortest Path First (OSPF) link weight management.  Using OSPF, the network operator 

assigns a weight to each link, and shortest paths from each router (node) to each 

destination node are computed using the weighted cost function of the links (Fortz & 

Thorup, 2000).  

 

Figure 2 – Network Links Mapping to Chromosome Encoding.  

Each node is connected to other adjacent nodes based on the given network 

configuration, and not necessarily to all other nodes.  Figure 2 shows an arbitrary 

example of nodes connectivity to other links.  For a given chromosome, each fitness 

function is evaluated numerically and outputs a power value for the first fitness function 
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and a numerical output of MLU for the second fitness function.  When we use MOO, we 

supply a function that takes several inputs: a chromosome, network graph 𝐺, network 

demands 𝐷, and links’ weights, and outputs two numeric values corresponding to the two 

objectives.  Link utilization is measured when we route our traffic matrix on top of the 

topology with the updated link weights.  Thus, the resulting chromosome with the 

optimal solution includes different values of its genes that eventually maps to a particular 

traffic routing. 

An Illustrative Example of Network Energy and MLU MOO Algorithm 

 Figure 3 illustrates the basic concept of link weight optimization for both 

minimizing power consumption and achieving load balance.  We use a small example of 

network topology in Figure 3 assuming link capacities of all links are at 100%, and that 

MLU must be below 50% (α) as an example.  We show a weighted directed graph  

𝐺(𝑁, 𝐿) where we have 5 nodes (|𝑁| = 5), and 8 links (|𝐿| = 8), with the indicated link 

utilization and link weight settings for each link.  These link weights were selected for the 

sake of describing the optimization of link weights in order to save energy, while not 

exceeding the MLU limit. 

Figure 3 - Illustrative example for network topology link weights optimization. 
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The path of N1-N5 can go on multiple traffic paths, through N1-N2-N5, N1-N3-

N5, or N1-N2-N4-N5.  Clearly, we can shut down links N2-N4 and N4-N5 without 

causing the network topology to lose full connectivity.  We first consider the case where 

a set of link weights are not optimized as in the left side of Figure 3 where the maximum 

link utilization of 30% is currently found at link N2-N5.  The case where the link weights 

are optimized is depicted on the right side of Figure 3.  Whenever we want to minimize 

the power consumption of this network topology, we select shortest paths and we 

increase their utilization assuming that we do not exceed its allowed MLU.  Therefore, 

the algorithm does not select links N2-N4 or N4-N5, which are the least utilized links.  

The MOGA algorithm uses a special link weight of 65,535 to represent that the link is 

not utilized and it should be put to sleep.  The MLU is increased, since N2-N4 and N4-

N5 are put to sleep, and their traffic demands is routed along the other path of N2-N5.  

Evaluating the maximum link utilization function should yield 40%, which is found on 

link N2-N5.  The power consumption is calculated based on equation 1, as two links are 

put to sleep and thus reduce the value of the first fitness function of power consumption. 

The example above shows that optimization of link weights has allowed two links 

to go to sleep by selecting shortest paths for carrying the traffic, while not exceeding the 

allowable MLU of the network.  Calculating the objective functions is the most expensive 

process computationally; since we have to repeat it for every GA generation (each 

chromosome has 𝐿 number of genes or links).  For every GA generation we have to 

evaluate the two objectives fitness functions for the 𝑃 population size.  GA stops when 

the best solution has not improved in the last 𝑔𝑎𝑚𝑎𝑥_𝑛𝑢𝑚 number of generations. 
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In this research, our approaches rely on sampling traffic changes and metrics in a 

continuous fashion.  This approach extends Zhang et al. (2010) combined method for 

saving power and at the same time control the link load.  They use link rate control by 

examining rates (measured in Giga Bits per Second or Gbps) of links according to their 

traffic condition, as well as considering sleeping of links, routers and switches.  Running 

our MOO uses adaptive strategies that optimize two objectives of minimizing power 

consumption and minimizes MLU.  Our energy-aware network configuration uses 

shortest paths and our network load-balance tracks changes in traffic flows. 

Traffic Engineering Schemes 

 All of the developed approaches in this research are based on MOO.  Network 

operators employ TE schemes in order to perform load-balancing.  All approaches rely 

first on certain energy aware TE schemes that are based on sorting criteria or rules for the 

nodes and links (Amaldi et al., 2013; Chiaraviglio et al., 2012).  The sorting criteria for 

nodes that we consider for this work are shown in Table 2.  They include random (R) and 

Most-Power (MP) for nodes, Least-Flow (LF) for both nodes and links, and Least-Link 

(LL) for links. 

Table 2 - Criteria for link/node sleeping. 

Sorting Criteria Applies to Description 

Least-Flow (LF) Nodes and Links Consider smallest amount of traffic 

Random (R) Nodes and Links Random order 

Most-Power (MP) Nodes Consider highest power consumption 

Least-Link (LL) Links Sort link weight values monotonically 
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 In the following sections, we describe the three approaches that use the sorting 

criteria listed in Table 2. 

Dual Approach 1 (MOGA-I) 

In the first approach, the algorithm concurrently considers both the link sleeping 

scheme, and the link weights.  It uses random (R) criteria for selecting the value of each 

link, which indicates Link Sleeping State (LSS), whether it is active or asleep.  In this 

approach the network measurement and initial or current link weights are not considered, 

and the MOGA-I algorithm finds optimal solutions driven by MOO, in order to minimize 

both fitness functions (1) and (2).  The link weights are obtained by running MOGA-I 

using the gene and chromosome encoding as shown before.  We use two kinds of 

chromosomes as depicted in Figure 4.  One chromosome uses binary encoding (0,1) for 

each link 𝑙 from node  𝑖 to node j, so it includes 𝐿 genes where every gene has LSS value.  

The second chromosome uses Integer Weights Values (IWV) per link as shown before.  

Each gene can have a random value [1,65535] 𝑣𝑖 ∈ [1,65535], 𝑓𝑜𝑟 𝑖 = 1,  … 𝐿. 

 

Figure 4 - Dual Chromosome Approach. 

 The MOGA-I algorithm generates both chromosomes randomly, and it uses GA 

operators such as crossover and mutation in order to get optimal solutions.  Our network 
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topology system captures the network topology, injects the traffic flow, and implements 

the optimization algorithm mechanism.  Fitness functions are calculated every time based 

on the chromosome values, and based on running the network topology system in order 

to decide on the final load balancing and links utilization in order to calculate MLU.  This 

network topology system uses OSPF routing and uses Equal Cost Multiple Path (ECMP) 

as part of the shortest paths routing.  Decision variables 𝑥𝑖𝑗 are obtained by MOGA 

chromosome A, while  𝑦𝑚 is generated by 𝑥𝑖𝑗  if all links that are flowing into and out of a 

certain node m are all inactive or asleep.  Power consumption (PC) fitness function is 

easily calculated based on 𝑥𝑖𝑗 and 𝑦𝑚, and by considering the power information of 

associated nodes and links.  Consequently, new network flows 𝑓𝑖𝑗
𝑠𝑑 and 𝑓𝑖𝑗  are obtained as 

the output of the network system along with the fitness functions numerical values. 

Delta Weight Approach 2 (MOGA-II) 

In this approach, we use the values of the link weights as configured in the current 

network configuration as our initial link weights set of values.  In order to minimize 

oscillations in the network when applying new link weights and configuring new traffic 

flow matrix, we rely on changing link weights gradually based on relatively small 

difference in each link weight value denoted as 𝛥𝑤 (delta weight).  We must make sure 

that the absolute value of 𝛥𝑤 is carefully selected as it has to be big enough for the 

network operator to decide to change the traffic flow through that link.  On the other 

hand, 𝛥𝑤 should not be too big in order to prevent oscillations in the network. 

This method compared to the dual approach discussed earlier, uses one 

chromosome B that uses the IWV for each gene’s value, but uses different weight values 

range per link.  In this method, chromosome A is pre-assigned before entering the 
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MOGA-II algorithm (Multi-Objective Genetic Algorithm for this second approach), 

based on one of the rules in Table 2.  A specific TE scheme (Table 2) is used such as LF, 

which considers least loaded links in order to evaluate the links LSS values.  The least 

loaded links, which have traffic utilization under a specific limit, become candidates for 

being put to sleep.  The MOGA-II algorithm uses a two-step solution, where in first step 

the LSS values are pre calculated and the decision on those nodes and links that are put 

asleep is already made.  Pre calculation of LSS values uses least-flow (LF) criteria for 

selecting the value of each link.  The MOGA-II algorithm is described in Figure 5. 

Figure 5 - MOGA-II Two Step Algorithm. 
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In the second step, the MOGA-II algorithm runs in order to find optimal solutions 

for minimizing objectives from both equations 1 and 2 of PC and MLU, respectively.  

This MOGA-II algorithm uses chromosome B, but it uses different values for the link 

weights.  So IWV is extracted historically based on previous or initial link weight value, 

and it is later modified by an incremental value chosen from a limited range of values as 

a function of 𝛥𝑤.  Assume 𝑤𝑖𝑗
𝐼  is the initial weight value for the link 𝑙 from node  𝑖 to 

node 𝑗.  The differential weight value 𝛥𝑤 for this link is what we need in order to make 

the network operator change traffic through this link, either by reducing or by increasing 

its total link weight.  We use 𝛥𝑤𝑖𝑗 to denote 𝛥𝑤 for the link 𝑙 from node  𝑖 to node 𝑗 at 

time T.  Eventually, MOGA-II should select weight value 𝑤𝑖𝑗  for each gene from a value 

range described below: 

 𝑤𝑖𝑗 ∈ [(𝑤𝑖𝑗
𝐼 − 𝛥𝑤𝑖𝑗), (𝑤𝑖𝑗

𝐼 + 𝛥𝑤𝑖𝑗)]    ∀(𝑖, 𝑗) ∈ 𝐿    (6) 

The value of 𝛥𝑤𝑖𝑗 is carefully selected based on inputs from the network operator 

and based on the OSPF/ECMP algorithm.  Those inputs specify the value needed for 

deviating traffic from a certain link.  Furthermore, modification of the link weights after 

we evaluate MOO (picking the “No” branch of “Satisfy Multi-Objective Criteria”) is 

done by increasing the weight of least loaded links (LF) by 𝛥𝑤𝑖𝑗 (make them sleep), or 

by increasing the weight of other links by 𝛥𝑤𝑖𝑗 (deviate traffic flow). The parameter of 

𝛥𝑤𝑖𝑗 is re-computed and the updated new link weight is represented as follows: 

𝑤𝑖𝑗  = 𝑤𝑖𝑗
𝐶 + 𝛥𝑤𝑖𝑗    ∀(𝑖, 𝑗) ∈ 𝐿      (7) 

𝛥𝑤𝑖𝑗 =  (𝑤𝑚𝑎𝑥− 𝑤𝑖𝑗
𝐶 )    ∀(𝑖, 𝑗) ∈ 𝐿  𝑖𝑓  𝑥𝑖𝑗 = 0    (8) 



49 
 

Note that 𝑤𝑖𝑗
𝐶  is the current link weight value for the link  𝑙 from node  𝑖 to node 𝑗, 

and  𝑤𝑚𝑎𝑥 denotes the maximum link weight value in the current network configuration 

as evaluated by MOO.  In the problem formulation it was indicated that if  𝑥𝑖𝑗 is 1 then 

the link is active, otherwise if 0 then it is inactive or asleep.  If the new link is still active, 

then based on equation 7 its weight 𝑤𝑖𝑗 is updated by adding 𝛥𝑤𝑖𝑗  to the current link 

weight 𝑤𝑖𝑗
𝐶 .  Otherwise if the new link is asleep then based on equation 8 its weight of 𝑤𝑖𝑗 

is set to 𝑤𝑚𝑎𝑥 and the link  𝑙 from node  𝑖 to node 𝑗 remains at sleep state.  As noted, our 

main goal is to switch off the maximum number of links for energy saving and then 

spread the traffic as evenly as possible on all remaining active links. 

This approach of using 𝛥𝑤 along with the MOGA algorithm can reduce the 

computation time of the algorithm since it uses a smaller search space.  The only 

drawback of this 𝛥𝑤 approach is that it finds fewer optimal solutions due to the smaller 

search space than that used in the random dual approach 1 (MOGA-I) above. 

Hybrid Approach 3 (Hybrid MOGA-III)  

This approach combines approach 1 and 2, where random approach is executed 

first, for number of generations.  The best solution is then chosen to be used for the delta 

weight approach that runs for further number of generations.  The main advantage of this 

hybrid or mixed approach is that it combines the best of approach 1 and 2, since approach 

1 yields better solutions while lacking stability and has more oscillations.  On the other 

hand, approach 2 has less oscillation in network traffic and more stable, but has a smaller 

search space and yield less good solutions.  The idea is that the algorithm runs for a 

number of generations 𝑁1 using approach 1, and then after 𝑁1 generations, it switches to 
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approach 2.  After 𝑁1 generations, the best solution is tracked and is promoted to be used 

for approach 2.  The algorithm chooses the best solution from the Pareto Front solutions. 

Common Issues in All Three Approaches  

 All approaches yield new link weight values, which are flooded in the network 

using control messages.  The routers then re-compute the shortest paths (OSPF) and 

update their forwarding routing tables; this may take a few seconds until all routers 

stabilize their shortest paths (Moulierac & Phan, 2014).  We addressed this network 

disruption and instability of link weights in the discussion of the approaches below.  The 

more excessive the link weight changes the more network noise and oscillations occur.  

Furthermore, the runtime of algorithms is targeted to run in less than a minute, and this is 

addressed accordingly in the implementation and results phase. 

In all three approaches, and after each execution of our MOO, we keep track of 

the “top” node which is selected from those nodes that were turned off so far.  This “top” 

node yields the highest traffic capacity considering all links that are connected to it.  If 

the MLU increases above a specific threshold α, then we turn this "top" node back on. 

Adaptive GA Genetic Operators 

  All approaches use GA or MOGA to search for good solutions using mutation and 

crossover operators are described below.  In this work, the GA operators are adaptive, as 

they depend on the network configuration inputs of topology 𝐺 = (𝑁, 𝐿), traffic matrix 

𝐷 and the initial set of current link weights.  The fitness functions depend on those inputs 

and can have a different solution space every time those inputs change. 

 Mutation and crossover operators are aware to LSS, while taking one solution 

candidate (chromosome) and altering the values (IWV) of one or more genes in the 
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chromosomes (Francois et al., 2014).  Therefore, both operators were customized to fit 

the problem that we have, by considering both LSS and IWV values for every network 

configuration.  𝐺, 𝐷, and initial link weights represent each network configuration. 

GA Crossover Operator 

In GA, a crossover operator takes two chromosomes (i.e. two solutions) in the 

current population and swaps their genes (i.e. link weights) with each other in order to 

generate two new offspring chromosomes.  We use the most common crossover and 

mutation operators that are the two-segment crossover, and random gene mutation, 

respectively.  In addition, a new crossover operator compares two parent chromosomes, 

and performs a multiplication function (AND) between the LSS value of each link that is 

associated with two different parents gene (i.e. link weight).  This crossover operator may 

urge link sleeping to multiply through the population, since one parent chromosome can 

alter its gene with its correspondent gene in the other parent if it represents a sleeping 

link.  Figure 6 shows an example of parent chromosomes where each parent is composed 

of links which represent its genes.  The LSS values for the two parents are shown, and if 

the link is sleeping then the value of LSS is “0”, otherwise the link is active and the value 

of LSS is “1”.  This customized crossover operator is designed so that one parent 

chromosome can replace its gene with the other parent chromosome corresponding gene 

if it represents a sleeping link.  The resulting child as shown in Figure 6 has the value of 

its gene’s LSS as the AND function between the two parents.  The arrows between the 

two parent chromosomes show the direction of the change when the LSS change occurs.  

This new LSS aware crossover operator allows those link weights that hold the attribute 

of link sleeping to multiply through the population. 
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Figure 6 - LSS Aware Crossover Operator 

GA Mutation Operator 

Another GA operator that we have customized is the mutation operator, which 

modifies one or more genes (i.e. link weights) in the chromosome.  We associate the 

mutation probability of each link (i.e. gene) directly with the link utilization and MLU in 

the network, such as  𝑃𝑖𝑗
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =

𝑢𝑖𝑗

𝑀𝐿𝑈
 as described in the context of the work in 

(Francois et al., 2014).  Whenever the link is more utilized, its mutation probability 

becomes higher.  This way a link that has high utilization will have its link weights 

increased, and thus less likely to be selected by the network traffic routing.  Anytime we 

generate a chromosome via mutation, the mutation can be done either by the new 

customized mutation method or the random one, but not by a mixture of both for the 

same chromosome.  If the new customized mutation method is used, each gene is mutated 

with the probability linked to the utilization of the link that the gene represents, and the 

link weight changes according to the function in equation 9 below: 

𝑤𝑖𝑗 = {
   𝑤𝑖𝑗

𝐶 + 𝛥𝑤𝑖𝑗   ∀(𝑖, 𝑗) ∈ 𝐿, 𝑖𝑓  𝑢𝑙𝑜𝑤 > 𝑢𝑖𝑗  𝑜𝑟  𝑢𝑖𝑗 >  𝑢ℎ𝑖𝑔ℎ 

 𝑤𝑖𝑗
𝐶 −  𝛥𝑤𝑖𝑗    ∀(𝑖, 𝑗) ∈ 𝐿, 𝑖𝑓  𝑢𝑙𝑜𝑤 < 𝑢𝑖𝑗 <  𝑢ℎ𝑖𝑔ℎ

  (9) 
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In equation 9, we compare the link utilization value to pre-established limits for 

maximum link utilization  𝑢ℎ𝑖𝑔ℎ and minimum link utilization 𝑢𝑙𝑜𝑤.  Highly utilized links 

should have their link weights increased in order to reduce MLU, so that there is more 

chance that traffic goes away from them.  Low utilized links should have their link 

weights increased as well so they go to sleep.  Medium utilized links should have their 

link weights decreased in order to take more traffic.  Thus, this method adaptively tunes 

mutation rate according to the specific inputs from the network. 

Network Instability and Delay Parameters 

In order to address network instability after changing the link weights, and to 

better understand the effect of delay on runtime, several experiments were carried out.  

These experiments prove reliability or consistency of measurements of link load and 

power consumption across various simulations conditions. 

Two types of methods are used in order to isolate and reduce the traffic flow 

instability after changing the link weights.  First, we apply a sequential delay whenever 

we change the link weights for an individual node that belongs to the network.  Each 

individual node has its links’ weights altered in a sequential fashion, one after the other 

until we go through all nodes that belong to the network topology.  Second, we apply a 

wait interval delay after we alter the weights of all node’s links.  Eventually, in every 

iteration we apply two kinds of delay parameters, sequential_delay parameter and 

wait_interval delay parameter.  For both network topologies that we tested, a similar set 

of granularity in setting delay numbers was used.  

Prior work of Shaikh et al. (2000) described a failure due to network instability 

caused by congestion, so we chose to analyze the traffic load as a measurement method 
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for validating our work.  A formula for describing the traffic flow differential 

measurement is shown below: 

𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑘 =
𝑀𝐿𝑈(𝑡+1)−𝑀𝐿𝑈(𝑡)

𝑀𝐿𝑈(𝑡)
           (10) 

The above formula in equation 10 describes the instability factor in each traffic 

flow measurement, 𝑀𝐿𝑈(𝑡) is the traffic flow maximum link utilization value returned at 

time t, and after sleeping 1sec we return the value of 𝑀𝐿𝑈(𝑡 + 1).  We calculate the 

difference in traffic flow MLU and divide it by 𝑀𝐿𝑈(𝑡).  This gives an indication of how 

much traffic flow change has occurred.  At each iteration 𝑘, we measure  𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑘 , 

and at the end of the simulation, we calculate the average based on all 𝑛 iterations.  The 

next formula described in equation 11, shows how we calculate the average for the entire 

simulation: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑘

𝑛

𝑘=1

𝑛
          (11) 

 We calculate 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 after each simulation, and for each simulation, 

we vary mainly the delay parameters between each iteration, and internally in the same 

iteration while changing each link weight as described in the next sections. 

Sequential Delay Method  

 After running few experiments, we noticed that traffic flow disruption is highly 

affected by each link weight change, and it depends on LF TE scheme and the 

randomness of GA algorithm.  Figure 7 shows the flow diagram and describes how we 

change the link weights together with the sequential_delay parameter.  Each link that 
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belongs to a specific node has its weight altered based on our MOO algorithm.  After 

each node’s links weight are set, then we apply a sequential_delay that allows the traffic 

to settle down and thus reduce network oscillations.  We apply new link weights for all 

nodes’ links along with adding sequential_delay after each node’s links are assigned.  

Consequently, we apply additional wait_interval delay as shown in Figure 7, and after 

that, we measure the resulting MLU and PC.  In the next section, we discuss the 

wait_interval delay parameter. 

Delay Wait Interval Method 

 In the second step, we can also apply a global delay wait_interval after all link 

weights have been changed in each iteration, and between each iteration and the next 
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Figure 7 - Diagram of CORE and Algorithm for Setting Instability Delay Parameters 
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iteration, this wait_interval delay is implemented.  Applying a wait_interval delay after 

all weights of all links have been altered allows CORE emulator to settle down all links 

together and gives rise to better stability in the network flow. 

The network system and methodology is shown in Figure 7 above, where network 

topology and traffic flow using MGEN is fed into CORE network emulator.  We measure 

the MLU and PC in each iteration and feed it back to MOO algorithm, which is 

implemented using DEAP.  We describe two mechanisms for stabilizing the traffic flow, 

one mechanism is to include a sequential_delay after each link weight assignment after 

MOO algorithm is run, and second mechanism is to include a wait_interval after 

finishing each GA iteration that alters settings of links’ weights of all nodes.  For each 

node that belongs to the network topology, we apply a sequential_delay after all of its 

links’ weights are applied. 

We start the CORE simulation by using default link weights, and once the traffic 

is established we start running the MOO algorithm that yields new link weights for all 

links in network topology.  In every iteration, we collect the resulting MLU and PC and 

after several iterations, DEAP keeps track of HOF (Hall of Fame) best Pareto optimal 

front solution so far in the algorithm.  Those resulting MLU and PC are also used as an 

input for DEAP mutation and crossover functions as described earlier in our 

methodology.  As shown in Figure 8, adding the delay is done in two parts, one part that 

applies a sequential_delay (𝒅𝒔𝒆𝒒) after each change of link weights for each link of the 

node, and a second part that applies wait_interval (𝒅𝒘𝒂𝒊𝒕_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍) after all new link 

weights of all of the nodes are applied.  
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Figure 8 - Pseudo Code Showing wait_interval and sequential_delay Algorithm 

The instability algorithm described in Figure 8 keeps track of each iteration and 

applies the two types of delay parameters.  IWV values as described in Chapter 3 are 

determined by MOO algorithm, and for each node and its links, we apply a 

sequential_delay and a wait_interval delay as shown in the pseudo code in Figure 8.  

Adding the wait_interval delay improves further the instability measurement and allows 

the network to stabilize more.  At the end of the simulation, DEAP gives the multi-

objective optimal solution for both MLU and PC from the Pareto optimal front as 

discussed earlier in our methodology. 

 Input: New optimized link weights per each node and its links 

 Output: Updated network traffic link load, power consumption and instability measure 

1. 𝒃𝒆𝒈𝒊𝒏 
2. 𝒊 = 𝟏; 
3. 𝒈𝒍𝒐𝒃𝒂𝒍_𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 =  𝑴𝑶𝑶. 𝒔𝒖𝒎𝑶𝒇𝑫𝑬𝑨𝑷_𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔; 
4. 𝒅𝒔𝒆𝒒 = 𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍_𝒅𝒆𝒍𝒂𝒚; 

5. 𝒅𝒘𝒂𝒊𝒕_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 =  𝒘𝒂𝒊𝒕_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍; 
6. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒍𝒊𝒏𝒌 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 (𝑫𝒆𝒇𝒂𝒖𝒍𝒕); 
7. 𝒘𝒉𝒊𝒍𝒆 𝒊 <  |𝒈𝒍𝒐𝒃𝒂𝒍_𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔| 𝒅𝒐 
8.      𝑹𝒖𝒏𝑪𝒐𝒓𝒆𝑵𝒆𝒕𝒘𝒐𝒓𝒌(𝑫, 𝑵, 𝑳); 
9.      𝑰𝑾𝑽(𝑳)  =  𝑹𝒖𝒏𝑫𝑬𝑨𝑷_𝑴𝑶𝑶_𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒎; 
10.      𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒏 ∈ 𝑵 𝒅𝒐 
11.            𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒍 ∈ 𝑳(𝒏) 𝒅𝒐 
12.                     𝑰𝑾𝑽[𝒍] ← 𝒗𝒂𝒍𝒖𝒆; 
13.                     𝑨𝒑𝒑𝒍𝒚_𝒍𝒊𝒏𝒌_𝒘𝒆𝒊𝒈𝒉𝒕(𝑰𝑾𝑽[𝒍]) 

14.             𝒔𝒍𝒆𝒆𝒑(𝒅𝒔𝒆𝒒); 

15.       𝒔𝒍𝒆𝒆𝒑(𝒅𝒘𝒂𝒊𝒕_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍) 

16.       𝑷𝒆𝒓𝒇𝒐𝒓𝒎 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝒐𝒏 𝑴𝑳𝑼 𝒂𝒏𝒅 𝑷𝑪 

17.       𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝑰𝒏𝒔𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒖𝒔𝒊𝒏𝒈 𝑴𝑳𝑼 𝒗𝒂𝒍𝒖𝒆𝒔 
18.       𝒊 = 𝒊 + 𝟏 
19. 𝒓𝒆𝒕𝒖𝒓𝒏  𝒎𝒖𝒍𝒕𝒊 − 𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒐𝒑𝒊𝒎𝒂𝒍 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒐𝒇 𝒃𝒐𝒕𝒉 𝑴𝑳𝑼 𝒂𝒏𝒅 𝑷𝑪 
20. return 𝒂𝒗𝒆𝒓𝒂𝒈𝒆_𝜹𝒊𝒏𝒔𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 

21. 𝒆𝒏𝒅    
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Resource Requirements  

In order to test our methodology in real time and using a flow based traffic we 

used a network emulator that can resemble a real computer network running on actual 

routers and links.  Common Open Research Emulator (CORE) is a computer network 

emulation tool from Naval Research Laboratory (NRL), and it was used to emulate the 

network and capture the network topology (Ahrenholz, Danilov, Henderson, & Kim, 

2008).  

We used CORE for calculating the MLU fitness function, which simulates a 

computer network topology.  Widely used SNDLib provides real network topologies like 

Abilene and Polska (Orlowski, Wessäly, Pióro, & Tomaszewski, 2010).  MGEN is both a 

command line and GUI traffic generator that was developed by US Naval Research 

Laboratory.  We used MGEN tool to generate real network traffic flows that can be fed to 

CORE.  We calculate the second fitness function of PC in parallel by a Python utility, 

which extracts and reflects the values of the network flow.  Both fitness functions are fed 

back to a Python program that implements our MOGA algorithm and figures out the best 

solution. 

MGEN runs on Linux platform, and provides programs for sourcing or sinking 

real-time multicast/unicast IP traffic flows.  The multi-generator (MGEN) can generate 

real-time traffic patterns to load the network with Transmission Control Protocol (TCP) 

and User Datagram Protocol (UDP) IP traffic.  The MGEN tool transmits and receives 

time-stamped, sequence numbered packets.  The analyses of the log files can be 

performed to assess network or network component ability to support the given traffic 

load in terms of throughput, packet loss, delay, and jitter. 
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Similar experiments and test-cases are used such as in Vasić et al. (2011) and 

Zhang et al. (2010), who used Abilene and GEANT network topologies and traffic 

matrices (Tune, Roughan, Haddadi, & Bonaventure, 2013).  After we import the network 

topology from SNDlib, we run CORE emulation, that utilizes OSPF routing protocol 

using Quagga software, which is software package for TCP/IP networks (Jakma & 

Lamparter, 2014).  The Quagga Routing Suite provides implementation of several 

common routing protocols including OSPF (Nascimento, Rothenberg, Salvador, & 

Magalhães, 2010).  We configured the Quagga software in order to run with ECMP, and 

CORE uses Quagga/Zebra software for managing the OSPF and routing parameters.  

Furthermore, by using Quagga shell “vtysh” we can configure the OSPF link weights on 

the fly while CORE network emulation process is running 

The above network simulation tools capture the objective functions that are fed to 

a software program written in Python.  Latter program uses Distributed Evolutionary 

Algorithms in Python (DEAP) for the multi-objective optimization.  DEAP is a novel 

evolutionary computation framework that is used for Genetic Algorithms (GA), and 

Multi-Objective Optimization such as NSGA-II, and Strength Pareto Evolutionary 

Algorithm 2 (SPEA2). 

Summary of Methodology 

Energy aware networking is an active area of research and it is gaining 

momentum, as numerous researchers are still investigating it, and are developing new 

optimization techniques and methods for reducing power consumption in IP networks.  

Hence, saving energy in IP networks is well in demand, and any new technique for 

realizing it is important.  The research work that was described here results in a method 
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for reducing IP network power consumption while considering network traffic that is 

close to real-time traffic as much as possible, and it takes less than few minutes for 

altering the traffic paths and realizing the energy reduction in the network. 

Our main research activity developed MOO techniques for finding good solutions 

that satisfy the two said objectives of PC and MLU.  Achieving better results relies on the 

two types of data sets that we used, which are the real network topology and traffic 

demands that should resemble real internet traffic.  The hybrid approach MOGA 

solutions’ diversity is addressed by running random approach, while intensification of 

search is achieved by using delta weight approach in the consequent algorithm iterations. 

Another major part of our study was researching the instability of network traffic 

whenever we alter the link weights of the nodes.  We conducted a research for studying 

the effect of varying the wait_interval delay and sequential_delay on the traffic instability 

and measurement.  It improved the traffic measurement by tuning those delay parameters. 

In the future, techniques for sharing the selection algorithms of SPEA2 and 

NSGA-II can be used, by developing the same baseline simulations that were carried out 

in this research.  Nevertheless, solving the problem in this study in the future can use 

latest algorithms of MOO that may give better Pareto set of solutions that are evenly 

distributed along the Pareto front (Jain & Deb, 2013).  Evolving the approach in this 

study in order to support the tremendous increase in IP networks with larger topologies 

and traffic matrices is another area of future research.  
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Chapter 4 - Results 

Introduction 

The goal of this dissertation was to develop adaptive strategies for a multi-objective 

genetic algorithm such that both objectives of reduced network power consumption and 

load balance are achieved.  In order to achieve this goal a new approach was introduced 

and implemented using network real time traffic that was generated by MGEN.  This 

research investigated the use of MOO in order to find good solutions for reducing PC 

while maintaining network MLU below certain allowed threshold.  Evaluation of new 

methods for reducing and measuring network traffic instability is also included in this 

chapter.  In the following sections, we show the results of running the three approaches 

discussed in Chapter 3 based on two types of network topologies; Abilene and Polska that 

are shown in Figure 9.  Later in this chapter, we present the results of instability study that 

we discussed in Chapter 3.  

Network Traffic and Data Sets Description 

Performance of the three various approaches discussed in previous methodology 

Chapter 3 is first evaluated on network topology of Abilene Orlowski et al. (2010) which 

has been used for Academic research since 2004.  This topology is shown in Figure 9 (a) 

and it includes 11 nodes and 14 links.  The power metrics used in this study are based on 

the same information used for GreenTE algorithm in the work of Zhang et al. (2010), and 

based on Cisco line cards information.  We use 0.6 kW for each link and 10 kW for each 

node.  For the sake of simplicity, we assume that all network links have the same traffic 

capacity.  Both links and nodes are considered when calculating the total power 

consumption of the network consisting of links and nodes.  We picked three network 
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traffic data sets from Abilene recorded data, which correspond to 5th of June, 5th of 

August, and 5th of September.  The data sets depict the total traffic generated in each of 

 

 

 

 
Figure 9 – (a) Abilene Topology, (b) Polska Topology 

(a) Abilene  

(b) Polska 
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those days per minute of time.  We then translate the data sets into MGEN data format 

using Poisson distribution. 

Network Data Sets and Usage 

Figure 10 (a) describes the actual raw data set that we used for Abilene, taken on 5th of 

August, 2004.  The data sets were obtained from SDNlib and also verified the same from 

the work of (Tune et al., 2013).  It shows how the arrangement of data per each node 

versus the rest of the nodes as a topology matrix.  The raw data in each matrix element 

shows how much traffic is flowing from the left node indexed in row to the node in upper 

column index.  Figure 10 (b) shows the amount of traffic in Mb/Sec that flows in each 

node taken as an example from August 5th of 2004 Abilene topology data sets.  We 

translate this format of flow description to MGEN tool format, by specifying the flow 
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“from node 𝑖 to node 𝑗”, until all aggregate flows are combined and fed to CORE 

emulator.  CORE emulator takes as input the converted MGEN traffic below, the network 

topology and configuration of OSPF, and Quagga routing flow.   

 

 

 

# time = 23-10-00

# topology =

# name = Abilene 2004

# sampling = 1 in 100 packets

# additional information = as measured using netflow

# type = ingress/egress router/pop-level traffic matrix

# cite = Network Anomography Yin Zhang  Zihui Ge  Albert Greenberg Matthew Roughan ACM/Usenix Internet Measurement Conference Berkeley  CA  USA 2005

# units = Gbytes / second

0.000549868 9.03E-06 2.97E-05 6.83E-06 7.18E-05 6.67E-06 3.20E-05 6.67E-06 0.000161 0 3.33E-06

8.54E-06 0.002945 0.000537 0.000718 0.004144 0.001454 0.000113 0.002086 0.001281 4.09E-05 0.000571

2.67E-05 0.002682 0.009015 0.00119 0.001009 0.007983 0.002308 0.006213 0.002539 0.00057 0.000924

1.40E-05 0.001518 0.005631 0.001445 0.002835 0.00398 0.001423 0.003623 0.002013 0.00144 0.002262

4.57E-05 0.002596 0.001139 0.000236 0.002101 0.000649 0.000232 0.00085 0.000374 1.34E-05 0.000149

1.73E-05 0.001533 0.009319 0.00212 0.001321 0.003343 0.000507 0.005751 0.003457 0.000131 0.002526
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The second network topology of Polska contains 12 nodes and 18 links as shown in 

Figure 9 (b) earlier.  We could not find appropriate released data sets for this network 

topology, and as indicated in the research work of (Gianoli, 2014), we created similar 

traffic flow, and by using MGEN tool we developed a method to aggregate the traffic 

flow enough in order to create similar load balance and power consumption used in 

Abilene network topology.  For power metrics, we used similar power consumption per 

each link and node as discussed in Abilene topology. 

Multi-objective DEAP Optimization Parameters Setup 

DEAP python package was used in order to optimize the fitness functions of MLU and 

PC.  After installing the software, we had to tweak the main algorithm in order to 

accommodate our adaptive crossover and mutation algorithms as well as to select the best 

multi-objective solution and promote it from random approach to hybrid approach.  

DEAP uses the idiom of Hall Of Fame (HOF) as the best Pareto optimal solution 

obtained after running for few iterations (Rainville, Fortin, Gardner, Parizeau, & Gagné, 

2012).  Table 3 shows the best values that we used in order to achieve reasonable savings 

in MLU and PC while considering the runtime increase in our algorithm.  For example, 

NGEN indicates the number of generations used, and we have run our algorithm using 

either 25, 50, 60, 80 and 100 generations in each simulation.  For CXPB (crossover 

probability) and MUTPB (mutation probability), we used constant values of 0.1 or 0.2, 

but we also used variable values based on adaptive LSS aware algorithm described in 

Chapter 3 of the methodology.  APR_CNT indicates the number of generation used for 

changing the approach from random to delta weight approach  
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Table 3 - MOO Algorithm with DEAP program best parameters settings 

NGEN 25 50 60 80 100 
 

CXPB 0.1 0.2 <-- LSS aware and changes LSS of offspring 

MUTPB 0.2 var <-- variable based on link utilization vs. total capacity 

Lambda 5 10 
    

APR_CNT 20 30 40 50 60 
 

Δw  1000 2500 5000 7500 10000 12500 

In the case of obtaining two similar multi-objective solutions based on the Pareto 

optimal front, we tuned the algorithm so it selects the first item of HOF.  Figure 11 shows 

a sample of 80 generations that we run on one of our experiments using Abilene network 

topology and shows all solutions represented as MLU in the Y-axis and PC in the X-axis.  

We drew a virtual Pareto optimal front that shows the closest solutions, and the red-

circled solutions are those that HOF picked for us. 
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Another measure for validating and comparing the quality of DEAP’s python solutions 

is to use a one-objective optimization function which combines both MLU and PC such 

that:  𝑊𝑉𝐴𝐿 = 0.75 ∗ 𝑃𝐶 + 0.25 ∗ 𝑁𝑀𝐿𝑈.  We used 𝑁𝑀𝐿𝑈 that is a normalized value of 

MLU, where we multiplied MLU by 100 in order to have comparable values to PC.  We 

used this one-objective function as additional method of verification that HOF multi-

objective function gives similar solutions. 

 The above formula favors solutions that have lower PC, than MLU.  The latter 

formula enables us to evaluate numerous experiments due to the meta-heuristics nature of 

the simulation as random solutions are obtained, thus we run the simulations for 10 

different times and then average the MLU and PC savings.  This is similar to the work of 

(Francois et al., 2014), where they measured the average performance across 10 different 
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seeds in order to increase the confidence interval to 95% due to the non-deterministic 

behavior of the simulations. 

Adjusting the traffic online requires specific parameters in our algorithm to be 

adapted and tuned in particular such as number of generations, mutation and crossover 

probability.  Learning the network links states or Link Sleeping State (LSS), whether 

those are in active or sleep state was used adaptively in DEAP algorithm for setting the 

mutation and crossover operators. 

Simulation Results 

Extensive simulations were carried out in order to test the various approaches and to 

verify the potential for saving power while keeping MLU at acceptable level.  We 

validated all approaches included a comparison of MLU and PC results which showed 

the best approach results.  Additional instability simulations were performed, and the 

results shown in the subsequent sections compare the instability measurement with 

respect to various delay parameters. 

𝜟𝒘 Simulations for the Delta Weight Approach 

 For the delta weight approach, we use 𝛥𝑤 in order to determine how much each link 

weight can be varied and obtain better solutions beyond the initial link weights that we 

started with.  We varied the 𝛥𝑤 in order to find the best value that yields good solutions 

for our multi-objective optimization algorithm.  Figure 12 describes how MLU and PC 

vary as we change the 𝛥𝑤 value from 1000 until 12500.  We can see that the best MLU 

and PC multi-objective solutions are obtained when we increase 𝛥𝑤 higher until we 

reach a value of 5000 where MLU is lowest.  For PC, it keeps improving slightly as 𝛥𝑤 
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increases beyond 5000 until 12500.  Considering both objectives, we get that 𝛥𝑤 of 5000 

produces the best results. 

 

 For Polska topology, we get similar results when we vary the 𝛥𝑤 value, with different 

levels of PC and MLU numbers, where we selected medium traffic for testing the 𝛥𝑤 

effect on MLU and PC fitness functions.   
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Figure 13 shows the results of best MLU and PC values that we obtained when we 

varied the 𝛥𝑤 parameter, and as we can see from the graphs, we do get the best solutions 

around Δw of 5000, considering both objective functions.  

Abilene Network Topology Results 

As indicated earlier, data sets were used as snapshots taken from SDNlib and then 

converted into MGEN traffic flow format (Orlowski et al., 2010).  
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Figure 14 and Figure 15 show the results of power consumption and MLU, 

respectively.  We present 4 types of data results, where the first type is the default, and 

uses the default link weights that match the network topology.  The other three types 

match the approaches of random, delta, and hybrid as discussed in previous chapter.  We 

selected data sets of Abilene network topology from the months of June, August, and 

September of the year of 2004 (Tune et al., 2013). 

Power consumption results from the three approaches is mainly affected by the 

assumption that a node can be put to sleep entirely if all of the incoming and outgoing 

flows through the node are negligible.  When a node is turned off with its links, then its 

power consumption is zero.  Neglecting the traffic is based on comparing the amount of 
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MLU to a lower limit (we selected 5% as lower limit).  This has a tremendous effect on 

the total power of the network.  

 Across all traffic simulations, we keep track of the MLU, while turning off those 

nodes that have low link utilization.  In order not to cause high MLU and not to cause 

congestion, as we mentioned in Chapter 3 we do turn on “top” node which possesses the 

highest incoming and outgoing traffic that can resolve the extra capacity required in the 

network (Francois et al., 2014). 

The performance of the three sets of traffic patterns using the LF TE scheme is 

demonstrated in Table 4.  It shows the amount of savings in power consumption and MLU 

for each traffic pattern.  All three approaches are compared to the results obtained when 

we use the default link weights.  In the case of hybrid approach, the saving for the 
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September traffic pattern can reach 35.24% in power consumption savings while the MLU 

is also reduced by 30.95%.  

Table 4 – PC and MLU savings for three sets of traffic, Abilene topology 

Abilene 

Traffic period 

PC Savings vs. Default MLU Savings vs. Default 

Random Delta Hybrid Random Delta Hybrid 

June 25.68% 16.51% 33.09% 26.47% 8.82% 38.24% 

August 20.00% 16.68% 32.45% 25.00% 14.29% 42.86% 

September 29.75% 15.03% 35.24% 21.43% 11.90% 30.95% 
 

We notice that delta weight approach has the lowest savings when compared as a 

standalone approach giving savings in the range of 8.82%-14.29% in MLU relative to the 

default settings.  We get better solutions for the random approach since it has larger search 

space than the delta approach.  Therefore, the first random approach gives much better 

savings in MLU and PC than the delta approach.  Eventually combining both approaches 

of random and delta into the hybrid approach gives the best savings in MLU, and PC. 

Polska Network Topology Results 

Our second network topology that we used for testing our research approach is 

network topology of Polska.  In order to vary the synthetic meta-heuristics traffic for 

Polska network topology, we created three flavors of traffic which are deployed using LF 

TE scheme.  The three traffic flow types vary the link load utilization by using low, 

medium or high traffic load.  Simulation validation for those three traffic profiles includes 

various types of traffic patterns, such as Poisson, Periodic and Flat flows.   
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The default approach was chosen to have equal link weights for all links, and we 

selected a values of 32500, which is almost half the range allowed for any link weight as 

described in the work of (Fortz & Thorup, 2000).  The three other approaches are the 

random, delta and hybrid approaches that we discussed in Chapter 3.  In Figure 16, we 

show the simulations results of the power consumption (PC) for the four scenarios.  We 

can see that the power consumption is much smaller in the case of the low traffic scenario.  

The hybrid approach gives the highest power savings, especially when we have high 

traffic scenario. 

Figure 17 describes the MLU obtained for the four different approaches that we 

simulated.  The hybrid approach gives the lowest MLU value. 
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Table 5 summarizes the combined results from all simulations conducted.  We used 

three traffic flows that mimic various link load scenarios from low to high network link 

loads.  The range of link loads that we selected was based on altering the traffic flows 

using MGEN so that we keep the link load utilization between 30% and 90%.  We 

measured link utilization such as low traffic scenario can reach up to 35%, while medium 

scenario matches 55% and high link load utilization should be around 85%.  Using 

MGEN, we had chosen about 15, 25 and 30 traffic flows to be used for low, medium and 

high scenarios, respectively. 

 We can see from the Table 5 that as we increase the traffic level from low to high, 

the savings of MLU for the hybrid approach is decreased from 35.14% down to 18.52%.  

For the power savings, we do get similar savings from 34.38% down to 25%. 
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Polska 

Traffic Flow 
PC Savings vs. Default MLU Savings vs. Default 

Random Delta Hybrid Random Delta Hybrid 

Low_traffic 18.75% 12.50% 34.38% 21.62% 16.22% 35.14% 

Med_traffic 20.37% 16.67% 31.48% 18.87% 15.09% 28.30% 

High_traffic 12.50% 6.82% 25.00% 9.88% 7.41% 18.52% 

 

 Polska topology results show that the hybrid approach is more effective than the 

random and delta weight approaches.   

Network Flow Instability Measurements and Experiments 

Extensive experiments for studying the effect of delay on network flow instability were 

carried out as shown below.  As described in Chapter 3, while developing the approaches 

for reducing MLU and PC simultaneously as a multi-objective problem, we noticed that 

the traffic flow does not stabilize immediately after changing the link weights.  This latter 

observation drove us to investigate what can be done in order to reduce this instability in 

the measurements of network flow after we apply the optimized link weights in every 

iteration. 

The sections below describe the results of network instability.  Based on equations 10 

and 11 from Chapter 3, we performed measurements of the CORE network system in 

order to obtain 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 .  We run the same simulation several times and then 

take the average of the measurements.  In the next sections, we show the results of our 

Table 5 - PC and MLU  Savings for three sets of traffic, Polska Topology 
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simulations while varying both types of delay parameters; sequential_delay and 

wait_interval delay. 

The same two network topologies that were used for optimizing the MLU and PC were 

also used for verifying the instability study.  The simulation used in this work adopted the 

best value of 𝛥𝑤 from earlier simulations, and it used the same Python DEAP software 

parameters such as number of GA generations and mutation and crossover probabilities. 

 For the purpose of evaluation of this instability study, we used the hybrid approach for 

both network topologies. 

Sequential Delay Effect on Instability 

For testing the effect of sequential_delay that is applied after each link weight 

alteration, we assumed that the wait_interval delay is constant, and only varied the 

sequential_delay from 0.1sec until 3sec as shown in Figure 18. 
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 We setup the same wait_interval of 1sec, after applying all link weights for every 

node, and the sequential_delay was varied from 0.1sec until 3sec.  Figure 18 shows how 

the average measured instability is reduced as we increase the sequential_delay.  The 

average instability measure shows that we converge to a 22.4% already when we increase 

the sequential_delay from 0.1sec until 0.7sec.  After 0.7sec we see that the instability 

measure improves but it already reached closer to lowest value of 1.8%. 

Figure 19 shows what happens if we increase the wait_interval from 1sec to 5sec.  This 

allows the CORE network to reduce oscillations even much faster with respect to 

increasing the sequential_delay in every iteration.  As we see in Figure 19 we already 

reached 18.2% of instability when the sequential_delay decreased down to 0.7sec.  In the 

end of simulation when the sequential_delay is increased to 3sec we can reach 1.4%. 
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The dotted line shown in Figure 18 and Figure 19 represents the trend line that is 

calculated by the spreadsheet tool based on the values of the data points.   

We performed similar experiments on Polska topology with medium traffic flow 

configured by MGEN.  Both wait_interval and sequential_delay parameters were varied 

similarly as we presented for Abilene network topology. 

Figure 20 shows the average instability measurement in percentage as a function of 

sequential_delay varied from 0.1sec until 3sec, when the wait_interval is set to 1sec. 

 In Figure 21, we show how the instability measurement of Polska topology 

changes as we increase the sequential_delay when wait_interval is set to relatively large 

value such as 5sec.  
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Wait Interval Delay Effect on Instability 

 We performed similar experiments on both network topologies of Abilene and Polska, 

where we varied the wait_interval delay while the sequential_delay was kept constant.  

Wait_interval delay was increased from 0.5sec until 5sec. 
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 Figure 22 shows the results of varying wait_interval delay using Abilene topology and 

traffic from August of 2004.  As we can see that the larger the wait_interval, the lower 

instability we obtain.  The slope of the trend line is not steep enough, and shows that the 

effect of increasing the wait_interval delay is not as effective as we noted in Figure 20 

where the sequential_delay increase up to 0.7sec is more effective in reducing the 

instability down to 18.67%. 

 Increasing the sequential_delay to 1sec shows that instability is drastically improved 

even when the wait_interval is 0.5sec.  Figure 23 shows the effect of increasing 

wait_interval delay from 0.5sec to 5sec on the instability measure. 
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 As we note in earlier results, the optimum delay used for sequential_delay is 0.7sec while 

the wait_interval delay best value was chosen to be 2sec. 

 In the case of Polska topology, we performed similar experiments while using medium 

traffic flow generated by MGEN.  In Figure 24, we show the average instability measure 

with constant sequential_delay set at 0.1sec, used to apply each link weight for every node 

in the network, while varying the wait_interval from 0.5sec until 5sec.  
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 Figure 25 shows a similar graph as in Figure 24, with fixed sequential_delay of 1sec, 

while varying the wait_interval delay from 0.5sec until 5sec.  From both Figure 24 and 

Figure 25, we notice that increasing the sequential_delay form 0.1sec to 1sec has a 

tremendous effect on the instability measure.  We already achieve a measure of 17% when 

the wait_interval increases to 2sec, while in the case of 0.1sec sequential_delay we have 3 

times worst instability measurement. 
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 Overall, both Polska and Abilene topologies exhibit similar results when it comes 

to sequential_delay usage, and stability of network flow is achieved when increasing 

wait_interval delay to 2sec.  As mentioned before, due to random nature of the GA 

algorithm, results vary from one experiment to the next, but we ran the experiments at 

least 10 times, and then we averaged the results in order to present them in this research. 

𝜟𝒘 vs. Instability Measurement 

 Earlier in Chapter 4, we discussed how the 𝛥𝑤 was chosen in order to minimize both 

objectives of MLU and PC in the case of using the 𝛥𝑤 and the hybrid approach.  For testing 

the instability of network with respect of 𝛥𝑤, we carried several experiments and 

measurements in order to check how this network instability is affected by changing Δw. 
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 Figure 26 shows how Abilene network topology MLU and PC vary as a function of 

𝛥𝑤 values.  It also shows how the instability measure is changing as 𝛥𝑤 increases.  For 

these simulations, we used a 1sec delay value for both the sequential_delay and the 

wait_interval delay parameters.  From instability measurements, it makes sense that the 

lowest value is obtained when 𝛥𝑤 is smallest, but as 𝛥𝑤 increases, we notice that the 

instability increases until it reaches 88% when Δw reaches 12500.  Best MLU and PC 

values are obtained when 𝛥𝑤 is around 5000, and we notice that MLU and PC decreased 

by at least 5% for MLU and 7 [kW] for PC compared to the hybrid approach results.  The 

best 𝛥𝑤 of 5000 is in line with our observation in Figure 12 earlier in this chapter.  When 

we added delay parameters then instability improved, and thus the MLU and PC 
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measurements yielded lower numbers.  In Figure 12, we did not use additional wait and 

sequential delays in our simulations, which caused instability to increase and thus yielded 

worst MLU and PC.  On the other hand, the MLU and PC trend line versus 𝛥𝑤 value is 

similar to what we found in Figure 12. 

 In the case of Polska topology with medium traffic flow, Figure 27 shows the results 

of varying 𝛥𝑤 on MLU, PC, and instability measure.  We used the same delay value of 

1sec as in Abilene network topology in Figure 26 before, for both the sequential_delay 

and the wait_interval delay parameters.  This result emphasizes further the results 

obtained in Abilene topology, where the instability measure is increased as 𝛥𝑤 is 

increased, and the optimized values of minimum MLU and PC are achieved when 𝛥𝑤 is 

around 5000 similar to what we obtained in the case of Abilene topology.  Increasing the 

𝛥𝑤 to 12500 causes average instability measurement to increase beyond 75%.  Similarly 
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as observed in Figure 26 and Figure 12, we also see similar observation between Figure 

27 and Figure 13 for Polska topology, where MLU and PC become worst when we do not 

use wait and sequential delays for reducing instability. 

 Figure 28 and Figure 29 show the instability simulations results, when zero delay is 

used for sequential_delay and wait_interval parameters, respectively for Abilene and 

Polska topologies.  The MLU and PC results are similar to Figure 12 and Figure 13 that 

we showed for Abilene and Polska topologies, respectively.   
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 We noticed from Figure 28 and Figure 29, that instability measure is much worse than 

when we use delay parameters in our simulations.  In addition, the MLU and PC obtained 

results are worse in the case of zero delay than when we use 1sec delay parameters, as 

mentioned in our earlier discussion.  In the next sub section, we examine the MLU and 

PC values obtained when we use 1sec for the delay parameters of sequential_delay and 

wait_interval. 

 Overall, the outcome of instability simulations show consistent results when we 

increase 𝛥𝑤 across the two network topologies and using traffic patterns that we chose.  

We also managed to improve instability when the delay parameters were increased.  
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Furthermore, the trend of instability results continued to be similar in both cases when 

using zero delay for wait_interval and sequential_delay and when using 1sec for both 

delay parameters. 

Final Results Including 𝜟𝒘 and Best Instability Measurement 

 As we indicated before, increasing the 𝛥𝑤 parameter yielded better results and we 

obtained good solutions for PC and MLU.  The downside is that network oscillations 

increase and average instability rises.  Applying wait_interval and sequential_delay 

reduced the average instability, and thus it allowed us to retrieve better and more reliable 

PC and MLU measurements with stable traffic.  Using the same optimum Δw value of 

5000 gave better solutions that produced lower values of MLU and PC than what we 

obtained when we did not implement wait_interval and sequential_delay. 
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 In Figure 30 and Figure 31 we show PC and MLU results of Abilene network 

simulations, respectively after we increased the delay parameters to 1sec.  We compare 

the hybrid approach that we presented earlier with a new approach called hybrid_stable 

that uses wait_interval and sequential_delay in order to reduce the average instability and 

oscillations in the network.  In fact, the hybrid approach is the same as the hybrid_stable 

approach with wait_interval and sequential_delay parameters set to a value of 0.  The 

MLU improved further by 20.7% in the case of 05_September Abilene topology traffic 

case, while the PC was reduced further by 8.8% beyond what the hybrid approach gave 

us earlier.  
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 These simulations used the best sequential_delay and wait_interval of 1sec for both 

parameters, and average instability is at acceptable level of < 20%. 

 In Figure 32 and Figure 33, we show the results of PC and MLU for Polska network 

topology, respectively. 

 Using Polska topology with the three different network traffic loads of low medium 

and high levels, we obtained better improvement in MLU and PC as the traffic load 

increases from low to medium to high.  The hybrid approach was inferior to the 

hybrid_stable approach when we used the delay parameters of wait_interval and 

sequential_delay.  The best 𝛥𝑤 is still 5000, similar to the experiments we did without 

applying delay parameters of sequential_delay and wait_interval.  Maximum average 
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savings that we collected from many experiments reveal that we gain about 12% less 

MLU in the case of high traffic pattern, while the PC is reduced by 17%. 

 In Table 6 we summarize all the results for Abilene network topology, when we 

combine all 4 approaches discussed earlier compared to the default settings of the 

network.  

 

0%

10%

20%

30%

40%

50%

60%

70%

Low_traffic Med_traffic High_traffic

MLU [%] Compare Hybrid Approach with instability, 
Polska Topology

Hybrid_A Hybrid_stable

Table 6 - Final Abilene PC and MLU savings with Hybrid_stable approach 

Abilene 
Traffic 

period 

PC Savings vs. Default MLU Savings vs. Default 

Rando

m Delta Hybrid 

Hybrid

_stable Random Delta Hybrid 

Hybrid

_stable 

June 25.68% 16.51% 33.09% 37.84% 26.47% 8.82% 38.24% 47.06% 

August 20.00% 16.68% 32.45% 42.74% 25.00% 14.29% 42.86% 53.57% 

September 29.75% 15.03% 35.24% 42.79% 21.43% 11.90% 30.95% 45.24% 

 

Figure 33 - MLU Comparison of Hybrid Approaches with Instability, Polska Topology 
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 For Polska network topology similar results are shown in Table 7, and we see that 

those results are consistent with the simulations with various wait_interval and 

sequential_delay.  Increasing the 𝛥𝑤 up to 12500 further continue to show similar trend 

as the other topology of Abilene, where instability and MLU get worst while the PC is 

reduced further.  

Summary of Results 

 All three approaches of random, 𝛥𝑤 and hybrid, for optimizing the MLU and PC were 

presented in this chapter.  We obtained consistent results showing that the best approach 

for reducing MLU and PC is the hybrid approach, when using two types of network 

topologies of Abilene and Polska.  In the case of Abilene topology, MLU savings were in 

the range of 30.95% to 42.86% and PC was reduced from 33.09% to 35.24% for the 

hybrid approach.  In the case of Polska topology MLU savings were in the range of 

18.52% to 35.14% and PC was reduced 25% to 34.38% for the hybrid approach. 

 Instability measurements of the network show that we should apply both 

sequential_delay and wait_interval delays in order to achieve better network stability and 

reduce network oscillations.  When using the best values of 1sec for the wait_interval and 

1sec for the sequential_delay, we managed to get better instability and reduced further 

the values of MLU and PC for both topologies of Abilene and Polska.   

Table 7 - Final Polska PC and MLU savings with Hybrid_stable approach 

Polska 
Traffic Flow 

PC Savings vs. Default MLU Savings vs. Default 

Random Delta Hybrid 

Hybrid_

stable Random Delta Hybrid 

Hybrid

_stable 

Low_traffic 18.75% 12.50% 34.38% 43.75% 21.62% 16.22% 35.14% 43.24% 

Med_traffic 20.37% 16.67% 31.48% 40.74% 18.87% 15.09% 28.30% 39.62% 

High_traffic 12.50% 6.82% 25.00% 37.50% 9.88% 7.41% 18.52% 28.40% 
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 A new approach called hybrid_stable was introduced which combines the hybrid 

approach with the best values of sequential_delay and wait_interval numbers of 1sec.  In 

the case of Abilene topology, the MLU improved further by 20.7% in the case of 

05_September traffic case, while the PC was reduced further by 8.8% beyond what the 

hybrid approach gave us when no delay parameters were used.  In the case of Polska 

topology, we show that we gain about 12% less MLU in the case of high traffic pattern, 

while the PC is reduced by 17%. 

 Consequently, simulation runtime was affected when we used delay parameters in 

order to improve the stability of the network.  Using sequential_delay for every node 

iteration, and using constant wait_interval delay after each GA iteration caused 

simulation time to increase. 
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Chapter 5 - Conclusions 

Overview 

We have presented three approaches for reducing power while maintaining 

acceptable MLU, in wired networks that use OSPF by performing link weight 

optimization.  The first approach uses a random method for selecting the initial set of link 

weights, while the second approach uses 𝛥𝑤 for varying the link weights, and in the third 

approach, a hybrid method is used by combining both the first and second approaches.  

All three approaches use GA MOO for finding new solutions that are applied to the 

network.  GA solutions are obtained by using DEAP Python software and in each GA 

iteration, the best solution is tracked.  Two network topologies of Abilene and Polska 

were used for testing the three approaches.  Network traffic dataset for Abilene was 

selected from three different dates based on (Orlowski et al., 2010), while for Polska 

topology we created three different synthetic traffic loads.  Best results were achieved by 

the hybrid approach and show that for Abilene network topology, we can reduce power 

consumption from 32.45% to 35.24%, while reducing MLU in average from 30.95% to 

42.86% for specific traffic pattern.  For Polska network topology, our hybrid approach 

showed a reduction in average from 25% to 34.38% in power consumption and MLU 

savings in the range of 18.52% to 35.14% for the medium traffic pattern.  We also 

performed extensive study for measuring the effect of oscillations or network instability 

on the traffic flow measurements and reducing MLU and PC further by adding network 

delay parameters of sequential_delay and wait_interval. 
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This chapter draws the dissertation conclusions and implications towards the 

current standing of concurrent saving of Internet energy, and reducing MLU.  It then 

discusses recommendations for future work and includes a summary of the chapter. 

Conclusions 

The focus of this study was to answer our main research question, which is 

reducing network power consumption by applying our hybrid approach.  The hybrid 

approach uses the best set of link weights obtained by the first approach as the initial 

solution, and then it uses the delta weight approach for finding better solutions. Our hybrid 

approach combines the advantage of using 𝛥𝑤 for tuning the link weights, in conjunction 

with the random approach for selecting the initial link weights.  We conducted several 

experiments to show that the hybrid approach could reduce power consumption (PC) 

further while reducing the MLU even more. 

We answered the research question whether traffic changes can cause oscillations 

by conducting many experiments, where we altered the sequential_delay and 

wait_interval delay parameters.  We first observed network traffic oscillations and then we 

represented it by instability measurement of 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝛿𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 shown in equation 11.  

The simulation showed that the network traffic instability was decreased after such delays 

were added before the calculated optimal link weighs were applied to the network.  

Consequently, we obtained link weights selection that yielded more stable measurement of 

network traffic with less oscillation.  

The research results show that the hybrid approach can adapt to various network 

topologies such as Abilene and Polska, where both topology traffic matrices showed 

similar and consistent results for reducing MLU and PC.  Adding sequential_delay and 
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wait_interval to the network system proved further the effectiveness of our hybrid 

approach, which yielded a new approach called hybrid_stable approach.  The 

hybrid_stable approach combined both the hybrid approach together with using best 

sequential_delay and wait_interval delay parameters. 

Limitation of Network Topology Flow 

 This study lacked the datasets for Polska topology that were required for testing 

our approaches (Gianoli, 2014).  We created three synthetic different traffic flow datasets 

using MGEN that mimic low, medium, and high levels of traffic.  We used similar 

simulation and methodology system such as Abilene network, that had already accessible 

datasets which are based  on the study of (Tune et al., 2013).  In the case of Abilene 

topology, we used existing data sets from 2004 described in Orlowski et al. (2010), 

therefore not having recent data sets for the use of academic research is considered a 

limitation for this network topology, and for other network topologies that are used in 

similar research. 

Implications 

The results of this research allow various recommendations to be considered by 

the network operator in order to save power consumption without increasing link 

utilization of the network.  Changing the link weights drastically may result in various 

optimal solutions considered so that the network traffic is directed to different best 

solutions back and forth that can cause instability or network oscillation. The selection of 

the 𝛥𝑤 value used in our simulation considers the tradeoff between performance and 

network instability. 
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This hybrid approach can fit other network topologies, and can be easily adapted 

to run in parallel with multiple CPUs, and thus reduce the runtime.  The various 

approaches developed were all based on real time traffic datasets from 2004 for Abilene 

topology.  Obtaining recent datasets for this topology or other similar topologies and 

using our best hybrid approach may yield better solutions. 

In summary, we advanced current state of energy aware networks by the effort 

presented in this dissertation.  The methods presented were able to reduce power 

consumption while not affecting MLU and thus enabling network operators to save 

network energy without affecting their network load balance. 

Recommendations for Future Work 

The work conducted in this research extended the body of knowledge in the area 

of saving Internet energy while keeping the network load balance at accepted level 

(Addis et al., 2014; Amaldi et al., 2013; Francois et al., 2014; Zhang et al., 2010) .  We 

have built this work upon several prior contributions made by other researchers (Francois 

et al., 2014; Zhang et al., 2010).  It is likely that additional studies and research work will 

continue to improve on the work conducted in this investigation. 

Network Topology Flow Measurement and Online Traffic 

Future work would consider merging our approach with optimization of traffic 

pattern analysis and measurement.  Our simulation provided a consistent and repeatable 

environment in order to compare different approaches using the same datasets of traffic 

patterns.  The best way to show how a similar future approach can be effective in saving 

energy without affecting MLU is to run it autonomously on a real online traffic data.  
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Continuous analysis of online traffic is imminent and is required for the prevailing 

changing nature of Internet traffic. 

Larger Network Topologies with Real Time Traffic 

A second recommendation is to expand this approach for supporting larger 

network topologies.  Larger network topologies exhibit a different challenge for 

converging the network flow after changing the link weights that may cause further 

oscillations and instability in the network.  Therefore, further study into the algorithm’s 

parameters, mutation, crossover, and sequential and wait interval delays is inevitable and 

may yield a superior approach for handling larger networks that comprise of many links 

and nodes. 

Adaptive GA Strategies of Multi Processing with Learning Methods 

A third concept that is extracted from using adaptive methods in our approach is 

to enhance the approach with multi processors that can utilize learning of best solutions.  

The algorithm will run a number of processes in parallel for a predefined time interval.  

In the end of each time interval, the best solution and the best GA selection method are 

shared among the various processes running with DEAP and then we apply the best 

solution that was learned to all processes.  Thus, the GA selection strategy along with 

best solution will be used for the next time interval.  The latter approach could achieve 

better optimal solutions for reducing PC and MLU due to the concurrent learning process.  

Further Instability Studies with Comprehensive and Variable Delay Parameters 

Lastly, is to enhance the instability study with respect to the delay parameters, and 

perform a more meticulous selection of those parameters and their effect on both 
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performance and instability of network traffic.  By performance, we mean reducing MLU 

and PC.  A number of research studies have improved the Internet routing and network 

monitoring unquestionably, such as discovery of slow convergence and persistent 

oscillation in routing protocols (da Silva & Mota, 2017; Roughan et al., 2011).  Building 

upon our approach, a variable sequential_delay can be applied for each nodes’ links, 

which can be different from one node to another node depending on the amount of link 

weight change obtained after each iteration of the GA algorithm.  The wait_interval delay 

parameter is treated the same way as in our approach. 

Summary 

Recent interest in research of energy aware networks have become evident and 

several authors proposed various approaches for reducing network energy while not 

affecting load balance (Addis et al., 2016; Amaldi et al., 2013; Capone et al., 2013; 

Francois et al., 2014; Zhang et al., 2010).  This dissertation improved the reduction of 

network energy by using a multi-objective optimization technique while using real 

network traffic flow.  The study used real network traffic for Abilene network topology 

from datasets published from 2004 for specific days; 5th of June, 5th of August, and 5th of 

September of the same year.  For Polska topology, we used a synthetic traffic flow that 

was created by MGEN in a similar fashion such as Abilene topology but using three levels 

of traffic flow; low medium and high.  For the case where many random multi-objective 

simulations were carried out, we performed averaging of the results (Francois et al., 2014).  

We collected both MLU and PC values based on our algorithm, using CORE network 

emulator and DEAP optimization Python package. 
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The best approach chosen was the hybrid approach that combined the random 

approach and the delta weight approach.  Running the algorithm in a combined hybrid 

fashion returned better results and we were able to obtain between 30.95% to 42.86% 

reduction in MLU, and from 32.45% to 35.24% reduction in PC for Abilene network 

topology.  Running the same hybrid approach on Polska topology yielded a reduction of 

MLU in the range of 18.52% to 35.14% and PC was decreased from 25% to 34.38%. 

We introduced instability modeling and measurement method where we can 

measure the oscillation in the network by using equation 11, and we carried out various 

simulations in order to achieve least instability in traffic flow measurements for both 

network topologies.  Our best approach called hybrid_stable combined both the hybrid 

approach along with using best sequential_delay and wait_interval delay parameters 

giving further improvement in reducing MLU and PC, simultaneously using our DEAP 

algorithm.  We showed a reduction of instability measurement from 175% down to 8.6% 

for Abilene network topology when using a value of 1sec for both sequential_delay and 

wait_interval delay parameters.  For Polska network topology the instability 

measurement was reduced from 145.5% down to 27.17% when we used 1sec for 

sequential_delay and wait_interval delay parameters. 

While this hybrid_stable approach further reduced MLU and PC, proven by 

consistent results among the various network topologies there is still some room for 

improvement.  It is still possible that future research can find better settings for the delay 

parameters that can achieve further stability in measuring the traffic flow. 
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