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Scientific Significance Statement

Climate change is altering the environmental conditions of marine ecosystems across the globe. Coral reefs already experience
intense variability in seawater temperature and pH over short time scales, which could influence how reef organisms respond
to changes in average oceanic conditions. Our study provides evidence that the average daily range of seawater temperature
and pH within coral reefs can be reasonably predicted from water column depth. This suggests that local environmental vari-
ability regimes within shallow coral reef ecosystems, and potentially the vulnerability of reef organisms, can be predicted from
widely available bathymetry data.

Abstract
Coral reefs are facing intensifying stressors, largely due to global increases in seawater temperature and decreases in
pH. However, there is extensive environmental variability within coral reef ecosystems, which can impact how
organisms respond to global trends. We deployed spatial arrays of autonomous sensors across distinct shallow coral
reef habitats to determine patterns of spatiotemporal variability in seawater physicochemical parameters. Tempera-
ture and pH were positively correlated over the course of a day due to solar heating and light-driven metabolism.
The mean temporal and spatial ranges of temperature and pH were positively correlated across all sites, with differ-
ent regimes of variability observed in different reef types. Ultimately, depth was a reliable predictor of the average
diel ranges in both seawater temperature and pH. These results demonstrate that there is widespread environmen-
tal variability on diel timescales within coral reefs related to water column depth, which needs to be included in
assessments of how global change will locally affect reef ecosystems.
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Coral reefs are critical marine ecosystems that provide
numerous goods and services including the creation of habitat
both above and below sea level. Global changes in sea surface
temperature and seawater pH due to anthropogenic CO2 emis-
sions represent two of the biggest threats to the future persis-
tence of coral reefs (Hoegh-Guldberg et al. 2007). Elevated
seawater temperatures cause mass coral bleaching events,
which can lead to significant coral death and the restructuring
of reef ecosystems (Hughes et al. 2017). Ocean acidification,
and the resulting changes to seawater carbonate chemistry,
threaten the accretionary status of coral reefs by reducing bio-
logical calcification and increasing calcium carbonate dissolu-
tion (e.g., Chan and Connolly 2013; Eyre et al. 2018). Despite
the widespread acknowledgment of these global threats to
coral reefs, it is still unclear how local environmental variabil-
ity will interact with global changes to impact their future.

High-frequency fluctuations (minutes to hours) in seawater
temperature and pH have been documented across coral reef
ecosystems (e.g., Leichter et al. 2005; Price et al. 2012; Shaw
et al. 2012; Guadayol et al. 2014; Reid et al. 2019). These local,
short-term dynamics can be likened to the variability of
weather within terrestrial systems. “Ocean weather” can be
thought of as the state of seawater (e.g., temperature, currents,
chemistry, etc.) at a given place and time, and is determined
by interconnected biogeochemical and physical processes
(Bates et al. 2018). Exposure to variability in ocean weather, or
the local seawater conditions, can determine how organisms
respond to global stressors (Rivest et al. 2017; Kapsenberg and
Cyronak 2018). For example, exposure to intense diel fluctua-
tions in temperature can enhance bleaching resistance in some
corals (Oliver and Palumbi 2011; Safaie et al. 2018), while fluc-
tuations in pH can modulate the effects of ocean acidification
on coral calcification rates (Dufault et al. 2012; Chan and
Eggins 2017; Enochs et al. 2018). The complex geomorphic
structure of coral reefs creates unique habitats and zonation
that can span spatial scales of meters to hundreds of kilometers
(Blanchon 2011). These coral reef habitats and zones have
defining characteristics including depth, seawater residence
times, exposure to the open ocean and terrestrial runoff, cur-
rent speeds, biological diversity and biomass, among others.
Therefore, it is likely that spatiotemporal variability in environ-
mental conditions across coral reef ecosystems is related to a
range of biological, physical, chemical, and geological proper-
ties within each habitat (Falter et al. 2013). Critically, contem-
porary variability in temperature and carbonate chemistry will
determine how local seawater conditions change as the mean
global ocean temperature rises and pH falls (Shaw et al. 2013;
Lowe et al. 2016; Bates et al. 2018).

Despite the importance of site-specific temperature and pH
variability in determining the future response of coral reefs to
environmental change, it is not well known how temperature
and pH covary across space and time in different types of shal-
low reef habitats. Understanding the prevailing fluctuations of

seawater properties within coral reefs is critical to gaining a bet-
ter picture of how reef seawater chemistry will change in the
future, and how corals and other reef organisms will respond to
anthropogenically induced global warming and ocean acidifica-
tion. To assess local, short-term seawater temperature and pH
dynamics within coral reefs, we deployed spatial arrays of
autonomous sensors in diverse shallow reef habitats spanning
the Atlantic and Pacific Oceans. This approach allowed us to
gain insights into the large, natural spatiotemporal variability
within reefs and will help guide future studies aimed at under-
standing local coral reef responses to global change.

Methods
Study sites

Sensor arrays consisting of 3–4 pH and temperature sensors
were deployed at five locations representing six distinct coral
reef habitats (Fig. 1; Table 1). Most deployments were made
during summer months, and the length of each array deploy-
ment ranged between 5.6 and 17.5 d, highlighting that this
study was designed to assess short-term (e.g., diel) spatiotem-
poral variability in seawater temperature and pH. Sensors were
placed on the bottom at each site, with average depths rang-
ing from 0.7 to 17.1 m (Table 1). Detailed descriptions of each
location and sensor array deployment can be found in the
Supporting Information.

Autonomous sensors and data analysis
Sensors were affixed directly to the benthos at all study sites

in order to record the seawater conditions experienced by ben-
thic communities at 15- or 30-min intervals (Cyronak et al.
2019). In most cases, SeapHOx sensors were deployed,
although in some cases SeaFETs were used (Table 1). The
SeapHOx is an autonomous sensing package outfitted with a
Honeywell Durafet III combination pH electrode and Seabird
MicroCAT (SBE37) to measure temperature and salinity
(Bresnahan et al. 2014). The SeaFET uses the same pH sensing
technology as the SeapHOx; however, there is no integrated
salinity sensor and seawater temperature is measured by the
Durafet thermistor. Factory calibrations were used for both the
Seabird and Durafet temperature sensors, both with reported
precisions of �0.002�C. However, the Durafet temperature sen-
sors have been reported to have an offset of up to ~ 0.3�C, but
have been demonstrated to measure changes in temperature
very accurately (Fox et al. 2019). Conductivity measurements
from the MicroCAT were factory calibrated by Seabird, with a
reported accuracy of � 0.003 mS cm−1. Seawater pH was cali-
brated to the total scale by taking bottle samples next to the
sensors either predeployment in a holding tank or during the
deployment, following best practices (Bresnahan et al. 2014).
Bottle sample pH was calculated using CO2SYS with inputs of
dissolved inorganic carbon (DIC) and total alkalinity
(TA) measurements made in the laboratory and salinity and
temperature measurements from the SeapHOx (Pierrot et al.
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2006; Takeshita et al. 2018). At most locations, bottle samples
were also taken throughout the deployments to assess any
instrumental pH drift, and none was detected. All pH values
are reported on the total hydrogen ion concentration scale,
and the accuracy of individual pH sensors is estimated to be
� 0.015 (Bresnahan et al. 2014). The effect of changing tem-
perature on pH was calculated in CO2SYS at a constant salinity

(35), TA (2300 μmol kg−1), and DIC (1900 μmol kg−1), and
determined to be −0.015 pH units per +1�C over a temperature
range of 15–35�C. Changes in salinity can also impact pH,
with a linear decrease of 0.01 pH units per increase in salinity
unit between the range of 30–36 (calculated at 25�C,
TA = 2300 μmol kg−1, DIC = 1900 μmol kg−1). However,
changes in salinity are usually associated with changes in TA

Fig. 1. Satellite images and cross sections of bathymetry showing the locations and depths where spatial sensor arrays were deployed. The bathymetry
was derived from a transect through the sensor array designated as white lines in the satellite images. For each cross section the x-axis is the distance
along the transect from the start, except for Panama and the Palmyra fore reef. For Panama, bar graphs show the sensor depth at each location. For the
Palmyra fore reef, each cross section is a 0.5 km transect inshore to offshore centered around the sensor in order to demonstrate the steeply sloping
bathymetry. A combination of 3–4 SeapHOxes or SeaFETs were deployed on the bottom at each location to measure seawater temperature and pH at
15- or 30-min intervals. Satellite images courtesy of the DigitalGlobe Foundation.
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and DIC concentrations due to mixing of water masses, which
could have more of an impact on carbonate chemistry than
the direct effects of changing salinity at constant TA and DIC
concentrations.

To assess both temporal and spatial variability across the
sensor arrays, the mean and range of temperature and pH
between all the sensors within each array at each sampling
time were calculated. This resulted in a “mean” time series for
each sensor array, with spatial variability calculated as the
range across the array at each sampling time. The diel range
of temperature and pH was calculated at each instrumented
site by finding the minimum and maximum values during a
full 24-h cycle from local midnight, and the mean temporal
range of each sensor location was calculated as the average of
these values (i.e., average diel peak-to-peak amplitude). The
mean spatial range across each sensor array was calculated by
averaging the range of temperature or pH across the entire
array at each sampling time. Throughout this article, diel
ranges are referred to as temporal while spatial ranges are

referred to as spatial. Power spectral density estimations were
performed on the temperature and pH time series in order to
determine the dominant frequencies of variability. Lomb-
Scargle periodograms were calculated in MATLAB using the
plomb function across a frequency range of 0.25–5 d−1 in
0.001 d−1 steps. Regression coefficients and 95% confidence
bounds were determined using the MATLAB function fit, with
fit types of poly1 for linear regressions and power1 for power
regressions (Supporting Information Table S1).

Results
Across all the individual sensors, the mean diel range in

temperature and pH varied from 0.1�C to 5.3�C and 0.03 to
0.46, respectively (Fig. 2; Table 1). The mean spatial range
across each sensor array was generally lower than the diel
range of any given sensor, with the mean spatial range in tem-
perature varying from 0.2�C to 1.2�C and pH from 0.02 to
0.11. Seawater temperature and pH variability across all study

Fig. 2. (Column 1) Spatiotemporal variability of pH (colored) and temperature (black) from each autonomous sensor array. The bold line is the mean
and the shaded area represents the range (minimum and maximum) at each time point across the spatial sensor array (see “Methods” section for details).
The x-axis is normalized to days since midnight on the first day of each array deployment, note the different y-axis scales. (Column 2) Periodograms of
the corresponding pH (colored) and temperature (black) mean time series in the first column. (Column 3) Box plots of the entire temperature and pH
time series from each instrumental location, the colors correspond to the same reef locations as in Column 1. The individual instruments are labeled as a
SeapHOx (SP) or SeaFET (SF) and correspond to the same sensor numbers in Table 1 at each location. The solid black line is the median, the box repre-
sents the 25th and 75th percentiles, whiskers represent � 2.7σ, and black crosses are outliers beyond the range of the whiskers. See Supporting Informa-
tion Figs. S1–S3 for the individual time series and spectral density analyses.
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sites oscillated predominantly on a 1 d−1 frequency (Fig. 2,
Supporting Information Figs. S1, S2). This supports using diel
range as a robust estimate for the predominant measure of
temporal variability at each site for the duration of the
deployments. There was also a weaker tidal (2 d−1) signal in
some of the sensor time series, with the Palmyra fore reef
showing the strongest peak at this frequency. The mean tem-
perature and pH of the individual sensor time series varied
between 23.0�C and 30.3�C and 7.95 and 8.08, respectively
(Fig. 2). The mean salinity of the individual sensor sites varied
from 34.0 to 36.5, with a maximum range of 1.9 at any given
site over the full deployment, with the biggest range observed
at the coastal fringing reefs in Panama (Table 1). Excluding
the Panama sites, the average range in salinity was 0.37,
which corresponds to a ~ 0.005 change in pH. However, most
variations in salinity occurred on longer timescales than once
per day, most likely related to mixing of water masses and
freshwater inputs (Supporting Information Fig. S3). Therefore,
it was assumed that changes in salinity on a daily time scale

had minimal impact on diel pH variability at the sites in this
study.

In general, there was a wider range in mean temperatures
between the different locations as compared to pH (Fig. 2).
Daily composites of the time series show that reef habitats
with the greatest diel temperature variability also experienced
greater diel pH variability across the spatial extent of each sen-
sor array (Fig. 3A,B). This is supported by a positive relation-
ship between the mean range in temperature and pH across
both space and time within all systems (Fig. 3C,D). Overall,
the shallowest reef systems tended to have the greatest spatio-
temporal variability in temperature and pH, indicating that
shallow reef habitats such as reef flats, back reefs, and lagoons
can exhibit extensive changes in environmental conditions.
The mean diel range of both temperature and pH at each sen-
sor site followed a power function relationship with water col-
umn depth, and were linearly correlated to each other (Fig. 4).
To test the robustness of the variability-depth relationship,
mean diel ranges of temperature and pH were calculated from

Fig. 3. Diel composite time series of (A) temperature and (B) pH constructed from each sensor array. In order to normalize the data between the differ-
ent sites, it is plotted as the change since midnight and time of day is hours since midnight. The line is the mean and the shaded area is � 1σ between all
sensors within each array. The mean diel range in (C) temperature and (D) pH plotted against the mean spatial range within each sensor array over the
duration of each time series. The solid lines are linear regressions and dashed lines represent the 1:1 line. (E) The maximum % influence of the mean
range in temperature on the mean range in pH from each sensor. Percent influence was calculated assuming a decrease of 0.015 pH units per 1�C
increase. The solid line is the fit to a power function and dashed lines are the 95% prediction intervals. In all panels, the error bars are � 1σ.
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previously published time series (Shaw et al. 2012; Lantz et al.
2013; Koweek et al. 2015), which fit well within our observed
relationship (mean ΔTemp residual = 0.6 � 1.2, mean ΔpH
residual = 0.07 � 0.08; � 1σ). A comparison of the tempera-
ture data was also made to a larger data set (n = 118 reefs;
Safaie et al. 2018) with further discussion below. Coefficients
and statistics for the regression fits in Figs. 3, 4 can be found
in Supporting Information Table S1.

Discussion
Diel variability of seawater temperature and pH in coral
reef ecosystems

Within all the reef systems, the highest temperatures occurred
between midday and dusk, and the lowest temperatures occurred
between 04:00 h andmidmorning local time. This indicates that
average diel fluctuations in temperature are mainly driven by
solar irradiance, and not advection at these sites (Zhang et al.
2013). However, advection, mixing of water masses, and tidal
processes most likely drive the higher frequency (> 1 d−1) vari-
ability that was apparent at some sites (Fig. 2, Supporting Infor-
mation Figs. S1, S2). Fluctuations in pH exhibited minima and
maxima at similar times of the day as those for temperature. Ele-
vated pH during the day and lower pH during the night indicate
that reef metabolism is the predominant driver of these short-
term fluctuations, with net ecosystem production (i.e., the net
balance between photosynthesis and respiration) playing the
dominant role (Cyronak et al. 2018). While it is well known that
reef metabolism drives short-term changes in seawater pH
(Gattuso et al. 1999), the large changes in temperature also have

a thermodynamic effect on pH. The positive correlation between
seawater temperature and pH creates a circumstance where fluc-
tuations in temperature act to temper the diel range in pH. This
is because times with lower pH from net respiration (night) are
cooler, acting to thermodynamically raise pH, while times with
higher pH from net photosynthesis (day) are warmer, acting to
thermodynamically lower pH. Based on a −0.015 change in pH
per +1�C (i.e., a negative correlation which is opposite to the
observed positive relationship in situ), the observed diel fluctua-
tions in temperature could attenuate diel ranges in pH by up to
20%, with a more pronounced effect in shallower habitats where
water temperatures fluctuate more (Fig. 3E). These coupled
changes in temperature and pH, ultimately driven by solar irradi-
ance, have been hypothesized to result in divergent short-term
stressors during different times of the day, with highest tempera-
tures (and highest pH) occurring during the day and the lowest
pH (and lowest temperatures) during the night (Kline
et al. 2015).

The mean diel range in both temperature and pH at each
site fit a power function relationship with water column
depth (Fig. 4), similar to previous observations made across a
reef ecosystem in Hawaii (Guadayol et al. 2014). This
nonlinear relationship between diel physicochemical variabil-
ity and depth is not surprising based on the power relation-
ship between the ratio of benthic planar surface area to
volume and depth. Since areal solute fluxes due to benthic
metabolism occur across the bottom planar surface, the influ-
ence of a given benthic flux on the seawater solute concentra-
tion should decrease according to a power function with
increasing depth. This is probably more complex for heat

Fig. 4. The relationship of diel temperature and pH variability with depth. The mean diel range in (A) temperature and (B) pH at each sensor location
plotted against depth. The solid lines represent fits to a power function and dashed lines are the 95% prediction intervals. (C) The mean diel ranges in
temperature and pH plotted against each other. The large colored symbols are averages of individual sensor time series and small colored dots are the
discrete days. The solid line represents a linear regression of the mean data and dashed lines are the 95% prediction intervals. In all panels, the error bars
are � 1σ and the color and symbol scheme is the same as in Fig. 3. Colored stars in each panel represent data taken from the literature, which were not
included in the fits. The black star is from Lady Elliot Island, Australia (Shaw et al. 2012), the blue stars are from two sites on Oahu, Hawaii (Lantz et al.
2013), and the red star is from Ofu, American Samoa (Koweek et al. 2015).
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fluxes as there are multiple physical processes involved,
including fluxes from the benthos, latent heat fluxes, and
absorption by the water column (MacKellar et al. 2013). Over-
all, diel variability of temperature and pH was drastically
reduced at depths greater than ~ 6 m, indicating reef habitats
deeper than this experience muted short-term variability.
However, deeper habitats exposed to deep ocean water from
upwelling and internal tides can experience intense high-
frequency variability (Leichter et al. 2005; Reid et al. 2019). It
is important to note that the relationship between depth and
diel temperature and pH variability is based on the mean diel
ranges during the time period of observations, and there are
most likely interday variations based on day-to-day changes
in physical and biogeochemical drivers. Based on these data,
it is not clear how long a time series needs to be in order to
robustly calculate a mean diel range, but this will probably be
site-specific and tidal cycles should be considered.

To better assess the general applicability of our observed
trends, temperature data from 118 reef sites (Safaie et al. 2018)
were compared to our data set. The two data sets show a similar
power function relationship between depth and diel tempera-
ture variability (Supporting Information Fig. S4). However, dif-
ferent coefficients between the two studies demonstrate that
more measurements may be needed to develop a more gener-
ally applicable relationship across coral reefs. One important
difference between the two studies is that some sites from
Safaie et al. (2018) included temperature measurements from
sensors deployed on buoy lines at different depths within the
water column. Because of this, some of the depths reported by
Safaie et al. (2018) reflect the sensor depth within the water
column and not water column depth itself, which could skew
the depth and temperature variability relationship. This reflects
the need to design studies where instruments are deployed on
the benthos so measurements reflect the conditions experi-
enced by corals and other sessile benthic organisms. Unfortu-
nately, a similar data set was not available to compare our
observed trends in pH variability to a broader range of coral
reef sites.

It is somewhat unexpected that short-term variability in tem-
perature and pH had such a strong relationship with depth
across coral reef sites with such distinct physical and biogeo-
chemical properties. For example, one might expect seawater
residence time, or the amount of time a parcel of water spends
within a reef system, to influence mean diel ranges in environ-
mental conditions, as systems with longer residence time allow
seawater to become more highly modified (Zhang et al. 2013;
Lowe et al. 2016). Although estimates of seawater residence
times are not available at all sites, the sites with previously pub-
lished residence times range from 0.3 to 1.5 d at Heron Island
(Mongin and Baird 2014), 1.4 to 4.5 d at Bermuda (Venti et al.
2012), and 2.8 to 7.0 d at Kaneohe Bay (Lowe et al. 2009), which
do not scale with observed variability in temperature and pH at
these locations (Table 1). A large part of this inconsistency may
be explained by the fact that these short-term diel changes

oscillate around a mean, with rapid and intense forcing of sea-
water temperature and pH over a diel cycle (Fig. 3). Since resi-
dence time is an integrated measurement, it may have less of an
effect on short-term variability as the tracer signal
(e.g., temperature and pH) is changing quickly, and much more
of an impact on mean conditions (Falter et al. 2013; Zhang et al.
2013; Takeshita et al. 2018). Despite the fact that average diel
variability is largely predicted by depth, mean seawater condi-
tions can change drastically across different reef systems
(Cyronak et al. 2018). This suggests that even if shallow areas of
reefs experience intense variations over short frequencies, the
mean conditions could be representative of the open ocean or
highly influenced by residence times (Price et al. 2012; Falter
et al. 2013; Guadayol et al. 2014; Takeshita et al. 2018). It is
unclear if the relationship between temperature and pH variabil-
ity observed here is a persistent feature over seasonal to inter-
annual time scales. For example, changes in both diel
temperature and pH variability would be expected due to sea-
sonal variability in solar irradiance (Falter et al. 2012) and reef
metabolism (Courtney et al. 2017). Our results suggest that this
pattern persists over seasonal cycles, as deployments were made
between spring and fall. However, wintertime observations were
lacking in higher latitude reefs where the biggest changes in
temperature and pH regimes would be expected (Bates 2002).

While depth appears to be a strong predictor of environ-
mental variability in these shallow coral reef systems, there
are most likely situations where the observed relationship
breaks down. For instance, if currents are fast and seawater is
rushing over a shallow part of the reef, it is unlikely that the
seawater will be significantly modified unless it traverses a
lengthy reef section. Also, reefs can be exposed to colder,
highly modified deep water due to physical processes acting
on high frequencies (> 1 d−1) such as upwelling and internal
waves (Leichter et al. 2005; Reid et al. 2019). Exposure to deep
ocean water is more likely to occur in habitats exposed to the
open ocean such as fore reefs, and will be dependent on phys-
ical characteristic such as slope angle and steepness (Schramek
et al. 2018). Even though Palmyra is located in a region with
strong vertical stratification (Hamann et al. 2004), tempera-
ture and pH variability at the fore reef sites still fit within the
broader depth-variability relationships (Fig. 4). This could just
be a function of the time period and/or length of our observa-
tions and demonstrates the need for more high-resolution
and extended time series observations across different types of
coral reef ecosystems (e.g., Reid et al. 2019). While the depth
and temperature relationship is likely controlled by physical
mechanisms, biological mechanisms could change the rela-
tionship between pH variability and depth. For example, a
bleaching event reduced the diel range in pH by ~ 0.15 units
on a reef in the South China Sea, most likely due to a reduc-
tion in net ecosystem production (DeCarlo et al. 2017). Nutri-
ent additions have been shown to impact the net ecosystem
production of coral communities, subsequently impacting pH
variability in a mesocosm experiment (Silbiger et al. 2018).
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More in situ studies assessing rates of ecosystem production
and calcification alongside measurements of pH variability are
needed to better assess the biological control on diel pH
cycles.

Impacts of variability on organisms
Even if reefs experience distinct spatiotemporal variability

of temperature and pH compared to the open ocean, does it
matter to corals and other reef organisms? There is evidence
that exposure to short-term oscillations in temperature and pH
can mitigate the impact of these environmental stressors on
corals (Warner et al. 1996; Oliver and Palumbi 2011; Dufault
et al. 2012; Safaie et al. 2018). Corals exposed to large diel tem-
perature oscillations living in naturally variable environments
demonstrated increased thermal tolerance when compared to
corals from less variable environments (Warner et al. 1996; Oli-
ver and Palumbi 2011). In support of these experimental stud-
ies, recent findings demonstrated that high-frequency
temperature variability was the primary predictor of bleaching
prevalence across 81 coral bleaching events (Safaie et al. 2018).
Likewise, corals exposed to oscillating pH conditions had
higher calcification rates compared to corals in stable condi-
tions with the same mean pH (Chan and Eggins 2017; Enochs
et al. 2018). Coral recruits have also been shown to grow larger
and have greater survivorship under oscillating compared to
stable pH conditions (Dufault et al. 2012). The increased
bleaching tolerance of corals exposed to oscillating tempera-
ture is most likely due to acclimatization (Palumbi et al. 2014),
whereas the mechanisms governing the tempered response of
calcification and recruitment to pH under oscillating condi-
tions are not fully elucidated (Rivest et al. 2017). Irrespective of
the underlying physiological mechanisms, the widespread var-
iability observed across coral reef ecosystems in this study indi-
cates that there are extensive shallow sections of coral reefs
inhabited by organisms that are potentially better able to cope
with global changes in temperature and pH.

On the other hand, habitats and ecosystems that undergo
dramatic variability in seawater temperature and pH could cre-
ate more harmful exposures for organisms in the future (Shaw
et al. 2013; Kline et al. 2015). Local variability regimes of tem-
perature and pH will respond differently to global climate
change, potentially altering the spatiotemporal relationships
of seawater properties across coral reefs. A global reduction in
seawater buffering capacity is expected to cause more short-
term extremes in seawater pH (Shaw et al. 2013), which could
mean that future diel pH variability will increase even more at
sites with the greatest variability today. Negative feedbacks to
ocean warming, such as latent heat fluxes and cloud cover,
could modulate temperature variability in the future, although
those are not expected to keep temperatures below the critical
thresholds for coral bleaching (Kleypas et al. 2008). Depending
on how the feedback systems driving temperature and pH
interact, there could be fundamental changes in the tempera-
ture and pH relationship across shallow coral reef habitats in

the future (Fig. 4C). It is also important to consider that rising
sea levels could reduce both fluctuations in temperature and
pH as the water column becomes deeper over reefs (Lowe et al.
2016). This demonstrates the need to holistically examine
“ocean weather” patterns across coral reefs in order to better
elucidate the future local changes we can expect due to global
anthropogenic changes to the Earth system.

Conclusions
This study adds to a diverse body of work demonstrating

how the different habitats and geomorphic structure of coral
reef ecosystems can create complex variability in seawater tem-
perature and pH. Diel oscillations in temperature and pH were
both ultimately driven by solar irradiance, and as a result, the
diel range of both parameters were positively correlated across
all sites. This coupling of temperature and pH creates a natural
thermodynamic tempering of diel pH fluctuations due to the
occurrence of elevated temperatures during the day and lower
temperatures at night. In general, temporal variability in both
temperature and pH was correlated with spatial variability
across the sensor arrays. However, for both parameters, the
mean diel range was greater than or equal to the mean spatial
range, indicating that variability is most intense at one location
over a 24-h cycle. Average water column depth seems to be a
good first order indicator of the average short-term variability
of seawater temperature and pH across coral reef habitats, and
future studies should be designed to test the robustness of this
relationship and whether it can be used to predict local variabil-
ity regimes. Combined with current research investigating the
impacts of environmental variability on the vulnerability of
reef organisms to global change, these results suggest that
depth surveys of coral reef ecosystems could provide critical
insights into where populations of corals and other reef organ-
isms harboring increased resilience may exist. Other methods
for assessing small-scale variability and associated biological
responses should also be explored, including remote sensing
technologies, modeling, and genetic techniques. It is likely that
the dynamic seawater conditions within coral reefs will interact
with global changes to the Earth system, creating both hotspots
and refugia for marine organisms (Kapsenberg and Cyronak
2018). Therefore, it is important to gain a more comprehensive
understanding of the contemporary variability within coral
reefs to better predict how global change will impact these
locally dynamic ecosystems.

References
Bates, A., and others. 2018. Biologists ignore ocean weather at

their peril. Nature 560: 299–301. doi:10.1038/d41586-018-
05869-5

Bates, N. R. 2002. Seasonal variability of the effect of coral
reefs on seawater CO2 and air-sea CO2 exchange. Limnol.
Oceanogr. 47: 43–52. doi:10.4319/lo.2002.47.1.0043

Cyronak et al. Temperature and pH variability in coral reefs

9

https://doi.org/10.1038/d41586-018-05869-5
https://doi.org/10.1038/d41586-018-05869-5
https://doi.org/10.4319/lo.2002.47.1.0043


Blanchon, P. 2011. Geomorphic zonation, p. 469–486. In
D. Hopley [ed.], Encyclopedia of modern coral reefs. Springer.

Bresnahan, P. J., T. R. Martz, Y. Takeshita, K. S. Johnson, and
M. LaShomb. 2014. Best practices for autonomous measure-
ment of seawater pH with the Honeywell Durafet. Methods
Oceanogr. 9: 44–60. doi:10.1016/j.mio.2014.08.003

Chan, N. C. S., and S. R. Connolly. 2013. Sensitivity of coral
calcification to ocean acidification: A meta-analysis. Glob.
Chang. Biol. 19: 282–290. doi:10.1111/gcb.12011

Chan, W. Y., and S. M. Eggins. 2017. Calcification responses
to diurnal variation in seawater carbonate chemistry by the
coral Acropora formosa. Coral Reefs. 36: 763–772. doi:10.
1007/s00338-017-1567-8

Courtney, T. A., and others. 2017. Environmental controls on
modern scleractinian coral and reef-scale calcification. Sci.
Adv. 3: e1701356. doi:10.1126/sciadv.1701356

Cyronak, T., and others. 2018. Taking the metabolic pulse of
the world’s coral reefs. PLoS One 13: e0190872. doi:10.
1371/journal.pone.0190872

Cyronak, T., and others. 2019. Data from: Diel temperature
and pH variability scale with depth across diverse coral reef
habitats. Dryad, [accessed 2019 Aug 23]. Available from
https://doi.org/10.5061/dryad.tj1nf5f

DeCarlo, T. M., and others. 2017. Community production
modulates coral reef pH and the sensitivity of ecosystem
calcification to ocean acidification. J. Geophys. Res. Oceans
122: 745–761. doi:10.1002/2016JC012326

Dufault, A. M., V. R. Cumbo, T.-Y. Fan, and P. J. Edmunds.
2012. Effects of diurnally oscillating pCO2 on the calcifica-
tion and survival of coral recruits. Proc. R. Soc. Lond. B
Biol. Sci. 279: 2951–2958. doi:10.1098/rspb.2011.2545

Enochs, I. C., and others. 2018. The influence of diel carbon-
ate chemistry fluctuations on the calcification rate of
Acropora cervicornis under present day and future acidifica-
tion conditions. J. Exp. Mar. Biol. Ecol. 506: 135–143. doi:
10.1016/j.jembe.2018.06.007

Eyre, B. D., T. Cyronak, P. Drupp, E. H. de Carlo, J. P. Sachs,
and A. J. Andersson. 2018. Coral reefs will transition to net
dissolving before end of century. Science 359: 908–911.
doi:10.1126/science.aao1118

Falter, J. L., R. J. Lowe, M. J. Atkinson, and P. Cuet. 2012. Sea-
sonal coupling and de-coupling of net calcification rates
from coral reef metabolism and carbonate chemistry at
Ningaloo Reef, Western Australia. J. Geophys. Res. 117:
C05003. doi:10.1029/2011JC007268

Falter, J. L., R. J. Lowe, Z. Zhang, and M. McCulloch. 2013.
Physical and biological controls on the carbonate chemis-
try of coral reef waters: Effects of metabolism, wave forcing,
sea level, and geomorphology. PLoS One 8: e53303. doi:10.
1371/journal.pone.0053303

Fox, M. D., and others. 2019. Limited coral mortality follow-
ing acute thermal stress and widespread bleaching on Pal-
myra Atoll, Central Pacific. Coral Reefs 38: 701–712. doi:
10.1007/s00338-019-01796-7

Gattuso, J.-P., D. Allemand, and M. Frankignoulle. 1999. Pho-
tosynthesis and calcification at cellular, organismal and
community levels in coral reefs: A review on interactions
and control by carbonate chemistry. Am. Zool. 39:
160–183. doi:10.1093/icb/39.1.160

Guadayol, Ò., N. J. Silbiger, M. J. Donahue, and F. I. M. Thomas.
2014. Patterns in temporal variability of temperature, oxygen
and pH along an environmental gradient in a coral reef. PLoS
One 9: e85213. doi:10.1371/journal.pone.0085213

Hamann, I. M., G. W. Boehlert, and C. D. Wilson. 2004.
Effects of steep topography on the flow and stratification
near Palmyra Atoll. Ocean Dyn. 54: 460–473. doi:10.1007/
s10236-004-0091-x

Hoegh-Guldberg, O., and others. 2007. Coral reefs under rapid
climate change and ocean acidification. Science 318:
1737–1742. doi:10.1126/science.1152509

Hughes, T. P., and others. 2017. Global warming and recur-
rent mass bleaching of corals. Nature 543: 373–377. doi:
10.1038/nature21707

Kapsenberg, L., and T. Cyronak. 2018. Ocean acidification
refugia in variable environments. Glob. Chang. Biol. 25:
3201–3214. doi:10.1111/gcb.14730

Kleypas, J. A., G. Danabasoglu, and J. M. Lough. 2008. Poten-
tial role of the ocean thermostat in determining regional
differences in coral reef bleaching events. Geophys. Res.
Lett. 35: L03613. doi:10.1029/2007GL032257

Kline, D. I., and others. 2015. Six month in situ high-
resolution carbonate chemistry and temperature study on a
coral reef flat reveals asynchronous pH and temperature
anomalies. PLoS One 10: e0127648. doi:10.1371/journal.
pone.0127648

Koweek, D., R. Dunbar, S. Monismith, D. Mucciarone,
C. B. Woodson, and L. Samuel. 2015. High-resolution
physical and biogeochemical variability from a shallow
back reef on Ofu, American Samoa: An end-member per-
spective. Coral Reefs 34: 979–991. doi:10.1007/s00338-
015-1308-9

Lantz, C. A., M. J. Atkinson, C. W. Winn, and S. E. Kahng.
2013. Dissolved inorganic carbon and total alkalinity of a
Hawaiian fringing reef: Chemical techniques for monitor-
ing the effects of ocean acidification on coral reefs. Coral
Reefs 33: 105–115. doi:10.1007/s00338-013-1082-5

Leichter, J. J., G. B. Deane, and M. D. Stokes. 2005. Spatial
and temporal variability of internal wave forcing on a
coral reef. J. Phys. Oceanogr. 35: 1945–1962. doi:10.1175/
JPO2808.1

Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson.
2009. A numerical study of circulation in a coastal reef-lagoon
system. J. Geophys. Res. Oceans 114: C06022. doi:10.1029/
2008JC005081

Lowe, R. J., X. Pivan, J. Falter, G. Symonds, and R. Gruber.
2016. Rising sea levels will reduce extreme temperature var-
iations in tide-dominated reef habitats. Sci. Adv. 2:
e1600825. doi:10.1126/sciadv.1600825

Cyronak et al. Temperature and pH variability in coral reefs

10

https://doi.org/10.1016/j.mio.2014.08.003
https://doi.org/10.1111/gcb.12011
https://doi.org/10.1007/s00338-017-1567-8
https://doi.org/10.1007/s00338-017-1567-8
https://doi.org/10.1126/sciadv.1701356
https://doi.org/10.1371/journal.pone.0190872
https://doi.org/10.1371/journal.pone.0190872
https://doi.org/10.5061/dryad.tj1nf5f
https://doi.org/10.1002/2016JC012326
https://doi.org/10.1098/rspb.2011.2545
https://doi.org/10.1016/j.jembe.2018.06.007
https://doi.org/10.1126/science.aao1118
https://doi.org/10.1029/2011JC007268
https://doi.org/10.1371/journal.pone.0053303
https://doi.org/10.1371/journal.pone.0053303
https://doi.org/10.1007/s00338-019-01796-7
https://doi.org/10.1093/icb/39.1.160
https://doi.org/10.1371/journal.pone.0085213
https://doi.org/10.1007/s10236-004-0091-x
https://doi.org/10.1007/s10236-004-0091-x
https://doi.org/10.1126/science.1152509
https://doi.org/10.1038/nature21707
https://doi.org/10.1111/gcb.14730
https://doi.org/10.1029/2007GL032257
https://doi.org/10.1371/journal.pone.0127648
https://doi.org/10.1371/journal.pone.0127648
https://doi.org/10.1007/s00338-015-1308-9
https://doi.org/10.1007/s00338-015-1308-9
https://doi.org/10.1007/s00338-013-1082-5
https://doi.org/10.1175/JPO2808.1
https://doi.org/10.1175/JPO2808.1
https://doi.org/10.1029/2008JC005081
https://doi.org/10.1029/2008JC005081
https://doi.org/10.1126/sciadv.1600825


MacKellar, M. C., H. A. McGowan, and S. R. Phinn. 2013. An
observational heat budget analysis of a coral reef, Heron
Reef, Great Barrier Reef, Australia. J. Geophys. Res. Atmos.
118: 2547–2559. doi:10.1002/jgrd.50270

Mongin, M., and M. Baird. 2014. The interacting effects of
photosynthesis, calcification and water circulation on car-
bon chemistry variability on a coral reef flat: A modelling
study. Ecol. Model. 284: 19–34. doi:10.1016/j.ecolmodel.
2014.04.004

Oliver, T. A., and S. R. Palumbi. 2011. Do fluctuating tem-
perature environments elevate coral thermal tolerance?
Coral Reefs 30: 429–440. doi:10.1007/s00338-011-
0721-y

Palumbi, S. R., D. J. Barshis, N. Traylor-Knowles, and R. A. Bay.
2014. Mechanisms of reef coral resistance to future climate
change. Science 344: 895–898. doi:10.1126/science.1251336

Pierrot, D., E. Lewis, and D. W. R. Wallace. 2006. MS Excel
program developed for CO2 system calculations. In
ORNL/CDIAC-105a. Carbon dioxide information analysis
center, oak ridge national laboratory, US Department of
Energy, Oak Ridge, Tennessee, V. 3. doi:10.3334/CDIAC/
otg.CO2SYS_XLS_CDIAC105a

Price, N. N., T. R. Martz, R. E. Brainard, and J. E. Smith. 2012.
Diel variability in seawater pH relates to calcification and
benthic community structure on coral reefs. PLoS One 7:
e43843. doi:10.1371/journal.pone.0043843

Reid, E. C., T. M. DeCarlo, A. L. Cohen, G. T. Wong, S. J.
Lentz, A. Safaie, A. Hall, and K. A. Davis. 2019. Internal
waves influence the thermal and nutrient environment on
a shallow coral reef. Limnol. Oceanogr. 64: 1949–1965.
doi:10.1002/lno.11162

Rivest, E. B., S. Comeau, and C. E. Cornwall. 2017. The role of
natural variability in shaping the response of coral reef
organisms to climate change. Curr. Clim. Change Rep. 3:
271–281. doi:10.1007/s40641-017-0082-x

Safaie, A., and others. 2018. High frequency temperature variabil-
ity reduces the risk of coral bleaching. Nat. Commun. 9: 1671.
doi:10.1038/s41467-018-04074-2

Schramek, T. A., P. L. Colin, M. A. Merrifield, and E. J. Terrill.
2018. Depth-dependent thermal stress around corals in the
tropical Pacific Ocean. Geophys. Res. Lett. 45: 9739–9747.
doi:10.1029/2018GL078782

Shaw, E. C., B. I. McNeil, and B. Tilbrook. 2012. Impacts of
ocean acidification in naturally variable coral reef flat eco-
systems. J. Geophys. Res. 117: C03038. doi:10.1029/
2011JC007655

Shaw, E. C., B. I. McNeil, B. Tilbrook, R. Matear, and
M. L. Bates. 2013. Anthropogenic changes to seawater
buffer capacity combined with natural reef metabolism
induce extreme future coral reef CO2 conditions. Glob.
Chang. Biol. 19: 1632–1641. doi:10.1111/gcb.12154

Silbiger, N. J., and others. 2018. Nutrient pollution disrupts
key ecosystem functions on coral reefs. Proc. R. Soc. B Biol.
Sci. 285: 20172718. doi:10.1098/rspb.2017.2718

Takeshita, Y., T. Cyronak, T. R. Martz, T. Kindeberg, and
A. J. Andersson. 2018. Coral reef carbonate chemistry vari-
ability at different functional scales. Front. Mar. Sci. 5: 175.
doi:10.3389/fmars.2018.00175

Venti, A., D. Kadko, A. Andersson, C. Langdon, and N. Bates.
2012. A multi-tracer model approach to estimate reef water
residence times. Limnol. Oceanogr.: Methods 10:
1078–1095. doi:10.4319/lom.2012.10.1078

Warner, M. E., W. K. Fitt, and G. W. Schmidt. 1996. The
effects of elevated temperature on the photosynthetic effi-
ciency of zooxanthellae in hospite from four different spe-
cies of reef coral: A novel approach. Plant Cell Environ. 19:
291–299. doi:10.1111/j.1365-3040.1996.tb00251.x

Zhang, Z., J. Falter, R. Lowe, G. Ivey, and M. McCulloch.
2013. Atmospheric forcing intensifies the effects of regional
ocean warming on reef-scale temperature anomalies during
a coral bleaching event. J. Geophys. Res. Oceans 118:
4600–4616. doi:10.1002/jgrc.20338

Acknowledgments
We are thankful for field support from various organizations, including the
Bermuda Institute of Ocean Sciences, Hawaii Institute of Marine Biology,
Heron Island Research Station, and the Smithsonian Tropical Research
Institute at Bocas del Toro, Panama. The Gordon and Betty Moore
Foundation, Scripps Family Foundation, and the Bohn Family supported
work on Palmyra Atoll. Ashley Cyronak braved swell, thunderstorms, and
sea sickness to help recover instruments in Bermuda. This project was
partially funded by NSF OCE-1255042 awarded to A.J.A., NSF OCE-
1538495 awarded to D.I.K. and M.T., ARC DP150102092 awarded to
B.D.E., NSF DGE-1650112 awarded to T.A.C., NSF OCE-RIG-1420900
awarded to N.N.P., and a Scripps Institutional Postdoctoral Fellowship
awarded to T.C. Satellite images were provided through a DigitalGlobe
Foundation imagery grant awarded to T.C. This is Palmyra Atoll Research
Consortium publication number PARC-0153.

Submitted 19 April 2019

Revised 10 October 2019

Accepted 17 October 2019

Cyronak et al. Temperature and pH variability in coral reefs

11

https://doi.org/10.1002/jgrd.50270
https://doi.org/10.1016/j.ecolmodel.2014.04.004
https://doi.org/10.1016/j.ecolmodel.2014.04.004
https://doi.org/10.1007/s00338-011-0721-y
https://doi.org/10.1007/s00338-011-0721-y
https://doi.org/10.1126/science.1251336
https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a
https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a
https://doi.org/10.1371/journal.pone.0043843
https://doi.org/10.1002/lno.11162
https://doi.org/10.1007/s40641-017-0082-x
https://doi.org/10.1038/s41467-018-04074-2
https://doi.org/10.1029/2018GL078782
https://doi.org/10.1029/2011JC007655
https://doi.org/10.1029/2011JC007655
https://doi.org/10.1111/gcb.12154
https://doi.org/10.1098/rspb.2017.2718
https://doi.org/10.3389/fmars.2018.00175
https://doi.org/10.4319/lom.2012.10.1078
https://doi.org/10.1111/j.1365-3040.1996.tb00251.x
https://doi.org/10.1002/jgrc.20338

	Diel Temperature and pH Variability Scale With Depth Across Diverse Coral Reef Habitats
	Authors
	David I. Kline
	Todd R. Martz
	Heather Page
	Nichole Price
	Jennifer Smith
	Laura Stoltenberg
	Martin Tresguerres
	Andreas J. Andersson


	 Diel temperature and pH variability scale with depth across diverse coral reef habitats
	Methods
	Study sites
	Autonomous sensors and data analysis

	Results
	Discussion
	Diel variability of seawater temperature and pH in coral reef ecosystems
	Impacts of variability on organisms

	Conclusions
	References
	Acknowledgments


