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Identifying the factors associated with medical students who fail Step 1 of the United 
States Medical Licensing Examination (USMLE) has been a focus of investigation for 
many years. Some researchers believe lower scores on the Medical Colleges Admissions 
Test (MCAT) are the sole factor used to identify failure. Other researchers believe lower 
course outcomes during the first two years of medical training are better indicators of 
failure.  Yet, there are medical students who fail Step 1 of the USMLE who enter medical 
school with high MCAT scores, and conversely medical students with lower academic 
credentials who are expected to have difficulty passing Step 1 but pass on the first 
attempt. Researchers have attempted to find the factors associated with Step 1 outcomes; 
however, there are two problems associated with their methods used.  First is the small 
sample size due to the high national pass rate of Step 1.  And second, research using 
multivariate regression models indicate correlates of Step 1 but does not predict 
individual student performance.  
 
This study used data mining methods to create models which predict medical students at 
risk of failing Step 1 of the USMLE.  Predictor variables include those available to 
admissions committees at application time, and final grades in courses taken during the 
preclinical years of medical education.  Models were trained, tested, and validated using a 
stepwise approach, adding predictor variables in the order of courses taken to identify the 
point during the medical education continuum which best predicts students who will fail 
Step 1.  Oversampling techniques were employed to resolve the problem of small sample 
sizes.  Results of this study suggest at risk medical students can be identified as early as 
the end of the first term during the first year.  The approach used in this study can serve 
as a framework which if implemented at other U.S. allopathic medical schools can 
identify students in time for appropriate interventions to impact Step 1 outcomes.  
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Chapter 1 

Introduction 

 

Background 

The Association of American Medical Colleges (AAMC) predicts a shortage of 

121,300 physicians in the United States by 2030.  This estimate is driven largely by the 

expected growth in the population, specifically an increase in those age 65 and older who 

have higher demands for medical care, and an increased demand in underserved 

populations (Dall, West, Chakrabarti, Reynolds & Iacobucci, 2018).  Since medical 

training can take up to ten years, medical schools are under increasing pressure to fill the 

gap; however, capacity at U.S. medical schools is limited and the admissions process is 

highly competitive.  Admissions committees select and matriculate students who are most 

likely to complete the full medical school curriculum, pass required board examinations, 

and continue to residency (Gay, Santen, Mangrulkar, Sisson, Ross & Zaidi, 2018). 

There is not one prescribed application process for U.S. medical schools, but 

many schools use a centralized application service provided for member institutions of 

the AAMC.  An integral part of the application process is the Medical Colleges 

Admissions Test (MCAT), used for over 80 years, which allows admissions committees 

to evaluate applicants’ knowledge and skills needed to be successful in medical 

school.  In addition to MCAT scores, applicants provide information about themselves, 

their preparation for medical school by way of coursework taken in undergraduate or 

post-baccalaureate programs, personal statements, and letters of recommendation 
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(“Navigate your journey,” 2018).  Admission committee members review each 

applicant’s qualifications based on information provided during the application process 

and letters of recommendation to determine those invited for campus interviews. It is 

during campus interviews when applicants have an opportunity to learn more about the 

medical school and interviewers can assess qualities necessary to be good physicians, 

such as “compassion and empathy, personal maturity, oral communication skills, service 

orientation, and professionalism” (Monroe, Quinn, Samuelson, Dunleavy, & Dowd, 

2013, p. 675).  

If medical student selection is based solely on cognitive aptitude, exceeding 

minimally acceptable undergraduate grade point averages (UGPA) and scores from the 

MCAT would separate those who have access to medical education, and a career as a 

physician, from those who do not.  Instead, the AAMC urges medical schools to review 

applicants holistically, with a balanced consideration of UGPA, MCAT scores, and other 

attributes and life experiences when making acceptance decisions (“Holistic Review,” 

2018).  However, because medical training is cognitively challenging, admissions 

committees accept and matriculate students who are able to withstand the rigor of 

medical school and pass licensure examinations.  In the past, higher MCAT scores and 

UGPA have been used as indicators of this ability, but with holistic review, there are 

applicants who matriculate with lower MCAT scores and UGPA, who are just as likely to 

be successful in medical school (Monroe et al., 2013; Sesate, Milem, McIntosh, & Bryan, 

2017). 

The structure of medical education can vary by school, but a typical curriculum 

consists of preclinical and clinical years, each lasting two years for a total of four years of 
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medical training.  The preclinical part of the curriculum focuses on the foundational 

sciences necessary to practice medicine, and is mostly lecture-based, with case studies in 

smaller groups, and laboratory experiences.  The clinical years are more commonly 

known by their clinical rotations, with students working directly with physicians and 

other trainees in clinical settings observing patient interactions.  High-stakes standardized 

examinations are often used for students to progress though the medical curriculum, and 

in some cases serve as practice opportunities for medical licensure examinations (Dezee, 

Artino, Elnicki, Hemmer, & Durning, 2012). 

One indicator of academic success in medical school is performance on Step 1 of 

the United States Medical Licensing Examination (USMLE), a series of three high-stakes 

examinations, called Steps, which is required for medical licensure, and for the 

unsupervised practice of medicine. Because Step 1 assesses the knowledge of the 

foundational sciences necessary to the practice of medicine, a typical series of courses 

during the preclinical years of medical training, it is conceivable that 100% of students 

may pass; however, that is not the expectation, and historically has not been the case. 

According to recent USMLE performance data, the national failure rate of medical 

students taking Step 1 for the first time in 2017 was 4% (USMLE Performance Data, 

2018). National failure rates may be low; however, some medical schools report failure 

rates up to 15% (Schwartz, Lineberry, Park, Kamin, & Hyderi, 2018). 

Passing Step 1 is important for three reasons.  First, it is often a requirement for 

promotion to later years of medical training, and a requirement for graduation. Second, 

passing Step 1 is the first step in the pathway to medical licensure, and required to qualify 

for subsequent step examinations. Third, passing Step 1 has been cited as the most 
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important factor when selecting applicants for residency program interviews (National 

Resident Matching Program, 2018). Many students consider Step 1 to be a pass or fail 

examination; however, the majority of residency programs consider Step 1 scores for 

acceptance, especially for competitive programs such as dermatology and orthopedic 

surgery.  

While not directly responsible for Step 1 outcomes, medical schools have a 

responsibility to monitor student progress, and to offer assistance when necessary in an 

attempt to improve outcomes.  Recent reports have confirmed the ability of MCAT scores 

alone to reliably predict Step 1 outcomes (Glaros, Hanson, & Adkison, 2014; Burns & 

Garrett, 2015); but because of holistic review practices during the admissions process, 

applicants with lower MCAT scores are accepted, putting them at risk for failing Step 1. 

Problem Statement 

Step 1 failures have been attributed to lower MCAT scores (Gauer et al., 2016), 

and lower grades in preclinical courses (Sesate et al., 2017). There are also students who 

enter medical school with higher MCAT scores but fail Step 1 for no apparent reason 

(Sesate et al., 2017), and students who enter with lower MCAT scores who pass Step 1 

(Monroe et al., 2013).  Researchers have attempted to find the factors associated with 

Step 1 outcomes; however, there are two problems associated with their methods used.  

First, the smaller sample size due to the low failure rate of step 1 makes it difficult to 

predict performance (Kleshinski et al., 2009), and is a possible cause for recent research 

finding no correlation between MCAT scores and Step 1 outcomes (Giordano et al., 

2016). Second, research using multivariate regression models indicate correlates of Step 

1 performance (Hu et al., 2016; Lee et al., 2017), but does not predict student 
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performance, leaving the unanswered question “what does it look like for individual 

students” (Lee et al., 2017, p. 6).  

Increasing the sample size to include medical students who scored slightly above 

the minimum passing score, in addition to medical students who failed, may improve the 

ability to determine the factors needed to predict Step 1 performance (Hu et al., 2016). 

Additionally, employing methods other than multivariate regression models may help 

medical school administrators identify students at risk of failing Step 1, as recommended 

by Lee et al. (2017).  Holistic review admission practices have increased the diversity of 

applicants accepted into medical school (Monroe, et al., 2013); but identifying medical 

students who risk failing Step 1, regardless of MCAT scores, may help improve Step 1 

outcomes.  For this study, an at-risk medical student is any student who risks failing Step 

1. Using a lower MCAT score and UGPA as indicators of an at-risk student will ignore 

those students entering medical school with higher UGPA and MCAT scores who fail 

Step 1 for no apparent reason (Sesate et al., 2017), or have difficulty during their first two 

years of medical school, but will not seek assistance (Winston et al., 2014). 

Dissertation Goal 

The purpose of this study was to identify the factors related to Step 1 failure, and 

to identify the medical students at risk of failure without using MCAT scores or UGPA as 

sole indicators.  This study adds to the current knowledge of Step 1 outcomes by 

addressing the deficiencies identified from prior research in this area: the small sample 

size because of the low Step 1 failure rate (Kleshinski et al., 2009; Giordano et al., 2016), 

and the ability to predict Step 1 outcomes at the student level, a problem of recent 

research noted by Lee et al. (2017).  To address the sample size deficiency, a wider net 
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was cast to identify students at risk of failing Step 1: students who failed Step 1, and 

students who passed Step 1, but within one standard deviation of the mean score, as 

suggested by Hu et al. (2017).  This will be described in greater detail in the third chapter. 

Predictive modeling using data mining methods was used to identify the at-risk 

medical students. Chen and Fawcett (2016) define data mining as the use of 

computational techniques to identify relationships in large sets of data or predict what is 

likely to occur given a certain scenario. Clow (2013) applies the concept of predictive 

modeling to education by developing a model “which produces estimates of likely 

outcomes, which are then used to inform interventions designed to improve these 

outcomes” (p. 688). In this study, the set of data includes factors available during the 

admissions process (i.e. demographics, MCAT scores, UGPA), and course outcomes 

from the preclinical years of medical school. 

Prediction models have been used in business to predict customer churn (Lee, 

Kim, & Lee, 2017), to find new customers using social networks (Zhao, King, Lye, Zeng, 

& Yuan, 2017).  In medical research, predictive models have been used to aid in clinical 

decision making (Chen & Fawcett, 2016), and to improve cardiovascular care (Rumsfeld, 

Joynt, & Maddox, 2016).  Predictive modeling is relatively new in education but has 

recently been used to predict high school dropouts (Marquez-Vera, Dano, Romero, 

Noaman, Fardoun, & Ventura, 2016), in higher education to predict freshman student 

attrition (Thammasiri, Delen, Meesad, & Kasap, 2014), and university course 

performance (Kostopoulos, Lipitakis, Kotsiantis, & Gravvanis, 2017).  However, all three 

examples underscore a problem prevalent in predictive models applied to education 

problems, that is the case of the outcome in question (e. g. high school dropouts, 
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freshmen attrition, course outcomes) is not evenly balanced between students who exhibit 

the outcome and those who do not.  If attempting to predict high school dropouts or 

freshmen attrition, there are far less students who dropout than those who do not dropout.  

Similarly, for course outcomes there is a larger majority of students who pass a course 

than the smaller group, often called the majority and minority classes respectively.  For 

each of these studies, predictive model accuracy can be misleading because the majority 

class contributes much more to overall accuracy then the minority class (Marquez-Vera et 

al., 2016).  Based on prior use in educational settings, there is an opportunity to extend 

predictive modeling to a medical school for Step 1 student outcome prediction; however, 

because of the 4% national Step 1 failure rate, the imbalance between medical students 

who pass Step 1 and those who fail must be addressed.   

Research Questions 

This study was guided by the following research questions: 

• Research Question 1: What are the factors associated with Step 1 failures? 

• Research Question 2: Can data mining algorithms be used to identify medical 

students at risk of Step 1 failure?  

• Research Question 3: How does the expected imbalance between students 

passing Step 1 and those failing Step 1 impact the use of data mining 

algorithms to identify students at risk of Step 1 failure?    

Research question 1 is an examination of preadmissions variables, those available 

during the admissions process, and curricular measures, the outcomes from courses 

during the preclinical years of medical school, to identify the factors associated with Step 

1 failure.  Of interest is the relationship between MCAT scores and Step 1 outcomes. 
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Recently, Giordano et al. (2016) found no correlation between these measures, which 

contradicts much of the research literature. 

Research question 2 is an attempt to answer the question posed by Lee and 

colleagues (2017) when they asked what Step 1 outcomes look like for individual 

students, especially those who entered medical school with higher MCAT scores, but 

failed Step 1 for no apparent reason (Sesate et al., 2017), and students who entered with 

lower MCAT scores who pass Step 1 (Monroe et al., 2013).  Research question 3 requires 

special consideration to the expected imbalance between students who passed Step 1, the 

majority group, and students who failed Step 1, the minority group (Abeysinghe, Hung, 

Bechikh, Wang, & Rattani, 2018). 

Predictive models which identify students at-risk of failing Step 1 can be used by 

admissions committees during the holistic applicant review process to identify the 

academically most capable, and those who show promise to be good physicians, but will 

need assistance to succeed, as suggested by Monroe et al. (2013).  Additionally, factors 

associated with Step 1 failure which include curricular measures can be used to inform 

decisions made by committees which evaluate student progress and recommend 

advancement and promotion during medical training. 

Relevance and Significance 

 Prior to holistic review practices for medical school admissions, it was common 

practice for a school to establish a minimum UGPA and MCAT score, eliminating all 

applicants who fell below the minimum, including applicants considered 

underrepresented in medicine (URM) with MCAT and UGPA below non-URM students.  

Holistic review practices allow medical schools to create diverse classes of students able 



 9 

to meet the medical needs of a growing diverse population, an important requirement to 

achieving health equity (Elks et al., 2018).  Admissions decisions made solely on UGPA 

and MCAT could eliminate applicants who possess other qualities needed to become a 

good physician.  Holistic review has changed how admissions committees evaluate 

applicants, giving a new perspective to UGPA and MCAT scores (Capers et al., 2018).   

UGPA and MCAT scores may serve as a guideline for identifying students at-risk 

of Step 1 failure but can no longer be the only factors.  The goal is to identify at-risk 

students and to offer support programs designed to improve medical school outcomes.  

Medical schools use a variety of methods to offer support to students before and during 

medical training.  Programs offered prior to the start of the first year prepare students for 

the rigor of medical training and provide strategies to improve study habits.  Program 

participants are typically selected based on lower MCAT scores and UGPA, and in some 

cases ethnicity, gender, or age.   

Segal, Giordani, Gillum, and Johnson (1999) described a program at the 

University of Michigan School of Medicine designed to assist students recover from 

academic difficulties, reporting a 93% improvement in medical school outcomes.  Other 

medical schools have since reported similar outcome improvements when implementing 

academic support programs (Lieberman et al., 2008; Glaros et al, 2014; Winston et al., 

2014); however, in many cases, MCAT scores were used as the sole identifying factor of 

at-risk medical students.  

Not every academic support program achieves the desired results.  Hairrell, 

Smith, McIntosh, and Chico (2016) described a program offered to at-risk medical 

students before the first year begins.  The program was designed to prepare selected 
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students for the rigor of medical training, and to provide resources to improve study 

skills.  Students were selected based on lower MCAT and UGPA, URM (non-white 

ethnicity) and older students.  There was not a significant difference in the grades 

between those who attended the program and those who did not, but participants did 

report an increase in a sense of belonging and confidence.  Heck et al. (2017) surveyed 

116 medical schools in the U.S. to determine the prevalence of pre-matriculation 

programs.  One quarter of the medical schools responding reported the use of a student 

assistance program before the first year begins.  Many of the schools allow participation 

by any incoming medical student; however, half of the schools give special consideration 

to students underrepresented in medicine, and students with lower UGPA and MCAT 

scores.  The majority of participants in these programs did graduate on time.  Schneid et 

al. (2018) described a program at the University of California San Diego School of 

Medicine offered to all admitted students, but students with lower UGPA, MCAT scores, 

or underrepresented in medicine are encouraged to attend by the dean.  Performance in 

the program was found to correlate with preclinical course outcomes, but not Step 1.   

Barriers and Limitations 

Creating a model which accurately predicts medical student outcomes has been a 

goal in medical education for many years (Lee et al., 2017).  This is a goal of the current 

study, but there are barriers present.  The first barrier is related to data access for model 

creation.  There are research datasets available from the AAMC, but they would only 

have data provided by applicants, but not course outcomes or results of Step exams.  

USMLE outcomes could be provided by the National Board of Medical Examiners 

(NBME), but they do not have application variables, or a way to join datasets between 
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the two.  The only option is requesting data from one medical school, but this presents 

problems with generalization of the results; however, the data mining framework used to 

create the model in this study could be used at other medical schools seeking similar 

results. 

Conclusions drawn from the findings of this study will only be relevant to the 

medical school participating in the study.  This is a limitation noted by Schwartz et al. 

(2018) when they studied the effect of a student-initiated study program on Step 1 

outcomes, commenting that other medical schools are likely to find different results 

because of the unique nature of their mission-driven admission policies.  This is not 

uncommon since admissions processes and requirements can vary across medical 

schools.  Even with a holistic review process of applicants, medical school admissions 

committees will select applicants based on the unique mission of the school, potentially 

eliminating other equally qualified applicants (Ellaway, Malhi, Baja, Walker & Myhre, 

2018).  For example, if a mission of a Texas medical school is to prepare primary care 

doctors who desire to care for underserved populations in Texas, priority consideration 

will be given to applicants with similar interests.   

The medical school curriculum during the preclinical years of training can vary 

across medical schools.  In many U.S. medical schools, the first two years of training is 

considered the preclinical years, or the years before clinical rotations, when medical 

students are taught the basic science fundamentals necessary for the practice of medicine.  

However, there is not one prescribed curriculum for all schools for the preclinical years.  

Additionally, some medical schools have decided to reduce the time of the preclinical 

years to 18 months, allowing students a lengthier period to observe patients in a clinical 
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setting. 

Beginning in 2015, applicants to medical schools began taking a revised version 

of the MCAT, which included a change in the content tested, the number of questions, 

and the structure of the scores. The AAMC, who administers the MCAT, offers guidance 

to admissions committees with respect to score interpretation, but does not suggest a 

valid correlation between old and new scores.  According to the AAMC, the scores are 

not comparable because the new MCAT tests different things, contributing to the 

intentional change in the structure of the scores (“About the MCAT Exam”, n.d.).  This 

threat can be controlled by limiting the sample to students who took the MCAT before or 

after the 2015 change.  Future research will be needed to include the new MCAT in 

prediction models when more Step 1 outcome data is available.   

Medical student self-directed study behaviors have not been included in this study 

but will be noted as a need for additional research.  Increased study time, usage of review 

books, and attempts at more practice questions have been associated with higher Step 1 

outcomes (Burk-Rafel, Santen & Purkiss, 2017) but not available in student information 

systems. Surveys can be created to capture this information to be used in future 

prediction models. 

Delimitations 

There are two types of medical schools in the United States.  Allopathic schools 

grant Medical Doctor degrees, require the MCAT for admissions, and the USMLE for 

medical licensure.  Not all allopathic medical schools in Canada require applicants to take 

the MCAT.  Osteopathic medical schools grant Doctor of Osteopathic Medicine degrees, 

require the MCAT for admissions, but students have a choice of taking the USMLE or 
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the Comprehensive Osteopathic Medical Licensing Examination (COMLEX) for medical 

licensure.  This study will also be delimited by the medical school participating in this 

study, which will be described in the methodology chapter. 

For this study, all references to medical school will indicate allopathic, MD-

degree granting schools, in the Unites States because they have similar admission 

requirements, follow a similar curricular format of a preclinical block for the study of 

foundational sciences followed by a clinical block, and have similar licensure and 

graduation requirements.  Similarly, preclinical years will be used to refer to the portion 

of the medical school curriculum devoted to basic sciences courses, and clinical years 

will refer to the time spent in clinical rotations, unless reference to a specific year of 

medical training is needed. 

Definition of Terms 

Algorithm: Instructions used to systematically transform input to output (Alpaydin, 
2010). 
 
Association of American Medical Colleges:  A nonprofit organization based in 
Washington, D.C. that oversees the administration of the Medical College Admission 
Test, hosts the American Medical College Application Service used by medical school 
applicants, and the Electronic Residency Application Service used by medical school 
students applying for residency programs.  Member institutions are accredited medical 
schools in the United States and Canada and teaching hospitals (“About the AAMC,” 
2018).  
 
At-risk Medical Student:  Defined in the current study as any medical student who risks 
failing Step 1 of the USMLE. 
 
Clinical Years:  The portion of the medical school curriculum devoted to clerkships, 
commonly known as clinical rotations.  Typically, two years at U.S. medical schools, but 
some have increased this portion of the curriculum to two and a half years, compressing 
the preclinical years to 18 months. 
 
Data Mining:  The use of computational techniques to identify relationships in large sets 
of data or predict what is likely to occur given a certain scenario (Chen & Fawcett, 2016). 
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Holistic Review:  Refers to a medical school admission practices used to create a diverse 
class of students able to meet the medical needs of a growing diverse population, an 
important requirement to achieving health equity (Elks et al., 2018).   
 
Machine Learning:  the use of computers to provide a "good and useful approximation" 
of an outcome using patterns in data to make predictions (Alpaydin, 2010, p. 2). 
 
Medical College Admission Test:  A standardized, multiple-choice exam required for 
admission to most U.S. and Canadian medical schools (“About the MCAT exam,” 2018). 
 
Medical School: Undergraduate medical training at schools designated as allopathic, 
which grades the Medical Doctor degree. 
 
National Board of Medical Examiners:  An independent non-profit organization which 
oversees the administration of assessments for healthcare professionals (“About NBME,” 
2018) 
 
Preclinical Years:  The initial portion of the medical school curriculum devoted to basic 
sciences courses.  Typically, two years at U.S. medical schools, but some have 
compressed this portion of the curriculum to 18 months. 
 
Predictive Modeling:  The use of data mining to create models to predict likely outcomes.  
When used in an educational setting predicted outcomes inform interventions designed to 
improve outcomes (Clow, 2013). 
 
Step 1:  The first examination of the USMLE used to evaluate the application of basic 
science to the practice of medicine.  
 
Supervised Learning:  to predict the value of an outcome measure based on learning from 
input, or predictor, variables (James, et al., 2015). 
 
Undergraduate Grade Point Average:  The cumulative grade point average from courses 
taken in preparation for medical school, sometimes reported in total or the undergraduate 
grade point average of science courses. 
 
Underrepresented in Medicine:  Medical students who classify themselves as Black, 
Mexican-American, Native American, or from mainland Puerto Rico 
(“Underrepresented,” 2018). 
 
United States Medical Licensing Exam: A standardized exam consisting of three parts, or 
steps, taken at different times during medical training.  The first two steps are required 
for graduation by many medical schools in the United States.  The first part, Step 1, is an 
examination used to evaluate the application of basic science to the practice of 
medicine.  Step 2 assesses clinical knowledge and skills.  Step 3 is the final step, required 
for unsupervised practice of medicine (USMLE, 2018). 
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List of Acronyms 

AAMC:  Association of American Medical Colleges 

MCAT:  Medical College Admission Test 

NBME:   National Board of Medical Examiners 

ROS:  Random Over Sampling 

RUS:  Random Under Sampling 

SMOTE:  Synthetic Minority Oversampling Technique 

UGPA:  Undergraduate Grade Point Average 

URM:  Underrepresented in Medicine 

USMLE:  United States Medical Licensing Exam 

Chapter Summary 

This first chapter presented the background, problem statement, research goals, 

and research questions.  The next chapter focuses on the relevant literature in the study of 

Step 1 outcomes and describes the variables of interest in the current study.  The six-

phase process model employed to complete this study is reviewed in the third and fourth 

chapters.  Finally, a chapter which summarizes findings from the current study and areas 

identified for future research. 
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Chapter 2 

Review of the Literature 

 

The purpose of this chapter is to demonstrate the continued application of 

analytics in education, referencing its origin and its place in the research community.  

Additionally, factors which have been previously associated with USMLE Step 1 

outcomes in prior research will be reviewed as support for the predictor variables used in 

the current study.  Finally, there will be a review of prior investigations of the factors 

associated with Step 1 outcomes, highlighting past methodology issues that contribute to 

the approach used in this study. 

Analytics in Education 

 The use of analytic strategies in medical education allow medical school 

administrators to investigate student outcomes from three different time perspectives: (1) 

past performance to compare actual and expected student outcomes, (2) current 

performance to alert students as to what actions they should take to improve outcomes, 

and (3) predicting how students are likely to perform in the future (Ellaway, Pusic, 

Galbraith, & Cameron, 2014).  Early references to analytics in education considered 

learning analytics (LA) as a mechanism by which to use the vast amount of data 

produced by students, for students, to “assess academic progress, predict future 

performance, and spot potential issues” (Johnson, Smith, Willis, Levine, & Haywood, 

2011, p. 28).  At this time, LA was in the early definition and application stages, yet there 

was a promise to harness the capabilities of data mining and modeling, concepts already 

used in business to uncover fraud and predict the customers who are at-risk of leaving 
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one company for another, as examples.  In subsequent years, LA continued to evolve, 

with slight variations in definition.  In 2012, LA was positioned as a way for teachers, in 

near real time, to adapt the learning process according to student need (Johnson, Adams, 

& Cummins, 2012).  In 2013, LA was considered to be an emergent field of research, 

using student data to improve the learning process, and using predictive modeling 

algorithms to define and target at-risk populations with new retention strategies where 

others may have failed (Johnson, Adams Becker, Cummins, Estrada, Freeman, & 

Ludgate, 2013).  LA was later called the educational application of big data (Johnson, 

Adams, Becker, Estrada, & Freeman, 2014), using data mining tools for early recognition 

of challenges, improve learning outcomes, and personalize learning for students as 

needed (Johnson, Adams Becker, Estrada, & Freemen, 2015).   

As noted in the 2013 Horizon Report, LA was considered to be an emerging 

research discipline (Johnson et al., 2013), with big data in education as the catalyst.  

Early uses were focused on academic analytics to improve organizational processes and 

effectiveness by the adoption of business intelligence tools.  Although not technically 

learning analytics, because of the lack of focus on student success, this was the 

beginning.  According to Siemens (2013), the LA discipline had evolved into a collection 

of tools (commercially available statistical analysis products), techniques (the algorithms 

used in learning analytics for data mining, machine learning, and artificial intelligence), 

and applications (the way techniques are utilized).   

Two research communities emerged from the LA discipline: Educational Data 

Mining (EDM), and Learning Analytics and Knowledge (LAK).  The International 

Educational Data Mining Society focuses on the use of EDM and methods to explore data 
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from educational settings, and application of these methods to better understand students 

(Educational Data Mining, n.d.).  The society supports EDM research with the annual 

EDM conference series and publishes the Journal of Educational Data Mining, a peer 

reviewed and open-access resource to address the challenges unique to EDM (Journal of 

Educational Data Mining, n.d.).  Members of the Society for Learning Analytics 

Research are international researchers investigating the role of LA on teaching and 

learning (About SoLAR, n.d.).  This society supports the LA research community by 

sponsoring annual LA conferences and the Learning Analytics Summer Institute.  The 

society also publishes the Journal of Learning Analytics, a peer-reviewed and open 

access journal focused on the analytic challenges aimed to improve learning (Journal of 

Learning Analytics, n.d.).  Both communities aim to improve the analysis quality of 

education big data, and support research and practice (Siemens & Baker, 2012).  One of 

the main differences between EDM and LA are the techniques and methods employed by 

each.  EDM is focused on data mining, classification, prediction, and visualization.  LA 

uses “social network analysis, sentiment analysis, influence analytics, discourse analytics, 

learner success prediction, concept analysis, and sensemaking models” (Siemens & 

Baker, 2012, p. 253).   

Analytics in education settings have remained in subsequent Horizon Reports, 

with the most recent edition reporting the need for machine learning to predict at-risk 

students and offer intervention programs designed to improve outcomes (Becker, Brown, 

Dahlstrom, Davis, DePaul, Diaz, & Pomerantz, 2018).  The current study builds on this 

need by using machine learning to identify at-risk medical students, using tools, 

techniques, and applications, the three LA dimensions previously identified by Siemens 
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(2013), with software recommended by Slater, Joksimović, Kovanovic, Baker, and 

Gasevic (2017).  Additional details about the software used in this study can be found in 

the next chapter. 

Factors Associated with Step 1 Outcomes 

Standardized examinations are often used to indicate how well students have 

prepared for the next step in their education and are often studied by researchers to 

determine how well examinations predict future academic success.  For example, 

Scholastic Aptitude Test (SAT) scores combined with high school grade point averages 

indicate how well an applicant is prepared for undergraduate studies.  College admission 

boards consider both factors when making admission decisions and have been found to 

be strong predictors of grades during the first year of college (Shaw, 2015).  Similarly, 

scores from either the Graduate Record Examination (GRE) or the Graduate Management 

Admissions Test (GMAT) combined with UGPA have been used by graduate school 

admissions committees as indicators of future course grades and graduate school grade 

point averages (Klieger, Cline, Holtzman, Minsky, & Lorenz, 2014; Dakduk, Malavé, 

Torres, Montesinos, & Michelena, 2016; Klieger, Bridgeman, Tannenbaum, Cline, & 

Olivera-Aguilar, 2018).   

In medical education, standardized examinations are used throughout the 

education continuum beginning with the MCAT, used to gain access to medical 

education, and all steps of the USMLE required to graduate from medical school, 

complete residency training, and become fully licensed to practice medicine.  Much of 

the research literature in this area has been situated as predictive validity studies, 

investigating the degree a standardized exam score can predict future outcomes such as 
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preclinical course grades or USMLE step outcomes.  Step 1 of the USMLE is often 

thought to be one of the most important milestones along the continuum because failure 

could lead to dismissal from medical school (Gullo et al., 2015) or elimination from the 

residency matching program (National Resident Matching Program, 2016).  Step 1 has 

also been the focus of many predictive validity studies, investigating the relationship of 

Step 1 outcomes to future medical student clinical performance (see Burish, Fredericks, 

Engstrom, Tateo, & Josephson, 2015; Nagasawa et al., 2017 as examples) and the factors 

which best predict Step 1 outcomes, the focus of the present study.  Next will be a review 

of the factors that have been associated with Step 1 outcomes in prior research as support 

for the predictor variables used in this study, position the current study in the education 

research literature, and to identify past methodology issues that contribute to the 

approach of the current study.  

MCAT and UGPA are commonly used together by admissions committees to 

review applicants; however, each indicates cognitive ability from a different perspective 

(Julian, 2005).  The MCAT is a point in time assessment of academic preparation for 

medical school.  Applicants can prepare for, and may take the MCAT multiple times, and 

be ranked according to scores.  UGPA is more school specific and a “longitudinal, 

continuous measure that may reflect other desired attributes, such as persistence, stamina, 

determination, conscientiousness, and so on” (Stratton & Elam, 2014, p. 5).  As such, 

applicants cannot be compared according to UGPA due to differences in undergraduate 

school selectivity or premedical curricula but considered in tandem with MCAT scores as 

a “leveling factor” (Gauer et al., 2016, p. 1) and part of the holistic review process to 

assess the contribution of cognitive ability to the qualities needed to become a capable 
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physician (Capers et al., 2018).  The use of MCAT and UGPA in admission decisions 

notwithstanding, researchers have been interested in the ability of each to predict future 

academic success, specifically Step 1. 

Early investigations into the ability of UGPA and MCAT to predict Step 1 

outcomes were focused on their predictive validity (Jones & Thomae-Forgues, 1984; 

Wiley & Koenig, 1996; Julian, 2005).  These studies produced correlation coefficients 

indicating the strength of this relationship using UGPA and MCAT alone, then together, 

to reinforce the use of MCAT scores as a sole indicator of Step 1 outcomes.  Table 1 

compares the coefficients from these investigations indicating a weak to moderate 

relationship of UGPA to Step 1.  MCAT when used alone has a moderate to strong 

relationship to Step 1.  UGPA and MCAT combined also have a moderate to strong 

relationship to Step 1, adding little value to MCAT alone.   

Table 1 

Comparison of Correlation Coefficients of MCAT Scores and UGPA to Step 1 Outcomes 

Measure 
Jones & Thomae-
Forgues (1984) 

Wiley & 
Koenig (1996) Julian (2005) 

UGPA 0.37 0.48 0.49 
MCAT 0.63 0.72 0.72 
UGPA & MCAT 0.68 0.75 0.72 
Medical schools in sample 30 16 14 

 

Predictive validity findings from Jones and Thomae-Forgues (1984) and from 

Wiley and Koenig (1996) show the MCAT to be a better predictor of Step 1 scores than 

UGPA, with a slight increase in the correlation coefficients when using MCAT and 

UGPA together.  Julian (2005) also found the MCAT to be a better predictor of Step 1 

scores than UGPA alone but did not find an improvement in the correlation coefficients 

when considering MCAT and UGPA together.  These investigations are representative of 
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MCAT validity research spanning 20 years; however, recent investigations show weaker 

relationships to Step 1 outcomes, adding curricular variables as a way to increase the 

variance explanation of Step 1 outcomes (see Table 2).  The current study does not 

challenge the predictive validity of MCAT or UGPA but will use both as predictor 

variables due to the role they play in the admissions process (Capers et al., 2018). 

Gender, age, and race have been found to be associated with Step 1 outcomes but 

are not used for acceptance decisions.  Generally speaking, white males under 25 score 

better on Step 1 (Kleshinski et al., 2009; Andriole & Jeffe, 2010; Gauer & Jackson, 

2018).  Kleshinski et al. (2009) found age to be inversely related to Step 1 scores 

(standardized beta = - 0.10, p < 0.009).  Nontraditional students, over 25 years old, had 

mean scores almost 7 points lower than students 25 years old or younger.  Race was 

positively related to Step 1 scores, with whites scoring higher than all other races in their 

sample combined.  Black medical students have been found to score significantly lower 

than other races on Step 1 (Kleshinski et al., 2009).  Sesate et al. (2017) found medical 

students classified as underrepresented in medicine (URM) by their race to have lower 

Step 1 scores compared to other students (r = - 0.32, p < 0.01).  URM is defined as 

students who are Black, Mexican-American, Native American, or from mainland Puerto 

Rico (“Underrepresented,” 2018).  Andriole and Jeffe (2010) found almost half of the 

URM students in their study failed Step 1 on their first attempt.  The present study does 

not challenge the relationship of gender, age, and race to Step 1 outcomes, but includes 

them as predictor variables. 

Recent investigations into the factors associated with Step 1 outcomes report 

MCAT correlation coefficients lower than earlier predictive validity research concluding 
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it is no longer possible to identify students who risk failing medical licensure 

examinations at matriculation but require preclinical course outcomes to improve 

prediction models (Barber, Hammond, Gula, Tithecott, & Chahine, 2018).  Using 

preclinical course outcomes to improve correlation coefficients is not unexpected because 

Step 1 tests the basic sciences necessary to study medicine, and also the basis of a typical 

medical school preclinical curriculum (Saguil et al., 2015).  To be effective, predictive 

models using curricular variables should identify how early at-risk students can be 

identified in the preclinical curriculum to give students enough time for intervention 

programs to be effective (Winston et al., 2014). 

 Findings from five recent Step 1 outcome prediction studies are summarized in 

Table 2, indicating the improvement in correlation coefficients from using the MCAT 

alone or including preclinical course outcomes in prediction models.  MCAT correlation 

coefficients for these studies are lower than previously reported; however, prior reports 

include outcomes from multiple medical schools (see Table 1) prior to implementing 

holistic review in the admissions process. While not directly comparable to prior validity 

studies because of holistic review, outcomes referenced in Table 2 indicate an 

improvement in the correlation coefficients when preclinical course outcomes were used 

but differ in the measurement period found to best identify at-risk students.   

Table 2 

Effect of Curricular Variables on Step 1 Correlation Coefficients 
Author MCAT Curricular Variables Measurement Period 
Saguil et al. (2015) 0.34 0.73 End of year 2 
Giordano et al. (2016) 0.18 0.71 End of year 1 
Khalil et al. (2017) 0.44 0.70 End of year 1 
Lee et al. (2017) 0.26 0.55 End of first course 
Sesate et al. (2017) 0.51 0.76 End of year 1 
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Note. Each of the referenced studies used students from one medical school in the 
sample. 
 

Using the preclinical GPA measured at the end of the second year, Saguil et al. 

(2015) improved the variance explained by MCAT alone from 12% to 53%.  Similarly, 

Giordano et al. (2016) used scores from a standardized examination given prior to Step 1 

to explain 50% of the variance of Step 1 scores, an improvement of 3% using the MCAT 

alone.  Khalil et al. (2017) used a standardized exam given at the end of the first and 

second years to explain 49% and 66% of the variance of Step 1 scores, an improvement 

over 19% using the MCAT alone.  Lee et al. (2017) used the first preclinical course final 

grade to explain 30% of the Step 1 variance, an improvement over the MCAT alone at 

7%.  Finally, Sesate et al. (2017) used the end of year grade point averages for the first 

and second year to explain 58% and 69% of Step 1 variances, and improvement over 

using the MCAT alone at 26% explanation of variance.  The current study does not 

challenge the importance of preclinical course outcomes to identify students at-risk of 

Step 1 failure but underscores the claim of Barber et al. (2018) that prediction of Step 1 

outcomes cannot be made prior to matriculation.  

It is common for medical schools to integrate Step 1 practice examinations into 

the preclinical curriculum.  The NBME Comprehensive Basic Science Examination 

(CBSE) is a common practice examination used for students to determine where 

additional study time is needed prior to taking Step 1.  The CBSE has been found to be 

significantly correlated with Step 1 outcomes (Giordano, Hutchinson, & Peppler, 2016), 

and when combined with preclinical course outcomes can explain up to 81% of the 

variance in Step 1 scores (Khalil et al., 2017).   
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 Both preadmission variables and preclinical course outcomes have been found to 

be associated with Step 1 outcomes.  Admission policies relative to minimally acceptable 

UGPA and MCAT scores influenced early predictive validity research, as noted in Table 

1, and the ability to easily identify at-risk students.  However, now that applicants with 

lower MCAT scores are accepted into medical school, traditional measures of cognitive 

ability and future outcomes are no longer valid.  Medical school administrators must rely 

on preclinical course outcomes to identify students who are struggling. 

Related Student Outcome Research 

Many studies in higher education have employed a variety of machine learning 

techniques, moving away from inferential statistics, to predict student attrition.  For 

example, Herzog (2006) investigated the use of different machine learning techniques to 

identify freshman students who are unlikely to return for their sophomore year.  Using 

randomly selected first year student outcome data he found decision trees to outperform 

other techniques to identify at-risk students; however, decision trees marginally 

outperformed the logistic regression model. 

 Delen (2010) also sought to identify freshman students unlikely to return after 

their first year by testing the accuracy of various machine learning techniques.  He used 

the CRISP-DM data mining process model to guide the study, using cross-validation 

methods to independently test his models.  Delen found the imbalance between students 

returning and students not returning to be a problem in the accuracy of the techniques 

used, finding his models had high accuracy rates when identifying returning students, but 

low accuracy rates identifying at-risk students which was the focus of his investigation.  

He was able to improve the accuracy of his at-risk student predictions by randomly 
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selecting observations of students returning until the number of returning students 

equaled the number of students not returning.  The imbalance problem is a recurring 

theme for similar studies.  A detailed discussion of the CRISP-DM process model and 

imbalanced datasets can be found in the next chapter. 

Lauría, Baron, Devireddy, Sundararaju, and Jayaprakash (2012) similarly sought 

to improved student retention by using machine learning techniques to identify students 

unlikely to return.  Instead of using prediction accuracy to compare machine learning 

techniques, they used sensitivity and specificity rates to measure the ability of the model 

to correctly predict returning students and those not returning using true positive and true 

negative rates.  After resolving the imbalance problem which also existed in their dataset, 

they found decision trees to outperform logistic regression and a mechanism to identify 

at-risk students. 

Thammasiri, Delen, Meesad, and Kasap (2014) confirmed the need to have 

balanced datasets for machine learning when they sought to predict freshman student 

attrition at one university.  They noted that institutional data used to analyze and predict 

student attrition is inherently imbalanced, and prediction models created with the 

majority class of students returning could produce erroneous results, especially when the 

interest is in the students who did not return.  Using an oversampling technique to 

replicate the observations of students not returning until the number matched the students 

returning, they were able to achieve higher prediction rates with the Support Vector 

Machine (SVM) machine learning technique, which also outperformed logistic regression 

methods. 

A prediction model created by Hutt, Gardener, Kamentz, Duckworth, and 
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D’Mello (2018) was able to accurately predict four-year graduation rates for 71% of their 

sample using 41,359 applicants to bachelor’s degree programs provided in a national 

dataset using the Random Forests machine learning algorithm.  Their goal was to 

determine the factors associated with four-year graduation rates, and to determine if data 

mining methods might help them better understand the factors which contribute to 

college success.  They noted that although their model had a high accuracy rate, it only 

included data collected before matriculation; warning that prediction models should not 

be used to make admissions decisions.  Student attrition is not a prevalent problem in 

U.S. medical schools; however, determinants of student success as indicated in this study 

translate well to a medical school context.   

Prior studies have investigated factors which lead to Step 1 failure, using 

statistical models based on linear or logistic regression to indicate correlates of Step 1 

performance with varying degrees of success.  For example, using a combination of 

preadmission variables, such as gender, race, age, undergraduate institution selectivity, 

financial need, MCAT scores, and UGPA, the ability for these measures to explain 

variances in Step 1 outcomes ranged from 17% to 60% (Julian, 2005; Gohara et al., 2011; 

Gauer et al., 2016; Giordano et al., 2016; Lee et al., 2017). Similarly, curricular variables 

such as individual course grades, first and second year grade point averages, and results 

of Step 1 practice exams were only able to explain up to 60% of the variance in Step 1 

outcomes (Burns & Garrett, 2015; Sesate et al., 2017; Lee et al., 2016). Although prior 

research suggests factors associated with Step 1 outcomes, there is no way to identify 

individual student outcomes (Lee et al., 2017). Moreover, these factors do not explain 

why students entering medical school with higher MCAT scores fail Step 1 for no 
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apparent reason (Sesate et al., 2017), or why students entering with lower MCAT scores 

pass Step 1 (Monroe et al., 2013).  

Chapter Summary 

Prior research shows the importance of identifying at-risk medical students at all 

points along the learning continuum.  The MCAT plays a role in the admissions process 

but cannot be used as the sole variable to identify students who might struggle during 

their preclinical courses or risk failing Step 1.  Studies cited in this chapter show the 

importance of using the MCAT to initially identify students who might need assistance to 

succeed in medical school and how performance in preclinical courses might better signal 

Step 1 outcomes.  Additionally, these studies suggest the factors associated with Step 1, 

but there is no way to take this to a student level, looking for the outliers as identified by 

Lee et al. (2017).  Prediction models used in higher education to improve graduation rates 

show promise as a foundation for the framework in the current study.    
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Chapter 3 

Methodology 

 

Process Model 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) process 

model was used to guide the design, development, and implementation of this study.  

CRISP-DM was selected because the process model was designed to make data mining 

projects “less costly, more reliable, more repeatable, more manageable, and faster” 

(Wirth & Hipp, 2000, p. 30).  Additionally, it has been found to be more suitable for 

novice researchers (Kurgan & Musilek, 2006), and because of the repeatable processes 

more likely to be adopted by medical school administrators who desire to replicate this 

study in the future.  The six phases of the CRISP-DM process model are: (1) business 

understanding, (2) data understanding, and (3) data preparation, (4) modeling, (5) 

evaluation, and (6) deployment.  The phases are not meant to be prescriptive; but 

suggested tasks in each phase can be used based on the scope of the data mining project.  

Table 3 provides an overview of the CRISP-DM process model and the tasks completed 

in each phase for this study.  The first four phases form the foundation of the 

methodology used to complete this study, and are described in this chapter.  The 

evaluation phase is focused on a review of the results from the modeling phase and is 

described in the chapter four.  The deployment phase is described in chapter five as this 

phase is informed by conclusions drawn from the results of this study.  Actual model 

deployment was outside the scope of this study, but presented as recommendations for 

future deployment. 



 30 

This chapter is focused on the first four phases of the CRISP-DM process model 

and is organized as follows.  First, there is a brief description of the study setting, and the 

resources used in this study.  Next, there is a discussion of the tasks applicable for this 

study which were completed in the first four phases of the CRISP-DM process model.  

Finally, a chapter summary will summarize the completed phases and introduce the 

evaluation phase which is described in the next chapter.  

Table 3 

Overview of CRISP-DM Phases and Tasks 
CRISP-DM Phase Tasks 
1. Business Understanding Determine business objectives and data mining goals 

Risk and contingency planning  
Establish success criteria 
Plan remaining phases 

2. Data Understanding Collect initial data 
Explore data 
Verify data quality 

3. Data Preparation Establish data sampling plan 
Establish data inclusion and exclusion plans 
Derive attributes needed to complete modeling 
Generate final dataset 

4. Modeling Select modeling technique 
Generate test design 
Build model 
Assess model accuracy 

5. Evaluation Evaluate model results in terms of business objectives and 
data mining goals 
Review overall process 
Determine next steps 

6. Deployment Plan deployment 
Produce final report 

Note.  Adapted from Wirth and Hipp (2000) and Kurgan and Musilek (2006) 
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Study Setting 

Initial approval for this study was granted by the Dean of the School of Medicine 

at Baylor College of Medicine (BCM) and the Provost.  This study was completed using 

non-identifying student demographic and academic achievement data provided during the 

admissions process, final grades from each course taken in the preclinical years, and pass 

or fail results from preparatory and licensure examinations.  A Category 1 exemption for 

student consent to participate in this study was granted by the Institutional Review 

Boards at BCM and Nova Southeastern University under 45 CFR 46.101(b).  A dataset of 

514 students matriculating from 2013 to 2015 was provided by the BCM Office of 

Information Technology.  IBM SPSS Modeler version 18.1.1 was used to complete the 

majority of the CRISP-DM phases. 

The U.S. News & World Report ranks the BCM School of Medicine as the top 

medical school in Texas, 5th in the nation in terms of medical students entering primary 

care, and 16th in terms of research grant funding (“Baylor makes leap,” 2018).  Males 

and females are equally represented in the 736 full time medical students.  Fifteen percent 

of the students are classified as being underrepresented in medicine according to self-

reported ethnicities.  For the 2017 academic year, BCM received 7,620 applications, 

interviewed 829 applicants, and admitted 185 students.  Admitted students had an 

average UGPA of 3.88 and average MCAT scores of 35 for the old MCAT version and 

517 for the 2015 revision of the MCAT (“Admissions,” n.d.).  Medical students 

consistently perform above the national average for USMLE Step 1 pass rates (“Record 

of success,” n.d.).   

Twenty-five courses make up the preclinical, or foundational sciences curriculum.  
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BCM is one of the few U.S. medical schools with compressed preclinical courses 

timelines reduced from two years to 18 months.  Other schools are beginning to more 

toward this format as it gives an opportunity for medical students to begin their clinical 

rotations early.  Table 4 shows the BCM preclinical curriculum divided into six blocks of 

courses.  In addition to the preclinical curriculum BCM uses the Comprehensive Basic 

Sciences Examination as a way for students to assess their readiness to take Step 1.   

Table 4 

Preclinical Courses at Baylor College of Medicine 
Block Course Name 
1 Foundations Basic to Science of Medicine 

Patient, Physician & Society I 
Integrated Problem Solving I 

2 Immunologic & Pathologic Basis of Disease 
General Pharmacology 
Head and Neck Anatomy 

3 Nervous System 
4 Infectious Disease 

Behavioral Sciences 
5 Patient, Physician & Society II 

Integrated Problem Solving II 
Ethics 

6 Cardiology 
Renal 
Respiratory 
Hematology/Oncology 
Intro to Radiology & Lab Medicine 
Gastroenterology 
Endocrinology 
Genitourinary & Gynecology 
Genetics 
Age Related Topics 
Patient, Physician & Society III 
Patient Safety 
Transition to Clinical Rotations 

 



 33 

Phase 1: Business Understanding 

The purpose of the business understanding phase is to establish a foundation of 

business objectives, translating the objectives to a data mining problem, then developing 

a plan to achieve the business requirements (Wirth & Hipp, 2000).  Three tasks were 

completed for this phase: (1) developed business objectives and data mining goals, (2) 

completed a risk assessment and a mitigation plan, and (3) established success criteria for 

this study.  Research questions stated in chapter 1 were translated to business objectives 

and data mining goals, used to inform the experimental design used in future phases.  A 

linkage between research questions, business objectives, and data mining goals ensured 

each research question was answered and could be evaluated in terms of completeness.  

Three data mining goals were created: (1) use common classification data mining 

algorithms to determine the variables associated with Step 1 failures, (2) use 

preadmission variables and courses grades as to determine the first point during the 

preclinical curriculum which bests identifies at-risk students, and (3) use common 

sampling methods to determine the method which improves the ability to identify at-risk 

students. Table 5 shows the linkage between research questions for this study, business 

objectives, and data mining goals. 
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Table 5 

Business Objectives and Data Mining Goals 
Research Question Business Objective Data Mining Goal 
What are the factors associated 
with Step 1 failures? 
 

Determine the factors 
associated with Step 1 
failures using student 
outcomes from the Baylor 
College of Medicine 
Student Information 
System. 

Use common 
classification data mining 
algorithms, determine the 
features associated with 
Step 1 failures. 

Can data mining algorithms be 
used to identify students at risk 
of Step 1 failure? 
 

Create a framework for 
continued use at BCM and 
possible in other medical 
schools to identify students 
at risk of Step 1 failure. 

Using preadmission 
variables and courses 
grades as features in the 
dataset, determine the first 
point during the 
preclinical curriculum 
which bests identifies at-
risk students. 

How does the expected 
imbalance between students 
passing Step 1 and those 
failing Step 1 impact the use of 
data mining algorithms to 
identify students at risk of Step 
1 failure?  

Determine the best 
approach to address the 
expected Step 1 outcome 
imbalance problem. 

Using common sampling 
methods, determine the 
method which improves 
the ability to identify at-
risk students. 

 
A risk assessment and a plan to mitigate risk were completed in this phase.  

Assessing risk at the beginning of the study allowed for alterations in the experimental 

design as needed to implement the mitigation plan.  A data mining algorithm uses prior 

observations to learn the variables, or features, of the dataset which best accurately 

predict the outcome variable.  Step 1 outcomes, specifically focused on failure, was the 

outcome variable used in this study; however, this highlighted a problem often found in 

binary classification models when predicting class outcomes, which is the imbalance 

between positive and negative outcomes (Branco, Torgo, & Ribeiro, 2016).  Many binary 

classification models are unable to recognize and accurately predict the minority class, 
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thus special consideration should be made for this imbalance in terms of algorithm 

performance metrics and techniques to overcome the imbalance (Abeysinghe et al., 

2018).  An example of the imbalance between majority and minority classes can be found 

in the national pass rate for first-attempt Step 1 examinees, which is currently 96% 

(“USMLE Performance Data,” 2017).  Moreover, BCM students consistently outperform 

national averages; therefore, using BCM student data reduces the number of Step 1 

failure observations below the 4% national average, underscoring the assertion of 

Kleshinski et al. (2009) that prediction of Step 1 outcomes due to this imbalance between 

positive and negative class outcomes continues to be problematic.  Because datasets used 

to train prediction models should contain a sufficient number of observations, and there 

should be a balance of observations between Step 1 pass and failures (Ilin & Krisvtsov, 

2015), the imbalance inherent in Step 1 outcomes was addressed in the risk mitigation 

plan as this impacted the ability to accurately determine the criteria for success and is a 

risk for the present study.  The data sampling plan described in upcoming data 

preparation phase specifically addresses the Step 1 imbalance and is used to mitigate the 

risk described here. 

Establishing criteria for success determined the performance metrics collected 

during the modeling phase, which were critical for the evaluation phase and assessment 

of the data mining goals, business objectives, and research questions.  Because more 

importance was placed on the minority class of Step 1 outcomes (Step 1 failures), and 

minority class observations were expected to be at most 4% of the BCM dataset, 

algorithm accuracy is not suitable as a performance metric used to evaluate model 

success (Branco et al., 2016; Wei et al., 2017).  Instead, models were evaluated based on 
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precision, recall, and the F-measure.  Precision, also called the positive predictive value, 

is a measure of the model ability to predict the positive condition (Branco et al., 2016), 

failed Step 1 outcomes.  Recall, also called the true positive rate, measures the strength of 

the model to predict the positive condition (Chauhan, Kaur, & Sharma, 2016), failed Step 

1 outcomes.  The F-measure (hereafter called F1) is the harmonic mean between recall 

and precision and has been found to be more useful than accuracy for model evaluation, 

especially when there is a class imbalance (Branco et al., 2016).  F1 measures the 

effectiveness of the model to predict Step 1 failed outcomes.   

 
 Predicted Outcomes 

Actual Outcomes Step 1 Failure Step 1 Passing 

Step 1 Failure 
 Predicted failure for 
students who actually 
failed (True Positives) 

 Predicted passing for 
students who actually failed 

(False Positives) 

Step 1 Passing 
Predicted failure for 

students who actually 
passed (False Negatives) 

Predicted passing for students 
who actually passed (True 

Negatives) 
Figure 1.  Confusion matrix of Step 1 passing and failing outcomes  
Adapted from Hastie et al. (2015) and Thammasiri et al. (2014). 
 

Calculating precision, recall, and F1 require a confusion or contingency matrix, a 

2x2 matrix often used to display model performance measures (Thammasiri et al., 2014).  

Figure 1 shows the confusion matrix adapted for this study and compares the actual 

positive and negative conditions with their predicted counterpart.  In terms of the positive 

and negative conditions for this study, true positives (TP) are the number of actual Step 1 

failed outcomes that are predicted to be failing.  True negatives (TN) are the number of 

actual Step 1 passing outcomes that are predicted to be passing.  False positives (FP) are 

the number of actual Step 1 failure outcomes predicted to be passing.  False negatives 
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(FN) are the number of actual Step 1 passing outcomes predicted to be failing.  Table 6 

shows these and additional metrics used to determine success are calculated using TP, 

FP, TN, and FN observations.  The upcoming evaluation phase, found in chapter four, 

will provide specific details on the use of these performance measures, and associated 

conclusions to be drawn from them. 

Table 6 

Model Performance Metrics 
Performance Measure Definition 
Positive Condition (P) Failed Step 1 outcomes 
Negative Condition (N) Passed Step 1 outcomes 
True Positives (TP) Number of actual failed outcomes predicted to be failed 
True Negatives (TN) Number of actual passed outcomes predicted to be passed 
False Positives (FP) Number of actual failed outcomes predicted to be passing 
False Negatives (FN) Number of actual passed outcomes predicted to be failed 
Accuracy Percentage of correctly predicted outcomes, calculated as  

TP + TN / TP + FN + TN + FP 
Precision Model ability to predict failed outcomes, calculated as 

TP / TP + FP 
Recall The strength of the model to predict failed outcomes, 

calculated as TP / TP + FN 
F1 The harmonic mean between precision and recall that 

measures model effectiveness 
Note.  Adapted from James et al. (2015) and Thammasiri et al. (2014) 
 

Phase 2: Data Understanding 

Collecting the initial dataset from the BCM student information system was the 

primary task completed during the data understand phase.  Additional tasks completed 

were: (1) a review of the dataset to better understand the elements included, (2) a 

description of the contents of the dataset, (3) and a data quality assessment (Wirth & 

Hipp, 2000).  Medical students who matriculated between 2013 and 2015 were included 
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in the initial dataset extracted from the BCM student information system.  These years 

were selected based on an AAMC recommendation to limit USMLE Step score 

comparisons to the three most recent calendar years, currently 2015 to 2017, because 

Step examination content changes over time.  Since the Step 1 examination is usually 

taken at the end of the second year of medical school and at the conclusion of the 

preclinical curriculum, matriculation dates between 2013 and 2015 were selected. 

Table 7 

Fields Requested from the BCM Student Information System 
Field Description 
Matriculation Date Date the student entered medical school 
Gender Gender reported during the application process 
Age at Matriculation Age in years calculated by Matriculation Date less 

Birth Date 
Under Represented in 
Medicine (URM) 

Applicants with the following self-reported races and 
ethnicities are considered URM:  Black or African 
American, Hispanic/Latino, American Indian or 
Alaskan Native, Native Hawaiian or Pacific Islander. 

Current and prior MCAT 
total score, and scores on 
each of the four subtests. 

Total and subtest scores from all attempts 

Total undergraduate grade 
point average, and science 
grade point average 

Undergraduate grade point averages reported during the 
application process, and grade point averages from 
science courses only 

Preclinical final course 
grades  

Grades from all attempts of courses in the foundational 
sciences curriculum 

Current and prior scores and 
outcomes from the 
Comprehensive Basic 
Science Examination 

Scores and pass/fail outcomes from all attempts of the 
national standardized exam required by Baylor College 
of Medicine before taking Step 1 

Current and prior USMLE 
Step 1 scores and outcomes 

Score and pass/fail outcome from all attempts 

 

Table 7 lists the data elements provided in the initial data set which included non-

identifying student demographic and academic achievement data provided during the 
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admissions process, final grades from each course taken in the preclinical years, 

Comprehensive Basic Science Examination (CBSE) score, Step 1 score, and a Step 1 

status indicating pass or fail. The CBSE is a national examination considered to be a 

readiness assessment for the Step 1 examination and is required for all BCM medical 

students.  Scores from all attempts of the MCAT, CBSE, and USMLE Step 1 were 

included in the dataset.  

A new version of the MCAT was offered beginning in 2015; however, BCM 

accepted MCAT scores from the prior version.  Some of the 2015 matriculants also took 

the revised MCAT hoping to improve their scores.  The BCM admissions committee 

considers scores from all MCAT attempts, using the last attempt to make acceptance 

decisions.  For this study, only the first attempt was considered as the predictive ability of 

the MCAT decreases with multiple attempts (Dunleavy et al., 2013).  All students 

matriculating in 2015 who subsequently took the Step 1 exam initially took the prior 

version of the MCAT.  The MCAT total score and scores from each of the three MCAT 

subtests were also included in the initial dataset.  Two of the subtests are science-based, 

one focused on biological sciences (BS), the other on physical sciences (PS).  The last 

subtest is verbal reasoning (VR) requiring rapid comprehension and application of topics 

new to examinees. 

A data quality analysis completed in SPSS Modeler revealed the following issues.  

Out of a total of 548 students matriculating between 2013 and 2015, 6% of the students 

did not have MCAT scores, 6% did not have Step 1 scores, and roughly 2% of the 

students did not have final course grades in all 23 preclinical courses.  Missing MCAT 

scores are attributed to student entering the medical school as part of an early acceptance 
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program, with the MCAT being optional.  Missing course and Step 1 scores are likely 

from students who left BCM at some point during the preclinical portion of their medical 

training due to personal or academic reasons.  SPSS Modeler has a mechanism which can 

impute missing values in the dataset; however, since the missing values represented a 

small percentage of the overall dataset, the observations were deleted. 

One of the noted deficiencies in prior research is the lower percentage of medical 

students who fail Step 1, which was observed in the BCM student data and identified as a 

risk in the business understanding phase.  All BCM students matriculating in 2013 and 

2014 passed Step 1 on the first attempt.  Only two students matriculating in 2015 failed 

Step 1 on the first attempt.  Using the recommendation made by Hu et al. (2016), students 

who passed Step 1 with a score within one standard deviation of the passing score were 

considered near failure as a way to increase the sample used for Step 1 outcome research.  

For this study the near failure students were considered failure for a new derived binary 

categorical variable representing Step 1 outcomes.  Methods used to overcome this 

deficiency will be describe in the next phase and included in the final dataset. 

 Distribution of Step 1 outcomes across key variables such as UGPA and MCAT 

score validated the impact of holistic review for medical students matriculating between 

years 2013 and 2015 at BCM.  Figure 2 shows the distribution of Step 1 outcomes across 

UGPA, which confirms the claim of Monroe et al. (2013) that students entering medical 

school with higher UGPA are just as likely to fail Step 1 as students with lower UGPA.  

Out of the 100 students with UGPA between 3.9 and 4.0, two students have Step 1 scores 

in the adjusted failure range within one standard deviation of the passing score.  There are 
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also three students with UGPA below 3.4, clearly at the bottom of the UGPA range, yet 

they passed Step 1. 

The distribution of Step 1 outcomes across MCAT scores is show in Figure 3.  

MCAT scores for BCM students matriculating between 2013 and 2013 are skewed 

toward the higher end of the score range; however, there are students with Step 1 scores 

in the adjust failure range who might have been predicted to pass based on MCAT scores 

alone.  This also confirms the holistic review claim by Monroe et al. (2013) that student 

outcomes cannot be predicted by MCAT score alone as students with higher scores are 

just as likely to fail Step 1 as those with lower scores.  Additionally, there are three 

students with MCAT scores below 25 who passed Step 1. 

 

 
Figure 2.  Distribution of Step 1 outcomes across UGPA at BCM for 2013-2015 
matriculation years. 
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Figure 3.  Distribution of Step 1 outcomes across MCAT scores at BCM for 2013-2015 
matriculation years. 
 

Phase 3: Data Preparation 

 The purpose of the data preparation phase is to generate final datasets used in the 

modeling phase, plus all associated tasks necessary to complete this phase (Wirth & 

Hipp, 2000).  This phase consumed approximately 50% of the time needed to complete 

the study, as predicted by Kurgan and Musilek (2006).  Four tasks were completed during 

this phase: (1) addressed data quality issues in the initial dataset from the BCM student 

information system, (2) created the new Step 1 derived outcome variable, (3) created the 

data sampling plan, and (4) generated the datasets to be used in the modeling phase. 

The plan to exclude rows in the dataset reviewed during the prior phase is a result 

of the data quality audit performed in that phase.  Before final datasets were created, all 

rows missing MCAT or Step 1 scores were removed.  Additionally, rows with students 

who did not complete all courses were excluded from the final dataset.  Due to the 

imbalance between Step 1 passing and failure observations it was necessary to balance 

the dataset so the percentage of students who failed Step 1 roughly equals the number of 

students who passed Step 1.  The data sampling plan described next is a result of the risk 

assessment and mitigation plan completed in a prior phase. 
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 One important task completed during this phase was completion of the data 

sampling plan.  For many data mining studies, the sampling plan requires a plan for 

creating training, testing, and validation datasets.  K-fold cross validation is a common 

method used to create these datasets by randomly selecting observations from the larger 

dataset to form k datasets, or folds, of equal size (Arlot & Celisse, 2010).  This study used 

a modification of K-fold using the year of matriculation as the field to separate the folds.  

This modification was implemented to ensure observations from the minority class (Step 

1 failures) were included in each of the three datasets.  Additionally, when implemented 

in a medical school once the models are trained and tested, new datasets will be 

processed through the models by year of matriculation.  For these reasons, three folds 

were used for this study:  matriculation year 2013 for training, 2014 for testing, and 2015 

for validation. 

Special consideration for the imbalance between majority and minority groups of 

Step 1 outcomes was made based on the recommendation of Abeysinghe and colleagues 

(2018) and incorporated in the sampling plan.  Three options were considered when 

developing the data sampling plan: random under-sampling (RUS), random over-

sampling (ROS), and synthetic minority over-sampling technique (SMOTE).  For RUS, 

random observances are removed from the majority class until the number of 

observations in both classes are approximately equal.  The application of RUS in this 

study required random observations of passing Step 1 outcomes removed until the 

number of observations of passing outcomes equals the number of failing outcomes.  In 

ROS, random observances in the minority class are selected and duplicated until both 

classes are about equal.  As an example of application of ROS in this study, in a dataset 
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with 100 observations of passing Step 1 outcomes and 10 observations of failing Step 1 

outcomes, a ROS plan would randomly select and duplicate of the failing rows until the 

number of failing observations equals 100.  SMOTE requires the addition of synthetic 

minority class observations which are similar to other minority observations, but not 

exact duplicates, until both classes are approximately equal in observations (Chawla, 

Bowyer, Hall, & Kegelmeyer, 2002; Branco et al., 2016).  This ensures observations with 

failed Step 1 outcomes are built with synthetic data which closely represents real data, 

rather than exact duplicates.   

The second task completed was the creation of the derived Step 1 outcome 

variable based on a recalculated passing score.  This was done as a way to increase the 

number of Step 1 failure observations based on the suggestions of Hu et al. (2016).  Hu 

and colleagues suggested considering students who passed Step 1, but within one 

standard deviation of the passing score could be considered near failure for predictive 

modeling purposes.  Table 8 indicates how students were classified according to Step 1 

scores by matriculating year.  Adding one standard deviation to the passing score of 192 

provided a new derived passing score.  Students with actual Step 1 scores below the 

derived passing score were recategorized with failing outcomes.  This calculation was 

performed in IBM SPSS Modeler before the final dataset was created.  Table 9 shows the 

effect of the new derived Step 1 outcome on the number of failed observations, 

increasing the number of failed observations from 2 to 20, representing a 96% passing 

rate which is consistent with the national average. 
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Table 8 

USMLE Step 1 Passing Scores, Mean, and Standard Deviation by Year 

Matriculation 
Year 

Step 1 
Year 

Passing 
Score Mean 

Standard 
Deviation 

Actual 
Failed 
Scores 

Derived 
Failed 
Scores 

2013 2015 192 229 20 < 192 < 213 
2014 2016 192 228 21 < 192 < 214 
2015 2017 192 229 20 < 192 < 213 

Note. Adapted from USMLE Score Interpretation Guidelines, retrieved from 
http://www.usmle.org/pdfs/transcripts/USMLE_Step_Examination_Score_Interpretation_
Guidelines.pdf. 

 

Table 9 

Effects of the Adjusted Step 1 Outcomes by Matriculating Year 
Step 1 Outcome 2013 2014 2015 Total 
Original Step 1 Outcome     
Step 1 Pass 180 178 156 514 
Step 1 Fail 0 0 2 2 
Pass Rate 100% 100% 99% 100% 
     
Adjusted Step 1 Outcome     
Step 1 Pass 173 173 150 496 
Step 1 Fail 7 5 8 20 
Pass Rate 96% 97% 95% 96% 
Note. Step 1 outcomes were adjusted based on recommendations by Hu et al. (2016). 

 

To conclude this phase, six datasets were created based on the data sampling plan 

and the 3-fold validation plan based on year of matriculation.  Four datasets were created 

for model training using students matriculating in 2013; one unbalanced dataset and three 

balanced datasets using RUS, ROS, and SMOTE.  Year 2014 was used as the testing 

dataset and year 2015 for validation.  Only the training datasets were balanced so the 

model can be trained first, then tested and validated with previously unseen data.  As 

shown in Table 10, the all datasets contained preadmission variables, scores from the first 
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attempt of the MCAT, final course grades from all six blocks of the preclinical 

curriculum, score from the first attempt of the CBSE, and the derived Step 1 outcome 

variable. 

Table 10 

Variables Included in the Final Dataset 
Field Description 

Matriculation Year The year the student entered medical school, used to partition 
data into training, testing, and validation dataset.  Not included 
as a potential predictor variable for Step 1 outcomes. 

Gender Gender reported during the application process 

Age at Matriculation Age in years calculated by Matriculation Date less Birth Date 

Under Represented in 
Medicine (URM) 

Applicants with the following self-reported ethnicities are 
considered URM:  Black or African American, 
Hispanic/Latino, American Indian or Alaskan Native, Native 
Hawaiian or Pacific Islander. 

MCAT total score, and 
scores on each of the three 
subtests. 

Total and subtest scores from the first attempt of the MCAT. 
Pre-2015 scores were used for this study. 

Total undergraduate grade 
point average, and science 
grade point average 

Undergraduate grade point averages reported during the 
application process, and grade point averages from science 
courses only 

Preclinical final course 
grades  

Grades from the first attempts of courses in the preclinical 
sciences curriculum 

Comprehensive Basic 
Science Examination 
Outcome 

Scores and pass/fail outcomes from the first attempt of the 
national standardized exam required by Baylor College of 
Medicine before taking Step 1 

Derived USMLE Step 1 
outcomes 

Outcome derived from adjusting the passing score down one 
standard deviation. 

 

Phase 4: Modeling 

 The purpose of the modeling phase is to select and apply data mining algorithms, 

calibrating parameters within each of the algorithms to optimal values (Wirth & Hipp, 

2000).  Two tasks were completed during this phase: (1) generate the test design, and (2) 

build models according to the design.  All modeling tasks were performed using IBM 
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SPSS Modeler using default parameters throughout.  Although Wirth and Hipp 

recommend fine-tuning parameters to their optimal values, default parameters were used 

enable future replication of this study, or for ease of adoption in medical schools. 

 The Classification and Regression Tree (CART) classification algorithm was 

selected as the modeling method for this study.  CART is a type of classification tree 

used to predict a qualitative response, such as passing and failing, when using continuous 

data for predictor variables (Chen et al., 2017).  IBM SPSS Modeler has the ability to 

apply several classification algorithms, deciding which algorithm is best in terms of 

accuracy.  This feature was not used because accuracy is not a suitable performance 

measure when using imbalanced datasets.  Since this study is not focused on a 

comparison of several classification modeling techniques, only one algorithm was 

applied to each of the experiments, described next. 

 Eight experiments were included in the test design, as shown in Table 11.  Each 

experiment used the dataset created during the prior phase, using only predictor variables 

specified, so final grades from the six preclinical course blocks and the final CBSE 

outcome could be added in the order taken by BCM students.  A list of the most 

important variables used to create the prediction models, as determined by SPSS 

Modeler, will be created at the end of each experiment; however, the variables used in 

subsequent experiments will not be reduced to only include these variables.  Important 

variables identified in each experiment will be used to determine the factors related to 

Step 1 outcomes, one of the research questions for the current study.  Model performance 

metrics for each of the experiments are evaluated in the next phase to identify the point in 

the preclinical curriculum which best predicts Step 1 outcomes so appropriate 
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interventions can be used in an attempt to change the outcomes. 

Table 11 

Modeling Phase Experimental Design 
Experiment Predictor Variables 

1 Preadmissions Variables (9 Predictor Variables) 
2 Experiment 1 + 1st Block Course Grades (12 Predictor Variables) 

3 Experiment 2 + 2nd Block Course Grades (15 Predictor Variables) 

4 Experiment 3 + 3rd Block Course Grades (16 Predictor Variables) 

5 Experiment 4 + 4th Block Course Grades (18 Predictor Variables) 

6 Experiment 5 + 5th Block Course Grades (21 Predictor Variables) 

7 Experiment 6 + 6th Block Course Grades (34 Predictor Variables) 

8 Experiment 7 + CBSE Outcome (35 Predictor Variables) 
Note. Each experiment used matriculation year 2013 as the training dataset, 2014 as the 
testing dataset, and 2015 as the validation dataset. 

 

In addition to the stepwise approach for the use of variables, each experiment 

implemented the data sampling plan from the prior phase.  Models were trained 

according to the dataset was split according to the year of matriculation, allowing for 

cross-validation of all models.  For all experiments, matriculation year 2013 was used as 

the training dataset, year 2014 used as the testing dataset, and year 2015 was used as the 

validation dataset.  Testing and validation datasets are used to present the training model 

observations it has not previously seen to test the prediction accuracy of Step 1 outcomes.  

As shown in Table 9, there are Step 1 failed outcomes for each matriculation year after 

adjusting the passing score down one standard deviation.  RUS, ROS, and SMOTE was 

applied to the training dataset only. 

Modeling using IBM SPSS Modeler generally followed these steps.  The dataset 

produced in the prior phase was used for input, specifying only the fields needed during 
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the experiment.  Three datasets were used for training, testing, and validation of each 

model, split by year of matriculation.  Using 2014 and 2015 matriculating years allowed 

for testing and validation of trained models with unseen data, reducing the chances of 

overfitting each of the models. Performance metrics were documented for each of the 

experiments, used during the upcoming evaluation phase.   

Chapter Summary 

This chapter provided details about the methods used to complete the eight 

experiments described in phases 1 through 4 of the CRISP-DM process model.  Each 

phase contributed to the to the methodology used to complete this study.  Data mining 

goals were established, informed by the research questions for this study.  A data quality 

audit confirmed the imbalance of classes of Step 1 outcomes.  The data sampling plan 

provided methods to address the imbalance between Step 1 passing and failing outcomes.  

Models were trained, tested, and validated to follow medical student progress during the 

preclinical years of training.  Performance metrics were gathered for each of the 

experiments.  Evaluation of the performance metrics as specified in the fifth phase of the 

process model is presented in the next chapter.  
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Chapter 4 

Results 

 

The previous chapter concluded with the completion of the modeling phase of the 

CRISP-DM process model, whereby eight experiments were conducted to predict Step 1 

outcomes starting with a dataset of preadmission variables, then adding preclinical course 

final grades for each course in the six blocks that make up the BCM preclinical 

curriculum, followed by results of the CBSE.  This chapter focuses on evaluation of the 

models as specified in the fifth phase of the CRISP-DM process model and is organized 

as follows.  Findings from each of the eight experiments are presented, comprised of the 

performance metrics for each of the eight experiments, a review of the outcomes for each 

data balancing plan, and a review of the fields identified in each experiment which best 

contribute to predicting Step 1 outcomes according to relative importance as determined 

by SPSS Modeler.   

All experiments followed this general approach.  A model was created for each 

experiment to represent the predictor variables available for students at matriculation and 

throughout the preclinical curriculum.  Each model was trained with the CART algorithm 

using the original unbalanced dataset for the 2013 matriculating year (n=170, 6 failed 

Step 1 observations).  The training dataset was then balanced using RUS (n=12, 50% 

failed Step 1 observations), ROS (n=328, 50% failed Step 1 observations), and SMOTE 

(n=328, 50% failed Step 1 observations) methods.  The model was then tested with a 

dataset containing medical students matriculating in 2014 (n=169, 5 failed Step 1 

observations) and validated with a dataset of medical students matriculating in 2015 
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(n=146, 8 failed Step 1 observations), both in their original unbalanced state.  Full details 

of the methodology used to create the datasets used for each experiment and the modeling 

approach were discussed in Chapter 3. 

Phase 5:  Evaluation 

The purpose of this phase is to evaluate modeling results in terms of the success 

criteria specified in the first phase.  Each experiment was evaluated as follows.  

Accuracy, precision, recall, and F1 performance metrics were calculated from 

contingency matrices for training, testing, and validation datasets, using only the 

validation results for model comparison.  Models were ranked according to F1, noting 

precision and recall for each model, which are used for further evaluation when models 

have identical or close F1.  For example, two models with F1 of 0.40 will be evaluated by 

precision first indicating the ability of the model to predict Step 1 failures, then recall to 

evaluate the strength of the model.   

Finally, top-ranking models from each experiment were reviewed to evaluate 

performance metric trends, using the same evaluation hierarchy for testing, training, and 

validation of models.  Because each experiment adds new predictor variables according 

to preclinical course progression for BCM students, the trend will identify the point in 

time in which predictor variables best signal Step 1 outcomes.  For example, if F1 peaks 

at 0.50 for experiment 4, then declines for remaining experiments, this suggests medical 

students at risk of Step 1 failure can best be identified by important predictor variables 

determined for this experiment.   

Baseline Results 

As shown in Table 12, baseline results were first calculated to determine 
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performance metrics under three scenarios: (1) all predictions match actual outcomes in 

the validation dataset, (2) all students were predicted to pass Step 1, and (3) all students 

were predicted to fail Step 1.  A model in which all predictions match actual outcomes 

will have 100% accuracy, and 1.0 precision and recall.  If all observations were predicted 

to pass, the resulting model would have 94.5% accuracy, but precision, recall, and F1 of 

0.0.  Similarly, if all observations were predicted to fail, the resulting model would have 

5.5% accuracy, precision of 1.0, recall of 0.05, and F1 of 0.10.  These results are unlikely 

but provide more of a what-if scenario in which to compare experiment results, and 

further illustrate why accuracy, precision, and recall alone cannot provide a full 

explanation of how well a model performs; however, it is expected that models will 

perform better than the all failure scenario in terms of F1.  Results of each experiment 

will be compared to baseline and to results of the other experiments. 

Table 12 

Baseline Model Performance Metrics 
Step 1 Outcomes TP TN FP FN Accuracy Precision Recall F1 
Actual Outcomes 8 138 0 0 100.0% 1.00 1.00 1.00 
All Passing 0 138 8 0 94.5% 0.00 0.00 0.00 
All Failures 8 0 0 138 5.5% 1.00 0.05 0.10 
 

Experiment 1 

The purpose of this experiment was to create a model to predict Step 1 outcomes 

using preadmission variables only, representing variables available to medical school 

administrators at matriculation.  Table 12 summarizes model performance metrics for the 

validation dataset using models trained with unbalanced and balanced datasets.  Testing, 

training, and validation performance metrics for this experiment can be found in 
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appendix A. 

 The model trained with the unbalanced dataset was not able to correctly predict 

any of the failed observations in the validation dataset yet was able to accurately predict 

94.5% of the passing outcomes.  The model trained using RUS was able to accurately 

predict six of the eight failed observations, with 0.75 precision, 0.10 recall, and F1 of 

0.17.  The model trained using ROS was able to accurately predict two of the eight Step 1 

failing observations, with 0.25 precision, 0.20 recall, and F1 of 0.22.  Finally, the model 

trained using SMOTE was able to accurately predict two of the eight failed observations, 

with 0.25 precision, 0.15 recall, and F1 of 0.19.  Using F1 to evaluate the effectiveness of 

each model, the ROS training dataset slightly outperformed the other balancing methods; 

but the RUS model accurately predicted the most failed Step 1 observations.   

Table 13 

Experiment 1 Model Performance Metrics by Balance Method   
Method TP TN FP FN Accuracy Precision Recall F1 
Unbalanced 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS 2 130 6 8 90.4% 0.25 0.20 0.22 
SMOTE 2 127 6 11 88.4% 0.25 0.15 0.19 
Note.  Results using 2015 matriculating year as the validation dataset (n=146, 8 failed 
Step 1 observations). RUS = Random Under Sampling, ROS = Random Over Sampling, 
SMOTE = Synthetic Minority Oversampling Technique, F1 = the harmonic mean of 
precision and recall representing model effectiveness. 
 

 SPSS Modeler reflects predictor importance as a relative measure compared to the 

other predictor variables, not a correlation coefficient to measure the strength of the 

relationship between the predictor variable and Step 1 outcomes.  Of the 9 predictor 

variables used in this experiment, the RUS balanced dataset determined UGPA as the 

most important with a relative importance of 0.69.  The decision tree for the RUS dataset 
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indicated students with a UGPA less 3.886 would fail Step 1.  The ROS balanced dataset 

determined VR and UGPA to be the most important predictor variables with a relative 

importance of 0.49 and 0.30 respectively.  VR as the most important predictor variable 

was not expected as this portion of the MCAT does not test for biological or physical 

science knowledge needed to pass Step 1.  The ROS decision tree indicates VR scores 

greater than 8.5 and UGPA greater than 3.725 will pass Step 1.  The SMOTE balanced 

dataset determined UGPA and VR to be equally important with a relative importance 

factor of 0.37.  The SMOTE decision tree indicates VR scores greater than 8.998 and 

UGPA greater than 3.787 will pass Step 1. 

 Based on F1, the ROS model outperforms the other balancing methods, and 

outperforms the baseline expectation of 0.10 F1.  Further comparisons and conclusions 

will be made as predictor variables are added.  Findings for the next experiments will be 

presented similar to this but will compare the performance metrics for the most effective 

model (as determined by F1) to conclude the point in the preclinical curriculum which 

best predicts medical students at risk of failing Step 1.  Subsequent experiments will 

begin to add final preclinical course grades in order of the blocks of courses taken by 

BCM students.  

Experiment 2 

In addition to the preadmission variables used in the prior experiment, training, 

testing, and validation datasets also contain final grades for the following courses:  

Foundations Basic to the Science of Medicine (FBS), Patient, Physician & Society – Part 

1 (PPS1), and Integrated Problem Solving – Part 1 (IPS1).  Table 13 summarizes model 

performance metrics for the validation dataset using models trained with unbalanced and 
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balanced datasets.  Testing, training, and validation performance metrics for this 

experiment can be found in appendix B. 

As found in experiment 1, the model trained with the unbalanced dataset was not 

able to correctly predict any of the failed observations in the validation dataset, yet was 

able to accurately predict 94.5% of the passing outcomes. The model trained using RUS 

was able to accurately predict six of the eight failed observations, with 0.75 precision, 

0.10 recall, and F1 of 0.17.  The model trained using ROS was able to accurately predict 

three of the eight Step 1 failed observations, with 0.38 precision, 0.75 recall, and F1 of 

0.50.  Finally, the model trained using SMOTE was able to accurately predict four of the 

eight failed observations, with 0.50 precision, 0.67 recall, and F1 of 0.57.     

Table 14 

Experiment 2 Modeling Results by Balance Method   
Method TP TN FP FN Accuracy Precision Recall F1 
Unbalanced 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS 3 137 5 1 95.9% 0.38 0.75 0.50 
SMOTE 4 136 4 2 95.9% 0.50 0.67 0.57 

Note.  Results using 2015 matriculating year as the validation dataset (n=146). RUS = 
Random Under Sampling, ROS = Random Over Sampling, SMOTE = Synthetic Minority 
Oversampling Technique, F=the harmonic mean of precision and recall representing 
model effectiveness. 
 

Of the twelve predictor variables used in this experiment, the RUS balanced 

dataset determined UGPA as the most important with a relative importance of 0.69.  The 

decision tree for the RUS dataset indicated students with a UGPA less 3.885 would fail 

Step 1.  The ROS balanced dataset determined the FBS final grade, VR, and UGPA to be 

the most important predictor variables with a relative importance of 0.37, 0.36, and 0.14 

respectively.  FBS as the most important predictor variable was expected based on prior 
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research finding an improvement in prediction models when curricular variables were 

added.  As in experiment 1, VR as an important predictor variable was not expected as 

the knowledge required for this portion of the MCAT does not match the content tested in 

Step 1.  The ROS decision tree indicates FBS grades above 85.350 will pass Step 1.  The 

SMOTE balanced dataset determined FBS to be the most important with a relative 

importance factor of 0.415.  The SMOTE decision tree indicates FBS grades greater than 

85.35 will pass Step 1. 

Table 15 

Top Model Performance Metrics for Experiments 1 and 2   
Experiment TP TN FP FN Accuracy Precision Recall F1 
1: ROS 2 130 6 8 90.4% 0.25 0.20 0.22 
2: SMOTE 4 136 4 2 95.9% 0.50 0.67 0.57 

Note. Results in this table are based on validation models from each experiment. 
 

Using F1 to evaluate the effectiveness of each model, the SMOTE training dataset 

outperformed the other balancing methods in the ability to predict both passing and 

failing Step 1 observations and exceeds baseline expectations.  A comparison of the top 

performing models in terms of F1 for the first two experiments is shown in Table 15.  

Comparing the top performing models in experiments 1 and 2, adding course grades for 

the first block of preclinical courses improved the effectiveness of the model.  Accuracy 

has also increased, but this metric is based on the correct number of passing Step 1 

observations in each experiment.  Based on the findings from this experiment, students at 

risk of failing Step 1 can be best predicted at the end of the first block of preclinical 

courses, using the final FBS grade as the predictor. 
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Experiment 3 

In addition to the preadmission variables and first block of preclinical courses 

used in the prior experiment, training, testing, and validation datasets also contain final 

grades for the following courses:  Immunologic and Pathologic Basis of Disease (IPD), 

General Pharmacology (PHR), and Head and Neck Anatomy (HNA).  Table 16 

summarizes model performance metrics for the validation dataset using models trained 

with unbalanced and balanced datasets.  Testing, training, and validation performance 

metrics for this experiment can be found in appendix C. 

Table 16 

Experiment 3 Modeling Results by Balance Method 
Method TP TN FP FN Accuracy Precision Recall F1 
Unbalanced 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS 3 136 5 2 95.2% 0.38 0.60 0.46 
SMOTE 8 123 0 15 89.7% 1.00 0.35 0.52 

Note.  Results using 2015 matriculating year as the validation dataset (n=146). RUS = 
Random Under Sampling, ROS = Random Over Sampling, SMOTE = Synthetic Minority 
Oversampling Technique, F1 = the harmonic mean of precision and recall representing 
model effectiveness. 
 

Similar to prior experiments, the model trained with the unbalanced dataset was 

not able to correctly predict any of the failed observations in the validation dataset, yet 

was able to accurately predict 94.5% of the passing outcomes. The model trained using 

RUS was able to accurately predict six of the eight failed observations, with 0.75 

precision, 0.10 recall, and F1 of 0.17, which is not an improvement from experiment 2.  

The model trained using ROS was able to accurately predict 3 of the eight Step 1 failed 

observations, with 0.38 precision, 0.60 recall, and F1 of 0.46, a slight decrease from 

experiment 2.  Finally, the model trained using SMOTE was able to accurately predict all 
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of the eight failed observations, with 1.00 precision, 0.35 recall, and F1 of 0.52, which is 

an improvement in the ability of the model to predict failed Step 1 outcomes, but a slight 

decrease in model strength and effectiveness.     

Of the 15 predictor variables used in this experiment, the RUS balanced dataset 

determined UGPA as the most important with a relative importance of 0.3381.  The 

decision tree for the RUS dataset indicated students with a UGPA less 3.885 would fail 

Step 1.  The ROS balanced dataset determined the IPD, added for this experiment, and 

PP1, new for this experiment, final grade to be the most important predictor variables 

with a relative importance of 0.59 and 0.24 respectively.  All preadmission variables used 

in the first experiment had a relative performance factor less than 0.05 for this 

experiment.  The ROS decision tree indicates students with a final grade less than 79.068 

will fail Step 1 unless they have a PP1 final course grade over 95.25.  The SMOTE 

balanced dataset determined IPD to be the most important predictor variable with a 

relative importance factor of 0.93.  The SMOTE decision tree indicates students with IPD 

final grades greater than 83.45 will pass Step 1. 

Table 17 

Top Model Performance Metrics for Experiments 1 – 3   
Experiment TP TN FP FN Accuracy Precision Recall F1 
1: ROS 2 130 6 8 90.4% 0.25 0.20 0.22 
2: SMOTE 4 136 4 2 95.9% 0.50 0.67 0.57 
3: SMOTE 8 123 0 15 89.7% 1.00 0.35 0.52 

Note. Results in this table are based on validation models from each experiment. 
 

All three oversampling techniques beat baseline expectations; however, the model 

trained with the SMOTE dataset outperformed the other methods in terms of F1.  As 

shown in Table 17, comparing the top performing models in the first 3 experiments 
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adding course grades for the first block of preclinical courses improved the effectiveness 

of the model, but slightly declined when the second block was added.  However, with the 

second block of preclinical courses added as predictor variables, the SMOTE model was 

able to predict all failed Step 1 outcomes.   

Experiment 4 & 5 

Results for experiments 4 and 5 were identical.  The Nervous System (NRS) 

course was added to experiment 4, and Infections Disease (IND) and Behavioral Sciences 

(BES) for experiment 5, building on to the input files used for prior experiments.  

Performance metrics for both experiments are summarized in Table 18.  Testing, training, 

and validation performance metrics for this experiment can be found in appendices D and 

E, separated due to slight variations in training and testing performance metrics, and 

relative performance ratings on important predictors and decision trees. 

Table 18 

Experiments 4 - 5 Modeling Results by Balance Method   
Method TP TN FP FN Accuracy Precision Recall F1 
Unbalanced 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE 1 132 7 6 91.1% 0.13 0.14 0.13 

Note.  Results using 2015 matriculating year as the validation dataset (n=146). RUS = 
Random Under Sampling, ROS = Random Over Sampling, SMOTE = Synthetic Minority 
Oversampling Technique, F1 = the harmonic mean of precision and recall representing 
model effectiveness. 
 

Consistent with prior experiments, the model trained with the unbalanced dataset 

was not able to correctly predict any of the failed observations in the validation dataset 

yet was able to accurately predict 94.5% of the passing outcomes. The model trained 

using RUS was able to accurately predict six of the eight failed observations, with 0.75 
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precision, 0.10 recall, and F1 of 0.17, which is not an improvement from experiment 3.  

The model trained using ROS was able to accurately predict 1 of the eight Step 1 failed 

observations, with 0.13 precision, 0.14 recall, and F1 of 0.13, a decrease from experiment 

3.  Finally, the model trained using SMOTE was able to accurately predict 1 of the eight 

failed observations, with 0.13 precision, 0.14 recall, and F1 of 0.13, also a decrease from 

the prior experiment.   

The RUS balanced dataset determined UGPA as the most important with a 

relative importance of 0.3381.  Preclinical courses added for these experiments did not 

affect predictor importance or the decision trees, as they were not selected as important 

variables.  The decision tree for the RUS dataset indicated students with a UGPA less 

3.886 would fail Step 1.  The ROS balanced dataset determined the NRS final grade, 

added in experiment 4, to be the most important predictor variables with a relative 

importance of 0.94.  The ROS decision tree indicates students with an NRS final grade 

less than 80.050 will fail Step 1.  The SMOTE balanced dataset also determined NRS to 

be the most important predictor variable with a relative importance factor of 0.96.  The 

SMOTE decision tree indicates students with an NRS final grade less than 80.050 will 

fail Step 1. 

All three oversampling methods continued to beat baseline expectations, but in 

terms of F1 the RUS model slightly outperformed the models and had the highest number 

of accurate Step 1 failed observations; however, the model did not find the variables 

added in either experiment to contribute to Step 1 predictions.  Both ROS and SMOTE 

found NRS to have the highest relative importance.  Table 19 shows performance metrics 

for the first 5 experiments.  Model effectiveness peaked with experiment 2 with a model 
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consisting of preadmission variables and final course grades for the first block of 

preclinical courses, dropping slightly when the second block of course grades were 

added, but improved precision.   

Table 19 

Top Model Performance Metrics for Experiments 1 – 5   
Experiment TP TN FP FN Accuracy Precision Recall F1 
1: ROS 2 130 6 8 90.4% 0.25 0.20 0.22 
2: SMOTE 4 136 4 2 95.9% 0.50 0.67 0.57 
3: SMOTE 8 123 0 15 89.7% 1.00 0.35 0.52 
4: RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
5: RUS 6 81 2 57 59.6% 0.75 0.10 0.17 

Note. Results in this table are based on validation models from each experiment. 
 
Experiment 6, 7 & 8 

Model performance metrics from experiments 6, 7, and 8 were identical and 

reported together.  For experiment 6, final grades from the block 5 preclinical courses, 

Integrated Problem Solving – Part 2 (IPS2), Patient, Physician & Society – Part 2 (PPS2), 

and Ethics (ETH), were added as predictor variables.  Final grades from the following 

block 5 courses were added as predictor variables for experiment 7:  Cardiology (CAR), 

Renal (RNL), Respiratory (RSP), Hematology/Oncology (HMO), Introduction to 

Radiology & Lab Medicine (RLM), Gastroenterology (GST), Endocrinology (END), 

Genitourinary/Gynecology (GUG), Genetics (GNT), Age Related Topics (ART), Patient, 

Physician & Society – Part 3 (PP3), Patient Safety (PSA), and Transition to Clinical 

Rotations (ITC).  The Comprehensive Basic Sciences Examination (CBSE) was added 

for experiment 8.  Performance measures for all three experiments were identical and 

shown in Table 20, but full testing, training, and validation performance metrics for both 
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experiments can be found in appendices F, G, and H, separated due to differences in 

predictor importance. 

 

Table 20 

Experiments 6 – 8 Modeling Results by Balance Method   
Method TP TN FP FN Accuracy Precision Recall F1 
Unbalanced 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE 1 136 7 2 93.8% 0.13 0.33 0.18 

Note.  Results using 2015 matriculating year as the validation dataset (n=146). RUS = 
Random Under Sampling, ROS = Random Over Sampling, SMOTE = Synthetic Minority 
Oversampling Technique, F1 = the harmonic mean of precision and recall representing 
model effectiveness. 

 

In each experiment the model trained with the unbalanced dataset was not able to 

correctly predict any of the failed observations in the validation dataset yet was able to 

accurately predict 94.5% of the passing outcomes.  The model trained using RUS was 

able to accurately predict six of the eight failed observations, with 0.75 precision, 0.10 

recall, and F1 of 0.17.  The model trained using ROS was able to accurately predict 1 of 

the eight Step 1 failed observations, with 0.13 precision, 0.14 recall, and F1 of 0.13.  

Finally, the model trained using SMOTE was able to accurately predict 1 of the eight 

failed observations, with 0.13 precision, 0.33 recall, and F1 of 0.18.   

Important predictor variables for this experiment are identical to experiments 4 

and 5, that is the RUS balanced dataset determined UGPA as the most important with a 

relative importance of 0.3381.  Preclinical courses added for these experiments did not 

affect predictor importance as they were not selected as important variables.  The 

decision tree for the RUS dataset indicated students with a UGPA less 3.886 would fail 
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Step 1.  The ROS balanced dataset determined the NRS final grade, from the third block 

of preclinical courses added in experiment 4, to be the most important predictor variables 

with a relative importance of 0.94.  The ROS decision tree indicates students with an 

NRS final grade less than 80.050 will fail Step 1.  The SMOTE balanced dataset also 

determined the third block NRS course to be the most important predictor variable with a 

relative importance factor of 0.96.  The SMOTE decision tree indicates students with an 

NRS final grade less than 80.050 will fail Step 1.  None of the predictor variables added 

for these experiments were ranked as important variables.  Comparing models on F1 

indicate the SMOTE model as the top performing model for experiments 6, 7, and 8. 

 

Table 21 

Top Model Performance Metrics for Experiments 1 – 8   
Experiment TP TN FP FN Accuracy Precision Recall F1 
1: ROS 2 130 6 8 90.4% 0.25 0.20 0.22 
2: SMOTE 4 136 4 2 95.9% 0.50 0.67 0.57 
3: SMOTE 8 123 0 15 89.7% 1.00 0.35 0.52 
4: RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
5: RUS 6 81 2 57 59.6% 0.75 0.10 0.17 
6: SMOTE 1 136 7 2 93.8% 0.13 0.33 0.18 
7: SMOTE 1 136 7 2 93.8% 0.13 0.33 0.18 
8: SMOTE 1 136 7 2 93.8% 0.13 0.33 0.18 
Note. Results in this table are based on validation models from each experiment. 
 
 
Chapter Summary 

A comparison of the top performing models for all experiments is shown in Table 

21.  Model effectiveness peaked with experiment 2 using a prediction model consisting of 

preadmission variables and final course grades for the first block of preclinical courses, 

dropping slightly when the second block of course grades were added, then a sharp drop 
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in model effectiveness for remaining experiments.  Findings from this study suggest that 

identifying students at risk of failing Step 1 can be predicted as early as the end of the 

first block of preclinical courses, with subsequent blocks of courses adding little value to 

prediction models.  The next chapter will summarize this study and present conclusions 

which can be drawn from all experiments.  Additionally, the last phase of the CRISP-DM 

process model, the deployment phase, will be discussed in terms recommendations for 

deployment informed by limitations identified for the current study and opportunities for 

additional research.   
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

The purpose of this chapter is to explore conclusions from findings presented in 

the previous chapter, and to establish the implications to BCM and to other U.S. medical 

schools.  This chapter is organized as follows.  First is a brief summary of the problem 

investigated in this study with a summary of conclusions presented in terms of the 

research questions stated in the first chapter.  Next is a discussion of the implications of 

this study to the medical student outcomes literature and implications to U.S. medical 

schools in admissions and promotions processes.  Recommendations for future research 

are then discussed, including recommendations based on limitations of the present study.  

Finally, a summary of this study concluding with the final deployment phase of the 

CRISP-DM process model. 

Conclusions 

Conclusions drawn from findings in the previous chapter are stated in terms of the 

three research questions which guided the design of this study.  The first question asked 

for the factors associated with Step 1 failures.  Important variables related to these 

failures were identified in each of the eight experiments; however, the most effective 

model based on the F1 measure should be used to answer this question.  The model with 

the highest F1 was from experiment 2 which contained preadmission variables and the 

first block of preclinical courses.  Full results for this experiment can be found in 

Appendix B.  The final course grade from the FBS course was determined to be the most 

important predictor variable with a factor of 0.4015, followed by Science UGPA with a 
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factor of 0.1845, scores from the verbal reasoning part of the MCAT with a factor of 

0.1769, age at matriculation with a factor of 0.1360, scores from the biological and 

physical sciences portion of the MCAT with factors of 0.0617 and 0.0144 respectively.  

MCAT total score, final course grade from the PP1 course in block 1, UGPA, and URM 

status each had factors of 0.0063.  The FBS final grade was expected and is consistent 

with prior research finding curricular variables to be better predictors of Step 1 outcomes 

than preadmission variables alone (Saguil et al., 2015; Giordano et al., 2016; Khalil et al., 

2017; Lee et al., 2017; Sesate et al., 2017), as also show in Table 2 from chapter 2.  FBS 

is also a significant milestone in the BCM preclinical curriculum as students learn the 

basic sciences which serve as foundations for the practice of medicine.  Therefore, it is 

not surprising that the Science UGPA was determined to be the second important variable 

from this experiment. 

This is an important finding in terms of predicting Step 1 outcomes at BCM as 

UGPA and MCAT scores were once used as indicators of medical students at risk of Step 

1 failure.  As shown in Figures 2 and 3, students with higher MCAT scores and UGPA 

are just as likely to fail Step 1.  Lee et al. (2017) described the elusiveness of prediction 

models which identified factors related to successful Step 1 outcomes, but also provided 

insight into individual student performance.  Through the use of data mining and 

predictive models, this study provided a framework to determine likely student outcomes, 

regardless of MCAT or UGPA at other U.S. medical schools, adjusted for each schools’ 

preclinical courses.  

The second research question asked if data mining algorithms can be used to 

identify medical students at risk of Step 1 failure.  This study employed the CART data 
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mining algorithm to build models using preadmission and curricular variables as 

predictor variables, and Step 1 pass or fail status as the outcome variable.  Predictor 

variables were introduced to the model in a stepwise fashion following medical student 

progression through the preclinical curriculum at BCM.  Three metrics were used to 

evaluate model performance:  precision, recall, and the F-measure.  Precision indicates 

the ability of models to accurately predict failed Step 1 outcomes.  Recall measures the 

strength of the models, and the F-measure is a harmonic mean between both indicating 

model effectiveness.  Model effectiveness was the strongest with models using 

preadmission and final course grades from the first block of preclinical courses, 

suggesting Step 1 outcomes can be predicted as early as the first term of the first year of 

medical training using data mining algorithms.  Therefore, yes, data mining algorithms 

can be used to identify students at risk of Step 1 failure. 

The last research question asked if the expected imbalance between students 

passing Step 1 and those failing Step 1 impacted the use of data mining algorithms to 

identify students at risk of Step 1 failure.  Because more medical students pass Step 1 

than fail (current national pass rate is 96%), special consideration was made to handle the 

imbalance when presenting datasets to train models.  Step 1 outcomes have been more 

difficult to predict in the past due the low number of failed observations expected at any 

U.S. medical school (Hu et al., 2016).  This was a challenge in the current study as BCM 

students traditionally performed better than national average on Step 1, which reduced 

the number of failed observations in data received from the student information system.  

Using the recommendation by Hu et al. (2017), BCM students who passed Step 1 within 

one standard deviation of the passing score were considered failed observations for this 
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study.  The adjusted Step 1 pass or fail status was derived during the data preparation 

phase of this study. 

Models in each experiment were trained using the original unbalanced dataset; but 

none were able to predict any of the Step 1 failures, confirming the assertion by 

Fernandez et al. (2018) that prediction models using binary outcome variables with an 

imbalance between the majority and minority classes must be balanced.  This study used 

one undersampling and two oversampling techniques for models to learn the factors 

associated with failing Step 1.  First, undersampling was used to randomly reduce the 

number of passing Step 1 observations until the training dataset contained an equal 

number of passing and failing observation.  The RUS approach is often criticized for the 

omission of valuable training observations, but the final result is a balanced training 

dataset.  For this study, undersampling outperformed other balancing methods for 25% of 

the experiments in terms of precision and F1.  Second, oversampling was used to 

replicate the failing observations until the number of failing observations equal the 

number of training observations.  Critics of the ROS approach believe duplication of 

failing observations does not give sufficient variation in failing observations in which the 

model can learn, resulting in overfitting of models.  For this study, this oversampling 

approach outperformed other balancing methods in 12.5% of the experiments.  And third, 

another form of oversampling was used to create synthetic examples of the failing 

observations which closely resemble original observations, until the number of passing 

and failing observations are equal.  The SMOTE approach is often considered the 

preferred sampling method when presented with imbalanced datasets (Fernández, Garcia, 

Herrera, & Chawla, 2018).  For this study, this oversampling approach outperformed 
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other balancing methods in 62.5% of the experiments.  In total, oversampling 

outperformed undersampling in 75% of the experiments. 

The imbalance between passing and failing Step 1 observations did not prevent 

the use of data mining algorithms to predict student Step 1 outcomes.  However, findings 

from each of the experiments show the necessity of oversampling as models trained with 

the original dataset were never able to identify actual Step 1 failure observations, yet 

these models had the highest accuracy rates in each of the experiments.  This underscores 

the need for additional model performance measures as accuracy rates in models trained 

with unbalanced datasets reflect prediction accuracy for the most observations. 

To summarize, USMLE Step 1 student outcomes can be predicted using data 

mining algorithms, but the dataset used to train the model must be balanced using an 

oversampling method.  At BCM, at-risk medical students can be identified by the end of 

the FBS course, a foundational sciences course in the first term of the preclinical 

curriculum.  The decision tree for this model indicates Step 1 passing outcomes for 

students with a final grade above 85.35 in the FBS course.  Findings from this study are 

applicable to BCM only, and cannot be generalized to other medical schools due to 

differences in curricula and missions.  However, the method utilized in this study can be 

used by other faculty and administrators at other medical schools using predictor 

variables consistent with their preclinical curriculum. 

Implications 

Medical school faculty want all students to have successful outcomes during their 

medical education.  Students matriculating into medical school did so at the 

recommendation of admission committee members who determined that each student is 
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capable of withstanding the rigor of medical training and is likely to pass licensure 

examinations.  Although desirable, it is not feasible that all students will graduate from 

medical school and those who graduate could encounter difficulty along the way.  

However, findings from this study have implications which are applicable to BCM and 

other U.S. medical schools, and also contributes to Step 1 outcomes research. 

Many schools have implemented programs to help students achieve successful 

outcomes.  Holistic review admissions practices have resulted in diverse medical school 

classes able to meet the future medical needs of a diverse population (Elks et al., 2018); 

however, the change in applicant review means UGPA and MCAT scores can no longer 

be the only factors used to identify students for these programs (Capers et al., 2018).  

Based on the findings of this study, BCM faculty should closely monitor course outcomes 

during the initial term of the first year of medical training, specifically for the 

Foundations for the Basics of Medicine course.  Decision rules indicated students with 

final grades in this course below 85.36 will fail Step 1, and could benefit from programs 

designed to improve overall medical school grades and outcomes on licensure 

examinations.  Similar models using students from other medical schools will need to be 

adapted to the specific curriculum at each school, using the stepwise model approached 

used in this study. 

Findings from this study also have implications for future research as the 

methodology used resolved three problems identified from prior research.  The first 

problem is the lack of Step 1 failure data due to the high national pass rates (Kleshinski et 

al., 2009).  Sample size relative to Step 1 failures will continue to be small because of 

high pass rates, but since pass rates vary by school, researchers replicating this study in 
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the future can choose how they implement the near failures (passing within one standard 

deviation) in their models.  The design of this study used a binary categorical predictor 

variable for Step 1 outcomes, but future investigations could expand the predictor 

variable to three categories:  pass, nearly pass, and fail. 

The second problem is the inability to translate correlates of Step 1 failure to 

individual student performance prediction (Lee et al., 2017).  Findings from this study 

show how data mining can be used to identify factors related to Step 1 failure, but also 

provide early identification of students at risk of failure so they can take advantage of 

support programs designed to improve Step 1 outcomes.  Future research can focus on 

individual student performance, addressing one of the issues raised by Monroe and 

colleagues (2013) relative to the inability to explain why some students with higher 

academic credentials fail Step 1 for no reason, and some students with lower academic 

credentials pass Step 1. 

The third problem is the incorrect use of model accuracy that is inherent in 

models trained with imbalanced datasets (Thammasiri et al., 2014).  Findings from this 

study showed how models trained with unbalanced datasets tend to have higher accuracy 

rates, but model accuracy is skewed because accuracy is calculated using the outcome 

which is not the focus of investigation.  Models should be evaluated on a combination of 

precision, recall, and the F1 measure (harmonic mean of precision and recall) to 

determine the highest performing models.  Prediction models evaluated on model 

accuracy rates alone will not adequately identify students at risk of future Step 1 failure. 

Recommendations 

There are barriers and limitations to this study, identified in the first chapter and 
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expanded here to include opportunities for future research.  Holistic review and mission-

driven admissions allow medical school admissions committees to find qualified 

applicants who are academically prepared, have demonstrated the qualities necessary to 

become good physicians, and have future career aspirations which meet the unique 

mission of the medical school (Ellaway et al., 2018).  Predictor variables in this study 

were specific to the preclinical curriculum at BCM, therefore, findings are delimited to 

this participating school only.  This study could be repeated at other allopathic U.S. 

medical schools using predictor variables modified according to the preclinical 

curriculum used at these schools. 

This study used scores from an older version of the MCAT, which was revised in 

2015.  Results of analysis completed in the data preparation phase of the CRISP-DM 

process model revealed all BCM students matriculating between 2013 and 2015 took the 

old MCAT.  Some applicants elected to take the new version of the MCAT in an attempt 

to improve their score, but scores from the first attempt only were used for this study.  

Some of the models in this study identified scores from the verbal reasoning part of the 

old MCAT as important predictor variables; however, this does not translate to the new 

MCAT as this section was not carried forward.  This study should be repeated in 2020 

when scores from the old MCAT are not accepted at any medical school and enough time 

has passed for these applicants to have taken Step 1. 

Only final grades from preclinical courses and the CBSE were included as 

predictor variables in this study, as these were readily available in the BCM student 

information system.  Findings from this study indicate at-risk students could be identified 

as early as the end of the first term; however, adding outcomes from low and high-stake 
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assessments during the first term as predictor variables might allow faculty to identify at-

risk students earlier.  Doing so increases the work to be done during the data preparation 

phase but could add meaningful and important predictor variables to the model.  More 

research is needed to better understand how other variables, such as the use of student-

initiated study groups, USMLE preparation courses, and self-directed study behaviors 

effect Step 1 outcomes. 

Measures of student engagement were not included as predictor variables in this 

study, but could be included in future research.  Findings from research using course 

attendance as measure of engagement and association with academic performance has 

yielded mixed results and remains a source of controversy in medical education.  

Attendance has been found to be an early signal of student retention issues in higher 

education (Gray & Perkins, 2019).  In medical education, many lecturers require students 

to attend class; however, as more lectures are available online, students have opted to 

watch lectures outside of class rather than attend in person.  Learning styles and 

preferences notwithstanding, Eisen and colleagues (2015) did not find attendance to be 

associated with academic performance in preclinical courses.  More research is need to 

determine if student engagement, whether by attendance or other measures, can be used 

as an early warning signal of Step 1 outcomes, especially as medical schools incorporate 

problem-based and active learning in the medical school curriculum.   

Although not a limitation to this study, Step 1 pass or fail status was the outcome 

variable used, applicable to U.S allopathic medical schools.  Further research is needed to 

determine if the methods used in this study translate to other academic medical centers 

with different curricula, and those who require other licensure examinations, for example 
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the NCLEX examination for nurse licensure, the COMLEX licensure examination for 

osteopathic medical students, or the PANCE for physician assistant licensure. 

Summary 

Step 1 of the United States Medical Licensing Examination (USMLE) is part of a 

three-step examination to obtain full medical licensure.  Taken at the end of the 

preclinical portion of the medical education curriculum, passing Step 1 is required for 

promotion to later years in medical training, is necessary to qualify for the additional step 

examinations, and has been cited as the most important factor for acceptance into many 

of the top graduate medical education programs by residency program directors (National 

Resident Matching Program, 2018).  Identifying the factors associated with medical 

students who fail Step 1 of the USMLE has been a focus of investigation for many years. 

Some researchers believe lower scores on the Medical Colleges Admissions Test 

(MCAT) are the sole factor used to identify failure (Gauer et al., 2016).  Other 

researchers believe lower course outcomes during the first two years of medical training 

are better indicators of failure (Sesate et al., 2017).  Yet, there are medical students who 

fail Step 1 of the USMLE who enter medical school with high MCAT scores, and 

conversely medical students with lower academic credentials who are expected to have 

difficulty passing Step 1 but pass on the first attempt.  This phenomenon has been 

attributed to a holistic review of applicants, which considers life experiences and 

demonstrated qualities necessary to become good physicians in addition to academic 

qualifications (Monroe et al., 2013; “Holistic Review,” 2018).  Today’s medical students 

are no longer solely determined to be at-risk of poor outcomes based on academic 

credentials at matriculation, as students entering medical school with lower MCAT scores 
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and UGPA are just as likely to be successful in medical school (Sesate et al., 2017). 

The goal of this study was to identify the factors related to Step 1 failure, and to 

predict individual student outcomes without using MCAT scores or UGPA as sole 

indicators.  Prior investigations have attempted to predict Step 1 outcomes, but 

researchers have found the low sample size due to the high national pass rate of 96% to 

be a limiting factor in their findings (Kleshinski et al., 2009).  Moreover, prior research 

has found factors correlated with Step 1 outcomes but has failed to provide insight into 

individual student performance (Hu et al., 2016; Lee et al., 2017).  Predictive modeling 

using data mining methods was used to identify medical students at risk of Step 1 failure, 

relying on computational techniques to resolve the low sample size issue and to identify 

Step 1 outcome relationships in sets of data (Chen & Fawcett, 2016).  Similar models 

have been used in business settings to find new customers, or to identify customers likely 

to stop using a product or service (Lee, Kim et al., 2017; Zhao et al., 2017).  Predictive 

models have also been applied in education settings to predict high school dropouts and 

improve university student retention (Thammasiri et al., 2014; Marquez-Vera et al., 

2016); however, for these applications, the outcome in question (e. g. high school 

dropouts or freshmen attrition) is not evenly balanced between students who exhibit the 

outcome and those who do not.  The Cross Industry Standard Process for Data Mining 

(CRISP-DM) process model was used for this study, providing a data mining framework 

and opportunities to resolve the problems identified in prior Step 1 outcomes research. 

The six phases of the CRISP-DM process model (Wirth & Hipp, 2000) guided the 

design the design, development, and implementation of this study.  This process model 

was selected because it has been found to be more suited for novice researchers (Kurgan 
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& Musilek, 2006), and because of the suggested tasks in each phase it is more likely to be 

adopted by medical school administrators who desire to replicate this study in the future.  

A detailed explanation of the tasks completed in each phase can be found in Chapter 3.  A 

summary of major accomplishments from the process model follows. 

Outcome data of medical students matriculating between 2013 and 2014 was 

provided by the School of Medicine at Baylor College of Medicine (BCM), a private 

medical school located in Houston, Texas.  BCM accepts approximately 2% of applicants 

for each admission cycle, and is known for USMLE outcomes well above national 

averages.  Step 1 is taken at the end of the preclinical curriculum, approximately 18 

months after matriculation.  Preadmission variables, such as age, gender, MCAT scores, 

and UGPA, final preclinical course grades, and the CBSE score were extracted from the 

student information system.  Three business objectives and data mining goals guided the 

overall data mining approach: (1) use common classification data mining algorithms to 

determine the factors associated with Step 1 failures,  (2) use preadmission variables and 

final course grades from the preclinical curriculum to determine the point in time which 

bests identifies students at risk of failing Step 1, and (3) use common data sampling 

methods to determine the best approach to address the expected Step 1 outcome 

imbalance problem. 

Prior to modeling, the BCM student outcomes dataset was modified to resolve 

prior research problems of low sample size of Step 1 failures and the imbalance between 

Step 1 failed and passing observations.  The number of Step 1 failed observations was 

increased by considering all scores within one standard deviation above the passing score 

of 192 as a failed score.  Three data sampling methods were used to prepare the datasets 



 77 

for modeling.  In addition to the original unbalanced dataset, random under sampling 

(RUS) was used to randomly remove Step 1 passing observations to match the number of 

failed observations.  Random oversampling (ROS) was used to replicate the failed Step 1 

observations to match the number of passing observations.  Finally, the synthetic 

minority oversampling technique (SMOTE) was used to create synthetic failed Step 1 

observations, which closely resembled the actual failed observations, until the total 

number of failed observations matched the number of passing observations. 

Eight experiments were conducted in a stepwise manner, beginning with a dataset 

of preadmission variables, adding final grades from the six preclinical course blocks and 

the final CBSE outcome in the order taken by BCM students.  Four datasets, one 

unbalanced and three balanced, were used to train, test, and validate models created using 

the CART data mining algorithm.  Accuracy, precision, recall, and the F-measure was 

noted to determine the highest performing model for each experiment.  Model prediction 

accuracy is often used as a measure of success, but can be misleading because the 

majority class contributes much more to overall accuracy then the minority class 

(Marquez-Vera et al., 2016).  For this study accuracy reflects the number of passing Step 

1 observations correctly predicted.  Because this is not the outcome under investigation 

the F-measure was used to determine the best performing model.  A summary of top 

model performance all experiments is shown in Table 21.  Full experiment results follow 

in the appendices. 

Model effectiveness peaked with experiment 2 using a prediction model 

consisting of preadmission variables and final course grades for the first block of 

preclinical courses, dropping slightly when the second block of course grades were 
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added, then a sharp drop in model effectiveness for remaining experiments.  Findings 

from this study indicate medical students at risk of failing Step 1 can be predicted as early 

as the end of the first block of preclinical courses, with subsequent blocks of courses 

adding little value to prediction models.  The CART data mining algorithm was used to 

determine the factors associated with Step 1 failures, with the decision tree finding 

students with a final grade above 85.35 in the foundational sciences course (FBS) are 

likely to pass Step 1.  Prediction models using oversampling methods outperformed 

models using unbalanced datasets in terms of model effectiveness.  

The last phase of the CRISP-DM process model calls for a final report 

summarizing the results and a plan to operationalize the models used in the study.  This 

paper serves as the summary; however, there is an opportunity to revisit prior phases to 

improve the predictive ability of the models prior to deployment.  For example, this study 

employed the CART algorithm with default parameters.  This algorithm was selected as it 

is most appropriate for continuous predictor variables, like the final course grades used as 

predictor variables in this study; however, additional tuning of the CART algorithm could 

possibly improve model performance metrics and the ability to accurately predict medical 

students at-risk of failing Step 1.  Moreover, a different algorithm might be more 

appropriate as additional predictor variables are added.  The data mining framework 

developed in this study can be used to improve USMLE Step 1 outcomes.  Findings from 

this study will not directly address the predicted physician shortage but could allow 

medical school administrations to help at-risk students so all applicants who are accepted 

into medical education have access to all the resources necessary to achieve successful 

outcomes.   
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Appendix A 

Experiment 1 Results 

This appendix contains full results for experiment 1.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced     

    

Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS     

    

Train 5 1 1 5 50.0% 0.83 0.50 0.63 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS     

    

Train 164 147 0 17 94.8% 1.00 0.91 0.95 
Test 3 144 2 20 87.0% 0.60 0.13 0.21 
Validate 2 130 6 8 90.4% 0.25 0.20 0.22 
SMOTE     

    

Train 159 146 5 18 93.0% 0.97 0.90 0.93 
Test 1 147 4 17 87.6% 0.20 0.06 0.09 
Validate 2 127 6 11 88.4% 0.25 0.15 0.19 

 

Relative predictor importance and rules tree for RUS. 

Predictor Relative Importance 
Total UGPA 0.69 
Science UGPA 0.06 
Age 0.06 
PS 0.06 
VR 0.06 
MCAT Total 0.06 

 
  



 81 

Rules Tree   
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail    
• Total UGPA > 3.885 [ Mode: Pass ] => Pass    

 
 
 
Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
VR 0.49 
Total UGPA 0.30 
BS 0.09 
Age 0.07 
MCAT Total 0.01 
PS 0.01 
Science UGPA 0.01 
URM 0.01 

 
Rules Tree      
• VR <= 8.500 [ Mode: Fail ]       

o Total UGPA <= 3.740 [ Mode: Pass ] => Pass      
o Total UGPA > 3.740 [ Mode: Fail ] => Fail       

• VR > 8.500 [ Mode: Pass ]       
o Total UGPA <= 3.725 [ Mode: Fail ]      

§ BS <= 11.500 [ Mode: Pass ] => Pass     
§ BS > 11.500 [ Mode: Fail ]     

• Age <= 22.500 [ Mode: Fail ] => Fail    
• Age > 22.500 [ Mode: Pass ] => Pass    

o Total UGPA > 3.725 [ Mode: Pass ] => Pass      
 

Relative predictor importance and rules tree for SMOTE. 

Predictor Relative Importance 
Total UGPA 0.37 
VR 0.37 
BS 0.10 
Age 0.06 
MCAT Total 0.05 
PS 0.01 
Gender 0.01 
Science UGPA 0.01 
URM 0.01 
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Rules Tree 
• VR <= 8.998 [ Mode: Fail ]        

o Total UGPA <= 3.739 [ Mode: Pass ] => Pass       
o Total UGPA > 3.739 [ Mode: Fail ] => Fail       

• VR > 8.998 [ Mode: Pass ]        
o Total UGPA <= 3.787 [ Mode: Fail ]       

§ MCAT Total <= 35.950 [ Mode: Fail ]      
• BS <= 11.013 [ Mode: Pass ] => Pass     
• BS > 11.013 [ Mode: Fail ]     

o Age <= 22.500 [ Mode: Fail ] => Fail    
o Age > 22.500 [ Mode: Pass ] => Pass    

§ MCAT Total > 35.950 [ Mode: Pass ] => Pass      
o Total UGPA > 3.787 [ Mode: Pass ] => Pass       

  



 83 

 
Appendix B 

Experiment 2 Results 

This appendix contains full results for experiment 2.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 159 0 5 98.5% 1.00 0.97 0.98 
Test 2 159 3 5 95.3% 0.40 0.29 0.33 
Validate 3 137 5 1 95.9% 0.38 0.75 0.50 
SMOTE         
Train 164 153 0 11 96.6% 1.00 0.94 0.97 
Test 2 160 3 4 95.9% 0.40 0.33 0.36 
Validate 4 136 4 2 95.9% 0.50 0.67 0.57 

 

Relative predictor importance and rules tree for RUS. 

Predictor Relative Importance 
Total UGPA 0.6946 
Science UGPA 0.0611 
Block 1 FBS 0.0611 
Block 1 PP1 0.0611 
Age 0.0611 
PS 0.0611 

 
Rules Tree 

• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass  
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 1 FBS 0.3722 
VR 0.3666 
Total UGPA 0.1405 
Age 0.0746 
MCAT Total 0.0077 
Block 1 PP1 0.0077 
PS 0.0077 
BS 0.0077 
Science UGPA 0.0077 
URM 0.0077 

 
Rules Tree 
• Block 1 FBS <= 85.350 [ Mode: Fail ]        

o VR <= 8.500 [ Mode: Fail ] => Fail       
o VR > 8.500 [ Mode: Fail ]       

§ Total UGPA <= 3.725 [ Mode: Fail ]      
• VR <= 10.500 [ Mode: Pass ] => Pass     
• VR > 10.500 [ Mode: Fail ]     

o Age <= 22.500 [ Mode: Fail ] => Fail    
o Age > 22.500 [ Mode: Pass ] => Pass    

§ Total UGPA > 3.725 [ Mode: Pass ] => Pass      
• Block 1 FBS > 85.350 [ Mode: Pass ] => Pass    
 
 
Relative predictor importance and rules tree for SMOTE.  
 
Predictor Relative Importance 
Block 1 FBS 0.4015 
Science UGPA 0.1845 
VR 0.1769 
Age 0.136 
BS 0.0617 
PS 0.0144 
MCAT Total 0.0063 
Block 1 PP1 0.0063 
Total UGPA 0.0063 
URM 0.0063 
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Rules Tree 
• Block 1 FBS <= 85.349 [ Mode: Fail ]        

o VR <= 8.998 [ Mode: Fail ] => Fail       
o VR > 8.998 [ Mode: Fail ]       

§ Science UGPA <= 3.744 [ Mode: Fail ]      
• BS <= 11.013 [ Mode: Pass ] => Pass     
• BS > 11.013 [ Mode: Fail ]     

o Age <= 22.500 [ Mode: Fail ] => Fail    
o Age > 22.500 [ Mode: Pass ] => Pass    

§ Science UGPA > 3.744 [ Mode: Pass ]      
• PS <= 9 [ Mode: Fail ] => Fail     
• PS > 9 [ Mode: Pass ] => Pass     

• Block 1 FBS > 85.349 [ Mode: Pass ] => Pass    
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Appendix C 

Experiment 3 Results 

This appendix contains full results for experiment 3.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 155 0 9 97.3% 1.00 0.95 0.97 
Test 1 158 4 6 94.1% 0.20 0.14 0.17 
Validate 3 136 5 2 95.2% 0.38 0.60 0.46 
SMOTE         
Train 162 138 2 26 91.5% 0.99 0.86 0.92 
Test 2 160 3 4 95.9% 0.40 0.33 0.36 
Validate 8 123 0 15 89.7% 1.00 0.35 0.52 

 
  
Relative predictor importance and rules tree for RUS. 

Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

 

Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass 
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 2 IPD 0.5928 
Block 1 PP1 0.2391 
BS 0.0403 
Block 1 FBS 0.016 
Block 2 PHR 0.016 
Total UGPA 0.016 
Age 0.016 
PS 0.016 
MCAT Total 0.016 
VR 0.016 

 
Rules Tree 
• Block 2 IPD <= 79.067 [ Mode: Fail ]      

o Block 1 PP1 <= 95.250 [ Mode: Fail ] => Fail     
o Block 1 PP1 > 95.250 [ Mode: Pass ] => Pass     

• Block 2 IPD > 79.067 [ Mode: Pass ]      
o BS <= 8 [ Mode: Fail ] => Fail     
o BS > 8 [ Mode: Pass ] => Pass   

 
Relative predictor importance and rules tree for SMOTE. 
 
Predictor Relative Importance 
Block 2 IPD 0.9344 
Block 1 FBS 0.0131 
Block 2 HNA 0.0131 
Block 2 PHR 0.0131 
Block 1 PP1 0.0131 
MCAT Total 0.0131 

   
Rules Tree 
• Block 2 IPD <= 83.451 [ Mode: Fail ] => Fail  
• Block 2 IPD > 83.451 [ Mode: Pass ] => Pass  
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Appendix D 

Experiment 4 Results 

This appendix contains full results for experiment 4.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 

 

Relative predictor importance and rules tree for RUS. 

Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

  
Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass 
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 3 NRS 0.9419 
Block 2 IPD 0.0116 
Block 1 FBS 0.0116 
Block 2 HNA 0.0116 
Block 2 PHR 0.0116 
VR 0.0116 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass 
 
 
Relative predictor importance and rules tree for SMOTE. 
  
Predictor Relative Importance 
Block 3 NRS 0.9628 
Block 2 IPD 0.0074 
Block 1 FBS 0.0074 
Block 2 HNA 0.0074 
Block 2 PHR 0.0074 
MCAT Total 0.0074 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass   
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Appendix E 

Experiment 5 Results 

This appendix contains full results for experiment 5.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 

 
 
Relative predictor importance and rules tree for RUS. 
 
Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

 
Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass   
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 3 NRS 0.9456 
Block 4 BES 0.0109 
Block 2 IPD 0.0109 
Block 1 FBS 0.0109 
Block 4 IND 0.0109 
Block 2 HNA 0.0109 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass  
 
 
Relative predictor importance and rules tree for SMOTE. 
 
Predictor Relative Importance 
Block 3 NRS 0.9517 
Block 2 IPD 0.0097 
Block 4 BES 0.0097 
Block 4 IND 0.0097 
Block 1 FBS 0.0097 
Block 2 HNA 0.0097 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass 
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Appendix F 

Experiment 6 Results 

This appendix contains full results for experiment 6.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE         
Train 164 159 0 5 98.5% 1.00 0.97 0.98 
Test 0 163 5 1 96.4% 0.00 0.00 0.00 
Validate 1 136 7 2 93.8% 0.13 0.33 0.18 

 
 
Relative predictor importance and rules tree for RUS. 
 
Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

 
Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass 
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 3 NRS 0.9456 
Block 4 BES 0.0109 
Block 2 IPD 0.0109 
Block 1 FBS 0.0109 
Block 4 IND 0.0109 
Block 2 HNA 0.0109 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass 
 
 
Relative predictor importance and rules tree for SMOTE. 
 
Predictor Relative Importance 
Block 3 NRS 0.7171 
Block 5 ETH 0.2226 
Block 2 IPD 0.0075 
Block 4 BES 0.0075 
Block 4 IND 0.0075 
Block 1 FBS 0.0075 
Block 2 HNA 0.0075 
Block 1 PP1 0.0075 
Block 2 PHR 0.0075 
Block 5 PP2 0.0075 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ]       

o Block 3 NRS <= 74.550 [ Mode: Pass ] => Pass      
o Block 3 NRS > 74.550 [ Mode: Fail ]      

§ Block 5 ETH <= 86.550 [ Mode: Fail ] => Fail     
§ Block 5 ETH > 86.550 [ Mode: Pass ] => Pass     

• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass       
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Appendix G 

Experiment 7 Results 

This appendix contains full results for experiment 7.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE         
Train 164 159 0 5 98.5% 1.00 0.97 0.98 
Test 1 163 4 1 97.0% 0.20 0.50 0.29 
Validate 1 136 7 2 93.8% 0.13 0.33 0.18 

 
 
Relative predictor importance and rules tree for RUS. 
 
Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

 
Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass 
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 3 NRS 0.9363 
Block 6 CAR 0.0127 
Block 6 PP3 0.0127 
Block 4 BES 0.0127 
Block 2 IPD 0.0127 
Block 6 RNL 0.0127 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass 
 
Relative predictor importance and rules tree for SMOTE. 
 
Predictor Relative Importance 
Block 3 NRS 0.5324 
Block 6 PP3 0.4021 
Block 2 IPD 0.0082 
Block 4 BES 0.0082 
Block 6 CAR 0.0082 
Block 6 RNL 0.0082 
Block 5 ETH 0.0082 
Block 6 GST 0.0082 
Block 1 FBS 0.0082 
Block 2 HNA 0.0082 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ]   

o Block 6 PP3 <= 89.300 [ Mode: Fail ] => Fail  
o Block 6 PP3 > 89.300 [ Mode: Pass ] => Pass  

• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass   
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Appendix H 

Experiment 8 Results 

This appendix contains full results for experiment 8.  Model train, test, and validate 
performance metrics for each dataset balancing method are shown below. 
 
Model TP TN FP FN Accuracy Precision Recall F 
Unbalanced         
Train 0 164 6 0 96.5% 0.00 0.00 0.00 
Test 0 164 5 0 97.0% 0.00 0.00 0.00 
Validate 0 138 8 0 94.5% 0.00 0.00 0.00 
RUS         
Train 5 5 1 1 83.3% 0.83 0.83 0.83 
Test 4 86 1 78 53.3% 0.80 0.05 0.09 
Validate 6 81 2 57 59.6% 0.75 0.10 0.17 
ROS         
Train 164 151 0 13 96.0% 1.00 0.93 0.96 
Test 1 161 4 3 95.9% 0.20 0.25 0.22 
Validate 1 132 7 6 91.1% 0.13 0.14 0.13 
SMOTE         
Train 164 159 0 5 98.5% 1.00 0.97 0.98 
Test 1 163 4 1 97.0% 0.20 0.50 0.29 
Validate 1 136 7 2 93.8% 0.13 0.33 0.18 

 
 
Relative predictor importance and rules tree for RUS. 
 
Predictor Relative Importance 
Total UGPA 0.3381 
Science UGPA 0.1324 
Block 1 FBS 0.1324 
Block 1 PP1 0.1324 
Block 2 IPD 0.1324 
Block 2 HNA 0.1324 

 
Rules Tree 
• Total UGPA <= 3.885 [ Mode: Fail ] => Fail  
• Total UGPA > 3.885 [ Mode: Pass ] => Pass 
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Relative predictor importance and rules tree for ROS. 
 
Predictor Relative Importance 
Block 3 NRS 0.9363 
Block 6 CAR 0.0127 
Block 6 PP3 0.0127 
Block 4 BES 0.0127 
Block 2 IPD 0.0127 
Block 6 RNL 0.0127 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ] => Fail  
• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass 
 
 
Relative predictor importance and rules tree for SMOTE. 
 
Predictor Relative Importance 
Block 3 NRS 0.5008 
Block 6 PP3 0.4308 
Block 2 IPD 0.0098 
Block 4 BES 0.0098 
Block 6 CAR 0.0098 
Block 6 CBSE 0.0098 
Block 5 ETH 0.0098 
Block 6 GST 0.0098 
Block 1 FBS 0.0098 

 
Rules Tree 
• Block 3 NRS <= 80.050 [ Mode: Fail ]   

o Block 6 PP3 <= 89.300 [ Mode: Fail ] => Fail  
o Block 6 PP3 > 89.300 [ Mode: Pass ] => Pass  

• Block 3 NRS > 80.050 [ Mode: Pass ] => Pass   
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