
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2018

Probabilistic Clustering Ensemble Evaluation for
Intrusion Detection
Steven M. McElwee
Nova Southeastern University, mcelwee@ieee.org

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Steven M. McElwee. 2018. Probabilistic Clustering Ensemble Evaluation for Intrusion Detection. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, College of Engineering and Computing. (1044)
https://nsuworks.nova.edu/gscis_etd/1044.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Probabilistic Clustering Ensemble Evaluation for Intrusion Detection

by

Steven M. McElwee

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Information Assurance

College of Engineering and Computing

Nova Southeastern University

2018

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

Probabilistic Clustering Ensemble Evaluation for

Intrusion Detection

by

Steven M. McElwee

2018

Intrusion detection is the practice of examining information from computers and

networks to identify cyberattacks. It is an important topic in practice, since the frequency

and consequences of cyberattacks continues to increase and affect organizations. It is

important for research, since many problems exist for intrusion detection systems.

Intrusion detection systems monitor large volumes of data and frequently generate false

positives. This results in additional effort for security analysts to review and interpret

alerts. After long hours spent reviewing alerts, security analysts become fatigued and

make bad decisions. There is currently no approach to intrusion detection that reduces the

workload of human analysts by providing a probabilistic prediction that a computer is

experiencing a cyberattack.

This research addressed this problem by estimating the probability that a computer

system was being attacked, rather than alerting on individual events. This research

combined concepts from cyber situation awareness by applying clustering ensembles,

probability analysis, and active learning. The unique contribution of this research is that it

provides a higher level of meaning for intrusion alerts than traditional approaches.

Three experiments were conducted in the course of this research to demonstrate the

feasibility of these concepts. The first experiment evaluated cluster generation

approaches that provided multiple perspectives of network events using unsupervised

machine learning. The second experiment developed and evaluated a method for

detecting anomalies from the clustering results. This experiment also determined the

probability that a computer system was being attacked. Finally, the third experiment

integrated active learning into the anomaly detection results and evaluated its

effectiveness in improving the accuracy.

This research demonstrated that clustering ensembles with probabilistic analysis were

effective for identifying normal events. Abnormal events remained uncertain and were

assigned a belief. By aggregating the belief to find the probability that a computer system

was under attack, the resulting probability was highly accurate for the source IP addresses

and reasonably accurate for the destination IP addresses. Active learning, which

simulated feedback from a human analyst, eliminated the residual error for the

destination IP addresses with a low number of events that required labeling.

Acknowledgements

To the giants of research on whose shoulders I stood to see a little farther, it has been a

privilege to build upon the foundation you have laid.

To Dr. James Cannady, my sincerest gratitude for allowing me to build upon your work

in intrusion detection and for your willingness to serve as my dissertation committee

chair.

To my dissertation committee, who provided constructive criticism throughout the

process, thank you for your patience and for your feedback. You have helped to improve

my research skills.

To Allison, my loving and supportive wife, thank you for sacrificing our time together for

late study nights and for trips to Florida. I could not have accomplished this without your

encouragement and understanding.

To my children, who themselves have grown and accomplished so much since I started

this pursuit, thank you for encouraging me along the way. Remember to continue to

learn, regardless of your age.

v

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Chapters

1. Introduction 1

 Background 1

Problem Statement 2

 Dissertation Goal 2

 Discussion 3

 Relevance and Significance 6

 Barriers and Issues 7

 Definition of Terms 9

 List of Acronyms 12

 Summary 13

2. Review of the Literature 15

 Overview of Reviewed Topics 15

 Cyber Situation Awareness 16

 Intrusion Detection 22

 Probabilistic Intrusion Detection 31

 Clustering Ensembles 36

 Intrusion Detection Datasets 52

 Summary 58

3. Methodology 59

 Introduction 59

 Solution Design 60

 Experiment 1: Cluster Generation 65

 Experiment 2: Probabilistic Anomaly Detection 68

 Experiment 3: Active Learning 71

 Resource Requirements 72

 Summary 73

4. Results 75

 Introduction 75

 Experiment Design and Implementation 76

 Input Dataset Analysis and Preparation 79

 Experiment 1: Cluster Generation 82

 Experiment 2: Probabilistic Anomaly Detection 88

 Experiment 3: Active Learning 97

 Summary 101

5. Conclusions, Implications, Recommendations, and Summary 103

 Conclusions 103

 Implications 105

 Recommendations 106

 Summary 108

References 147

Appendices

A. Source Code Availability and Usage 115

B. Dataset Descriptions 119

C. Python Package Versions 125

D. Detailed Anomaly Detection Results 126

vii

List of Tables

Tables

1. Summary of Cyber Situation Awareness Literature 19

2. Summary of Machine Learning Approaches to Intrusion Detection 23

3. Summary of Co-Occurrence Cluster Evaluation Approaches 45

4. Summary of Median Partition Clustering Evaluation Approaches 49

5. Summary of Intrusion Detection Dataset Research 55

6. Original and Derived NSL-KDD Dataset Label Distributions 80

7. UNSW-NB15_1 Dataset Label Distributions 82

8. Distribution of Attack and Normal Records in Sample Partition 85

9. Prediction of P(A) by srcip and dstip 94

10. P(A) Accuracy for Ten Runs 96

11. NSL-KDD Attributes and Datatypes 120

12. UNSW-NB15 Attributes and Datatypes 122

13. Python Package Versions 125

14. Experiment 2, Run 1 Results 127

15. Experiment 2, Run 2 Results 129

16. Experiment 2, Run 3 Results 131

17. Experiment 2, Run 4 Results 133

18. Experiment 2, Run 5 Results 135

19. Experiment 2, Run 6 Results 137

20. Experiment 2, Run 7 Results 139

21. Experiment 2, Run 8 Results 141

22. Experiment 2, Run 9 Results 143

23. Experiment 2, Run 10 Results 145

ix

List of Figures

Figures

1. Multiple ways to cluster a deck of cards 4

2. Clustering ensemble overview 5

3. Confusion matrix for binary classification 29

4. Overview clustering ensembles with formal notation 39

5. High level solution design 60

6. Algorithm for cluster generation 67

7. Algorithm for probabilistic anomaly detection 69

8. Class diagram 76

9. Graph of votes for NSL-KDD dataset 89

10. Graph of votes for UNSW-NB15 dataset 90

11. Pseudocode for active learning algorithm 98

12. Accuracy of active learning compared to sample size 100

1

Chapter 1

Introduction

Background

Intrusion detection systems identify cyberattacks. Malicious or criminal

cyberattacks take an average of 229 days to detect, and the length of time to detect and

contain an attack increases the cost of response (Ponemon Institute, 2016). Consequently,

detecting cyberattacks quickly is vital for organizations. Because of the volume of

intrusion alerts, cyberattacks are sometimes miscategorized in the large number of alerts

that require human analyst review (Julisch, 2003). After long hours of review, analysts

make mistakes, and alerts may be miscategorized (Sawyer et al., 2014). Further, human

analysts make inaccurate decisions and use preconceived biases when dealing with

probabilistic reasoning (Tversky & Kahneman, 1974). Most intrusion detection research

has focused on identifying individual events and has not provided meaning in the broader

perspective of cyber situation awareness (CSA) (Sommer & Paxson, 2003; Erbacher,

Frincke, Wong, Moody, & Fink, 2010; Sommer & Paxson, 2010; Tadda & Salerno,

2010). Detecting intrusions at the individual event level is prone to high false positive

rates and overfitting (Sommer & Paxson, 2010). Thus, new approaches to intrusion

detection are needed to provide better support for human decision-making under

uncertain conditions.

This research developed a system for anomaly-based intrusion detection. The

system incorporated multiple views of anomalies to find the probability that a computer

2

system was under attack or had been compromised. The novelty of this research was the

application of clustering ensembles, probability analysis, and active learning to extend

research in intrusion detection. This research also incorporated relevant concepts from

CSA to add meaning to intrusion alerts.

Problem Statement

There is currently no approach to intrusion detection that reduces the workload of

human analysts by providing a probabilistic prediction that a computer is experiencing a

cyberattack. Intrusion detection systems monitor increasingly large datasets that represent

interconnected devices and sensors (Saeed, Ahmadinia, Javed, & Larijani, 2016; Al-

Hamadi & Chen, 2015; Ali & Al-Shaer, 2015). The alerts generated by intrusion

detection systems require human review to evaluate the accuracy of the alerts and to

determine an appropriate course of action (Julisch, 2003). A significant problem is that

intrusion alerts often have high false-positive rates, since intrusions are rare in large

datasets (Kruegel, Mutz, Robertson, & Valeur, 2003; Scott, 2004). Thus, security analysts

become fatigued and make poor decisions after spending hours reviewing alerts (Sawyer

et al., 2014). Improvements in intrusion detection systems are needed to reduce false-

positives, improve the context of alerts, and reduce the burden on human analysts.

Dissertation Goal

The goal of this research was to improve anomaly-based intrusion detection by

adding meaning to alerts through the use of probabilistic clustering ensembles. Adding

meaning to alerts shifts the focus from the individual event level to the computer system

3

level. This research developed a method to reduce the workload of security analysts by

focusing on the computer systems most likely experiencing attacks. The results of this

research will allow security analysts to better prioritize their monitoring activity, which

has been found to be important in practice (McElwee, Heaton, Fraley, & Cannady, 2017).

Discussion

An important objective of this research was to apply clustering ensembles to

intrusion detection. There is not one correct way to cluster network information to

identify anomalies. Instead, there are multiple perspectives that, when taken together,

improve accuracy. This idea is supported from prior research, which acknowledges that

“clustering is in the eye of the beholder” (Estivill-Castro, 2002, p. 65). To illustrate this

idea, consider that a reasonable person is given a deck of playing cards, with 52 cards of

four suits, and two joker cards. The person is given direction to cluster the cards into

meaningful groups. There are a wide variety of ways that the person might cluster the

cards. The person might cluster the cards using an obvious feature, such as the face value,

by grouping together all the aces in one group, the twos in another group, the threes in

another group, and so on. Such a grouping results in 13 clusters of four cards each and a

cluster with two jokers. The person might opt for four clusters, where each cluster is

identified by the suit of the card, specifically diamonds, hearts, clubs, and spades. This

grouping results in four clusters with 13 cards in each. In this case, the jokers do not

cluster well, but may be considered anomalies. The person might group the cards using a

feature derived from outside information, such as grouping the cards needed to assemble

a deck for a special game. Such a group might consist of the nines, tens, jacks, queens,

4

kings, and aces for playing the game of pinochle. The second group is those not needed to

play that game. Figure 1 illustrates this example using two sample clusterings.

Figure 1. Multiple ways to cluster a deck of cards

From the playing card example above, it is obvious that there is not one correct

way to cluster the cards. Each clustering result has different meaning for different

reasons. A wide variety of clustering results is possible based on the features chosen to

create the groups. Even the anomalies, as represented in 𝑃2 by the jokers, are only

anomalies because of the meaning the person placed on the clustering. Thus, in some

clustering approaches, the jokers cluster well, but in others they appear to be anomalies.

This research used clustering ensembles, which use many different clusterings of

the data to create a clustering solution that works best (Strehl & Gosh, 2002; Fred & Jain,

2005). Figure 2 illustrates the general approach to clustering ensembles. The first stage

generates a diverse set of clustering solutions, ℙ, from among all possible clustering

solutions, ℙ𝑋. The second stage evaluates the results to arrive at a final clustering

solution, 𝑃∗.

5

Figure 2. Clustering ensemble overview

This research used clustering ensembles because of their potential to be useful for

intrusion detection, since they enable unsupervised machine learning using multiple

sources of information, including domain knowledge, in the final clustering solution

(Strehl & Ghosh, 2002). Ensemble approaches to machine learning have proven to be

successful in resisting adversarial evasion (Šrndić & Laskov, 2014; Wang, Wang, Zheng,

& Zhao, 2014). Evasion is a tactic to conduct cyberattacks without being detected. There

have been few applications of clustering ensembles to intrusion detection (Weng, Jiang,

Shi, & Wu, 2007; Gao, Zhu, & Wang, 2010). Other related studies have shown that

clustering ensembles have the potential to be effective when applied to intrusion

detection. Lazarevic and Kumar (2005) used an approach similar to clustering ensembles,

called feature bagging, and found it to be successful for intrusion detection. Hou, Chen,

Tas, Demihovskiy, and Ye (2015) found that clustering ensembles were better for the

detection of malware than single base clustering algorithms.

The importance of adding meaning to alerts is established in prior research.

Sommer and Paxson (2003) found that adding context to intrusion detection improved

signature-based methods by detecting multi-step attacks. Machine learning algorithms for

6

intrusion detection can find what is abnormal, but generate false positives, because they

lack meaning (Sommer & Paxson, 2010). As a result, security analysts must evaluate

binary indications of cyberattacks with insufficient meaning to make appropriate

decisions. Thus, this research created a semantic level that better represents how human

analysts evaluate security alerts.

Computer network intrusions are generally a multi-step process that requires an

attacker and a victim. (Zhou, Leckie, & Karunasekera, 2010). Understanding the meaning

and significance of network events requires an understanding of the coordination of

events (Zhou et al., 2010). The connection of these events is often uncertain and requires

probabilistic reasoning. Thus, this research used probability analysis to evaluate if a

computer system was being attacked.

Relevance and Significance

Intrusion detection is an important topic in research as well as in practice, and

identifying cyberattacks quickly is important for reducing response costs (Ponemon

Institute, 2016). Unfortunately, intrusion alerts are sometimes missed because of the

volume that must be reviewed (Julisch, 2003). After long hours of reviewing security

alerts, human analysts make poor decisions, and alerts may be miscategorized (Sawyer et

al., 2014). Humans tend to make inaccurate decisions and use preconceived biases when

dealing with probabilistic reasoning (Tversky & Kahneman, 1974). In addition,

adversarial tactics and evasion require new approaches for the identification of malicious

activity (Šrndić & Laskov, 2014; Wang et al., 2014). As a result, improving intrusion

detection is a relevant topic for continued research to provide better support for decision-

7

making under uncertain conditions. Given the importance of intrusion detection and the

limitations of human judgement, this research provides context for analysts, so they can

make better decisions. The results of this research may be used to augment security

analyst capabilities for responding to intrusion alerts.

Barriers and Issues

This research addressed several barriers and issues that are present in anomaly-

based intrusion detection research. First, anomaly-based intrusion detection is prone to

high false-positive rates. This is largely due to the imbalanced nature of intrusion

detection data, since there are large amounts of data, but only a few intrusion events

(Scott, 2004). The base rate fallacy stipulates that when events of interest are rare, even

highly accurate detection systems may have a high false positive rate (Kruegel et al.,

2003). This research addressed this issue by focusing on the probability that a computer

system was being attacked rather than on determining the accurate classification of

individual events (Li, Ou, & Rajagopalan, 2010; Tadda & Salerno, 2010).

A second issue in intrusion detection research is overfitting. To achieve higher

accuracy, researchers may over-train learning algorithms or use too much training data to

be generalizable for novel anomalies. This is because machine learning algorithms are

more suitable for detecting similarities than for detecting anomalies (Sommer & Paxson,

2010). Overfitting may also result from the selection of a dataset that contains too many

duplicate records, such as the popular KDD Cup 1999 dataset (Tavallaee, Bagheri, Lu, &

Ghorbani, 2009). Since ensemble approaches to machine learning are less susceptible to

overfitting, this research applied clustering ensembles that were generated using bagging.

8

A third issue in intrusion detection is adversarial evasion. To avoid detection,

attackers may attack the intrusion detection system itself. Attacks against intrusion

detection systems include evasion, tampering, and denial of service (Laskov &

Lippmann, 2010; Šrndić & Laskov, 2014; Wang et al., 2014; Vasilomanolakis,

Karuppayah, Mühlhäuser, & Fischer, 2015). Evasion amplifies the problem of overfitting

by preventing the detection of novel attacks (Sommer & Paxson, 2010). To address this

problem, this research used ensemble approaches, since they have been found effective in

resisting adversarial evasion (Šrndić & Laskov, 2014; Wang et al., 2014). In addition, this

research applied active learning, which has been shown to allow adaptation to evasive

techniques (Miller et al., 2014).

A fourth issue in intrusion detection research is the use of a suitable dataset for

evaluation. Most early intrusion detection research used the KDD Cup 1999 dataset,

which was prepared from a DARPA packet capture for a KDD competition (Cao, Hoang,

Nguyen, 2013). The KDD Cup 1999 dataset has been criticized because of its duplicate

records, its outdated information because of older technologies, and its high volume of

records (Qian, Xu, & Shi, 2006; Tavallaee et al., 2009; Creech & Hu, 2013). To address

this problem, a variety of researchers have created new intrusion detection evaluation

datasets. None of the newer datasets has received as much widespread popularity and

adoption as KDD Cup 1999. This research included a literature review of publicly

available intrusion detection datasets. As a result, the NSL-KDD dataset was used for

preliminary evaluation and the UNSW-NB15 dataset for evaluation with a more

contemporary dataset (Tavallaee et al., 2009; Moustafa & Slay, 2015).

9

Definition of Terms

Accuracy: The ratio of the number of true positive and true negative results compared to

the number of all results.

Active Learning: A semi-supervised machine learning approach in which a subset of

unknown data is selected and presented to an oracle for labeling during training.

Alert: A notification or warning, which in the context of intrusion detection, represents a

potential cyberattack.

Anomaly: An event that deviates from a normal event.

Attack: An aggressive action against a computer system that may include unauthorized

modification of files to allow unauthorized access to system information,

unauthorized access or modification of user information, unauthorized

modification of information in network components, or unauthorized use of

system resources, including unauthorized account creation (Chebrolu, Abraham,

& Thomas, 2005).

Bagging: A machine learning method that provides a random subset of features and

records to a machine learning algorithm with a goal of reducing overfitting.

Bayes Theorem: Methods of probabilistic inference that calculate a prior probability of a

hypothesis based on evidence gathered from observations (Kruegel et al., 2003).

Bayesian Networks: Directed acyclic graphs, where each node in the graph represents a

conditional probability table (Kruegel et al., 2003).

Clustering: Finding natural groupings in data such that data within each cluster is most

similar to other data in that cluster and most dissimilar to the data of other clusters

(Zhou & Tang, 2006; Jain, 2010).

10

Clustering Ensemble: An approach to clustering that uses combinations of multiple

partitions of clustering results to find a consensus partition that improves accuracy

compared to an individual clustering result (Topchy, Jain, & Punch, 2005; Ayad

& Kamel, 2010).

Cyber Situation Awareness: A specialized application of situation awareness that

applies to the analysis of cyberattacks and their impact on computer and network

operations (Li et al., 2010; Erbacher et al., 2010).

Cyberattack: See Attack.

Ensemble: A multi-learner system, where each component learner attempts to solve the

same task as the others (Strehl & Ghosh, 2002).

Evasion: Deceiving an intrusion detection system or rending it ineffective through the

modification of training or testing data (Šrndić & Laskov, 2014; Wang et al.,

2014; Laskov & Lippman, 2010).

False Positive: In the context of intrusion detection, a condition in which a predicted

class indicates an attack, but the actual class was normal.

Intrusion Detection: The practice of examining information from computers and

networks that are to be protected in order to identify attacks against those

computers and networks (Debar, Dacier, & Wespi, 1999).

KDD Cup 1999: A dataset that has been widely used in intrusion detection research.

Machine Learning: A field of computer science that uses algorithms to learn patterns

without being programmed with predefined rules.

Mirkin Distance: An algorithm for comparing two clusters by counting the number of

point pairs that are exclusive to each of the two clusters (Meilă, 2007).

11

Oracle: An entity that represents a knowledgeable human subject matter expert and is

able to provide the correct label for a data record in response to a query.

Overfitting: A modeling error in which a machine learning algorithm is trained to match

a particular set of data but is not generalizable to other sets of data.

Partition: A set of clusters that represent the results from a single clustering algorithm.

Security Analyst: A job function that specializes in cyber defensive operations in the

context of a business or organization.

Security Monitoring: A job function of security analysts for detecting and responding to

potential cyberattacks.

Signature: A predefined pattern that matches characteristics of attacks.

Situation Awareness: The perception of information in an environment for a given time

and space, the comprehension of the meaning of that information, and the

projection of the future conditions in order to enable effective selection of an

appropriate course of action (Endsley, 1995; Tadda & Salerno, 2010).

Supervised Machine Learning: An approach to machine learning in which records with

known classes are used to train an algorithm so that it can then predict an output

for records with unknown classes.

Unsupervised Machine Learning: An approach to machine learning in which no

expected outcome is provided for training an algorithm.

12

List of Acronyms

ANMI: Average Normalized Mutual Information

CSA: Cyber Situation Awareness

CSPA: Cluster-Based Similarity Partitioning Algorithm

CSV: Comma Separated Value

CTBN: Continuous Time Bayesian Networks

CVSS: Common Vulnerability Scoring System

DARPA: Defense Advanced Research Projects Agency

DOS: Denial of Service

EM: Expectation Maximization

FN: False Negative

FP: False Positive

GPU: Graphics Processing Unit

HGPA: Hypergraph Partitioning Algorithm

IDS: Intrusion Detection System

KDD: Knowledge Discovery in Databases

LAC: Locally Adaptive Clustering

LAN: Local Area Network

MCLA: Meta Clustering Algorithm

NM: Normalized Mutual Information

NMF: Nonnegative Matrix Factorization

QMI: Quadratic Mutual Information

ROC: Receiver Operating Characteristics

13

SCANN: Stacking, Correspondence Analysis and Nearest Neighbor

SVM: Support Vector Machine

TN: True Negative

TP: True Positive

WBPA: Weighty Bipartite Partition Algorithm

WSBPA: Weighted Subspace Bipartite Partitioning Algorithm

WSPA: Weighty Similarity Partition Algorithm

Summary

This chapter introduced an approach to anomaly-based intrusion detection using

clustering ensembles. This chapter described how this research approached the problems

of too much data and high false positives rates. Finally, this chapter established the goal

of shifting the focus of intrusion detection from individual events to higher level of

meaning. This research explored how to predict the probability that a computer system

was under attack to enable security analysts to make better decisions under uncertain

conditions.

The remainder of this dissertation report provides the supporting background for

this research and describes the methodology that was used. Chapter 2 reviews the

literature that established the basis for this research. Chapter 3 describes the experiments

conducted to test the effectiveness of clustering ensembles with probabilistic analysis for

intrusion detection as well as the testing approaches for evaluating the results. Chapter 4

presents the results of the experiments. Finally, Chapter 5 explores the conclusions of this

14

research, the implications for future research, and recommendations for building upon the

foundation laid by this research.

15

Chapter 2

Review of the Literature

Overview of Reviewed Topics

The focus of this research was to develop an intrusion detection system that

provides meaning for intrusion alerts by using clustering ensembles and probabilistic

analysis. To accomplish this research, the following areas of literature were examined to

synthesize these concepts:

• Cyber Situation Awareness (CSA)

• Intrusion Detection

• Probabilistic Intrusion Detection

• Clustering Ensembles

• Intrusion Detection Datasets

Each of these areas has an established body of existing research. The following

sections describe the importance of each of these areas, review relevant research studies

in each topic, and synthesize the key concepts needed for building a foundation for this

research.

16

Cyber Situation Awareness (CSA)

Background

Situation awareness is the perception of information in an environment for a given

time and space. It comprehends the meaning of information and projects the future

conditions to enable the effective selection of a course of action (Endsley, 1995; Tadda &

Salerno, 2010). Situation awareness is an essential function in various fields that require

the interpretation of information about the environment for effective decision-making

(Endsley, 1995). The goals of situation awareness are to identify what is happening, why

it is happening, what will happen next, and what can be done about it (Erbacher et al.,

2010). Seminal work in situation awareness was conducted by Endsley (1995) and

resulted in a theoretical model for use in discussion and future research. Endsley (1995)

developed a three-level model of situation awareness. At the first level, situation

awareness deals with perceiving the elements of the current situation. After the elements

are collected, the second level entails comprehension of the current situation. This second

level includes correlation and integration of data to achieve a higher level of

understanding (Erbacher et al., 2010). Finally, the third level focuses on projecting a

future state and the potential impact on future operations (Erbacher et al., 2010).

Decision-making regarding a course of action occurs after all three levels are developed

to some extent by analysts.

CSA is a specialized application of situation awareness that applies to a first-level

analysis of cyberattacks and their impact on computer and network operations (Li et al.,

2010; Erbacher et al., 2010). Improving CSA increases the effectiveness of security

analysts in dealing with attacks (Brynielsson, Frank, & Varga, 2016). CSA involves the

17

interpretation of raw security events to identify malicious actors, legitimate users, and

system abnormalities in the context of system operating conditions and known

vulnerabilities (Erbacher et al., 2010).

Review of CSA Literature

Ensdley (1995) introduced the theory of situation awareness to address the

problem that there was no underlying theory that supported moving from discrete

observations to a comprehension of the overall situation. As a result, Endsley (1995)

defined a model for situation awareness to support future discussion and research. The

model contains three levels of situation awareness that are driven by goals, objectives,

and preconceived ideas: Level 1 deals with perceiving the elements of the current

situation; Level 2 entails comprehension of the current situation; and Level 3 focuses on

projecting a future state.

Ehrbacher et al. (2010) built upon Endsley’s (1995) research by applying the

model to CSA. Using cognitive task analysis, Ehrbacher et al. (2010) addressed the need

for improved decision making for security analysts. The results of this study found that

CSA includes impact identification, damage assessment, recovery, projection to the

future, as well as characterization of attacks and attackers (Erbacher et al., 2020). To

uncover the collaborative processes for threat analysts, Ahrend, Jirotka, and Jones (2016)

conducted interviews with threat analysts on their day-to-day practices. This study found

that too much data leads to decisions made with uncertainty and that information is

critical for reducing uncertainty at all stages of CSA (Ahrend et al., 2016). In addition,

Ahrend et al. (2016) found that analysts rely upon what they remember from their own

18

past investigations. As a result, biases from past incidents may incorrectly inform future

decisions when evaluating alerts.

Gutzwiller, Hunt, and Lange (2016) used cognitive task analysis for studying

CSA but focused on determining the goals and information elements needed to make

decisions. The results demonstrated that CSA requires abstraction at several levels: 1) the

network as well as its architecture and state; 2) the world, including emergent threats,

abnormal behaviors, and attack signatures; and 3) the team, with a focus on how teams

work and how they hand-off work to each other (Gutzwiller et al., 2016). Similarly,

Newcomb, Hammell, and Hutchinson (2016) found that high levels of abstraction were

necessary to enable decision making in their experimental study that addressed the

problem of too many intrusion alerts for analysts to evaluate. Bartnes, Moe, and

Heegaard (2016) studied CSA with a goal of improving security incident response. Their

study used semi-structured interviews and found that, since there is an absence of major

events during normal operating conditions as well as a low priority for training, security

analysts are not prepared for incidents when they occur (Bartnes et al., 2016).

Rajivan and Cooke (2017) explored team-level CSA, including human

collaboration and information sharing. Using constructs of shared mental models,

transactive memory, and interactive team cognition, this study used a combination of

cognitive task analysis and event analysis of systemic teamwork (EAST) to empirically

test the results (Rajivan & Cooke, 2017). This study found that the role of teamwork is

important for CSA at every level of cybersecurity defense (Rajivan & Cooke, 2017).

Zhong et al. (2017) captured the cognitive processes of security analysts involved in

triaging security alerts. This study created a framework for retrieving data that is relevant

19

to the triage process to provide context for alerts (Zhong et al., 2017). In addition, this

study created a system with a user interface that automatically identified the information

that analysts required for decision-making (Zhong et al., 2017).

Table 1 summarizes literature from empirical CSA studies. Results from these

studies are important in characterizing the meaning of intrusion alerts in the context of

CSA.

Table 1

Summary of CSA Literature

Study Problem Methodology Findings or Contributions

Erbacher et

al. (2010)

Need for

improved

decision making

for security

analysts

Cognitive task

analysis

CSA goals include impact

identification, damage assessment,

recovery, projection to the future,

and characterization of attacks and

attackers.

Ahrend et al.

(2016)

Uncover

collaborative

processes for

threat analysts

Interviews

with threat

analysts on

day-to-day

practices

Too much data leads to making

decisions under uncertainty.

Information is critical to reducing

uncertainty at all stages. Analysts

rely upon what they remember from

their own past investigations.

Gutzwiller et

al. (2016)

Determine the

goals and

information

elements needed

for CSA

Cognitive task

analysis

Abstraction for CSA includes: 1) the

network and its architecture and

state; 2) the world, including

emergent threats, abnormal

behaviors, and attack signatures; 3)

and the team, with a focus on how

the team works and hands-off work

to each other.

20

Table 1

Summary of CSA Literature (cont.)

Study Problem Methodology Findings or Contributions

Newcomb et

al. (2016)

Too many

intrusion alerts

for security

analysts to

evaluate

Experimental

study

CSA requires a high level of

abstraction to enable decision-

making. CVSS scores are not a good

indicator of vulnerabilities for CSA.

Bartnes,

Moe, &

Heegaard

(2016)

How to improve

security incident

response

Semi-

structured

interviews

Absence of major events prevents

preparation for security incidents,

and training for security incidents is

not a priority in organizations.

Rajivan &

Cooke

(2017)

Understanding

the role of

teamwork in

CSA

Cognitive task

analysis and

event analysis

of systemic

teamwork

Teamwork is important for

improving CSA at every level of

cybersecurity defense processes.

Limitations in teamwork have a

detrimental impact on defense.

Discussion

CSA must consider the network topology (Brynielsson et al., 2016),

vulnerabilities (Erbacher et al., 2010), cyber personas (Brynielsson et al., 2016), and the

current threat landscape (Gutzwiller et al., 2016). In addition, CSA must include a time

component that considers near real-time events, mid-term events, and long-term events

(Brynielsson et al., 2016). Taking all of this information and the various time views into

account, CSA requires a high level of abstraction that enables human decision-making

(Ergacher et al., 2010; Gutzwiller et al., 2016; Newcomb et al., 2016).

In addition to technical security monitoring systems, CSA relies upon a variety of

techniques for understanding current and projected conditions. These techniques include:

timelines of attacks (Erbacher et al., 2010), attack trees (Li et al., 2010), kill chains

21

(Bhatt, Yano, Amorim, & Gustavsson, 2014), Bayesian networks (Franke & Brynielsson,

2014), and the diamond model (Al-Mohannadi et al., 2016). CSA requires both statistical

techniques for understanding events and human knowledge to learn about novel attacks

(Tadda & Salerno, 2010).

CSA is a challenging practice for a variety of reasons. Most current work in

cybersecurity monitoring focuses on single, isolated attacks and does not develop a full

comprehension of the current situation or the projected state (Tadda & Salerno, 2010).

The volume of computer and network data and alerts makes it impossible for security

analysts to know the detailed operation of each computer in a network (Li et al., 2010).

CSA relies upon uncertain, imperfect information (Li et al., 2010). As new information

becomes available, security analysts must update their existing beliefs to address the

uncertainty (Tadda & Salerno, 2010). In addition, CSA is challenging because, under

normal conditions, there is an absence of major security incidents. As a result, security

analysts often lack preparation, training, and documentation to support CSA when

cyberattacks occur (Bartnes et al., 2016).

22

Intrusion Detection

Background

Intrusion detection is the practice of examining information from computers and

networks to identify attacks (Debar et al., 1999). Intrusion detection identifies anomalies

that represent computer network intrusions or uses signature-based approaches that detect

patterns that match known intrusion techniques (Mukherjee, Heberlein, & Levitt, 1994).

An important factor in detecting intrusions is deciding the source of data that will be

monitored. Intrusion detection systems generally perform either network-based or host-

based intrusion detection (Mukherjee et al., 1994). A variety of attacks may be found by

intrusion detection systems, including: 1) unauthorized modification of files to allow

unauthorized access to system information; 2) unauthorized access or modification of

user information; 3) unauthorized modification of information in network components;

and 4) unauthorized use of system resources, including unauthorized account creation

(Chebrolu et al., 2005).

Intrusion detection systems are divided into signature-based detection and

anomaly detection. Signature-based systems rely upon predefined patterns that match the

characteristics of attacks. Anomaly detection learns normal patterns and detects patterns

that have not been encountered or predefined. Both signature-based detection and

anomaly detection have advantages and disadvantages (Chebrolu et al., 2005). Intrusion

detection is also categorized by the means in which data is collected as either network-

based or host-based. Xiao, Chen, and Chang (2014) provide a more comprehensive

listing of types of intrusion detection systems, including: 1) network-based, 2) host-

based, 3) stack-based, 4) protocol-based, and 5) graph based.

23

Table 2

Summary of Machine Learning Approaches to Intrusion Detection

School of

Thought

Algorithms Research Studies

Symbolist Decision trees,

random forests

Sinclair, Pierce, & Matzner (1999); Zhang,

Zulkernine, & Haque (2008); Sindhu, Geetha, &

Kannan (2012); McElwee (2017)

Connectionist Neural networks,

self-organizing

maps, deep

neural networks

Cannady (1998); Rhodes, Mahaffey, & Cannady

(2000); Stopel, Boger, Moskovitch, Shahar, &

Elovici (2006); Ahmad, Abdullah, & Alghamdi

(2009); Daliran, Nassiri, & Latif-Shabgahi (2010);

Sindhu et al. (2012); McElwee & Cannady (2016);

McElwee et al. (2017)

Evolutionary Immune system,

evolutionary

neural networks,

genetic

programming

Dasgupta & González (2002); Han & Cho (2005);

Song, Heywood, & Zincir-Heywood (2005); Toosi

& Kahani (2007); Sindhu et al. (2012)

Bayesian Bayesian

networks, naïve

Bayes

Valdes & Skinner (2000); Kruegel et al. (2003);

Feng, Guan, Guo, Gao, & Liu (2004); Gowadia,

Farkas, & Valtorta (2005); Tylman (2008);

Perdisci, Ariu, Fogla, Giacinto, & Lee (2009); Xu

& Shelton (2010); Koc, Mazzuchi, & Sarkani

(2012); Yassin, Udzir, Muda, & Sulaiman (2013)

Analogistic Support vector

machine (SVM)

Mukkamala, Janoski, & Sung (2002); Chen, Hsu, &

Shen (2005); Tsang, Kwok, & Cheung (2005);

Khan, Awad, & Thuraisingham (2007)

Machine learning approaches can be divided into five primary schools of thought,

as shown in Table 2: symbolist, connectionist, evolutionary, Bayesian, and analogistic

(Domingos, 2015, p. 239). The symbolist approach uses inverse deduction with

approaches like decision trees. The connectionist approach commonly applies neural

networks and back propagation (Domingos, 2015, p. 239). Evolutionary machine learning

24

was inspired by Alan Turing (1950) and uses principles of biological evolution like

random populations, mutation, and survival of the fittest. Bayesians, on the other hand,

rely on probabilistic inference, as developed by Thomas Bayes and formalized by Pierre-

Simon Laplace (McGrayne, 2014, p. 159). Finally, the analogistic approach relies on the

similarity between objects and uses tools like support vector machines (Domingos, 2015,

p. 239).

Review of Literature on Machine Learning for Intrusion Detection

 Pioneering work in intrusion detection began with Denning and Neumann (1985)

and was further developed by Denning (1987). This work sought to detect abnormal

patterns of system behaviors that may represent security violations. This initial work

resulted in an expert system that was expanded upon by Lunt (1990) and was

subsequently developed into network-based intrusion detection (Heberlein et al., 1990).

The remainder of this subsection reviews literature that applied machine learning to

intrusion detection, excluding Bayesian approaches, which are covered in the next

section. This literature review is presented in chronological order, but in most cases, the

literature does not build upon previous research. Instead each applies different types and

combinations of machine learning to the general problem of intrusion detection pioneered

by Denning and Neumann (1985).

Cannady (1998) conducted pioneering work in the application of machine

learning to intrusion detection. This study applied neural networks to supervised misuse

detection and achieved a detection accuracy of 97.5% for testing data. Sinclairet al.

(1999) used both symbolist and evolutionary approaches by combining decision trees and

genetic algorithms. This study found that, when combined, these two methods were

25

useful for defining network connection rules that could be used to create expert systems

(Sinclair et al., 1999). Applying neural networks in a novel approach, Rhodes et al.

(2000) applied Kohonen self-organizing maps to unsupervised intrusion detection. This

study found that training self-organizing maps based on normal operating conditions

allowed the unsupervised detection of buffer overflow attacks, which had not been

present in the training data (Rhodes et al., 2000). Using evolutionary approaches,

Dasgupta and González (2002) used an immune system model for intrusion detection and

found that positive characterization was more precise than negative characterization but

required more resources.

Mukkamala et al. (2002) applied SVMs to intrusion detection and evaluated their

effectiveness using the KDD Cup 1999 dataset. Their study compared the results of

SVMs to neural networks and found that the accuracy was comparable, but SVMs were

limited by their binary output (Mukkamala et al., 2002).

Julisch and Dacier (2002) and Julisch (2003) studied how to cluster intrusion

detection system alerts for root cause analysis. These studies found that by iteratively

identifying alerts that could be categorized as low criticality or false positives, clustering

reduced the quantity of alerts that required review by human analysts (Julisch & Dacier,

2002; Julisch, 2003).

Chen et al. (2005) used SVMs and compared their accuracy to neural networks.

Although Mukkamala et al. (2002) found comparable results between SVMs and neural

networks, Chen et al. (2005) found that SVMs outperformed the neural networks in terms

of detection accuracy.

26

Han and Cho (2005) applied evolutionary neural networks to intrusion detection

using the IDEVAL dataset. This study found that using an evolutionary algorithm for

defining the structure of the neural network reduced the required training time and

improved detection accuracy (Han & Cho, 2005). Also using an evolutionary approach,

Song et al. (2005) used genetic programing and applied it to the KDD Cup 1999 dataset.

They found that hierarchical genetic programming was successful in detecting previously

unseen attacks (Song et al., 2005).

Using an analogistic approach, Tsang et al. (2005) used SVMs for intrusion

detection. They introduced a new algorithm, called a Core Vector Machine, which

reduced the computational complexity of the training process (Tsang et al., 2005). Stopel

et al. (2006) compared neural networks, k-nearest neighbor, and decision trees to detect

computer worms. They found that both neural networks and k-nearest neighbor had

similar accuracy and that neural networks performed classification faster than k-nearest

neighbor (Stopel et al., 2006). Neural networks are generally slower to train than other

algorithms because of many iterations of back propagation, so their conclusion that

neural networks were faster to train is surprising.

Several researchers have combined multiple machine learning methods for

detecting intrusions. As an example, Khan et al. (2007) combined hierarchical clustering

with support vector machines and found that it improved the overall accuracy. Similarly,

Toosi and Kahani (2007) combined soft computing methods for classification with a

genetic algorithm for fuzzy inference and found that this combination successfully

detected normal events and denial of service attacks. Zhang et al. (2008) combined

multiple approaches by applying random forests simultaneously to misuse and anomaly

27

detection. They found that the combination had a higher detection rate and a lower false

positive rate than either independent approach (Zhang et al., 2008).

Hu, Hu, Xie, and Maybank (2009) found that hierarchical graph-theoretic

clustering was effective in active learning for intrusion detection. Ahmad et al. (2009)

focused on detecting denial of service attacks using neural networks. They found that

neural networks were capable of very high detection rates, except for teardown attacks

(Ahmad et al., 2009). Daliran et al. (2010) used neural networks for intrusion detection

but used them for detection of malicious code in a honeypot environment. They found

that neural networks achieved 80% accuracy when using labeled data from this

environment (Daliran et al., 2010).

Sindhu et al. (2012) combined three different schools of thought by applying

genetic algorithms, neural networks, and decision trees simultaneously. This study used

the genetic algorithm for feature selection, followed by a neural network for

preprocessing the data (Sindhu et al., 2012). Finally, this study used a decision tree to

classify the data and found that it had a higher detection rate than using either a neural

network or a C4.5 classifier independently (Sindhu et al., 2012).

Clustering is another machine learning approach that has been applied to intrusion

detection. Dubey and Dubey (2015) used clustering to preprocess data for machine

learning for intrusion detection. Li, Kao, Zhang, Chuang, and Yen (2015) also used

clustering but applied it to network flow data, which was effective in detecting botnet

activity. Silva and Hruschka (2016) found that SLS-IBkM clustering was effective for

data streams, including the KDD Cup 1999 dataset. Expanding upon the work of Rhodes

et al. (2000) in using self-organizing maps for intrusion detection, McElwee and Cannady

28

(2016) focused on preprocessing intrusion detection data for imbalanced datasets. They

found that filtering normal events and using Principal Component Analysis for feature

reduction prior to training Kohonen self-organizing maps improved the detection

accuracy and reduced the clustering time (McElwee & Cannady, 2016).

McElwee (2017) applied active learning to random forest classification by

beginning with unlabeled data and presenting a subset of the data to an oracle for

labeling. This study found that by using k-means clustering to select a sample for the

oracle, 90% the KDD Cup 1999 records could be classified accurately by manually

labeling 0.13% of the total records (McElwee, 2017). Finally, expanding on the approach

of Julisch (2003) in categorizing alerts, McElwee et al. (2017) applied deep neural

networks to classifying alerts from a signature-based intrusion detection system and

found that they were highly accurate for categorizing alerts. This approach was

successful for assigning alerts to the appropriate security analysts as well as for

automating routine reporting tasks (McElwee, Heaton, Fraley, & Cannady, 2017).

Discussion

Regardless of the approach used, intrusion detection systems can be evaluated

using several different measures. Koc et al. (2012) highlight important evaluation criteria,

including accuracy, error rate, and the area under receiver operating characteristics

(ROC) curve. For binary classification, Figure 3 shows the possible outcomes of intrusion

detection (Koc et al., 2012).

29

 Predicted Class

 Normal Attack

A
ct

u
al

 C
la

ss

N
o
rm

al

True Negative

(TN)

False Positive

(FP)

A
tt

ac
k

False Negative

(FN)

True Positive

(TP)

Figure 3. Confusion matrix for binary classification

Using the criteria shown in Figure 3, it follows that accuracy can be defined as the

number of true positives (TP) and true negatives (TN) divided by all possible outcomes:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Further, it follows that, given the accuracy, the error rate can be described as:

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (2)

Intrusion detection is an area of research that faces several on-going challenges.

One of the most important research challenges is the reduction of false positives. Most

false positives are generated because of under-specified signatures, intent guessing, and

limited abstraction capability (Gowadia et al., 2005). To address the problem of false

positives, some studies have focused on identifying the attackers rather than including all

events across all computers and users (Burroughs, Wilson, & Cybenko, 2002). In

addition, intrusions are rare and may be hidden in massive amounts of data (Scott, 2004).

As a result, the prior probability of an attack is very low, so even a highly accurate

intrusion detection system will have high false positive rates (Kruegel et al., 2003).

30

Another challenge in intrusion detection is the large amount of data and the

repetitive work of analyzing and prioritizing the events. Sawyer et al. (2014) found that

after prolonged monitoring activity, there was a noticeable drop in the accuracy of

security analysts. Thus, for routine monitoring of intrusion detection alerts, solutions that

require less human interaction are beneficial. The amount of data is voluminous and

contains redundant features, which also makes detection difficult for intrusion detection

systems because of imbalanced and irrelevant data (Chebrolu et al., 2005).

Finally, intrusion detection systems may be considered high value targets for

attackers. Intrusion detection systems are subject to adversarial evasion, including

deceiving the intrusion detection system or rendering it ineffective (Šrndić & Laskov,

2014; Wang et al., 2014). Laskov and Lippman (2010) found that adversaries may

attempt to modify the training or testing data to alter the detection results. As a result,

intrusion detection must utilize robust classifiers capable of dealing with attacks and

uncertainty.

31

Probabilistic Intrusion Detection

Background

Probabilistic methods for intrusion detection apply statistical formulas and

algorithms. Bayes theorem refers to methods of probabilistic inference that were initially

developed by Thomas Bayes and later formalized by Pierre-Simon Laplace (McGrayne,

2014, p. 159). The purpose of Bayes theorem and Bayesian networks is to allow the

calculation of a prior probability of a hypothesis based on evidence gathered from

observations (Kruegel et al., 2003). Bayesian updating is the process of estimating the

probability of a hypothesis given that an event has been observed (Kruegel et al., 2003;

Chivers, Clark, Nobles, Shaikh, & Chen, 2013). Bayesian approaches also allow the

combination of information from several sources (Scott, 2004; Chivers et al., 2013).

Bayesian methods are preferable over frequency-based statistics for intrusion

detection, since frequency-based methods are more prone to evasion (Swarnkar &

Hubballi, 2016). In addition, Bayesian methods provide a simple way to include prior

information (Scott, 2004) and allow knowledge representation that enables reasoning

with uncertain information (Chebrolu et al., 2005). Probabilistic methods, like Bayes

theorem, allow intrusions to be detected based on soft evidence, or beliefs, rather than

hard evidence (Gowadia et al., 2005). This allows attacks to be presented as probabilities

rather than as binary decisions (Gowadia et al., 2005).

Probabilistic methods help to address the challenges of intrusion detection, in that

there are massive amounts of data, but criminal intrusions are rare (Scott, 2004). This

data imbalance contributes to the base rate fallacy, which shows that even a highly

32

accurate intrusion detection system will have a high false positive rate (Kruegel et al.,

2003). In formal terms:

P(𝐵|𝐴) =
P(𝐴|𝐵)P(𝐵)

P(𝐴)
 (3)

Thus, if the prior probability of an actual intrusion event, P(B), is extremely low,

it will force P(B|A) to be low, making detection more challenging. Perdisci et al. (2009)

found that a false positive rate for imbalanced data must therefore be 10-5 or lower. As a

result, detecting intrusions for rare attacks is more challenging than for common attacks,

since one of the goals of intrusion detection is to keep false alarms low (Pajouh,

Dastghaibyfard, & Hashemi, 2017).

One probabilistic approach is the use of Bayesian networks, which are directed

acyclic graphs, where each node in the graph represents a conditional probability table

(Kruegel et al., 2003). Another probabilistic approach is naïve Bayes, which is the

simplest Bayesian classifier and performs well for datasets that have conditional

independence of their features (Koc et al., 2012). A variation of naïve Bayes is hidden

naïve Bayes, which creates an additional layer to represent a hidden parent for each node

(Koc et al., 2012).

Bayesian approaches show promise for intrusion detection, but there are many

challenges as well. One problem with Bayesian networks is their node ordering

requirement, which may require expert knowledge to develop (Chebrolu et al., 2005) or

the use of an additional algorithm that can estimate the node ordering (Gowadia et al.,

2005). Another challenge with some Bayesian approaches is the computational

complexity, especially for Type 2 algorithms, where the order is not given, which exhibit

O(N4) complexity (Chebrolu et al., 2005). Bayesian networks are also known to have

33

suboptimal models that require large training datasets, which may not be available in

intrusion detection for rare attacks, thus requiring additional methods to alleviate this

constraint (Xiao et al., 2014).

Review of Probabilistic Intrusion Detection Literature

Helman and Liepins (1993) provided a foundational paper for statistical-based

intrusion detection that other researchers have built upon. Valdes and Skinner (2000)

addressed the shortcomings of anomaly and signature-based detection by modeling

attacks as hypothesis and using events to adapt probabilities. This study found that

combining signature-based and anomaly-based intrusion detection using probabilities

improved the detection of distributed attacks (Valdes & Skinner, 2000).

Bayesian networks have been applied to intrusion detection in a variety of

research studies. Kruegel et al. (2003) used full Bayesian networks to model

interdependencies of events and found a reduction in false alerts. Feng et al. (2004) found

that dynamic Bayesian networks for recognizing time-varying plans were effective for

predicting normal and anomalous call sequences. Gowadia et al. (2005) used agent

graphs and Bayesian networks to evaluate beliefs, rather than hard values. This study

found that Bayesian networks can be created by asking experts to create directed acyclic

graphs either manually or by using an algorithm (Gowadia et al., 2005). Tylman (2008)

combined misuse and anomaly detection methods, similar to Valdes and Skinner (2000).

This combined approach used Bayesian classification of Snort alerts at the session level

and found that it uncovered the structure of belief networks (Tylman, 2008).

34

Perdisci et al. (2009) applied Bayesian methods to combine the results of an

ensemble of support vector machine classifiers. The goal of this research was to reduce

false positives, and the results demonstrated high accuracy, especially for shellcode and

polymorphic attacks (Perdisci et al., 2009). Xu and Shelton (2010) used continuous time

Bayesian networks (CTBN) for anomaly detection. This application of Bayesian

networks focused purely on event timing and outperformed existing methods for anomaly

detection (Xu & Shelton, 2010).

Koc et al. (2012) used hidden naïve Bayes for improving the accuracy of intrusion

detection. This study found that hidden naïve Bayes outperformed naïve Bayes for

accuracy and error rate while maintaining the simplicity of naïve Bayes (Koc et al.,

2012). Chivers et al. (2013) focused specifically on the problem of detecting insider

attacks. This research study combined sources using hypotheses and Bayesian updating

and found that updating beliefs based on evidence is effective in detecting attacker nodes

(Chivers et al., 2013).

Yassin et al. (2013) used k-means clustering to separate data and subsequently

used Bayes classification. Their study found that using clustering as an initial step

significantly reduced the false positive rate and increased the true negative rate (Yassin et

al., 2013). Xiao et al. (2014) addressed the shortcoming of Bayesian networks using an

ensemble approach. Bayesian network model averaging selects the best network from a

set of trained networks and performs better than regular Bayesian networks or naïve

Bayes (Xiao et al., 2014). Bayesian network model averaging requires less data for

training, so it is effective for smaller training data sets (Xiao et al., 2014).

35

Swarnkar and Hubballi (2016) used multinomial Bayesian one-class classifiers of

n-grams with probability trees to address the shortcomings of frequency-based and one-

class classifiers. Although this approach had a high detection rate, it was accompanied

with a moderately high false positive rate and high computational complexity (Swarnkar

& Hubballi, 2016). As a result, this approach is not suitable for intrusion detection, since

moderately high false positive rates for highly imbalanced datasets results in much lower

overall accuracy (Kruegel et al., 2003). To address the problem of high computational

complexity and the problem of imbalanced datasets, Pajouh et al. (2017) used two-tier

classification with linear discriminant analysis. This study found that linear discriminant

analysis provided optimal feature reduction and made naïve Bayes more efficient for

classification (Pajouh et al., 2017).

Discussion

Several important themes can be established from previous research. First,

intrusion detection using probabilistic methods should avoid generalization across an

entire dataset, since it makes it easier for criminals to hide (Scott, 2004). For example,

data can be segmented to look at anomalies per user (Scott, 2004; Dash, Reddy, & Pujari,

2011) or per host (Burroughs et al., 2002; Chivers et al., 2013). Second, time is an

important element that should be considered, with a preference to more recent behaviors

(Scott, 2004; Xu & Shelton, 2010; Chivers et al., 2013). Third, categorical data has been

shown to perform better than parametric or continuous data for probabilistic methods for

detecting intrusions (Scott, 2004). Fourth, several previous studies found that

36

probabilistic methods were successful in combining information from several sources,

which is useful for aggregating event-level information to create a more abstract level.

Clustering Ensembles

Background

The purpose of clustering is to understand natural groupings in data (Jain, 2010).

Clustering algorithms divide data into clusters, such that the data within each cluster is

most similar to other data in the cluster, and the data between clusters is most dissimilar

to that of other clusters (Zhou & Tang, 2006). Clusters in data appear in various shapes,

sizes, sparseness, and degrees of separation (Fred & Jain, 2005). Clustering identifies

natural structures in data when the structure, the number of clusters, or shapes of the

clusters may be unknown (Dimitriadou, Weingessel, & Hornik, 2001). Thus, clustering is

a primary technique for unsupervised machine learning (Zhou & Tang, 2006). In addition

to finding natural groupings and structure in data, clustering can perform natural

classification or compression of data into cluster prototypes (Jain, 2010).

A wide variety of clustering algorithms exist, but most can be placed into four

categories. First, iterative square-error partitional clustering, such as k-means clustering,

finds a distance between centroids and data elements and does not impose a structure on

the data (Frossyniotis, Likas, & Stafylopatis, 2004; Jain, 2010). Since iterative square-

error partitional clustering uses a distance measure, it creates hyperspherical clusters and

does not identify novel cluster shapes (Fred & Jain, 2005). Second, hierarchical

clustering organizes data into nested sequences of groups that can be visualized as trees

(Frossyniotis et al., 2004). Third, density-based clustering finds the densest regions of the

feature space that are separated by low density space (Jain, 2010). Fourth, grid-based

37

clustering uses spatial data mining techniques to subdivide a hyperspace into sections that

represent clusters (Frossyniotis et al., 2004).

Clustering is considered a difficult problem (Jain, 2010). As a form of

unsupervised learning, it is hard to select a clustering method in advance that can identify

the same clusters that match those identified by a human expert (Ayad & Kamel, 2008).

Clustering results for different clustering algorithms may be very different using the same

data (Jain, 2010). Further, different clustering runs using the same clustering algorithm

can have different results because of different initialization parameters (Dimitriadou et

al., 2001).

There is no best clustering algorithm (Jain, 2010). No single algorithm exists that

can identify all of the cluster shapes and structures (Fred & Jain, 2005). No clustering

method is available that will find the correct underlying structure for all data sets (Vega-

Pons & Ruiz-Shulcloper, 2011, p. 337). As a result, researchers have found it is best to

use several different clustering algorithms on a given data set and see what works best

(Fred & Jain, 2005). Clustering algorithms are generally optimization problems that

reduce mean-square error, minimize some other type of error, or use similarity functions

(Dimitriadou et al., 2001). The quality of clustering can be evaluated using R-squared,

intra-over inter-variation quotient, BD-index, and SD validity index (Frossyniotis et al.,

2004).

Ensemble approaches have been applied to address many of the challenges

associated with clustering. An ensemble is a multi-learner system, where each component

learner attempts to solve the same task as the others (Strehl & Ghosh, 2002). Clustering

ensembles were the result of research in multiple classifier systems (Dimitriadou et al.,

38

2001; Hadjitodorov, Kuncheva, & Todorova, 2006). The goal of clustering ensembles is

to find a combination of multiple partitions that improves the overall clustering of the

data (Topchy et al., 2005). As a result, clustering ensembles find a consensus partition

that improves that accuracy of individual clustering results (Ayad & Kamel, 2010).

Different clustering algorithms produce different clustering results, and different

runs of the same algorithm provide different results, because of different initialization

parameters. Thus, using multiple clustering approaches simultaneously helps to find the

best clustering solution (Frossyniotis et al., 2004; Jain, 2010). The benefit of clustering

ensembles is that the decision of a group may be more reliable than that of any individual

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 338). As a result, clustering ensembles reduce

the risk of picking the wrong clustering method for a given dataset (Hadjitodorov et al.,

2006).

Previous research has applied clustering ensembles to face recognition, character

recognition, scientific image analysis, and medical diagnosis (Zhou & Tang, 2006).

Research has also evaluated clustering ensembles with large datasets and has found an

improvement in clustering, even for incomplete partitions (Lourenco et al., 2015).

Clustering ensembles can find the right number of clusters in data (Dimitriadou et al.,

2001; Ayad & Kamel, 2010). They also improve the quality and robustness of clustering

(Strehl & Ghosh, 2002; Topchy et al., 2005; Vega-Pons & Ruiz-Shulcloper, 2011, p. 365;

Lourenco et al., 2015). Clustering ensembles identify hidden structures in data (Bakker &

Heskes, 2003) and find clusters of arbitrary and complex shapes (Dimitriadou et al.,

2001; Frossyniotis et al., 2004; Hadjitodorov et al., 2006). As a result, they enable new

insights into a dataset and lower the prediction error (Bakker & Heskes, 2003). Because

39

of their diversity of clustering solutions, clustering ensembles, are more generalizable

than individual clustering algorithms (Zhou & Tang, 2006). Finally, clustering ensembles

can be implemented in a distributed computing environment, allowing them to scale well

for large ensembles (Strehl & Ghosh, 2002).

Clustering ensembles can be viewed as a two-step process. The first step is to

generate the various clustering results, also known as partitions, and the second step is to

evaluate the results using a consensus function (Topchy, Law, Jain, & Fred, 2004; Vega-

Pons & Ruiz-Shulcloper, 2011, p. 338). Figure 4 shows how these two steps fit into the

overall concept of clustering ensembles and the notations that are used in this paper,

which have been adapted from Vega-Pons and Ruiz-Shulcloper (2011, p. 339).

Figure 4. Overview clustering ensembles with formal notation

In this notation, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is a set of objects in which each 𝑥𝑖 is a

multi-dimensional tuple of α dimensions and where 𝑖 = 1 … 𝑛. ℙ𝑋 is the set of all

possible partitions in X, and ℙ = {P1, P2,…., Pm} is the set of partitions generated by the

cluster generation process, such that ℙ ∈ ℙ𝑋. As a result, each partition, 𝑃𝑖 ∈ ℙ, is made

40

up of multiple symbolic cluster labels, 𝐶𝑗
𝑖, such that 𝑃𝑖 = {𝐶1

𝑖, 𝐶2
𝑖 , … . , 𝐶𝑑

𝑖 } is a set of

objects in X with d clusters. In Figure 4, each partition can have varying numbers of

clusters, so the final element in the set is represented as 𝐶𝑝
1, 𝐶𝑞

2, and 𝐶𝑟
𝑚, where 𝑚 = |ℙ|,

The variables p, q, and r, are arbitrary numbers of clusters produced in each partition,

such that 𝐶𝑗
𝑖 represents the jth cluster in ith partition, 𝑃𝑖. The objective of clustering

ensembles is to find a consensus partition by evaluating the partitions, 𝑃𝑖 ∈ ℙ, to find a

clustering result, 𝑃∗ ∈ ℙ𝑋, where 𝑃∗ is a better clustering solution than any 𝑃𝑖 ∈ ℙ.

The cluster generation step creates multiple partitions, ℙ ∈ ℙ𝑋 , that can be used to

find the final clustering solution, 𝑃∗ ∈ ℙ𝑋. There are few constraints on how the clusters

are generated (Vega-Pons & Ruiz-Shulcloper, 2011, p. 340). The most important

requirement of cluster generation is that multiple, diverse partitions are created (Strehl &

Ghosh, 2002). Without diverse partitions, clustering ensembles will not be able to

outperform single clustering algorithms (Hadjitodorov et al., 2006). The initial partitions

can be thought of as noisy versions of true partitions (Topchy et al., 2004). As a result,

weak and less computationally expensive clustering algorithms can be used in the initial

cluster generation with comparable or better results than an individual clustering

algorithm (Topchy et al., 2005).

A variety of approaches exist for creating a diverse initial set of partitions. One

approach for creating diverse partitions is to use different clustering algorithms

(Hadjitodorov et al., 2006; Jain, 2010; Vega-Pons & Ruiz-Shulcloper, 2011). For

example, Dimitriadou et al. (2001) implemented k-means and a competitive learning

algorithm to generate diverse initial partitions. Another approach for creating diverse

partitions is to use different initialization parameters with the same clustering algorithm

41

(Hadjitodorov et al., 2006; Jain, 2010; Vega-Pons & Ruiz-Shulcloper, 2011). This is

commonly implemented using the k-means algorithm, since it has a variety of initial

parameters, is not computationally expensive, and is very popular (Jain, 2010).

Another widely used approach for generating diverse initial partitions is to use

different representations of the data (Jain, 2010). The different representations of the data

may include different subsets of features or a different subset of the objects in the dataset

(Fred & Jain, 2005; Hadjitodorov et al., 2006; Vega-Pons & Ruiz-Shulcloper, 2011).

Different representations of the data may also include projecting the data to different

feature spaces (Fred & Jain, 2005), using algorithms like Principal Component Analysis

(Strehl & Gosh, 2002). Examples of these approaches include random feature selection

(Strehl & Gosh, 2002), bootstrapping (Bakker & Heskes, 2003), boosting (Frossyniotis et

al., 2004), and bagging (Fred & Jain, 2005).

Bakker and Heskes (2003) found that bootstrapping allows local summaries that

are not possible for a single model and reduces model bias by creating a more complex

model. In addition, bootstrapping reduces the tendency to overfit, since the models are

not trained on the full data (Bakker & Heskes, 2003). Frossyniotis et al. (2004) found that

boosting a clustering algorithm for a few iterations provided better results than running

the algorithm several times and choosing the best run.

The cluster evaluation step is one of the most difficult challenges in clustering

ensembles (Vega-Pons & Ruiz-Shulcloper, 2011, p. 341). For ensembles of classifiers,

there are labels, which make the evaluation step a straightforward problem. For clustering

ensembles, there are no labels, which results in a correspondence problem (Dimitriadou

et al., 2001; Strehl & Ghosh, 2002; Frossyniotis et al., 2004). Thus, cluster evaluation

42

combines diverse partitions, without labeled data, to find the true underlying partition that

represent the natural organization of the data (Topchy et al., 2004; Tumer & Agogino,

2008).

Review of Clustering Ensemble Literature

The earliest clustering research began with Dimitriadou et al. (2001). This

seminal work addressed the problem that there was no clear way to combine results from

different clustering algorithms to find a clear partition (Dimitriadou et al., 2001). Using

voting, Dimitriadou et al. (2001) found that clustering ensembles were effective in

finding fuzzy partitions and in finding the right number of clusters. Although this study

was the earliest identified research on clustering ensembles, most subsequent work in

clustering ensembles built upon the work of Strehl and Ghosh (2002). Addressing the

same problem, Strehl and Ghosh (2002) created three new clustering algorithms: 1)

cluster-based similarity partitioning, 2) hypergraph partitioning, and 3) meta clustering.

They found that consensus clustering using ensembles using any of their heuristic

algorithms was better than individual clustering results (Strehl & Ghosh, 2002).

Bakker and Heskes (2003) contributed to ensemble-based approaches by applying

bootstrapping. They found that using bootstrapping to summarize large ensembles into

smaller numbers of representative models reduced overfitting, provided better prediction,

and detected hidden structures in the data (Bakker & Heskes, 2003). Frossyniotis et al.

(2004) addressed the combination of multiple clustering solutions by using sequential

clustering with boosting and found that boost clustering improved the quality and

performance of clustering (Frossyniotis et al., 2004).

43

Another important thread of literature emanated from Topchy et al. (2004). Their

research acknowledged that clustering ensembles work but addressed the problem that

there was no theoretical basis for why they worked (Topchy et al., 2004). This study used

both stochastic and mean partition generation and found that consensus solutions

converge to a true clustering solution as the number of partitions in the ensemble

increases (Topchy et al., 2004). They also found that the probability of not discovering

the true partition decreases exponentially as the number of partitions in the ensembles

increases (Topchy et al., 2004). Continuing this work, Fred and Jain (2005) addressed the

problem of identifying all cluster shapes and structures by using evidence accumulation.

As part of this research, they proposed a theoretical framework and provided criteria for

analysis of the combination of clustering results (Fred & Jain, 2005). Topchy et al. (2005)

examined how to combine partitions using a consensus function by using expectancy

maximization and mutual information consensus functions. They found that weak

partitions may be used in clustering ensembles and still achieve comparable or better

performance than single clustering approaches (Topchy et al., 2005).

Hadjitodorov et al. (2006) explored how to select partitions in clustering

ensembles by using a diversity measure. Using the Adjusted Rand Index, they found that

ensembles with a wide spread of individual diversity were better than ensembles with less

spread and that medium diversity clusters were the best approach (Hadjitodorov et al.,

2006). Zhou and Tang (2006) compared voting, weighted voting, selective weighting,

and selective weighted voting and found that selective weighted voting was significantly

better for cluster evaluation. Tumer and Agogino (2008) further compared a meta

44

clustering algorithm to voting active clusters with reinforcement learning and found that

meta clustering was better.

Not all previous research focused on the approaches for combining clustering

results. Ayad and Kamel (2008) focused on reducing the computing complexity by

beginning with the idea that consensus clustering has O(n2) complexity. By applying

cumulative voting for identifying clustering solutions, this study improved accuracy and

reduced computational complexity to O(n) (Ayad & Kamel, 2008).

Azimi and Fern (2009) explored conflicting results regarding diversity of

clustering ensembles. By using adaptive clustering ensemble selection, this study

concluded that selection must be adaptive to accommodate the datasets, since no

approach worked consistently for all of the datasets that were studied (Azimi & Fern,

2009). Ayad and Kamel (2010) applied cumulative voting as a special case of linear

regression for finding the optimum labeling of clustering ensembles. This study found

that cumulative voting improved the accuracy and stability of results, as well provided an

accurate estimation of the number of clusters (Ayad & Kamel, 2010). Lourenco et al.

(2015) examined the problem that the clustering correspondence does not reflect

uncertainty. This study used a probabilistic interpretation of Evidence Accumulation

Clustering by using Bregman divergence and resulted in improved clustering, even for

incomplete partitions and large datasets (Lourenco et al., 2015).

45

Review of Co-occurrence Consensus Function Literature

Co-occurrence consensus functions analyze the number of times objects belong to

clusters as well as the number of times two objects belong to the same clusters. Co-

occurrence functions include: 1) relabeling and voting, 2) co-association matrix, 3) graph

and hypergraph, 4) Locally Adaptive Clustering (LAC) algorithms, 5) fuzzy methods, 6)

information theoretic methods, and 7) finite mixture models (Vega-Pons & Ruiz-

Shulcloper, 2011, p. 353). Table 3 summarizes the co-occurrence consensus evaluation

methods using these categories.

Table 3

Summary of Co-Occurrence Cluster Evaluation Approaches

Method Description Studies

Relabeling and

Voting

Voting process after solving

labeling correspondence

problem

Dimitriadou et al. (2001); Zhou &

Tang (2006); Ayad & Kamel

(2008); Tumer & Agogino (2008)

Co-Association

Matrix

Cluster results into an

intermediate co-association

matrix

Fred & Jain (2005); Wang et al.

(2009)

Graph and

Hypergraph

Create graphs and

hypergraphs of partitions

and evaluate for consensus

partition

Strehl & Ghosh (2002); Fern &

Brodley (2004)

Locally Adaptive

Clustering (LAC)

Evaluate centroids and

weights for numerical data

Domeniconi & Al-Razgan (2009)

Fuzzy Methods Evaluate clusters as soft

partitions rather than hard

partitions

Frossyniotis et al. (2004); Punera &

Ghosh (2008); Ayad & Kamel

(2010)

46

Table 3

Summary of Co-Occurrence Cluster Evaluation Approaches (cont.)

Method Description Studies

Information

Theoretic

Minimize entropy within

partitions

Strehl & Ghosh (2002); Punera &

Ghosh (2008); Jain (2010)

Finite Mixture

Models

Probabilistic modeling of

subpopulations using a

mixture distribution

Topchy et al. (2005)

Among the relabeling and voting approaches, Dimitriadou et al. (2001) used

voting, based upon classification ensembles, followed by a merging procedure. Zhou and

Tang (2006) measured similarity by counting overlap within clusters and found that

selective weighted voting was the best of the approaches they evaluated. Ayad and Kamel

(2008) developed a relabeling and voting approach that used cumulative voting. Tumer

and Agogino (2008) used voting active clusters with reinforcement learning and used

average normalized mutual information (ANMI) as an objective function.

Co-association matrix approaches map clustering results into an intermediate

representation, called a co-association matrix (Vega-Pons & Ruiz-Shulcloper, 2011, p.

346). For example, Fred and Jain (2005) split the data into a large number of small

spherical clusters, using k-means clustering. Next, they combined the small clusters using

a similarity matrix. Because of this intermediate step, co-association approaches have a

complexity of O(n2) and are limited to smaller data sets. Wang, Yang, and Zhou (2009)

introduced probabilistic methods using a co-association matrix and introduced Bayesian

clustering ensembles.

47

Cluster evaluation approaches that use graph and hypergraph methods transform

the partitions into a graph or hypergraph and cut the graph to obtain a consensus partition

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 347). Many of the foundational approaches to

cluster evaluation were developed by Strehl and Ghosh (2002), who developed three

different heuristics to evaluate hypergraphs: 1) cluster-based similarity partitioning

algorithm (CSPA), 2) hypergraph partitioning algorithm (HGPA), and 3) meta clustering

algorithm (MCLA). Similarly, Fern and Brodley (2004) used a graph partitioning

approach. This approach did not actually solve for normalized mutual information in

clusters, but instead acted more like a co-occurrence evaluation method (Vega-Pons &

Ruiz-Shulcloper, 2011, p. 349).

LAC algorithms identify partitions within numerical features as two sets of

information: 1) the centroids identified in the clusters, and 2) their associated weights

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 355). Domeniconi and Al-Razgan (2009)

developed three consensus functions using this approach: 1) Weighty Similarity Partition

Algorithm (WSPA), 2) Weighty Bipartite Partition Algorithm (WBPA), and 3) Weighted

Subspace Bipartite Partitioning Algorithm (WSBPA). These algorithms were limited in

their use to numerical data and require that the number of clusters be specified initially

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 355).

Fuzzy methods rely on the soft nature of clustering approaches and recognize that

there may be “fuzzy” partitions in the data (Dimitriadou et al., 2001). Some clustering

algorithms that may be used in the cluster generation stage, such as fuzzy c-means and

EM, already produce soft clustering results (Frossyniotis et al., 2004; Vega-Pons & Ruiz-

Shulcloper, 2011, p. 360). As a result, cluster evaluation methods that use fuzzy methods

48

do not attempt to convert the initial soft-clustering results into hard clusters. Some fuzzy

consensus algorithms, such as voting, can perform soft or hard clustering (Ayad &

Kamel, 2010).

Information theoretic approaches minimize entropy within groupings (Jain, 2010).

Strehl and Ghosh (2002) used concepts from information theory and focused on

normalized mutual information (NMI) and average normalized mutual information

(ANMI) as objective functions. Punera and Ghosh (2008) used soft base clustering and

used an information theoretic approach.

Topchy et al. (2005) used a fusion method with probabilities and based their

solution to the consensus problem on a finite mixture model. The result was two new

consensus functions, called quadratic mutual information (QMI) and expectation

maximization (EM), that eliminated the need to solve the label correspondence problem

(Topchy et al., 2005). This approach required that the data be modeled as random,

independent variables and requires a fixed number of clusters in the final clustering

solution (Vega-Pons & Ruiz-Shulcloper, 2011, p. 353).

Review of Median Partition Cluster Evaluation Literature

Median partition-based approaches are optimization problems that maximize

similarity or minimize dissimilarity and can be divided into the following categories: 1)

genetic algorithms, 2) nonnegative matrix factorization (NMF) methods, 3) kernel

models, and 4) Mirkin distance (Vega-Pons & Ruiz-Shulcloper, 2011, p. 350). Table 4

summarizes median partition-based cluster evaluation approaches using these categories.

49

Table 4

Summary of Median Partition Cluster Evaluation Approaches

Method Description Studies

Genetic Algorithms Utilize search capabilities of

genetic algorithms to

minimize or maximize

distance functions

Yoon, Ahn, Lee, Cho, & Kim

(2006); Luo, Jing, & Xie (2006);

Analoui & Sadighian (2006)

Nonnegative Matrix

Factorization (NMF)

Find factors and

dissimilarity using a

nonnegative matrix

Li, Ding, & Jordan (2007)

Kernel Models Similarity measure between

solutions with

approximation

Vega-Pons, Correa-Morris, & Ruiz

Schulcloper (2008, 2010)

Mirkin Distance Counting pairs of points

within clusters and using a

symmetric distance metric

Gionis, Mannila, & Tsaparas

(2007)

Genetic algorithm approaches rely upon the search capabilities of genetic

algorithms and use the highest fitness value, after some stopping criterion is reached

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 354). What distinguishes genetic algorithm

approaches is the type of fitness function employed. One approach, called heterogeneous

clustering ensembles, used ordered pairs with a population generation mechanism and a

fitness function to evaluate the number of overlaps between partitions within each pair

(Yoon et al., 2006). Another approach used an information theoretic fitness function that

minimized entropy between partitions (Luo et al., 2006). Yet another approach

implemented the fitness function as a maximization of probability using a finite mixture

method (Analoui & Sadighian, 2006). A challenge in using genetic algorithms for cluster

evaluation is that different runs may produce different results because of the heuristic

50

nature of these algorithms (Vega-Pons & Ruiz-Shulcloper, 2011, p. 354). It may also be

inferred that such algorithms may settle on local minima or maxima.

NMF methods for cluster evaluation have been used to create a median partition

using a non-negative matrix by finding factors of the matrix and a dissimilarity measure

between partitions (Li et al., 2007; Vega-Pons & Ruiz-Shulcloper, 2011, p. 357). Kernel

models have been used to create a median partition using a similarity measure between

partitions and find an approximate solution (Vega-Pons et al., 2010).

Mirkin distance approaches have been used to create a median partition by

counting pairs. Using this approach, given two clusters, C and C', where N01 is the

number of point pairs in C' but not in C, and N10 is the number of point pairs in the same

partition in C but not in C', then the Mirkin distance for comparing two clusters is M(C,

C') = 2(N01 + N10) (Meilă, 2007). When applied to clustering ensembles, the objective is

to minimize the Mirkin distance between the partitions, and a number of heuristic

approaches approximate this function (Gionis et al. 2007, Vega-Pons & Ruiz-Shulcloper,

2011, p. 342).

Discussion

A number of design criteria should be considered when using clustering

ensembles. In cluster generation, one important consideration is the number of partitions

generated in the first stage. Dimitriadou et al. (2001) found through experimentation that

large numbers of clusters provided the best clustering solution. Topchy et al. (2004)

found that clustering ensembles converged more closely to a true clustering solution as

the number of partitions in the ensemble increased. The probability of not discovering the

51

true partition decreases exponentially as the number of partitions in the ensemble

increases (Topchy et al., 2004). Another important consideration in the clustering

generation step is the diversity of partitions generated. There are conflicting results

related to the diversity of initial partitions (Azimi & Fern, 2009). Ensembles with a wide

spread of individual diversity are better than ensembles with less spread, but spread did

not relate to accuracy (Hadjitodorov et al., 2006). As a result, medium diversity clusters

were found to be the best approach (Hadjitodorov et al., 2006).

In the cluster evaluation stage, there are several design criteria to consider. One

important consideration is the objective function for determining the quality of clustering,

such as a similarity or dissimilarity function (Zhou & Tang, 2006; Jain, 2010; Vega-Pons

& Ruiz-Shulcloper, 2011). Another important consideration is the stopping criterion for

determining when the best clustering solution has been identified (Dimitriadou et al.,

2001).

Finally, several cluster evaluation strategies are computationally complex. Most

consensus clustering algorithms have O(n2) complexity, although some have achieved

O(n) complexity (Ayad & Kamel, 2008). Thus, the selection of a cluster evaluation

strategy should be based on the volume of data and the computational cost of the

algorithm.

52

Intrusion Detection Datasets

Background

Creating datasets for intrusion detection system evaluation is subjective, and new

datasets face several challenges. One of the primary challenges to obtaining realistic

intrusion data is privacy. This is because data from operational networks is the most

realistic but is considered confidential by most network operators (Orfila, Tapiador, &

Ribagorda, 2009). One approach to solving privacy issues is to use simulations, but these

can be unrealistic (Orfila et al., 2009). Another approach to solving privacy concerns is to

create datasets in test beds, but if they are too simple, they will lack realism as well

(Milenkoski, Vieira, Kounev, Avritzer, & Payne, 2015).

Another significant challenge in the creation of intrusion datasets is the labeling

of normal and attack data (Orfila et al., 2009). One approach to labeling attacks is to use

penetration testing to develop the attack data, but this has been criticized for producing

unrealistic datasets (Wheelus, Khoshgoftaar, Zuech, & Najafabadi, 2014; Milenkoski et

al., 2015). Another approach is to use honeypots for collection of attack data, but since

honeypots contain mostly attack data, this too can be considered unrealistic (Milenkoski

et al., 2015). Other approaches develop traces of normal network conditions and separate

traces of attacks (Salem, Reissmann, & Buehler, 2014). Still other approaches use

combinations of operational network data, penetration testing data, and simulation to

create a more diverse, complex dataset for intrusion detection testing (Shiravi, Shiravi,

Tavallaee, & Ghorbani, 2012; Moustafa & Slay, 2015; Singh, Kumar, & Singla, 2015;

Haider, Hu, Slay, Turnbull, & Xie, 2017).

53

Other research on intrusion detection datasets includes methods and software

tools that aid in the creation of intrusion datasets. For example, Shiravi et al. (2012)

created software agents for generating normal network activity and attack activity in test

beds. Salem et al. (2014) developed the OptiFilter toolkit, which can be deployed in large

networks to create continuous datasets for intrusion detection evaluation.

Vasilomanolakis, Cordero, Milanov, and Mühlhäuser (2016) developed the ID2T toolkit

for injecting synthetic attacks into real network packet capture data. Lin, Lin, Wang,

Chen, and Lai (2016) developed PCAPLib to automatically extract, classify, and

anonymize packet capture data.

Review of Intrusion Detection Dataset Literature

The KDD Cup 1999 intrusion detection dataset set a standard for many years for

evaluating intrusion detection approaches. The source data for this dataset came from

DARPA’s MIT Lincoln Labs collection of network packet information called IDEVAL

(Cao et al., 2013). The KDD Cup 1999 dataset was prepared by Stolfo, Fan, Lee,

Prodromidis, and Chan (2000) and was based upon the IDEVAL network packet data,

which contained seven weeks of network traffic. The KDD Cup 1999 dataset was

specifically prepared for the KDD competition (Cao et al., 2013). The KDD Cup 1999

training dataset includes approximately 4.9 million connection records and is labeled as

either normal or with a specific attack vector (Tavallaee et al., 2009). The attacks in the

KDD Cup 1999 dataset fall into four categories: 1) denial of service attack, 2) user to root

attacks, 3) remote to local attacks, and 4) probing attacks (Tavallaee et al., 2009).

54

Over time, the KDD Cup 1999 dataset has been criticized by researchers for three

primary reasons. First, the characteristics of networks have changed since KDD Cup

1999 was created (Qian et al., 2006). For example, the KDD Cup 1999 dataset was

collected on the Solaris operating system, used older applications and operating system

approaches, and represented a time when attacks generally were against only a single

system process at one time (Creech & Hu, 2013). Second, the KDD Cup 1999 dataset

contains 78% duplicate records in the training dataset and 75% duplication in the testing

dataset, which may lead to problems of overfitting (Tavallaee et al., 2009). Third, the

number of records in the KDD Cup 1999 dataset are too numerous, so many researchers

use only subsets of these datasets. This leads to an inconsistent basis for comparison

between intrusion detection systems (Tavallaee et al., 2009).

In response to the criticisms of the KDD Cup 1999 dataset, a number of

researchers have proposed alternative datasets. Table 5 provides a summary of many

notable intrusion detection datasets that have been created as potential alternatives to the

KDD Cup 1999 dataset. Most notable among these are Gure KDD Cup (Perona et al.

2008), NSL-KDD (Tavallaee et al., 2009), MAWILab (Fontugne, Borgnat, Abry,

Fukuda, 2010), ADFA-LD12 (Creech & Hu, 2013), UNSW-NB15 (Moustafa & Slay,

2015), and NGIDS-DS (Haider et al., 2017).

55

Table 5

Summary of Intrusion Detection Dataset Research

Study Data Type Approach Contributions

Stolfo et al.

(2000)

Network

packet data

Extraction of features

from DARPA 1998

dataset

Produced the KDD Cup

1999 dataset. Found that

fraud detection can be

generalized to intrusion

detection.

Qian et al., (2006) Network

packets and

audit logs

Simulation based on

university laboratory

LAN

Feasibility of creating

synthetic IDS testing data.

Data is more useful at user

level than at packet level.

Perona et al.

(2008)

Network

packed data

Combined KDD Cup

1999 dataset with

DARPA 1998

payload data

Produced Gure KDD Cup

dataset. Including payload

and header data improves

detection.

Tavallaee et al.

(2009)

Network

and host

data

Subset of KDD-Cup

1999 dataset to

remove redundancy

and duplicates

Created NSL-KDD dataset,

which is an improved

distribution of data for IDS

testing. Still suffers from

unrealistic network data.

Fontugne et al.

(2010)

Network

data

Combined anomaly

detection results from

MAWI archive by

using SCANN

Created MAWILab dataset,

which is updated daily.

Labeled as Anomalous,

Suspicious, Notice, and

Benign.

Gogoi, Bhuyan,

Bhattacharyya, &

Kalita (2012)

Network

packet and

flow data

Captured from test

bed with over 350

nodes with automated

attacks

Produced TUIDS DDoS

dataset.

Shiravi et al.

(2012)

Network

packet data

Test bed with 21

workstations using α

and β profiles to

generate dynamic test

data

Established criteria for

evaluating datasets: realistic

network, realistic traffic,

labeled dataset, total

interaction capture, complete

capture, and diverse attacks.

56

Table 5

Summary of Intrusion Detection Dataset Research (Cont.)

Study Data Type Approach Contributions

Cao et al. (2013) Network

packet data

Test bed similar to

that used for DARPA

1998 data

Produced LUT13 dataset.

Better in comparison to the

KDD Cup 1999 dataset for

generalizable detection.

Creech & Hu

(2013)

Audit log

data

Single Ubuntu Linux

server with common

software applications

with normal and

attack traces

Produced ADFA-LD12

dataset. Evaluation shows

this dataset has more

complexity than KDD Cup

1999.

Wheelus et al.

(2014)

Network

packet and

flow data

Collected data from

internet service

provider and

manually labeled

Produced SANTA dataset,

which features realistic

normal traffic, penetration

testing traffic, real attacks,

and modern attack types.

Moustafa & Slay

(2015)

Network

packet data

Synthetic generation

using IXIA Perfect

Storm hardware

Produced synthetically

realistic, labeled dataset

called UNSW-NB15.

Singh et al. (2015) Network

and host

data

Statistical approach to

generate a new dataset

using NSL-KDD as a

base dataset

Created Panjab University

Intrusion Data Set (PU-IDS).

Haider et al.

(2017)

Network

packet and

audit log

data

Synthetic generation

using IXIA Perfect

Storm hardware

Produced synthetically

realistic, labeled dataset

called NGIDS-DS.

Developed evaluation

criteria for intrusion datasets.

Discussion

At present, there is not an accepted standard for evaluating the quality and

usefulness of intrusion detection datasets. Milenkoski et al. (2015) surveyed intrusion

detection research literature and developed a method of categorizing intrusion detection

57

evaluation. Their work was inconclusive in offering a standard for evaluation, but it did

provide an overview of the complexities inherent in this area of research. Most recently,

Haider et al. (2017) developed evaluation criteria that consists of six factors: 1)

completeness of capture of audit logs and network packets, 2) inclusion of maximum

possible attacks, 3) representative of current attack behaviors, 4) inclusive of real world

normal traffic that includes realistic timing and complexity, 5) capture of system

maintenance activity that occurs in real operational networks, and 6) ground truth

labeling to represent normal traffic. Since it is a more recent study the Haider et al.

(2017) evaluation criteria may become an accepted standard, but this will require time

and a critical analysis by future researchers.

Since its inception, the UNSW-NB15 dataset has been gaining adoption from

researchers. It is commonly used alongside other datasets. For example, Bamakan, Wang,

and Shi (2017) applied both the UNSW-NB15 and NSL-KDD datasets to multi-class

intrusion detection using Ramp Loss K-Support Vector Classification-Regression.

Kamarudin, Maple, Watson, and Safa (2017) used both UNSW-NB15 and NSL-KDD to

test an ensemble classifier used for anomaly detection. Hajisalem and Babaie (2018) used

both the UNSW-NB15 and the NSL-KDD datasets to test a new hybrid intrusion

detection system using artificial bee colony and artificial fish swarm algorithms.

Papamartzivanos, Mármol, and Kambourakis (2018) used UNSW-NB15, NSL-KDD, and

KDD Cup 1999 for rule induction for intrusion detection. With these recent studies in

mind, it has become an accepted practice to use both the NSL-KDD and UNSW-NB15

datasets to test intrusion detection algorithms.

58

Summary

This chapter reviewed and synthesized relevant research in the areas of CSA,

intrusion detection, probabilistic intrusion detection, clustering ensembles, and intrusion

detection datasets. CSA uses observations of individual events in the broader context of

the situation at hand, with a goal of predicting future states. Intrusion detection is a

method for detecting attacks based upon either signatures of known attacks or the

identification of anomalies. Intrusion detection has contributed to the first level of CSA,

in that it provides individual events for evaluating the situation under conditions of

uncertainty. Probabilistic intrusion detection methods have been effective in intrusion

detection, which provides support for the approach in this research. Clustering ensembles

provide multiple perspectives of a dataset and are effective in detecting patterns and

anomalies in data without prior knowledge of the structures of the data.

In addition, this chapter provided a detailed overview of intrusion detection

datasets. It presented the challenges associated with selecting and generating such

datasets for research. Several criteria should be considered to ensure the suitability of

datasets for evaluating intrusion detection systems. Datasets should be complete and be

representative of current attack behaviors with suitable complexity to reflect operational

networks. Further, they should either be labeled with specific attack types or include a

ground truth labeling to separate normal from anomalous data. Using both the UNSW-

NB15 and NSL-KDD datasets to test intrusion detection systems has become a common

practice in research.

59

Chapter 3

Methodology

Introduction

This chapter describes the approach that was used for implementing and

evaluating the effectiveness of the experiments. This research used clustering ensembles,

bagging, probability analysis, and active learning. The result was the probability that a

computer system was being attacked, based on the event-level observation of anomalies

that were identified using clustering ensembles. The resulting solution not only provided

unsupervised intrusion detection but also, by incorporating active learning, allowed a

level of human interaction by subject matter experts with domain knowledge. This

solution evolved through three experimental stages.

In the first experiment, an algorithm for cluster generation with bagging was

developed. This experiment evaluated and compared different existing cluster generation

parameters to determine their suitability for deriving meaning from intrusion detection

datasets. The second experiment developed an algorithm for probabilistic anomaly

detection, using the clustering ensemble results. The third and final experiment

incorporated active learning to allow domain knowledge from subject matter experts.

60

Solution Design

A multi-stage algorithm was developed that generated a diverse set of initial

partitions, evaluated the results of the initial clustering to detect anomalies, and processed

the output, while incorporating subject matter expert feedback. Figure 5 summarizes the

high-level design of the solution and includes important design considerations that are

described in more detail in this chapter.

Figure 5. High level solution design

Dataset

The selection of a dataset for evaluating intrusion detection systems is important

for allowing algorithms and approaches to be compared to each other (Milenkoski et al.,

2015). Prior research has found that intrusion detection datasets should be realistic,

publicly available, and provide ground truth data (Shiravi et al., 2012; Haider et al.,

61

2017). For this research, it was also important that the dataset identified the specific

computer systems that were experiencing normal or attack activity.

Two datasets were used in evaluating this solution. First, the NSL-KDD dataset

was used as a general dataset that connected this research with prior studies. Although

this dataset is outdated, it provided a basis of comparison with a dataset that lacks the

complexity of more contemporary intrusion datasets. Since the NSL-KDD dataset does

not identify specific computer systems, it could only be used to evaluate the clustering

ensemble approaches and preliminary anomaly detection at the event level. It was not

used to evaluate the probability that a specific computer system was being attacked.

The second dataset that was be used throughout this research was the UNSW-

NB15 dataset, which was created by Moustafa and Slay (2015). One of the most

important features of the UNSW-NB15 dataset was that it identified specific computer

systems with a source IP address and a destination IP address. This allowed the

evaluation of the probability that a specific computer system was under attack. This

dataset is more current than the NSL-KDD dataset, and so it reflects more current attacks.

It is also a more complex dataset for intrusion detection, which means that it is more

difficult to detect attacks, and better tested the capabilities of the algorithm.

Cluster Generation with Bagging

The cluster generation stage of the solution was evaluated using a variety of

criteria. First, an appropriate clustering algorithm was needed that had reasonable

computational complexity and that was well-suited for the dataset. It was expected that k-

means clustering would be suitable for this clustering. The need for diversity in the

62

clustering results was accomplished using bagging, which selected random features from

the dataset to provide diversity. As a result, it was not expected that this solution would

require diverse algorithms.

Another important criteria in developing the cluster generation stage was the

number of partitions to generate. Previous studies found that sufficient partitions are

needed to provide diversity, but they also found that a medium diversity approach

performed better than a larger diversity solution (Azimi & Fern, 2009). This was

important for evaluation to identify the number of clusters that provide the optimal

diversity.

Anomaly Detection

The anomaly detection stage contained two important algorithms. The first

algorithm evaluated the clustering ensemble results to find anomalies. This algorithm

differed from other clustering ensemble approaches in that its objective was not to find

common clusters, but instead to find the anomalies. This overcame the clustering

correlation problem, which arises from the lack of labels, thus simplifying the problem of

cluster evaluation.

This algorithm first evaluated each partition to determine which clustering labels

represented anomalies. To accomplish this, the algorithm used counting and statistical

analysis of the clusters to determine which of the clusters in the partition were

inconsistent with the others. It was expected that anomalous clusters could be detected as

follows:

63

𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, 𝜇𝑐 − 𝐾𝜎𝐶 ≤ |𝐶𝑖| ≤ 𝜇𝐶 + 𝐾𝜎𝐶

1, (|𝐶𝑖| < 𝜇𝐶 − 𝐾𝜎𝐶) ∪ (|𝐶𝑖| > 𝜇𝐶 + 𝐾𝜎𝐶)
 (4)

In this case, |𝐶𝑖| is the number of events identified in cluster, 𝐶𝑖. This number of

records was compared to the mean of the number of events in all of the clusters, 𝜇𝐶,

minus a constant, K, number of standard deviations, 𝜎𝐶. Thus, a cluster would be

considered an anomaly when the number of records in it is outside of the interval of

𝐾standard deviations from the mean number of records in each cluster. The value for

𝐾was determined experimentally to find an appropriate threshold. This algorithm was

tested and updated based on observations in the data.

Next, the algorithm evaluated each event, E, in the dataset to determine the

probability that the event was an anomaly, P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦). This evaluation would be based

on the number of clusters to which it was assigned that were considered anomalies

divided by the total number of clusters. It was expected that event-level anomalies could

be detected as:

P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦) =
1

𝑛
∑ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑛

𝑖=1

 (5)

The result, P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦), represents the probability that an event is an anomaly,

based on the number of partitions that found it was an anomaly. If this probability needed

to be converted into a binary result, a threshold probability would be selected to

determine when the probability represents an anomaly. Instead, the probability was

preserved as a soft metric and was passed to the second algorithm. This algorithm also

was tested and updated based on observations in the data.

64

The second algorithm in the anomaly detection stage determined the probability

that a computer system was being attacked, based on the observation of one or more

anomalies. Given the probability that a computer system was being attacked as P(A) and

the probability that an individual event is an anomaly, P(E), this solution assumed that

prior to any observations, the probability that a computer was under attack would be

uncertain, thus:

P(𝐴) = 0.5 (6)

Further, given the initial probability that the computer system was under attack

and an observation of an anomalous event, the probability of an event being an attack,

given that a computer system being attacked, would be:

P(𝐸|𝐴) = P(𝐴) × P(𝐸) (7)

Following the observation of an event, it would be reasonable to update the prior

probability to reflect the greater certainty, based on the probability of the observation.

Therefore, given a number of observations, N, it was expected that the probability that a

computer system is being attacked would be:

P(𝐴) = P(𝐴) +
1

𝑁
∑ P(𝐸𝑖|𝐴) − 0.5

𝑁

𝑖=1

 (8)

65

The probability portion of the algorithm was developed based on these

assumptions and was modified, as needed, through evaluation of the experimental results.

Active Learning

The active learning portion of this solution was built upon previous approaches

developed by McElwee (2017). Active learning is successful in separating normal from

attack traffic using minimal labeling (McElwee, 2017). Areas for improvement include

more detailed evaluation of the sampling, as well as the use of an improved oracle that

allows the detection of certain rare attacks (McElwee, 2017).

In addition to sampling the events to be sent to the oracle for labeling, this stage

of the algorithm determined how to use this feedback to influence the outcome of the

anomaly detection. The two most likely opportunities evaluated were to override the

probability that an event was indeed anomalous, P(E), or to use the oracle’s response to

update the prior probability that the computer system was under attack, P(A). The

approach for active learning was finalized during the implementation and testing of the

third experiment.

Experiment 1: Cluster Generation

The first experiment evaluated cluster generation strategies. This experiment

focused on the k-means clustering algorithm and used bagging to generate a variety of

clustering results. This experiment first required the implementation of a cluster

generation algorithm that was configurable for a number of parameters. The k-means

66

clustering algorithm was used for this experiment, since it is a widely accepted algorithm

that produces hyperspherical clusters with a relatively low computational complexity.

This experiment determined the number of partitions, ℙ, to generate, such that the

partitions were a subset of all possible partitions, ℙ ∈ ℙ𝐾. A partition is a result from a

clustering solution that contains one or more clusters, 𝑃𝑁 ∈ ℙ, such that 𝑃𝑁 =

{𝐶1, 𝐶2, 𝐶3, … 𝐶𝑘}. As a result, there were a configurable number of partitions in ℙ.

By implementing bagging, each partition had a pseudorandom number of clusters

that were generated and were based on a pseudorandom number of features. The result

was a diverse set of features, a diverse set of partitions with different clustering results,

and a generalizable clustering solution. Using bagging helped to prevent the problem of

overfitting.

Experimental Design

The algorithm that was used to implement the cluster generation is shown in

Figure 6. After predetermining the number of partitions, N, to generate, this algorithm

created a sampling plan that was based upon the number of features provided in the

dataset. For each partition, the sampling plan included a selection of features to use from

the dataset. The values that were selected in the sampling plan were determined

experimentally, with the objective of optimizing the clustering results while minimizing

computational complexity.

67

Figure 6. Algorithm for cluster generation

Following the sampling plan, the algorithm generated N partitions using the k-

means clustering algorithm. The partitions were stored in a data structure that was used in

subsequent stages of the intrusion detection solution, but this data was also available for

export to a CSV file for off-line analysis. An evaluation step was included in this

algorithm, since it is expected that some of the pseudorandom clustering solutions

defined in the sampling plan would not cluster well and could be discarded immediately.

Evaluation

The results of this experiment were analyzed using statistical frequency analysis

of a variety of experimental runs. The focus of this experiment was to determine the

optimal settings for cluster generation before moving on to the next experiment.

68

Experiment 2: Probabilistic Anomaly Detection

The second experiment focused on two algorithms. First, it implemented and

evaluated the effectiveness of using the cluster generation results to identify anomalous

events. Second, it implemented and evaluated the probability that a computer host was

being attacked.

Experimental Design

Figure 7 shows an overview of the algorithm that was developed for this

experiment. The input to this algorithm was the set of partitions that were developed in

the first experiment. For each partition in the set, the algorithm determined if each cluster

in the partition was an anomaly. From this a probability was calculated to determine if an

event represented an attack, P(E). After computing P(E) for each event, these

probabilities were used to update a list of each computer system to reflect the probability

that the computer system was being attacked, P(A).

69

Figure 7. Algorithm for probabilistic anomaly detection

It was expected that the computational complexity would be approximately

O(2n), where n is the number of events in the dataset. It was also expected that the

computational complexity of cluster anomaly evaluation would be negligible, since it was

limited by the number of partitions. Further, it was expected that the loop through each

event would have a linear computation requirement and would thus be O(n). The

evaluation to determine if a computer system was compromised would be limited to the

number of computer systems times the average number of events per computer system,

70

which should be approximately O(n). This appears to be reasonable for large intrusion

datasets and this was evaluated as part of this experiment.

Evaluation

The results of this experiment were evaluated for accuracy compared to the

ground truth data provided with the datasets. For the NSL-KDD dataset, this experiment

only evaluated the accuracy of the anomaly detection at the event level, since individual

computer systems were not identified in this dataset. For the UNSW-NB15 dataset, this

experiment evaluated both the accuracy of the anomaly detection and threshold at which

a computer system’s probability of attack was reasonable.

To evaluate the accuracy of the probability that an event is anomalous, it was

expected that a threshold probability would be selected to represent an event as an attack.

Then the accuracy and error rates would be calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9)

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (10)

To evaluate the probability that a computer system was being attacked, it was

expected that subsets of the data would need to be presented to the algorithm to create a

variety of scenarios to simulate targeted attacks against a reduced number of computer

systems; however, after analysis of the datasets, the entire dataset was presented to the

algorithm. The evaluation included the numbers of normal and attack records injected

71

into the algorithm along with a comparison of the probabilities of a computer system

being attacked.

Experiment 3: Active Learning

The third experiment incorporated active learning into the overall solution. In this

context, active learning was implemented to sample certain unlabeled data that would be

sent to the oracle. An oracle is an entity that knows what the correct label is for the data

and represents a human subject matter expert. The objective was to minimize the amount

of data that needed to be sent to the oracle while ensuring that sufficient labels were

provided to improve the overall machine learning output. Since this experiment included

datasets that had ground truth data to distinguish between attacks and normal events, the

oracle was created programmatically, rather than relying on a human subject matter

expert.

The queries to the oracle were used to determine if an event was an attack or

normal, as well as to determine if the probability that a computer system being attacked

was correct. Thus, the oracle stored ground truth information for both types of events.

The specific events and computer systems that were presented to the oracle were based

on a sampling strategy that was built upon prior research (McElwee, 2017). The results

were compared to arrive at a recommended sampling approach.

The incorporation of the feedback into the probabilistic anomaly detection portion

of the solution was determined after the second experiment had been completed. It was

expected that the results of the active learning would be used to update P(E) prior to

updating P(A) for a computer system. It was also expected that the active learning results

72

could also update P(A) directly, based on feedback that a computer system was not being

attacked.

Evaluation

The accuracy results from Experiment 2 were used as a basis of comparison for

this experiment. The objective was to improve the accuracy of the overall solution by

incorporating domain knowledge from subject matter experts, as represented by the

oracle. In addition, this experiment evaluated the accuracy compared to the number of

requests sent to the oracle, since it was obvious that if all events and computer system-

level decisions were sent to the oracle, then 100% accuracy could have been achieved.

Thus, it was expected that there would be a sigmoid curve when the accuracy was plotted

against the number of requests sent to the oracle.

Resource Requirements

This research had three primary resource requirements. First, datasets for

intrusion detection were required as the input. This research did not create a new

intrusion detection dataset, but rather relied upon existing, publicly available datasets. As

mentioned previously, the two datasets that were used for this research were the NSL-

KDD and UNSW-NB15 datasets.

The second resource requirement was a development environment, including

computing hardware, programming languages, and libraries for data handling and

machine learning. The development environment consisted of a laptop computer running

Microsoft Windows 10. The intrusion detection system and algorithms were developed

73

using Python and the PyCharm integrated development environment. Programming

libraries that were implemented in this research included scikit-learn machine learning

algorithms and pandas DataFrames. TensorFlow was considered for its deferred

processing capabilities and its ability to use GPU processing, but it was not used in this

research.

The third resource requirement was an environment for processing the data using

the algorithms that had been developed. Most of these algorithms performed satisfactorily

in the development environment, but cloud computing services were used to provide

additional processing capabilities that reduced the computation time for cluster

generation.

Summary

This chapter introduced the approach for probabilistic clustering ensembles with

active learning for intrusion detection. It provided a high-level overview of the solution

and the algorithms, as well as details regarding the datasets that were used. This chapter

included the approach that was used for cluster generation and the method for

probabilistic anomaly detection. This chapter also provided an overview of how active

learning would be applied after the probabilistic anomaly detection function was

finalized.

This chapter described the testing and evaluation approaches that were used

through a series of three experiments. The first experiment focused on cluster generation

to evaluate the optimal way to generate diverse clustering solutions that were used later

for anomaly detection. The second experiment focused on probabilistic anomaly

74

detection by applying probabilistic reasoning to the observation of events, leading to the

probability that a computer system was being attacked. Finally, the third experiment

enhanced the solution with active learning approaches and compared the accuracy to that

of the probabilistic anomaly detection experiment.

75

Chapter 4

Results

Introduction

This chapter describes the implementation and results of the three experiments

conducted in this research. It details the design and implementation of the algorithms by

using a class diagram and a description of the classes. Next, this chapter describes the

selected datasets and preprocessing.

This chapter presents the design of each experiment as well as the evaluation

approach, observations, and preliminary conclusions. The first experiment implemented

and evaluated cluster generation, and the results, which were surprising, were

foundational to the remainder of the experiments. The second experiment implemented

the anomaly detection algorithm and evaluated the use of the partitions of clustering

results to find both the probability that an event was an anomaly, P(E), and the

probability that a computer system was under attack, P(A). Once again, the results were

different than expected, but demonstrated the success of the algorithm. Finally, the third

experiment implemented active learning to update P(A) by correctly labeling a sampling

of events for the computer systems that were found to have anomalies. The result was

that false positives were eliminated after updating the labels of a small number of events.

76

Experiment Design and Implementation

The experiments implemented the algorithms defined in Figures 6 and 7 in

Chapter 3, Methodology. The experiments were implemented using object-oriented

design with Python 2.7 using custom classes. In addition, existing libraries were used,

such as pandas and scikit-learn. Figure 8 illustrates the class diagram that was used for

the experiments.

Figure 8. Class diagram

CEPIDS Class

The class name, CEPIDS, is the acronym for Clustering Ensemble Probabilistic

Intrusion Detection System. This class is responsible for the high-level execution of the

algorithm, the calculation of P(E) for events, the calculation of P(A) for computer

77

systems, and for implementing the active learning. It contains a main() function that

allows it to be executed directly for complete execution of cluster generation,

probabilistic anomaly detection, and active learning. The main() function orchestrates the

experiments. The CEPIDS class instantiates objects from the subsequent classes,

NSLKDD, UNSW, and PartitionGenerator.

NSLKDD and UNSW Classes

The NSLKDD and UNSW classes allowed their representative datasets to be

loaded from a file and preprocessed. After loading and preprocessing the datasets, these

classes could return a DataFrame that represented the full dataset, a list of features, or a

list of labels to allow for post processing and evaluation. Although these two datasets

have different sets of features, using the same functions in each class allowed the

implementation of each dataset to be abstracted and allowed the classes to be used

interchangeably in the CEPIDS class. As a result, these experiments can be extended to

other datasets by implementing the specific details of the dataset in a new dataset class

without modifying the logic of the algorithms. The NSLKDD and UNSW classes were

implemented in a single Python package, called datasets.py, which contained global

functions for preprocessing, such as filling in missing data values, encoding categorical

features, and scaling values to a range.

78

PartitionGenerator Class

The PartitionGenerator class implemented the cluster generation. The

initialization of this class required an instantiated dataset object, which could be either of

the NSLKDD or UNSW classes. The class initialization also included configurable

parameters for selecting the number of partitions to generate, the minimum and

maximum ratio of features to include in generating the partitions, as well as the minimum

and maximum number of clusters to generate in each partition. Using the upper and lower

bounds of features and the number of clusters, the initialization of this class selected

pseudorandom numbers within those bounds. After the initialization was completed, the

cluster labels were retrieved using the get_labels() function, which returned a list of

numeric cluster labels for each partition. Each list of cluster labels followed the order of

the original dataset, which allowed them to be joined directly with the original dataset as

new features.

Development Environment

The development environment for the experiments in this research used PyCharm

for Python development. Source code was controlled in a private github repository. Most

experiments were conducted on a Lenovo laptop with an Intel Core i7 CPU running at 2.1

GHz, with 8 GB of memory, and with the Windows 10 operating system. Cluster

generation was found to be the most computationally complex problem, so to generate

sufficient numbers of clustering ensemble results for validation, Amazon EC2 instances

were also used. These instances were optimized for computational work, with 3 GHz,

Intel Xeon Platinum CPUs and 8 GB of memory. The EC2 instances allowed 10

79

simultaneous executions of the cluster generation, with 100 partitions per execution. This

reduced the time to generate 10 sets of partitions to the same time it took to produce a

single set.

Input Dataset Analysis and Preparation

The first step in conducting the experiments was to evaluate the datasets and

preprocessing requirements that were needed. This preparation work was performed

using Microsoft Excel pivot tables. This allowed various ways of examining the datasets

to understand their characteristics.

NSL-KDD

NSL-KDD was one of the datasets used for this research. The NSL-KDD dataset

is a subset of the KDD Cup 1999 dataset that eliminates duplication. An analysis of the

composition of the NSL-KDD training dataset found that it contained only 53% normal

records. An important assumption of this research is that network events are highly

imbalanced, with a predominant number of normal records and a very small number of

attack records. Since nearly half of this dataset contained attacks, it could not be

considered as representative of normal network conditions, which might only contain a

very small percentage of attacks. To compensate for this even distribution of normal and

attack records, a derived dataset was prepared that contained a subset of the events from

the NSL-KDD dataset. By eliminating the denial of service records, the resulting dataset

contained 98% normal records and was more representative of a realistic network that

was experiencing targeted attacks. All subsequent experiments using the NSL-KDD

80

dataset used this derived dataset. Table 6 shows the distribution of classes in both the

original and the derived datasets.

Table 6

Original and Derived NSL-KDD Dataset Label Distributions

Original Dataset

Derived Dataset

Label Records % Total

Label Records % Total

Normal 67,343 53%

normal 67,343 98%

neptune 41,214 33%

warezclient 890 1%

Satan 3,633 3%

guess_passwd 53 0%

ipsweep 3,599 3%

buffer_overflow 30 0%

portsweep 2,931 2%

warezmaster 20 0%

Smurf 2,646 2%

land 18 0%

Nmap 1,493 1%

imap 11 0%

Back 956 1%

rootkit 10 0%

teardrop 892 1%

loadmodule 9 0%

warezclient 890 1%

ftp_write 8 0%

Pod 201 0%

multihop 7 0%

guess_passwd 53 0%

phf 4 0%

buffer_overflow 30 0%

perl 3 0%

warezmaster 20 0%

spy 2 0%

Land 18 0%

Total 68,408 100%

Imap 11 0%

Rootkit 10 0%

loadmodule 9 0%

ftp_write 8 0%

multihop 7 0%

Phf 4 0%

Perl 3 0%

Spy 2 0%

Total 125,973 100%

81

UNSW-NB15

The UNSW-NB15 dataset includes a variety of files. First, this dataset includes

full packet capture data that was the source data for all subsequent files generated for this

dataset. Next, it includes a training and testing dataset that was created using the packet

capture data and is well-suited for machine learning. This data is similar in composition

to the NSL-KDD dataset in that it does not include computer system identifiers, such as

IP addresses. As a result, these files were not useful for this research. The UNSW-NB15

dataset includes four comma separated value files that were generated from the packet

capture data using Argus, Bro, and customized algorithms. These files each represent

network connection events that include source and destination IP addresses for each

event. It is this set of data that was used for this research, since it included the classes of

the events and uniquely identified the source destination IP addresses. The classes of

events in this dataset consisted of: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,

Reconnaissance, Shellcode, Worms, and Normal.

The experiments used one of the four files, UNSW-NB15_1.csv, which contained

700,001 events, 44 unique destination IP addresses, and 40 unique source IP addresses. It

was representative of the other datasets. This file was highly imbalanced, consisting of

97% normal records. As a result, no modifications or derived datasets were needed. Table

7 shows the distribution of classes in this dataset.

82

Table 7

UNSW-NB15_1 Dataset Label Distributions

Label Records PctTotal

Normal 677,786 96.8%

Generic 7,522 1.1%

Exploits 5,409 0.8%

Fuzzers 5,051 0.7%

Reconnaissance 1,759 0.3%

DoS 1,167 0.2%

Backdoors 534 0.1%

Analysis 526 0.1%

Shellcode 223 0.0%

Worms 24 0.0%

Total 700,001 100%

Experiment 1: Cluster Generation

Design

The purpose of the first experiment was to build a foundation of cluster

generation that could be used in subsequent experiments. All clustering performed in this

experiment used the k-means clustering algorithm. It was important to ensure that each of

the partitions of clustering results was diverse, so that the resulting partitions represented

multiple perspectives of the data groupings. To generate diverse clusters, this experiment

began with a bagging plan that included a pseudorandom set of features and a

pseudorandom number of clusters per partition. As a result, each partition was built using

a different number of features from the original dataset, and those features were randomly

selected. Each partition also had a different number of clusters.

83

To select the features to be used in each partition, this experiment was constructed

to be generalizable to other datasets. As a result, the bagging plan included a maximum

of 75% of the available features from the original dataset, and a lower limit of 25%. For

example, the UNSW-NB15 dataset contains 49 features, including a label and an attack

category. Since the label and the attack category represent the class of each event, this

dataset has 47 features that are useful for clustering. Thus, the number of features that

were clustered in each of the partitions generated for the UNSW-NB15 dataset ranged

from 12 to 35.

To select the number of clusters to generate for each partition, this experiment

included parameters for the minimum and maximum number of clusters to generate.

Initial experiments used low numbers of clusters, such as a minimum of four and a

maximum of 20. The results were analyzed using Microsoft Excel pivot tables, and the

result was that each cluster had a predominantly high number of normal records. The

ranges were expanded until a more reasonable distribution of normal records was

identified. The final range for the number of clusters in each partition was a minimum of

40 and a maximum of 100. Increasing the upper limit further may have improved the

distribution of events in each cluster, but higher numbers of clusters required more

computational processing time, so a maximum of 100 was selected as a trade-off between

performance and diversity. Prior research showed that ensembles of weak clusterers were

better than single clustering algorithms, so it was expected that any limitations of cluster

generation would be offset in the cluster evaluation stage (Topchy et al., 2005).

The first experiment produced a DataFrame and an output file that were used for

the evaluation of the results as well as for the input to the second experiment. Each

84

partition that was generated was represented as a feature appended to the original dataset.

Each partition was assigned a feature name that began with the letter P and was followed

by the partition number, such as P0 through P99. The values that were populated in the

partitions were integers that represented the clustering labels for each partition. Initial

experiments began with as few as 10 partitions and went as high as 100 partitions to

provide a diverse set of clustering solutions for the second experiment.

Analysis

The most important analysis in this first experiment was to determine if there was

a clustering generation strategy that would allow anomalies to be detected according to

the formula:

𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, 𝜇𝑐 − 𝐾𝜎𝐶 ≤ |𝐶𝑖| ≤ 𝜇𝐶 + 𝐾𝜎𝐶

1, (|𝐶𝑖| < 𝜇𝐶 − 𝐾𝜎𝐶) ∪ (|𝐶𝑖| > 𝜇𝐶 + 𝐾𝜎𝐶)

(11)

Using this formula, normal clusters were defined by counting the number of

records in each cluster, |Ci|, and determining if it was within K standard deviations of the

mean number of events in each cluster. Anomalies were defined by evaluating if the

count of records in each cluster was outside of the range of normal events.

The cluster generation performed in this experiment began with the NSL-KDD

dataset because of its smaller size and lower computational resource requirements. The

output file from this experiment was imported into Microsoft Excel and was analyzed

using pivot tables. This analysis isolated a sample partition, calculated the mean number

of records per cluster, calculated the standard deviation of the number of records per

85

cluster, and calculated a variable number of standard deviations above and below the

mean.

This experiment found that the results of the clustering ensembles were not

distributed as originally expected. Instead, clusters with the highest numbers of records

predominantly had 100% normal classes. Clusters with the least number of records had a

mixture of normal and anomalous classes, but none of these clusters could be identified

as exclusively anomalous. Table 8 shows an example of what was found for a sample

partition in one of the tests. In this test, the partition had 13 clusters, labeled from 0 to 12.

Using the total record count for each cluster, two standard deviations above the mean was

14,944. The only cluster that had more records than this threshold was cluster 6, which

had 14,974 records. Cluster 6 consisted exclusively of normal records. It is also important

to note that two standard deviations below the mean was -4,420, making it impossible for

any clusters to have a number of records below this threshold.

Table 8

Distribution of Attack and Normal Records in Sample Partition

Label Attack Normal Total

6 0 14,974 14,974

8 4 14,466 14,470

2 0 8,704 8,704

1 0 6,668 6,668

4 582 5,234 5,816

5 44 4,534 4,578

3 79 3,555 3,634

7 4 2,705 2,709

9 0 2,337 2,337

12 0 2,087 2,087

0 311 821 1,132

10 12 845 857

11 29 413 442

86

After observing this distribution in the sample of partitions, this experiment

implemented a Python function that generated the pivot tables for all partitions generated

using the NSL-KDD dataset. The result was consistent across approximately 99% of the

partitions. Exploring this observation further, the function was applied to the UNSW-

NB15 dataset and found that clusters with a number of records above the threshold were

consistently normal classes with a high degree of accuracy. As a result, this experiment

modified the original assumption by finding that:

𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, |𝐶𝑖| ≥ 𝜇𝐶 + 𝐾𝜎𝐶

< 0.5, |𝐶𝑖| < 𝜇𝐶 + 𝐾𝜎𝐶

(12)

This updated function resulted in a high degree of certainty of what was normal

when two standard deviations was selected for K. For clusters with less than this

threshold number of events, there was uncertainty, which is reflected as a probability of

0.5 or less that an event is anomalous. It was expected that a higher number of standard

deviations above the mean would result in a more accurate prediction of normal events,

but this resulted in less records that met the criteria and did not improve the accuracy.

After evaluating the clustering results using ranges of K standard deviations from 1.5 to

4, this experiment found that 2 standard deviations performed consistently well in

identifying the normal classes.

Computational Efficiency

Cluster generation was the most computationally expensive algorithm of the

experiments. Although this was not a significant problem for the NSL-KDD dataset,

87

because of the lower number of records, it was a problem for the UNSW-NB15 dataset.

When this experiment used a maximum number of 20 clusters per partition, the cluster

generation was relatively quick; however, to obtain a more diverse set of clusters, a

maximum of 100 cluster centers per partition was selected. For the UNSW-NB15 dataset,

to generate 100 partitions with up to 100 clusters per partition, the algorithm took

approximately 12 hours to complete.

The computational complexity for the scikit-learn implementation of k-means

clustering is O(knT), where k is the number of clusters, n is the number of samples, and T

is the number of iterations. This was prohibitive, since all 700,001 samples in the

UNSW-NB15 dataset were used, and since the maximum number of clusters per partition

was as high as 100. In addition, a maximum of 300 iterations was selected for the k-

means clustering algorithm, which was time consuming to run as many as 100 partitions

per cluster generation run.

The generation of partitions can be scaled by running the algorithm in parallel.

This experiment overcame some of the computational complexity by submitting the input

dataset to the same algorithm running on multiple servers. This allowed the generation of

the multiple sets of partitions needed for this research to be created in the same time it

took to create a single set of partitions.

Observations

This experiment created a diverse set of partitions using the k-means clustering

algorithm to generate a range of clusters per partition from 40 to 100 for the NSL-KDD

and UNSW-NB15 datasets. It also found that a random bagging plan that ranged from

88

25% to 75% of available features was effective in generating diverse partitions. Most

importantly, this experiment found that the distribution of clustering results by counting

the events in each cluster did not clearly identify anomalous events, but rather could be

used accurately to identify certain normal records. The result of this experiment indicated

that P(E) for each event was not a hard probability but rather was a soft belief that could

be used as an observation for updating P(A|E). The observations from this experiment

were carried forward into the second experiment to determine if the results could be used

for anomaly detection.

Experiment 2: Probabilistic Anomaly Detection

This experiment consisted of two algorithms. Beginning with the partitions

generated in the first experiment, this algorithm first calculated the probability that an

event was an anomaly, P(E). As found in the first experiment, this turned out to be a

belief that had more accuracy for normal events than for anomalies. The second

algorithm used P(E) to predict the probability that a computer system was experiencing a

cyberattack, P(A).

Design of P(E) Calculation

Using the proposed algorithm from the methodology section, it was expected that

in this experiment, P(E) would be calculated as the average of the anomalous clusters:

P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦) =
1

𝑛
∑ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑛

𝑖=1

(13)

In the first experiment, this research found that it was more predictive to look at

which clusters contained normal records rather than which clusters contained anomalies.

89

To evaluate this algorithm and update this formula, this experiment used Microsoft Excel

pivot tables to find the number of partitions that classified each event as normal. Figure 9

illustrates the distribution of the event-level classes according to the number of votes that

a set of 100 partitions generated using the NSL-KDD dataset. In this graph, 100

represents all the partitions voting that the event was normal and 0 represented no votes

that the event was normal. The normal and attack classes are shown on different axes

and at different scales because of the imbalanced nature of the dataset. It is important to

note in this graph that above the midpoint number of votes, which was 50, this approach

demonstrated high accuracy for detecting normal events.

Figure 9. Graph of votes for NSL-KDD dataset

90

A different pattern was found when evaluating the partitions generated using the

UNSW-NB15 dataset with 100 partitions. Figure 10 shows the distribution of events

compared to the number of votes. An interesting observation with this dataset was that

there were no instances where all the partitions voted that an event was normal. The

highest number of votes was 42. The pattern looked smoother, with less but more

pronounced peaks. Despite the differences with the NSL-KDD dataset, it still held that

above the midpoint number of votes, which was 21, this number of votes was still an

accurate method for detecting normal events with a high degree of accuracy.

Figure 10. Graph of votes for UNSW-NB15 dataset

Since this evaluation found that P(E) was certain for highly normal clusters and

uncertain for others, the calculation of P(E) was updated to assign a belief ranging from

0, for normal clusters, to 0.5, for uncertain clusters. To calculate P(E), this experiment

first evaluated Canomaly using two standard deviations as the threshold. Then using voting,

91

for each event, this experiment counted the number of partitions that indicated the event

was normal. At this point, it was found that all events, with a few exceptions, were

normal when the number of normal votes ranged from the maximum of votes to half of

the maximum of votes. Thus, the algorithm was developed to assign P(E) = 0 for events

in this upper half of the votes. Below this range, the algorithm scaled P(E) to range from

0, for the most votes below the midpoint, to 0.5, for events with the least number of

votes.

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 =
max(𝑣𝑜𝑡𝑒𝑠)

2
 (14)

𝑃(𝐸) = {

0, 𝑣𝑜𝑡𝑒𝑠𝐸 ≥ 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

(1 −
𝑣𝑜𝑡𝑒𝑠𝐸

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

2
, 𝑣𝑜𝑡𝑒𝑠𝐸 < 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

 (15)

Analysis of P(E) Calculation

The accuracy of P(E) was calculated for events that fell above the midpoint of the

maximum votes, since below the midpoint P(E) was found to represent only a level of

uncertainty. Below this threshold, events were assigned a belief, which was suggestive

that there may have been anomalies, but did not reflect an accurate prediction of which

events are anomalies. Thus, for events above the midpoint, there were no true positives

and no false positives, since above this threshold, only true negative and false negative

results were expected:

92

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

=
0 + 𝑇𝑁

0 + 0 + 𝑇𝑁 + 𝐹𝑁

=
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

(16)

For the NSL-KDD dataset, the accuracy of P(E) above the midpoint was found to

be:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

=
27,394

27,394 + 3

= 0.999890

(17)

For the UNSW-NB15 dataset, the accuracy of P(E) above the midpoint was found

to be:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

=
129,508

2129,508 + 6

= 0.999954

(18)

Although P(E) was not highly predictive of anomalies, it was highly predictive of

normal events. Thus, for determining that a computer system was under attack, P(A), this

experiment proceeded to determine if the accumulation of uncertainty was predictive that

a computer system was being attacked.

93

Design of P(A) Calculation

After calculating P(E) for each event, this experiment then calculated P(A) as the

probability that a computer system was being attacked. Through experimentation, it was

found that calculating P(A) could be reduced to:

P(𝐴) =
1

𝑁
∑ P(𝐸𝑁)

𝑁

𝑖=1

 (19)

In this formula, P(A) is the probability that a computer system is experiencing an

attack, and N is the number of events attributable to each computer system. Thus, P(A)

represents the mean of P(E) when grouped by the computer system.

In calculating P(A) it was necessary to evaluate both computer systems involved

in each event, the source IP address (srcip) and the destination IP address (dstip). Using

the UNSW-NB15 dataset, it was not clear which of these two addresses represented the

attacker or the target of the attack, so it was important to consider both addresses in

calculating P(A).

Analysis of P(A) Calculation

Results varied when calculating P(A) for these two different IP addresses in each

event. Experimentation found that to calculate P(A) for the srcip, it was more effective to

group the events using a combination of srcip and dstip and to calculate the average P(E)

for each pair. Further grouping the resulting dataset on just the srcip, the result was that

for P(A) ≥ 0.8, the srcip addresses involved in attacks were consistently predicted with

100% accuracy. For the dstip address, using just the average P(E) allowed the dstip

94

addresses to be identified for P(A) ≥ 0.8; however, there were some false positives of

dstip addresses that were identified but were not involved in attacks. The inaccurate

classifications were generally for destination IP addresses that had few events, which

made them appear to be anomalies when compared to the entire dataset. Table 9 shows

the results for a sample run including both the srcip and the dstip. The IP addresses that

have P(A) ≥ 0.8 are shown in bold. The Result column indicates if the result was a true

positive (TP), false positive (FP), or true negative (TN). There were no false negatives.

Table 9

Prediction of P(A) by srcip and dstip

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.12 TP 1.000

175.45.176.3 TP 0.920

149.171.126.14 TP 0.997

175.45.176.2 TP 0.907

149.171.126.15 TP 0.996

175.45.176.0 TP 0.842

149.171.126.11 TP 0.993

149.171.126.0 TN 0.622

149.171.126.13 TP 0.992

149.171.126.2 TN 0.621

149.171.126.19 TP 0.988

149.171.126.4 TN 0.619

149.171.126.16 TP 0.987

149.171.126.5 TN 0.609

149.171.126.10 TP 0.977

149.171.126.3 TN 0.608

149.171.126.17 TP 0.963

149.171.126.6 TN 0.608

224.0.0.1 FP 0.920

149.171.126.9 TN 0.604

149.171.126.18 TP 0.903

149.171.126.7 TN 0.601

10.40.170.2 FP 0.887

149.171.126.1 TN 0.600

32.50.32.66 FP 0.861

149.171.126.8 TN 0.597

10.40.182.3 TN 0.784

59.166.0.0 TN 0.465

10.40.85.30 TN 0.656

59.166.0.9 TN 0.462

59.166.0.9 TN 0.616

59.166.0.4 TN 0.459

59.166.0.8 TN 0.607

59.166.0.1 TN 0.459

59.166.0.2 TN 0.599

59.166.0.8 TN 0.440

224.0.0.5 TN 0.597

59.166.0.3 TN 0.420

59.166.0.6 TN 0.596

59.166.0.7 TN 0.412

59.166.0.1 TN 0.591

59.166.0.6 TN 0.409

59.166.0.7 TN 0.589

95

Table 9

Prediction of P(A) by srcip and dstip (cont.)

srcip Result P(A)

dstip Result P(A)

59.166.0.5 TN 0.389

59.166.0.0 TN 0.587

59.166.0.2 TN 0.376

59.166.0.3 TN 0.583

10.40.85.1 TN 0.231

59.166.0.4 TN 0.582

149.171.126.18 TN 0.174

59.166.0.5 TN 0.564

149.171.126.15 TN 0.169

175.45.176.1 TN 0.525

10.40.182.1 TN 0.160

10.40.85.1 TN 0.513

149.171.126.10 TN 0.158

175.45.176.2 TN 0.509

149.171.126.19 TN 0.110

192.168.241.243 TN 0.449

149.171.126.11 TN 0.090

149.171.126.1 TN 0.343

149.171.126.16 TN 0.086

149.171.126.5 TN 0.339

10.40.170.2 TN 0.078

175.45.176.0 TN 0.312

10.40.182.3 TN 0.078

149.171.126.0 TN 0.305

149.171.126.13 TN 0.066

149.171.126.7 TN 0.301

149.171.126.12 TN 0.061

149.171.126.6 TN 0.294

10.40.85.30 TN 0.056

149.171.126.8 TN 0.293

192.168.241.243 TN 0.053

149.171.126.9 TN 0.273

127.0.0.1 TN 0.026

175.45.176.3 TN 0.262

149.171.126.17 TN 0.022

149.171.126.3 TN 0.231

149.171.126.2 TN 0.228

149.171.126.4 TN 0.225

10.40.198.10 TN 0.137

127.0.0.1 TN 0.000

To ensure that the results were consistent, this experiment included ten runs of the

algorithm, using a different set of randomly generated partitions for each run. Table 9

shows the accuracy of calculating P(A) for the srcip and dstip. As Table 10 demonstrates,

the results were reproduceable for each of the runs. Thus, the algorithm did not require a

specific set of features or feature engineering to be successful, since the random partitions

of clusters proved to be successful for all runs.

96

Table 10

P(A) Accuracy for Ten Runs

srcip

dstip

Run # TP TN FP FN Accur.

TP TN FP FN Accur.

1 4 41 0 0 1.00

10 28 6 0 0.86

2 4 41 0 0 1.00

10 27 7 0 0.84

3 4 41 0 0 1.00

10 26 8 0 0.82

4 4 41 0 0 1.00

10 31 3 0 0.93

5 4 41 0 0 1.00

10 31 3 0 0.93

6 4 41 0 0 1.00

10 30 4 0 0.91

7 4 41 0 0 1.00

10 28 6 0 0.86

8 4 41 0 0 1.00

10 25 9 0 0.80

9 4 41 0 0 1.00

10 30 4 0 0.91

10 4 41 0 0 1.00

10 30 4 0 0.91

Computational Efficiency

It was expected that the computational complexity for this algorithm would be

O(2n). By using pandas DataFrame objects extensively, this algorithm did not directly

loop through each event. It did loop through each partition, which resulted in 100

iterations. The algorithm relied upon the built-in optimizations of the DataFrame class to

perform calculations for the entire dataset. As a result, it can be estimated that this

algorithm’s complexity may be expressed as less than O(n). In testing, algorithms for

calculating P(E) and P(A) completed in less than one minute. Thus, the use of the

algorithm for anomaly detection did not add any significant computational penalty

beyond the performance of multiple runs of the k-means clustering that were used in the

first experiment to generate the partitions.

97

Observations

The results of this experiment demonstrated that unsupervised anomaly detection

at the event-level was not accurate for detecting attack classes. Instead, event-level

detection using this approach found a portion of the normal classes with highly accurate

results. Using this observation to calculate a belief that an event may be anomalous was

found to be highly effective in calculating the probability that a computer system was

under attack. By examining the srcip and dstip separately, the accuracy was consistently

100% for the srcip and ranged from 80% to 93% for the dstip. As a result, this

experiment demonstrated that the clustering ensemble probabilistic intrusion detection

system detected the computer systems that were under attack. It accomplished this

prediction without relying upon labeled data for training and without training during

attack-free time periods to detect abnormal events.

Experiment 3: Active Learning

Design

The third experiment incorporated active learning into the overall intrusion

detection system. When initially proposing this research, it was unclear how active

learning would be applied, since it depended on how the first two experiments were

implemented. Since active learning queries an oracle to label of a select number of

records, the primary design consideration was how large of a sample to submit to the

oracle. Options considered were to sample from the events to update P(E) or to sample

from the computer system level to update P(A).

98

Figure 11 lists the pseudocode for this algorithm. This algorithm selects all srcip

and dstip computer systems that had P(A) ≥ 0.8. From this subset of all computer

systems, a pseudorandom sample of events for each of these computer systems was

selected. These sampled events were submitted to the oracle for labeling. If the oracle

returned a response that the event was an attack, then the P(A) for that srcip or dstip was

updated to 1.0, signifying that the computer system was experiencing an attack.

For each srcip with P(A) ≥ 0.8:

 Collect events with srcip

 Create sample of N records from collected events

 For each record in sample:

 Ask oracle for labels

 If number of attack labels > 0:

 Update P(A) to 1

 Else:

 Update P(A) to 0

For each dstip with P(A) ≥ 0.8:

 Collect events with dstip

 Create sample of N records from collected events

 For each record in sample:

 Ask oracle for labels

 If number of attack labels > 0:

 Update P(A) to 1

 Else:

 Update P(A) to 0

Figure 11. Pseudocode for active learning algorithm

Unlike McElwee (2017), in which a separate oracle class was constructed to

simulate the human analyst, this experiment relied upon the DataFrame that was used as

a data structure for holding both the original dataset and the results. Attack labels were

identified by querying the label column of the DataFrame. As a result, the queries always

resulted in accurate labels, even for rare events.

99

Analysis

Since the goal of this research was to reduce the workload of human analysts, the

purpose of this experiment was to find the minimum number of samples to submit to the

oracle for labeling that would still result in a high accuracy. To be representative of the

events assigned to each srcip and dstip, a sample size of √𝑁 was selected as the starting

point, where N was the number of events for each srcip or dstip. Initial experimentation

with this sample size concluded that active learning consistently identified computer

systems under attack with 100% accuracy. Next, this experiment proceeded to reduce the

number of samples and evaluate the accuracy, as shown in Table 10.

Table 10

Active Learning Accuracy

srcip

dstip

Sample Accuracy

Sample Accuracy

√𝑁 317 100.0%

499 100.0%

√𝑁
3

 73 100.0%

134 100.0%

√𝑁
4

 35 100.0%

70 100.0%

√𝑁
5

 23 100.0%

47 97.7%

√𝑁
10

 10 100.0%

22 95.4%

The results in Table 10 show that for srcip, the accuracy is 100% for all sample

sizes, but this is because the original accuracy of the anomaly detection in the second

experiment was already 100%. Thus, the dstip is a better indicator of sample sizes for

active learning. Each sample size improved the original accuracy of anomaly detection

100

for the dstip. Sample sizes of √𝑁
4

 and above achieved accuracies of 100%. To confirm

this sample size was the minimum for achieving this accuracy, this sample size was run

10 times and achieved the same results each time.

Figure 12 shows the accuracy of the active learning compared to the sample size.

For sample sizes smaller than √𝑁
4

, the accuracy shows a downward slope.

Figure 12. Accuracy of active learning compared to sample size

Computational Efficiency

The algorithm for active learning with a simulated oracle was highly efficient,

since it had access to P(E), P(A), and the original features, including the label. Thus, by

creating the random sample using the DataFrame, the algorithm could stop as soon as a

single attack was identified. For each run, the computation time for this algorithm was a

few seconds. It was estimated that, where N is the total number of that could be sent to

101

the oracle for labeling, the complexity was 𝑂(2√𝑁
4

), since for each sampled record, the

algorithm completed the same loop for both the srcip and the dstip.

Observations

This experiment demonstrated that by sampling events for srcip and dstip with a

sample size of √𝑁
4

, the residual error from anomaly detection could be reduced to

achieve 100% accuracy. This approach relies on the anomaly detection algorithm

identifying all of the true positives, since this active learning approach focuses on

eliminating false positives, not on reducing false negatives. As a result, when the active

learning algorithm was applied to the UNSW-NB15 dataset with 700,001 events, a

human analyst would have been required to review a maximum of 105 events to identify

all of the computer systems involved in an attack with 100% accuracy.

Summary

This chapter described the design and implementation of the experiments

performed in this research. It showed the class diagram of the major components of the

system and reviewed the function of each. In addition, this chapter provided a more in-

depth description of the dataset characteristics and preprocessing needed to ensure that

the datasets were highly imbalanced.

This chapter also reviewed each experiment, including specific design

considerations, analysis, and observations. Since computational efficiency has been an

important consideration when implementing clustering ensemble evaluation, the

computational efficiency was discussed for each experiment. Each of the experiments

102

contributed to the overall demonstration that clustering ensembles were effective for

anomaly-based intrusion detection. The first experiment identified a characteristic of

imbalanced datasets that allowed the isolation of a significant portion of normal events.

Using this characteristic of imbalanced data, the second experiment assigned a belief to

the events to reflect uncertainty. In addition, the second experiment estimated the

probability that a computer system was experiencing an attack by calculating the

probability as the average belief at the event level and by scaling the result to range from

zero to one. The second experiment found that for source IP addresses involved in

attacks, the algorithm was 100% accurate for probabilities ≥ 0.8. For destination IP

addresses involved in attacks, the algorithm was between 80% and 93% accurate for

probabilities ≥ 0.8. Finally, the third experiment used the results of the previous

experiment to incorporate active learning, which allowed a maximum of 105 events to be

labeled by the oracle, thus improving the accuracy to 100% for the destination IP address.

103

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

This research set out to address the problem that there was no approach to

intrusion detection that reduced the workload of human analysts by providing a

probabilistic prediction that a computer was experiencing a cyberattack. The goal for

addressing this problem was to improve anomaly-based intrusion detection by adding

meaning to alerts by using probabilistic clustering ensembles. By adding meaning to

alerts, the desired outcome was to reduce the workload of security analysts.

Through the implementation of three experiments and the analysis of their results,

five primary conclusions emerge. The first conclusion was that, as proposed, clustering

ensembles provided multiple perspectives on the event data. These different perspectives

were important in this research, since each partition only identified a single cluster of

normal events. In some cases, the partition did not identify any normal events, but

together the partitions provided sufficient observations to determine which computer

systems were being attacked.

Second, for highly imbalanced datasets, which are characteristic for intrusion

detection, clustering ensembles were effective in identifying certain normal events with a

high degree of accuracy. This was likely because of the highly imbalanced nature of the

input dataset. By identifying clusters that contained more than two standard deviations

above the mean of events in each cluster, approximately 95% or more similar events from

104

the partition were represented in the cluster. Although normal events were scattered

throughout the remaining clusters and mixed with attack events, the identification of a

large population of normal events enabled them to be eliminated from the belief that they

contained attacks.

The third conclusion of this research was that unsupervised intrusion detection did

not require an accurate probability that an event was an attack. Prediction of events in this

research resulted in a range of uncertainty, represented by a probability of 0.5, to a level

of accurate identification of some normal events. Using the event-level prediction as a

belief and aggregating that belief to the computer system level enabled prediction of

computer systems under attack with 80% to 93% accuracy.

The fourth conclusion of this research was that active learning enabled a

minimum level of interaction by human analysts while increasing accuracy to 100%. The

algorithms developed in this research detected the computer systems experiencing attacks

in a dataset with 700,001 events by requesting information from the oracle for 105

events. As a result, this form of anomaly detection combined with active learning may be

effective for reducing the workload of human analysts in practice.

The fifth conclusion of this research was that the use of clustering ensembles for

probabilistic intrusion detection, when combined with active learning, provided a highly

accurate method for identifying computer systems that were experiencing a cyberattack.

This method used unsupervised machine learning to identify the computer systems with

the highest probability of an attack. It then used a minimal number of interactions with

the oracle to accurately identify the affected systems.

105

Implications

This research contributed to intrusion detection in several ways. First, the

application of clustering ensembles to intrusion detection is a relatively new area of

study. This research provided a new approach for anomaly-based intrusion detection that

relied on the highly imbalanced nature of the data used to detect intrusions.

Next, this research found that combining uncertain event-level probabilities

allowed the estimation of the probability that a computer system was under attack with

reasonable accuracy. This was an important contribution to research, since it

demonstrated that event-level detection does not need to be highly accurate to provide a

higher level of meaning to alerts. This opens the possibility that combining alerts from

existing intrusion detection methods may also be effective when aggregated at the

computer system level.

This research also contributed to intrusion detection by contributing research that

supports the use of a new dataset for intrusion detection – the UNSW-NB15 dataset.

Since its release in 2015, it has been used in a growing number of research studies. This

research further strengthens the support of a more contemporary dataset for intrusion

detection and helps to better position the UNSW-NB15 to replace the outdated KDD Cup

1999 dataset.

Lastly, this research contributed to existing research in active learning for

intrusion detection. At present, there does not appear to be research that applies active

learning to use events to detect the probability of a computer system level attack. This

contribution makes it possible to further reduce the workload of human analysts in

reviewing alerts.

106

Recommendations

This research laid a foundation for additional intrusion detection research. Three

specific areas for future research should be considered. First, improvements in cluster

partition evaluation will help to better qualify which partitions should be included in the

anomaly detection. A better understanding of which partitions contribute to a good

solution may help to improve the accuracy of anomaly detection at the event level, which

will contribute to an improved calculation of the probability that a computer system is

experiencing an attack. Second, this research should be extended to combine events from

multiple security monitoring systems, such as host-based audit logs, signature-based

alerts, and network flow data. Observations of potential attacks from these systems can

be grouped using the computer system identifiers, such as IP addresses. As a result, this

may enable improved CSA because of additional perspectives. Third, the experiments in

this research combined observations at the event-level and grouped the results on the

source and destination IP addresses. This approach may also be useful for combining

event-level observations at the user-level, where user login names are provided within the

event data. Future research should apply probabilistic clustering ensembles to insider

threat detection to identify organization insiders who may pose a threat to the security of

systems and data.

In addition, this research presents an approach that may be used to improve

existing security monitoring practices in organizations. Security analysts generally

respond to event-level security alerts. In many cases, these alerts provide insufficient

information to determine the credibility, significance, and impact of the alert. Using the

107

results of this research, it is possible to provide a broader picture of CSA by focusing

security analysts on the computer systems that are most likely being attacked. This

change in focus will allow security analysts to more quickly determine a course of action

without relying on their own observations to create a mental picture of what is occurring.

In addition, the algorithms used in this research can be adapted to include additional

datasets as well as to be verified in operational networks. Finally, this research should be

applied to off-line analysis of network data to support the newly emerging practice of

cyber threat hunting, in which security analysts examine various data sources to identify

computer systems that may have become compromised but did not trigger alerts from

regular monitoring systems (Sqrrl Data, 2018).

108

Summary

Introduction

This research focused on the problem that there was no approach to intrusion

detection that reduced the workload of human analysts by providing a probabilistic

prediction that a computer is experiencing a cyberattack. Intrusion detection is the

practice of examining information from computers and networks so that cyberattacks can

be identified (Debar et al., 1999). Effective intrusion detection is important for

organizations, since earlier detection of cyberattacks helps to reduce the impact and

recovery costs (Ponemon Institute, 2016). Yet many intrusions are missed because of the

volume of alerts that analysts must review, resulting in fatigue and errors in judgement

(Julisch, 2003; Sawyer et al., 2014).

This research addressed several problems associated with intrusion detection.

First, it addressed the high false-positive rates that accompany highly imbalanced data

sets, where there are very few attacks scattered through large datasets of normal events.

To address this problem, this research used observations of sparse attack events to predict

the probability that a computer system was experiencing an attack. This was more

accurate than predicting attacks at the event level. In addition, this research applied active

learning, which allowed simulated human interaction to improve the overall accuracy.

Second, this research addressed problems of overfitting and evasion. These are important

problems, since machine learning algorithms that are overfitted are unable to find novel

attacks and are not resilient to evasive adversarial tactics (Sommer & Paxson, 2010).

Third, this research addressed the issue of using suitable datasets for evaluation of

intrusion detection systems. The KDD Cup 1999 dataset has been the standard dataset for

109

evaluation since its inception, but it does not reflect current operating systems and does

not contain identifiers of the source or destination computer systems involved in each

event. This research addressed this problem by using the NSL-KDD dataset, to provide a

connection to past research, as well as the UNSW-NB15 dataset, to provide a more

contemporary view of network events.

This research was built upon a foundation of past research in intrusion detection.

It applied CSA to establish a basis for deriving higher levels of meaning from intrusion

alerts. It reviewed past machine learning approaches to intrusion detection research,

especially probabilistic methods, to uncover the challenges and gaps in current research.

It assessed the features and capabilities of clustering ensembles, with a focus on cluster

evaluation. Finally, this research reviewed available intrusion detection datasets that had

been developed and used in past research studies.

Methodology

To address the problems associated with intrusion detection, this research

implemented three experiments. The purpose of the experiments was to test the initial

assumptions that clustering ensembles with probabilistic analysis and active learning may

be effective for intrusion detection. The experiments were conducted using a prototype

that was created using Python, pandas, and scikit-learn.

The first experiment evaluated cluster generation strategies and examined how to

create diverse clustering results that could be used in subsequent experiments. The cluster

generation approach used bagging to select a pseudorandom number and set of features

for each partition of clustering results. Clusters were generated using the k-means

110

clustering algorithm. The generated clusters were evaluated to test the initial assumptions

about the characteristics of what represented normal and attack events.

The second experiment implemented and tested an algorithm that used the

partitions of clusters that were generated in the first experiment to predict the probability

that an event was an anomaly. Next, the algorithm used the event-level probabilities to

calculate the probability that a computer system was experiencing an attack. To test if

this algorithm was effective, this experiment evaluated the accuracy of both the event-

level and the computer system-level probabilities.

The third experiment added active learning, which allowed the simulation of

human interaction, to fine tune the overall results. The active learning was implemented

by selecting a random sampling of the event-level probabilities for the computer systems

that had ≥ 0.8 probability of experiencing an attack. This experiment evaluated the

minimum number of samples that could be used to achieve improvements in accuracy.

Results

The first experiment found that using bagging and k-means clustering to generate

a range of partitions with 40 to 100 clusters in each partition provided diverse results.

This experiment found that the clustering results did not successfully identify anomalous

events, but instead had higher accuracy in predicting the most normal clusters. By

evaluating the mean number of events in each cluster of each partition, this experiment

found that clusters that contained a number of events greater than or equal to two

standard deviations above the mean number of events were consistently normal records.

None of the events below this threshold were identified exclusively as attack events.

111

Using the results of the first experiment, the second experiment calculated the

probability of an event being an anomaly from a range of 0 to 0.5. Thus, the event-level

probability was more of a measure of uncertainty or belief. Next, it calculated the

probability that a computer system was under attack by finding the mean of the event-

level probabilities for each source and destination computer system. This experiment

evaluated the event-level probabilities and determined that, above a midpoint threshold of

votes from each partition, the prediction of normal events was highly accurate. Next, this

experiment evaluated the accuracy of the probability that a computer system was

experiencing an attack. This test was conducted 10 times, using a new bagging plan for

each run. The accuracy of detection using the source IP address was 100% for all 10 runs.

The accuracy of detection using the destination IP address ranged from 80% to 93%.

The third experiment evaluated the effect of adding active learning by selecting

event-level samples for each of the computer systems that had probabilities of ≥ 0.8. The

sample sizes tested ranged from √𝑁 to √𝑁
10

. This experiment found that samples of √𝑁
4

consistently resulted in improved accuracy that a computer system was experiencing an

attack. As a result, for the 700,001 events in the UNSW-NB15 dataset, sampling a total

of 105 events resulted in 100% accuracy.

These results demonstrated that the use of clustering ensembles for probabilistic

intrusion detection, when combined with active learning, provided a highly accurate

method for identifying computer systems that were experiencing a cyberattack. The use

of clustering ensembles provided multiple perspectives on the event data and enabled the

prediction of attacks at the computer system-level by relying on the high-confidence

normal events, even though the event-level prediction of anomalies was inaccurate.

112

Contributions and Future Work

This research contributed to the field of intrusion detection by applying clustering

ensembles to unsupervised anomaly detection. It is expected that this approach can be

generalized to apply to other types of anomaly detection that are characterized by highly

imbalanced datasets. Additional research should evaluate this in other applications,

especially insider threat detection and cyber threat hunting.

Another important contribution of this research is that it demonstrated that

combining uncertain event-level data to predict the probability that a computer system is

experiencing an attack is highly accurate. This approach provided more meaning than

individual events alone could provide and may be expanded in future research to combine

alerts from a variety of intrusion detection systems as well as other security event

monitoring systems. This will further reduce the workload of human analysts by creating

a higher level of situational awareness.

This research also contributed to intrusion detection by applying a relatively new

dataset, UNSW-NB15. As a result, this research strengthened support for a more

contemporary dataset for intrusion detection. Future research should evaluate the use of

probabilistic clustering ensembles with active learning to new datasets, as they are

developed. In addition, future research should apply this approach using operational

network data from an actual organization to validate that it can extend from research into

practice.

Finally, this research added to previous studies related to reducing the human

workload and resulting fatigue that are associated with security monitoring. It provided a

113

practical approach to apply unsupervised machine learning to prioritize the computer

systems that are most suspicious, and it minimized the amount of human decision-making

required. As a result, it may allow security analysts to more quickly determine a course of

action when dealing with cyberattacks.

114

Appendices

115

Appendix A

Source Code Availability and Usage

All the source code for the experiments in this research is available at the author’s

GitHub repository. It is available for researchers to enhance and extend this research in

intrusion detection systems. This appendix describes how to obtain the source code, the

package dependencies, configuration parameters, and execution instructions. Many of

these instructions are specific to the Ubuntu operating system and may need to be adapted

for other systems.

Source Code

The source code may be downloaded from GitHub at:

https://github.com/stevenmcelwee/cepids

From the command line, the source code may be cloned by:

git clone https://github.com/stevenmcelwee/cepids.git

Package Dependencies

Python 2.7 and PIP

The software used in this research was designed to work with Python 2.7. PIP was

used to install additional packages. Python and PIP can be installed using:

sudo apt install python2.7 python-pip

https://github.com/stevenmcelwee/cepids

116

scikit-learn

scikit-learn is required for the KMeans class, which performs the clustering. It can

be installed using:

pip install scikit-learn

pandas

When installed as an operating system package, the pandas package satisfies

several additional dependencies, such as numpy. This can be installed using:

sudo apt install python-pandas

Configuration Parameters

The following parameters are configurable by updating variables at the beginning

of the cepids.py file:

dataset_file

The filename of the input dataset. This must be either the absolute path to the file

or relative to the directory from which the cepids.py package is executed. Example:

'datasets/derived/kdd_u2r_r2l.csv'.

dataset_class

The class name of the input dataset. This must be either UNSW or NSLKDD.

117

num_partitions

 The number of partitions that will be generated. This is used subsequently when

evaluating the partitions as well. The recommended setting is: 100.

min_feature_ratio

The minimum number of features that will be used in the bagging plan for

generating diverse clusters. The recommended setting is: 0.25.

max_feature_ratio

The maximum number of features that will be used in the bagging plan for

generating diverse clusters. The recommended setting is: 0.75.

min_clusters

The minimum number of clusters that will be created in each partition. The

recommended setting is: 40.

max_clusters

The maximum number of clusters that will be created in each partition. The

recommended setting is: 100.

input_partition_file

Optional. The source file for a previously generated set of partitions. If a CSV

was retained from Experiment 1, it can be used as the input for Experiment 2 to save time

118

and prevent recreation of partitions each time changes are made in the second

experiment. If left blank, Experiment 1 will generate new partitions. If provided, it must

contain either the absolute or relative path to the CSV partition file. Example:

'experiment1_partitions_unsw_100p_01.csv'.

num_stdev

This is the number of standard deviations above the mean number of clusters that

will be used as a threshold to determine the clusters that contain normal classes. The

recommended setting is: 2.

sample_size_exponent

The exponent for creating the sample size for active learning. For example: √𝑁
4

=

𝑁
1

4. To set the exponent, this can be set as a decimal value, or for readability, as an

equation, such as: 1.0/4. Note that in Python, the decimal value of 1.0 is needed to

prevent Python from truncating this to an integer. The recommended value is: 1.0/4.

active_learning_output_file

The desired path to the results file to be created in Experiment 3. The output file

is a CSV file that contains the srcip, dstip, P_E, P_A_SRC, P_A_DST, and label for each

event in the original dataset. Example: 'results/final_output.csv'.

119

Appendix B

Dataset Descriptions

NSL-KDD

The derived version of the NSL-KDD dataset retains the characteristics of the

NSL-KDD dataset, but removes the denial of service events. It includes only user-to-root

attacks, remote-to-local attacks, and normal records is available at:

https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2

l.zip

The data was created using a Python script that is available at:

https://github.com/stevenmcelwee/cepids/blob/master/create_traces.py

The NSL-KDD dataset is composed of 41 attributes, a label, and a cluster ID that

was created specifically for the NSL-KDD dataset. The table below shows the specific

field names that are included as well as the datatypes.

https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2l.zip
https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2l.zip
https://github.com/stevenmcelwee/cepids/blob/master/create_traces.py

120

Table 11

NSL-KDD Attributes and Datatypes

Attribute Datatype Description

duration continuous length (number of seconds) of the

connection

protocol_type symbolic type of the protocol, e.g. tcp, udp, etc.

service symbolic network service on the destination, e.g.,

http, telnet, etc.

flag symbolic normal or error status of the connection

src_bytes continuous number of data bytes from source to

destination

dst_bytes continuous number of data bytes from destination to

source

land continuous 1 if connection is from/to the same

host/port; 0 otherwise

wrong_fragment continuous number of ``wrong'' fragments

urgent continuous number of urgent packets

hot continuous number of “hot”' indicators

num_failed_logins continuous number of failed login attempts

logged_in continuous 1 if successfully logged in; 0 otherwise

num_compromised continuous number of “compromised” conditions

root_shell continuous 1 if root shell is obtained; 0 otherwise

su_attempted continuous 1 if “su root” command attempted; 0

otherwise

num_root continuous number of “root” accesses

num_file_creations continuous number of file creation operations

num_shells continuous number of shell prompts

num_access_files continuous number of operations on access control

files

num_outbound_cmds continuous number of outbound commands in an ftp

session

is_host_login continuous 1 if the login belongs to the “hot” list; 0

otherwise

is_guest_login continuous 1 if the login is a “guest” login; 0

otherwise

count continuous number of connections to the same host as

the current connection in the past two

seconds

srv_count continuous number of connections to the same service

as the current connection in the past two

seconds

serror_rate continuous % of connections that have “SYN” errors

121

Table 11

NSL-KDD Attributes and Datatypes (cont.)

Attribute Datatype Description

srv_serror_rate continuous % of connections that have “SYN”

errors for same service connections

rerror_rate continuous % of connections that have “REJ” errors

srv_rerror_rate continuous % of connections that have ``REJ'' errors

for same service connections

same_srv_rate continuous % of connections to the same service

diff_srv_rate continuous % of connections to different services

srv_diff_host_rate continuous % of connections to different hosts

dst_host_count continuous Number of connections having the same

destination host IP address

dst_host_srv_count continuous Number of connections having the same

port number

dst_host_same_srv_rate continuous The percentage of connections that were

to the same service, among the

connections aggregated in

dst_host_count

dst_host_diff_srv_rate continuous The percentage of connections that were

to different services, among the

connections aggregated in

dst_host_count

dst_host_same_src_port_rate continuous The percentage of connections that were

to the same source port, among the

connections aggregated in

dst_host_srv_c ount

dst_host_srv_diff_host_rate continuous The percentage of connections that were

to different destination machines, among

the connections aggregated in

dst_host_srv_c

dst_host_serror_rate continuous The percentage of connections that have

activated the flag (4) s0, s1, s2 or s3,

among the connections aggregated in

dst_host_count

dst_host_srv_serror_rate continuous The percent of connections that have

activated the flag (4) s0, s1, s2 or s3,

among the connections aggregated in

dst_host_srv_c ount

dst_host_rerror_rate continuous The percentage of connections that have

activated the flag (4) REJ, among the

connections aggregated in

dst_host_count

122

Table 11

NSL-KDD Attributes and Datatypes (cont.)

Attribute Datatype Description

dst_host_srv_rerror_rate continuous The percentage of connections that have

activated the flag (4) REJ, among the

connections aggregated in

dst_host_srv_c ount

label symbolic Class of each event

cluster_id symbolic Integer cluster id that is representative of

the class

UNSW-NB15

For the UNSW-NB15 dataset, the file UNSW-NB15_1.csv was used for the

experiments in this research. Table 12 shows the features, datatypes, and descriptions of

this dataset. It is available from the original researchers at:

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-

Datasets/UNSW-NB15_1.csv

Table 12

UNSW-NB15 Attributes and Datatypes

Name Datatype Description

srcip nominal Source IP address

sport integer Source port number

dstip nominal Destination IP address

dsport integer Destination port number

proto nominal Transaction protocol

state nominal Indicates to the state and its dependent protocol, e.g.

ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR,

REQ, RST, TST, TXD, URH, URN, and (-) (if not used

state)

dur Float Record total duration

sbytes Integer Source to destination transaction bytes

dbytes Integer Destination to source transaction bytes

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/UNSW-NB15_1.csv
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/UNSW-NB15_1.csv

123

Table 12

UNSW-NB15 Dataset (cont.)

Name Datatype Description

sttl Integer Source to destination time to live value

dttl Integer Destination to source time to live value

sloss Integer Source packets retransmitted or dropped

dloss Integer Destination packets retransmitted or dropped

service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc and (-) if not

much used service

sload Float Source bits per second

dload Float Destination bits per second

spkts integer Source to destination packet count

dpkts integer Destination to source packet count

swin integer Source TCP window advertisement value

dwin integer Destination TCP window advertisement value

stcpb integer Source TCP base sequence number

dtcpb integer Destination TCP base sequence number

smeansz integer Mean of the ?ow packet size transmitted by the src

dmeansz integer Mean of the ?ow packet size transmitted by the dst

trans_depth integer Represents the pipelined depth into the connection of

http request/response transaction

res_bdy_len integer Actual uncompressed content size of the data

transferred from the server’s http service.

sjit Float Source jitter (mSec)

djit Float Destination jitter (mSec)

stime Timestamp record start time

ltime Timestamp record last time

sintpkt Float Source interpacket arrival time (mSec)

dintpkt Float Destination interpacket arrival time (mSec)

tcprtt Float TCP connection setup round-trip time, the sum of

’synack’ and ’ackdat’.

synack Float TCP connection setup time, the time between the SYN

and the SYN_ACK packets.

ackdat Float TCP connection setup time, the time between the

SYN_ACK and the ACK packets.

is_sm_ips_ports Binary If source (1) and destination (3)IP addresses equal and

port numbers (2)(4) equal then, this variable takes

value 1 else 0

ct_state_ttl Integer No. for each state (6) according to specific range of

values for source/destination time to live (10) (11).

ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in

http service.

124

Table 12

UNSW-NB15 Dataset (cont.)

Name Datatype Description

is_ftp_login Binary If the ftp session is accessed by user and password then

1 else 0.

ct_ftp_cmd integer No of flows that has a command in ftp session.

ct_srv_src integer No. of connections that contain the same service (14)

and source address (1) in 100 connections according to

the last time (26).

ct_srv_dst integer No. of connections that contain the same service (14)

and destination address (3) in 100 connections

according to the last time (26).

ct_dst_ltm integer No. of connections of the same destination address (3)

in 100 connections according to the last time (26).

ct_src_ ltm integer No. of connections of the same source address (1) in

100 connections according to the last time (26).

ct_src_dport_ltm integer No of connections of the same source address (1) and

the destination port (4) in 100 connections according to

the last time (26).

ct_dst_sport_ltm integer No of connections of the same destination address (3)

and the source port (2) in 100 connections according to

the last time (26).

ct_dst_src_ltm integer No of connections of the same source (1) and the

destination (3) address in in 100 connections according

to the last time (26).

attack_cat nominal The name of each attack category. In this data set ,

nine categories e.g. Fuzzers, Analysis, Backdoors, DoS

Exploits, Generic, Reconnaissance, Shellcode and

Worms

Label binary 0 for normal and 1 for attack records

125

Appendix C

Python Package Versions

This research used Python 2.7 as well as packages at specific versions. Although

the cepids package may function with newer versions of these packages, it was only

tested with the versions shown in Table 13 below:

Table 13

Python Package Versions

Package Version

dateutils 0.6.6

numpy 1.13.3

pandas 0.21.0

pip 9.0.1

python-dateutil 2.6.1

scikit-learn 0.19.1

scipy 1.0.0

setuptools 28.8.0

126

Appendix D

Detailed Anomaly Detection Results

This appendix provides the detailed results of Experiment 2 for each of the 10

experimental runs of the completed algorithm. Each run lists both the srcip and the dstip

and their associated probabilities of experiencing an attack, P(A). IP addresses with P(A)

≥ 0.8 are considered positive results. A results column indicates if the results are true

positives (TP), true negatives (TN), or false positives (FP). There were no False negatives

found in these experiments.

127

Table 14

Experiment 2, Run 1 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

224.0.0.1 FP 1.000

175.45.176.3 TP 0.918

149.171.126.18 TP 0.980

175.45.176.2 TP 0.876

149.171.126.12 TP 0.962

175.45.176.0 TP 0.824

224.0.0.5 FP 0.956

149.171.126.0 TN 0.659

149.171.126.17 TP 0.918

149.171.126.4 TN 0.652

149.171.126.13 TP 0.912

149.171.126.2 TN 0.649

149.171.126.14 TP 0.907

149.171.126.9 TN 0.630

149.171.126.11 TP 0.904

149.171.126.5 TN 0.624

149.171.126.15 TP 0.898

149.171.126.8 TN 0.622

10.40.170.2 FP 0.896

149.171.126.6 TN 0.622

149.171.126.16 TP 0.894

149.171.126.3 TN 0.621

149.171.126.10 TP 0.870

149.171.126.7 TN 0.620

149.171.126.19 TP 0.869

149.171.126.1 TN 0.615

10.40.182.3 FP 0.842

59.166.0.8 TN 0.543

32.50.32.66 FP 0.841

59.166.0.9 TN 0.538

175.45.176.1 FP 0.827

59.166.0.7 TN 0.527

10.40.85.30 TN 0.772

59.166.0.5 TN 0.520

192.168.241.243 TN 0.738

59.166.0.6 TN 0.513

175.45.176.2 TN 0.677

59.166.0.1 TN 0.513

59.166.0.9 TN 0.671

59.166.0.4 TN 0.511

59.166.0.6 TN 0.645

59.166.0.0 TN 0.508

59.166.0.3 TN 0.643

59.166.0.3 TN 0.507

59.166.0.2 TN 0.642

59.166.0.2 TN 0.495

59.166.0.8 TN 0.640

10.40.85.1 TN 0.296

59.166.0.4 TN 0.638

149.171.126.18 TN 0.213

59.166.0.0 TN 0.633

10.40.182.1 TN 0.175

59.166.0.7 TN 0.632

149.171.126.15 TN 0.172

59.166.0.5 TN 0.626

149.171.126.10 TN 0.169

59.166.0.1 TN 0.622

149.171.126.19 TN 0.113

10.40.85.1 TN 0.547

149.171.126.11 TN 0.103

149.171.126.3 TN 0.527

149.171.126.16 TN 0.101

149.171.126.9 TN 0.522

10.40.182.3 TN 0.082

149.171.126.6 TN 0.508

10.40.170.2 TN 0.082

149.171.126.0 TN 0.492

149.171.126.12 TN 0.074

149.171.126.8 TN 0.492

192.168.241.243 TN 0.070

149.171.126.1 TN 0.480

128

Table 14

Experiment 2, Run 1 Results (cont.)

srcip Result P(A)

dstip Result P(A)

149.171.126.13 TN 0.069

149.171.126.4 TN 0.475

10.40.85.30 TN 0.056

175.45.176.3 TN 0.465

127.0.0.1 TN 0.043

149.171.126.7 TN 0.461

149.171.126.17 TN 0.039

149.171.126.2 TN 0.455

149.171.126.5 TN 0.448

175.45.176.0 TN 0.435

127.0.0.1 TN 0.372

10.40.198.10 TN 0.000

129

Table 15

Experiment 2, Run 2 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

10.40.170.2 FP 1.000

175.45.176.3 TP 0.915

149.171.126.12 TP 0.992

175.45.176.2 TP 0.891

224.0.0.1 FP 0.965

175.45.176.0 TP 0.807

10.40.182.3 FP 0.953

149.171.126.4 TN 0.771

149.171.126.18 TP 0.948

149.171.126.0 TN 0.770

149.171.126.13 TP 0.920

149.171.126.2 TN 0.769

32.50.32.66 FP 0.910

149.171.126.8 TN 0.761

149.171.126.19 TP 0.908

149.171.126.6 TN 0.756

10.40.85.30 FP 0.893

149.171.126.5 TN 0.752

149.171.126.16 TP 0.875

149.171.126.7 TN 0.752

149.171.126.11 TP 0.872

149.171.126.9 TN 0.748

149.171.126.17 TP 0.869

149.171.126.1 TN 0.747

149.171.126.15 TP 0.868

149.171.126.3 TN 0.741

149.171.126.10 TP 0.864

59.166.0.7 TN 0.473

149.171.126.14 TP 0.844

59.166.0.5 TN 0.470

59.166.0.9 FP 0.815

59.166.0.2 TN 0.460

224.0.0.5 FP 0.813

59.166.0.4 TN 0.459

59.166.0.2 TN 0.789

59.166.0.3 TN 0.451

59.166.0.3 TN 0.780

59.166.0.8 TN 0.448

59.166.0.6 TN 0.778

59.166.0.0 TN 0.441

59.166.0.0 TN 0.771

59.166.0.1 TN 0.438

59.166.0.4 TN 0.768

59.166.0.9 TN 0.419

59.166.0.1 TN 0.766

59.166.0.6 TN 0.418

59.166.0.7 TN 0.759

10.40.85.1 TN 0.267

59.166.0.8 TN 0.758

10.40.182.1 TN 0.174

59.166.0.5 TN 0.747

149.171.126.18 TN 0.164

192.168.241.243 TN 0.619

149.171.126.15 TN 0.162

175.45.176.2 TN 0.572

149.171.126.10 TN 0.124

175.45.176.1 TN 0.538

149.171.126.11 TN 0.099

10.40.85.1 TN 0.520

149.171.126.16 TN 0.078

175.45.176.3 TN 0.466

149.171.126.19 TN 0.067

175.45.176.0 TN 0.361

10.40.182.3 TN 0.046

149.171.126.4 TN 0.292

10.40.170.2 TN 0.046

149.171.126.2 TN 0.288

149.171.126.12 TN 0.039

149.171.126.9 TN 0.277

192.168.241.243 TN 0.026

149.171.126.3 TN 0.261

130

Table 15

Experiment 2, Run 2 Results (cont.)

srcip Result P(A)

dstip Result P(A)

149.171.126.13 TN 0.021

10.40.198.10 TN 0.234

10.40.85.30 TN 0.020

149.171.126.0 TN 0.193

149.171.126.17 TN 0.010

149.171.126.5 TN 0.187

127.0.0.1 TN 0.000

149.171.126.1 TN 0.180

149.171.126.8 TN 0.150

127.0.0.1 TN 0.138

149.171.126.6 TN 0.123

149.171.126.7 TN 0.000

131

Table 16

Experiment 2, Run 3 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.13 TP 1.000

175.45.176.3 TP 0.919

149.171.126.11 TP 1.000

175.45.176.2 TP 0.878

149.171.126.18 TP 0.997

175.45.176.0 TP 0.838

149.171.126.15 TP 0.994

149.171.126.0 TN 0.761

149.171.126.17 TP 0.981

149.171.126.4 TN 0.753

149.171.126.14 TP 0.981

149.171.126.2 TN 0.745

10.40.170.2 FP 0.981

149.171.126.9 TN 0.727

149.171.126.12 TP 0.972

149.171.126.3 TN 0.724

149.171.126.19 TP 0.971

149.171.126.6 TN 0.724

149.171.126.16 TP 0.967

149.171.126.1 TN 0.723

149.171.126.10 TP 0.956

149.171.126.8 TN 0.723

224.0.0.1 FP 0.945

149.171.126.5 TN 0.720

10.40.182.3 FP 0.943

149.171.126.7 TN 0.716

32.50.32.66 FP 0.898

59.166.0.7 TN 0.515

10.40.85.30 FP 0.893

59.166.0.8 TN 0.494

10.40.85.1 FP 0.814

59.166.0.3 TN 0.489

59.166.0.9 FP 0.813

59.166.0.2 TN 0.488

59.166.0.3 FP 0.804

59.166.0.9 TN 0.484

59.166.0.6 TN 0.799

59.166.0.1 TN 0.472

59.166.0.2 TN 0.798

59.166.0.4 TN 0.470

59.166.0.4 TN 0.797

59.166.0.6 TN 0.467

59.166.0.8 TN 0.792

59.166.0.5 TN 0.442

59.166.0.0 TN 0.782

59.166.0.0 TN 0.430

59.166.0.7 TN 0.770

10.40.85.1 TN 0.279

59.166.0.5 TN 0.767

10.40.182.1 TN 0.180

59.166.0.1 TN 0.759

149.171.126.10 TN 0.180

175.45.176.2 TN 0.660

149.171.126.18 TN 0.177

224.0.0.5 TN 0.653

149.171.126.15 TN 0.168

175.45.176.1 TN 0.493

149.171.126.16 TN 0.118

192.168.241.243 TN 0.441

149.171.126.19 TN 0.105

175.45.176.3 TN 0.430

149.171.126.11 TN 0.092

149.171.126.2 TN 0.365

149.171.126.13 TN 0.088

149.171.126.9 TN 0.355

10.40.170.2 TN 0.083

149.171.126.3 TN 0.349

10.40.182.3 TN 0.083

127.0.0.1 TN 0.323

10.40.85.30 TN 0.075

149.171.126.6 TN 0.320

132

Table 16

Experiment 2, Run 3 Results (cont.)

srcip Result P(A)

dstip Result P(A)

149.171.126.12 TN 0.066

149.171.126.8 TN 0.319

192.168.241.243 TN 0.055

149.171.126.1 TN 0.310

149.171.126.17 TN 0.048

149.171.126.4 TN 0.293

127.0.0.1 TN 0.048

149.171.126.0 TN 0.282

149.171.126.7 TN 0.261

149.171.126.5 TN 0.225

10.40.198.10 TN 0.076

175.45.176.0 TN 0.000

133

Table 17

Experiment 2, Run 4 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.12 TP 1.000

175.45.176.3 TP 0.920

149.171.126.14 TP 0.997

175.45.176.2 TP 0.907

149.171.126.15 TP 0.996

175.45.176.0 TP 0.842

149.171.126.11 TP 0.993

149.171.126.0 TN 0.622

149.171.126.13 TP 0.992

149.171.126.2 TN 0.621

149.171.126.19 TP 0.988

149.171.126.4 TN 0.619

149.171.126.16 TP 0.987

149.171.126.5 TN 0.609

149.171.126.10 TP 0.977

149.171.126.3 TN 0.608

149.171.126.17 TP 0.963

149.171.126.6 TN 0.608

224.0.0.1 FP 0.920

149.171.126.9 TN 0.604

149.171.126.18 TP 0.903

149.171.126.7 TN 0.601

10.40.170.2 FP 0.887

149.171.126.1 TN 0.600

32.50.32.66 FP 0.861

149.171.126.8 TN 0.597

10.40.182.3 TN 0.784

59.166.0.0 TN 0.465

10.40.85.30 TN 0.656

59.166.0.9 TN 0.462

59.166.0.9 TN 0.616

59.166.0.4 TN 0.459

59.166.0.8 TN 0.607

59.166.0.1 TN 0.459

59.166.0.2 TN 0.599

59.166.0.8 TN 0.440

224.0.0.5 TN 0.597

59.166.0.3 TN 0.420

59.166.0.6 TN 0.596

59.166.0.7 TN 0.412

59.166.0.1 TN 0.591

59.166.0.6 TN 0.409

59.166.0.7 TN 0.589

59.166.0.5 TN 0.389

59.166.0.0 TN 0.587

59.166.0.2 TN 0.376

59.166.0.3 TN 0.583

10.40.85.1 TN 0.231

59.166.0.4 TN 0.582

149.171.126.18 TN 0.174

59.166.0.5 TN 0.564

149.171.126.15 TN 0.169

175.45.176.1 TN 0.525

10.40.182.1 TN 0.160

10.40.85.1 TN 0.513

149.171.126.10 TN 0.158

175.45.176.2 TN 0.509

149.171.126.19 TN 0.110

192.168.241.243 TN 0.449

149.171.126.11 TN 0.090

149.171.126.1 TN 0.343

149.171.126.16 TN 0.086

149.171.126.5 TN 0.339

10.40.170.2 TN 0.078

175.45.176.0 TN 0.312

10.40.182.3 TN 0.078

149.171.126.0 TN 0.305

149.171.126.13 TN 0.066

149.171.126.7 TN 0.301

149.171.126.12 TN 0.061

149.171.126.6 TN 0.294

134

Table 17

Experiment 2, Run 4 Results (cont.)

srcip Result P(A)

dstip Result P(A)

10.40.85.30 TN 0.056

149.171.126.8 TN 0.293

192.168.241.243 TN 0.053

149.171.126.9 TN 0.273

127.0.0.1 TN 0.026

175.45.176.3 TN 0.262

149.171.126.17 TN 0.022

149.171.126.3 TN 0.231

149.171.126.2 TN 0.228

149.171.126.4 TN 0.225

10.40.198.10 TN 0.137

127.0.0.1 TN 0.000

135

Table 18

Experiment 2, Run 5 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.17 TP 1.000

175.45.176.3 TP 0.939

149.171.126.15 TP 0.998

175.45.176.2 TP 0.920

149.171.126.14 TP 0.987

175.45.176.0 TP 0.858

149.171.126.11 TP 0.986

149.171.126.0 TN 0.726

149.171.126.13 TP 0.978

149.171.126.4 TN 0.713

149.171.126.16 TP 0.972

149.171.126.2 TN 0.706

149.171.126.12 TP 0.963

149.171.126.9 TN 0.695

149.171.126.10 TP 0.945

149.171.126.5 TN 0.693

149.171.126.19 TP 0.901

149.171.126.3 TN 0.691

149.171.126.18 TP 0.876

149.171.126.6 TN 0.688

224.0.0.1 FP 0.866

149.171.126.7 TN 0.687

32.50.32.66 FP 0.814

149.171.126.1 TN 0.684

10.40.170.2 FP 0.807

149.171.126.8 TN 0.683

59.166.0.9 TN 0.745

59.166.0.5 TN 0.520

59.166.0.6 TN 0.717

59.166.0.4 TN 0.513

59.166.0.2 TN 0.717

59.166.0.1 TN 0.513

59.166.0.3 TN 0.716

59.166.0.7 TN 0.499

59.166.0.4 TN 0.715

59.166.0.3 TN 0.495

59.166.0.8 TN 0.715

59.166.0.6 TN 0.486

59.166.0.0 TN 0.706

59.166.0.9 TN 0.483

59.166.0.1 TN 0.693

59.166.0.8 TN 0.474

10.40.182.3 TN 0.686

59.166.0.2 TN 0.471

59.166.0.7 TN 0.683

59.166.0.0 TN 0.391

59.166.0.5 TN 0.683

10.40.85.1 TN 0.205

10.40.85.30 TN 0.534

149.171.126.18 TN 0.173

175.45.176.2 TN 0.524

149.171.126.10 TN 0.168

10.40.85.1 TN 0.445

149.171.126.15 TN 0.164

149.171.126.9 TN 0.414

10.40.182.1 TN 0.139

149.171.126.6 TN 0.412

149.171.126.16 TN 0.111

149.171.126.7 TN 0.397

149.171.126.11 TN 0.090

149.171.126.8 TN 0.395

149.171.126.13 TN 0.087

149.171.126.1 TN 0.373

10.40.170.2 TN 0.075

149.171.126.0 TN 0.362

10.40.182.3 TN 0.075

175.45.176.3 TN 0.362

149.171.126.19 TN 0.070

224.0.0.5 TN 0.360

149.171.126.12 TN 0.057

192.168.241.243 TN 0.341

136

Table 18

Experiment 2, Run 5 Results (cont.)

srcip Result P(A)

dstip Result P(A)

10.40.85.30 TN 0.054

149.171.126.4 TN 0.327

192.168.241.243 TN 0.048

149.171.126.2 TN 0.323

149.171.126.17 TN 0.038

149.171.126.3 TN 0.320

127.0.0.1 TN 0.027

175.45.176.1 TN 0.300

149.171.126.5 TN 0.236

175.45.176.0 TN 0.132

10.40.198.10 TN 0.060

127.0.0.1 TN 0.000

137

Table 19

Experiment 2, Run 6 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

224.0.0.1 FP 1.000

175.45.176.3 TP 0.926

149.171.126.16 TP 0.978

175.45.176.2 TP 0.906

149.171.126.11 TP 0.975

175.45.176.0 TP 0.836

149.171.126.14 TP 0.975

149.171.126.0 TN 0.737

149.171.126.15 TP 0.974

149.171.126.4 TN 0.722

149.171.126.17 TP 0.966

149.171.126.9 TN 0.721

149.171.126.13 TP 0.965

149.171.126.2 TN 0.718

32.50.32.66 FP 0.959

149.171.126.5 TN 0.716

10.40.170.2 FP 0.952

149.171.126.6 TN 0.713

149.171.126.12 TP 0.943

149.171.126.8 TN 0.710

149.171.126.10 TP 0.936

149.171.126.3 TN 0.708

149.171.126.19 TP 0.894

149.171.126.7 TN 0.706

149.171.126.18 TP 0.876

149.171.126.1 TN 0.700

10.40.182.3 FP 0.819

59.166.0.1 TN 0.541

59.166.0.9 TN 0.713

59.166.0.5 TN 0.525

59.166.0.6 TN 0.696

59.166.0.0 TN 0.519

59.166.0.2 TN 0.690

59.166.0.4 TN 0.515

59.166.0.8 TN 0.678

59.166.0.3 TN 0.506

224.0.0.5 TN 0.675

59.166.0.2 TN 0.499

59.166.0.3 TN 0.671

59.166.0.6 TN 0.498

192.168.241.243 TN 0.671

59.166.0.7 TN 0.498

59.166.0.4 TN 0.670

59.166.0.9 TN 0.483

10.40.85.30 TN 0.659

59.166.0.8 TN 0.468

59.166.0.0 TN 0.656

10.40.85.1 TN 0.268

59.166.0.1 TN 0.646

10.40.182.1 TN 0.188

59.166.0.5 TN 0.645

149.171.126.18 TN 0.185

59.166.0.7 TN 0.629

149.171.126.15 TN 0.185

10.40.85.1 TN 0.570

149.171.126.10 TN 0.163

175.45.176.2 TN 0.484

149.171.126.16 TN 0.115

175.45.176.1 TN 0.423

149.171.126.11 TN 0.113

175.45.176.3 TN 0.304

149.171.126.19 TN 0.096

127.0.0.1 TN 0.294

10.40.170.2 TN 0.083

149.171.126.6 TN 0.252

10.40.182.3 TN 0.083

149.171.126.3 TN 0.221

149.171.126.13 TN 0.076

149.171.126.7 TN 0.205

192.168.241.243 TN 0.072

149.171.126.0 TN 0.201

138

Table 19

Experiment 2, Run 6 Results (cont.)

srcip Result P(A)

dstip Result P(A)

10.40.85.30 TN 0.067

149.171.126.4 TN 0.156

149.171.126.12 TN 0.066

149.171.126.8 TN 0.153

127.0.0.1 TN 0.056

149.171.126.2 TN 0.147

149.171.126.17 TN 0.052

149.171.126.9 TN 0.143

149.171.126.5 TN 0.137

149.171.126.1 TN 0.087

10.40.198.10 TN 0.057

175.45.176.0 TN 0.000

139

Table 20

Experiment 2, Run 7 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.12 TP 1.000

175.45.176.3 TP 0.925

149.171.126.18 TP 0.975

175.45.176.2 TP 0.866

10.40.170.2 FP 0.964

175.45.176.0 TP 0.824

149.171.126.17 TP 0.956

149.171.126.0 TN 0.669

149.171.126.13 TP 0.949

149.171.126.4 TN 0.668

149.171.126.11 TP 0.945

149.171.126.2 TN 0.665

224.0.0.1 FP 0.937

149.171.126.6 TN 0.662

149.171.126.16 TP 0.934

149.171.126.3 TN 0.656

149.171.126.15 TP 0.926

149.171.126.5 TN 0.652

10.40.182.3 FP 0.897

149.171.126.9 TN 0.652

149.171.126.14 TP 0.889

149.171.126.7 TN 0.646

149.171.126.10 TP 0.885

149.171.126.1 TN 0.646

149.171.126.19 TP 0.865

149.171.126.8 TN 0.632

224.0.0.5 FP 0.824

59.166.0.1 TN 0.524

10.40.85.1 FP 0.822

59.166.0.8 TN 0.507

10.40.85.30 FP 0.812

59.166.0.6 TN 0.507

32.50.32.66 TN 0.750

59.166.0.2 TN 0.502

59.166.0.9 TN 0.706

59.166.0.5 TN 0.481

59.166.0.8 TN 0.690

59.166.0.7 TN 0.477

59.166.0.4 TN 0.682

59.166.0.4 TN 0.470

59.166.0.2 TN 0.678

59.166.0.9 TN 0.464

59.166.0.6 TN 0.672

59.166.0.0 TN 0.460

59.166.0.3 TN 0.668

59.166.0.3 TN 0.422

59.166.0.0 TN 0.660

10.40.85.1 TN 0.264

59.166.0.1 TN 0.660

149.171.126.18 TN 0.187

59.166.0.7 TN 0.652

149.171.126.10 TN 0.178

59.166.0.5 TN 0.635

10.40.182.1 TN 0.171

192.168.241.243 TN 0.617

149.171.126.15 TN 0.148

175.45.176.2 TN 0.598

149.171.126.16 TN 0.102

175.45.176.1 TN 0.557

149.171.126.19 TN 0.092

149.171.126.3 TN 0.499

10.40.182.3 TN 0.086

149.171.126.9 TN 0.459

10.40.170.2 TN 0.086

149.171.126.4 TN 0.453

149.171.126.11 TN 0.086

149.171.126.6 TN 0.445

149.171.126.13 TN 0.076

149.171.126.7 TN 0.429

10.40.85.30 TN 0.076

149.171.126.5 TN 0.410

140

Table 20

Experiment 2, Run 7 Results (cont.)

srcip Result P(A)

dstip Result P(A)

192.168.241.243 TN 0.062

149.171.126.2 TN 0.400

149.171.126.12 TN 0.058

149.171.126.8 TN 0.399

149.171.126.17 TN 0.036

149.171.126.0 TN 0.390

127.0.0.1 TN 0.031

175.45.176.3 TN 0.387

149.171.126.1 TN 0.332

175.45.176.0 TN 0.257

127.0.0.1 TN 0.169

10.40.198.10 TN 0.000

141

Table 21

Experiment 2, Run 8 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

10.40.170.2 FP 1.000

175.45.176.3 TP 0.913

149.171.126.12 TP 0.963

175.45.176.2 TP 0.877

149.171.126.19 TP 0.941

175.45.176.0 TP 0.833

149.171.126.14 TP 0.938

149.171.126.0 TN 0.761

149.171.126.17 TP 0.937

149.171.126.4 TN 0.736

149.171.126.16 TP 0.933

149.171.126.2 TN 0.730

149.171.126.11 TP 0.932

149.171.126.3 TN 0.714

149.171.126.13 TP 0.931

149.171.126.5 TN 0.711

149.171.126.15 TP 0.929

149.171.126.9 TN 0.711

224.0.0.1 FP 0.901

149.171.126.6 TN 0.710

149.171.126.10 TP 0.898

149.171.126.1 TN 0.706

149.171.126.18 TP 0.893

149.171.126.8 TN 0.706

32.50.32.66 FP 0.883

149.171.126.7 TN 0.702

10.40.182.3 FP 0.835

59.166.0.9 TN 0.578

59.166.0.9 FP 0.827

59.166.0.6 TN 0.573

59.166.0.3 FP 0.810

59.166.0.5 TN 0.557

59.166.0.8 FP 0.804

59.166.0.0 TN 0.548

59.166.0.6 FP 0.804

59.166.0.8 TN 0.540

59.166.0.4 FP 0.803

59.166.0.2 TN 0.537

59.166.0.2 TN 0.799

59.166.0.1 TN 0.531

59.166.0.0 TN 0.788

59.166.0.4 TN 0.528

59.166.0.5 TN 0.786

59.166.0.7 TN 0.527

59.166.0.7 TN 0.784

59.166.0.3 TN 0.514

59.166.0.1 TN 0.776

149.171.126.18 TN 0.190

149.171.126.7 TN 0.645

10.40.85.1 TN 0.186

149.171.126.8 TN 0.644

149.171.126.10 TN 0.181

175.45.176.1 TN 0.634

149.171.126.15 TN 0.146

10.40.85.30 TN 0.630

10.40.182.1 TN 0.108

149.171.126.9 TN 0.621

149.171.126.16 TN 0.102

149.171.126.3 TN 0.612

149.171.126.19 TN 0.095

175.45.176.2 TN 0.610

10.40.182.3 TN 0.089

149.171.126.6 TN 0.608

10.40.170.2 TN 0.089

149.171.126.2 TN 0.593

149.171.126.13 TN 0.081

149.171.126.5 TN 0.580

149.171.126.11 TN 0.081

149.171.126.1 TN 0.575

149.171.126.12 TN 0.059

149.171.126.4 TN 0.572

142

Table 21

Experiment 2, Run 8 Results (cont.)

srcip Result P(A)

dstip Result P(A)

192.168.241.243 TN 0.043

149.171.126.0 TN 0.553

10.40.85.30 TN 0.041

224.0.0.5 TN 0.550

127.0.0.1 TN 0.041

192.168.241.243 TN 0.471

149.171.126.17 TN 0.023

10.40.85.1 TN 0.447

175.45.176.3 TN 0.446

127.0.0.1 TN 0.446

175.45.176.0 TN 0.443

10.40.198.10 TN 0.000

143

Table 22

Experiment 2, Run 9 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

149.171.126.15 TP 1.000

175.45.176.3 TP 0.929

149.171.126.16 TP 0.998

175.45.176.2 TP 0.908

149.171.126.14 TP 0.997

175.45.176.0 TP 0.847

149.171.126.11 TP 0.996

149.171.126.0 TN 0.659

149.171.126.17 TP 0.985

149.171.126.2 TN 0.650

149.171.126.13 TP 0.981

149.171.126.4 TN 0.649

149.171.126.19 TP 0.980

149.171.126.6 TN 0.644

32.50.32.66 FP 0.962

149.171.126.5 TN 0.644

224.0.0.1 FP 0.929

149.171.126.9 TN 0.642

149.171.126.12 TP 0.927

149.171.126.3 TN 0.638

10.40.170.2 FP 0.912

149.171.126.8 TN 0.636

149.171.126.10 TP 0.907

149.171.126.7 TN 0.631

10.40.182.3 FP 0.824

149.171.126.1 TN 0.631

149.171.126.18 TP 0.819

59.166.0.0 TN 0.433

10.40.85.30 TN 0.707

59.166.0.3 TN 0.421

175.45.176.2 TN 0.656

59.166.0.4 TN 0.409

192.168.241.243 TN 0.600

59.166.0.7 TN 0.386

59.166.0.9 TN 0.598

59.166.0.2 TN 0.386

59.166.0.6 TN 0.595

59.166.0.6 TN 0.385

59.166.0.2 TN 0.594

59.166.0.9 TN 0.379

59.166.0.3 TN 0.588

59.166.0.8 TN 0.371

59.166.0.8 TN 0.583

59.166.0.1 TN 0.361

59.166.0.0 TN 0.576

59.166.0.5 TN 0.320

59.166.0.1 TN 0.572

10.40.85.1 TN 0.262

59.166.0.4 TN 0.571

149.171.126.15 TN 0.189

59.166.0.7 TN 0.555

149.171.126.18 TN 0.186

59.166.0.5 TN 0.551

10.40.182.1 TN 0.174

175.45.176.1 TN 0.495

149.171.126.10 TN 0.171

175.45.176.3 TN 0.485

149.171.126.16 TN 0.125

224.0.0.5 TN 0.467

149.171.126.19 TN 0.117

10.40.85.1 TN 0.378

149.171.126.11 TN 0.109

127.0.0.1 TN 0.197

149.171.126.13 TN 0.086

10.40.198.10 TN 0.182

10.40.182.3 TN 0.081

149.171.126.1 TN 0.135

10.40.170.2 TN 0.081

149.171.126.7 TN 0.106

149.171.126.12 TN 0.072

149.171.126.0 TN 0.088

144

Table 22

Experiment 2, Run 9 Results (cont.)

srcip Result P(A)

dstip Result P(A)

192.168.241.243 TN 0.065

149.171.126.4 TN 0.083

10.40.85.30 TN 0.054

149.171.126.9 TN 0.074

127.0.0.1 TN 0.045

149.171.126.5 TN 0.074

149.171.126.17 TN 0.041

175.45.176.0 TN 0.069

149.171.126.2 TN 0.048

149.171.126.3 TN 0.021

149.171.126.8 TN 0.021

149.171.126.6 TN 0.000

145

Table 23

Experiment 2, Run 10 Results

srcip Result P(A)

dstip Result P(A)

175.45.176.1 TP 1.000

10.40.170.2 FP 1.000

175.45.176.3 TP 0.914

149.171.126.12 TP 0.983

175.45.176.2 TP 0.887

149.171.126.14 TP 0.969

175.45.176.0 TP 0.839

149.171.126.13 TP 0.962

149.171.126.0 TN 0.703

149.171.126.15 TP 0.961

149.171.126.2 TN 0.695

149.171.126.17 TP 0.960

149.171.126.4 TN 0.694

149.171.126.19 TP 0.958

149.171.126.5 TN 0.688

149.171.126.11 TP 0.955

149.171.126.9 TN 0.687

149.171.126.18 TP 0.951

149.171.126.6 TN 0.684

224.0.0.1 FP 0.933

149.171.126.3 TN 0.684

149.171.126.16 TP 0.930

149.171.126.7 TN 0.682

149.171.126.10 TP 0.930

149.171.126.8 TN 0.681

10.40.182.3 FP 0.863

149.171.126.1 TN 0.671

32.50.32.66 FP 0.857

59.166.0.2 TN 0.593

10.40.85.30 TN 0.696

59.166.0.5 TN 0.582

59.166.0.9 TN 0.638

59.166.0.4 TN 0.581

59.166.0.6 TN 0.633

59.166.0.7 TN 0.577

59.166.0.2 TN 0.633

59.166.0.9 TN 0.569

59.166.0.3 TN 0.631

59.166.0.8 TN 0.568

59.166.0.8 TN 0.624

59.166.0.3 TN 0.566

59.166.0.0 TN 0.620

59.166.0.6 TN 0.559

59.166.0.4 TN 0.620

59.166.0.1 TN 0.556

175.45.176.0 TN 0.617

59.166.0.0 TN 0.498

175.45.176.2 TN 0.614

10.40.85.1 TN 0.282

59.166.0.1 TN 0.612

149.171.126.18 TN 0.195

59.166.0.5 TN 0.599

149.171.126.15 TN 0.183

59.166.0.7 TN 0.593

10.40.182.1 TN 0.178

224.0.0.5 TN 0.522

149.171.126.10 TN 0.162

10.40.85.1 TN 0.514

149.171.126.19 TN 0.107

149.171.126.0 TN 0.389

149.171.126.16 TN 0.104

149.171.126.2 TN 0.387

149.171.126.11 TN 0.096

149.171.126.5 TN 0.367

10.40.170.2 TN 0.085

149.171.126.3 TN 0.366

10.40.182.3 TN 0.085

149.171.126.9 TN 0.352

149.171.126.13 TN 0.077

149.171.126.1 TN 0.344

149.171.126.12 TN 0.071

149.171.126.4 TN 0.329

146

Table 23

Experiment 2, Run 10 Results (cont.)

srcip Result P(A)

dstip Result P(A)

10.40.85.30 TN 0.064

149.171.126.6 TN 0.303

127.0.0.1 TN 0.051

149.171.126.8 TN 0.300

149.171.126.17 TN 0.051

149.171.126.7 TN 0.299

192.168.241.243 TN 0.051

192.168.241.243 TN 0.226

127.0.0.1 TN 0.226

175.45.176.3 TN 0.207

175.45.176.1 TN 0.127

10.40.198.10 TN 0.000

147

References

Ahmad, I., Abdullah, A. B., & Alghamdi, A. S. (2009). Application of artificial neural

network in detection of DOS attacks. Proceedings of the 2nd International

Conference on Security of Information and Networks, 229-234.

Ahrend, J. M., Jirotka, M., & Jones, K. (2016). On the collaborative practices of cyber

threat intelligence analysts to develop and utilize tacit threat and defence

knowledge on existing practices, shortcomings, system circumventions and

implications for design. 2016 International Conference on Cyber Situational

Awareness, Data Analytics and Assessment, 1-10. IEEE.

Al-Hamadi, H., & Chen, I. R. (2015). Integrated intrusion detection and tolerance in

homogeneous clustered sensor networks. ACM Transactions on Sensor Networks

(TOSN), 11(3), 47.

Ali, M. Q., & Al-Shaer, E. (2015). Randomization-based intrusion detection system for

advanced metering infrastructure. ACM Transactions on Information and System

Security (TISSEC), 18(2), 7.

Al-Mohannadi, H., Mirza, Q., Namanya, A., Awan, I., Cullen, A., & Disso, J. (2016).

Cyber-attack modeling analysis techniques: An overview. IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops, 69-76.

Analoui, M., & Sadighian, N. (2006). Solving cluster ensemble problems by correlation’s

matrix & GA. In: Shi Z., Shimohara, K., & Feng, D. (eds) Intelligent Information

Processing III. IIP 2006. IFIP International Federation for Information

Processing, 228, 227-231. Springer.

Ayad, H. G., & Kamel, M. S. (2008). Cumulative voting consensus method for partitions

with a variable number of clusters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(1), 160-173.

Ayad, H. G., & Kamel, M. S. (2010). On voting-based consensus of cluster ensembles.

Pattern Recognition, 43(5), 1943-1953.

Azimi, J., & Fern, X. (2009). Adaptive cluster ensemble selection. Proceedings of the

21st International Joint Conference on Artificial Intelligence (IJCAI-09), 992-

997.

148

Bakker, B., & Heskes, T. (2003). Clustering ensembles of neural network models. Neural

Networks, 16(2), 261-269.

Bamakan, S. M. H., Wang, H., & Shi, Y. (2017). Ramp loss K-Support Vector

Classification-Regression; a robust and sparse multi-class approach to the

intrusion detection problem. Knowledge-Based Systems, 126, 113-126.

Bartnes, M., Moe, N. B., & Heegaard, P. E. (2016). The future of information security

incident management training: A case study of electrical power companies.

Computers & Security, 61, 32-45.

Bhatt, P., Yano, E. T., Amorim, J., & Gustavsson, P. (2014). A cyber security situational

awareness framework to track and project multistage cyber attacks. Proceedings

of the 9th International Conference on Cyber Warfare and Security, 356-360.

Brynielsson, J., Franke, U., & Varga, S. (2016). Cyber situational awareness testing. In B.

Akhgar & B. Brewster (Eds.), Combatting Cybercrime and Cyberterrorism:

Challenges, Trends and Priorities, 209-233. Springer.

Burroughs, D. J., Wilson, L. F., & Cybenko, G. V. (2002). Analysis of distributed

intrusion detection systems using Bayesian methods. 21st IEEE International

Performance, Computing, and Communications Conference, 329-334.

Cannady, J. (1998). Artificial neural networks for misuse detection. National Information

Systems Security Conference, 368-381. NIST.

Cao, V. L., Hoang, V. T., & Nguyen, Q. U. (2013). A scheme for building a dataset for

intrusion detection systems. 2013 Third World Congress on Information and

Communication Technologies, 280-284.

Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble

design of intrusion detection systems. Computers & Security, 24(4), 295-307.

Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for

intrusion detection. Computers & Operations Research, 32(10), 2617-2634.

Chivers, H., Clark, J. A., Nobles, P., Shaikh, S. A., & Chen, H. (2013). Knowing who to

watch: Identifying attackers whose actions are hidden within false alarms and

background noise. Information Systems Frontiers, 15(1), 17-34.

Creech, G., & Hu, J. K. (2013). Generation of a new IDS test dataset: Time to retire the

KDD collection. IEEE Wireless Communications and Networking Conference,

4487-4492.

Daliran, M., Nassiri, R., & Latif-Shabgahi, G.-R. (2010). Using data analysis by

deploying artificial neural networks to increase honeypot security. Proceedings of

the 6th International Conference on Networked Computing, 1-4.

149

Dasgupta, D., & González, F. (2002). An immunity-based technique to characterize

intrusions in computer networks. IEEE Transactions on Evolutionary

Computation, 6(3), 281-291.

Dash, S. K., Reddy, K. S., & Pujari, A. K. (2011). Adaptive naive Bayes method for

masquerade detection. Security and Communication Networks, 4(4), 410-417.

Debar, H., Dacier, M., & Wespi, A. (1999). Towards a taxonomy of intrusion-detection

systems. Computer Networks, 31(8), 805-822.

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on Software

Engineering, 2, 222-232.

Denning, D. E., & Neumann, P. G. (1985). Requirements and model for IDES—a real-

time intrusion detection expert system. Document A005, SRI International, 333.

Dimitriadou, E., Weingessel, A., & Hornik, K. (2001). Voting-merging: An ensemble

method for clustering. Proceedings of the Artificial Neural Networks-ICANN

2001, 217-224.

Domeniconi, C., & Al-Razgan, M. (2009). Weighted cluster ensembles: Methods and

analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2(4),

1-42.

Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning

machine will remake our world. New York: Basic Books.

Dubey, S., & Dubey, J. (2015). KBB: A hybrid method for intrusion detection. IEEE

International Conference on Computer, Communication, and Control, 1-6.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.

Human Factors, 37(1), 32-64.

Erbacher, R. F., Frincke, D. A., Wong, P. C., Moody, S., & Fink, G. (2010). A multi-

phase network situational awareness cognitive task analysis. Information

Visualization, 9(3), 204-219.

Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. ACM

SIGKDD Explorations Newsletter, 4(1), 65-75.

Feng, L., Guan, X. H., Guo, S. G., Gao, Y., & Liu, P. N. (2004). Predicting the intrusion

intentions by observing system call sequences. Computers & Security, 23(3), 241-

252.

Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite

graph partitioning. Proceedings of the Twenty-First International Conference on

Machine Learning, 36-42. ACM.

150

Fontugne, R., Borgnat, P., Abry, P., & Fukuda, K. (2010). MAWILAB: Combining

diverse anomaly detectors for automated anomaly labeling and performance

benchmarking. International Conference on Emerging Networking Experiments

and Technologies (CoNEXT), 1-12. ACM.

Franke, U., & Brynielsson, J. (2014). Cyber situational awareness - A systematic review

of the literature. Computers & Security, 46, 18-31.

Fred, A. L. N., & Jain, A. K. (2005). Combining multiple clusterings using evidence

accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(6), 835-850.

Frossyniotis, D., Likas, A., & Stafylopatis, A. (2004). A clustering method based on

boosting. Pattern Recognition Letters, 25(6), 641-654.

Gao, H. W., Zhu, D. J., & Wang, X. M. (2010). A parallel clustering ensemble algorithm

for intrusion detection system. Proceedings of the Ninth International Symposium

on Distributed Computing and Applications to Business, Engineering and Science

(DCABES 2010), 450-453.

Gionis, A., Mannila, H., & Tsaparas, P. (2007). Clustering aggregation. ACM

Transactions on Knowledge Discovery from Data, 1(1), 341-352.

Gogoi, P., Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2012). Packet and flow

based network intrusion dataset. Contemporary Computing, 306, 322-334.

Springer.

Gowadia, V., Farkas, C., & Valtorta, M. (2005). Paid: A probabilistic agent-based

intrusion detection system. Computers & Security, 24(7), 529-545.

Gutzwiller, R. S., Hunt, S. M., & Lange, D. S. (2016). A task analysis toward

characterizing cyber-cognitive situation awareness (CCSA) in cyber defense

analysts. 2016 IEEE International Multi-Disciplinary Conference on Cognitive

Methods in Situation Awareness and Decision Support, 14-20.

Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate diversity for

better cluster ensembles. Information Fusion, 7(3), 264-275.

Haider, W., Hu, J., Slay, J., Turnbull, B. P., & Xie, Y. (2017). Generating realistic

intrusion detection system dataset based on fuzzy qualitative modeling. Journal of

Network and Computer Applications, 87, 185-192.

Hajisalem, V., & Babaie, S. (2018). A hybrid intrusion detection system based on ABC-

AFS algorithm for misuse and anomaly detection. Computer Networks, 136, 37-

50.

151

Han, S. J., & Cho, S. B. (2005). Evolutionary neural networks for anomaly detection

based on the behavior of a program. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 36(3), 559-570.

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., & Wolber, D.

(1990). A network security monitor. 1990 IEEE Computer Society Symposium on

Research in Security and Privacy, 296-304.

Helman, P., & Liepins, G. (1993). Statistical foundations of audit trail analysis for the

detection of computer misuse. IEEE Transactions on Software Engineering,

19(9), 886-901.

Hou, S., Chen, L., Tas, E., Demihovskiy, I., & Ye, Y. (2015). Cluster-oriented ensemble

classifiers for intelligent malware detection. IEEE International Conference on

Semantic Computing (ICSC), 189-196.

Hu, W., Hu, W., Xie, N., & Maybank, S. (2009). Unsupervised active learning based on

hierarchical graph-theoretic clustering. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 39(5), 1147-1161.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8), 651-666.

Julisch, K. (2003). Clustering intrusion detection alarms to support root cause analysis.

ACM Transactions on Information and System Security (TISSEC), 6(4), 443-471.

Julisch, K., & Dacier, M. (2002). Mining intrusion detection alarms for actionable

knowledge. Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 366–375.

Kamarudin, M. H., Maple, C., Watson, T., & Safa, N. S. (2017). A LogitBoost-based

algorithm for detecting known and unknown web attacks. IEEE Access, 5, 26190-

26200.

Khan, L., Awad, M., & Thuraisingham, B. (2007). A new intrusion detection system

using support vector machines and hierarchical clustering. The VLDB Journal –

The International Journal on Very Large Data Bases, 16(4), 507-521. ACM.

Koc, L., Mazzuchi, T. A., & Sarkani, S. (2012). A network intrusion detection system

based on a hidden naive Bayes multiclass classifier. Expert Systems with

Applications, 39(18), 13492-13500.

Kruegel, C., Mutz, D., Robertson, W., & Valeur, F. (2003). Bayesian event classification

for intrusion detection. Proceedings of the 19th Annual Computer Security

Applications Conference, 14-23. IEEE.

Laskov, P., & Lippmann, R. (2010). Machine learning in adversarial environments.

Machine Learning, 81(2), 115-119. Springer.

152

Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. Proceedings of

the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in

Data Mining, 157-166.

Li, J., Ou, X. M., & Rajagopalan, R. (2010). Uncertainty and risk management in cyber

situational awareness. Cyber Situational Awareness: Issues and Research, 46, 51-

68.

Li, S. H., Kao, Y. C., Zhang, Z. C., Chuang, Y. P., & Yen, D. C. (2015). A network

behavior-based botnet detection mechanism using PSO and k-means. ACM

Transactions on Management Information Systems (TMIS), 6(1), 3.

Li, T., Ding, C., Jordon, M. I. (2007). Solving consensus and semi-supervised clustering

problems using nonnegative matrix factorization. Seventh IEEE International

Conference on Data Mining, ICDM 2007, 577-582.

Lin, Y. D., Lin, P. C., Wang, S. H., Chen, I. W., & Lai, Y. C. (2016). PCAPLib: A

system of extracting, classifying, and anonymizing real packet traces. IEEE

Systems Journal, 10(2), 520-531.

Lourenco, A., Bulo, S. R., Rebagliati, N., Fred, A. L. N., Figueiredo, M. A. T., & Pelillo,

M. (2015). Probabilistic consensus clustering using evidence accumulation.

Machine Learning, 98(1-2), 331-357.

Lunt, T. F. (1990). IDES: An intelligent system for detecting intruders. Proceedings of

the Symposium: Computer Security, Threat and Countermeasures, 30-45.

Luo, H., Jing, F., & Xie, X. (2006). Combining multiple clustering using information

theory based genetic algorithm. IEEE International Conference on Computational

Intelligence and Security, 84-89.

McElwee, S. (2017). Active learning intrusion detection using k-means clustering

selection. IEEE SoutheastCon, 1-7.

McElwee, S., & Cannady, J. (2016). Improving the performance of self-organizing maps

for intrusion detection. IEEE SoutheastCon, 1-6.

McElwee, S., Heaton, J., Fraley, J., Cannady, J. (2017). Deep learning for prioritizing and

responding to intrusion detection alerts. MILCOM, 1-5. IEEE.

McGrayne, S. (2014). The theory that never died: How an eighteenth century

mathematical idea transformed the twenty-first century. Mètode Science Studies

Journal - Annual Review, 0(5), 159-165.

Meilă, M. (2007). Comparing clusterings – an information based distance. Journal of

Multivariate Analysis, 98, 873-895.

153

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., & Payne, B. D. (2015). Evaluating

computer intrusion detection systems: A survey of common practices. ACM

Computing Surveys, 48(1), 12.

Miller, B., Kantchelian, A., Afroz, S., Bachwani, R., Dauber, E., Huang, L., Tschantz, M.

C., Joseph, A. D., Tygar, J. D. (2014). Adversarial active learning. Proceedings of

the 2014 Workshop on Artificial Intelligent and Security Workshop, 3-14. ACM.

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set). Military

Communications and Information Systems Conference (MilCIS), 1-6. IEEE.

Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection.

IEEE Network, 8(3), 26-41.

Mukkamala, S., Janoski, G., & Sung, A. (2002). Intrusion detection using neural

networks and support vector machines. Proceedings of the 2002 International

Joint Conference on Neural Networks, 2(1), 1702-1707. IEEE.

Newcomb, E. A., Hammell, R. J., & Hutchinson, S. (2016). Effective prioritization of

network intrusion alerts to enhance situational awareness. IEEE International

Conference on Intelligence and Security Informatics: Cybersecurity and Big

Data, 73-78.

Orfila, A., Tapiador, J. M. E., & Ribagorda, A. (2009). Trends, problems and

misconceptions in testing network intrusion detection systems' effectiveness. In R.

D. Hopkins & W. P. Tokere (Eds.), Computer Security: Intrusion, Detection and

Prevention, 51-62. Hauppauge: Nova Science Publishers, Inc.

Pajouh, H. H., Dastghaibyfard, G., & Hashemi, S. (2017). Two-tier network anomaly

detection model: A machine learning approach. Journal of Intelligent Information

Systems, 48(1), 61-74.

Papamartzivanos, D., Mármol, F. G., & Kambourakis, G. (2018). Dendron: Genetic trees

driven rule induction for network intrusion detection systems. Future Generation

Computer Systems, 79, 558-574.

Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., & Lee, W. (2009). MCPAD: A multiple

classifier system for accurate payload-based anomaly detection. Computer

Networks, 53(6), 864-881.

Perona, I., Gurrutxaga, I., Arbelaitz, O., Martín, J. I., Muguerza, J., & Pérez, J. M.

(2008). Service-independent payload analysis to improve intrusion detection in

network traffic. Proceedings of the 7th Australasian Data Mining Conference, 87,

171-178. Australian Computer Society.

Ponemon Institute. (2016). 2016 Cost of Data Breach Study: Global Analysis. IBM.

Retrieved from http://www.ibm.com/security/data-breach

154

Punera, K., & Ghosh, J. (2008). Consensus-based ensembles of soft clusterings. Applied

Artificial Intelligence, 22(7-8), 780-810.

Qian, J., Xu, C., & Shi, M. L. (2006). Redesign and implementation of evaluation dataset

for intrusion detection system. Emerging Trends in Information and

Communication Security, 3995, 451-465.

Rajivan, P., & Cooke, N. (2017). Impact of team collaboration on cybersecurity

situational awareness. In Theory and Models for Cyber Situation Awareness, 203-

226. Springer.

Rhodes, B. C., Mahaffey, J. A., & Cannady, J. D. (2000). Multiple self-organizing maps

for intrusion detection. Proceedings of the 23rd National Information Systems

Security Conference, 16–19. NIST.

Saeed, A., Ahmadinia, A., Javed, A., & Larijani, H. (2016). Intelligent intrusion detection

in low-power IoTs. ACM Transactions on Internet Technology (TOIT), 16(4), 27.

Salem, M., Reissmann, S., Buehler, U. (2014). Persistent dataset generation using real-

time operative framework. International Conference on Computing, Networking

and Communications (ICNC), 1023-1027. IEEE.

Sawyer, B., D., Finomore, V. S., Funke, G. J., Mancuso, V.F., Funke, M.E., Matthews,

G., & Warm, J. S. (2014). Cyber vigilance: Effects of signal probability and event

rate. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

58(1), 1771-1775. SAGE Publications.

Scott, S. L. (2004). A bayesian paradigm for designing intrusion detection systems.

Computational Statistics & Data Analysis, 45(1), 69-83.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a

systematic approach to generate benchmark datasets for intrusion detection.

Computers & Security, 31(3), 357-374.

Silva, J. D. A., & Hruschka, E. R. (2016). A support system for clustering data streams

with a variable number of clusters. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 11(2), 11.

Sinclair, C., Pierce, L., & Matzner, S. (1999). An application of machine learning to

network intrusion detection. Proceedings of the 15th Annual Computer Security

Applications Conference, ACSAC'99, 371-377. IEEE.

Sindhu, S. S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight

intrusion detection using a wrapper approach. Expert Systems with Applications,

39(1), 129-141.

155

Singh, R., Kumar, H., & Singla, R. K. (2015). A reference dataset for network traffic

activity based intrusion detection system. International Journal of Computers

Communications & Control, 10(3), 390-402.

Sommer, R., & Paxson, V. (2003). Enhancing byte-level network intrusion detection

signatures with context. Proceedings of the 10th ACM Conference on Computer

and Communications Security, 262-271.

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning

for network intrusion detection. IEEE Symposium on Security and Privacy, 305-

316.

Song, D., Heywood, M. I., & Zincir-Heywood, A. N. (2005). Training genetic

programming on half a million patterns: an example from anomaly detection.

IEEE Transactions on Evolutionary Computation, 9(3), 225-239.

Sqrrl Data. (2018). A Framework for Cyber Threat Hunting. Retrieved from:

https://sqrrl.com/media/Framework-for-Threat-Hunting-Whitepaper-web.pdf.

Šrndić, N., & Laskov, P. (2014). Practical evasion of a learning-based classifier: A case

study. IEEE Symposium on Security and Privacy (SP), 197-211.

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based

modeling for fraud and intrusion detection: Results from the

jam project. Proceedings of the DARPA Information Survivability Conference and

Exposition, 2, 130-144. IEEE.

Stopel, D., Boger, Z., Moskovitch, R., Shahar, Y., & Elovici, Y. (2006). Application of

artificial neural networks techniques to computer worm detection. International

Joint Conference on Neural Networks, 2006, 2362-2369.

Strehl, A. & Ghosh, J. (2002). Cluster ensembles – A knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3, 583-

617.

Swarnkar, M., & Hubballi, N. (2016). OCPAD: One class naive Bayes classifier for

payload based anomaly detection. Expert Systems with Applications, 64, 330-339.

Tadda, G. P., & Salerno, J. S. (2010). Overview of cyber situational awareness. Cyber

Situational Awareness: Issues and Research, 46, 15-35.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the

KDD Cup 99 data set. Proceedings of the 2009 IEEE Symposium on

Computational Intelligence for Security and Defense Applications, 1-6.

Toosi, A. N., & Kahani, M. (2007). A new approach to intrusion detection based on an

evolutionary soft computing model using neuro-fuzzy classifiers. Computer

Communications, 30(10), 2201-2212.

156

Topchy, A. P., Law, M. H. C., Jain, A. K., & Fred, A. L. (2004). Analysis of consensus

partition in cluster ensemble. Proceedings of the Fourth IEEE International

Conference on Data Mining, 225-232.

Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: Models of consensus

and weak partitions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(12), 1866-1881.

Tsang, I. W., Kwok, J. T., & Cheung, P. M. (2005). Core vector machines: Fast SVM

training on very large data sets. Journal of Machine Learning Research, 6, 363-

392.

Tumer, K., & Agogino, A. K. (2008). Ensemble clustering with voting active clusters.

Pattern Recognition Letters, 29(14), 1947-1953.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433-460.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.

Science, 185(4157), 1124-1131.

Tylman, W. (2008). Anomaly-based intrusion detection using Bayesian networks. 3rd

International Conference on Dependability of Computer Systems, 211-218. IEEE.

Valdes, A., & Skinner, K. (2000). Adaptive, model-based monitoring for cyber attack

detection. Recent Advances in Intrusion Detection, 80-93. Springer.

Vasilomanolakis, E., Cordero, C. G., Milanov, N., & Mühlhäuser, M. (2016). Towards

the creation of synthetic, yet realistic, intrusion detection datasets. IEEE/IFIP

Network Operations and Management Symposium, 1209-1214.

Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., & Fischer, M. (2015). Taxonomy

and survey of collaborative intrusion detection. ACM Computing Surveys, 47(4),

55.

Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble

algorithms. International Journal of Pattern Recognition and Artificial

Intelligence, 25(3), 337-372.

Vega-Pons, S., Correa-Morris, J., & Ruiz-Shulcloper, J. (2008). Weighted cluster

ensemble using a kernel consensus function. Progress in Pattern Recognition,

Image Analysis and Applications, 195-202. Springer.

Vega-Pons, S., Correa-Morris, J., & Ruiz-Shulcloper, J. (2010). Weighted partition

consensus via kernels. Pattern Recognition, 43(8), 2712-2724.

Wang, G., Wang, T., Zheng, H., & Zhao, B. Y. (2014). Man vs. machine: Practical

adversarial detection of malicious crowdsourcing workers. 23rd USENIX Security

Symposium, 239-254.

157

Wang, X., Yang, C., & Zhou, J. (2009). Clustering aggregation by probability

accumulation. Pattern Recognition, 42(5), 668-675.

Weng, F. F., Jiang, Q. S., Shi, L., & Wu, N. (2007). An intrusion detection system based

on the clustering ensemble. 2007 International Workshop on Anti-Counterfeiting,

Security, and Identification, 121-124.

Wheelus, C., Khoshgoftaar, T. M., Zuech, R., & Najafabadi, M. M. (2014). A session

based approach for aggregating network traffic data - the SANTA dataset. IEEE

International Conference on Bioinformatics and Bioengineering, 369-378.

Xiao, L. Y., Chen, Y. T., & Chang, C. K. (2014). Bayesian model averaging of Bayesian

network classifiers for intrusion detection. 38th Annual IEEE International

Computer Software and Applications Conference Workshops, 128-133.

Xu, J., & Shelton, C. R. (2010). Intrusion detection using continuous time bayesian

networks. Journal of Artificial Intelligence Research, 39, 745-774.

Yassin, W., Udzir, N. I., Muda, Z., & Sulaiman, M. N. (2013). Anomaly-based intrusion

detection through k-means clustering and naives Bayes classification. 4th

International Conference on Computing and Informatics, 298-303.

Yoon, H. S., Ahn, S. Y., Lee, S. H., Cho, S. B., & Kim, J. H. (2006). Heterogeneous

clustering ensemble method for combining different cluster results. BioDM 2006,

LNBI, 3916, 82-92.

Zhang, J., Zulkernine, M., & Haque, A. (2008). Random-forests-based network intrusion

detection systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 38(5), 649-659.

Zhong, C., Yen, J., Liu, P., Erbacher, R. F., Garneau, C., & Chen, B. (2017). Studying

analysts’ data triage operations in cyber defense situational analysis. In Theory

and Models for Cyber Situation Awareness, 128-169. Springer.

Zhou, C. V., Leckie, C., & Karunasekera, S. (2010). A survey of coordinated attacks and

collaborative intrusion detection. Computers & Security, 29(1), 124-140.

Zhou, Z. H., & Tang, W. (2006). Clusterer ensemble. Knowledge-Based Systems, 19(1),

77-83.

	Nova Southeastern University
	NSUWorks
	2018

	Probabilistic Clustering Ensemble Evaluation for Intrusion Detection
	Steven M. McElwee
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1537981191.pdf.MOmH1

