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Intrusion detection is the practice of examining information from computers and 

networks to identify cyberattacks. It is an important topic in practice, since the frequency 

and consequences of cyberattacks continues to increase and affect organizations. It is 

important for research, since many problems exist for intrusion detection systems. 

Intrusion detection systems monitor large volumes of data and frequently generate false 

positives. This results in additional effort for security analysts to review and interpret 

alerts. After long hours spent reviewing alerts, security analysts become fatigued and 

make bad decisions. There is currently no approach to intrusion detection that reduces the 

workload of human analysts by providing a probabilistic prediction that a computer is 

experiencing a cyberattack.  

This research addressed this problem by estimating the probability that a computer 

system was being attacked, rather than alerting on individual events. This research 

combined concepts from cyber situation awareness by applying clustering ensembles, 

probability analysis, and active learning. The unique contribution of this research is that it 

provides a higher level of meaning for intrusion alerts than traditional approaches.  

Three experiments were conducted in the course of this research to demonstrate the 

feasibility of these concepts. The first experiment evaluated cluster generation 

approaches that provided multiple perspectives of network events using unsupervised 

machine learning. The second experiment developed and evaluated a method for 

detecting anomalies from the clustering results. This experiment also determined the 

probability that a computer system was being attacked. Finally, the third experiment 

integrated active learning into the anomaly detection results and evaluated its 

effectiveness in improving the accuracy. 

This research demonstrated that clustering ensembles with probabilistic analysis were 

effective for identifying normal events. Abnormal events remained uncertain and were 

assigned a belief. By aggregating the belief to find the probability that a computer system 

was under attack, the resulting probability was highly accurate for the source IP addresses 

and reasonably accurate for the destination IP addresses. Active learning, which 

simulated feedback from a human analyst, eliminated the residual error for the 

destination IP addresses with a low number of events that required labeling.
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Chapter 1 

Introduction 

Background 

Intrusion detection systems identify cyberattacks. Malicious or criminal 

cyberattacks take an average of 229 days to detect, and the length of time to detect and 

contain an attack increases the cost of response (Ponemon Institute, 2016). Consequently, 

detecting cyberattacks quickly is vital for organizations. Because of the volume of 

intrusion alerts, cyberattacks are sometimes miscategorized in the large number of alerts 

that require human analyst review (Julisch, 2003). After long hours of review, analysts 

make mistakes, and alerts may be miscategorized (Sawyer et al., 2014). Further, human 

analysts make inaccurate decisions and use preconceived biases when dealing with 

probabilistic reasoning (Tversky & Kahneman, 1974). Most intrusion detection research 

has focused on identifying individual events and has not provided meaning in the broader 

perspective of cyber situation awareness (CSA) (Sommer & Paxson, 2003; Erbacher, 

Frincke, Wong, Moody, & Fink, 2010; Sommer & Paxson, 2010; Tadda & Salerno, 

2010). Detecting intrusions at the individual event level is prone to high false positive 

rates and overfitting (Sommer & Paxson, 2010). Thus, new approaches to intrusion 

detection are needed to provide better support for human decision-making under 

uncertain conditions. 

This research developed a system for anomaly-based intrusion detection. The 

system incorporated multiple views of anomalies to find the probability that a computer 
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system was under attack or had been compromised.  The novelty of this research was the 

application of clustering ensembles, probability analysis, and active learning to extend 

research in intrusion detection. This research also incorporated relevant concepts from 

CSA to add meaning to intrusion alerts. 

  

Problem Statement 

There is currently no approach to intrusion detection that reduces the workload of 

human analysts by providing a probabilistic prediction that a computer is experiencing a 

cyberattack. Intrusion detection systems monitor increasingly large datasets that represent 

interconnected devices and sensors (Saeed, Ahmadinia, Javed, & Larijani, 2016; Al-

Hamadi & Chen, 2015; Ali & Al-Shaer, 2015). The alerts generated by intrusion 

detection systems require human review to evaluate the accuracy of the alerts and to 

determine an appropriate course of action (Julisch, 2003). A significant problem is that 

intrusion alerts often have high false-positive rates, since intrusions are rare in large 

datasets (Kruegel, Mutz, Robertson, & Valeur, 2003; Scott, 2004). Thus, security analysts 

become fatigued and make poor decisions after spending hours reviewing alerts (Sawyer 

et al., 2014). Improvements in intrusion detection systems are needed to reduce false-

positives, improve the context of alerts, and reduce the burden on human analysts.  

 

Dissertation Goal 

The goal of this research was to improve anomaly-based intrusion detection by 

adding meaning to alerts through the use of probabilistic clustering ensembles. Adding 

meaning to alerts shifts the focus from the individual event level to the computer system 
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level. This research developed a method to reduce the workload of security analysts by 

focusing on the computer systems most likely experiencing attacks. The results of this 

research will allow security analysts to better prioritize their monitoring activity, which 

has been found to be important in practice (McElwee, Heaton, Fraley, & Cannady, 2017). 

 

Discussion 

An important objective of this research was to apply clustering ensembles to 

intrusion detection. There is not one correct way to cluster network information to 

identify anomalies. Instead, there are multiple perspectives that, when taken together, 

improve accuracy.  This idea is supported from prior research, which acknowledges that 

“clustering is in the eye of the beholder” (Estivill-Castro, 2002, p. 65). To illustrate this 

idea, consider that a reasonable person is given a deck of playing cards, with 52 cards of 

four suits, and two joker cards. The person is given direction to cluster the cards into 

meaningful groups. There are a wide variety of ways that the person might cluster the 

cards. The person might cluster the cards using an obvious feature, such as the face value, 

by grouping together all the aces in one group, the twos in another group, the threes in 

another group, and so on. Such a grouping results in 13 clusters of four cards each and a 

cluster with two jokers. The person might opt for four clusters, where each cluster is 

identified by the suit of the card, specifically diamonds, hearts, clubs, and spades. This 

grouping results in four clusters with 13 cards in each. In this case, the jokers do not 

cluster well, but may be considered anomalies. The person might group the cards using a 

feature derived from outside information, such as grouping the cards needed to assemble 

a deck for a special game. Such a group might consist of the nines, tens, jacks, queens, 
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kings, and aces for playing the game of pinochle. The second group is those not needed to 

play that game. Figure 1 illustrates this example using two sample clusterings. 

 

Figure 1. Multiple ways to cluster a deck of cards 

 

From the playing card example above, it is obvious that there is not one correct 

way to cluster the cards. Each clustering result has different meaning for different 

reasons. A wide variety of clustering results is possible based on the features chosen to 

create the groups. Even the anomalies, as represented in 𝑃2 by the jokers, are only 

anomalies because of the meaning the person placed on the clustering. Thus, in some 

clustering approaches, the jokers cluster well, but in others they appear to be anomalies. 

This research used clustering ensembles, which use many different clusterings of 

the data to create a clustering solution that works best (Strehl & Gosh, 2002; Fred & Jain, 

2005). Figure 2 illustrates the general approach to clustering ensembles. The first stage 

generates a diverse set of clustering solutions, ℙ, from among all possible clustering 

solutions, ℙ𝑋. The second stage evaluates the results to arrive at a final clustering 

solution, 𝑃∗. 
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Figure 2. Clustering ensemble overview 

 

This research used clustering ensembles because of their potential to be useful for 

intrusion detection, since they enable unsupervised machine learning using multiple 

sources of information, including domain knowledge, in the final clustering solution 

(Strehl & Ghosh, 2002).  Ensemble approaches to machine learning have proven to be 

successful in resisting adversarial evasion (Šrndić & Laskov, 2014; Wang, Wang, Zheng, 

& Zhao, 2014). Evasion is a tactic to conduct cyberattacks without being detected. There 

have been few applications of clustering ensembles to intrusion detection (Weng, Jiang, 

Shi, & Wu, 2007; Gao, Zhu, & Wang, 2010). Other related studies have shown that 

clustering ensembles have the potential to be effective when applied to intrusion 

detection. Lazarevic and Kumar (2005) used an approach similar to clustering ensembles, 

called feature bagging, and found it to be successful for intrusion detection. Hou, Chen, 

Tas, Demihovskiy, and Ye (2015) found that clustering ensembles were better for the 

detection of malware than single base clustering algorithms. 

The importance of adding meaning to alerts is established in prior research. 

Sommer and Paxson (2003) found that adding context to intrusion detection improved 

signature-based methods by detecting multi-step attacks. Machine learning algorithms for 
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intrusion detection can find what is abnormal, but generate false positives, because they 

lack meaning (Sommer & Paxson, 2010). As a result, security analysts must evaluate 

binary indications of cyberattacks with insufficient meaning to make appropriate 

decisions. Thus, this research created a semantic level that better represents how human 

analysts evaluate security alerts.  

Computer network intrusions are generally a multi-step process that requires an 

attacker and a victim. (Zhou, Leckie, & Karunasekera, 2010). Understanding the meaning 

and significance of network events requires an understanding of the coordination of 

events (Zhou et al., 2010). The connection of these events is often uncertain and requires 

probabilistic reasoning. Thus, this research used probability analysis to evaluate if a 

computer system was being attacked.  

 

Relevance and Significance 

Intrusion detection is an important topic in research as well as in practice, and 

identifying cyberattacks quickly is important for reducing response costs (Ponemon 

Institute, 2016). Unfortunately, intrusion alerts are sometimes missed because of the 

volume that must be reviewed (Julisch, 2003). After long hours of reviewing security 

alerts, human analysts make poor decisions, and alerts may be miscategorized (Sawyer et 

al., 2014). Humans tend to make inaccurate decisions and use preconceived biases when 

dealing with probabilistic reasoning (Tversky & Kahneman, 1974). In addition, 

adversarial tactics and evasion require new approaches for the identification of malicious 

activity (Šrndić & Laskov, 2014; Wang et al., 2014). As a result, improving intrusion 

detection is a relevant topic for continued research to provide better support for decision-
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making under uncertain conditions. Given the importance of intrusion detection and the 

limitations of human judgement, this research provides context for analysts, so they can 

make better decisions. The results of this research may be used to augment security 

analyst capabilities for responding to intrusion alerts. 

 

Barriers and Issues 

This research addressed several barriers and issues that are present in anomaly-

based intrusion detection research. First, anomaly-based intrusion detection is prone to 

high false-positive rates. This is largely due to the imbalanced nature of intrusion 

detection data, since there are large amounts of data, but only a few intrusion events 

(Scott, 2004). The base rate fallacy stipulates that when events of interest are rare, even 

highly accurate detection systems may have a high false positive rate (Kruegel et al., 

2003). This research addressed this issue by focusing on the probability that a computer 

system was being attacked rather than on determining the accurate classification of 

individual events (Li, Ou, & Rajagopalan, 2010; Tadda & Salerno, 2010). 

A second issue in intrusion detection research is overfitting. To achieve higher 

accuracy, researchers may over-train learning algorithms or use too much training data to 

be generalizable for novel anomalies. This is because machine learning algorithms are 

more suitable for detecting similarities than for detecting anomalies (Sommer & Paxson, 

2010). Overfitting may also result from the selection of a dataset that contains too many 

duplicate records, such as the popular KDD Cup 1999 dataset (Tavallaee, Bagheri, Lu, & 

Ghorbani, 2009). Since ensemble approaches to machine learning are less susceptible to 

overfitting, this research applied clustering ensembles that were generated using bagging. 
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A third issue in intrusion detection is adversarial evasion. To avoid detection, 

attackers may attack the intrusion detection system itself. Attacks against intrusion 

detection systems include evasion, tampering, and denial of service (Laskov & 

Lippmann, 2010; Šrndić & Laskov, 2014; Wang et al., 2014; Vasilomanolakis, 

Karuppayah, Mühlhäuser, & Fischer, 2015). Evasion amplifies the problem of overfitting 

by preventing the detection of novel attacks (Sommer & Paxson, 2010). To address this 

problem, this research used ensemble approaches, since they have been found effective in 

resisting adversarial evasion (Šrndić & Laskov, 2014; Wang et al., 2014). In addition, this 

research applied active learning, which has been shown to allow adaptation to evasive 

techniques (Miller et al., 2014).  

A fourth issue in intrusion detection research is the use of a suitable dataset for 

evaluation. Most early intrusion detection research used the KDD Cup 1999 dataset, 

which was prepared from a DARPA packet capture for a KDD competition (Cao, Hoang, 

Nguyen, 2013). The KDD Cup 1999 dataset has been criticized because of its duplicate 

records, its outdated information because of older technologies, and its high volume of 

records (Qian, Xu, & Shi, 2006; Tavallaee et al., 2009; Creech & Hu, 2013). To address 

this problem, a variety of researchers have created new intrusion detection evaluation 

datasets. None of the newer datasets has received as much widespread popularity and 

adoption as KDD Cup 1999. This research included a literature review of publicly 

available intrusion detection datasets. As a result, the NSL-KDD dataset was used for 

preliminary evaluation and the UNSW-NB15 dataset for evaluation with a more 

contemporary dataset (Tavallaee et al., 2009; Moustafa & Slay, 2015).   
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Definition of Terms 

Accuracy: The ratio of the number of true positive and true negative results compared to 

the number of all results. 

Active Learning: A semi-supervised machine learning approach in which a subset of 

unknown data is selected and presented to an oracle for labeling during training. 

Alert: A notification or warning, which in the context of intrusion detection, represents a 

potential cyberattack. 

Anomaly: An event that deviates from a normal event.  

Attack: An aggressive action against a computer system that may include unauthorized 

modification of files to allow unauthorized access to system information, 

unauthorized access or modification of user information, unauthorized 

modification of information in network components, or unauthorized use of 

system resources, including unauthorized account creation (Chebrolu, Abraham, 

& Thomas, 2005). 

Bagging: A machine learning method that provides a random subset of features and 

records to a machine learning algorithm with a goal of reducing overfitting. 

Bayes Theorem: Methods of probabilistic inference that calculate a prior probability of a 

hypothesis based on evidence gathered from observations (Kruegel et al., 2003). 

Bayesian Networks: Directed acyclic graphs, where each node in the graph represents a 

conditional probability table (Kruegel et al., 2003). 

Clustering: Finding natural groupings in data such that data within each cluster is most 

similar to other data in that cluster and most dissimilar to the data of other clusters 

(Zhou & Tang, 2006; Jain, 2010). 
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Clustering Ensemble: An approach to clustering that uses combinations of multiple 

partitions of clustering results to find a consensus partition that improves accuracy 

compared to an individual clustering result (Topchy, Jain, & Punch, 2005; Ayad 

& Kamel, 2010).  

Cyber Situation Awareness: A specialized application of situation awareness that 

applies to the analysis of cyberattacks and their impact on computer and network 

operations (Li et al., 2010; Erbacher et al., 2010). 

Cyberattack: See Attack. 

Ensemble: A multi-learner system, where each component learner attempts to solve the 

same task as the others (Strehl & Ghosh, 2002). 

Evasion: Deceiving an intrusion detection system or rending it ineffective through the 

modification of training or testing data (Šrndić & Laskov, 2014; Wang et al., 

2014; Laskov & Lippman, 2010). 

False Positive: In the context of intrusion detection, a condition in which a predicted 

class indicates an attack, but the actual class was normal. 

Intrusion Detection: The practice of examining information from computers and 

networks that are to be protected in order to identify attacks against those 

computers and networks (Debar, Dacier, & Wespi, 1999). 

KDD Cup 1999: A dataset that has been widely used in intrusion detection research. 

Machine Learning: A field of computer science that uses algorithms to learn patterns 

without being programmed with predefined rules. 

Mirkin Distance: An algorithm for comparing two clusters by counting the number of 

point pairs that are exclusive to each of the two clusters (Meilă, 2007). 



11 

Oracle: An entity that represents a knowledgeable human subject matter expert and is 

able to provide the correct label for a data record in response to a query.  

Overfitting: A modeling error in which a machine learning algorithm is trained to match 

a particular set of data but is not generalizable to other sets of data. 

Partition: A set of clusters that represent the results from a single clustering algorithm. 

Security Analyst: A job function that specializes in cyber defensive operations in the 

context of a business or organization. 

Security Monitoring: A job function of security analysts for detecting and responding to 

potential cyberattacks. 

Signature: A predefined pattern that matches characteristics of attacks. 

Situation Awareness: The perception of information in an environment for a given time 

and space, the comprehension of the meaning of that information, and the 

projection of the future conditions in order to enable effective selection of an 

appropriate course of action (Endsley, 1995; Tadda & Salerno, 2010). 

Supervised Machine Learning: An approach to machine learning in which records with 

known classes are used to train an algorithm so that it can then predict an output 

for records with unknown classes. 

Unsupervised Machine Learning: An approach to machine learning in which no 

expected outcome is provided for training an algorithm. 
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List of Acronyms 

ANMI: Average Normalized Mutual Information 

CSA: Cyber Situation Awareness 

CSPA: Cluster-Based Similarity Partitioning Algorithm 

CSV: Comma Separated Value 

CTBN: Continuous Time Bayesian Networks 

CVSS: Common Vulnerability Scoring System 

DARPA: Defense Advanced Research Projects Agency 

DOS: Denial of Service 

EM: Expectation Maximization 

FN: False Negative 

FP: False Positive 

GPU: Graphics Processing Unit 

HGPA: Hypergraph Partitioning Algorithm 

IDS: Intrusion Detection System 

KDD: Knowledge Discovery in Databases 

LAC: Locally Adaptive Clustering  

LAN: Local Area Network 

MCLA: Meta Clustering Algorithm 

NM: Normalized Mutual Information 

NMF: Nonnegative Matrix Factorization  

QMI: Quadratic Mutual Information 

ROC: Receiver Operating Characteristics 
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SCANN: Stacking, Correspondence Analysis and Nearest Neighbor 

SVM: Support Vector Machine 

TN: True Negative 

TP: True Positive 

WBPA: Weighty Bipartite Partition Algorithm 

WSBPA: Weighted Subspace Bipartite Partitioning Algorithm 

WSPA: Weighty Similarity Partition Algorithm 

 

Summary 

This chapter introduced an approach to anomaly-based intrusion detection using 

clustering ensembles. This chapter described how this research approached the problems 

of too much data and high false positives rates. Finally, this chapter established the goal 

of shifting the focus of intrusion detection from individual events to higher level of 

meaning. This research explored how to predict the probability that a computer system 

was under attack to enable security analysts to make better decisions under uncertain 

conditions. 

The remainder of this dissertation report provides the supporting background for 

this research and describes the methodology that was used. Chapter 2 reviews the 

literature that established the basis for this research. Chapter 3 describes the experiments 

conducted to test the effectiveness of clustering ensembles with probabilistic analysis for 

intrusion detection as well as the testing approaches for evaluating the results. Chapter 4 

presents the results of the experiments. Finally, Chapter 5 explores the conclusions of this 
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research, the implications for future research, and recommendations for building upon the 

foundation laid by this research. 
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Chapter 2 

Review of the Literature 

 

Overview of Reviewed Topics 

The focus of this research was to develop an intrusion detection system that 

provides meaning for intrusion alerts by using clustering ensembles and probabilistic 

analysis. To accomplish this research, the following areas of literature were examined to 

synthesize these concepts: 

• Cyber Situation Awareness (CSA) 

• Intrusion Detection 

• Probabilistic Intrusion Detection 

• Clustering Ensembles 

• Intrusion Detection Datasets 

Each of these areas has an established body of existing research. The following 

sections describe the importance of each of these areas, review relevant research studies 

in each topic, and synthesize the key concepts needed for building a foundation for this 

research. 
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Cyber Situation Awareness (CSA) 

Background 

Situation awareness is the perception of information in an environment for a given 

time and space. It comprehends the meaning of information and projects the future 

conditions to enable the effective selection of a course of action (Endsley, 1995; Tadda & 

Salerno, 2010). Situation awareness is an essential function in various fields that require 

the interpretation of information about the environment for effective decision-making 

(Endsley, 1995). The goals of situation awareness are to identify what is happening, why 

it is happening, what will happen next, and what can be done about it (Erbacher et al., 

2010). Seminal work in situation awareness was conducted by Endsley (1995) and 

resulted in a theoretical model for use in discussion and future research. Endsley (1995) 

developed a three-level model of situation awareness. At the first level, situation 

awareness deals with perceiving the elements of the current situation. After the elements 

are collected, the second level entails comprehension of the current situation. This second 

level includes correlation and integration of data to achieve a higher level of 

understanding (Erbacher et al., 2010). Finally, the third level focuses on projecting a 

future state and the potential impact on future operations (Erbacher et al., 2010). 

Decision-making regarding a course of action occurs after all three levels are developed 

to some extent by analysts. 

CSA is a specialized application of situation awareness that applies to a first-level 

analysis of cyberattacks and their impact on computer and network operations (Li et al., 

2010; Erbacher et al., 2010). Improving CSA increases the effectiveness of security 

analysts in dealing with attacks (Brynielsson, Frank, & Varga, 2016). CSA involves the 
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interpretation of raw security events to identify malicious actors, legitimate users, and 

system abnormalities in the context of system operating conditions and known 

vulnerabilities (Erbacher et al., 2010).  

 

Review of CSA Literature 

Ensdley (1995) introduced the theory of situation awareness to address the 

problem that there was no underlying theory that supported moving from discrete 

observations to a comprehension of the overall situation. As a result, Endsley (1995) 

defined a model for situation awareness to support future discussion and research. The 

model contains three levels of situation awareness that are driven by goals, objectives, 

and preconceived ideas: Level 1 deals with perceiving the elements of the current 

situation; Level 2 entails comprehension of the current situation; and Level 3 focuses on 

projecting a future state. 

Ehrbacher et al. (2010) built upon Endsley’s (1995) research by applying the 

model to CSA. Using cognitive task analysis, Ehrbacher et al. (2010) addressed the need 

for improved decision making for security analysts. The results of this study found that 

CSA includes impact identification, damage assessment, recovery, projection to the 

future, as well as characterization of attacks and attackers (Erbacher et al., 2020). To 

uncover the collaborative processes for threat analysts, Ahrend, Jirotka, and Jones (2016) 

conducted interviews with threat analysts on their day-to-day practices. This study found 

that too much data leads to decisions made with uncertainty and that information is 

critical for reducing uncertainty at all stages of CSA (Ahrend et al., 2016). In addition, 

Ahrend et al. (2016) found that analysts rely upon what they remember from their own 
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past investigations. As a result, biases from past incidents may incorrectly inform future 

decisions when evaluating alerts. 

Gutzwiller, Hunt, and Lange (2016) used cognitive task analysis for studying 

CSA but focused on determining the goals and information elements needed to make 

decisions. The results demonstrated that CSA requires abstraction at several levels: 1) the 

network as well as its architecture and state; 2) the world, including emergent threats, 

abnormal behaviors, and attack signatures; and 3) the team, with a focus on how teams 

work and how they hand-off work to each other (Gutzwiller et al., 2016). Similarly, 

Newcomb, Hammell, and Hutchinson (2016) found that high levels of abstraction were 

necessary to enable decision making in their experimental study that addressed the 

problem of too many intrusion alerts for analysts to evaluate. Bartnes, Moe, and 

Heegaard (2016) studied CSA with a goal of improving security incident response. Their 

study used semi-structured interviews and found that, since there is an absence of major 

events during normal operating conditions as well as a low priority for training, security 

analysts are not prepared for incidents when they occur (Bartnes et al., 2016). 

Rajivan and Cooke (2017) explored team-level CSA, including human 

collaboration and information sharing. Using constructs of shared mental models, 

transactive memory, and interactive team cognition, this study used a combination of 

cognitive task analysis and event analysis of systemic teamwork (EAST) to empirically 

test the results (Rajivan & Cooke, 2017). This study found that the role of teamwork is 

important for CSA at every level of cybersecurity defense (Rajivan & Cooke, 2017). 

Zhong et al. (2017) captured the cognitive processes of security analysts involved in 

triaging security alerts. This study created a framework for retrieving data that is relevant 
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to the triage process to provide context for alerts (Zhong et al., 2017). In addition, this 

study created a system with a user interface that automatically identified the information 

that analysts required for decision-making (Zhong et al., 2017). 

Table 1 summarizes literature from empirical CSA studies. Results from these 

studies are important in characterizing the meaning of intrusion alerts in the context of 

CSA. 

 

Table 1 

Summary of CSA Literature 

Study Problem Methodology Findings or Contributions 

Erbacher et 

al. (2010) 

Need for 

improved 

decision making 

for security 

analysts 

Cognitive task 

analysis 

CSA goals include impact 

identification, damage assessment, 

recovery, projection to the future, 

and characterization of attacks and 

attackers.  

Ahrend et al. 

(2016) 

Uncover 

collaborative 

processes for 

threat analysts 

Interviews 

with threat 

analysts on 

day-to-day 

practices 

Too much data leads to making 

decisions under uncertainty. 

Information is critical to reducing 

uncertainty at all stages. Analysts 

rely upon what they remember from 

their own past investigations. 

Gutzwiller et 

al. (2016) 

Determine the 

goals and 

information 

elements needed 

for CSA 

Cognitive task 

analysis 

Abstraction for CSA includes: 1) the 

network and its architecture and 

state; 2) the world, including 

emergent threats, abnormal 

behaviors, and attack signatures; 3) 

and the team, with a focus on how 

the team works and hands-off work 

to each other. 
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Table 1  

Summary of CSA Literature (cont.) 

Study Problem Methodology Findings or Contributions 

Newcomb et 

al. (2016) 

Too many 

intrusion alerts 

for security 

analysts to 

evaluate 

Experimental 

study 

CSA requires a high level of 

abstraction to enable decision-

making. CVSS scores are not a good 

indicator of vulnerabilities for CSA. 

Bartnes, 

Moe, & 

Heegaard 

(2016) 

How to improve 

security incident 

response 

Semi-

structured 

interviews 

Absence of major events prevents 

preparation for security incidents, 

and training for security incidents is 

not a priority in organizations.  

Rajivan & 

Cooke 

(2017) 

Understanding 

the role of 

teamwork in 

CSA 

Cognitive task 

analysis and 

event analysis 

of systemic 

teamwork 

Teamwork is important for 

improving CSA at every level of 

cybersecurity defense processes. 

Limitations in teamwork have a 

detrimental impact on defense. 

 

Discussion 

CSA must consider the network topology (Brynielsson et al., 2016), 

vulnerabilities (Erbacher et al., 2010), cyber personas (Brynielsson et al., 2016), and the 

current threat landscape (Gutzwiller et al., 2016). In addition, CSA must include a time 

component that considers near real-time events, mid-term events, and long-term events 

(Brynielsson et al., 2016). Taking all of this information and the various time views into 

account, CSA requires a high level of abstraction that enables human decision-making 

(Ergacher et al., 2010; Gutzwiller et al., 2016; Newcomb et al., 2016). 

In addition to technical security monitoring systems, CSA relies upon a variety of 

techniques for understanding current and projected conditions. These techniques include: 

timelines of attacks (Erbacher et al., 2010), attack trees (Li et al., 2010), kill chains 
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(Bhatt, Yano, Amorim, & Gustavsson, 2014), Bayesian networks (Franke & Brynielsson, 

2014), and the diamond model (Al-Mohannadi et al., 2016). CSA requires both statistical 

techniques for understanding events and human knowledge to learn about novel attacks 

(Tadda & Salerno, 2010). 

CSA is a challenging practice for a variety of reasons. Most current work in 

cybersecurity monitoring focuses on single, isolated attacks and does not develop a full 

comprehension of the current situation or the projected state (Tadda & Salerno, 2010). 

The volume of computer and network data and alerts makes it impossible for security 

analysts to know the detailed operation of each computer in a network (Li et al., 2010). 

CSA relies upon uncertain, imperfect information (Li et al., 2010). As new information 

becomes available, security analysts must update their existing beliefs to address the 

uncertainty (Tadda & Salerno, 2010). In addition, CSA is challenging because, under 

normal conditions, there is an absence of major security incidents. As a result, security 

analysts often lack preparation, training, and documentation to support CSA when 

cyberattacks occur (Bartnes et al., 2016). 
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Intrusion Detection 

Background 

Intrusion detection is the practice of examining information from computers and 

networks to identify attacks (Debar et al., 1999). Intrusion detection identifies anomalies 

that represent computer network intrusions or uses signature-based approaches that detect 

patterns that match known intrusion techniques (Mukherjee, Heberlein, & Levitt, 1994). 

An important factor in detecting intrusions is deciding the source of data that will be 

monitored. Intrusion detection systems generally perform either network-based or host-

based intrusion detection (Mukherjee et al., 1994). A variety of attacks may be found by 

intrusion detection systems, including: 1) unauthorized modification of files to allow 

unauthorized access to system information; 2) unauthorized access or modification of 

user information; 3) unauthorized modification of information in network components; 

and 4) unauthorized use of system resources, including unauthorized account creation 

(Chebrolu et al., 2005). 

Intrusion detection systems are divided into signature-based detection and 

anomaly detection. Signature-based systems rely upon predefined patterns that match the 

characteristics of attacks.  Anomaly detection learns normal patterns and detects patterns 

that have not been encountered or predefined. Both signature-based detection and 

anomaly detection have advantages and disadvantages (Chebrolu et al., 2005). Intrusion 

detection is also categorized by the means in which data is collected as either network-

based or host-based. Xiao, Chen, and Chang (2014) provide a more comprehensive 

listing of types of intrusion detection systems, including: 1) network-based, 2) host-

based, 3) stack-based, 4) protocol-based, and 5) graph based. 
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Table 2 

Summary of Machine Learning Approaches to Intrusion Detection 

School of 

Thought 

Algorithms Research Studies 

Symbolist Decision trees, 

random forests 

Sinclair, Pierce, & Matzner (1999); Zhang, 

Zulkernine, & Haque (2008); Sindhu, Geetha, & 

Kannan (2012); McElwee (2017) 

Connectionist Neural networks, 

self-organizing 

maps, deep 

neural networks 

Cannady (1998); Rhodes, Mahaffey, & Cannady 

(2000); Stopel, Boger, Moskovitch, Shahar, & 

Elovici (2006); Ahmad, Abdullah, & Alghamdi 

(2009); Daliran, Nassiri, & Latif-Shabgahi (2010); 

Sindhu et al. (2012); McElwee & Cannady (2016); 

McElwee et al. (2017) 

Evolutionary Immune system, 

evolutionary 

neural networks, 

genetic 

programming 

Dasgupta & González (2002); Han & Cho (2005); 

Song, Heywood, & Zincir-Heywood (2005); Toosi 

& Kahani (2007); Sindhu et al. (2012) 

Bayesian Bayesian 

networks, naïve 

Bayes 

Valdes & Skinner (2000); Kruegel et al. (2003); 

Feng, Guan, Guo, Gao, & Liu (2004); Gowadia, 

Farkas, & Valtorta (2005); Tylman (2008); 

Perdisci, Ariu, Fogla, Giacinto, & Lee (2009); Xu 

& Shelton (2010); Koc, Mazzuchi, & Sarkani 

(2012); Yassin, Udzir, Muda, & Sulaiman (2013) 

Analogistic Support vector 

machine (SVM) 

Mukkamala, Janoski, & Sung (2002); Chen, Hsu, & 

Shen (2005); Tsang, Kwok, & Cheung (2005); 

Khan, Awad, & Thuraisingham (2007) 

 

 

Machine learning approaches can be divided into five primary schools of thought, 

as shown in Table 2: symbolist, connectionist, evolutionary, Bayesian, and analogistic 

(Domingos, 2015, p. 239). The symbolist approach uses inverse deduction with 

approaches like decision trees. The connectionist approach commonly applies neural 

networks and back propagation (Domingos, 2015, p. 239). Evolutionary machine learning 
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was inspired by Alan Turing (1950) and uses principles of biological evolution like 

random populations, mutation, and survival of the fittest. Bayesians, on the other hand, 

rely on probabilistic inference, as developed by Thomas Bayes and formalized by Pierre-

Simon Laplace (McGrayne, 2014, p. 159). Finally, the analogistic approach relies on the 

similarity between objects and uses tools like support vector machines (Domingos, 2015, 

p. 239).  

 

Review of Literature on Machine Learning for Intrusion Detection 

 Pioneering work in intrusion detection began with Denning and Neumann (1985) 

and was further developed by Denning (1987). This work sought to detect abnormal 

patterns of system behaviors that may represent security violations. This initial work 

resulted in an expert system that was expanded upon by Lunt (1990) and was 

subsequently developed into network-based intrusion detection (Heberlein et al., 1990). 

The remainder of this subsection reviews literature that applied machine learning to 

intrusion detection, excluding Bayesian approaches, which are covered in the next 

section. This literature review is presented in chronological order, but in most cases, the 

literature does not build upon previous research. Instead each applies different types and 

combinations of machine learning to the general problem of intrusion detection pioneered 

by Denning and Neumann (1985). 

Cannady (1998) conducted pioneering work in the application of machine 

learning to intrusion detection. This study applied neural networks to supervised misuse 

detection and achieved a detection accuracy of 97.5% for testing data. Sinclairet al. 

(1999) used both symbolist and evolutionary approaches by combining decision trees and 

genetic algorithms. This study found that, when combined, these two methods were 
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useful for defining network connection rules that could be used to create expert systems 

(Sinclair et al., 1999). Applying neural networks in a novel approach, Rhodes et al. 

(2000) applied Kohonen self-organizing maps to unsupervised intrusion detection. This 

study found that training self-organizing maps based on normal operating conditions 

allowed the unsupervised detection of buffer overflow attacks, which had not been 

present in the training data (Rhodes et al., 2000). Using evolutionary approaches, 

Dasgupta and González (2002) used an immune system model for intrusion detection and 

found that positive characterization was more precise than negative characterization but 

required more resources. 

Mukkamala et al. (2002) applied SVMs to intrusion detection and evaluated their 

effectiveness using the KDD Cup 1999 dataset. Their study compared the results of 

SVMs to neural networks and found that the accuracy was comparable, but SVMs were 

limited by their binary output (Mukkamala et al., 2002).  

Julisch and Dacier (2002) and Julisch (2003) studied how to cluster intrusion 

detection system alerts for root cause analysis. These studies found that by iteratively 

identifying alerts that could be categorized as low criticality or false positives, clustering 

reduced the quantity of alerts that required review by human analysts (Julisch & Dacier, 

2002; Julisch, 2003).  

Chen et al. (2005) used SVMs and compared their accuracy to neural networks. 

Although Mukkamala et al. (2002) found comparable results between SVMs and neural 

networks, Chen et al. (2005) found that SVMs outperformed the neural networks in terms 

of detection accuracy. 
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Han and Cho (2005) applied evolutionary neural networks to intrusion detection 

using the IDEVAL dataset. This study found that using an evolutionary algorithm for 

defining the structure of the neural network reduced the required training time and 

improved detection accuracy (Han & Cho, 2005). Also using an evolutionary approach, 

Song et al. (2005) used genetic programing and applied it to the KDD Cup 1999 dataset. 

They found that hierarchical genetic programming was successful in detecting previously 

unseen attacks (Song et al., 2005). 

Using an analogistic approach, Tsang et al. (2005) used SVMs for intrusion 

detection. They introduced a new algorithm, called a Core Vector Machine, which 

reduced the computational complexity of the training process (Tsang et al., 2005). Stopel 

et al. (2006) compared neural networks, k-nearest neighbor, and decision trees to detect 

computer worms. They found that both neural networks and k-nearest neighbor had 

similar accuracy and that neural networks performed classification faster than k-nearest 

neighbor (Stopel et al., 2006). Neural networks are generally slower to train than other 

algorithms because of many iterations of back propagation, so their conclusion that 

neural networks were faster to train is surprising. 

Several researchers have combined multiple machine learning methods for 

detecting intrusions. As an example, Khan et al. (2007) combined hierarchical clustering 

with support vector machines and found that it improved the overall accuracy.  Similarly, 

Toosi and Kahani (2007) combined soft computing methods for classification with a 

genetic algorithm for fuzzy inference and found that this combination successfully 

detected normal events and denial of service attacks. Zhang et al. (2008) combined 

multiple approaches by applying random forests simultaneously to misuse and anomaly 
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detection. They found that the combination had a higher detection rate and a lower false 

positive rate than either independent approach (Zhang et al., 2008). 

Hu, Hu, Xie, and Maybank (2009) found that hierarchical graph-theoretic 

clustering was effective in active learning for intrusion detection. Ahmad et al. (2009) 

focused on detecting denial of service attacks using neural networks. They found that 

neural networks were capable of very high detection rates, except for teardown attacks 

(Ahmad et al., 2009).  Daliran et al. (2010) used neural networks for intrusion detection 

but used them for detection of malicious code in a honeypot environment. They found 

that neural networks achieved 80% accuracy when using labeled data from this 

environment (Daliran et al., 2010). 

Sindhu et al. (2012) combined three different schools of thought by applying 

genetic algorithms, neural networks, and decision trees simultaneously. This study used 

the genetic algorithm for feature selection, followed by a neural network for 

preprocessing the data (Sindhu et al., 2012). Finally, this study used a decision tree to 

classify the data and found that it had a higher detection rate than using either a neural 

network or a C4.5 classifier independently (Sindhu et al., 2012).  

Clustering is another machine learning approach that has been applied to intrusion 

detection. Dubey and Dubey (2015) used clustering to preprocess data for machine 

learning for intrusion detection. Li, Kao, Zhang, Chuang, and Yen (2015) also used 

clustering but applied it to network flow data, which was effective in detecting botnet 

activity. Silva and Hruschka (2016) found that SLS-IBkM clustering was effective for 

data streams, including the KDD Cup 1999 dataset. Expanding upon the work of Rhodes 

et al. (2000) in using self-organizing maps for intrusion detection, McElwee and Cannady 
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(2016) focused on preprocessing intrusion detection data for imbalanced datasets. They 

found that filtering normal events and using Principal Component Analysis for feature 

reduction prior to training Kohonen self-organizing maps improved the detection 

accuracy and reduced the clustering time (McElwee & Cannady, 2016).  

McElwee (2017) applied active learning to random forest classification by 

beginning with unlabeled data and presenting a subset of the data to an oracle for 

labeling. This study found that by using k-means clustering to select a sample for the 

oracle, 90% the KDD Cup 1999 records could be classified accurately by manually 

labeling 0.13% of the total records (McElwee, 2017). Finally, expanding on the approach 

of Julisch (2003) in categorizing alerts, McElwee et al. (2017) applied deep neural 

networks to classifying alerts from a signature-based intrusion detection system and 

found that they were highly accurate for categorizing alerts. This approach was 

successful for assigning alerts to the appropriate security analysts as well as for 

automating routine reporting tasks (McElwee, Heaton, Fraley, & Cannady, 2017).  

 

Discussion 

Regardless of the approach used, intrusion detection systems can be evaluated 

using several different measures. Koc et al. (2012) highlight important evaluation criteria, 

including accuracy, error rate, and the area under receiver operating characteristics 

(ROC) curve. For binary classification, Figure 3 shows the possible outcomes of intrusion 

detection (Koc et al., 2012). 
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Figure 3. Confusion matrix for binary classification 

 

Using the criteria shown in Figure 3, it follows that accuracy can be defined as the 

number of true positives (TP) and true negatives (TN) divided by all possible outcomes: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Further, it follows that, given the accuracy, the error rate can be described as: 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (2) 

Intrusion detection is an area of research that faces several on-going challenges. 

One of the most important research challenges is the reduction of false positives. Most 

false positives are generated because of under-specified signatures, intent guessing, and 

limited abstraction capability (Gowadia et al., 2005). To address the problem of false 

positives, some studies have focused on identifying the attackers rather than including all 

events across all computers and users (Burroughs, Wilson, & Cybenko, 2002). In 

addition, intrusions are rare and may be hidden in massive amounts of data (Scott, 2004). 

As a result, the prior probability of an attack is very low, so even a highly accurate 

intrusion detection system will have high false positive rates (Kruegel et al., 2003). 
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Another challenge in intrusion detection is the large amount of data and the 

repetitive work of analyzing and prioritizing the events. Sawyer et al. (2014) found that 

after prolonged monitoring activity, there was a noticeable drop in the accuracy of 

security analysts. Thus, for routine monitoring of intrusion detection alerts, solutions that 

require less human interaction are beneficial. The amount of data is voluminous and 

contains redundant features, which also makes detection difficult for intrusion detection 

systems because of imbalanced and irrelevant data (Chebrolu et al., 2005). 

Finally, intrusion detection systems may be considered high value targets for 

attackers. Intrusion detection systems are subject to adversarial evasion, including 

deceiving the intrusion detection system or rendering it ineffective (Šrndić & Laskov, 

2014; Wang et al., 2014). Laskov and Lippman (2010) found that adversaries may 

attempt to modify the training or testing data to alter the detection results. As a result, 

intrusion detection must utilize robust classifiers capable of dealing with attacks and 

uncertainty. 
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Probabilistic Intrusion Detection 

Background 

Probabilistic methods for intrusion detection apply statistical formulas and 

algorithms. Bayes theorem refers to methods of probabilistic inference that were initially 

developed by Thomas Bayes and later formalized by Pierre-Simon Laplace (McGrayne, 

2014, p. 159). The purpose of Bayes theorem and Bayesian networks is to allow the 

calculation of a prior probability of a hypothesis based on evidence gathered from 

observations (Kruegel et al., 2003). Bayesian updating is the process of estimating the 

probability of a hypothesis given that an event has been observed (Kruegel et al., 2003; 

Chivers, Clark, Nobles, Shaikh, & Chen, 2013).  Bayesian approaches also allow the 

combination of information from several sources (Scott, 2004; Chivers et al., 2013). 

Bayesian methods are preferable over frequency-based statistics for intrusion 

detection, since frequency-based methods are more prone to evasion (Swarnkar & 

Hubballi, 2016). In addition, Bayesian methods provide a simple way to include prior 

information (Scott, 2004) and allow knowledge representation that enables reasoning 

with uncertain information (Chebrolu et al., 2005). Probabilistic methods, like Bayes 

theorem, allow intrusions to be detected based on soft evidence, or beliefs, rather than 

hard evidence (Gowadia et al., 2005). This allows attacks to be presented as probabilities 

rather than as binary decisions (Gowadia et al., 2005). 

Probabilistic methods help to address the challenges of intrusion detection, in that 

there are massive amounts of data, but criminal intrusions are rare (Scott, 2004). This 

data imbalance contributes to the base rate fallacy, which shows that even a highly 
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accurate intrusion detection system will have a high false positive rate (Kruegel et al., 

2003). In formal terms: 

P(𝐵|𝐴) =  
P(𝐴|𝐵)P(𝐵)

P(𝐴)
 (3) 

Thus, if the prior probability of an actual intrusion event, P(B), is extremely low, 

it will force P(B|A) to be low, making detection more challenging.  Perdisci et al. (2009) 

found that a false positive rate for imbalanced data must therefore be 10-5 or lower. As a 

result, detecting intrusions for rare attacks is more challenging than for common attacks, 

since one of the goals of intrusion detection is to keep false alarms low (Pajouh, 

Dastghaibyfard, & Hashemi, 2017). 

One probabilistic approach is the use of Bayesian networks, which are directed 

acyclic graphs, where each node in the graph represents a conditional probability table 

(Kruegel et al., 2003). Another probabilistic approach is naïve Bayes, which is the 

simplest Bayesian classifier and performs well for datasets that have conditional 

independence of their features (Koc et al., 2012). A variation of naïve Bayes is hidden 

naïve Bayes, which creates an additional layer to represent a hidden parent for each node 

(Koc et al., 2012). 

Bayesian approaches show promise for intrusion detection, but there are many 

challenges as well. One problem with Bayesian networks is their node ordering 

requirement, which may require expert knowledge to develop (Chebrolu et al., 2005) or 

the use of an additional algorithm that can estimate the node ordering (Gowadia et al., 

2005). Another challenge with some Bayesian approaches is the computational 

complexity, especially for Type 2 algorithms, where the order is not given, which exhibit 

O(N4) complexity (Chebrolu et al., 2005). Bayesian networks are also known to have 
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suboptimal models that require large training datasets, which may not be available in 

intrusion detection for rare attacks, thus requiring additional methods to alleviate this 

constraint (Xiao et al., 2014). 

 

Review of Probabilistic Intrusion Detection Literature 

Helman and Liepins (1993) provided a foundational paper for statistical-based 

intrusion detection that other researchers have built upon. Valdes and Skinner (2000) 

addressed the shortcomings of anomaly and signature-based detection by modeling 

attacks as hypothesis and using events to adapt probabilities. This study found that 

combining signature-based and anomaly-based intrusion detection using probabilities 

improved the detection of distributed attacks (Valdes & Skinner, 2000). 

Bayesian networks have been applied to intrusion detection in a variety of 

research studies. Kruegel et al. (2003) used full Bayesian networks to model 

interdependencies of events and found a reduction in false alerts. Feng et al. (2004) found 

that dynamic Bayesian networks for recognizing time-varying plans were effective for 

predicting normal and anomalous call sequences. Gowadia et al. (2005) used agent 

graphs and Bayesian networks to evaluate beliefs, rather than hard values. This study 

found that Bayesian networks can be created by asking experts to create directed acyclic 

graphs either manually or by using an algorithm (Gowadia et al., 2005). Tylman (2008) 

combined misuse and anomaly detection methods, similar to Valdes and Skinner (2000). 

This combined approach used Bayesian classification of Snort alerts at the session level 

and found that it uncovered the structure of belief networks (Tylman, 2008).  
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Perdisci et al. (2009) applied Bayesian methods to combine the results of an 

ensemble of support vector machine classifiers. The goal of this research was to reduce 

false positives, and the results demonstrated high accuracy, especially for shellcode and 

polymorphic attacks (Perdisci et al., 2009). Xu and Shelton (2010) used continuous time 

Bayesian networks (CTBN) for anomaly detection. This application of Bayesian 

networks focused purely on event timing and outperformed existing methods for anomaly 

detection (Xu & Shelton, 2010). 

Koc et al. (2012) used hidden naïve Bayes for improving the accuracy of intrusion 

detection. This study found that hidden naïve Bayes outperformed naïve Bayes for 

accuracy and error rate while maintaining the simplicity of naïve Bayes (Koc et al., 

2012). Chivers et al. (2013) focused specifically on the problem of detecting insider 

attacks. This research study combined sources using hypotheses and Bayesian updating 

and found that updating beliefs based on evidence is effective in detecting attacker nodes 

(Chivers et al., 2013). 

Yassin et al. (2013) used k-means clustering to separate data and subsequently 

used Bayes classification. Their study found that using clustering as an initial step 

significantly reduced the false positive rate and increased the true negative rate (Yassin et 

al., 2013). Xiao et al. (2014) addressed the shortcoming of Bayesian networks using an 

ensemble approach. Bayesian network model averaging selects the best network from a 

set of trained networks and performs better than regular Bayesian networks or naïve 

Bayes (Xiao et al., 2014). Bayesian network model averaging requires less data for 

training, so it is effective for smaller training data sets (Xiao et al., 2014). 
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Swarnkar and Hubballi (2016) used multinomial Bayesian one-class classifiers of 

n-grams with probability trees to address the shortcomings of frequency-based and one-

class classifiers. Although this approach had a high detection rate, it was accompanied 

with a moderately high false positive rate and high computational complexity (Swarnkar 

& Hubballi, 2016). As a result, this approach is not suitable for intrusion detection, since 

moderately high false positive rates for highly imbalanced datasets results in much lower 

overall accuracy (Kruegel et al., 2003). To address the problem of high computational 

complexity and the problem of imbalanced datasets, Pajouh et al. (2017) used two-tier 

classification with linear discriminant analysis. This study found that linear discriminant 

analysis provided optimal feature reduction and made naïve Bayes more efficient for 

classification (Pajouh et al., 2017). 

 

Discussion 

Several important themes can be established from previous research. First, 

intrusion detection using probabilistic methods should avoid generalization across an 

entire dataset, since it makes it easier for criminals to hide (Scott, 2004). For example, 

data can be segmented to look at anomalies per user (Scott, 2004; Dash, Reddy, & Pujari, 

2011) or per host (Burroughs et al., 2002; Chivers et al., 2013). Second, time is an 

important element that should be considered, with a preference to more recent behaviors 

(Scott, 2004; Xu & Shelton, 2010; Chivers et al., 2013). Third, categorical data has been 

shown to perform better than parametric or continuous data for probabilistic methods for 

detecting intrusions (Scott, 2004). Fourth, several previous studies found that 



36 

probabilistic methods were successful in combining information from several sources, 

which is useful for aggregating event-level information to create a more abstract level. 

 

Clustering Ensembles 

Background 

The purpose of clustering is to understand natural groupings in data (Jain, 2010). 

Clustering algorithms divide data into clusters, such that the data within each cluster is 

most similar to other data in the cluster, and the data between clusters is most dissimilar 

to that of other clusters (Zhou & Tang, 2006). Clusters in data appear in various shapes, 

sizes, sparseness, and degrees of separation (Fred & Jain, 2005). Clustering identifies 

natural structures in data when the structure, the number of clusters, or shapes of the 

clusters may be unknown (Dimitriadou, Weingessel, & Hornik, 2001). Thus, clustering is 

a primary technique for unsupervised machine learning (Zhou & Tang, 2006). In addition 

to finding natural groupings and structure in data, clustering can perform natural 

classification or compression of data into cluster prototypes (Jain, 2010). 

A wide variety of clustering algorithms exist, but most can be placed into four 

categories. First, iterative square-error partitional clustering, such as k-means clustering, 

finds a distance between centroids and data elements and does not impose a structure on 

the data (Frossyniotis, Likas, & Stafylopatis, 2004; Jain, 2010). Since iterative square-

error partitional clustering uses a distance measure, it creates hyperspherical clusters and 

does not identify novel cluster shapes (Fred & Jain, 2005). Second, hierarchical 

clustering organizes data into nested sequences of groups that can be visualized as trees 

(Frossyniotis et al., 2004). Third, density-based clustering finds the densest regions of the 

feature space that are separated by low density space (Jain, 2010). Fourth, grid-based 
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clustering uses spatial data mining techniques to subdivide a hyperspace into sections that 

represent clusters (Frossyniotis et al., 2004). 

Clustering is considered a difficult problem (Jain, 2010). As a form of 

unsupervised learning, it is hard to select a clustering method in advance that can identify 

the same clusters that match those identified by a human expert (Ayad & Kamel, 2008). 

Clustering results for different clustering algorithms may be very different using the same 

data (Jain, 2010). Further, different clustering runs using the same clustering algorithm 

can have different results because of different initialization parameters (Dimitriadou et 

al., 2001).  

There is no best clustering algorithm (Jain, 2010). No single algorithm exists that 

can identify all of the cluster shapes and structures (Fred & Jain, 2005). No clustering 

method is available that will find the correct underlying structure for all data sets (Vega-

Pons & Ruiz-Shulcloper, 2011, p. 337). As a result, researchers have found it is best to 

use several different clustering algorithms on a given data set and see what works best 

(Fred & Jain, 2005). Clustering algorithms are generally optimization problems that 

reduce mean-square error, minimize some other type of error, or use similarity functions 

(Dimitriadou et al., 2001). The quality of clustering can be evaluated using R-squared, 

intra-over inter-variation quotient, BD-index, and SD validity index (Frossyniotis et al., 

2004).  

Ensemble approaches have been applied to address many of the challenges 

associated with clustering. An ensemble is a multi-learner system, where each component 

learner attempts to solve the same task as the others (Strehl & Ghosh, 2002). Clustering 

ensembles were the result of research in multiple classifier systems (Dimitriadou et al., 
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2001; Hadjitodorov, Kuncheva, & Todorova, 2006). The goal of clustering ensembles is 

to find a combination of multiple partitions that improves the overall clustering of the 

data (Topchy et al., 2005). As a result, clustering ensembles find a consensus partition 

that improves that accuracy of individual clustering results (Ayad & Kamel, 2010).  

Different clustering algorithms produce different clustering results, and different 

runs of the same algorithm provide different results, because of different initialization 

parameters. Thus, using multiple clustering approaches simultaneously helps to find the 

best clustering solution (Frossyniotis et al., 2004; Jain, 2010). The benefit of clustering 

ensembles is that the decision of a group may be more reliable than that of any individual 

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 338). As a result, clustering ensembles reduce 

the risk of picking the wrong clustering method for a given dataset (Hadjitodorov et al., 

2006). 

Previous research has applied clustering ensembles to face recognition, character 

recognition, scientific image analysis, and medical diagnosis (Zhou & Tang, 2006). 

Research has also evaluated clustering ensembles with large datasets and has found an 

improvement in clustering, even for incomplete partitions (Lourenco et al., 2015). 

Clustering ensembles can find the right number of clusters in data (Dimitriadou et al., 

2001; Ayad & Kamel, 2010). They also improve the quality and robustness of clustering 

(Strehl & Ghosh, 2002; Topchy et al., 2005; Vega-Pons & Ruiz-Shulcloper, 2011, p. 365; 

Lourenco et al., 2015). Clustering ensembles identify hidden structures in data (Bakker & 

Heskes, 2003) and find clusters of arbitrary and complex shapes (Dimitriadou et al., 

2001; Frossyniotis et al., 2004; Hadjitodorov et al., 2006). As a result, they enable new 

insights into a dataset and lower the prediction error (Bakker & Heskes, 2003). Because 
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of their diversity of clustering solutions, clustering ensembles, are more generalizable 

than individual clustering algorithms (Zhou & Tang, 2006). Finally, clustering ensembles 

can be implemented in a distributed computing environment, allowing them to scale well 

for large ensembles (Strehl & Ghosh, 2002). 

Clustering ensembles can be viewed as a two-step process. The first step is to 

generate the various clustering results, also known as partitions, and the second step is to 

evaluate the results using a consensus function (Topchy, Law, Jain, & Fred, 2004; Vega-

Pons & Ruiz-Shulcloper, 2011, p. 338). Figure 4 shows how these two steps fit into the 

overall concept of clustering ensembles and the notations that are used in this paper, 

which have been adapted from Vega-Pons and Ruiz-Shulcloper (2011, p. 339). 

 

 

Figure 4. Overview clustering ensembles with formal notation 

 

In this notation, 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛} is a set of objects in which each 𝑥𝑖 is a 

multi-dimensional tuple of α dimensions and where 𝑖 = 1 … 𝑛. ℙ𝑋 is the set of all 

possible partitions in X, and ℙ = {P1, P2,…., Pm} is the set of partitions generated by the 

cluster generation process, such that ℙ ∈ ℙ𝑋. As a result, each partition, 𝑃𝑖 ∈ ℙ, is made 
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up of multiple symbolic cluster labels, 𝐶𝑗
𝑖, such that 𝑃𝑖 = {𝐶1

𝑖, 𝐶2
𝑖 , … . , 𝐶𝑑

𝑖 } is a set of 

objects in X with d clusters. In Figure 4, each partition can have varying numbers of 

clusters, so the final element in the set is represented as 𝐶𝑝
1, 𝐶𝑞

2, and 𝐶𝑟
𝑚, where 𝑚 = |ℙ|, 

The variables p, q, and r, are arbitrary numbers of clusters produced in each partition, 

such that 𝐶𝑗
𝑖 represents the jth cluster in ith partition, 𝑃𝑖. The objective of clustering 

ensembles is to find a consensus partition by evaluating the partitions, 𝑃𝑖 ∈ ℙ, to find a 

clustering result, 𝑃∗ ∈ ℙ𝑋, where 𝑃∗ is a better clustering solution than any 𝑃𝑖 ∈ ℙ. 

The cluster generation step creates multiple partitions, ℙ ∈ ℙ𝑋 , that can be used to 

find the final clustering solution, 𝑃∗ ∈ ℙ𝑋. There are few constraints on how the clusters 

are generated (Vega-Pons & Ruiz-Shulcloper, 2011, p. 340). The most important 

requirement of cluster generation is that multiple, diverse partitions are created (Strehl & 

Ghosh, 2002). Without diverse partitions, clustering ensembles will not be able to 

outperform single clustering algorithms (Hadjitodorov et al., 2006). The initial partitions 

can be thought of as noisy versions of true partitions (Topchy et al., 2004). As a result, 

weak and less computationally expensive clustering algorithms can be used in the initial 

cluster generation with comparable or better results than an individual clustering 

algorithm (Topchy et al., 2005). 

A variety of approaches exist for creating a diverse initial set of partitions. One 

approach for creating diverse partitions is to use different clustering algorithms 

(Hadjitodorov et al., 2006; Jain, 2010; Vega-Pons & Ruiz-Shulcloper, 2011). For 

example, Dimitriadou et al. (2001) implemented k-means and a competitive learning 

algorithm to generate diverse initial partitions. Another approach for creating diverse 

partitions is to use different initialization parameters with the same clustering algorithm 
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(Hadjitodorov et al., 2006; Jain, 2010; Vega-Pons & Ruiz-Shulcloper, 2011). This is 

commonly implemented using the k-means algorithm, since it has a variety of initial 

parameters, is not computationally expensive, and is very popular (Jain, 2010).  

Another widely used approach for generating diverse initial partitions is to use 

different representations of the data (Jain, 2010). The different representations of the data 

may include different subsets of features or a different subset of the objects in the dataset 

(Fred & Jain, 2005; Hadjitodorov et al., 2006; Vega-Pons & Ruiz-Shulcloper, 2011). 

Different representations of the data may also include projecting the data to different 

feature spaces (Fred & Jain, 2005), using algorithms like Principal Component Analysis 

(Strehl & Gosh, 2002). Examples of these approaches include random feature selection 

(Strehl & Gosh, 2002), bootstrapping (Bakker & Heskes, 2003), boosting (Frossyniotis et 

al., 2004), and bagging (Fred & Jain, 2005).  

Bakker and Heskes (2003) found that bootstrapping allows local summaries that 

are not possible for a single model and reduces model bias by creating a more complex 

model. In addition, bootstrapping reduces the tendency to overfit, since the models are 

not trained on the full data (Bakker & Heskes, 2003). Frossyniotis et al. (2004) found that 

boosting a clustering algorithm for a few iterations provided better results than running 

the algorithm several times and choosing the best run. 

The cluster evaluation step is one of the most difficult challenges in clustering 

ensembles (Vega-Pons & Ruiz-Shulcloper, 2011, p. 341). For ensembles of classifiers, 

there are labels, which make the evaluation step a straightforward problem. For clustering 

ensembles, there are no labels, which results in a correspondence problem (Dimitriadou 

et al., 2001; Strehl & Ghosh, 2002; Frossyniotis et al., 2004). Thus, cluster evaluation 
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combines diverse partitions, without labeled data, to find the true underlying partition that 

represent the natural organization of the data (Topchy et al., 2004; Tumer & Agogino, 

2008).  

 

Review of Clustering Ensemble Literature 

The earliest clustering research began with Dimitriadou et al. (2001). This 

seminal work addressed the problem that there was no clear way to combine results from 

different clustering algorithms to find a clear partition (Dimitriadou et al., 2001). Using 

voting, Dimitriadou et al. (2001) found that clustering ensembles were effective in 

finding fuzzy partitions and in finding the right number of clusters. Although this study 

was the earliest identified research on clustering ensembles, most subsequent work in 

clustering ensembles built upon the work of Strehl and Ghosh (2002). Addressing the 

same problem, Strehl and Ghosh (2002) created three new clustering algorithms: 1) 

cluster-based similarity partitioning, 2) hypergraph partitioning, and 3) meta clustering. 

They found that consensus clustering using ensembles using any of their heuristic 

algorithms was better than individual clustering results (Strehl & Ghosh, 2002). 

Bakker and Heskes (2003) contributed to ensemble-based approaches by applying 

bootstrapping. They found that using bootstrapping to summarize large ensembles into 

smaller numbers of representative models reduced overfitting, provided better prediction, 

and detected hidden structures in the data (Bakker & Heskes, 2003). Frossyniotis et al. 

(2004) addressed the combination of multiple clustering solutions by using sequential 

clustering with boosting and found that boost clustering improved the quality and 

performance of clustering (Frossyniotis et al., 2004). 
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Another important thread of literature emanated from Topchy et al. (2004). Their 

research acknowledged that clustering ensembles work but addressed the problem that 

there was no theoretical basis for why they worked (Topchy et al., 2004). This study used 

both stochastic and mean partition generation and found that consensus solutions 

converge to a true clustering solution as the number of partitions in the ensemble 

increases (Topchy et al., 2004). They also found that the probability of not discovering 

the true partition decreases exponentially as the number of partitions in the ensembles 

increases (Topchy et al., 2004). Continuing this work, Fred and Jain (2005) addressed the 

problem of identifying all cluster shapes and structures by using evidence accumulation. 

As part of this research, they proposed a theoretical framework and provided criteria for 

analysis of the combination of clustering results (Fred & Jain, 2005). Topchy et al. (2005) 

examined how to combine partitions using a consensus function by using expectancy 

maximization and mutual information consensus functions. They found that weak 

partitions may be used in clustering ensembles and still achieve comparable or better 

performance than single clustering approaches (Topchy et al., 2005). 

Hadjitodorov et al. (2006) explored how to select partitions in clustering 

ensembles by using a diversity measure. Using the Adjusted Rand Index, they found that 

ensembles with a wide spread of individual diversity were better than ensembles with less 

spread and that medium diversity clusters were the best approach (Hadjitodorov et al., 

2006). Zhou and Tang (2006) compared voting, weighted voting, selective weighting, 

and selective weighted voting and found that selective weighted voting was significantly 

better for cluster evaluation. Tumer and Agogino (2008) further compared a meta 
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clustering algorithm to voting active clusters with reinforcement learning and found that 

meta clustering was better. 

Not all previous research focused on the approaches for combining clustering 

results. Ayad and Kamel (2008) focused on reducing the computing complexity by 

beginning with the idea that consensus clustering has O(n2) complexity. By applying 

cumulative voting for identifying clustering solutions, this study improved accuracy and 

reduced computational complexity to O(n) (Ayad & Kamel, 2008). 

Azimi and Fern (2009) explored conflicting results regarding diversity of 

clustering ensembles. By using adaptive clustering ensemble selection, this study 

concluded that selection must be adaptive to accommodate the datasets, since no 

approach worked consistently for all of the datasets that were studied (Azimi & Fern, 

2009). Ayad and Kamel (2010) applied cumulative voting as a special case of linear 

regression for finding the optimum labeling of clustering ensembles. This study found 

that cumulative voting improved the accuracy and stability of results, as well provided an 

accurate estimation of the number of clusters (Ayad & Kamel, 2010). Lourenco et al. 

(2015) examined the problem that the clustering correspondence does not reflect 

uncertainty. This study used a probabilistic interpretation of Evidence Accumulation 

Clustering by using Bregman divergence and resulted in improved clustering, even for 

incomplete partitions and large datasets (Lourenco et al., 2015). 
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Review of Co-occurrence Consensus Function Literature 

Co-occurrence consensus functions analyze the number of times objects belong to 

clusters as well as the number of times two objects belong to the same clusters. Co-

occurrence functions include: 1) relabeling and voting, 2) co-association matrix, 3) graph 

and hypergraph, 4) Locally Adaptive Clustering (LAC) algorithms, 5) fuzzy methods, 6) 

information theoretic methods, and 7) finite mixture models (Vega-Pons & Ruiz-

Shulcloper, 2011, p. 353). Table 3 summarizes the co-occurrence consensus evaluation 

methods using these categories. 

 

Table 3 

Summary of Co-Occurrence Cluster Evaluation Approaches 

Method Description Studies 

Relabeling and 

Voting 

Voting process after solving 

labeling correspondence 

problem 

Dimitriadou et al. (2001); Zhou & 

Tang (2006); Ayad & Kamel 

(2008); Tumer & Agogino (2008) 

Co-Association 

Matrix 

Cluster results into an 

intermediate co-association 

matrix 

Fred & Jain (2005); Wang et al. 

(2009) 

Graph and 

Hypergraph 

Create graphs and 

hypergraphs of partitions 

and evaluate for consensus 

partition 

Strehl & Ghosh (2002); Fern & 

Brodley (2004) 

Locally Adaptive 

Clustering (LAC) 

Evaluate centroids and 

weights for numerical data 

Domeniconi & Al-Razgan (2009) 

Fuzzy Methods Evaluate clusters as soft 

partitions rather than hard 

partitions 

Frossyniotis et al. (2004); Punera & 

Ghosh (2008); Ayad & Kamel 

(2010) 
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Table 3 

Summary of Co-Occurrence Cluster Evaluation Approaches (cont.) 

Method Description Studies 

Information 

Theoretic 

Minimize entropy within 

partitions 

Strehl & Ghosh (2002); Punera & 

Ghosh (2008); Jain (2010) 

Finite Mixture 

Models 

Probabilistic modeling of 

subpopulations using a 

mixture distribution 

Topchy et al. (2005) 

 

Among the relabeling and voting approaches, Dimitriadou et al. (2001) used 

voting, based upon classification ensembles, followed by a merging procedure. Zhou and 

Tang (2006) measured similarity by counting overlap within clusters and found that 

selective weighted voting was the best of the approaches they evaluated. Ayad and Kamel 

(2008) developed a relabeling and voting approach that used cumulative voting. Tumer 

and Agogino (2008) used voting active clusters with reinforcement learning and used 

average normalized mutual information (ANMI) as an objective function. 

Co-association matrix approaches map clustering results into an intermediate 

representation, called a co-association matrix (Vega-Pons & Ruiz-Shulcloper, 2011, p. 

346). For example, Fred and Jain (2005) split the data into a large number of small 

spherical clusters, using k-means clustering. Next, they combined the small clusters using 

a similarity matrix. Because of this intermediate step, co-association approaches have a 

complexity of O(n2) and are limited to smaller data sets. Wang, Yang, and Zhou (2009) 

introduced probabilistic methods using a co-association matrix and introduced Bayesian 

clustering ensembles. 



47 

Cluster evaluation approaches that use graph and hypergraph methods transform 

the partitions into a graph or hypergraph and cut the graph to obtain a consensus partition 

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 347). Many of the foundational approaches to 

cluster evaluation were developed by Strehl and Ghosh (2002), who developed three 

different heuristics to evaluate hypergraphs: 1) cluster-based similarity partitioning 

algorithm (CSPA), 2) hypergraph partitioning algorithm (HGPA), and 3) meta clustering 

algorithm (MCLA). Similarly, Fern and Brodley (2004) used a graph partitioning 

approach. This approach did not actually solve for normalized mutual information in 

clusters, but instead acted more like a co-occurrence evaluation method (Vega-Pons & 

Ruiz-Shulcloper, 2011, p. 349). 

LAC algorithms identify partitions within numerical features as two sets of 

information: 1) the centroids identified in the clusters, and 2) their associated weights 

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 355). Domeniconi and Al-Razgan (2009) 

developed three consensus functions using this approach: 1) Weighty Similarity Partition 

Algorithm (WSPA), 2) Weighty Bipartite Partition Algorithm (WBPA), and 3) Weighted 

Subspace Bipartite Partitioning Algorithm (WSBPA). These algorithms were limited in 

their use to numerical data and require that the number of clusters be specified initially 

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 355). 

Fuzzy methods rely on the soft nature of clustering approaches and recognize that 

there may be “fuzzy” partitions in the data (Dimitriadou et al., 2001). Some clustering 

algorithms that may be used in the cluster generation stage, such as fuzzy c-means and 

EM, already produce soft clustering results (Frossyniotis et al., 2004; Vega-Pons & Ruiz-

Shulcloper, 2011, p. 360). As a result, cluster evaluation methods that use fuzzy methods 
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do not attempt to convert the initial soft-clustering results into hard clusters. Some fuzzy 

consensus algorithms, such as voting, can perform soft or hard clustering (Ayad & 

Kamel, 2010). 

Information theoretic approaches minimize entropy within groupings (Jain, 2010). 

Strehl and Ghosh (2002) used concepts from information theory and focused on 

normalized mutual information (NMI) and average normalized mutual information 

(ANMI) as objective functions. Punera and Ghosh (2008) used soft base clustering and 

used an information theoretic approach. 

Topchy et al. (2005) used a fusion method with probabilities and based their 

solution to the consensus problem on a finite mixture model. The result was two new 

consensus functions, called quadratic mutual information (QMI) and expectation 

maximization (EM), that eliminated the need to solve the label correspondence problem 

(Topchy et al., 2005). This approach required that the data be modeled as random, 

independent variables and requires a fixed number of clusters in the final clustering 

solution (Vega-Pons & Ruiz-Shulcloper, 2011, p. 353). 

 

Review of Median Partition Cluster Evaluation Literature 

Median partition-based approaches are optimization problems that maximize 

similarity or minimize dissimilarity and can be divided into the following categories: 1) 

genetic algorithms, 2) nonnegative matrix factorization (NMF) methods, 3) kernel 

models, and 4) Mirkin distance (Vega-Pons & Ruiz-Shulcloper, 2011, p. 350). Table 4 

summarizes median partition-based cluster evaluation approaches using these categories. 
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Table 4 

Summary of Median Partition Cluster Evaluation Approaches 

Method Description Studies 

Genetic Algorithms Utilize search capabilities of 

genetic algorithms to 

minimize or maximize 

distance functions 

Yoon, Ahn, Lee, Cho, & Kim 

(2006); Luo, Jing, & Xie (2006); 

Analoui & Sadighian (2006) 

Nonnegative Matrix 

Factorization (NMF) 

Find factors and 

dissimilarity using a 

nonnegative matrix  

Li, Ding, & Jordan (2007) 

Kernel Models Similarity measure between 

solutions with 

approximation 

Vega-Pons, Correa-Morris, & Ruiz 

Schulcloper (2008, 2010) 

Mirkin Distance Counting pairs of points 

within clusters and using a 

symmetric distance metric 

Gionis, Mannila, & Tsaparas 

(2007) 

 

Genetic algorithm approaches rely upon the search capabilities of genetic 

algorithms and use the highest fitness value, after some stopping criterion is reached 

(Vega-Pons & Ruiz-Shulcloper, 2011, p. 354). What distinguishes genetic algorithm 

approaches is the type of fitness function employed. One approach, called heterogeneous 

clustering ensembles, used ordered pairs with a population generation mechanism and a 

fitness function to evaluate the number of overlaps between partitions within each pair 

(Yoon et al., 2006). Another approach used an information theoretic fitness function that 

minimized entropy between partitions (Luo et al., 2006). Yet another approach 

implemented the fitness function as a maximization of probability using a finite mixture 

method (Analoui & Sadighian, 2006). A challenge in using genetic algorithms for cluster 

evaluation is that different runs may produce different results because of the heuristic 
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nature of these algorithms (Vega-Pons & Ruiz-Shulcloper, 2011, p. 354). It may also be 

inferred that such algorithms may settle on local minima or maxima. 

NMF methods for cluster evaluation have been used to create a median partition 

using a non-negative matrix by finding factors of the matrix and a dissimilarity measure 

between partitions (Li et al., 2007; Vega-Pons & Ruiz-Shulcloper, 2011, p. 357). Kernel 

models have been used to create a median partition using a similarity measure between 

partitions and find an approximate solution (Vega-Pons et al., 2010).  

Mirkin distance approaches have been used to create a median partition by 

counting pairs. Using this approach, given two clusters, C and C', where N01 is the 

number of point pairs in C' but not in C, and N10 is the number of point pairs in the same 

partition in C but not in C', then the Mirkin distance for comparing two clusters is M(C, 

C') = 2(N01 + N10) (Meilă, 2007). When applied to clustering ensembles, the objective is 

to minimize the Mirkin distance between the partitions, and a number of heuristic 

approaches approximate this function (Gionis et al. 2007, Vega-Pons & Ruiz-Shulcloper, 

2011, p. 342).  

 

Discussion 

A number of design criteria should be considered when using clustering 

ensembles. In cluster generation, one important consideration is the number of partitions 

generated in the first stage. Dimitriadou et al. (2001) found through experimentation that 

large numbers of clusters provided the best clustering solution. Topchy et al. (2004) 

found that clustering ensembles converged more closely to a true clustering solution as 

the number of partitions in the ensemble increased. The probability of not discovering the 
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true partition decreases exponentially as the number of partitions in the ensemble 

increases (Topchy et al., 2004). Another important consideration in the clustering 

generation step is the diversity of partitions generated. There are conflicting results 

related to the diversity of initial partitions (Azimi & Fern, 2009). Ensembles with a wide 

spread of individual diversity are better than ensembles with less spread, but spread did 

not relate to accuracy (Hadjitodorov et al., 2006). As a result, medium diversity clusters 

were found to be the best approach (Hadjitodorov et al., 2006). 

In the cluster evaluation stage, there are several design criteria to consider. One 

important consideration is the objective function for determining the quality of clustering, 

such as a similarity or dissimilarity function (Zhou & Tang, 2006; Jain, 2010; Vega-Pons 

& Ruiz-Shulcloper, 2011). Another important consideration is the stopping criterion for 

determining when the best clustering solution has been identified (Dimitriadou et al., 

2001). 

Finally, several cluster evaluation strategies are computationally complex. Most 

consensus clustering algorithms have O(n2) complexity, although some have achieved 

O(n) complexity (Ayad & Kamel, 2008). Thus, the selection of a cluster evaluation 

strategy should be based on the volume of data and the computational cost of the 

algorithm.  
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Intrusion Detection Datasets 

Background 

Creating datasets for intrusion detection system evaluation is subjective, and new 

datasets face several challenges. One of the primary challenges to obtaining realistic 

intrusion data is privacy. This is because data from operational networks is the most 

realistic but is considered confidential by most network operators (Orfila, Tapiador, & 

Ribagorda, 2009). One approach to solving privacy issues is to use simulations, but these 

can be unrealistic (Orfila et al., 2009). Another approach to solving privacy concerns is to 

create datasets in test beds, but if they are too simple, they will lack realism as well 

(Milenkoski, Vieira, Kounev, Avritzer, & Payne, 2015). 

Another significant challenge in the creation of intrusion datasets is the labeling 

of normal and attack data (Orfila et al., 2009). One approach to labeling attacks is to use 

penetration testing to develop the attack data, but this has been criticized for producing 

unrealistic datasets (Wheelus, Khoshgoftaar, Zuech, & Najafabadi, 2014; Milenkoski et 

al., 2015). Another approach is to use honeypots for collection of attack data, but since 

honeypots contain mostly attack data, this too can be considered unrealistic (Milenkoski 

et al., 2015). Other approaches develop traces of normal network conditions and separate 

traces of attacks (Salem, Reissmann, & Buehler, 2014). Still other approaches use 

combinations of operational network data, penetration testing data, and simulation to 

create a more diverse, complex dataset for intrusion detection testing (Shiravi, Shiravi, 

Tavallaee, & Ghorbani, 2012; Moustafa & Slay, 2015; Singh, Kumar, & Singla, 2015; 

Haider, Hu, Slay, Turnbull, & Xie, 2017). 
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Other research on intrusion detection datasets includes methods and software 

tools that aid in the creation of intrusion datasets. For example, Shiravi et al. (2012) 

created software agents for generating normal network activity and attack activity in test 

beds. Salem et al. (2014) developed the OptiFilter toolkit, which can be deployed in large 

networks to create continuous datasets for intrusion detection evaluation. 

Vasilomanolakis, Cordero, Milanov, and Mühlhäuser (2016) developed the ID2T toolkit 

for injecting synthetic attacks into real network packet capture data. Lin, Lin, Wang, 

Chen, and Lai (2016) developed PCAPLib to automatically extract, classify, and 

anonymize packet capture data.  

 

Review of Intrusion Detection Dataset Literature 

The KDD Cup 1999 intrusion detection dataset set a standard for many years for 

evaluating intrusion detection approaches. The source data for this dataset came from 

DARPA’s MIT Lincoln Labs collection of network packet information called IDEVAL 

(Cao et al., 2013). The KDD Cup 1999 dataset was prepared by Stolfo, Fan, Lee, 

Prodromidis, and Chan (2000) and was based upon the IDEVAL network packet data, 

which contained seven weeks of network traffic. The KDD Cup 1999 dataset was 

specifically prepared for the KDD competition (Cao et al., 2013). The KDD Cup 1999 

training dataset includes approximately 4.9 million connection records and is labeled as 

either normal or with a specific attack vector (Tavallaee et al., 2009). The attacks in the 

KDD Cup 1999 dataset fall into four categories: 1) denial of service attack, 2) user to root 

attacks, 3) remote to local attacks, and 4) probing attacks (Tavallaee et al., 2009). 
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Over time, the KDD Cup 1999 dataset has been criticized by researchers for three 

primary reasons. First, the characteristics of networks have changed since KDD Cup 

1999 was created (Qian et al., 2006). For example, the KDD Cup 1999 dataset was 

collected on the Solaris operating system, used older applications and operating system 

approaches, and represented a time when attacks generally were against only a single 

system process at one time (Creech & Hu, 2013). Second, the KDD Cup 1999 dataset 

contains 78% duplicate records in the training dataset and 75% duplication in the testing 

dataset, which may lead to problems of overfitting (Tavallaee et al., 2009). Third, the 

number of records in the KDD Cup 1999 dataset are too numerous, so many researchers 

use only subsets of these datasets. This leads to an inconsistent basis for comparison 

between intrusion detection systems (Tavallaee et al., 2009). 

In response to the criticisms of the KDD Cup 1999 dataset, a number of 

researchers have proposed alternative datasets. Table 5 provides a summary of many 

notable intrusion detection datasets that have been created as potential alternatives to the 

KDD Cup 1999 dataset. Most notable among these are Gure KDD Cup (Perona et al. 

2008), NSL-KDD (Tavallaee et al., 2009), MAWILab (Fontugne, Borgnat, Abry, 

Fukuda, 2010), ADFA-LD12 (Creech & Hu, 2013), UNSW-NB15 (Moustafa & Slay, 

2015), and NGIDS-DS (Haider et al., 2017). 
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Table 5 

Summary of Intrusion Detection Dataset Research 

Study Data Type Approach Contributions 

Stolfo et al. 

(2000) 

Network 

packet data 

Extraction of features 

from DARPA 1998 

dataset 

Produced the KDD Cup 

1999 dataset. Found that 

fraud detection can be 

generalized to intrusion 

detection. 

Qian et al., (2006) Network 

packets and 

audit logs 

Simulation based on 

university laboratory 

LAN 

Feasibility of creating 

synthetic IDS testing data. 

Data is more useful at user 

level than at packet level. 

Perona et al. 

(2008) 

Network 

packed data 

Combined KDD Cup 

1999 dataset with 

DARPA 1998 

payload data  

Produced Gure KDD Cup 

dataset. Including payload 

and header data improves 

detection. 

Tavallaee et al. 

(2009) 

Network 

and host 

data 

Subset of KDD-Cup 

1999 dataset to 

remove redundancy 

and duplicates 

Created NSL-KDD dataset, 

which is an improved 

distribution of data for IDS 

testing. Still suffers from 

unrealistic network data. 

Fontugne et al. 

(2010) 

Network 

data 

Combined anomaly 

detection results from 

MAWI archive by 

using SCANN 

Created MAWILab dataset, 

which is updated daily. 

Labeled as Anomalous, 

Suspicious, Notice, and 

Benign.  

Gogoi, Bhuyan, 

Bhattacharyya, & 

Kalita (2012) 

Network 

packet and 

flow data 

Captured from test 

bed with over 350 

nodes with automated 

attacks 

Produced TUIDS DDoS 

dataset. 

Shiravi et al. 

(2012) 

Network 

packet data 

Test bed with 21 

workstations using α 

and β profiles to 

generate dynamic test 

data 

Established criteria for 

evaluating datasets: realistic 

network, realistic traffic, 

labeled dataset, total 

interaction capture, complete 

capture, and diverse attacks. 
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Table 5 

Summary of Intrusion Detection Dataset Research (Cont.) 

Study Data Type Approach Contributions 

Cao et al. (2013) Network 

packet data 

Test bed similar to 

that used for DARPA 

1998 data 

Produced LUT13 dataset. 

Better in comparison to the 

KDD Cup 1999 dataset for 

generalizable detection. 

Creech & Hu 

(2013) 

Audit log 

data 

Single Ubuntu Linux 

server with common 

software applications 

with normal and 

attack traces 

Produced ADFA-LD12 

dataset. Evaluation shows 

this dataset has more 

complexity than KDD Cup 

1999. 

Wheelus et al. 

(2014) 

Network 

packet and 

flow data 

Collected data from 

internet service 

provider and 

manually labeled 

Produced SANTA dataset, 

which features realistic 

normal traffic, penetration 

testing traffic, real attacks, 

and modern attack types. 

Moustafa & Slay 

(2015) 

Network 

packet data 

Synthetic generation 

using IXIA Perfect 

Storm hardware 

Produced synthetically 

realistic, labeled dataset 

called UNSW-NB15. 

Singh et al. (2015) Network 

and host 

data 

Statistical approach to 

generate a new dataset 

using NSL-KDD as a 

base dataset 

Created Panjab University 

Intrusion Data Set (PU-IDS). 

Haider et al. 

(2017) 

Network 

packet and 

audit log 

data 

Synthetic generation 

using IXIA Perfect 

Storm hardware 

Produced synthetically 

realistic, labeled dataset 

called NGIDS-DS. 

Developed evaluation 

criteria for intrusion datasets. 

 

 

Discussion 

At present, there is not an accepted standard for evaluating the quality and 

usefulness of intrusion detection datasets. Milenkoski et al. (2015) surveyed intrusion 

detection research literature and developed a method of categorizing intrusion detection 
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evaluation. Their work was inconclusive in offering a standard for evaluation, but it did 

provide an overview of the complexities inherent in this area of research. Most recently, 

Haider et al. (2017) developed evaluation criteria that consists of six factors: 1) 

completeness of capture of audit logs and network packets, 2) inclusion of maximum 

possible attacks, 3) representative of current attack behaviors, 4) inclusive of real world 

normal traffic that includes realistic timing and complexity, 5) capture of system 

maintenance activity that occurs in real operational networks, and 6) ground truth 

labeling to represent normal traffic. Since it is a more recent study the Haider et al. 

(2017) evaluation criteria may become an accepted standard, but this will require time 

and a critical analysis by future researchers. 

Since its inception, the UNSW-NB15 dataset has been gaining adoption from 

researchers. It is commonly used alongside other datasets. For example, Bamakan, Wang, 

and Shi (2017) applied both the UNSW-NB15 and NSL-KDD datasets to multi-class 

intrusion detection using Ramp Loss K-Support Vector Classification-Regression. 

Kamarudin, Maple, Watson, and Safa (2017) used both UNSW-NB15 and NSL-KDD to 

test an ensemble classifier used for anomaly detection. Hajisalem and Babaie (2018) used 

both the UNSW-NB15 and the NSL-KDD datasets to test a new hybrid intrusion 

detection system using artificial bee colony and artificial fish swarm algorithms. 

Papamartzivanos, Mármol, and Kambourakis (2018) used UNSW-NB15, NSL-KDD, and 

KDD Cup 1999 for rule induction for intrusion detection. With these recent studies in 

mind, it has become an accepted practice to use both the NSL-KDD and UNSW-NB15 

datasets to test intrusion detection algorithms. 
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Summary 

This chapter reviewed and synthesized relevant research in the areas of CSA, 

intrusion detection, probabilistic intrusion detection, clustering ensembles, and intrusion 

detection datasets. CSA uses observations of individual events in the broader context of 

the situation at hand, with a goal of predicting future states. Intrusion detection is a 

method for detecting attacks based upon either signatures of known attacks or the 

identification of anomalies. Intrusion detection has contributed to the first level of CSA, 

in that it provides individual events for evaluating the situation under conditions of 

uncertainty. Probabilistic intrusion detection methods have been effective in intrusion 

detection, which provides support for the approach in this research. Clustering ensembles 

provide multiple perspectives of a dataset and are effective in detecting patterns and 

anomalies in data without prior knowledge of the structures of the data.  

In addition, this chapter provided a detailed overview of intrusion detection 

datasets. It presented the challenges associated with selecting and generating such 

datasets for research. Several criteria should be considered to ensure the suitability of 

datasets for evaluating intrusion detection systems. Datasets should be complete and be 

representative of current attack behaviors with suitable complexity to reflect operational 

networks. Further, they should either be labeled with specific attack types or include a 

ground truth labeling to separate normal from anomalous data. Using both the UNSW-

NB15 and NSL-KDD datasets to test intrusion detection systems has become a common 

practice in research.  
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Chapter 3 

Methodology 

 

Introduction 

This chapter describes the approach that was used for implementing and 

evaluating the effectiveness of the experiments. This research used clustering ensembles, 

bagging, probability analysis, and active learning. The result was the probability that a 

computer system was being attacked, based on the event-level observation of anomalies 

that were identified using clustering ensembles. The resulting solution not only provided 

unsupervised intrusion detection but also, by incorporating active learning, allowed a 

level of human interaction by subject matter experts with domain knowledge. This 

solution evolved through three experimental stages.  

In the first experiment, an algorithm for cluster generation with bagging was 

developed. This experiment evaluated and compared different existing cluster generation 

parameters to determine their suitability for deriving meaning from intrusion detection 

datasets. The second experiment developed an algorithm for probabilistic anomaly 

detection, using the clustering ensemble results. The third and final experiment 

incorporated active learning to allow domain knowledge from subject matter experts. 
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Solution Design 

A multi-stage algorithm was developed that generated a diverse set of initial 

partitions, evaluated the results of the initial clustering to detect anomalies, and processed 

the output, while incorporating subject matter expert feedback. Figure 5 summarizes the 

high-level design of the solution and includes important design considerations that are 

described in more detail in this chapter. 

 

Figure 5. High level solution design 

 

Dataset 

The selection of a dataset for evaluating intrusion detection systems is important 

for allowing algorithms and approaches to be compared to each other (Milenkoski et al., 

2015). Prior research has found that intrusion detection datasets should be realistic, 

publicly available, and provide ground truth data (Shiravi et al., 2012; Haider et al., 
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2017). For this research, it was also important that the dataset identified the specific 

computer systems that were experiencing normal or attack activity.  

Two datasets were used in evaluating this solution. First, the NSL-KDD dataset 

was used as a general dataset that connected this research with prior studies. Although 

this dataset is outdated, it provided a basis of comparison with a dataset that lacks the 

complexity of more contemporary intrusion datasets. Since the NSL-KDD dataset does 

not identify specific computer systems, it could only be used to evaluate the clustering 

ensemble approaches and preliminary anomaly detection at the event level. It was not 

used to evaluate the probability that a specific computer system was being attacked.  

The second dataset that was be used throughout this research was the UNSW-

NB15 dataset, which was created by Moustafa and Slay (2015). One of the most 

important features of the UNSW-NB15 dataset was that it identified specific computer 

systems with a source IP address and a destination IP address. This allowed the 

evaluation of the probability that a specific computer system was under attack. This 

dataset is more current than the NSL-KDD dataset, and so it reflects more current attacks. 

It is also a more complex dataset for intrusion detection, which means that it is more 

difficult to detect attacks, and better tested the capabilities of the algorithm. 

 

Cluster Generation with Bagging 

The cluster generation stage of the solution was evaluated using a variety of 

criteria. First, an appropriate clustering algorithm was needed that had reasonable 

computational complexity and that was well-suited for the dataset. It was expected that k-

means clustering would be suitable for this clustering. The need for diversity in the 
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clustering results was accomplished using bagging, which selected random features from 

the dataset to provide diversity. As a result, it was not expected that this solution would 

require diverse algorithms. 

Another important criteria in developing the cluster generation stage was the 

number of partitions to generate. Previous studies found that sufficient partitions are 

needed to provide diversity, but they also found that a medium diversity approach 

performed better than a larger diversity solution (Azimi & Fern, 2009). This was 

important for evaluation to identify the number of clusters that provide the optimal 

diversity. 

 

Anomaly Detection 

The anomaly detection stage contained two important algorithms. The first 

algorithm evaluated the clustering ensemble results to find anomalies. This algorithm 

differed from other clustering ensemble approaches in that its objective was not to find 

common clusters, but instead to find the anomalies. This overcame the clustering 

correlation problem, which arises from the lack of labels, thus simplifying the problem of 

cluster evaluation. 

This algorithm first evaluated each partition to determine which clustering labels 

represented anomalies. To accomplish this, the algorithm used counting and statistical 

analysis of the clusters to determine which of the clusters in the partition were 

inconsistent with the others. It was expected that anomalous clusters could be detected as 

follows: 
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𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, 𝜇𝑐 − 𝐾𝜎𝐶 ≤ |𝐶𝑖| ≤ 𝜇𝐶 + 𝐾𝜎𝐶

1, (|𝐶𝑖| < 𝜇𝐶 − 𝐾𝜎𝐶) ∪ (|𝐶𝑖| > 𝜇𝐶 + 𝐾𝜎𝐶)
 (4) 

 

In this case, |𝐶𝑖| is the number of events identified in cluster, 𝐶𝑖. This number of 

records was compared to the mean of the number of events in all of the clusters, 𝜇𝐶, 

minus a constant, K, number of standard deviations, 𝜎𝐶. Thus, a cluster would be 

considered an anomaly when the number of records in it is outside of the interval of 

𝐾standard deviations from the mean number of records in each cluster. The value for 

𝐾was determined experimentally to find an appropriate threshold. This algorithm was 

tested and updated based on observations in the data. 

Next, the algorithm evaluated each event, E, in the dataset to determine the 

probability that the event was an anomaly, P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦). This evaluation would be based 

on the number of clusters to which it was assigned that were considered anomalies 

divided by the total number of clusters. It was expected that event-level anomalies could 

be detected as: 

P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦) =
1

𝑛
∑ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑛

𝑖=1

 (5) 

The result, P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦), represents the probability that an event is an anomaly, 

based on the number of partitions that found it was an anomaly. If this probability needed 

to be converted into a binary result, a threshold probability would be selected to 

determine when the probability represents an anomaly. Instead, the probability was 

preserved as a soft metric and was passed to the second algorithm. This algorithm also 

was tested and updated based on observations in the data. 
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The second algorithm in the anomaly detection stage determined the probability 

that a computer system was being attacked, based on the observation of one or more 

anomalies. Given the probability that a computer system was being attacked as P(A) and 

the probability that an individual event is an anomaly, P(E), this solution assumed that 

prior to any observations, the probability that a computer was under attack would be 

uncertain, thus: 

P(𝐴) = 0.5 (6) 

 

Further, given the initial probability that the computer system was under attack 

and an observation of an anomalous event, the probability of an event being an attack, 

given that a computer system being attacked, would be: 

 

P(𝐸|𝐴) = P(𝐴) × P(𝐸) (7) 

 

Following the observation of an event, it would be reasonable to update the prior 

probability to reflect the greater certainty, based on the probability of the observation. 

Therefore, given a number of observations, N, it was expected that the probability that a 

computer system is being attacked would be: 

 

P(𝐴) = P(𝐴) +
1

𝑁
∑ P(𝐸𝑖|𝐴) − 0.5

𝑁

𝑖=1

 (8) 
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The probability portion of the algorithm was developed based on these 

assumptions and was modified, as needed, through evaluation of the experimental results. 

 

Active Learning 

The active learning portion of this solution was built upon previous approaches 

developed by McElwee (2017). Active learning is successful in separating normal from 

attack traffic using minimal labeling (McElwee, 2017). Areas for improvement include 

more detailed evaluation of the sampling, as well as the use of an improved oracle that 

allows the detection of certain rare attacks (McElwee, 2017). 

In addition to sampling the events to be sent to the oracle for labeling, this stage 

of the algorithm determined how to use this feedback to influence the outcome of the 

anomaly detection. The two most likely opportunities evaluated were to override the 

probability that an event was indeed anomalous, P(E), or to use the oracle’s response to 

update the prior probability that the computer system was under attack, P(A). The 

approach for active learning was finalized during the implementation and testing of the 

third experiment. 

 

Experiment 1: Cluster Generation 

The first experiment evaluated cluster generation strategies. This experiment 

focused on the k-means clustering algorithm and used bagging to generate a variety of 

clustering results. This experiment first required the implementation of a cluster 

generation algorithm that was configurable for a number of parameters. The k-means 
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clustering algorithm was used for this experiment, since it is a widely accepted algorithm 

that produces hyperspherical clusters with a relatively low computational complexity. 

This experiment determined the number of partitions, ℙ, to generate, such that the 

partitions were a subset of all possible partitions, ℙ ∈  ℙ𝐾. A partition is a result from a 

clustering solution that contains one or more clusters, 𝑃𝑁 ∈ ℙ, such that 𝑃𝑁 =

{𝐶1, 𝐶2, 𝐶3, … 𝐶𝑘}. As a result, there were a configurable number of partitions in ℙ.  

By implementing bagging, each partition had a pseudorandom number of clusters 

that were generated and were based on a pseudorandom number of features. The result 

was a diverse set of features, a diverse set of partitions with different clustering results, 

and a generalizable clustering solution. Using bagging helped to prevent the problem of 

overfitting. 

 

Experimental Design 

The algorithm that was used to implement the cluster generation is shown in 

Figure 6. After predetermining the number of partitions, N, to generate, this algorithm 

created a sampling plan that was based upon the number of features provided in the 

dataset. For each partition, the sampling plan included a selection of features to use from 

the dataset. The values that were selected in the sampling plan were determined 

experimentally, with the objective of optimizing the clustering results while minimizing 

computational complexity. 
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Figure 6. Algorithm for cluster generation 

 

Following the sampling plan, the algorithm generated N partitions using the k-

means clustering algorithm. The partitions were stored in a data structure that was used in 

subsequent stages of the intrusion detection solution, but this data was also available for 

export to a CSV file for off-line analysis. An evaluation step was included in this 

algorithm, since it is expected that some of the pseudorandom clustering solutions 

defined in the sampling plan would not cluster well and could be discarded immediately. 

 

Evaluation 

The results of this experiment were analyzed using statistical frequency analysis 

of a variety of experimental runs. The focus of this experiment was to determine the 

optimal settings for cluster generation before moving on to the next experiment. 
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Experiment 2: Probabilistic Anomaly Detection 

The second experiment focused on two algorithms. First, it implemented and 

evaluated the effectiveness of using the cluster generation results to identify anomalous 

events. Second, it implemented and evaluated the probability that a computer host was 

being attacked.  

 

Experimental Design 

Figure 7 shows an overview of the algorithm that was developed for this 

experiment. The input to this algorithm was the set of partitions that were developed in 

the first experiment. For each partition in the set, the algorithm determined if each cluster 

in the partition was an anomaly. From this a probability was calculated to determine if an 

event represented an attack, P(E). After computing P(E) for each event, these 

probabilities were used to update a list of each computer system to reflect the probability 

that the computer system was being attacked, P(A).  
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Figure 7. Algorithm for probabilistic anomaly detection 

 

It was expected that the computational complexity would be approximately 

O(2n), where n is the number of events in the dataset. It was also expected that the 

computational complexity of cluster anomaly evaluation would be negligible, since it was 

limited by the number of partitions. Further, it was expected that the loop through each 

event would have a linear computation requirement and would thus be O(n). The 

evaluation to determine if a computer system was compromised would be limited to the 

number of computer systems times the average number of events per computer system, 
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which should be approximately O(n). This appears to be reasonable for large intrusion 

datasets and this was evaluated as part of this experiment. 

 

Evaluation 

The results of this experiment were evaluated for accuracy compared to the 

ground truth data provided with the datasets. For the NSL-KDD dataset, this experiment 

only evaluated the accuracy of the anomaly detection at the event level, since individual 

computer systems were not identified in this dataset. For the UNSW-NB15 dataset, this 

experiment evaluated both the accuracy of the anomaly detection and threshold at which 

a computer system’s probability of attack was reasonable.  

To evaluate the accuracy of the probability that an event is anomalous, it was 

expected that a threshold probability would be selected to represent an event as an attack. 

Then the accuracy and error rates would be calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (10) 

 

To evaluate the probability that a computer system was being attacked, it was 

expected that subsets of the data would need to be presented to the algorithm to create a 

variety of scenarios to simulate targeted attacks against a reduced number of computer 

systems; however, after analysis of the datasets, the entire dataset was presented to the 

algorithm. The evaluation included the numbers of normal and attack records injected 
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into the algorithm along with a comparison of the probabilities of a computer system 

being attacked.  

 

Experiment 3: Active Learning 

The third experiment incorporated active learning into the overall solution. In this 

context, active learning was implemented to sample certain unlabeled data that would be 

sent to the oracle. An oracle is an entity that knows what the correct label is for the data 

and represents a human subject matter expert. The objective was to minimize the amount 

of data that needed to be sent to the oracle while ensuring that sufficient labels were 

provided to improve the overall machine learning output. Since this experiment included 

datasets that had ground truth data to distinguish between attacks and normal events, the 

oracle was created programmatically, rather than relying on a human subject matter 

expert. 

The queries to the oracle were used to determine if an event was an attack or 

normal, as well as to determine if the probability that a computer system being attacked 

was correct. Thus, the oracle stored ground truth information for both types of events. 

The specific events and computer systems that were presented to the oracle were based 

on a sampling strategy that was built upon prior research (McElwee, 2017). The results 

were compared to arrive at a recommended sampling approach. 

The incorporation of the feedback into the probabilistic anomaly detection portion 

of the solution was determined after the second experiment had been completed. It was 

expected that the results of the active learning would be used to update P(E) prior to 

updating P(A) for a computer system. It was also expected that the active learning results 
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could also update P(A) directly, based on feedback that a computer system was not being 

attacked. 

 

Evaluation 

The accuracy results from Experiment 2 were used as a basis of comparison for 

this experiment. The objective was to improve the accuracy of the overall solution by 

incorporating domain knowledge from subject matter experts, as represented by the 

oracle. In addition, this experiment evaluated the accuracy compared to the number of 

requests sent to the oracle, since it was obvious that if all events and computer system-

level decisions were sent to the oracle, then 100% accuracy could have been achieved. 

Thus, it was expected that there would be a sigmoid curve when the accuracy was plotted 

against the number of requests sent to the oracle. 

  

Resource Requirements 

This research had three primary resource requirements. First, datasets for 

intrusion detection were required as the input. This research did not create a new 

intrusion detection dataset, but rather relied upon existing, publicly available datasets. As 

mentioned previously, the two datasets that were used for this research were the NSL-

KDD and UNSW-NB15 datasets. 

The second resource requirement was a development environment, including 

computing hardware, programming languages, and libraries for data handling and 

machine learning. The development environment consisted of a laptop computer running 

Microsoft Windows 10. The intrusion detection system and algorithms were developed 
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using Python and the PyCharm integrated development environment. Programming 

libraries that were implemented in this research included scikit-learn machine learning 

algorithms and pandas DataFrames. TensorFlow was considered for its deferred 

processing capabilities and its ability to use GPU processing, but it was not used in this 

research. 

The third resource requirement was an environment for processing the data using 

the algorithms that had been developed. Most of these algorithms performed satisfactorily 

in the development environment, but cloud computing services were used to provide 

additional processing capabilities that reduced the computation time for cluster 

generation. 

 

Summary 

This chapter introduced the approach for probabilistic clustering ensembles with 

active learning for intrusion detection. It provided a high-level overview of the solution 

and the algorithms, as well as details regarding the datasets that were used. This chapter 

included the approach that was used for cluster generation and the method for 

probabilistic anomaly detection. This chapter also provided an overview of how active 

learning would be applied after the probabilistic anomaly detection function was 

finalized.  

This chapter described the testing and evaluation approaches that were used 

through a series of three experiments. The first experiment focused on cluster generation 

to evaluate the optimal way to generate diverse clustering solutions that were used later 

for anomaly detection. The second experiment focused on probabilistic anomaly 
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detection by applying probabilistic reasoning to the observation of events, leading to the 

probability that a computer system was being attacked. Finally, the third experiment 

enhanced the solution with active learning approaches and compared the accuracy to that 

of the probabilistic anomaly detection experiment. 
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Chapter 4 

Results 

Introduction 

This chapter describes the implementation and results of the three experiments 

conducted in this research. It details the design and implementation of the algorithms by 

using a class diagram and a description of the classes. Next, this chapter describes the 

selected datasets and preprocessing.  

This chapter presents the design of each experiment as well as the evaluation 

approach, observations, and preliminary conclusions. The first experiment implemented 

and evaluated cluster generation, and the results, which were surprising, were 

foundational to the remainder of the experiments. The second experiment implemented 

the anomaly detection algorithm and evaluated the use of the partitions of clustering 

results to find both the probability that an event was an anomaly, P(E), and the 

probability that a computer system was under attack, P(A). Once again, the results were 

different than expected, but demonstrated the success of the algorithm. Finally, the third 

experiment implemented active learning to update P(A) by correctly labeling a sampling 

of events for the computer systems that were found to have anomalies. The result was 

that false positives were eliminated after updating the labels of a small number of events. 
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Experiment Design and Implementation 

The experiments implemented the algorithms defined in Figures 6 and 7 in 

Chapter 3, Methodology. The experiments were implemented using object-oriented 

design with Python 2.7 using custom classes. In addition, existing libraries were used, 

such as pandas and scikit-learn. Figure 8 illustrates the class diagram that was used for 

the experiments. 

 

Figure 8. Class diagram 

 

CEPIDS Class 

The class name, CEPIDS, is the acronym for Clustering Ensemble Probabilistic 

Intrusion Detection System. This class is responsible for the high-level execution of the 

algorithm, the calculation of P(E) for events, the calculation of P(A) for computer 
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systems, and for implementing the active learning. It contains a main() function that 

allows it to be executed directly for complete execution of cluster generation, 

probabilistic anomaly detection, and active learning. The main() function orchestrates the 

experiments. The CEPIDS class instantiates objects from the subsequent classes, 

NSLKDD, UNSW, and PartitionGenerator.  

 

NSLKDD and UNSW Classes 

The NSLKDD and UNSW classes allowed their representative datasets to be 

loaded from a file and preprocessed. After loading and preprocessing the datasets, these 

classes could return a DataFrame that represented the full dataset, a list of features, or a 

list of labels to allow for post processing and evaluation. Although these two datasets 

have different sets of features, using the same functions in each class allowed the 

implementation of each dataset to be abstracted and allowed the classes to be used 

interchangeably in the CEPIDS class. As a result, these experiments can be extended to 

other datasets by implementing the specific details of the dataset in a new dataset class 

without modifying the logic of the algorithms. The NSLKDD and UNSW classes were 

implemented in a single Python package, called datasets.py, which contained global 

functions for preprocessing, such as filling in missing data values, encoding categorical 

features, and scaling values to a range. 
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PartitionGenerator Class 

The PartitionGenerator class implemented the cluster generation. The 

initialization of this class required an instantiated dataset object, which could be either of 

the NSLKDD or UNSW classes. The class initialization also included configurable 

parameters for selecting the number of partitions to generate, the minimum and 

maximum ratio of features to include in generating the partitions, as well as the minimum 

and maximum number of clusters to generate in each partition. Using the upper and lower 

bounds of features and the number of clusters, the initialization of this class selected 

pseudorandom numbers within those bounds. After the initialization was completed, the 

cluster labels were retrieved using the get_labels() function, which returned a list of 

numeric cluster labels for each partition. Each list of cluster labels followed the order of 

the original dataset, which allowed them to be joined directly with the original dataset as 

new features. 

 

Development Environment 

The development environment for the experiments in this research used PyCharm 

for Python development. Source code was controlled in a private github repository. Most 

experiments were conducted on a Lenovo laptop with an Intel Core i7 CPU running at 2.1 

GHz, with 8 GB of memory, and with the Windows 10 operating system. Cluster 

generation was found to be the most computationally complex problem, so to generate 

sufficient numbers of clustering ensemble results for validation, Amazon EC2 instances 

were also used. These instances were optimized for computational work, with 3 GHz, 

Intel Xeon Platinum CPUs and 8 GB of memory. The EC2 instances allowed 10 
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simultaneous executions of the cluster generation, with 100 partitions per execution. This 

reduced the time to generate 10 sets of partitions to the same time it took to produce a 

single set.  

 

Input Dataset Analysis and Preparation 

The first step in conducting the experiments was to evaluate the datasets and 

preprocessing requirements that were needed. This preparation work was performed 

using Microsoft Excel pivot tables. This allowed various ways of examining the datasets 

to understand their characteristics.  

 

NSL-KDD 

NSL-KDD was one of the datasets used for this research. The NSL-KDD dataset 

is a subset of the KDD Cup 1999 dataset that eliminates duplication. An analysis of the 

composition of the NSL-KDD training dataset found that it contained only 53% normal 

records. An important assumption of this research is that network events are highly 

imbalanced, with a predominant number of normal records and a very small number of 

attack records. Since nearly half of this dataset contained attacks, it could not be 

considered as representative of normal network conditions, which might only contain a 

very small percentage of attacks. To compensate for this even distribution of normal and 

attack records, a derived dataset was prepared that contained a subset of the events from 

the NSL-KDD dataset. By eliminating the denial of service records, the resulting dataset 

contained 98% normal records and was more representative of a realistic network that 

was experiencing targeted attacks. All subsequent experiments using the NSL-KDD 
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dataset used this derived dataset. Table 6 shows the distribution of classes in both the 

original and the derived datasets. 

 

Table 6 

Original and Derived NSL-KDD Dataset Label Distributions  

Original Dataset 

  

Derived Dataset 

Label Records  % Total 

 

Label  Records  % Total 

Normal 67,343 53% 

 

normal 67,343 98% 

neptune 41,214 33% 

 

warezclient 890 1% 

Satan 3,633 3% 

 

guess_passwd 53 0% 

ipsweep 3,599 3% 

 

buffer_overflow 30 0% 

portsweep 2,931 2% 

 

warezmaster 20 0% 

Smurf 2,646 2% 

 

land 18 0% 

Nmap 1,493 1% 

 

imap 11 0% 

Back 956 1% 

 

rootkit 10 0% 

teardrop 892 1% 

 

loadmodule 9 0% 

warezclient 890 1% 

 

ftp_write 8 0% 

Pod 201 0% 

 

multihop 7 0% 

guess_passwd 53 0% 

 

phf 4 0% 

buffer_overflow 30 0% 

 

perl 3 0% 

warezmaster 20 0% 

 

spy 2 0% 

Land 18 0% 

 

Total 68,408 100% 

Imap 11 0% 

    
Rootkit 10 0% 

    
loadmodule 9 0% 

    
ftp_write 8 0% 

    
multihop 7 0% 

    
Phf 4 0% 

    
Perl 3 0% 

    
Spy 2 0% 

    
Total 125,973 100% 
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UNSW-NB15 

The UNSW-NB15 dataset includes a variety of files. First, this dataset includes 

full packet capture data that was the source data for all subsequent files generated for this 

dataset. Next, it includes a training and testing dataset that was created using the packet 

capture data and is well-suited for machine learning. This data is similar in composition 

to the NSL-KDD dataset in that it does not include computer system identifiers, such as 

IP addresses. As a result, these files were not useful for this research. The UNSW-NB15 

dataset includes four comma separated value files that were generated from the packet 

capture data using Argus, Bro, and customized algorithms. These files each represent 

network connection events that include source and destination IP addresses for each 

event. It is this set of data that was used for this research, since it included the classes of 

the events and uniquely identified the source destination IP addresses. The classes of 

events in this dataset consisted of: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, Worms, and Normal.  

The experiments used one of the four files, UNSW-NB15_1.csv, which contained 

700,001 events, 44 unique destination IP addresses, and 40 unique source IP addresses. It 

was representative of the other datasets. This file was highly imbalanced, consisting of 

97% normal records. As a result, no modifications or derived datasets were needed. Table 

7 shows the distribution of classes in this dataset. 
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Table 7 

UNSW-NB15_1 Dataset Label Distributions  

Label Records PctTotal 

Normal 677,786 96.8% 

Generic 7,522 1.1% 

Exploits 5,409 0.8% 

Fuzzers 5,051 0.7% 

Reconnaissance 1,759 0.3% 

DoS 1,167 0.2% 

Backdoors 534 0.1% 

Analysis 526 0.1% 

Shellcode 223 0.0% 

Worms 24 0.0% 

Total 700,001 100% 

 

 

Experiment 1: Cluster Generation 

Design 

The purpose of the first experiment was to build a foundation of cluster 

generation that could be used in subsequent experiments. All clustering performed in this 

experiment used the k-means clustering algorithm. It was important to ensure that each of 

the partitions of clustering results was diverse, so that the resulting partitions represented 

multiple perspectives of the data groupings. To generate diverse clusters, this experiment 

began with a bagging plan that included a pseudorandom set of features and a 

pseudorandom number of clusters per partition. As a result, each partition was built using 

a different number of features from the original dataset, and those features were randomly 

selected. Each partition also had a different number of clusters.   
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To select the features to be used in each partition, this experiment was constructed 

to be generalizable to other datasets. As a result, the bagging plan included a maximum 

of 75% of the available features from the original dataset, and a lower limit of 25%. For 

example, the UNSW-NB15 dataset contains 49 features, including a label and an attack 

category. Since the label and the attack category represent the class of each event, this 

dataset has 47 features that are useful for clustering. Thus, the number of features that 

were clustered in each of the partitions generated for the UNSW-NB15 dataset ranged 

from 12 to 35. 

To select the number of clusters to generate for each partition, this experiment 

included parameters for the minimum and maximum number of clusters to generate. 

Initial experiments used low numbers of clusters, such as a minimum of four and a 

maximum of 20. The results were analyzed using Microsoft Excel pivot tables, and the 

result was that each cluster had a predominantly high number of normal records. The 

ranges were expanded until a more reasonable distribution of normal records was 

identified. The final range for the number of clusters in each partition was a minimum of 

40 and a maximum of 100. Increasing the upper limit further may have improved the 

distribution of events in each cluster, but higher numbers of clusters required more 

computational processing time, so a maximum of 100 was selected as a trade-off between 

performance and diversity. Prior research showed that ensembles of weak clusterers were 

better than single clustering algorithms, so it was expected that any limitations of cluster 

generation would be offset in the cluster evaluation stage (Topchy et al., 2005). 

The first experiment produced a DataFrame and an output file that were used for 

the evaluation of the results as well as for the input to the second experiment. Each 
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partition that was generated was represented as a feature appended to the original dataset. 

Each partition was assigned a feature name that began with the letter P and was followed 

by the partition number, such as P0 through P99. The values that were populated in the 

partitions were integers that represented the clustering labels for each partition. Initial 

experiments began with as few as 10 partitions and went as high as 100 partitions to 

provide a diverse set of clustering solutions for the second experiment. 

 

Analysis 

The most important analysis in this first experiment was to determine if there was 

a clustering generation strategy that would allow anomalies to be detected according to 

the formula: 

𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, 𝜇𝑐 − 𝐾𝜎𝐶 ≤ |𝐶𝑖| ≤ 𝜇𝐶 + 𝐾𝜎𝐶

1, (|𝐶𝑖| < 𝜇𝐶 − 𝐾𝜎𝐶) ∪ (|𝐶𝑖| > 𝜇𝐶 + 𝐾𝜎𝐶)
 

(11) 

 

Using this formula, normal clusters were defined by counting the number of 

records in each cluster, |Ci|, and determining if it was within K standard deviations of the 

mean number of events in each cluster. Anomalies were defined by evaluating if the 

count of records in each cluster was outside of the range of normal events. 

The cluster generation performed in this experiment began with the NSL-KDD 

dataset because of its smaller size and lower computational resource requirements. The 

output file from this experiment was imported into Microsoft Excel and was analyzed 

using pivot tables. This analysis isolated a sample partition, calculated the mean number 

of records per cluster, calculated the standard deviation of the number of records per 
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cluster, and calculated a variable number of standard deviations above and below the 

mean.  

This experiment found that the results of the clustering ensembles were not 

distributed as originally expected. Instead, clusters with the highest numbers of records 

predominantly had 100% normal classes. Clusters with the least number of records had a 

mixture of normal and anomalous classes, but none of these clusters could be identified 

as exclusively anomalous. Table 8 shows an example of what was found for a sample 

partition in one of the tests. In this test, the partition had 13 clusters, labeled from 0 to 12. 

Using the total record count for each cluster, two standard deviations above the mean was 

14,944. The only cluster that had more records than this threshold was cluster 6, which 

had 14,974 records. Cluster 6 consisted exclusively of normal records. It is also important 

to note that two standard deviations below the mean was -4,420, making it impossible for 

any clusters to have a number of records below this threshold.  

 

Table 8 

Distribution of Attack and Normal Records in Sample Partition 

Label Attack Normal Total 

6 0 14,974 14,974 

8 4 14,466 14,470 

2 0 8,704 8,704 

1 0 6,668 6,668 

4 582 5,234 5,816 

5 44 4,534 4,578 

3 79 3,555 3,634 

7 4 2,705 2,709 

9 0 2,337 2,337 

12 0 2,087 2,087 

0 311 821 1,132 

10 12 845 857 

11 29 413 442 
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After observing this distribution in the sample of partitions, this experiment 

implemented a Python function that generated the pivot tables for all partitions generated 

using the NSL-KDD dataset. The result was consistent across approximately 99% of the 

partitions. Exploring this observation further, the function was applied to the UNSW-

NB15 dataset and found that clusters with a number of records above the threshold were 

consistently normal classes with a high degree of accuracy. As a result, this experiment 

modified the original assumption by finding that: 

𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = {
0, |𝐶𝑖| ≥ 𝜇𝐶 + 𝐾𝜎𝐶

< 0.5, |𝐶𝑖| < 𝜇𝐶 + 𝐾𝜎𝐶
 

(12) 

 

This updated function resulted in a high degree of certainty of what was normal 

when two standard deviations was selected for K. For clusters with less than this 

threshold number of events, there was uncertainty, which is reflected as a probability of 

0.5 or less that an event is anomalous. It was expected that a higher number of standard 

deviations above the mean would result in a more accurate prediction of normal events, 

but this resulted in less records that met the criteria and did not improve the accuracy. 

After evaluating the clustering results using ranges of K standard deviations from 1.5 to 

4, this experiment found that 2 standard deviations performed consistently well in 

identifying the normal classes. 

 

Computational Efficiency 

Cluster generation was the most computationally expensive algorithm of the 

experiments. Although this was not a significant problem for the NSL-KDD dataset, 
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because of the lower number of records, it was a problem for the UNSW-NB15 dataset. 

When this experiment used a maximum number of 20 clusters per partition, the cluster 

generation was relatively quick; however, to obtain a more diverse set of clusters, a 

maximum of 100 cluster centers per partition was selected. For the UNSW-NB15 dataset, 

to generate 100 partitions with up to 100 clusters per partition, the algorithm took 

approximately 12 hours to complete. 

The computational complexity for the scikit-learn implementation of k-means 

clustering is O(knT), where k is the number of clusters, n is the number of samples, and T 

is the number of iterations. This was prohibitive, since all 700,001 samples in the 

UNSW-NB15 dataset were used, and since the maximum number of clusters per partition 

was as high as 100. In addition, a maximum of 300 iterations was selected for the k-

means clustering algorithm, which was time consuming to run as many as 100 partitions 

per cluster generation run. 

The generation of partitions can be scaled by running the algorithm in parallel. 

This experiment overcame some of the computational complexity by submitting the input 

dataset to the same algorithm running on multiple servers. This allowed the generation of 

the multiple sets of partitions needed for this research to be created in the same time it 

took to create a single set of partitions.  

 

Observations 

This experiment created a diverse set of partitions using the k-means clustering 

algorithm to generate a range of clusters per partition from 40 to 100 for the NSL-KDD 

and UNSW-NB15 datasets. It also found that a random bagging plan that ranged from 
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25% to 75% of available features was effective in generating diverse partitions. Most 

importantly, this experiment found that the distribution of clustering results by counting 

the events in each cluster did not clearly identify anomalous events, but rather could be 

used accurately to identify certain normal records. The result of this experiment indicated 

that P(E) for each event was not a hard probability but rather was a soft belief that could 

be used as an observation for updating P(A|E). The observations from this experiment 

were carried forward into the second experiment to determine if the results could be used 

for anomaly detection. 

 

Experiment 2: Probabilistic Anomaly Detection 

This experiment consisted of two algorithms. Beginning with the partitions 

generated in the first experiment, this algorithm first calculated the probability that an 

event was an anomaly, P(E). As found in the first experiment, this turned out to be a 

belief that had more accuracy for normal events than for anomalies. The second 

algorithm used P(E) to predict the probability that a computer system was experiencing a 

cyberattack, P(A). 

 

Design of P(E) Calculation 

Using the proposed algorithm from the methodology section, it was expected that 

in this experiment, P(E) would be calculated as the average of the anomalous clusters: 

P(𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦) =
1

𝑛
∑ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑛

𝑖=1

 
(13) 

In the first experiment, this research found that it was more predictive to look at 

which clusters contained normal records rather than which clusters contained anomalies. 
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To evaluate this algorithm and update this formula, this experiment used Microsoft Excel 

pivot tables to find the number of partitions that classified each event as normal. Figure 9 

illustrates the distribution of the event-level classes according to the number of votes that 

a set of 100 partitions generated using the NSL-KDD dataset. In this graph, 100 

represents all the partitions voting that the event was normal and 0 represented no votes 

that the event was normal.  The normal and attack classes are shown on different axes 

and at different scales because of the imbalanced nature of the dataset. It is important to 

note in this graph that above the midpoint number of votes, which was 50, this approach 

demonstrated high accuracy for detecting normal events.  

 

  

Figure 9. Graph of votes for NSL-KDD dataset 
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A different pattern was found when evaluating the partitions generated using the 

UNSW-NB15 dataset with 100 partitions. Figure 10 shows the distribution of events 

compared to the number of votes. An interesting observation with this dataset was that 

there were no instances where all the partitions voted that an event was normal. The 

highest number of votes was 42. The pattern looked smoother, with less but more 

pronounced peaks. Despite the differences with the NSL-KDD dataset, it still held that 

above the midpoint number of votes, which was 21, this number of votes was still an 

accurate method for detecting normal events with a high degree of accuracy.  

 

 

Figure 10. Graph of votes for UNSW-NB15 dataset 

 

Since this evaluation found that P(E) was certain for highly normal clusters and 

uncertain for others, the calculation of P(E) was updated to assign a belief ranging from 

0, for normal clusters, to 0.5, for uncertain clusters. To calculate P(E), this experiment 

first evaluated Canomaly using two standard deviations as the threshold. Then using voting, 
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for each event, this experiment counted the number of partitions that indicated the event 

was normal. At this point, it was found that all events, with a few exceptions, were 

normal when the number of normal votes ranged from the maximum of votes to half of 

the maximum of votes. Thus, the algorithm was developed to assign P(E) = 0 for events 

in this upper half of the votes. Below this range, the algorithm scaled P(E) to range from 

0, for the most votes below the midpoint, to 0.5, for events with the least number of 

votes. 

 

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 =
max(𝑣𝑜𝑡𝑒𝑠)

2
 (14) 

 

𝑃(𝐸) = {

0, 𝑣𝑜𝑡𝑒𝑠𝐸 ≥ 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

(1 −
𝑣𝑜𝑡𝑒𝑠𝐸

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡)

2
, 𝑣𝑜𝑡𝑒𝑠𝐸 < 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

 (15) 

 

 

Analysis of P(E) Calculation 

The accuracy of P(E) was calculated for events that fell above the midpoint of the 

maximum votes, since below the midpoint P(E) was found to represent only a level of 

uncertainty. Below this threshold, events were assigned a belief, which was suggestive 

that there may have been anomalies, but did not reflect an accurate prediction of which 

events are anomalies. Thus, for events above the midpoint, there were no true positives 

and no false positives, since above this threshold, only true negative and false negative 

results were expected: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

=
0 + 𝑇𝑁

0 + 0 + 𝑇𝑁 + 𝐹𝑁
 

=
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(16) 

 

For the NSL-KDD dataset, the accuracy of P(E) above the midpoint was found to 

be: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

=
27,394

27,394 + 3
 

= 0.999890 

(17) 

 

For the UNSW-NB15 dataset, the accuracy of P(E) above the midpoint was found 

to be: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

=
129,508

2129,508 + 6
 

= 0.999954 

(18) 

 

Although P(E) was not highly predictive of anomalies, it was highly predictive of 

normal events. Thus, for determining that a computer system was under attack, P(A), this 

experiment proceeded to determine if the accumulation of uncertainty was predictive that 

a computer system was being attacked. 
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Design of P(A) Calculation 

After calculating P(E) for each event, this experiment then calculated P(A) as the 

probability that a computer system was being attacked. Through experimentation, it was 

found that calculating P(A) could be reduced to: 

P(𝐴) =
1

𝑁
∑ P(𝐸𝑁)

𝑁

𝑖=1

 (19) 

 

In this formula, P(A) is the probability that a computer system is experiencing an 

attack, and N is the number of events attributable to each computer system. Thus, P(A) 

represents the mean of P(E) when grouped by the computer system. 

In calculating P(A) it was necessary to evaluate both computer systems involved 

in each event, the source IP address (srcip) and the destination IP address (dstip). Using 

the UNSW-NB15 dataset, it was not clear which of these two addresses represented the 

attacker or the target of the attack, so it was important to consider both addresses in 

calculating P(A).  

 

Analysis of P(A) Calculation 

Results varied when calculating P(A) for these two different IP addresses in each 

event. Experimentation found that to calculate P(A) for the srcip, it was more effective to 

group the events using a combination of srcip and dstip and to calculate the average P(E) 

for each pair. Further grouping the resulting dataset on just the srcip, the result was that 

for P(A) ≥ 0.8, the srcip addresses involved in attacks were consistently predicted with 

100% accuracy. For the dstip address, using just the average P(E) allowed the dstip 
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addresses to be identified for P(A) ≥ 0.8; however, there were some false positives of 

dstip addresses that were identified but were not involved in attacks. The inaccurate 

classifications were generally for destination IP addresses that had few events, which 

made them appear to be anomalies when compared to the entire dataset. Table 9 shows 

the results for a sample run including both the srcip and the dstip. The IP addresses that 

have P(A) ≥ 0.8 are shown in bold. The Result column indicates if the result was a true 

positive (TP), false positive (FP), or true negative (TN). There were no false negatives. 

 

Table 9 

Prediction of P(A) by srcip and dstip 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.12 TP 1.000 

175.45.176.3 TP 0.920 

 

149.171.126.14 TP 0.997 

175.45.176.2 TP 0.907 

 

149.171.126.15 TP 0.996 

175.45.176.0 TP 0.842 

 

149.171.126.11 TP 0.993 

149.171.126.0 TN 0.622 

 

149.171.126.13 TP 0.992 

149.171.126.2 TN 0.621 

 

149.171.126.19 TP 0.988 

149.171.126.4 TN 0.619 

 

149.171.126.16 TP 0.987 

149.171.126.5 TN 0.609 

 

149.171.126.10 TP 0.977 

149.171.126.3 TN 0.608 

 

149.171.126.17 TP 0.963 

149.171.126.6 TN 0.608 

 

224.0.0.1 FP 0.920 

149.171.126.9 TN 0.604 

 

149.171.126.18 TP 0.903 

149.171.126.7 TN 0.601 

 

10.40.170.2 FP 0.887 

149.171.126.1 TN 0.600 

 

32.50.32.66 FP 0.861 

149.171.126.8 TN 0.597 

 

10.40.182.3 TN 0.784 

59.166.0.0 TN 0.465 

 

10.40.85.30 TN 0.656 

59.166.0.9 TN 0.462 

 

59.166.0.9 TN 0.616 

59.166.0.4 TN 0.459 

 

59.166.0.8 TN 0.607 

59.166.0.1 TN 0.459 

 

59.166.0.2 TN 0.599 

59.166.0.8 TN 0.440 

 

224.0.0.5 TN 0.597 

59.166.0.3 TN 0.420 

 

59.166.0.6 TN 0.596 

59.166.0.7 TN 0.412 

 

59.166.0.1 TN 0.591 

59.166.0.6 TN 0.409 

 

59.166.0.7 TN 0.589 
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Table 9 

Prediction of P(A) by srcip and dstip (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

59.166.0.5 TN 0.389 

 

59.166.0.0 TN 0.587 

59.166.0.2 TN 0.376 

 

59.166.0.3 TN 0.583 

10.40.85.1 TN 0.231 

 

59.166.0.4 TN 0.582 

149.171.126.18 TN 0.174 

 

59.166.0.5 TN 0.564 

149.171.126.15 TN 0.169 

 

175.45.176.1 TN 0.525 

10.40.182.1 TN 0.160 

 

10.40.85.1 TN 0.513 

149.171.126.10 TN 0.158 

 

175.45.176.2 TN 0.509 

149.171.126.19 TN 0.110 

 

192.168.241.243 TN 0.449 

149.171.126.11 TN 0.090 

 

149.171.126.1 TN 0.343 

149.171.126.16 TN 0.086 

 

149.171.126.5 TN 0.339 

10.40.170.2 TN 0.078 

 

175.45.176.0 TN 0.312 

10.40.182.3 TN 0.078 

 

149.171.126.0 TN 0.305 

149.171.126.13 TN 0.066 

 

149.171.126.7 TN 0.301 

149.171.126.12 TN 0.061 

 

149.171.126.6 TN 0.294 

10.40.85.30 TN 0.056 

 

149.171.126.8 TN 0.293 

192.168.241.243 TN 0.053 

 

149.171.126.9 TN 0.273 

127.0.0.1 TN 0.026 

 

175.45.176.3 TN 0.262 

149.171.126.17 TN 0.022 

 

149.171.126.3 TN 0.231 

   

 

149.171.126.2 TN 0.228 

    

149.171.126.4 TN 0.225 

    

10.40.198.10 TN 0.137 

    

127.0.0.1 TN 0.000 

 

To ensure that the results were consistent, this experiment included ten runs of the 

algorithm, using a different set of randomly generated partitions for each run. Table 9 

shows the accuracy of calculating P(A) for the srcip and dstip. As Table 10 demonstrates, 

the results were reproduceable for each of the runs. Thus, the algorithm did not require a 

specific set of features or feature engineering to be successful, since the random partitions 

of clusters proved to be successful for all runs. 
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Table 10 

P(A) Accuracy for Ten Runs  

 

srcip 

 

dstip 

Run # TP TN FP FN Accur. 

 

TP TN FP FN Accur. 

1 4 41 0 0 1.00 

 

10 28 6 0 0.86 

2 4 41 0 0 1.00 

 

10 27 7 0 0.84 

3 4 41 0 0 1.00 

 

10 26 8 0 0.82 

4 4 41 0 0 1.00 

 

10 31 3 0 0.93 

5 4 41 0 0 1.00 

 

10 31 3 0 0.93 

6 4 41 0 0 1.00 

 

10 30 4 0 0.91 

7 4 41 0 0 1.00 

 

10 28 6 0 0.86 

8 4 41 0 0 1.00 

 

10 25 9 0 0.80 

9 4 41 0 0 1.00 

 

10 30 4 0 0.91 

10 4 41 0 0 1.00 

 

10 30 4 0 0.91 

 

 

Computational Efficiency 

It was expected that the computational complexity for this algorithm would be 

O(2n). By using pandas DataFrame objects extensively, this algorithm did not directly 

loop through each event. It did loop through each partition, which resulted in 100 

iterations. The algorithm relied upon the built-in optimizations of the DataFrame class to 

perform calculations for the entire dataset. As a result, it can be estimated that this 

algorithm’s complexity may be expressed as less than O(n). In testing, algorithms for 

calculating P(E) and P(A) completed in less than one minute. Thus, the use of the 

algorithm for anomaly detection did not add any significant computational penalty 

beyond the performance of multiple runs of the k-means clustering that were used in the 

first experiment to generate the partitions.   
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Observations 

The results of this experiment demonstrated that unsupervised anomaly detection 

at the event-level was not accurate for detecting attack classes. Instead, event-level 

detection using this approach found a portion of the normal classes with highly accurate 

results. Using this observation to calculate a belief that an event may be anomalous was 

found to be highly effective in calculating the probability that a computer system was 

under attack. By examining the srcip and dstip separately, the accuracy was consistently 

100% for the srcip and ranged from 80% to 93% for the dstip. As a result, this 

experiment demonstrated that the clustering ensemble probabilistic intrusion detection 

system detected the computer systems that were under attack. It accomplished this 

prediction without relying upon labeled data for training and without training during 

attack-free time periods to detect abnormal events.  

 

Experiment 3: Active Learning 

Design 

The third experiment incorporated active learning into the overall intrusion 

detection system. When initially proposing this research, it was unclear how active 

learning would be applied, since it depended on how the first two experiments were 

implemented. Since active learning queries an oracle to label of a select number of 

records, the primary design consideration was how large of a sample to submit to the 

oracle. Options considered were to sample from the events to update P(E) or to sample 

from the computer system level to update P(A). 
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Figure 11 lists the pseudocode for this algorithm. This algorithm selects all srcip 

and dstip computer systems that had P(A) ≥ 0.8. From this subset of all computer 

systems, a pseudorandom sample of events for each of these computer systems was 

selected. These sampled events were submitted to the oracle for labeling. If the oracle 

returned a response that the event was an attack, then the P(A) for that srcip or dstip was 

updated to 1.0, signifying that the computer system was experiencing an attack. 

  

For each srcip with P(A) ≥ 0.8: 

 Collect events with srcip 

 Create sample of N records from collected events 

 For each record in sample: 

  Ask oracle for labels 

  If number of attack labels > 0: 

   Update P(A) to 1 

  Else: 

   Update P(A) to 0 

For each dstip with P(A) ≥ 0.8: 

 Collect events with dstip 

 Create sample of N records from collected events 

 For each record in sample: 

  Ask oracle for labels 

  If number of attack labels > 0: 

   Update P(A) to 1 

  Else: 

   Update P(A) to 0 

Figure 11. Pseudocode for active learning algorithm 

 

Unlike McElwee (2017), in which a separate oracle class was constructed to 

simulate the human analyst, this experiment relied upon the DataFrame that was used as 

a data structure for holding both the original dataset and the results. Attack labels were 

identified by querying the label column of the DataFrame. As a result, the queries always 

resulted in accurate labels, even for rare events. 
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Analysis 

Since the goal of this research was to reduce the workload of human analysts, the 

purpose of this experiment was to find the minimum number of samples to submit to the 

oracle for labeling that would still result in a high accuracy. To be representative of the 

events assigned to each srcip and dstip, a sample size of √𝑁 was selected as the starting 

point, where N was the number of events for each srcip or dstip. Initial experimentation 

with this sample size concluded that active learning consistently identified computer 

systems under attack with 100% accuracy. Next, this experiment proceeded to reduce the 

number of samples and evaluate the accuracy, as shown in Table 10. 

 

Table 10 

Active Learning Accuracy  

 

srcip 

 

dstip 

 

Sample Accuracy 

 

Sample Accuracy 

√𝑁 317 100.0% 

 

499 100.0% 

√𝑁
3

 73 100.0% 

 

134 100.0% 

√𝑁
4

 35 100.0% 

 

70 100.0% 

√𝑁
5

 23 100.0% 

 

47 97.7% 

√𝑁
10

 10 100.0% 

 

22 95.4% 

 

 

The results in Table 10 show that for srcip, the accuracy is 100% for all sample 

sizes, but this is because the original accuracy of the anomaly detection in the second 

experiment was already 100%. Thus, the dstip is a better indicator of sample sizes for 

active learning. Each sample size improved the original accuracy of anomaly detection 
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for the dstip. Sample sizes of √𝑁
4

 and above achieved accuracies of 100%. To confirm 

this sample size was the minimum for achieving this accuracy, this sample size was run 

10 times and achieved the same results each time. 

Figure 12 shows the accuracy of the active learning compared to the sample size. 

For sample sizes smaller than √𝑁
4

, the accuracy shows a downward slope. 

 

  

Figure 12. Accuracy of active learning compared to sample size 

 

Computational Efficiency 

The algorithm for active learning with a simulated oracle was highly efficient, 

since it had access to P(E), P(A), and the original features, including the label. Thus, by 

creating the random sample using the DataFrame, the algorithm could stop as soon as a 

single attack was identified. For each run, the computation time for this algorithm was a 

few seconds. It was estimated that, where N is the total number of that could be sent to 
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the oracle for labeling, the complexity was 𝑂(2√𝑁
4

), since for each sampled record, the 

algorithm completed the same loop for both the srcip and the dstip. 

 

Observations 

This experiment demonstrated that by sampling events for srcip and dstip with a 

sample size of √𝑁
4

, the residual error from anomaly detection could be reduced to 

achieve 100% accuracy. This approach relies on the anomaly detection algorithm 

identifying all of the true positives, since this active learning approach focuses on 

eliminating false positives, not on reducing false negatives. As a result, when the active 

learning algorithm was applied to the UNSW-NB15 dataset with 700,001 events, a 

human analyst would have been required to review a maximum of 105 events to identify 

all of the computer systems involved in an attack with 100% accuracy. 

 

Summary 

This chapter described the design and implementation of the experiments 

performed in this research. It showed the class diagram of the major components of the 

system and reviewed the function of each. In addition, this chapter provided a more in-

depth description of the dataset characteristics and preprocessing needed to ensure that 

the datasets were highly imbalanced. 

This chapter also reviewed each experiment, including specific design 

considerations, analysis, and observations. Since computational efficiency has been an 

important consideration when implementing clustering ensemble evaluation, the 

computational efficiency was discussed for each experiment. Each of the experiments 
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contributed to the overall demonstration that clustering ensembles were effective for 

anomaly-based intrusion detection. The first experiment identified a characteristic of 

imbalanced datasets that allowed the isolation of a significant portion of normal events. 

Using this characteristic of imbalanced data, the second experiment assigned a belief to 

the events to reflect uncertainty. In addition, the second experiment estimated the 

probability that a computer system was experiencing an attack by calculating the 

probability as the average belief at the event level and by scaling the result to range from 

zero to one. The second experiment found that for source IP addresses involved in 

attacks, the algorithm was 100% accurate for probabilities ≥ 0.8. For destination IP 

addresses involved in attacks, the algorithm was between 80% and 93% accurate for 

probabilities ≥ 0.8. Finally, the third experiment used the results of the previous 

experiment to incorporate active learning, which allowed a maximum of 105 events to be 

labeled by the oracle, thus improving the accuracy to 100% for the destination IP address.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

This research set out to address the problem that there was no approach to 

intrusion detection that reduced the workload of human analysts by providing a 

probabilistic prediction that a computer was experiencing a cyberattack. The goal for 

addressing this problem was to improve anomaly-based intrusion detection by adding 

meaning to alerts by using probabilistic clustering ensembles. By adding meaning to 

alerts, the desired outcome was to reduce the workload of security analysts. 

Through the implementation of three experiments and the analysis of their results, 

five primary conclusions emerge. The first conclusion was that, as proposed, clustering 

ensembles provided multiple perspectives on the event data. These different perspectives 

were important in this research, since each partition only identified a single cluster of 

normal events. In some cases, the partition did not identify any normal events, but 

together the partitions provided sufficient observations to determine which computer 

systems were being attacked.  

Second, for highly imbalanced datasets, which are characteristic for intrusion 

detection, clustering ensembles were effective in identifying certain normal events with a 

high degree of accuracy. This was likely because of the highly imbalanced nature of the 

input dataset. By identifying clusters that contained more than two standard deviations 

above the mean of events in each cluster, approximately 95% or more similar events from 
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the partition were represented in the cluster. Although normal events were scattered 

throughout the remaining clusters and mixed with attack events, the identification of a 

large population of normal events enabled them to be eliminated from the belief that they 

contained attacks.  

The third conclusion of this research was that unsupervised intrusion detection did 

not require an accurate probability that an event was an attack. Prediction of events in this 

research resulted in a range of uncertainty, represented by a probability of 0.5, to a level 

of accurate identification of some normal events. Using the event-level prediction as a 

belief and aggregating that belief to the computer system level enabled prediction of 

computer systems under attack with 80% to 93% accuracy.  

The fourth conclusion of this research was that active learning enabled a 

minimum level of interaction by human analysts while increasing accuracy to 100%.  The 

algorithms developed in this research detected the computer systems experiencing attacks 

in a dataset with 700,001 events by requesting information from the oracle for 105 

events. As a result, this form of anomaly detection combined with active learning may be 

effective for reducing the workload of human analysts in practice.  

The fifth conclusion of this research was that the use of clustering ensembles for 

probabilistic intrusion detection, when combined with active learning, provided a highly 

accurate method for identifying computer systems that were experiencing a cyberattack. 

This method used unsupervised machine learning to identify the computer systems with 

the highest probability of an attack. It then used a minimal number of interactions with 

the oracle to accurately identify the affected systems. 
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Implications 

This research contributed to intrusion detection in several ways. First, the 

application of clustering ensembles to intrusion detection is a relatively new area of 

study. This research provided a new approach for anomaly-based intrusion detection that 

relied on the highly imbalanced nature of the data used to detect intrusions.  

Next, this research found that combining uncertain event-level probabilities 

allowed the estimation of the probability that a computer system was under attack with 

reasonable accuracy. This was an important contribution to research, since it 

demonstrated that event-level detection does not need to be highly accurate to provide a 

higher level of meaning to alerts. This opens the possibility that combining alerts from 

existing intrusion detection methods may also be effective when aggregated at the 

computer system level. 

This research also contributed to intrusion detection by contributing research that 

supports the use of a new dataset for intrusion detection – the UNSW-NB15 dataset. 

Since its release in 2015, it has been used in a growing number of research studies. This 

research further strengthens the support of a more contemporary dataset for intrusion 

detection and helps to better position the UNSW-NB15 to replace the outdated KDD Cup 

1999 dataset.   

Lastly, this research contributed to existing research in active learning for 

intrusion detection. At present, there does not appear to be research that applies active 

learning to use events to detect the probability of a computer system level attack. This 

contribution makes it possible to further reduce the workload of human analysts in 

reviewing alerts. 
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Recommendations 

This research laid a foundation for additional intrusion detection research. Three 

specific areas for future research should be considered. First, improvements in cluster 

partition evaluation will help to better qualify which partitions should be included in the 

anomaly detection. A better understanding of which partitions contribute to a good 

solution may help to improve the accuracy of anomaly detection at the event level, which 

will contribute to an improved calculation of the probability that a computer system is 

experiencing an attack. Second, this research should be extended to combine events from 

multiple security monitoring systems, such as host-based audit logs, signature-based 

alerts, and network flow data. Observations of potential attacks from these systems can 

be grouped using the computer system identifiers, such as IP addresses. As a result, this 

may enable improved CSA because of additional perspectives. Third, the experiments in 

this research combined observations at the event-level and grouped the results on the 

source and destination IP addresses. This approach may also be useful for combining 

event-level observations at the user-level, where user login names are provided within the 

event data. Future research should apply probabilistic clustering ensembles to insider 

threat detection to identify organization insiders who may pose a threat to the security of 

systems and data. 

In addition, this research presents an approach that may be used to improve 

existing security monitoring practices in organizations. Security analysts generally 

respond to event-level security alerts. In many cases, these alerts provide insufficient 

information to determine the credibility, significance, and impact of the alert. Using the 
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results of this research, it is possible to provide a broader picture of CSA by focusing 

security analysts on the computer systems that are most likely being attacked. This 

change in focus will allow security analysts to more quickly determine a course of action 

without relying on their own observations to create a mental picture of what is occurring. 

In addition, the algorithms used in this research can be adapted to include additional 

datasets as well as to be verified in operational networks. Finally, this research should be 

applied to off-line analysis of network data to support the newly emerging practice of 

cyber threat hunting, in which security analysts examine various data sources to identify 

computer systems that may have become compromised but did not trigger alerts from 

regular monitoring systems (Sqrrl Data, 2018).  
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Summary 

Introduction 

This research focused on the problem that there was no approach to intrusion 

detection that reduced the workload of human analysts by providing a probabilistic 

prediction that a computer is experiencing a cyberattack. Intrusion detection is the 

practice of examining information from computers and networks so that cyberattacks can 

be identified (Debar et al., 1999). Effective intrusion detection is important for 

organizations, since earlier detection of cyberattacks helps to reduce the impact and 

recovery costs (Ponemon Institute, 2016). Yet many intrusions are missed because of the 

volume of alerts that analysts must review, resulting in fatigue and errors in judgement 

(Julisch, 2003; Sawyer et al., 2014). 

This research addressed several problems associated with intrusion detection. 

First, it addressed the high false-positive rates that accompany highly imbalanced data 

sets, where there are very few attacks scattered through large datasets of normal events. 

To address this problem, this research used observations of sparse attack events to predict 

the probability that a computer system was experiencing an attack. This was more 

accurate than predicting attacks at the event level. In addition, this research applied active 

learning, which allowed simulated human interaction to improve the overall accuracy. 

Second, this research addressed problems of overfitting and evasion. These are important 

problems, since machine learning algorithms that are overfitted are unable to find novel 

attacks and are not resilient to evasive adversarial tactics (Sommer & Paxson, 2010). 

Third, this research addressed the issue of using suitable datasets for evaluation of 

intrusion detection systems. The KDD Cup 1999 dataset has been the standard dataset for 
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evaluation since its inception, but it does not reflect current operating systems and does 

not contain identifiers of the source or destination computer systems involved in each 

event. This research addressed this problem by using the NSL-KDD dataset, to provide a 

connection to past research, as well as the UNSW-NB15 dataset, to provide a more 

contemporary view of network events. 

This research was built upon a foundation of past research in intrusion detection. 

It applied CSA to establish a basis for deriving higher levels of meaning from intrusion 

alerts. It reviewed past machine learning approaches to intrusion detection research, 

especially probabilistic methods, to uncover the challenges and gaps in current research. 

It assessed the features and capabilities of clustering ensembles, with a focus on cluster 

evaluation. Finally, this research reviewed available intrusion detection datasets that had 

been developed and used in past research studies. 

 

Methodology 

To address the problems associated with intrusion detection, this research 

implemented three experiments. The purpose of the experiments was to test the initial 

assumptions that clustering ensembles with probabilistic analysis and active learning may 

be effective for intrusion detection. The experiments were conducted using a prototype 

that was created using Python, pandas, and scikit-learn. 

The first experiment evaluated cluster generation strategies and examined how to 

create diverse clustering results that could be used in subsequent experiments. The cluster 

generation approach used bagging to select a pseudorandom number and set of features 

for each partition of clustering results. Clusters were generated using the k-means 
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clustering algorithm. The generated clusters were evaluated to test the initial assumptions 

about the characteristics of what represented normal and attack events. 

The second experiment implemented and tested an algorithm that used the 

partitions of clusters that were generated in the first experiment to predict the probability 

that an event was an anomaly. Next, the algorithm used the event-level probabilities to 

calculate the probability that a computer system was experiencing an attack. To test if 

this algorithm was effective, this experiment evaluated the accuracy of both the event-

level and the computer system-level probabilities. 

The third experiment added active learning, which allowed the simulation of 

human interaction, to fine tune the overall results. The active learning was implemented 

by selecting a random sampling of the event-level probabilities for the computer systems 

that had ≥ 0.8 probability of experiencing an attack. This experiment evaluated the 

minimum number of samples that could be used to achieve improvements in accuracy. 

 

Results 

The first experiment found that using bagging and k-means clustering to generate 

a range of partitions with 40 to 100 clusters in each partition provided diverse results. 

This experiment found that the clustering results did not successfully identify anomalous 

events, but instead had higher accuracy in predicting the most normal clusters. By 

evaluating the mean number of events in each cluster of each partition, this experiment 

found that clusters that contained a number of events greater than or equal to two 

standard deviations above the mean number of events were consistently normal records. 

None of the events below this threshold were identified exclusively as attack events.  
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Using the results of the first experiment, the second experiment calculated the 

probability of an event being an anomaly from a range of 0 to 0.5. Thus, the event-level 

probability was more of a measure of uncertainty or belief. Next, it calculated the 

probability that a computer system was under attack by finding the mean of the event-

level probabilities for each source and destination computer system. This experiment 

evaluated the event-level probabilities and determined that, above a midpoint threshold of 

votes from each partition, the prediction of normal events was highly accurate. Next, this 

experiment evaluated the accuracy of the probability that a computer system was 

experiencing an attack. This test was conducted 10 times, using a new bagging plan for 

each run. The accuracy of detection using the source IP address was 100% for all 10 runs. 

The accuracy of detection using the destination IP address ranged from 80% to 93%.  

The third experiment evaluated the effect of adding active learning by selecting 

event-level samples for each of the computer systems that had probabilities of ≥ 0.8. The 

sample sizes tested ranged from √𝑁 to √𝑁
10

. This experiment found that samples of √𝑁
4

 

consistently resulted in improved accuracy that a computer system was experiencing an 

attack. As a result, for the 700,001 events in the UNSW-NB15 dataset, sampling a total 

of 105 events resulted in 100% accuracy. 

These results demonstrated that the use of clustering ensembles for probabilistic 

intrusion detection, when combined with active learning, provided a highly accurate 

method for identifying computer systems that were experiencing a cyberattack. The use 

of clustering ensembles provided multiple perspectives on the event data and enabled the 

prediction of attacks at the computer system-level by relying on the high-confidence 

normal events, even though the event-level prediction of anomalies was inaccurate.  
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Contributions and Future Work 

This research contributed to the field of intrusion detection by applying clustering 

ensembles to unsupervised anomaly detection. It is expected that this approach can be 

generalized to apply to other types of anomaly detection that are characterized by highly 

imbalanced datasets. Additional research should evaluate this in other applications, 

especially insider threat detection and cyber threat hunting. 

Another important contribution of this research is that it demonstrated that 

combining uncertain event-level data to predict the probability that a computer system is 

experiencing an attack is highly accurate. This approach provided more meaning than 

individual events alone could provide and may be expanded in future research to combine 

alerts from a variety of intrusion detection systems as well as other security event 

monitoring systems. This will further reduce the workload of human analysts by creating 

a higher level of situational awareness. 

This research also contributed to intrusion detection by applying a relatively new 

dataset, UNSW-NB15. As a result, this research strengthened support for a more 

contemporary dataset for intrusion detection. Future research should evaluate the use of 

probabilistic clustering ensembles with active learning to new datasets, as they are 

developed. In addition, future research should apply this approach using operational 

network data from an actual organization to validate that it can extend from research into 

practice. 

Finally, this research added to previous studies related to reducing the human 

workload and resulting fatigue that are associated with security monitoring. It provided a 
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practical approach to apply unsupervised machine learning to prioritize the computer 

systems that are most suspicious, and it minimized the amount of human decision-making 

required. As a result, it may allow security analysts to more quickly determine a course of 

action when dealing with cyberattacks. 
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Appendix A 

Source Code Availability and Usage 

 

All the source code for the experiments in this research is available at the author’s 

GitHub repository. It is available for researchers to enhance and extend this research in 

intrusion detection systems. This appendix describes how to obtain the source code, the 

package dependencies, configuration parameters, and execution instructions. Many of 

these instructions are specific to the Ubuntu operating system and may need to be adapted 

for other systems. 

 

Source Code 

The source code may be downloaded from GitHub at: 

https://github.com/stevenmcelwee/cepids 

From the command line, the source code may be cloned by: 

git clone https://github.com/stevenmcelwee/cepids.git 

 

Package Dependencies 

Python 2.7 and PIP 

The software used in this research was designed to work with Python 2.7. PIP was 

used to install additional packages. Python and PIP can be installed using: 

sudo apt install python2.7 python-pip 

https://github.com/stevenmcelwee/cepids
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scikit-learn 

scikit-learn is required for the KMeans class, which performs the clustering. It can 

be installed using: 

pip install scikit-learn 

 

pandas 

When installed as an operating system package, the pandas package satisfies 

several additional dependencies, such as numpy. This can be installed using: 

sudo apt install python-pandas 

 

Configuration Parameters   

The following parameters are configurable by updating variables at the beginning 

of the cepids.py file: 

 

dataset_file 

The filename of the input dataset. This must be either the absolute path to the file 

or relative to the directory from which the cepids.py package is executed. Example: 

'datasets/derived/kdd_u2r_r2l.csv'. 

 

dataset_class 

The class name of the input dataset. This must be either UNSW or NSLKDD.  
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num_partitions 

 The number of partitions that will be generated. This is used subsequently when 

evaluating the partitions as well. The recommended setting is: 100. 

 

min_feature_ratio 

The minimum number of features that will be used in the bagging plan for 

generating diverse clusters. The recommended setting is: 0.25. 

 

max_feature_ratio 

The maximum number of features that will be used in the bagging plan for 

generating diverse clusters. The recommended setting is: 0.75. 

 

min_clusters 

The minimum number of clusters that will be created in each partition. The 

recommended setting is: 40. 

 

max_clusters 

The maximum number of clusters that will be created in each partition. The 

recommended setting is: 100. 

 

input_partition_file 

Optional. The source file for a previously generated set of partitions. If a CSV 

was retained from Experiment 1, it can be used as the input for Experiment 2 to save time 
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and prevent recreation of partitions each time changes are made in the second 

experiment. If left blank, Experiment 1 will generate new partitions. If provided, it must 

contain either the absolute or relative path to the CSV partition file. Example: 

'experiment1_partitions_unsw_100p_01.csv'. 

 

num_stdev 

This is the number of standard deviations above the mean number of clusters that 

will be used as a threshold to determine the clusters that contain normal classes. The 

recommended setting is: 2. 

 

sample_size_exponent 

The exponent for creating the sample size for active learning. For example: √𝑁
4

=

𝑁
1

4. To set the exponent, this can be set as a decimal value, or for readability, as an 

equation, such as: 1.0/4. Note that in Python, the decimal value of 1.0 is needed to 

prevent Python from truncating this to an integer. The recommended value is: 1.0/4. 

 

active_learning_output_file 

The desired path to the results file to be created in Experiment 3. The output file 

is a CSV file that contains the srcip, dstip, P_E, P_A_SRC, P_A_DST, and label for each 

event in the original dataset. Example: 'results/final_output.csv'. 
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Appendix B 

Dataset Descriptions 

 

NSL-KDD 

The derived version of the NSL-KDD dataset retains the characteristics of the 

NSL-KDD dataset, but removes the denial of service events. It includes only user-to-root 

attacks, remote-to-local attacks, and normal records is available at: 

https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2

l.zip 

 

The data was created using a Python script that is available at: 

https://github.com/stevenmcelwee/cepids/blob/master/create_traces.py 

 

The NSL-KDD dataset is composed of 41 attributes, a label, and a cluster ID that 

was created specifically for the NSL-KDD dataset. The table below shows the specific 

field names that are included as well as the datatypes. 

  

https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2l.zip
https://github.com/stevenmcelwee/cepids/raw/master/datasets/derived/kdd_u2r_r2l.zip
https://github.com/stevenmcelwee/cepids/blob/master/create_traces.py
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Table 11  

NSL-KDD Attributes and Datatypes 

Attribute Datatype Description 

duration continuous length (number of seconds) of the 

connection  

protocol_type symbolic type of the protocol, e.g. tcp, udp, etc.  

service symbolic network service on the destination, e.g., 

http, telnet, etc.  

flag symbolic normal or error status of the connection  

src_bytes continuous number of data bytes from source to 

destination  

dst_bytes continuous number of data bytes from destination to 

source  

land continuous 1 if connection is from/to the same 

host/port; 0 otherwise  

wrong_fragment continuous number of ``wrong'' fragments  

urgent continuous number of urgent packets  

hot continuous number of “hot”' indicators 

num_failed_logins continuous number of failed login attempts  

logged_in continuous 1 if successfully logged in; 0 otherwise  

num_compromised continuous number of “compromised” conditions  

root_shell continuous 1 if root shell is obtained; 0 otherwise  

su_attempted continuous 1 if “su root” command attempted; 0 

otherwise  

num_root continuous number of “root” accesses  

num_file_creations continuous number of file creation operations  

num_shells continuous number of shell prompts  

num_access_files continuous number of operations on access control 

files  

num_outbound_cmds continuous number of outbound commands in an ftp 

session 

is_host_login continuous 1 if the login belongs to the “hot” list; 0 

otherwise  

is_guest_login continuous 1 if the login is a “guest” login; 0 

otherwise  

count continuous number of connections to the same host as 

the current connection in the past two 

seconds  

srv_count continuous number of connections to the same service 

as the current connection in the past two 

seconds  

serror_rate continuous % of connections that have “SYN” errors  
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Table 11 

NSL-KDD Attributes and Datatypes (cont.) 

Attribute Datatype Description 

srv_serror_rate continuous % of connections that have “SYN” 

errors for same service connections 

rerror_rate continuous % of connections that have “REJ” errors  

srv_rerror_rate continuous % of connections that have ``REJ'' errors 

for same service connections 

same_srv_rate continuous % of connections to the same service  

diff_srv_rate continuous % of connections to different services  

srv_diff_host_rate continuous % of connections to different hosts  

dst_host_count continuous Number of connections having the same 

destination host IP address 

dst_host_srv_count continuous Number of connections having the same 

port number 

dst_host_same_srv_rate continuous The percentage of connections that were 

to the same service, among the 

connections aggregated in 

dst_host_count 

dst_host_diff_srv_rate continuous The percentage of connections that were 

to different services, among the 

connections aggregated in 

dst_host_count 

dst_host_same_src_port_rate continuous The percentage of connections that were 

to the same source port, among the 

connections aggregated in 

dst_host_srv_c ount 

dst_host_srv_diff_host_rate continuous The percentage of connections that were 

to different destination machines, among 

the connections aggregated in 

dst_host_srv_c 

dst_host_serror_rate continuous The percentage of connections that have 

activated the flag (4) s0, s1, s2 or s3, 

among the connections aggregated in 

dst_host_count 

dst_host_srv_serror_rate continuous The percent of connections that have 

activated the flag (4) s0, s1, s2 or s3, 

among the connections aggregated in 

dst_host_srv_c ount 

dst_host_rerror_rate continuous The percentage of connections that have 

activated the flag (4) REJ, among the 

connections aggregated in 

dst_host_count 
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Table 11 

NSL-KDD Attributes and Datatypes (cont.) 

Attribute Datatype Description 

dst_host_srv_rerror_rate continuous The percentage of connections that have 

activated the flag (4) REJ, among the 

connections aggregated in 

dst_host_srv_c ount 

label symbolic Class of each event 

cluster_id symbolic Integer cluster id that is representative of 

the class 

 

UNSW-NB15 

For the UNSW-NB15 dataset, the file UNSW-NB15_1.csv was used for the 

experiments in this research. Table 12 shows the features, datatypes, and descriptions of 

this dataset. It is available from the original researchers at: 

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-

Datasets/UNSW-NB15_1.csv 

 

Table 12 

UNSW-NB15 Attributes and Datatypes 

Name Datatype  Description 

srcip nominal Source IP address 

sport integer Source port number 

dstip nominal Destination IP address 

dsport integer Destination port number 

proto nominal Transaction protocol 

state nominal Indicates to the state and its dependent protocol, e.g. 

ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, 

REQ, RST, TST, TXD, URH, URN, and (-) (if not used 

state) 

dur Float Record total duration 

sbytes Integer Source to destination transaction bytes  

dbytes Integer Destination to source transaction bytes 

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/UNSW-NB15_1.csv
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/UNSW-NB15_1.csv
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Table 12 

UNSW-NB15 Dataset (cont.) 

Name Datatype  Description 

sttl Integer Source to destination time to live value  

dttl Integer Destination to source time to live value 

sloss Integer Source packets retransmitted or dropped  

dloss Integer Destination packets retransmitted or dropped 

service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc  and (-) if not 

much used service 

sload Float Source bits per second 

dload Float Destination bits per second 

spkts integer Source to destination packet count  

dpkts integer Destination to source packet count 

swin integer Source TCP window advertisement value 

dwin integer Destination TCP window advertisement value 

stcpb integer Source TCP base sequence number 

dtcpb integer Destination TCP base sequence number 

smeansz integer Mean of the ?ow packet size transmitted by the src  

dmeansz integer Mean of the ?ow packet size transmitted by the dst  

trans_depth integer Represents the pipelined depth into the connection of 

http request/response transaction 

res_bdy_len integer Actual uncompressed content size of the data 

transferred from the server’s http service. 

sjit Float Source jitter (mSec) 

djit Float Destination jitter (mSec) 

stime Timestamp record start time 

ltime Timestamp record last time 

sintpkt Float Source interpacket arrival time (mSec) 

dintpkt Float Destination interpacket arrival time (mSec) 

tcprtt Float TCP connection setup round-trip time, the sum of 

’synack’ and ’ackdat’. 

synack Float TCP connection setup time, the time between the SYN 

and the SYN_ACK packets. 

ackdat Float TCP connection setup time, the time between the 

SYN_ACK and the ACK packets. 

is_sm_ips_ports Binary If source (1) and destination (3)IP addresses equal and 

port numbers (2)(4)  equal then, this variable takes 

value 1 else 0 

ct_state_ttl Integer No. for each state (6) according to specific range of 

values for source/destination time to live (10) (11). 

ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in 

http service. 
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Table 12 

UNSW-NB15 Dataset (cont.) 

Name Datatype  Description 

is_ftp_login Binary If the ftp session is accessed by user and password then 

1 else 0.  

ct_ftp_cmd integer No of flows that has a command in ftp session. 

ct_srv_src integer No. of connections that contain the same service (14) 

and source address (1) in 100 connections according to 

the last time (26). 

ct_srv_dst integer No. of connections that contain the same service (14) 

and destination address (3) in 100 connections 

according to the last time (26). 

ct_dst_ltm integer No. of connections of the same destination address (3) 

in 100 connections according to the last time (26). 

ct_src_ ltm integer No. of connections of the same source address (1) in 

100 connections according to the last time (26). 

ct_src_dport_ltm integer No of connections of the same source address (1) and 

the destination port (4) in 100 connections according to 

the last time (26). 

ct_dst_sport_ltm integer No of connections of the same destination address (3) 

and the source port (2) in 100 connections according to 

the last time (26). 

ct_dst_src_ltm integer No of connections of the same source (1) and the 

destination (3) address in in 100 connections according 

to the last time (26). 

attack_cat nominal The name of each attack category. In this data set , 

nine categories e.g. Fuzzers, Analysis, Backdoors, DoS 

Exploits, Generic, Reconnaissance, Shellcode and 

Worms 

Label binary 0 for normal and 1 for attack records 
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Appendix C 

Python Package Versions 

 

This research used Python 2.7 as well as packages at specific versions. Although 

the cepids package may function with newer versions of these packages, it was only 

tested with the versions shown in Table 13 below: 

 

Table 13 

Python Package Versions 

Package Version 

dateutils 0.6.6 

numpy 1.13.3 

pandas 0.21.0 

pip 9.0.1 

python-dateutil 2.6.1 

scikit-learn 0.19.1 

scipy 1.0.0 

setuptools 28.8.0 
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Appendix D 

Detailed Anomaly Detection Results 

This appendix provides the detailed results of Experiment 2 for each of the 10 

experimental runs of the completed algorithm. Each run lists both the srcip and the dstip 

and their associated probabilities of experiencing an attack, P(A). IP addresses with P(A) 

≥ 0.8 are considered positive results. A results column indicates if the results are true 

positives (TP), true negatives (TN), or false positives (FP). There were no False negatives 

found in these experiments. 
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Table 14 

Experiment 2, Run 1 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

224.0.0.1 FP 1.000 

175.45.176.3 TP 0.918 

 

149.171.126.18 TP 0.980 

175.45.176.2 TP 0.876 

 

149.171.126.12 TP 0.962 

175.45.176.0 TP 0.824 

 

224.0.0.5 FP 0.956 

149.171.126.0 TN 0.659 

 

149.171.126.17 TP 0.918 

149.171.126.4 TN 0.652 

 

149.171.126.13 TP 0.912 

149.171.126.2 TN 0.649 

 

149.171.126.14 TP 0.907 

149.171.126.9 TN 0.630 

 

149.171.126.11 TP 0.904 

149.171.126.5 TN 0.624 

 

149.171.126.15 TP 0.898 

149.171.126.8 TN 0.622 

 

10.40.170.2 FP 0.896 

149.171.126.6 TN 0.622 

 

149.171.126.16 TP 0.894 

149.171.126.3 TN 0.621 

 

149.171.126.10 TP 0.870 

149.171.126.7 TN 0.620 

 

149.171.126.19 TP 0.869 

149.171.126.1 TN 0.615 

 

10.40.182.3 FP 0.842 

59.166.0.8 TN 0.543 

 

32.50.32.66 FP 0.841 

59.166.0.9 TN 0.538 

 

175.45.176.1 FP 0.827 

59.166.0.7 TN 0.527 

 

10.40.85.30 TN 0.772 

59.166.0.5 TN 0.520 

 

192.168.241.243 TN 0.738 

59.166.0.6 TN 0.513 

 

175.45.176.2 TN 0.677 

59.166.0.1 TN 0.513 

 

59.166.0.9 TN 0.671 

59.166.0.4 TN 0.511 

 

59.166.0.6 TN 0.645 

59.166.0.0 TN 0.508 

 

59.166.0.3 TN 0.643 

59.166.0.3 TN 0.507 

 

59.166.0.2 TN 0.642 

59.166.0.2 TN 0.495 

 

59.166.0.8 TN 0.640 

10.40.85.1 TN 0.296 

 

59.166.0.4 TN 0.638 

149.171.126.18 TN 0.213 

 

59.166.0.0 TN 0.633 

10.40.182.1 TN 0.175 

 

59.166.0.7 TN 0.632 

149.171.126.15 TN 0.172 

 

59.166.0.5 TN 0.626 

149.171.126.10 TN 0.169 

 

59.166.0.1 TN 0.622 

149.171.126.19 TN 0.113 

 

10.40.85.1 TN 0.547 

149.171.126.11 TN 0.103 

 

149.171.126.3 TN 0.527 

149.171.126.16 TN 0.101 

 

149.171.126.9 TN 0.522 

10.40.182.3 TN 0.082 

 

149.171.126.6 TN 0.508 

10.40.170.2 TN 0.082 

 

149.171.126.0 TN 0.492 

149.171.126.12 TN 0.074 

 

149.171.126.8 TN 0.492 

192.168.241.243 TN 0.070 

 

149.171.126.1 TN 0.480 
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Table 14 

Experiment 2, Run 1 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

149.171.126.13 TN 0.069 

 

149.171.126.4 TN 0.475 

10.40.85.30 TN 0.056 

 

175.45.176.3 TN 0.465 

127.0.0.1 TN 0.043 

 

149.171.126.7 TN 0.461 

149.171.126.17 TN 0.039 

 

149.171.126.2 TN 0.455 

    

149.171.126.5 TN 0.448 

    

175.45.176.0 TN 0.435 

    

127.0.0.1 TN 0.372 

    

10.40.198.10 TN 0.000 
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Table 15 

Experiment 2, Run 2 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

10.40.170.2 FP 1.000 

175.45.176.3 TP 0.915 

 

149.171.126.12 TP 0.992 

175.45.176.2 TP 0.891 

 

224.0.0.1 FP 0.965 

175.45.176.0 TP 0.807 

 

10.40.182.3 FP 0.953 

149.171.126.4 TN 0.771 

 

149.171.126.18 TP 0.948 

149.171.126.0 TN 0.770 

 

149.171.126.13 TP 0.920 

149.171.126.2 TN 0.769 

 

32.50.32.66 FP 0.910 

149.171.126.8 TN 0.761 

 

149.171.126.19 TP 0.908 

149.171.126.6 TN 0.756 

 

10.40.85.30 FP 0.893 

149.171.126.5 TN 0.752 

 

149.171.126.16 TP 0.875 

149.171.126.7 TN 0.752 

 

149.171.126.11 TP 0.872 

149.171.126.9 TN 0.748 

 

149.171.126.17 TP 0.869 

149.171.126.1 TN 0.747 

 

149.171.126.15 TP 0.868 

149.171.126.3 TN 0.741 

 

149.171.126.10 TP 0.864 

59.166.0.7 TN 0.473 

 

149.171.126.14 TP 0.844 

59.166.0.5 TN 0.470 

 

59.166.0.9 FP 0.815 

59.166.0.2 TN 0.460 

 

224.0.0.5 FP 0.813 

59.166.0.4 TN 0.459 

 

59.166.0.2 TN 0.789 

59.166.0.3 TN 0.451 

 

59.166.0.3 TN 0.780 

59.166.0.8 TN 0.448 

 

59.166.0.6 TN 0.778 

59.166.0.0 TN 0.441 

 

59.166.0.0 TN 0.771 

59.166.0.1 TN 0.438 

 

59.166.0.4 TN 0.768 

59.166.0.9 TN 0.419 

 

59.166.0.1 TN 0.766 

59.166.0.6 TN 0.418 

 

59.166.0.7 TN 0.759 

10.40.85.1 TN 0.267 

 

59.166.0.8 TN 0.758 

10.40.182.1 TN 0.174 

 

59.166.0.5 TN 0.747 

149.171.126.18 TN 0.164 

 

192.168.241.243 TN 0.619 

149.171.126.15 TN 0.162 

 

175.45.176.2 TN 0.572 

149.171.126.10 TN 0.124 

 

175.45.176.1 TN 0.538 

149.171.126.11 TN 0.099 

 

10.40.85.1 TN 0.520 

149.171.126.16 TN 0.078 

 

175.45.176.3 TN 0.466 

149.171.126.19 TN 0.067 

 

175.45.176.0 TN 0.361 

10.40.182.3 TN 0.046 

 

149.171.126.4 TN 0.292 

10.40.170.2 TN 0.046 

 

149.171.126.2 TN 0.288 

149.171.126.12 TN 0.039 

 

149.171.126.9 TN 0.277 

192.168.241.243 TN 0.026 

 

149.171.126.3 TN 0.261 

  



130 

Table 15 

Experiment 2, Run 2 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

149.171.126.13 TN 0.021 

 

10.40.198.10 TN 0.234 

10.40.85.30 TN 0.020 

 

149.171.126.0 TN 0.193 

149.171.126.17 TN 0.010 

 

149.171.126.5 TN 0.187 

127.0.0.1 TN 0.000 

 

149.171.126.1 TN 0.180 

    

149.171.126.8 TN 0.150 

    

127.0.0.1 TN 0.138 

    

149.171.126.6 TN 0.123 

    

149.171.126.7 TN 0.000 
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Table 16 

Experiment 2, Run 3 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.13 TP 1.000 

175.45.176.3 TP 0.919 

 

149.171.126.11 TP 1.000 

175.45.176.2 TP 0.878 

 

149.171.126.18 TP 0.997 

175.45.176.0 TP 0.838 

 

149.171.126.15 TP 0.994 

149.171.126.0 TN 0.761 

 

149.171.126.17 TP 0.981 

149.171.126.4 TN 0.753 

 

149.171.126.14 TP 0.981 

149.171.126.2 TN 0.745 

 

10.40.170.2 FP 0.981 

149.171.126.9 TN 0.727 

 

149.171.126.12 TP 0.972 

149.171.126.3 TN 0.724 

 

149.171.126.19 TP 0.971 

149.171.126.6 TN 0.724 

 

149.171.126.16 TP 0.967 

149.171.126.1 TN 0.723 

 

149.171.126.10 TP 0.956 

149.171.126.8 TN 0.723 

 

224.0.0.1 FP 0.945 

149.171.126.5 TN 0.720 

 

10.40.182.3 FP 0.943 

149.171.126.7 TN 0.716 

 

32.50.32.66 FP 0.898 

59.166.0.7 TN 0.515 

 

10.40.85.30 FP 0.893 

59.166.0.8 TN 0.494 

 

10.40.85.1 FP 0.814 

59.166.0.3 TN 0.489 

 

59.166.0.9 FP 0.813 

59.166.0.2 TN 0.488 

 

59.166.0.3 FP 0.804 

59.166.0.9 TN 0.484 

 

59.166.0.6 TN 0.799 

59.166.0.1 TN 0.472 

 

59.166.0.2 TN 0.798 

59.166.0.4 TN 0.470 

 

59.166.0.4 TN 0.797 

59.166.0.6 TN 0.467 

 

59.166.0.8 TN 0.792 

59.166.0.5 TN 0.442 

 

59.166.0.0 TN 0.782 

59.166.0.0 TN 0.430 

 

59.166.0.7 TN 0.770 

10.40.85.1 TN 0.279 

 

59.166.0.5 TN 0.767 

10.40.182.1 TN 0.180 

 

59.166.0.1 TN 0.759 

149.171.126.10 TN 0.180 

 

175.45.176.2 TN 0.660 

149.171.126.18 TN 0.177 

 

224.0.0.5 TN 0.653 

149.171.126.15 TN 0.168 

 

175.45.176.1 TN 0.493 

149.171.126.16 TN 0.118 

 

192.168.241.243 TN 0.441 

149.171.126.19 TN 0.105 

 

175.45.176.3 TN 0.430 

149.171.126.11 TN 0.092 

 

149.171.126.2 TN 0.365 

149.171.126.13 TN 0.088 

 

149.171.126.9 TN 0.355 

10.40.170.2 TN 0.083 

 

149.171.126.3 TN 0.349 

10.40.182.3 TN 0.083 

 

127.0.0.1 TN 0.323 

10.40.85.30 TN 0.075 

 

149.171.126.6 TN 0.320 
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Table 16 

Experiment 2, Run 3 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

149.171.126.12 TN 0.066 

 

149.171.126.8 TN 0.319 

192.168.241.243 TN 0.055 

 

149.171.126.1 TN 0.310 

149.171.126.17 TN 0.048 

 

149.171.126.4 TN 0.293 

127.0.0.1 TN 0.048 

 

149.171.126.0 TN 0.282 

    

149.171.126.7 TN 0.261 

    

149.171.126.5 TN 0.225 

    

10.40.198.10 TN 0.076 

    

175.45.176.0 TN 0.000 
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Table 17 

Experiment 2, Run 4 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.12 TP 1.000 

175.45.176.3 TP 0.920 

 

149.171.126.14 TP 0.997 

175.45.176.2 TP 0.907 

 

149.171.126.15 TP 0.996 

175.45.176.0 TP 0.842 

 

149.171.126.11 TP 0.993 

149.171.126.0 TN 0.622 

 

149.171.126.13 TP 0.992 

149.171.126.2 TN 0.621 

 

149.171.126.19 TP 0.988 

149.171.126.4 TN 0.619 

 

149.171.126.16 TP 0.987 

149.171.126.5 TN 0.609 

 

149.171.126.10 TP 0.977 

149.171.126.3 TN 0.608 

 

149.171.126.17 TP 0.963 

149.171.126.6 TN 0.608 

 

224.0.0.1 FP 0.920 

149.171.126.9 TN 0.604 

 

149.171.126.18 TP 0.903 

149.171.126.7 TN 0.601 

 

10.40.170.2 FP 0.887 

149.171.126.1 TN 0.600 

 

32.50.32.66 FP 0.861 

149.171.126.8 TN 0.597 

 

10.40.182.3 TN 0.784 

59.166.0.0 TN 0.465 

 

10.40.85.30 TN 0.656 

59.166.0.9 TN 0.462 

 

59.166.0.9 TN 0.616 

59.166.0.4 TN 0.459 

 

59.166.0.8 TN 0.607 

59.166.0.1 TN 0.459 

 

59.166.0.2 TN 0.599 

59.166.0.8 TN 0.440 

 

224.0.0.5 TN 0.597 

59.166.0.3 TN 0.420 

 

59.166.0.6 TN 0.596 

59.166.0.7 TN 0.412 

 

59.166.0.1 TN 0.591 

59.166.0.6 TN 0.409 

 

59.166.0.7 TN 0.589 

59.166.0.5 TN 0.389 

 

59.166.0.0 TN 0.587 

59.166.0.2 TN 0.376 

 

59.166.0.3 TN 0.583 

10.40.85.1 TN 0.231 

 

59.166.0.4 TN 0.582 

149.171.126.18 TN 0.174 

 

59.166.0.5 TN 0.564 

149.171.126.15 TN 0.169 

 

175.45.176.1 TN 0.525 

10.40.182.1 TN 0.160 

 

10.40.85.1 TN 0.513 

149.171.126.10 TN 0.158 

 

175.45.176.2 TN 0.509 

149.171.126.19 TN 0.110 

 

192.168.241.243 TN 0.449 

149.171.126.11 TN 0.090 

 

149.171.126.1 TN 0.343 

149.171.126.16 TN 0.086 

 

149.171.126.5 TN 0.339 

10.40.170.2 TN 0.078 

 

175.45.176.0 TN 0.312 

10.40.182.3 TN 0.078 

 

149.171.126.0 TN 0.305 

149.171.126.13 TN 0.066 

 

149.171.126.7 TN 0.301 

149.171.126.12 TN 0.061 

 

149.171.126.6 TN 0.294 
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Table 17 

Experiment 2, Run 4 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

10.40.85.30 TN 0.056 

 

149.171.126.8 TN 0.293 

192.168.241.243 TN 0.053 

 

149.171.126.9 TN 0.273 

127.0.0.1 TN 0.026 

 

175.45.176.3 TN 0.262 

149.171.126.17 TN 0.022 

 

149.171.126.3 TN 0.231 

    

149.171.126.2 TN 0.228 

    

149.171.126.4 TN 0.225 

    

10.40.198.10 TN 0.137 

    

127.0.0.1 TN 0.000 
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Table 18 

Experiment 2, Run 5 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.17 TP 1.000 

175.45.176.3 TP 0.939 

 

149.171.126.15 TP 0.998 

175.45.176.2 TP 0.920 

 

149.171.126.14 TP 0.987 

175.45.176.0 TP 0.858 

 

149.171.126.11 TP 0.986 

149.171.126.0 TN 0.726 

 

149.171.126.13 TP 0.978 

149.171.126.4 TN 0.713 

 

149.171.126.16 TP 0.972 

149.171.126.2 TN 0.706 

 

149.171.126.12 TP 0.963 

149.171.126.9 TN 0.695 

 

149.171.126.10 TP 0.945 

149.171.126.5 TN 0.693 

 

149.171.126.19 TP 0.901 

149.171.126.3 TN 0.691 

 

149.171.126.18 TP 0.876 

149.171.126.6 TN 0.688 

 

224.0.0.1 FP 0.866 

149.171.126.7 TN 0.687 

 

32.50.32.66 FP 0.814 

149.171.126.1 TN 0.684 

 

10.40.170.2 FP 0.807 

149.171.126.8 TN 0.683 

 

59.166.0.9 TN 0.745 

59.166.0.5 TN 0.520 

 

59.166.0.6 TN 0.717 

59.166.0.4 TN 0.513 

 

59.166.0.2 TN 0.717 

59.166.0.1 TN 0.513 

 

59.166.0.3 TN 0.716 

59.166.0.7 TN 0.499 

 

59.166.0.4 TN 0.715 

59.166.0.3 TN 0.495 

 

59.166.0.8 TN 0.715 

59.166.0.6 TN 0.486 

 

59.166.0.0 TN 0.706 

59.166.0.9 TN 0.483 

 

59.166.0.1 TN 0.693 

59.166.0.8 TN 0.474 

 

10.40.182.3 TN 0.686 

59.166.0.2 TN 0.471 

 

59.166.0.7 TN 0.683 

59.166.0.0 TN 0.391 

 

59.166.0.5 TN 0.683 

10.40.85.1 TN 0.205 

 

10.40.85.30 TN 0.534 

149.171.126.18 TN 0.173 

 

175.45.176.2 TN 0.524 

149.171.126.10 TN 0.168 

 

10.40.85.1 TN 0.445 

149.171.126.15 TN 0.164 

 

149.171.126.9 TN 0.414 

10.40.182.1 TN 0.139 

 

149.171.126.6 TN 0.412 

149.171.126.16 TN 0.111 

 

149.171.126.7 TN 0.397 

149.171.126.11 TN 0.090 

 

149.171.126.8 TN 0.395 

149.171.126.13 TN 0.087 

 

149.171.126.1 TN 0.373 

10.40.170.2 TN 0.075 

 

149.171.126.0 TN 0.362 

10.40.182.3 TN 0.075 

 

175.45.176.3 TN 0.362 

149.171.126.19 TN 0.070 

 

224.0.0.5 TN 0.360 

149.171.126.12 TN 0.057 

 

192.168.241.243 TN 0.341 
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Table 18 

Experiment 2, Run 5 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

10.40.85.30 TN 0.054 

 

149.171.126.4 TN 0.327 

192.168.241.243 TN 0.048 

 

149.171.126.2 TN 0.323 

149.171.126.17 TN 0.038 

 

149.171.126.3 TN 0.320 

127.0.0.1 TN 0.027 

 

175.45.176.1 TN 0.300 

    

149.171.126.5 TN 0.236 

    

175.45.176.0 TN 0.132 

    

10.40.198.10 TN 0.060 

    

127.0.0.1 TN 0.000 
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Table 19 

Experiment 2, Run 6 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

224.0.0.1 FP 1.000 

175.45.176.3 TP 0.926 

 

149.171.126.16 TP 0.978 

175.45.176.2 TP 0.906 

 

149.171.126.11 TP 0.975 

175.45.176.0 TP 0.836 

 

149.171.126.14 TP 0.975 

149.171.126.0 TN 0.737 

 

149.171.126.15 TP 0.974 

149.171.126.4 TN 0.722 

 

149.171.126.17 TP 0.966 

149.171.126.9 TN 0.721 

 

149.171.126.13 TP 0.965 

149.171.126.2 TN 0.718 

 

32.50.32.66 FP 0.959 

149.171.126.5 TN 0.716 

 

10.40.170.2 FP 0.952 

149.171.126.6 TN 0.713 

 

149.171.126.12 TP 0.943 

149.171.126.8 TN 0.710 

 

149.171.126.10 TP 0.936 

149.171.126.3 TN 0.708 

 

149.171.126.19 TP 0.894 

149.171.126.7 TN 0.706 

 

149.171.126.18 TP 0.876 

149.171.126.1 TN 0.700 

 

10.40.182.3 FP 0.819 

59.166.0.1 TN 0.541 

 

59.166.0.9 TN 0.713 

59.166.0.5 TN 0.525 

 

59.166.0.6 TN 0.696 

59.166.0.0 TN 0.519 

 

59.166.0.2 TN 0.690 

59.166.0.4 TN 0.515 

 

59.166.0.8 TN 0.678 

59.166.0.3 TN 0.506 

 

224.0.0.5 TN 0.675 

59.166.0.2 TN 0.499 

 

59.166.0.3 TN 0.671 

59.166.0.6 TN 0.498 

 

192.168.241.243 TN 0.671 

59.166.0.7 TN 0.498 

 

59.166.0.4 TN 0.670 

59.166.0.9 TN 0.483 

 

10.40.85.30 TN 0.659 

59.166.0.8 TN 0.468 

 

59.166.0.0 TN 0.656 

10.40.85.1 TN 0.268 

 

59.166.0.1 TN 0.646 

10.40.182.1 TN 0.188 

 

59.166.0.5 TN 0.645 

149.171.126.18 TN 0.185 

 

59.166.0.7 TN 0.629 

149.171.126.15 TN 0.185 

 

10.40.85.1 TN 0.570 

149.171.126.10 TN 0.163 

 

175.45.176.2 TN 0.484 

149.171.126.16 TN 0.115 

 

175.45.176.1 TN 0.423 

149.171.126.11 TN 0.113 

 

175.45.176.3 TN 0.304 

149.171.126.19 TN 0.096 

 

127.0.0.1 TN 0.294 

10.40.170.2 TN 0.083 

 

149.171.126.6 TN 0.252 

10.40.182.3 TN 0.083 

 

149.171.126.3 TN 0.221 

149.171.126.13 TN 0.076 

 

149.171.126.7 TN 0.205 

192.168.241.243 TN 0.072 

 

149.171.126.0 TN 0.201 
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Table 19 

Experiment 2, Run 6 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

10.40.85.30 TN 0.067 

 

149.171.126.4 TN 0.156 

149.171.126.12 TN 0.066 

 

149.171.126.8 TN 0.153 

127.0.0.1 TN 0.056 

 

149.171.126.2 TN 0.147 

149.171.126.17 TN 0.052 

 

149.171.126.9 TN 0.143 

    

149.171.126.5 TN 0.137 

    

149.171.126.1 TN 0.087 

    

10.40.198.10 TN 0.057 

    

175.45.176.0 TN 0.000 
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Table 20 

Experiment 2, Run 7 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.12 TP 1.000 

175.45.176.3 TP 0.925 

 

149.171.126.18 TP 0.975 

175.45.176.2 TP 0.866 

 

10.40.170.2 FP 0.964 

175.45.176.0 TP 0.824 

 

149.171.126.17 TP 0.956 

149.171.126.0 TN 0.669 

 

149.171.126.13 TP 0.949 

149.171.126.4 TN 0.668 

 

149.171.126.11 TP 0.945 

149.171.126.2 TN 0.665 

 

224.0.0.1 FP 0.937 

149.171.126.6 TN 0.662 

 

149.171.126.16 TP 0.934 

149.171.126.3 TN 0.656 

 

149.171.126.15 TP 0.926 

149.171.126.5 TN 0.652 

 

10.40.182.3 FP 0.897 

149.171.126.9 TN 0.652 

 

149.171.126.14 TP 0.889 

149.171.126.7 TN 0.646 

 

149.171.126.10 TP 0.885 

149.171.126.1 TN 0.646 

 

149.171.126.19 TP 0.865 

149.171.126.8 TN 0.632 

 

224.0.0.5 FP 0.824 

59.166.0.1 TN 0.524 

 

10.40.85.1 FP 0.822 

59.166.0.8 TN 0.507 

 

10.40.85.30 FP 0.812 

59.166.0.6 TN 0.507 

 

32.50.32.66 TN 0.750 

59.166.0.2 TN 0.502 

 

59.166.0.9 TN 0.706 

59.166.0.5 TN 0.481 

 

59.166.0.8 TN 0.690 

59.166.0.7 TN 0.477 

 

59.166.0.4 TN 0.682 

59.166.0.4 TN 0.470 

 

59.166.0.2 TN 0.678 

59.166.0.9 TN 0.464 

 

59.166.0.6 TN 0.672 

59.166.0.0 TN 0.460 

 

59.166.0.3 TN 0.668 

59.166.0.3 TN 0.422 

 

59.166.0.0 TN 0.660 

10.40.85.1 TN 0.264 

 

59.166.0.1 TN 0.660 

149.171.126.18 TN 0.187 

 

59.166.0.7 TN 0.652 

149.171.126.10 TN 0.178 

 

59.166.0.5 TN 0.635 

10.40.182.1 TN 0.171 

 

192.168.241.243 TN 0.617 

149.171.126.15 TN 0.148 

 

175.45.176.2 TN 0.598 

149.171.126.16 TN 0.102 

 

175.45.176.1 TN 0.557 

149.171.126.19 TN 0.092 

 

149.171.126.3 TN 0.499 

10.40.182.3 TN 0.086 

 

149.171.126.9 TN 0.459 

10.40.170.2 TN 0.086 

 

149.171.126.4 TN 0.453 

149.171.126.11 TN 0.086 

 

149.171.126.6 TN 0.445 

149.171.126.13 TN 0.076 

 

149.171.126.7 TN 0.429 

10.40.85.30 TN 0.076 

 

149.171.126.5 TN 0.410 
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Table 20 

Experiment 2, Run 7 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

192.168.241.243 TN 0.062 

 

149.171.126.2 TN 0.400 

149.171.126.12 TN 0.058 

 

149.171.126.8 TN 0.399 

149.171.126.17 TN 0.036 

 

149.171.126.0 TN 0.390 

127.0.0.1 TN 0.031 

 

175.45.176.3 TN 0.387 

    

149.171.126.1 TN 0.332 

    

175.45.176.0 TN 0.257 

    

127.0.0.1 TN 0.169 

    

10.40.198.10 TN 0.000 
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Table 21 

Experiment 2, Run 8 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

10.40.170.2 FP 1.000 

175.45.176.3 TP 0.913 

 

149.171.126.12 TP 0.963 

175.45.176.2 TP 0.877 

 

149.171.126.19 TP 0.941 

175.45.176.0 TP 0.833 

 

149.171.126.14 TP 0.938 

149.171.126.0 TN 0.761 

 

149.171.126.17 TP 0.937 

149.171.126.4 TN 0.736 

 

149.171.126.16 TP 0.933 

149.171.126.2 TN 0.730 

 

149.171.126.11 TP 0.932 

149.171.126.3 TN 0.714 

 

149.171.126.13 TP 0.931 

149.171.126.5 TN 0.711 

 

149.171.126.15 TP 0.929 

149.171.126.9 TN 0.711 

 

224.0.0.1 FP 0.901 

149.171.126.6 TN 0.710 

 

149.171.126.10 TP 0.898 

149.171.126.1 TN 0.706 

 

149.171.126.18 TP 0.893 

149.171.126.8 TN 0.706 

 

32.50.32.66 FP 0.883 

149.171.126.7 TN 0.702 

 

10.40.182.3 FP 0.835 

59.166.0.9 TN 0.578 

 

59.166.0.9 FP 0.827 

59.166.0.6 TN 0.573 

 

59.166.0.3 FP 0.810 

59.166.0.5 TN 0.557 

 

59.166.0.8 FP 0.804 

59.166.0.0 TN 0.548 

 

59.166.0.6 FP 0.804 

59.166.0.8 TN 0.540 

 

59.166.0.4 FP 0.803 

59.166.0.2 TN 0.537 

 

59.166.0.2 TN 0.799 

59.166.0.1 TN 0.531 

 

59.166.0.0 TN 0.788 

59.166.0.4 TN 0.528 

 

59.166.0.5 TN 0.786 

59.166.0.7 TN 0.527 

 

59.166.0.7 TN 0.784 

59.166.0.3 TN 0.514 

 

59.166.0.1 TN 0.776 

149.171.126.18 TN 0.190 

 

149.171.126.7 TN 0.645 

10.40.85.1 TN 0.186 

 

149.171.126.8 TN 0.644 

149.171.126.10 TN 0.181 

 

175.45.176.1 TN 0.634 

149.171.126.15 TN 0.146 

 

10.40.85.30 TN 0.630 

10.40.182.1 TN 0.108 

 

149.171.126.9 TN 0.621 

149.171.126.16 TN 0.102 

 

149.171.126.3 TN 0.612 

149.171.126.19 TN 0.095 

 

175.45.176.2 TN 0.610 

10.40.182.3 TN 0.089 

 

149.171.126.6 TN 0.608 

10.40.170.2 TN 0.089 

 

149.171.126.2 TN 0.593 

149.171.126.13 TN 0.081 

 

149.171.126.5 TN 0.580 

149.171.126.11 TN 0.081 

 

149.171.126.1 TN 0.575 

149.171.126.12 TN 0.059 

 

149.171.126.4 TN 0.572 
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Table 21 

Experiment 2, Run 8 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

192.168.241.243 TN 0.043 

 

149.171.126.0 TN 0.553 

10.40.85.30 TN 0.041 

 

224.0.0.5 TN 0.550 

127.0.0.1 TN 0.041 

 

192.168.241.243 TN 0.471 

149.171.126.17 TN 0.023 

 

10.40.85.1 TN 0.447 

    

175.45.176.3 TN 0.446 

    

127.0.0.1 TN 0.446 

    

175.45.176.0 TN 0.443 

    

10.40.198.10 TN 0.000 
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Table 22 

Experiment 2, Run 9 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

149.171.126.15 TP 1.000 

175.45.176.3 TP 0.929 

 

149.171.126.16 TP 0.998 

175.45.176.2 TP 0.908 

 

149.171.126.14 TP 0.997 

175.45.176.0 TP 0.847 

 

149.171.126.11 TP 0.996 

149.171.126.0 TN 0.659 

 

149.171.126.17 TP 0.985 

149.171.126.2 TN 0.650 

 

149.171.126.13 TP 0.981 

149.171.126.4 TN 0.649 

 

149.171.126.19 TP 0.980 

149.171.126.6 TN 0.644 

 

32.50.32.66 FP 0.962 

149.171.126.5 TN 0.644 

 

224.0.0.1 FP 0.929 

149.171.126.9 TN 0.642 

 

149.171.126.12 TP 0.927 

149.171.126.3 TN 0.638 

 

10.40.170.2 FP 0.912 

149.171.126.8 TN 0.636 

 

149.171.126.10 TP 0.907 

149.171.126.7 TN 0.631 

 

10.40.182.3 FP 0.824 

149.171.126.1 TN 0.631 

 

149.171.126.18 TP 0.819 

59.166.0.0 TN 0.433 

 

10.40.85.30 TN 0.707 

59.166.0.3 TN 0.421 

 

175.45.176.2 TN 0.656 

59.166.0.4 TN 0.409 

 

192.168.241.243 TN 0.600 

59.166.0.7 TN 0.386 

 

59.166.0.9 TN 0.598 

59.166.0.2 TN 0.386 

 

59.166.0.6 TN 0.595 

59.166.0.6 TN 0.385 

 

59.166.0.2 TN 0.594 

59.166.0.9 TN 0.379 

 

59.166.0.3 TN 0.588 

59.166.0.8 TN 0.371 

 

59.166.0.8 TN 0.583 

59.166.0.1 TN 0.361 

 

59.166.0.0 TN 0.576 

59.166.0.5 TN 0.320 

 

59.166.0.1 TN 0.572 

10.40.85.1 TN 0.262 

 

59.166.0.4 TN 0.571 

149.171.126.15 TN 0.189 

 

59.166.0.7 TN 0.555 

149.171.126.18 TN 0.186 

 

59.166.0.5 TN 0.551 

10.40.182.1 TN 0.174 

 

175.45.176.1 TN 0.495 

149.171.126.10 TN 0.171 

 

175.45.176.3 TN 0.485 

149.171.126.16 TN 0.125 

 

224.0.0.5 TN 0.467 

149.171.126.19 TN 0.117 

 

10.40.85.1 TN 0.378 

149.171.126.11 TN 0.109 

 

127.0.0.1 TN 0.197 

149.171.126.13 TN 0.086 

 

10.40.198.10 TN 0.182 

10.40.182.3 TN 0.081 

 

149.171.126.1 TN 0.135 

10.40.170.2 TN 0.081 

 

149.171.126.7 TN 0.106 

149.171.126.12 TN 0.072 

 

149.171.126.0 TN 0.088 
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Table 22 

Experiment 2, Run 9 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

192.168.241.243 TN 0.065 

 

149.171.126.4 TN 0.083 

10.40.85.30 TN 0.054 

 

149.171.126.9 TN 0.074 

127.0.0.1 TN 0.045 

 

149.171.126.5 TN 0.074 

149.171.126.17 TN 0.041 

 

175.45.176.0 TN 0.069 

    

149.171.126.2 TN 0.048 

    

149.171.126.3 TN 0.021 

    

149.171.126.8 TN 0.021 

    

149.171.126.6 TN 0.000 
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Table 23 

Experiment 2, Run 10 Results 

srcip Result P(A) 

 

dstip Result P(A) 

175.45.176.1 TP 1.000 

 

10.40.170.2 FP 1.000 

175.45.176.3 TP 0.914 

 

149.171.126.12 TP 0.983 

175.45.176.2 TP 0.887 

 

149.171.126.14 TP 0.969 

175.45.176.0 TP 0.839 

 

149.171.126.13 TP 0.962 

149.171.126.0 TN 0.703 

 

149.171.126.15 TP 0.961 

149.171.126.2 TN 0.695 

 

149.171.126.17 TP 0.960 

149.171.126.4 TN 0.694 

 

149.171.126.19 TP 0.958 

149.171.126.5 TN 0.688 

 

149.171.126.11 TP 0.955 

149.171.126.9 TN 0.687 

 

149.171.126.18 TP 0.951 

149.171.126.6 TN 0.684 

 

224.0.0.1 FP 0.933 

149.171.126.3 TN 0.684 

 

149.171.126.16 TP 0.930 

149.171.126.7 TN 0.682 

 

149.171.126.10 TP 0.930 

149.171.126.8 TN 0.681 

 

10.40.182.3 FP 0.863 

149.171.126.1 TN 0.671 

 

32.50.32.66 FP 0.857 

59.166.0.2 TN 0.593 

 

10.40.85.30 TN 0.696 

59.166.0.5 TN 0.582 

 

59.166.0.9 TN 0.638 

59.166.0.4 TN 0.581 

 

59.166.0.6 TN 0.633 

59.166.0.7 TN 0.577 

 

59.166.0.2 TN 0.633 

59.166.0.9 TN 0.569 

 

59.166.0.3 TN 0.631 

59.166.0.8 TN 0.568 

 

59.166.0.8 TN 0.624 

59.166.0.3 TN 0.566 

 

59.166.0.0 TN 0.620 

59.166.0.6 TN 0.559 

 

59.166.0.4 TN 0.620 

59.166.0.1 TN 0.556 

 

175.45.176.0 TN 0.617 

59.166.0.0 TN 0.498 

 

175.45.176.2 TN 0.614 

10.40.85.1 TN 0.282 

 

59.166.0.1 TN 0.612 

149.171.126.18 TN 0.195 

 

59.166.0.5 TN 0.599 

149.171.126.15 TN 0.183 

 

59.166.0.7 TN 0.593 

10.40.182.1 TN 0.178 

 

224.0.0.5 TN 0.522 

149.171.126.10 TN 0.162 

 

10.40.85.1 TN 0.514 

149.171.126.19 TN 0.107 

 

149.171.126.0 TN 0.389 

149.171.126.16 TN 0.104 

 

149.171.126.2 TN 0.387 

149.171.126.11 TN 0.096 

 

149.171.126.5 TN 0.367 

10.40.170.2 TN 0.085 

 

149.171.126.3 TN 0.366 

10.40.182.3 TN 0.085 

 

149.171.126.9 TN 0.352 

149.171.126.13 TN 0.077 

 

149.171.126.1 TN 0.344 

149.171.126.12 TN 0.071 

 

149.171.126.4 TN 0.329 
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Table 23 

Experiment 2, Run 10 Results (cont.) 

srcip Result P(A) 

 

dstip Result P(A) 

10.40.85.30 TN 0.064 

 

149.171.126.6 TN 0.303 

127.0.0.1 TN 0.051 

 

149.171.126.8 TN 0.300 

149.171.126.17 TN 0.051 

 

149.171.126.7 TN 0.299 

192.168.241.243 TN 0.051 

 

192.168.241.243 TN 0.226 

    

127.0.0.1 TN 0.226 

    

175.45.176.3 TN 0.207 

    

175.45.176.1 TN 0.127 

    

10.40.198.10 TN 0.000 
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