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Figure 1: HPA-GR-Immune-HPGa GRN. A green edge and arrowhead indicate 
activation and a red edge and point indicate inhibition (Craddock et al., 2014). 
 

HPA-GR-Immune-HPGa Boolean Network 
Stress  *= Stress 
CRH     *= Stress ˄ ¬CORT ˄ Th1Cyt ˄ IIR ˄ ¬TEST 
ACTH    *= CRH ˄ ¬GRD ˄ Th1Cyt ˄ IIR ˄ ¬TEST 
CORT    *= ACTH ˄ Th1Cyt ˄ IIR ˄ ¬TEST 
GRD     *= CORT ˄ GR 
GR      *= GRD 
ICell   *= ¬CORT ˄ IIR ˄ Th1Cyt ˄ ¬Th2Cyt 
IIR     *= ICell 
Th1Cell *= IIR ˄ ¬Th2Cyt ˄ Th1Cyt ˄ TEST 
Th1Cyt  *= ICell ˄ Th1Cell 
Th2Cell *= ¬Th1Cyt ˄ Th2Cyt 
Th2Cyt  *= Th2Cell 
GnRH    *= ¬TEST ˄ ¬CORT ˄ ¬Th1Cyt 
LH/FSH  *= ¬TEST ˄ GnRH ˄ ¬CORT ˄ ¬Th1Cyt 
TEST    *= LH/FSH ˄ ¬CORT 
 

 Figure 2: HPA-GR-Immune-HPGa Boolean Network (Craddock et al., 2014). 

In the format of Figure 2, each line has a left-hand side, a right-hand side that represents 

the transition function, and the equality symbol *= that separates both sides. The left-hand side is 

a set of Boolean variables that will be updated asynchronously by the Boolean expression on the 

right-hand side. The Boolean variables correspond to genes, proteins, and so forth, with the GRN 

from Figure 1. The Boolean operators appearing in the right-hand sides are the and symbol, 

represented by �º; the or symbol, represented by �»; and the not symbol, represented by ¬. Figure 

2 does not use the or symbol, but it is present in many Boolean networks. 
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Chosen at random, a state transition is performed by choosing one of the node's 

coordinate functions and updating its corresponding Boolean variable to the current state for 

asynchronous Boolean networks. This corresponds to the assumption that, in a genetic network, 

gene expression levels are likely to change at different points of time (Thomas, 1991). The 

importance of this modeling technique is that it resembles a Markov Chain, and during sampling, 

the Markov Chain Monte Carlo method can be used to collect data to determine fuzzy 

membership vectors. There is a noticeable transition difference between synchronous and 

asynchronous networks. Every state in a synchronous network can only transition into one other 

state. However, every state in an asynchronous network can transition into multiple states which 

can lead to overlapping attractors. 

Boolean networks have 2n states, where n is the total number of nodes in the network, 

ensuring that a transition sequence must eventually revisit some states. These transitions will fall 

into a cycle of visiting previously visited states. Such cycles are known as attractors (Hopfensitz, 

Müssel, Maucher, & Kestler, 2013). Markov Chains have a similar phenomenon. A Markov 

Chain that has cycles is known as an Absorbing Markov Chain. For instance, for a state ݏ, the set 

of reachable states ܴ(ݏ) is defined to be the set of all states that can be reached from ݏ through a 

finite sequence of state transitions. A set of states ܵ = ,ଵݏ} … ,  } is said to be an attractor if forݏ

every ݏ ∈ (ݏ)ܴ ,ܵ = ܵ. When ܴ(ݏ) =  is called a steady state. All states that lead to an ݏ ,{ݏ}

attractor are part of that attractor’s basin. In asynchronous Boolean networks, some states may 

lead to more than one attractor; those states will have fuzzy membership in each attractor due to 

the overlapping nature of attractors in asynchronous networks.  

Let ܻ represent a sequence of transitions starting from state ݏ leading to attractor A, with 

a list of elements for ܻ denoted by ݕ. Thus ܻ = ,ଵݕ … ,  . A fuzzy set Ã in ܻ is characterized byݕ
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a membership function ߤÃ(ݕ) which associates with each element in ܻ a real number in the 

interval [0, 1], with the values of ߤÃ(ݕ) at ݕ representing the degree of membership of ݕ in Ã 

(Zadeh, 1965). Thus, the nearer the value of ߤÃ(ݕ) to attractor A, the higher the degree of 

membership of ݕ in Ã. Thus, the value 0 means that ݕ is not a member of the fuzzy set and the 

value 1 means that ݕ is fully a member of the fuzzy set. Values that lie strictly between 0 and 1 

characterize fuzzy membership, which belong to the fuzzy set only partially and the set of states ܵ resides in the fuzzy basin where two or more attractor basins overlap. The final result is an 

approximation of the exact fuzzy membership vector. 

The exact fuzzy membership vector in its canonical form is the transition probability 

matrix, ܲ =  ܳ௧ ܴ0  is the number of existing ݐ matrix of transient states and ݐ ݔ ݐ ൨. ܳ௧ is aܫ

transient states. A transient state is a state that is not part of the list of attractor states. ܫ is an ݎ  ݎ identity matrix and r is the number of existing attractor states. ܴ is a non-zero ݐ  ݎ matrix 

which represents the probability of a transient state transitioning to an attractor state. Finally, 0 is 

an ݎ  ݐ zero matrix. 

To determine the probability of reaching attractor state ݏ when starting from a transient 

state ݏ, the probability matrix ܤ =  ܴܰ has to be calculated. ܴ is a non-zero ݐ  ݎ matrix stated 

above and ܰ =  ∑ ܳஶୀ = ௧ܫ) − ܳ)ିଵ. A problem with using this canonical form is calculating 

all of the probabilities for a very large state space such as T-cell large granular lymphocytic 

leukemia (T-LGL). Thus, approximating the fuzzy membership vectors can be done in 

acceptable time or in deterministic polynomial time. Therefore, this research will continue using 

asynchronous Boolean networks. 

To identify that a state has led to an attractor, an algorithm for searching attractors 

beforehand must be performed. A straightforward algorithm to identify attractors in 
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asynchronous Boolean networks starts from a set of start states and repeatedly performs state 

transitions until a forward-set of states has been validated as an attractor (Hopfensitz et al., 

2013). There can be more than one successor state for each individual state within an 

asynchronous Boolean network. The asynchronous attractor search heuristic begins at a start 

state and applies transitions until an attractor is reached. The distribution used to select the 

successor state in an asynchronous network is determined by ݔ∗(ݐ + 1) = ݂∗(ݔ௧) where ݅∗ is a 

randomly selected node of the current state. 

Asynchronous attractor search algorithm 
Input: A Boolean network with n genes and n asynchronous state transition functions 

௦௬()ࢀ  ܤ : →  ܤ
 A number of random transitions ݎ 
 A set of m start states, ܵ = ,ଵଵݏ)}  … , ,(ଵݏ … , ,ଵݏ) … , ݐݏ݅ܮݐ݈ݑݏ݁ݎ {(ݏ ← ∅ 
for all ݁ݐܽݐܵݐݎܽݐݏ ∈ ܵ do ܿ݁ݐܽݐܵݐ݊݁ݎݎݑ ←  ݁ݐܽݐܵݐݎܽݐݏ
     for ݅ = 1, … ,  ݎ
     do {Perform a random asynchronous state transition on ܿ݁ݐܽݐܵݐ݊݁ݎݎݑ} 
          ݅∗ ←  (݊)݀݊ܽݎ

݁ݐܽݐܵݐ݊݁ݎݎݑܿ           ← ௦௬(∗)ࢀ  (݁ݐܽݐܵݐ݊݁ݎݎݑܿ)
     end for 
ݎݐܿܽݎݐݐܽ      ←  (݁ݐܽݐܵݐ݊݁ݎݎݑܿ)ݐ݁ܵ݀ݎܽݓݎܨ
     if ܸ݈ܽ݅݀ܽ(ݎݐܿܽݎݐݐܽ)ݎݐܿܽݎݐݐܣ݁ݐ then {This is a true attractor} 
← ݐݏ݅ܮݐ݈ݑݏ݁ݎ           ݐݏ݅ܮݐ݈ݑݏ݁ݎ ∪  {ݎݐܿܽݎݐݐܽ}
     end if 
end for 
return ݐݏ݅ܮݐ݈ݑݏ݁ݎ 
 

Figure 3: Asynchronous attractor search algorithm (Hopfensitz et al., 2013). 
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Function ForwardSet 
Input: A state s for which the forward reachable set is determined ݐ݁ܵݐ݈ݑݏ݁ݎ ← ݇ܿܽݐݏ {ݏ} ←  {ݏ}
repeat 
ݐ݊݁ݎݎݑܿ      ←  (݇ܿܽݐݏ)
     for ݅ = 1, … , ݊ 
     do {Calculate successor states} 

ݐݔ݁݊           ← ௦௬()ࢀ  (ݐ݊݁ݎݎݑܿ)
          if (݊݁ݐݔ ∉  then (ݐ݁ܵݐ݈ݑݏ݁ݎ
ݐ݁ܵݐ݈ݑݏ݁ݎ                ← ݐ݁ܵݐ݈ݑݏ݁ݎ ∪  {ݐݔ݁݊}
,݇ܿܽݐݏ)ℎݏݑ                 (ݐݔ݁݊
          end if 
     end for 
until (݇ܿܽݐݏ = ∅) 
 

Figure 4: Forward Set Function (Hopfensitz et al., 2013). 

Function ValidateAttractor 
Input: A set of states S to be validated 
for all ݏ ∈ ܵ do 
     if ((ݏ)ݐ݁ܵ݀ݎܽݓݎܨ ≠ ܵ) then 
          return false 
     end if 
end for 
return true 
 

Figure 5: Validate Attractor Function (Hopfensitz et al., 2013). 

 States that reside in the fuzzy basin are sets whose elements have fuzzy degrees of 

membership in multiple attractors. Fuzzy classification is the process of grouping elements into a 

fuzzy set (Zadeh, 1965) whose degree of membership is defined by the ratio of the number of 

times a state transitions into an attractor to the total times a simulation was executed. 

Understanding fuzzy degree of membership for individual states allows scientists to use 

exploratory data analysis techniques to see if there are any structures within the fuzzy basin area 

such as clustering or other patterns that would be useful to life scientists.  

The graph in Figure 6 shows data collected using the asynchronous Boolean network 

from Figure 2. The stress variable is set to true and remains a constant throughout the simulation. 
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In addition, all of the states were part of the sampling process because this is a small network. 

There are 214 states or 16384 states, and each state was sampled N=1000 times. The state will 

transition into either attractor A or attractor B. The graph shows the bin count that a state will 

transitions into attractor B out of 1000 trials. Not shown in Figure 6 are the states in the true 

basins of attraction which appear in B either zero or 1000 times. There are 1536 states that 

appear in B zero times and 4096 states that appear in B 1000 times. However, this data was 

purposely left out of the graph. In the graph, the bars for these two instances would have been 

much taller than the bar which represents 89 states that appear in B 500 times, currently the 

tallest bar in Figure 6. Leaving these two instances in the graph would give a flatten appearance 

and it would be difficult to visualize the fuzzy structure. This preliminary experiment exhibits 

fuzzy membership structure in this small asynchronous Boolean network. 
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Figure 6: Fuzzy Membership for Attractor B. This Figure does not show the states that hit 
attractor B zero times or the hits to attractor B every time. 

 
 Markov chain analysis has methods for creating a transition matrix that, for this study, 

would be a matrix with the probability of a state transitioning into a set of attractors. A transition 

matrix is used to describe the transitions of a Markov chain (Asmussen, 2003). Each of its entries 

is a nonnegative real number representing a probability. Unfortunately, for large and even 

moderate size networks, transition matrices take up large amounts of resources and are very 

expensive to compute. For this study, creating transition matrices for Boolean networks is 

intractable. Therefore, this report will not use transition matrices. However, Markov Chain 

Monte Carlo methods will be used for collecting data. 

Problem Statement and Dissertation Goals  

Due to the size and complexity of realistic GRNs, it is infeasible to use simulation to 

estimate fuzzy membership vectors for all states. The goal of this dissertation is to use simulation 
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to determine fuzzy membership vectors for a select sample of states, and then to use machine 

learning to discover patterns in membership that might extend to a much larger range of, or 

perhaps all, states. These patterns, exemplified by rules, would yield fuzzy membership vectors 

for states not subject to simulation. The machine learning methods to be employed are decision 

trees, SVMs, and naïve Bayesian classifiers. The training data for these classifiers will be 

obtained using Markov Chain Monte Carlo sampling, yielding fuzzy membership vectors. The 

ideas presented here are predicated on the existence of structure in overlapping attractors; early 

experiments have indicated that such structure often exists. 

Research Questions 

Preliminary work shows that HPA-GR-Immune-HPGa Boolean Network has fuzzy 

membership structure for its state space. Do realistic GRNs such as T-LGL possess membership 

structure? What is the nature of this structure? 

Realistic GRNs have many nodes and finding the membership for all or many states is 

intractable. Can machine learning methods be used to discover such structure? In practical terms, 

can machine learning methods be used to identify accurate fuzzy membership vectors for states? 

Three machine learning techniques will be used to make predictions of random states. 

The machine learning algorithms to be in usage are support vector machines, naive Bayesian 

classifier, and decision trees. Which machine learning methods, of those considered, are most 

effective? 

 What are the most useful output classes for this application of machine learning methods? 

Examples are (a) finding a state belonging (or not) to an attractor’s true basin; and (b) for a given 

attractor A and a specified threshold range ߬, the output class of a state is positive if the 

probability of reaching attractor A starting from the state lying within the specified range ߬. 
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Relevance and Significance 

With very large GRNs, it is not feasible to determine the fuzzy membership for all states 

using simulation. A large GRN is modeled and simulated by an asynchronous Boolean network 

that could have overlapping basins of attraction. Once the system can accurately predict the 

basins of attraction to which a state belongs, life science experts can then predict the results of 

different treatment regimens and see immediate results. This will allow experts to make critical 

decisions and avoid applying a physical treatment directly to their subjects using trial and error. 

Barriers and Issues 

In very large realistic GRNs such as T-LGL, finding the basin of attraction and fuzzy 

membership in that basin is an intractable task. Having 32 nodes pushes the upper limit of what a 

physical machine can do to find attractors and their basins. However, T-LGL has 60 nodes, and it 

would require a large cluster of machines at high cost to find all of the states’ fuzzy membership 

in attractors (Hong et al, 2015). Therefore, using machine learning to predict only the states that 

are important to an expert’s experiment is a feasible option. 

The algorithms in Figures 3, 4, and 5 are presented partly for defining operationally the 

meaning of identifying and validating attractors. These algorithms may be used, as they are in 

this research, but where necessary, more efficient stochastic approaches could be used. There is a 

significant amount of literature based on efficiently finding attractors; thus, exploring previous 

work will help with this issue. 

Assumptions, Limitations, and Delimitations 

 This research is based on several assumptions. First, there is the assumption that a 

structure exists in the state space of each GRN. This structure is necessary to determine the 

output classes. Second, states with the same output classes can transition into each other. For 

instance, suppose that the state-space of a Markov chain is divided into a disjointed subset of 
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states. Let ݐ be a subset of ܵ = ,ଵݏ} … , ܶ } andݏ = ,ଵݐ} … ,  ,} is the partition of all states. Thusݐ

all states within subset ݐ have a higher probability of transitioning into each other than with 

states in another subset. These clusters of states will lead to the same output classes. Finally, 

during the simulation process, attractors can be discovered quickly.  

 This research also has some limitations. One limitation is that it is not known if one 

cluster of states is actually a multiple number of sub-clusters and these sub-clusters are possibly 

not interconnected. Several factors are under control in this research. Five GRNs were 

selectively chosen. Also, three classifiers were selectively chosen. Furthermore, studying the 

performance of a statistical approach to determine the outcome of a state is a problem chosen for 

this research. 

Summary 

 Genes regulate each other’s activity through GRNs. Part of the gene expression process is 

transcription in which a particular segment of DNA is copied into mRNA. Furthermore, post-

translational modifications lead to proteins with modified properties. When attempting to model 

and simulate a GRN, the first step is to assemble the components of the network and the 

interactions between them. For this research, asynchronous Boolean networks will serve as that 

paradigm.  

 A complete GRN model incorporates experimental knowledge about the components and 

their interactions as well as the initial state of these components. This leads to the known final 

state of attraction or dynamical behavior of the network. Validated models such as cell cycle or 

T-LGL are able to investigate cases that cannot be explored experimentally, for example changes 

in the initial state, in the components, or in the interactions, and these models can lead to 

predictions and insights into the functioning of the system. 
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 The research questions ask about state space structures and their effects on a state’s fuzzy 

membership vector to determine output classes. Also, the questions ask about which machine 

learning techniques are best to determine the output class of a state. Finally, the question asks 

what the best output classes are. This can be determined by running simulations on a subset of 

states, creating a visualization of fuzzy membership to an attractor to identify structure, 

implementing a threshold range on possibly the best cluster, train a machine learning classifier to 

predict whether a state is in that cluster or not in that cluster, and measure that accuracy of the 

prediction. 
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Chapter 2 

Review of the Literature 

 

Overview of the Literature 

The synchronous Boolean update model has the expression level of every gene updated at 

discrete time points. However, some genes retain their previous level under the transition 

function. This approach is computationally tractable for very large networks but it does not 

accurately represent different genes transitioning from one expression level to another at discrete 

time intervals. Thus, synchronous Boolean networks are biologically imperfectly realistic. Prior 

work on Boolean networks has focused primarily on synchronous update procedures which 

include the analysis of the attractor’s state space and the basin of attraction for each attractor 

(Faure, Naldi, Chaouiya, & Thieffry, 2006). The advantage of using synchronous update models 

is in finding steady state attractors quickly in an exhaustive search. The steady state attractors 

found in synchronous searches also exist in the asynchronous update model. 

A large portion of current studies involves asynchronous Boolean models and have 

focused mainly on finding attractors of a system or on identifying attractors reachable from a 

nominal initial state or condition (Chaves, Albert, & Sontag, 2005). The asynchronous Boolean 

update model has exactly one gene’s expression level changing at each discrete time point. The 

gene is selected at random from among those whose expression levels would change under the 

transition function. This update model closely represents biological activity but is more complex 

to model and analyze. A state could potentially reside in the basin of attraction of multiple 

attractors. For example, a state ݏ could transition into attractor ܣ in one sampling and transition 

into attractor ܤ in another sampling. For this state ݏ, the two attractors overlap. 
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Few studies focus on identifying complex and overlapping attractors (Garg, Di Cara, 

Xenarios, Mendoza, & De Micheli, 2008). Thus, the investigation of all possible attractors, their 

basins of attraction, and fuzzy membership of states that fall into overlapping attractors for a 

system under asynchronous updating schemes invites further research. This research will 

perform a comprehensive study of all attractors of a large biological system, focusing on T-cell 

large granular lymphocytic leukemia (T-LGL), selecting a number of initial states at random, 

and using methods or performing simulations to determine the fuzzy membership of those states 

using the asynchronous Boolean network model. This will identify the structures of the network 

or the fuzzy membership clusters, which will assist in making predictions for states not in the 

initial sampling process. 

T-LGL leukemia affects lymphocytes (white blood cells) which are part of the body's 

immune system and help fight infections. Some signs and symptoms of T-LGL are changes in 

blood cell counts, decline in production of red blood cells, recurrent infections, and fever. 

Diagnose can be confirmed by examining the patient's blood under a microscope by checking to 

see if a large number of abnormal cells associated with T-LGL may be present, or by taking a 

bone marrow aspiration, or biopsy. Some treatments currently in practice are immunosuppressive 

therapy, such as methotrexate, oral cyclophosphamide (an alkylation agent), and cyclosporine 

(an immunomodulatory drug). 

The cell cycle process will respond to external environmental changes in order to 

maintain their functional purpose such as growth, survival, division, and apoptosis (cell death). 

This gene regulatory network (GRN) process is carried out through a chain reaction of gene, 

protein, and chemical interactions forming a complex signaling network. An abnormal 

expression between some of the components in the network will affect normal operations of the 
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cell, which will transition it from a healthy state to a poor state, translating to possible diseases 

such as diabetes (Leibiger, Brismar, & Berggren, 2010), developmental disorders (Gordon & 

Blobe, 2008), autoimmunity (Mavers, Ruderman, & Perlman, 2009), or cancer (Ikushima & 

Miyazono, 2010).  

Healthy cytotoxic T-lymphocytes (CTLs) are produced to eliminate cell infections of 

viruses. However, healthy CTLs will initiate apoptosis after they successfully destroy the 

infected cell; but, leukemic T-LGL cells fail to initiate apoptosis and remain in the system for 

long periods (Sokol & Jr, 2006). A few components of the CTLs are responsible for the 

abnormal behavior of the signal transduction network which activates apoptosis for T-cells 

(Shah, Zhang, & Jr, 2009). Therefore, understanding which states lead to a healthy attractor, such 

as apoptosis in T-LGL, will suggest treatments that switch from one state to a nearby state that 

tends to lead to a healthy attractor. 

A Boolean network model of T-cell survival signaling in the context of T-LGL leukemia 

was implemented by Zhang et al. (Zhang, Shah, Yang, SB, & X, 2008). The implementation was 

guided by performing an extensive literature search on the topic, compiling the data, and finding 

the Boolean equivalent functions to match the results of the data. The T-LGL network consists of 

60 components including receptors, proteins, mRNAs, and small molecules. The network 

contains six nodes with no upstream components representing external input signals (Stimuli, 

IL15, PDGF, Stimuli2, CD45, and TAX), and also contains three output nodes serving as 

indicators of biological functions or cell fate (Cytoskeleton signaling, Proliferation, and 

Apoptosis). The main input to the network is Stimuli, which represents a virus or antigen 

stimulation, and the main output node is Apoptosis, which represents programmed cell death 

(Zhang et al., 2008).  
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After implementing the T-LGL network, the methods of asynchronous Boolean network 

exposed a small number of impairments that led to the cause of T-LGL survival, showing high 

activity within proteins platelet-derived growth factor (PDGF) and interleukin 15 (IL15) (Zhang 

et al., 2008). The preliminary analysis of T-LGL network dynamics was carried out by 

performing numerical simulations starting from one specific condition in which the T-Cell 

receives a stimuli and an overload of two proteins PDGF and IL15 (Zhang et al., 2008). Once the 

issues of T-LGL leukemia was identified, each of these symptoms was interrupted individually 

by reversing the node’s state in order to predict key mediators of the disease (Zhang et al., 2008). 

However, a complete dynamic analysis of the system, its corresponding basins of attraction, as 

well as a thorough perturbation analysis of the system considering all possible initial states was 

not undertaken. Though, the attractors of T-LGL has been identified in previous experiments, 

and the results are validated by other researchers (Zanudo & Albert, 2013). Implementing 

machine learning methods to accurately predict fuzzy membership within the basins of 

attractions for initial states can provide deeper insights into unknown aspects of T-LGL 

leukemia. For this research, the predictive analysis of states relies on consistent detection of 

clusters. These clusters will be used to train classifiers to determine if a state is in or not in a 

specific cluster. This process will determine the fuzzy membership vectors for states. The 

modeling and simulation of a GRN will be used to collect data and classifiers can be trained by 

that data which will produce an optimize process to predict the outcome of states that was not 

part of the initial selection. 

Tables 1 and 2 show the attractors found in T-LGL leukemia GRN. The findings from the 

experiments used to obtain these results are an exact match with the findings from Zanudo & 

Albert, 2013. Columns A, B, C, and D represent the attractor findings based on different external 
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inputs values from Stimuli, IL15, PDGF, Stimuli2, CD45, and TAX. Each column overlaps with 

the Apoptosis attractor for some individual start states. An external input value set to on/off 

means that the external input node does not affect the outcome of finding that particular attractor. 

Also, in columns A and C, when a state ݏ transitions into the attractor, P2 could be on in one 

sampling and off on a different sampling which indicates two different attractors. Therefore, for 

those columns, P2 is set to ON|OFF to indicate this particular sampling effect. Finally, all of the 

nodes in a column marked with oscillation are nodes that make up the attractor. 
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Attractors A B C D Apoptosis 
INPUT NODES  

CD45 ON ON OFF OFF ON/OFF 
PDGF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF 
IL15 ON/OFF ON/OFF ON ON ON/OFF 

Stimuli ON ON ON ON ON 
Stimuli2 OFF ON OFF ON ON/OFF 

TAX ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF 
NODES  
IL2RBT OFF OFF ON ON OFF 
BclxL ON ON OFF OFF OFF 
IFNGT ON ON ON ON OFF 
PDGFR ON ON ON ON OFF 
IFNG OFF OFF OFF OFF OFF 
GAP OFF OFF OFF OFF OFF 

Proliferation OFF OFF OFF OFF OFF 
GZMB OFF OFF ON ON OFF 
RAS ON ON ON ON OFF 
TPL2 ON ON ON ON OFF 
FasT ON ON ON ON OFF 
FLIP ON ON ON ON OFF 
LCK ON ON ON ON OFF 

NFAT ON ON ON ON OFF 
FasL ON ON ON ON OFF 

Caspase OFF OFF OFF OFF OFF 
NFKB ON ON ON ON OFF 

IAP ON ON ON ON OFF 
BID OFF OFF OFF OFF OFF 

Cyto. Signal. Oscillates Oscillates ON ON OFF 
TNF ON ON ON ON OFF 

MCL1 OFF OFF ON ON OFF 
Ceramide OFF OFF OFF OFF OFF 

GRB2 Oscillates Oscillates ON ON OFF 
PI3K ON ON ON ON OFF 

SMAD ON ON ON ON OFF 
P27 OFF OFF ON ON OFF 

ZAP70 Oscillates Oscillates OFF OFF OFF 
CREB OFF OFF OFF OFF OFF 
DISC OFF OFF OFF OFF OFF 
IL2RB OFF OFF ON ON OFF 

Fas OFF OFF OFF OFF OFF 
IL2RA Oscillates Oscillates OFF OFF OFF 

S1P ON ON ON ON OFF 
ERK ON ON ON ON OFF 

SPHK1 ON ON ON ON OFF 
A20 ON ON ON ON OFF 
MEK ON ON ON ON OFF 

CTLA4 Oscillates Oscillates Oscillates Oscillates OFF 
TBET OFF OFF ON ON OFF 

RANTES ON ON ON ON OFF 
SOCS OFF OFF OFF OFF OFF 
sFas ON ON ON ON OFF 

IL2RAT ON ON OFF OFF OFF 
TCR Oscillates Oscillates Oscillates Oscillates OFF 

STAT3 OFF OFF ON ON OFF 
GPCR ON ON ON ON OFF 

P2 ON|OFF OFF ON|OFF OFF OFF 
TRADD OFF OFF OFF OFF OFF 
PLCG1 ON ON ON ON OFF 

FYN Oscillates Oscillates ON ON OFF 
IL2 ON ON OFF OFF OFF 
JAK OFF OFF ON ON OFF 

Apoptosis OFF OFF OFF OFF ON 

 Table 1: The attractors of T-LGL leukemia survival network. This table shows the 
state of the nodes for all possible combinations of input signals in the presence of antigen 
(Stimuli=ON). 
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Attractors A B C D Apoptosis 
INPUT NODES  

CD45 ON ON OFF OFF ON/OFF 
PDGF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF 
IL15 ON/OFF ON/OFF ON ON ON/OFF 

Stimuli OFF OFF OFF OFF OFF 
Stimuli2 OFF ON OFF ON ON/OFF 

TAX ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF 
NODES  
IL2RBT OFF OFF ON ON OFF 
BclxL ON ON OFF OFF OFF 
IFNGT ON ON ON ON OFF 
PDGFR ON ON ON ON OFF 
IFNG OFF OFF OFF OFF OFF 
GAP OFF OFF OFF OFF OFF 

Proliferation OFF OFF OFF OFF OFF 
GZMB OFF OFF ON ON OFF 
RAS ON ON ON ON OFF 
TPL2 ON ON ON ON OFF 
FasT ON ON ON ON OFF 
FLIP ON ON ON ON OFF 
LCK ON ON ON ON OFF 

NFAT ON ON ON ON OFF 
FasL ON ON ON ON OFF 

Caspase OFF OFF OFF OFF OFF 
NFKB ON ON ON ON OFF 

IAP ON ON ON ON OFF 
BID OFF OFF OFF OFF OFF 

Cyto. Signal. OFF OFF ON ON OFF 
TNF ON ON ON ON OFF 

MCL1 OFF OFF ON ON OFF 
Ceramide OFF OFF OFF OFF OFF 

GRB2 ON ON ON ON OFF 
PI3K ON ON ON ON OFF 

SMAD ON ON ON ON OFF 
P27 OFF OFF ON ON OFF 

ZAP70 ON ON OFF OFF OFF 
CREB OFF OFF OFF OFF OFF 
DISC OFF OFF OFF OFF OFF 
IL2RB OFF OFF ON ON OFF 

Fas OFF OFF OFF OFF OFF 
IL2RA Oscillates Oscillates OFF OFF OFF 

S1P ON ON ON ON OFF 
ERK ON ON ON ON OFF 

SPHK1 ON ON ON ON OFF 
A20 ON ON ON ON OFF 
MEK ON ON ON ON OFF 

CTLA4 OFF OFF OFF OFF OFF 
TBET OFF OFF ON ON OFF 

RANTES ON ON ON ON OFF 
SOCS OFF OFF OFF OFF OFF 
sFas ON ON ON ON OFF 

IL2RAT ON ON OFF OFF OFF 
TCR OFF OFF OFF OFF OFF 

STAT3 OFF OFF ON ON OFF 
GPCR ON ON ON ON OFF 

P2 ON|OFF OFF ON|OFF OFF OFF 
TRADD OFF OFF OFF OFF OFF 
PLCG1 ON ON ON ON OFF 

FYN OFF OFF ON ON OFF 
IL2 ON ON OFF OFF OFF 
JAK OFF OFF ON ON OFF 

Apoptosis OFF OFF OFF OFF ON 

Table 2: The attractors of T-LGL leukemia survival network. This table shows the 
state of the nodes for all possible combinations of input signals without the presence of 
antigen (Stimuli=OFF). 
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In this research, a detailed analysis of the T-LGL signaling network is found by 

predicting the fuzzy membership of all possible initial states to understand the long-term 

behavior of the underlying disease. An implementation of an asynchronous Boolean dynamic 

framework will be used to verify the attractors of the system and analyze their basins of 

attraction. The analysis of initial states of the Boolean network will allow for confirmation or 

prediction of fuzzy membership. This will help identify structure or find fuzzy membership 

clusters which will be used to find states that lead to healthy attractors. 

Justification of the Literature and Identification of Prior Work 

 Large realistic networks are difficult to simulate and analyze due to computational 

intractability. Several current studies implemented a network reduction approach that consists of 

iteratively removing single nodes that do not regulate their own function and simplifying the 

redundant transfer functions using Boolean algebra (Zanudo & Albert, 2013). By pinpointing and 

eliminating the stabilized nodes, and iteratively removing a node that has one incoming edge and 

one outgoing edge while connecting its input ݊݁݀ to its target ݊݀ ݁, a large network can be 

greatly simplified, which could be more manageable in simulation and analysis. The main 

advantage of this reduction method is that very large networks, with 200 or more nodes, can be 

simulated with ease (Zanudo & Albert, 2013). The reduced network can be used to infer 

properties about the original network to better understand the role and dynamics of its network 

topology.  

 Although this simplification can increase performance for attractor search and GRN 

simulation, this method cannot provide fuzzy membership analysis for individual states. For 

instance, with the T-LGL network, when a start state ݏ transitions into attractors through multiple 

samplings, fuzzy membership analysis is not necessarily the same with samplings of P2 being on 
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compared to samplings of P2 being off. Thus, this research will focus on asynchronous Boolean 

networks with sampling of a subset of initial start states, overlapping attractors within a full 

realistic network, fuzzy membership analysis, and machine learning methods to identify rules to 

predict the outcome of other states within a network. This fine grain collection of data for 

individual states will help identify fuzzy membership clusters to determine whether a state 

transitions into a healthy or unhealthy attractor using machine learning methods. 

Identification of Gaps in the Literature 

 This research will investigate fuzzy membership vectors of large state spaces in 

asynchronous Boolean networks. The size and complexity of realistic GRNs make it infeasible to 

estimate fuzzy membership vectors for all states. Network reduction is a method used to bypass 

this limitation (Saadatpour et al., 2011). Of particular interest is the use of fuzzy sets to 

characterize a state’s degree of membership in different basins of attraction, based on the 

likelihood of transitioning from the state to a given attractor. The three heuristics that are used to 

estimate fuzzy membership degree in this research are decision trees, SVMs, and naïve Bayesian 

classifiers. This work will also be applied to other GRNs such as ABA, Immune Bb, Cardiac 

Development, and Mammalian Cell Cycle to validate the approach. 

 Modeling and simulation will determine fuzzy membership vectors for a select sample of 

states, and the use of machine learning will be used to identify patterns in membership that 

would extend to a much larger range of states. The data for which the patterns exist is the 

collection from Markov Chain Monte Carlo sampling. The discovery of rules for these patterns 

will yield fuzzy membership vectors for states not subject to simulation. These vectors will make 

it possible to predict the outcome of states that were not part of the initial sampling. 
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Analysis of Research Methods 

 Markov Chain Monte Carlo method is a technique that solves the problem of sampling 

from a complicated distribution such as asynchronous Boolean networks. It is a technique for 

estimating by simulation of the expectation of a statistic in a complex model. Successive random 

selections form a Markov chain, the stationary distribution of which is the target distribution 

(Gilks, 2005). It is particularly useful for the evaluation of posterior distributions in 

asynchronous Boolean networks and complex Bayesian models. 

For this research, the definition of the sampling problem is written to support 

asynchronous Boolean networks. Let ܵ be a distribution over a finite set of states {ݏଵ, … ,  .{ݏ

Given a state ݏ ∈ ܵ, the simulation selects at random, with equal likelihood, a successor state ݏ 

based on updating a variable of ݏ with the transition function ݔ∗(ݐ + 1) = ݂∗(ݔ௧). This random 

walk on the graph will lead to an attractor. An attractor will be encountered because all 

asynchronous Boolean networks are absorbing Markov chains (Xiao, 2009). For example, every 

state ݏ in an absorbing Markov chain will transition to another state ݏ௪ eventually forming 

cycles with no escape. With the identification of attractors and multiple samplings per state ݏ to 

determine fuzzy membership to those attractors, the state space structure can be identified and 

machine learning can be used to predict the other states that are not part of the initial sampling.  

Monte Carlo methods rely on repeated random sampling of start states to obtain fuzzy 

membership results. They are a widely used class of computational algorithms for simulating the 

behavior of various physical and mathematical systems, and for other computations 

(Hammersley & Handscomb, 1964) such as system biology and financial engineering. 

Furthermore, the methods also rely on repeated random asynchronous sampling of update 

functions to transition from one state to another until an absorbing state is reached. Thus, with 
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multiple samplings of one state, its fuzzy membership can be estimated by the percentage of 

times it reaches each absorbing state.  

A state in a Markov chain is an absorbing state if, once the state is reached, it is 

impossible to leave. A Markov chain is an absorbing chain if there is at least one absorbing state 

and it is possible to go from any state to at least one absorbing state in a finite number of steps 

(Grinstead & Snell, 1997). For Boolean networks, absorbing states of a Markov chain will 

represent attractors. For this research, attractors that have multiple states forming cycles will be 

treated as a super state to maintain the definition of absorbing Markov chains. Thus, once a 

Markov chain reaches these super states, which are irreducible and a recurrent sets of states, it 

cannot escape that set. Therefore, in determining the probability of reaching a recurring set of 

states from the initial state, it will only be necessary to find the probability of reaching that super 

state or recurring set. 

 Absorbing Markov chains have the property that the powers of the transition matrix 

approach a limiting matrix (Grinstead & Snell, 1997). For example, for the transition matrix A, 

there is some integer n0 such that Am = An for all m, n >= n0. A transition matrix is used to 

describe the transitions of a Markov chain, and a limiting matrix is used to describe the 

probability of reaching an absorbing state or attractor. With transition matrices, for Markov 

chains with one or more absorbing states to have limiting matrices, there is at least one absorbing 

state, and the possibility must exist to go from each non-absorbing state to at least one absorbing 

state in a finite number of steps. However, using transition matrices and limiting matrices are 

very powerful tools for small Boolean networks. For large GRNs, using transition and limiting 

matrices is not feasible. The size of a matrix for T-LGL would be 22ݔ, and computing its 

powers is intractable. Thus, a subset of initial states must be sampled; calculating their fuzzy 
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membership status into each attractor and using machine learning methods, such as decision 

trees, SVMs, and naïve Bayesian classifiers, to predict all other states not part of the initial 

sampling process. These predictions will help researchers test their treatments on states that were 

not part of the initial sampling without having to send those states through the sampling process, 

which can take a large amount of time to complete. 

 A decision tree is a flowchart-like structure consisting of decision nodes, chance nodes, 

and end nodes. Each internal node represents a test on an attribute, with each branching from the 

nodes representing the outcome of the test. Each leaf node represents a decision taken after 

computing all of the attributes, which is known as a class label. The paths from root to leaf 

represent classification rules. The goal of decision trees is to learn how to classify objects by 

analyzing a set of instances of already solved cases whose classes are known (Podgorelec, 

Kokol, Stiglic, & Rozman, 2002). Learning input consists of a set of attribute-value vectors, each 

belonging to a known class, and the output consists of a mapping from attribute values to classes 

(Podgorelec, Kokol, Stiglic, & Rozman, 2002). 

 For this research, decision trees will be used as a variant of one-against-all formulation. 

The ݅th decision function ݃(ݔ)(݅ = 1, … , ݊ − 1) is determined, such that if ݔ belongs to class ݅, 
then ݃(ݔ) > 0, and when ݔ belongs to one of the classes {݅ + 1, … , ݊}, then ݃(ݔ) < 0. 

Therefore, in classifying ݔ into a class ݅, starting from ଵ݃(ݔ), the first positive ݃(ݔ) is found and 

classifies ݔ into class ݅. If there is no such ݅ among ݃(ݔ)(݅ = 1, … , ݊ − 1), then ݔ is classified 

into class ݊ (Esposito, 2010). 

 Decision trees are relatively easy to understand and interpret because the inferred 

classification rules flow from a root node to a leaf node, and this path is based on conditions 

created from a training set of data. Each leaf node represents one classification rule. Laypeople 
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are able to understand decision tree models after a brief explanation. Furthermore, decision trees 

have value even with little hard data. Important insights can be generated based on experts 

describing the alternatives, probabilities, and costs along with preferences for outcomes. Also, 

decision trees allow the addition of new possible scenarios, and help determine worst, best, and 

expected values for different scenarios. However, there are two disadvantages of decision trees. 

First, information gained in decision trees can be biased in favor of those attributes with more 

levels (Deng, Runger, & Tuv, 2011) for data that includes categorical variables with different 

number of levels. The other disadvantage, calculations can get very complex particularly if many 

values are uncertain or if many outcomes are linked. 

 Another method for making predictions is Support Vector Machines (SVM). SVMs are 

kernel-based methods of classification that employ a maximum margin approach using a 

hyperplane to separate the classes. SVMs are based on the theory of decision planes that describe 

decision boundaries (Shawe-Taylor & Sun, 2009). For classes that are not linearly separable, a 

kernel function is used to transform the problem into a higher dimensional space so separation is 

possible. SVMs use a decision rule ݀(ܵ) to predict the outcome of future inputs. The important 

difference between SVMs and other supervised learning classifiers is that SVMs use the 

optimization of maximum margin to reduce the number of weights that are nonzero to just a few 

weights that correspond to the important features that matter in deciding the separating line or 

hyperplane. These nonzero weights correspond to the support vectors because they support the 

separating hyperplane. 

 To find the optimal decision solution, the maximum margin must be found. So, let the 

states ܵ = ,ଵݏ} … ,  In addition, let the .ܣ or not to classification ܣ } belong to classificationݏ

associated labels be ݕ ∈ {1, −1}, where 1 is classification ܣ and −1 is not in classification ܣ. If 
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the data is linearly separable, then the determination of the decision function is ݀(ܵ) = ࡿ்࢝ + ܾ, 

where ݓ is the weighted vector, ܵ is the set of states, and ܾ is the bias term. Thus, ்࢙࢝ + ݕ ݎ݂ 0<} ܾ = 1, < ݕ ݎ݂ 0 =  −1} satisfies linearly separable data, which simplifies to ݕ(்࢙࢝ +ܾ) ≥ 1. Furthermore, the hyperplane ݀(ܵ) = ࡿ்࢝ + ܾ = ܿ, ݎ݂ − 1 < ܿ < 1, forms a separating 

hyperplane that separates ݏ. When ܿ = 0, the separating hyperplane is in the middle of the two 

hyperplanes with ܿ = 1 and −1. The distance between the separating hyperplane and the training 

data sample nearest to the hyperplane is called the margin. Therefore, the wider the margin, the 

more accurate the predictions become. 

 There are multiple decision functions that can separate linearly separable classes. Some 

decision functions are more optimal than others. The SVMs uses criteria to look for a decision 

boundary that has a maximum distance between any data point from two different classes 

(Shawe-Taylor & Sun, 2009). Therefore, an optimal separating hyperplane must be found. The 

optimal separating hyperplane can be obtained by solving ݉݅݊݅݉݅࢝)ܳ ݁ݖ, ܾ) =  ଵଶ  ଶ subject‖ݓ‖

to ݕ(்࢙࢝ + ܾ) ≥ 1. The data that supports ݕ(ݏ்࢝ + ܾ) = 1 are known as support vectors, 

and all data that supports ݕ(ݏ்࢝ + ܾ) ≥ 1 are known as feasible solutions. The optimal 

separating hyperplane and decision function are constrained to their current state space and must 

be converted into an equivalent dual problem whose number of variables is the number of 

training data.  

 The constrained problem must be converted into an unconstrained problem using non-

negative Lagrange multipliers. Let ܳ(࢝, ܾ, (ߙ =  ଵଶ ்࢝࢝ −  ∑ ்࢙࢝)ݕ}ߙ + ܾ) − ୀࡿ{1  , where ߙ = ,ߙ} … ,  } are the nonnegative Lagrange multipliers. Using this formula, the KKTߙ

conditions, 
డொ(࢝,,ఈ)డ࢝ = 0 and 

డொ(࢝,,ఈ)డ = 0, can be reduced to ݓ =  ∑ ௌୀଵ࢙ݕߙ  and 



30 
 

 
 

∑ ௌୀଵ࢙ݕߙ = 0, respectively. When substituted back into the original unconstrained problem, 

the following dual problem is obtained: ݉ܽ(ߙ)ܳ ݁ݖ݅݉݅ݔ =  ∑ ௌୀଵߙ −  ଵଶ ∑ ்ݏݕݕߙߙ ௌ,ୀଵݏ . 

Thus, this reduces to an update decision rule of ݀(ݏ) =  ∑ ்ݏݕߙ ௨௪ݏ + ܾ. The formula 

works for linearly separable datasets. However, datasets that are not linearly separable need an 

additional step. 

 When datasets are not linearly separable then another perspective in the state space has to 

be taken. Transforming to a higher dimension within the state space will lead to a separable 

dataset (Shawe-Taylor & Sun, 2009). The decision rule, ݀(ݏ) =  ∑ ்ݏݕߙ ௨௪ݏ + ܾ, can 

have ݏ்  and ݏ௨௪transformed by a kernel function. One such kernel function that satisfies 

this is ݇൫ݔ,  ൯ݔ =  which is why SVMs are known as kernel methods. This has led ,(ݔ)்߮(ݔ)߮ 

to SVMs excelling in realms where other machine learning methods are dominant, and many 

believe that SVMs are the best off-the-shelf supervised learning algorithms in the market (Ng, 

2015). 

 Some advantages of SVMs are maximization of generalization ability, no local minima, 

applicable to a wide range of applications, and robustness to outliers. Some disadvantages are 

extension to multiclass problems, long training time, and the time and effort needed for the 

selection of parameters. However, by introducing a kernel function, the SVMs will gain 

flexibility in separating classes that are not linearly separable. 

 An easier method to implement for predictions is naïve Bayesian classifiers. These 

classifiers are based on Bayes’ Theorem with statistically independent assumptions between 

predictors. Naïve refers to the assumption that data attributes are independent, and the Bayesian 

method still can be optimal even when this attribute independency is violated (Domingos & 

Pazzani, 1997). A naïve Bayesian model is easy to build, with no complicated iterative parameter 
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estimation, making it particularly useful for very large networks. Despite its simplicity, the naïve 

Bayesian classifier often does surprisingly well and is widely used because it frequently 

outperforms more sophisticated classification methods. The naïve Bayesian classifier is easy to 

understand, explain, and debug, and could be modified with new training data without having to 

rebuild it. 

 Bayes’ Theorem provides a way to calculate the posterior probability, ܲ(ܿ|ݔ), from ܲ(ܿ), ܲ(ݔ), and ܲ(ݔ|ܿ), such that ܲ(ܿ|ݔ)  =  (௫|)()(௫) , where ܿ is the class, and ݔ is the data, 

predictor, or attributes. ܲ(ܿ|ݔ) is the posterior probability distribution for a classification given 

its attributes, ܲ(ܿ) is the prior probability distribution for a classification, ܲ(ݔ|ܿ) is the 

likelihood function which is the probability of attributes given the classification, and ܲ(ݔ) is the 

prior probability distribution for attributes. A naïve Bayesian classifier assumes that the effect of 

the value of a predictor on a given class is independent of the values of the other predictors. This 

assumption is called class conditional independence. Furthermore, with knowledge of the 

probabilities for each attribute, Bayes’ Theorem can be reduced to ܲ(ܿ|ݔଵ, … , (ݔ = ܲ(ܿ) ∏ ୀଵ(ܿ|ݔ)ܲ . This rule is extremely fast at calculating the probability of being in a class 

compared to other sophisticated algorithms. 

 For example, calculating the posterior probability can be done by constructing a 

frequency table for each attribute against the classification target, then transforming the 

frequency tables to likelihood tables, and finally using the naïve Bayesian equation to calculate 

the posterior probability for each class. The class with the highest posterior probability is the 

outcome of the prediction indicated by ݀ =  argmax∈{ଵ,…,} ܲ(ܿ) ∏ ୀଵ(|ܿݔ)ܲ , where ݀ is 

the decision function for the naïve Bayesian classifier. An advantage of using a naïve Bayesian 

classifier is that it only requires a small amount of training data to estimate the parameters 
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necessary for classification. This allows a small proportion of states from a Boolean network to 

be sampled to accurately predict all of the other states not part of the initial sampling. 

Summary 

 One particular use of synchronous and asynchronous Boolean networks is the modeling 

and simulation of GRNs. Synchronous Boolean networks updates to functions are applied 

simultaneously at each discrete time point, whereas, asynchronous Boolean networks update one 

function, chosen randomly, at each discrete time point. However, with asynchronous Boolean 

networks, an initial state in one sampling can transition into an attractor, whereas in another 

sampling, an initial state can transition into a different attractor. This means that an initial state 

can have overlapping attractors, the set of attractors reached by some sequence of state 

transitions. Using Boolean networks can help to understand how GRNs behave and input nodes 

can alter that behavior. For instance, understanding how genes work together to comprise 

functional cell and life to cope with environments and disease will provide researchers with 

novel drug targets, sensitive diagnostics for individualized therapy, and ways to manipulate its 

topology to cure disease. In this research, the T-LGL GRN is used, which is a large network with 

60 nodes, including six input nodes. In previous studies, the attractors have been identified, and 

this study has validated their existence. Furthermore, large networks are difficult to simulate, so 

the implementation of network reduction was introduced to make simulation much more 

manageable. This method fails to find fuzzy membership status of individual states. As a result, 

this research will use machine learning to predict the fuzzy membership outcome of states. The 

techniques that this study will use to achieve its goals are Markov Chain Monte Carlo methods, 

SVNs, decision trees, and naive Bayesian networks.  
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Chapter 3 

Methodology 

 

Introduction 

Due to the intractable nature of identifying fuzzy membership for every state in a large 

GRN, machine learning techniques will be used to predict the basin of attractions to which these 

states belong. The methodology for this research is to use the T-LGL GRN model and machine 

learning methods as inputs, and <߬௪, ߬> thresholds as the parameters for the output classes. 

Next, collecting data from executing simulations starting from random states provides the 

training and testing dataset for machine learning methods. Additionally, an exploratory data 

analysis, to include visualizations and histograms, can expose the structure of fuzzy membership 

to attractors. The output class or rule sets produced from the machine learning methods will be 

tested to predict accurately fuzzy membership of other states at random. Once the process is 

finalized, it will be applied to other GRNs to validate its accuracy. 

Hypotheses 

 Realistic GRNs, such as T-LGL, possess membership structures for its states based on 

clusters defined by range ߬ = [߬௪,߬]. A function ܨ: ܵ → [0,1] maps a set of states to their 

fuzzy membership vectors, where there are n attractors. Then ܨ projects to the component for 

attractor ܣ. In other words ܨ(ݏ) is the component of the fuzzy membership vector (ݏ)ܨ 

corresponding to attractor ܣ. Thus, there exist a fuzzy membership vector function ܨ(ݏ) for 

attractor ܣ, such that there are a set of states whose values lie within a threshold range ߬, which 

produces the output class 〈ܣ, ߬〉. Furthermore, there also exist a fuzzy membership function ܨ(ݏ), such that there are a set of different states whose values do not lie within a threshold range 
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߬, which produces the output class ¬〈ܣ, ߬〉. Also, executing ܰ = 1000 simulations on state ݏ 

yields an approximation to (ݏ)ܨ. Additionally, for a state ݏ, its sets are defined as 〈ܣ, ߬〉 (ݏ)ܨ | ݏ}= ∈ ߬} and ¬〈ܣ, ߬〉 = (ݏ)ܨ | ݏ} ∉ ߬}. Furthermore, state ݏ is labeled by 〈ܣ, ߬〉 if and 

only if ܨ(ݏ) ∈ ߬; else ݏ is labeled by ¬〈ܣ, ߬〉. 
 For this study, healthy cluster of states are defined within a probability threshold range 

of ߬ = [0.9, 1.0]. Additionally, a healthy state is a state that can reach apoptosis more than 90% 

of the time. A state that lies in an overlapping basin of attraction of multiple attractors will have 

fuzzy membership in each of those attractors. Through simulation, a state ݏ in an overlapping 

basin will transition into one of the attractors. Furthermore, with a large number of samplings, a 

state ݏ will eventually transition into all attractors that are part of the overlapping basin of 

attraction. The number of times a state ݏ transitions into a specific attractor ܣ determines its 

fuzzy membership with that attractor. For example, let a state ݏ transition into two overlapping 

attractors which are attractors ܣ and ܤ. This represents one sampling. There will be N=1000 

samplings. During each sampling, state ݏ will transition to either attractor ܣ or attractor ܤ. Once 

the sampling phase is completed, state ݏ will have transitioned to attractor ݔ ܣଵ times and 

attractor ݔ ܤଶ times, where ݔଵ + ݔଶ = N hits. Therefore, a state's fuzzy membership in each 

attractor when added together will equal one [ ௫భଵ + ௫మଵ = 1] and the list of fuzziness for each 

attractor is the state’s fuzzy membership vector. This generalizes over any number of attractors, 

e.g. [ ௫భଵ + ௫మଵ … ௫ଵ = 1]. Once the fuzzy membership is known for a group of states within 

attractor ܣ, then the discovery of good output classes bound by ߬௪ and ߬could be 

determined for that attractor. For this study, ߬ = [߬௪ = 0.9, ߬ = 1.0] was chosen to form a 

cluster states with a high success rate of reaching attractor ܣ. Finally, for all states that have 
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similar fuzzy membership to the same attractor, the data collected can be used to train machine 

learning methods to predict other states that were not initially part of the simulation. 

 States form natural clusters in the vector space NA where A is the number of attractors. 

Clusters can be discerned using such methods, such as k-means, etc., and can also be visualized 

such as the one in Figure 6. For example, a cluster could be defined by ߬ = [߬௪,߬] =[0.9, 1.0]. However, this may not be representative to all GRNs. ߬ = [߬௪,߬] has to be 

determined independently for each GRN. If visualizations are not enough to form clusters then 

the usage of clustering methods is another possibility. 

 Machine learning methods when trained by clustering data defined by ߬ = [߬௪,߬] 
can identify accurate fuzzy membership vectors for states. With data collected from a simulation, 

a classifier is trained to determine whether a state ݏ, not part of the original simulation, is in the 

range of ߬ or is outside the range of ߬ for binary classification. This means that a group of states 

can transition into attractor ܣ within the range ߬ = [0.9, 1.0]. Furthermore, all other states can 

transition into attractor ܣ with less probability within range ߬ = [0.0, 0.9]. Therefore, a trained 

classifier with a state ݏ as its input can accurately determine if state ݏ is either in the range of ߬ or 

outside the range of ߬. However, different classifiers may have different variations of accuracy in 

determining their output. 

 The comparison of machine learning methods’ effectiveness for predicting fuzzy 

membership vectors for states of a GRN are similar. For instance, based on the visualization in 

Figure 6, a cluster is defined by ߬ = [߬௪, ߬], and a classifier such as a decision tree has 

prediction accuracy of 97% from a previous experiment. In addition, machine learning methods 

such as Naive Bayesian Classifiers and SVMs also had similar accuracy of 97%. The feature set 

of a GRN, such as T-LGL, will have a subset of features dominating the outcome of the 
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classifiers output. Therefore, future experiments are expected to have similar prediction 

accuracy. 

 The most useful output classes for this application of machine learning methods is: given 

attractor ܣ and a specified threshold range ߬, the output class of a state is positive if the 

probability of reaching attractor ܣ of a state lies within the specified range ߬, else it is negative if 

the probability of reaching attractor ܣ lies outside the specified range ߬. This would allow a 

clinical biologist to focus on healthy and unhealthy attractors. Furthermore, a clinical biologist 

could implement treatments that can improve the chances of a state ݏ, defined by a specified 

range ߬, to transition into a healthy attractor ܣ. 

Research Design 

 This research uses statistical machine learning to predict the output class of a state, where 

that state was not part of the original simulation. The research design has two inputs, a GRN and 

a classifier, and one output class. The output class consist of <A, ߬> and ¬<A, ߬> where ܣ is the 

attractor and ߬ is the threshold range. A state ݏ classifies to attractor ܣ with probability ܲ(ݏ, (ܣ ∈߬, otherwise it classifies to ¬ܣ. 

 There will be a total of eight experiments, four for T-LGL, and one for each of the 

following GRNs: ABA, cardiac development, immune Bb, and mammalian cell cycle. Some 

GRNs will have source input nodes that will remain static throughout the sampling process of the 

experiment. For example, T-LGL has three nodes, stimuli (the presence of cancer), stimuli2 (the 

extreme presence of cancer), and CD45. The GRN must have these nodes remain in its static 

state to represent real world tests. Each experiment will follow a research design schematic to 

collect data from sampling to train classifiers for predictions. 
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 Figure 7 is the research design schematic for this study in which the implementation is an 

experiment. There are two sets of inputs, a GRN and a classifier. The GRN may have input 

nodes that remain static throughout the experiment, such as the T-LGL GRN. For T-LGL, there 

will be four set of experiments. The difference between these experiments are the source input 

nodes will start with different values that will remain static throughout the experiment. A subset 

of states will be selected randomly for sampling to collect data which will determine fuzzy 

membership vectors for each of those states. 

 
Figure 7: Research Design Schematic 
 



38 
 

 
 

 There will be N=1000 number of samplings of each state ݏ to determine its fuzzy 

membership vector. During the sampling process, each state involves a stochastic process of 

running through asynchronous transitions to reach an attractor. For each state ݏ, N=1000 

samplings will be taken, and each sampling will transition into an attractor. Once the sampling 

process is complete, each state ݏ fuzzy membership vector will be determined. Once a list of 

fuzzy membership vectors has been compiled, exploratory data analysis can be performed to 

determine the output classes <A, ߬> and ¬<A, ߬>. 

 The exploratory data analysis step of this research design is used to form clusters of states 

with similar fuzzy membership vectors, and the purpose is to devise significant output classes 

defined by 〈ܣ, ߬〉. Visualizations, such as Figure 6 discussed in Chapter 1, can be used to identify 

clusters. Once the clusters have been identified, each cluster is assigned a threshold range and 

placed into a list. The list of threshold ranges for each attractor represents the output classes. 

 For a state that was not part of the initial simulation, the prediction of its output class will 

be determined by a classifier trained with the fuzzy membership vectors and the threshold 

ranges. The data will randomly be partitioned into bins using k-fold cross-validation. The 

purpose of cross-validation is to define a dataset or determine the widest margin to test the 

classifier in the training phase, which will prevent the overfitting problem, and give insight on 

how the classifier will generalize to an independent dataset. The goal of the k-fold cross-

validation is to measure how accurate the predictions are for a given classifier. 

Variables 

For much of this study, the focus will be on large realistic networks. Each experiment 

comprises a GRN, which is executed with each of the three machine learning algorithms, and a 

set of output class as another variable. The GRN network is one of the inputs. Another set of 
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inputs, the choice of machine learning algorithms, will be comprised of decision trees, naïve 

Bayesian classifiers, or SVNs. These classifiers will undergo training and testing to accurately 

predict fuzzy membership of a random state. Particular values of tau are GRN-dependent and 

will be determined by exploratory data analysis. Another might indicate if a state has specified 

fuzzy membership in any attractor. For instance, a state s that is in the output class ¬<A, ߬> may 

still have fuzzy membership in attractor A, but such membership is outside of the ߬ range. 

Choice of Genetic Regulatory Network 

As previously mentioned, the T-LGL GRN is the network of choice for this research. 

While this research will focus on T-LGL for presentation and refinement of the methods used, it 

also will present results for other networks such as Abscisic Acid signaling model (ABA), 

Mammalian Immune response to B. Bronchiseptica infection (Immune Bb), Cardiac 

Development, and Mammalian Cell Cycle. T-LGL is a large realistic GRN model created from 

hundreds of literature sources and validated experimentally (Zhang et al., 2008). Due to this 

validation, this network makes an ideal situation to apply this approach, which is purely 

computational and requires no expert level knowledge of the disease system. If the results on this 

network show accurate predictions, then the approach may prove useful in predicting other large 

networks, for which there is a lack of expert-level knowledge and/or the ability to simplify 

systematically. Figures 8 and 9 show the structure of the T-LGL GRN and Boolean network 

respectively. 
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Figure 8: The T-LGL survival signaling GRN. The rectangles, ellipses, and diamonds indicate 
intracellular components, extracellular components, and receptors. In addition, the knowledge of 
leukemic cells is represented by red, green, blue, and white, which indicates highly active 
components, inhibition, deregulated, and unknown states. An arrowhead at the end of an edge 
indicates activation, and a short perpendicular bar at the end of an edge indicates inhibition. The 
inhibitory edges from Apoptosis to other nodes are not shown (Zhang et al., 2008). 
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T-LGL Boolean Network 
IL2RBT    *= (ERK ˄ TBET) ˄ ¬Apoptosis 
BclxL     *= (NFKB ˅ STAT3) ˄ ¬(BID ˅ GZMB ˅ DISC ˅ Apoptosis) 
IFNGT     *= (TBET ˅ STAT3 ˅ NFAT) ˄ ¬Apoptosis 
PDGFR     *= (S1P ˅ PDGF) ˄ ¬Apoptosis 
IFNG      *= ((IL2 ˅ IL15 ˅ Stimuli) ˄ IFNGT) ˄ ¬(SMAD ˅ P2 ˅ Apoptosis) 
GAP       *= (RAS ˅ (PDGFR ˄ GAP)) ˄ ¬(IL15 ˅ IL2 ˅ Apoptosis) 
Proliferation *= STAT3 ˄ ¬(P27 ˅ Apoptosis) 
GZMB      *= ((CREB ˄ IFNG) ˅ TBET) ˄ ¬Apoptosis 
RAS       *= (GRB2 ˅ PLCG1) ˄ ¬(GAP ˅ Apoptosis) 
TPL2      *= (TAX ˅ (PI3K ˄ TNF)) ˄ ¬Apoptosis 
FasT      *= NFKB ˄ ¬Apoptosis 
FLIP      *= (NFKB ˅ (CREB ˄ IFNG)) ˄ ¬(DISC ˅ Apoptosis) 
LCK       *= (CD45 ˅ ((TCR ˅ IL2RB) ˄ ¬ZAP70)) ˄ ¬Apoptosis 
NFAT      *= PI3K ˄ ¬Apoptosis 
FasL      *= (STAT3 ˅ NFKB ˅ NFAT ˅ ERK) ˄ ¬Apoptosis 
Caspase   *= ((((TRADD ˅ GZMB) ˄ BID) ˄ ¬IAP) ˅ DISC) ˄ ¬Apoptosis 
NFKB      *= ((TPL2 ˅ PI3K) ˅ (FLIP ˄ TRADD ˄ IAP)) ˄ ¬Apoptosis 
IAP       *= NFKB ˄ ¬(BID ˅ Apoptosis) 
BID       *= (Caspase ˅ GZMB) ˄ ¬(BclxL ˅ MCL1 ˅ Apoptosis) 
Cytoskeleton signaling *= FYN ˄ ¬Apoptosis 
TNF       *= NFKB ˄ ¬Apoptosis 
MCL1      *= (IL2RB ˄ STAT3 ˄ NFKB ˄ PI3K) ˄ ¬(DISC ˅ Apoptosis) 
Ceramide  *= Fas ˄ ¬(S1P ˅ Apoptosis) 
GRB2      *= (IL2RB ˅ ZAP70) ˄ ¬Apoptosis 
PI3K      *= (PDGFR ˅ RAS) ˄ ¬Apoptosis 
SMAD      *= GPCR ˄ ¬Apoptosis 
P27       *= STAT3 ˄ ¬Apoptosis 
ZAP70     *= LCK ˄ ¬(FYN ˅ Apoptosis) 
CREB      *= (ERK ˄ IFNG) ˄ ¬Apoptosis 
DISC      *= (FasT ˄ ((Fas ˄ IL2) ˅ Ceramide ˅ (Fas ˄ ¬FLIP))) ˄ ¬Apoptosis 
IL2RB     *= (IL2RBT ˄ (IL2 ˅ IL15)) ˄ ¬Apoptosis 
Fas       *= (FasT ˄ FasL) ˄ ¬(sFas ˅ Apoptosis) 
IL2RA     *= (IL2 ˄ IL2RAT) ˄ ¬(IL2RA ˅ Apoptosis) 
S1P       *= SPHK1 ˄ ¬(Ceramide ˅ Apoptosis) 
ERK       *= (MEK ˄ PI3K) ˄ ¬Apoptosis 
SPHK1     *= PDGFR ˄ ¬Apoptosis 
A20       *= NFKB ˄ ¬Apoptosis 
MEK       *= RAS ˄ ¬Apoptosis 
CTLA4     *= TCR ˄ ¬Apoptosis 
TBET      *= (JAK ˅ TBET) ˄ ¬Apoptosis 
RANTES    *= NFKB ˄ ¬Apoptosis 
SOCS      *= JAK ˄ ¬(IL2 ˅ IL15 ˅ Apoptosis) 
sFas      *= FasT ˄ S1P ˄ ¬Apoptosis 
IL2RAT    *= (IL2 ˄ (STAT3 ˅ NFKB)) ˄ ¬Apoptosis 
TCR       *= Stimuli ˄ ¬(CTLA4 ˅ Apoptosis) 
STAT3     *= JAK ˄ ¬Apoptosis 
GPCR      *= S1P ˄ ¬Apoptosis 
P2        *= (IFNG ˅ P2) ˄ ¬(Stimuli2 ˅ Apoptosis) 
TRADD     *= TNF ˄ ¬(IAP ˅ A20 ˅ Apoptosis) 
PLCG1     *= (GRB2 ˅ PDGFR) ˄ ¬Apoptosis 
FYN       *= (TCR ˅ IL2RB) ˄ ¬Apoptosis 
IL2       *= (NFKB ˅ STAT3 ˅ NFAT) ˄ ¬(TBET ˅ Apoptosis) 
JAK       *= (IL2RA ˅ IL2RB ˅ RANTES ˅ IFNG) ˄ ¬(SOCS ˅ CD45 ˅ Apoptosis) 
Apoptosis *= Caspase ˅ Apoptosis 
 

Figure 9: T-LGL signaling Boolean Network (Zhang et al., 2008). 

Network Analysis 

The network analysis for this research will include running simulations from random start 

states and using methods such as visualization tools and clustering to discover fuzzy membership 

structure. Implementing the asynchronous search algorithm, the ForwardSet() and 
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ValidateAttractor() functions will assist with the simulations. Sampling will collect data based 

on the Markov Chain Monte Carlo method. The process starts from a randomly chosen set of 

states ܵ = ,ଵݏ} … ,  }, where ݇ represents the number of states in a subset of the state space. Inݏ

Table 3, k=2n, where n=15 in all experiments except for experiment VIII (mammalian cell cycle) 

where n=20. The mammalian cell cycle is a small GRN which contains a total of 20 nodes, 

therefore all nodes were used. Each state is sampled N=1000 times. Then, a high number of state 

transitions are performed in each sample to reach a potential attractor, where the maximum 

number of transitions is r=5000. For this study, r=5000 is sufficient for all states to reach an 

attractor. No statistics were collected for the number of iterations sufficient to reach an attractor. 

The algorithm will use the ForwardSet() function to validate the attractor. The attractor is placed 

into a list and it will be used for validation during the sampling process. During the sampling 

process, a state ݏ will transition to another state using the T_Asynch() function, and the new state ݏ will be validated against the list of attractors. If the new state ݏ is not in the list of attractors, 

then more transitions will take place until an attractor is hit; this hit will count as one sample. A 

large number of samples, N=1000, will be taken for each state ݏ ∈ ,ଵݏ} … ,  }, because eachݏ

state can potentially hit different attractors per sample. 

 
Table 3: Variables used for the experiments. 

Formulate Criteria 

 Next, all of the samples collected were saved to a file so other applications can access the 

data quickly and reliably during subsequent exploratory data analysis. Applications that can use 
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this data are visualization tools such as Tableau. The purpose of exploratory data analysis for this 

study is to identify patterns from the data collected. Two approaches were taken to gain intuition 

into the data. 

 The first approach was to identify a GRN independent output class. For instance, an 

output class for T-LGL is defining the threshold to be ߬ = [߬௪,߬] = [0.9, 1.0]. Attractor ܣ 

is representing the healthy option, apoptosis, which is the death of a cancerous cell. Thus, all 

states would be classified as attractor ܣ, apoptosis, or not attractor ܣ, which means the cancerous 

cell continues to live and reproduce. 

 Another approach is to identify a GRN dependent output class. For example, using 

network analysis mentioned previously can be used as the sampling phase for each state. The 

number of hits is recorded each time state s reaches attractor A. Next, a histogram chart is 

created, similar to Figure 6, starting with states with the lowest number of hits and progressing 

with states that have larger number of hits. The histogram’s hills and valleys is one way of 

identifying clusters. A cluster is a subset of states with similar fuzzy membership vectors. Once 

the clusters have been discovered, then rules can be used to predict that a state s is leading to 

attractor A with probability ܲ(ݏ, (ܣ ∈ ߬ = [߬௪,߬], otherwise not. ߬௪ and ߬ is used to 

define the lower and upper bounds of a specific cluster. Trying to identify the best clusters for 

this research is out of scope. Thus, all experiments uses ߬ = [߬௪,߬] = [0.9, 1.0]. 
These machine learning methods will help predict fuzzy membership vectors for 

randomly chosen states. This research is intended to discover rules to predict that a state s 

leading to attractor ܣ when ߬ = [߬௪,߬]. Once the output classes have been identified, the 

use of decision trees, SVMs, and naïve Bayesian classifiers will be used in the classification 

process. 
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Classification of States 

Providing prediction based on statistical machine learning tools, such as decision trees, 

SVMs, and naïve Bayesian classifiers, will show if a state belongs to a healthy output class. A 

healthy output class is a class that is most desirable to clinical biologist. For example, reaching 

apoptosis is the most desirable attractor in T-LGL because this is destroying cancer. Finding 

states that can reach apoptosis within threshold range ߬ = [߬௪,߬] is a desirable output class 

for T-LGL. Once a set of thresholds, ߬௪ and ߬, have been identified, then decision trees 

will be used to identify a set of rules to predict accurately whether a state ݏ belongs to the output 

class. Cross validation methods will be used to setup training and test sets from collected data in 

order that the classifiers can be fitted correctly to make accurate predictions. A typical approach 

in 10-fold cross-validation is to remove the test cases and partition the remaining observations 

into 10 equal sets. In each of 10 training runs the classifier model is trained on 9 of the 10 sets 

and the parameters are fine-tuned using the remaining set to improve performance. The model 

with the fine-tuned parameters is tested using the held-back test data. But, for this research, no 

test cases will be in usage. The cross-validation process will fine tune the parameters only. 

SVMs and naïve Bayesian classifiers can be used to compare prediction accuracy. These rules 

will be used to classify new initial states ݏ ∉ ܵ = ,ଵݏ} … ,  } as positive or negative, where S isݏ

not part of the initial sampling process. The research will communicate the results through 

visualization, stories, and/or interpretable summaries. 

Summary 

 Machine learning techniques will be used to predict a state’s output class of a given 

GRN. This research methodology will have a choice of GRN and a choice of a machine learning 

algorithm, and an output class which is the threshold range and attractor ܣ as the output class. 
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Data will be collected during the simulation of a GRN on a random set of states. The data 

collection will be used to identify threshold ranges and to train classifiers to accurately predict a 

state’s output class. The output class or rule sets produced from the machine learning methods 

will be tested to predict accurate fuzzy membership vectors of other states chosen at random. 

This methodology will be applied to other GRNs to validate its accuracy. The output class 

consists an attractor A and a threshold range ߬ = [߬௪,߬], and the threshold is measured in 

percentage for fuzzy membership of a random state. While this research will focus on T-LGL for 

presentation and refinement of the methods used, it also will present results for other networks 

such as Abscisic Acid signaling model (ABA), Mammalian Immune response to B. 

bronchiseptica infection (Immune Bb), Cardiac Development, and Mammalian Cell Cycle.
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Chapter 4 

Results 

 

Introduction 

 Fuzzy membership vectors are difficult to estimate for all states of large realistic GRNs. 

A GRN has elements expressed as on (true) or off (false), and if it has size ݊ number of elements, 

it will have a total number of 2n possible states. Such difficulty can be reduced by taking a subset 

of states and finding their fuzzy membership vectors. These fuzzy membership vectors can be 

used to train classifiers to predict the outcomes for the rest of the states with high accuracy. 

 Finding attractors and fuzzy membership vectors for a subset of randomly chosen states 

helped to determine the accuracy of fuzzy membership vectors for the rest of the states in 

realistic GRNs. Attractors were discovered by using randomly chosen states that transitioned into 

other states using Markov Chain Monte Carlo methods. This approach was used for all the GRNs 

in this work except for Cardiac Development and Mammalian Cell Cycle, in which all states 

were chosen for both GRNs. The Cardiac Development GRN has 215=32768 possible states and 

Mammalian Cell Cycle has 220=1048576 possible states. These two GRNs were small enough to 

choose all states for the study. 

After r=5000 number of transitions, the final resting state is tested to determine if it 

resides in an attractor. In preliminary tests, where r=2000 and r=4000, sometimes no attractor 

was reached for some states and the tests had to be repeated until r=5000 satisfied the problem 

for all states reaching an attractor. Each state is sampled N=1000 to estimate its fuzzy 

membership vector. Next, a new set of randomly selected states are chosen to determine their 

fuzzy membership vector. Once a threshold range ߬ = [0.9,1.0] is established and an attractor A 

is identified, the output class <A, ߬> is established. The states’ fuzzy vectors are used to label 
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each state; these states now comprise the training set. Once trained, the classifier could predict 

whether a state can reach the specified attractor or not. The 10-fold cross validation method was 

used to get an estimate of classifier performance of SVMs, Bayesian classifiers, and decision 

trees. 

 The results from exploratory data analysis and predictive analytics are used to answer the 

following research questions. Could machine learning methods identify accurate fuzzy 

membership vectors for states within GRNs? Which machine learning methods were most 

effective in accurately predicting fuzzy membership vectors for states? And, given a threshold, 

what are the most useful output classes in determining whether a state reaches or not reach an 

attractor? To accurately answer these questions, cross validation methods were used to train 

classifiers. While cross validation methods helped classifiers perform better, naive Bayesian 

classifiers needed principal component analysis for additional preprocessing to be competitive 

with the other classifiers. 

 Principal component analysis (PCA) is a statistical method for transforming large number 

of features for a data set with high correlation into a new set of uncorrelated features referred to 

as principle components. The state space for the data is reduced to a smaller space while 

retaining a large amount of variability to prevent the degradation of prediction accuracy of Naive 

Bayesian classifiers. GRNs, such as T-LGL, have large dimensional data that is highly 

correlated, which can cause problems for naive Bayes methods. This research uses PCA to 

improve the performance of Naive Bayesian classifiers to manage such high dimensional data. 

The performance of SVM and decision trees in this research degraded when using PCA, thus the 

results do not reflect the usage of PCA with SVMs or decision trees. After using PCA to improve 

naive Bayesian classifiers, a measure of the importance of the study had to be implemented. 
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 For this research, the significance level was set to 0.01. The statistical significance was 

attained whenever the observed p-value of a test statistic was less than the significance level 

defined for this study. The p-value, which was derived from the chi-square value, was the 

probability of obtaining results at least as extreme as those observed. Also, a confusion matrix 

(Kohavi, 1998) was used to get information about actual and predicted classifications done by 

the classification systems. In this study, the confusion matrix was used to determine the chi-

square value which leads to computing the p-value. 

Experiments I, II, III, and IV 

 The T-LGL model contains six external input nodes (or source input nodes) which 

represent extracellular stimuli (Figure 10), adding a stochastic component to the network, or a 

background noise that exists in all biological systems. The nodes are Interleukin 15 (IL15), 

which is a cytokine that stimulates the proliferation of NK-cells (natural killer cells) and T-cells 

(Thymus cells); Stimuli, which is an antigen stimulation of leukemia in a T-cell; Platelet-derived 

growth factor beta polypeptide (PDGF), which is a key master switch in controlling these 

survival pathways in T-LGL leukemia; Stimuli2, which is a new and stronger antigen stimulation 

of leukemia in a T-cell; Protein tyrosine phosphatase, receptor type, C (CD45); and Tax p40 

Human T-Lymphotropic virus 1 (TAX). 

Source Input Nodes 
IL15         Interleukin 15 
Stimuli      The presence of leukemia 
PDGF         Platelet-derived growth factor beta polypeptide 
Stimuli2     A stronger presence of leukemia 
CD45         Protein tyrosine phosphatase C 
TAX          Tax p40 Human T-Lymphotropic virus 1 

 
Figure 10: Six external input nodes for T-LGL experiments. 

 For each T-LGL experiment, IL15, Stimuli, PDGF, and TAX are expressed (on) or set to 

true. Gene expression is the process by which information from a gene is used in the synthesis of 
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a functional RNA or protein. Stimuli2 and CD45 were chosen to be a combination of on or off, 

which produces four experiments. CD45 is a complex enzymatic reactions that is performed by 

the concerted action of protein kinase and phosphatase. When CD45 is not expressed, the cellular 

process can result in disease conditions such as leukemia. When Stimilus2 is expressed, this 

represents a strong presence of leukemia, and when it's not expressed, there is a weak presence of 

leukemia since stimuli is always expressed. Apoptosis (attractor A for this study) was initially set 

to false (off) for all states. If apoptosis is set to true (on), then all states with this setting will 

reach apoptosis due to this initial setting. 

 A subset of states, 215 = 32768 states or 
ଶభఱଶలబ =  10ିଵଶ% of the states, was chosen ݔ 2.8422

randomly. Once chosen, these same states were used in experiments I, II, III, and IV. The 

number of samplings per state was set to N=1000. The number of transitions allowed per state 

was set to r=5000, which for this study was enough for every state to successfully hit an 

attractor. Initially, r=1000 and r=2000 were used but there was a high rate of unsuccessful 

attempts to reach an attractor, whereas r=5000 had a 100% success rate of reaching an attractor 

in all experiments. 

Experiment I (Stimuli2=false and CD45=true) 

 Three attractors were discovered which are shown in Table 1. The healthy attractor A 

(apoptosis) was considered for this study whereas the other two cancerous attractors were treated 

as unhealthy. The state s was considered to be in attractor A if and only if it's within the threshold 

range ߬, which forms the output classes of <A, ߬>. Each state was sampled and the number of 

hits was recorded to determine its fuzzy membership vector. A histogram chart was created 

based on these hits in Figure 11. 
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 The output class was used to train classifiers using 10-fold cross-validation to make 

predictions for other states that were not part of the initial subset of states. A confusion matrix of 

observed values was created during the cross-validation step. A confusion matrix of expected 

values was also created from the confusion matrix of observed values. A chi-square calculation 

was derived from both observed and expected confusion matrices. The p-value was calculated 

from the chi-square calculation to show the significance of the experiment. 

 
 Figure 11: Experiment I – T-LGL with stimuli2 set to false and CD45 set to true. 
 

 The machine learning methods used were three decision trees (max splits=4, max 

split=20, and max split=100), naive Bayesian classifier (using PCA to improve accuracy), and 

support vector machines (SVM). The machine learning prediction accuracy in experiment I 

(shown in Table 9) to determine whether a state s was predicted to be in <A, ߬> or ¬<A, ߬> was 

89.1% for decision trees (max splits=4), 92.4% for decision trees (max splits=20), 94.1% for 

decision trees (max splits=100), 93.0% for naive Bayesian classifiers, and 96.6% for SVMs. The 
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chi-square was calculated (Figure 19 show an example of calculation) to determine the p-value. 

The chi-square calculations were 19221.954 for decision trees (max splits=4), 22334.182 for 

decision trees (max splits=20), 24416.256 for decision trees (max splits=100), 22736.272 for 

naive Bayesian classifiers, and 27681.290 for SVMs. In addition, once the chi-square calculation 

values are known, then the p-values can be derived. For all machine learning methods in all 

experiments, the p-value<0.0001 was extremely significant for this research. For all other 

experiments, Table 9 has the values machine learning accuracy, chi-square calculations, and p-

values. 

Experiment II (Stimuli2=true and CD45=true) 

 Two attractors were discovered which are shown in Table 1. The healthy attractor A 

(apoptosis) was again used for this study whereas the other cancerous attractor was treated as 

unhealthy. The state s was considered to be in attractor A if and only if it's within the threshold 

range ߬, which forms the output classes of <A, ߬>. Each state was sampled and the number of 

hits was recorded to determine its fuzzy membership vector. A histogram chart was created 

based on these hits in Figure 12. The output class was used to train classifiers using 10 fold 

cross-validation to make predictions for other states that were not part of the initial subset of 

states. Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values. 
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 Figure 12: Experiment II – T-LGL with stimuli2 set to true and CD45 set to true. 

Experiment III (Stimuli2=false and CD45=false) 

 Three attractors were discovered which are shown in Table 1. The healthy attractor A 

(apoptosis) was again used whereas the other two cancerous attractors were treated as unhealthy. 

The state s was considered to be in attractor A if and only if it's within the threshold range ߬, 

which forms the output classes of <A, ߬>. Each state was sampled and the number of hits was 

recorded to determine its fuzzy membership vector. A histogram chart was created based on 

these hits in Figure 13. The output class was used to train classifiers using 10 fold cross-

validation to make predictions for other states that were not part of the initial subset of states. 

Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-values. 
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 Figure 13: Experiment III – T-LGL with stimuli2 set to false and CD45 set to false. 
 

Experiment IV (Stimuli2=true and CD45=false) 

 Two attractors were discovered which are also shown in Table 1. The healthy attractor A 

(apoptosis) was again used whereas the other cancerous attractor was treated as unhealthy. A 

state s is considered to be in attractor A if and only if it were within the threshold range ߬ =[߬௪,߬] = [0.9, 1.0], which forms the output classes of <A, ߬> and ¬<A, ߬>. Each state was 

sampled and the number of hits was recorded to determine its fuzzy membership vector. A 

histogram chart was created based on these hits in Figure 14. The output class was used to train 

classifiers using 10 fold cross-validation to make predictions for other states that were not part of 

the initial subset of states. Table 9 shows the outcome to machine learning accuracy, chi-square 

calculations, and p-values. 
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 Figure 14: Experiment IV – T-LGL with stimuli2 set to true and CD45 set to false. 
 
Experiments V 

Three source input nodes ABH1, ERA1, and AGB1 was set to true (on). If these three 

nodes were allowed to vary in value, then there would be 16 attractors instead of two. During 

preliminary testing, there were eight attractors for stomatal closure and the other eight for 

stomatal opening. Thus, forcing the three nodes to remain static throughout state creation allows 

for the study to focus on two attractors instead of 16. Also, the number of samplings per state 

was set to N=1000, and the number of transitions allowed is set to r=5000. These parameters, 

N=1000 and r=5000, also apply to experiments VI - VIII. 

 Two attractors were discovered which are also shown in Table 4. The basin of attraction 

for both attractors do not overlap. Each state was sampled N=1000 times. The transition of each 

state either hit attractor A 0% or 100% of the time. The presence of ABA closes the guard cells 

and the absent of ABA opens the guard cells. The ABA GRN does not include threshold for 

ABA building up in guard cells to slowly close nor does it include pathways for guard cells to 
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absorb ABA to slowly reopen. The healthy attractor A (stomatal closure) was used whereas the 

other attractor B (stomatal opening) was treated as unhealthy. Unhealthiness for this experiment, 

represented by attractor B, is turgor pressure and water content are low but the stomatal guard 

cell remains open. 

 When turgor pressure is lost, the stoma closes. In angiosperms and gymnosperms, 

abscisic acid (ABA) is the hormone that triggers the closing of the stomata guard cells when soil 

water is insufficient to keep up with transpiration. Turgor pressure is the pressure exerted on a 

plant cell wall by water passing into the cell by osmosis which forces the plant to stand upright. 

The reduction of pressure causes the plant to wilt. The guard cells are specialized cells in the 

epidermis of leaves, stems, and other organs that are used to control gas exchange. ABA binds to 

receptors at the surface of the plasma membrane of the guard cells.  

 A state s is considered to be in attractor A if and only if the probability that they transition 

to the attractor is within the range ܲ(ݏ, (ܣ = [߬௪,߬] = [0.9, 1.0], which forms the output 

classes of <A, ߬> and ¬<A, ߬>. Each state was sampled and the number of hits was recorded to 

determine its fuzzy membership vector. The output class was used to train classifiers using 10 

fold cross-validation to make predictions for other states that were not part of the initial subset of 

states. Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values. 

Experiments VI 

For the cardiac development GRN, there are no source input nodes. Six attractors were 

discovered which are also shown in Table 5. Attractor A was used because it had the majority of 

hits compared to all of the other attractors. A state s is considered to be in attractor A if and only 

if it were within the threshold range ߬ = [߬௪,߬] = [0.9, 1.0], which forms the output classes 
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of <A, ߬> and ¬<A, ߬>. Each state was sampled and the number of hits was recorded to 

determine its fuzzy membership vector. A histogram chart was created based on these hits in 

Figure 15. The output class was used to train classifiers using 10 fold cross-validation to make 

predictions for other states that were not part of the initial subset of states. Table 10 shows the 

outcome to machine learning accuracy, chi-square calculations, and p-values. 

 
Figure 15: Experiment VI – Cardiac Development. 

Experiments VII 

For the Mammalian Immune Response to B. Bronchiseptica Infection (Immune Bb) 

GRN, there are no source input nodes. Ten attractors were discovered which are also shown in 

Table 6. The healthy attractor A was used because it had the majority of hits compared to all of 

the other attractors. In addition, the other attractors were treated as unhealthy. A state s is 

considered to be in attractor A if and only if it were within the threshold range ߬ = [߬௪,߬] =[0.9, 1.0], which forms the output classes of <A, ߬> and ¬<A, ߬>. Each state was sampled and the 
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number of hits was recorded to determine its fuzzy membership vector. A histogram chart was 

created based on these hits in Figure 16. The output class was used to train classifiers using 10 

fold cross-validation to make predictions for other states that were not part of the initial subset of 

states. Table 10 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values. 

 
Figure 16: Experiment VII - Mammalian Immune Response to B. Bronchiseptica Infection 
(Immune Bb). 
 
Experiments VIII 

 For the mammalian cell cycle GRN, there are no source input nodes. Three attractors 

were discovered which are also shown in Table 7. The healthy attractor B was used because it 

had the majority of hits compared to all of the other attractors. In addition, the other attractors 

were treated as unhealthy. A state s is considered to be in attractor B if and only if it were within 

the threshold range ߬ = [߬௪,߬] = [0.9, 1.0], which forms the output classes of <B, ߬> and 

¬<B, ߬>. Each state was sampled and the number of hits was recorded to determine its fuzzy 
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membership vector. A histogram chart was created based on these hits in Figure 17. The output 

class was used to train classifiers using 10 fold cross-validation to make predictions for other 

states that were not part of the initial subset of states. Table 10 shows the outcome to machine 

learning accuracy, chi-square calculations, and p-values.

  

 Figure 17: Experiment VIII - Mammalian Cell Cycle 

Data Collection and Analysis 

 This research identified all of the attractors for ABA, Cardiac Development, Immune Bb, 

T-LGL, and Mammalian Cell Cycle. Tables 4, 5, 6, and 7 comprise the list of attractors for each 

GRN with the exception of T-LGL. Tables 1 and 2, discussed earlier, provide the list of 

attractors for T-LGL. The list of attractors was saved to a file for future use to avoid duplicating 

the search. 
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Attractors A (Stomatal Closure) B (Stomatal Opening) 
INPUT NODES 

ABH1 ON ON 
ERA1 ON ON 
AGB1 ON ON 

NODES 
ABA ON OFF 
GCR1 Oscillates Oscillates 
SphK ON OFF 
S1P ON OFF 

GPA1 ON Oscillates 
PLD ON Oscillates 
PA ON Oscillates 
pHc ON OFF 

OST1 ON OFF 
ROP2 ON Oscillates 
Atrboh ON OFF 
ROS ON OFF 

H_ATPase OFF ON 
ABI1 OFF OFF 
RCN1 ON OFF 
NIA12 ON OFF 
NOS OFF OFF 
NO OFF OFF 
GC OFF OFF 

ADPRc OFF OFF 
cADPR OFF OFF 
cGMP OFF OFF 
PLC OFF OFF 
InsP3 OFF OFF 
InsPK ON OFF 
InsP6 ON OFF 
CIS OFF OFF 

Ca2_ATPase OFF OFF 
Ca2_c OFF OFF 

AnionEM ON OFF 
Depolar ON Oscillates 
CaIM OFF OFF 
KOUT ON Oscillates 
KAP ON Oscillates 
KEV OFF OFF 
PEPC OFF ON 
Malate OFF ON 
RAC1 OFF ON 
Actin ON OFF 

Closure ON OFF 

Table 4: The attractors of Abscisic Acid Signaling (ABA). This table shows the state of 
the nodes for all possible combinations of input signals in the presence and lack of 
presence of Abscisic acid. The healthy attractor chosen for this study on ABA is the 
stomatal guard cell closure. 
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Attractors A B C D E F 
INPUT NODES   

  
NODES   

exogen_BMP2_I OFF OFF OFF ON ON ON 
Fgf8 OFF OFF OFF OFF OFF ON 
Tbx1 OFF ON OFF OFF OFF ON 
Tbx5 OFF OFF ON OFF ON OFF 

Foxc1_2 OFF ON OFF OFF OFF ON 
exogen_canWnt_II OFF ON OFF OFF OFF ON 
exogen_BMP2_II OFF OFF OFF ON ON ON 

Mesp1 OFF ON OFF OFF OFF OFF 
Dkk1 OFF ON OFF OFF OFF OFF 
Bmp2 OFF OFF OFF ON ON OFF 
Isl1 OFF ON OFF OFF OFF ON 

canWnt OFF ON OFF OFF OFF ON 
GATAs OFF ON ON OFF ON ON 

exogen_CanWnt_I OFF ON OFF OFF OFF ON 
Nkx2_5 OFF ON ON OFF ON ON 

 Table 5: The attractors of Cardiac Development. 
 
 

Attractors A B C D E F G H I J 
INPUT NODES       

      
NODES       

Bb OFF ON OFF OFF OFF OFF OFF OFF ON OFF 
TTSSI OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 
TTSSII OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 

Oag OFF ON OFF OFF OFF OFF OFF OFF ON OFF 
EC OFF ON OFF OFF OFF OFF OFF OFF ON OFF 
Cab OFF ON ON OFF OFF ON ON OFF OFF ON 
C OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 

AgAb OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
Oab ON ON ON ON OFF OFF ON OFF OFF OFF 
BC OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
PIC OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 

IL12I OFF OFF OFF ON ON ON ON OFF ON OFF 
IL12II OFF OFF OFF ON ON ON ON OFF ON OFF 
IL4I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
IL4II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
IL10I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
IL10II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
IFNgI OFF OFF OFF ON ON ON ON OFF ON OFF 
IFNgII OFF OFF OFF ON ON ON ON OFF ON OFF 

RP OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 
DP OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 
MPI OFF OFF OFF ON ON ON ON OFF ON OFF 
MPII OFF OFF OFF ON ON ON ON OFF ON OFF 
AP OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 
T0 OFF ON OFF ON ON ON ON OFF ON OFF 
TrII OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 
TrI OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 

Th1II OFF OFF OFF ON ON ON ON OFF ON OFF 
Th1I OFF OFF OFF ON ON ON ON OFF ON OFF 
Th2II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
h2I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF 
DCI OFF ON OFF ON ON ON ON OFF ON OFF 
DCII OFF ON OFF ON ON ON ON OFF ON OFF 
PH OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 

Table 6: The attractors of Mammalian Immune Response to B. Bronchiseptica Infection 
(Immune Bb). 
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Attractors A B C 
INPUT NODES 

        
NODES 

EGF OFF OFF ON 
 CDK6 OFF ON ON 
 CDK2 OFF ON ON 
 ErbB1 OFF OFF ON 

 ErbB2_3 OFF OFF ON 
 ERa OFF ON ON 

 cMYC OFF ON ON 
 CycE1 OFF ON ON 
 ErbB3 OFF OFF ON 
 CycD1 OFF ON ON 

 p21 OFF OFF OFF 
 IGF1R OFF ON OFF 
 MEK1 OFF ON ON 
 CDK4 OFF ON ON 
 Akt1 OFF ON ON 
 pRB OFF ON ON 

 ErbB2 OFF OFF ON 
 ErbB1_2 OFF OFF ON 

 p27 OFF OFF OFF 
 ErbB1_3 OFF OFF ON 

 Table 7: The attractors of Mammalian Cell Cycle. 
 
 The list of attractors was collected using Markov Chain Monte Carlo method. The 

method used a set of randomly chosen start states. Each state was sampled N=1000 times, where 

each sample is a transition sequence that were run for each sampled state, to determine their 

fuzzy membership vectors on overlapping attractors. Furthermore, each sampling of a start state 

involved transitioning to one state then another state until this transition process ends at an 

attractor. The maximum number of transitions was set to r=5000 to guarantee successful hits to 

an attractor. The number of hits to each attractor was tallied, where the total number of hits to all 

attractors for a state equals 1000. 

 The number of randomly selected states for each GRN was 32768, with the exception of 

the mammalian cell cycle, which used all 1048576 states. All states also were used for cardiac 

development, which is a small GRN with only 15 nodes and has a total of 32768 states. 

Choosing a subset of states reduced the amount of time needed to process the data collection 

phase of this research. 

 The data was stored in flat files. Each state was sampled N=1000 times and was 

associated with the number of hits it had with each attractor, which totaled 1000 hits. Each 
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attractor was labeled A, B, C, etc., whereas for T-LGL, attractor A was renamed to apoptosis to 

represent cellular death. Table 5 shows the first few states and their number of hits to each 

attractor. 

States Apoptosis Attractor B Attractor C 

s000000000000001100110001010101001001000001001100011010011010 1000 0 0 

s000000000000010000011111001100100000110101011100100010010000 1000 0 0 

s000000000000011111110001110011111011000111010001000100001100 813 128 59 

s000000000000101000011111110001011010000000111001010110011000 842 98 60 

s000000000001001001000100111110100110011100110101001100011000 1000 0 0 

s000000000001001100000100110100011101001100111111101111111110 1000 0 0 

s000000000001010011111001100100011001000101101110110000010000 1000 0 0 

s000000000001011011100101000001101000110001010111110001001000 1000 0 0 

s000000000001101100011100011101001100111011001111110011000110 1000 0 0 

s000000000001101100100010010101100110000111011100110110100110 1000 0 0 

Table 8: The first 10 start states from T-LGL1 with N=1000 sampling each and the number of 
times each hit a given attractor. 
 
 The structure within a GRN was identified by grouping each state by the number of hits 

to a specific attractor. A visualization of the structure was created such as those in Figure 11, 12, 

13, and 14. The threshold range ߬ was set for states that reached apoptosis as ߬ = ൣ߬௪,߬൧ =[0.9, 1.0] to form the output classes of <A, ߬> and ¬<A, ߬>. Classifiers were trained using 10-

fold cross validation (and PCA to improve the accuracy of Naive Bayesian classifiers) to predict 

whether a state reached apoptosis (or not) based on the threshold given. 

 In initial research, naive Bayesian classifiers did not fare well with data that had high 

multi-dimensional subspace, such as T-LGL GRN. Principal component analysis (PCA) can 

solve the problem of high dimensions with dimensionality reduction methods. When PCA was 

applied to the data before using naive Bayesian classifiers, the prediction accuracy greatly 

improved, which allowed the classifier to compete closely with SVM and decision trees. 

However, when PCA was applied before using SVM and decision trees, the classifiers prediction 
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accuracy was reduced; therefore this study reports only outcomes of naive Bayesian classifiers 

using PCA and the other two classifiers without using PCA. 

 Some PCA algorithms, such as the one used in this study, had a pre-processing stage 

before applying PCA. This preprocessing normalized the mean and variance of the data. The 

preprocessing algorithm is shown in Figure 18. 

The first two steps zeros out the mean of the data. 

ߤ ݐ݈݁ :1 ݁ݐܵ = 1݉  ()ݔ
ୀଵ  

:2 ݁ݐܵ ()ݔ ℎݐ݅ݓ()ݔ ℎܿܽ݁ ݈ܴ݁ܿܽ݁ −  ߤ
The last two steps rescales each coordinate for normalizing to unit variance. 

:3 ݁ݐܵ ଶߪ ݐ݈݁ = 1݉  ()ݔ  

݁ݐܵ 4: ݈ܴ݁ܿܽ݁ ݁ܽܿℎ ()ݔ ℎݐ݅ݓ ߪ()ݔ  

 Figure 18: Preprocessing the data before PCA to normalize its mean and variance. 

 Consider a training set, X, with the sample mean of each column shifted to zero, where 

each of the n rows represents a different repetition of the experiment, and each of the p columns 

gives a feature for a state s, which is a result (0 or 1) from a particular Boolean network function. 

The transformation is defined by a set of p-dimensional vectors of weights ݓ() = ,ଵݓ) … , ()ݔ )() that maps each row vectorݓ ∈  to a new vector of principal ࢄ

components ݐ() = ,ଵݐ) … , ()ݐ )(), given byݐ = ()ݔ ∗  in such a way that the individual ()ݓ

variables of ݐ considered over the data set successively inherit the maximum possible variance 

from ݔ, with each vector of weights w constrained to be a unit vector. 
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 The first principal component was calculated using the following steps. If ||ݓ|| = 1, 

vector ݔ() project on ݓ has length ݔ() ∗  To maximize the variance of the projections, we .ݓ

chose a unit-length ݓ so as to maximize arg max‖௪‖ୀଵ{௪௪௪௪ }. The first loading vector ݓ(ଵ) 
has to satisfy ݓ(ଵ) = arg max‖௪‖ୀଵ{∑ ଶ()(ଵݐ) } = arg max‖௪‖ୀଵ{∑ ()ݔ) ∗ ଶ(ݓ }. Rewriting this in 

matrix form equivalently gives ݓ(ଵ) = arg max‖௪‖ୀଵ{‖ܺݓ‖ଶ} = arg max‖௪‖ୀଵ{ݓ்்ܺܺݓ}. 

Since ݓ(ଵ) has been defined to be a unit vector, it equivalently also satisfies ݓ(ଵ) =
arg max‖௪‖ୀଵ{௪௪௪௪ }. After the first principal component ݓ(ଵ) has been found, then further 

principal components ݓ(ଶ) to ݓ() can be computed. 

 The kth component can be found by subtracting the first ݇ −  1 principal components 

from ܺ, ܺ = ܺ − ∑ ିଵ௦ୀଵ்(௦)ݓ(௦)ݓܺ , and then finding the loading vector which extracts the 

maximum variance from this new data matrix 

()ݓ = arg max‖௪‖ୀଵ{ฮ ܺݓฮଶ} = arg max‖௪‖ୀଵ{௪ೖೖ௪௪௪ }. The full principal components 

decomposition of ܺ can therefore be given as ܶ = ܹܺ. Finally, for dimensionality reduction, ܮ 

dimensions can be kept. L in this research is computed by keeping 95% (or more) of the variance 

within the data. 

 This research used 10-fold cross-validation in training classifiers to accurately predict 

outcomes of states. In 10-fold cross-validation, the original sample is randomly partitioned into 

10 equal sized subsamples. Of the 10 subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining nine subsamples are used as training data. The 

cross-validation process is then repeated 10 times (the folds), with each of the 10 subsamples 

used exactly once as the validation data. The 10 results from the folds can then be averaged to 

produce a single estimation. The advantage of this method over repeated random sub-sampling is 



65 
 

 
 

that all observations are used for both training and validation, and each observation is used for 

validation exactly once. 

Findings 

 T-cell large granular lymphocytic (T-LGL) leukemia, which is a realistic genetic 

regulatory network (GRN) used in this study, possessed a fuzzy membership structure within its 

Boolean network state space. Figures 10 - 13 show the fuzzy membership of each start state 

(randomly chosen) for the apoptosis attractor in the T-LGL GRN. The same randomly chosen 

start states were used in all four histogram charts. Each state was sampled N=1000 times. During 

sampling, each time a state reached apoptosis, a bin representing the total was increased by one, 

forming the histogram charts. Furthermore, each bin represented the number of states with the 

same totals which determined their fuzzy memberships. Bin count 1000 is not shown in the 

Figures 10 and 11 because it will flatten all of the other bins in order to fit in the chart. All four 

histogram charts have Interleukin 15 (IL15), Tax p40 - Human T-lymphotropic virus 1 (TAX), 

Platelet-derived growth factor beta polypeptide (PDGF), and Antigen stimulation (Stimuli) set to 

true in the Boolean network. A threshold range was set ߬ = [߬௪,߬] = [0.9, 1.0], where the 

bins respectively are between 900 and 1000 hits. In this range, a state was considered to be in the 

apoptosis attractor and all other states were considered not to be in the apoptosis attractor.  

There are four histogram charts (Figures 10-13), one for each experiment (experiment I-

IV). In Figure 11, experiment I for T-LGL, new or stronger antigen stimulation (Stimuli2) was 

set to false and Protein tyrosine phosphatase, receptor type, C (CD45) was set to true within the 

Boolean network. In Figure 12, experiment II for T-LGL, stimuli2 was set to true and CD45 was 

also set to true. In Figure 13, experiment III for T-LGL, stimuli2 was set to false and CD45 was 

also set to false. And, in Figure 14, experiment IV for T-LGL, stimuli2 was set to true and CD45 
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was also set to false. Machine learning methods will use this range to predict whether other states 

are within this threshold or not. The importance of knowing the structures and trends that the 

histograms present helps in the implementation of machine learning methods to accurately 

predict whether state is either going to reach apoptosis or not. 

 Boolean networks were used to model GRNs. The T-LGL GRN has many Boolean 

network nodes and finding a subset of the states' fuzzy membership vectors was time consuming. 

For instance, each state was sampled N=1000 times and required maximum r=5000 transitions 

per sample to reach an attractor. Furthermore, it was intractable to find fuzzy membership for all 

states. Machine learning methods were used to predict the fuzzy membership of a state. A subset 

of states was selected randomly for sampling. Each state was sampled N=1000 times to 

determine its fuzzy membership vector. After the completion of sampling for all states, a 

threshold was set to determine whether a state can reach apoptosis ߬ = [߬௪,߬] = [0.9, 1.0]. 
Thus, states within the threshold were classified as positive and are in the apoptosis attractor, 

whereas states lower than 90% are classified as negative and were not in the apoptosis attractor.  

After the classification process, machine learning methods were trained with the sampled 

data. After training, the machine learning methods were used to predict the outcome for other 

states that were not part of the initial sampling set. This will allow scientists to choose a set of 

states to predict their classification without having to go through the sampling process, which 

can be time consuming. Although, some machine learning methods outperform others in 

prediction and readability. 

 A support vector machine (SVM) has the best prediction accuracy for predicting the 

outcome of whether a state will reach apoptosis in T-LGL GRN. Table 9 shows that SVMs led in 

accuracy for all four experiments in the ML Accuracy column. ML Accuracy is simply the 
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measure of how many predictions the SVM was able to get correct out of the total number of 

predictions.  

 The first column of Table 9 is the GRN being studied and the main attractor, apoptosis, 

which was used to determine whether a state is in apoptosis or not. Apoptosis was the only 

attractor chosen because this was the most desired state that helps clinical biologists solves 

problems with leukemia in white blood cells. The next column in Table 9 is the machine learning 

methods used for this study. Three types of decision trees were used. The smallest had a 

maximum of four decision splits to make predictions, the middle decision tree had a maximum of 

20 decision splits, and the largest decision tree had a maximum of 100 splits. SVMs and naive 

Bayesians classifiers use mathematics and statistics for prediction and do not use decision splits. 

Furthermore, decision trees in this study had output decision rules so that scientist can follow the 

logic of how the classifier makes its predictions. 

 The next two columns of Table 9 show the proportion of correct classification for the 

classifier to predict if a state that does not belong in apoptosis is indeed not in apoptosis or if a 

state that does belong in apoptosis is indeed in apoptosis. The two columns together are derived 

from a confusion matrix show in Figure 19. The first, not in attractor, is the true negative (TN) 

divided by total rows and the second, in attractor, is the true positive (TP) divided by total rows.  

 The next three columns of Table 9 are accuracy, precision, and recall. Accuracy is the 

proportion of correct results that a classifier achieved. For a classifier to accurately predict 

whether a state reaches apoptosis (or not), precision is the number of correct hits to attractor A 

divided by the number of all attempts. Recall is the number of correct results divided by the 

number of results that should have been returned. Chi-squared testing is used to compare two 

sets of attributes, the predicted values of a classifier and the actual values, to determine whether 
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the study is statistically significant or not. In Chi-squared testing we compare a set of observed 

values (O) against a set of expected values (E). The expected values are values that would be 

expected if there were no association between the predicted and actual values. The calculation of ܿℎ݅ଶ is achieved by using the identity ܿℎ݅ଶ =  ∑ (ைିா)మா . If the result is above a given critical 

threshold value then the study has a statistical significance. 

 Given a classification rule, it can be determined whether the rule is surprising (i.e. 

unexpected) or not by determining whether there exists some special relationship between the 

attributes and the classifier, or that the rule is simply one that is expected assuming a normal chi-

squared distribution. A probability value or p-value (p) derived from the critical values of chi-

square distribution has shown that all experiments in this study are statistically extremely 

significant, where  < 0.0001. SVM and decision trees both show extreme significances, but 

SVM has the advantage of performing more accurately whereas decision trees output rules on 

how its decisions were calculated. 
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 Predicted 0 
(No) 

Predicted 1 
(Yes) 

Row Total 

Actual 0 (No) TN=9540 FP=513 10053 

Actual 1 (Yes) FN=617 TP=22098 22715 

Column Total 10157 22611 32768 

 

 Predicted 0 (No) Predicted 1 (Yes) Row 
Total 

Actual 0 
(No) 

(10157)(10053)/(32768) 
 =3116.099 

(22611)(10053)/(32768) 
=6936.901 

10053 

Actual 1 
(Yes) 

(10157)(22715)/(32768) 
 =7040.901 

(22611)(22715)/(32768) 
 =15674.1 

22715 

Column 
Total 

10157 22611 32768 

(a) Confusion Matrix - Observed Values 
 
 

(b) Confusion Matrix - Expected Values 
 
 

Observed (O) Expected (E) (ܱ − ଶ(ܧ ⁄ܧ  

9540 3116.099 13237.7001 

617 7040.901 5860.9692 

513 6963.901 5948.8385 

22098 15674.100 2632.7822 

 Chi-square Total 27681.2900 

 

Critical values of Chi-square Distribution 

DF p<0.20 p<0.10 p<0.05 p<0.02 p<0.01 p<0.001 p<0.0001 

1 chi>1.64 chi>2.71 chi>3.84 chi>5.41 chi>6.63 chi>10.83 chi>15.14 

(c) Chi-square calculation 
 

(d) P-value Calculation 

Figure 19: The confusion matrix of observed values for the SVM in LGL1-Apoptosis. Steps a, b, 
c, and d show the steps used to arrive at the p-value. It uses true negatives (TN), false negative 
(FN), false positive (FP), true positive (TP), and degree of freedom (DF) to describe the 
predicted data. 
 
 

 
 Table 9: Machine learning prediction accuracy for the T-LGL GRN. 
 
 Scientists that are focused only on accuracy could use SVMs without insight on why such 

prediction methods are accurate. In all four experiments, SVMs outperformed decision trees and 
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naive Bayesian classifiers. For SVMs, experiment I was 96.6% accurate, experiment II was 

96.9% accurate, experiment III was 93.7% accurate, and experiment IV was 93.6% accurate. 

Naive Bayesian classifiers performed poorly and needed additional preprocessing to be 

competitive. Thus, principal component analysis (PCA) was used to boost the performance of a 

naive Bayesian classifier to get better accuracy in its predictions. PCA was used for SVM and 

decision trees but their performance in accuracy was reduced. Thus, Table 9 only reflects naive 

Bayesian classifiers with the usage of PCA. Furthermore, if the analysis of the processes that a 

machine learning algorithm uses to achieve its predictions is more important than accuracy, 

decision trees can fulfill that need with rules on how its predictions are calculated.  

 The decision trees generated rules that are easy to understand. Figure 20 shows a small 

decision tree's output of rules. This tree had at most four decision splits. The tree of questions are 

used as a representation language, each node from the tree is either a test about an attribute or a 

final decision. This four-node decision tree had good accuracy in prediction. For the four-node 

decision tree (Table 9), experiment I was 89.0% accurate, experiment II was 87.7% accurate, 

experiment III was 76.6% accurate, and experiment IV was 76.9% accurate. In addition, 20-node 

and 100-node decision trees showed more accuracy that the four-node counterpart. Theirs were 

92.4% and 94.1% respectively for experiment I, 91.7% and 93.7% respectively for experiment II, 

80.4% and 83.7% respectively for experiment III, and 79.9% and 83.5% respectively for 

experiment IV. While accuracy and rules are an important part of this study, output classes can 

affect the outcome of those accuracies and rules. 
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T-LGL1 
node-1  if TBET < 0.5 then node-2 elseif TBET >= 0.5 then node-3 else class = 1 
node-2  if Caspase < 0.5 then node-4 elseif Caspase >= 0.5 then node-5 else class = 0 
node-3  class = 1 
node-4  class = 0 
node-5  if DISC < 0.5 then node-6 elseif DISC >= 0.5 then node-7 else class = 1 
node-6  class = 0 
node-7  class = 1 
 
T-LGL2 
node-1  if TBET < 0.5 then node-2 elseif TBET >= 0.5 then node-3 else class = 1 
node-2  if Caspase < 0.5 then node-4 elseif Caspase >= 0.5 then node-5 else class = 0 
node-3  class = 1 
node-4  class = 0 
node-5  if DISC < 0.5 then node-6 elseif DISC >= 0.5 then node-7 else class = 1 
node-6  class = 0 
node-7  class = 1 
 
T-LGL3 
node-1  if Caspase < 0.5 then node-2 elseif Caspase >= 0.5 then node-3 else class = 1 
node-2  if DISC < 0.5 then node-4 elseif DISC >= 0.5 then node-5 else class = 0 
node-3  class = 1 
node-4  class = 0 
node-5  if TBET < 0.5 then node-6 elseif TBET >= 0.5 then node-7 else class = 1 
node-6  class = 0 
node-7  class = 1 
 
T-LGL4 
node-1  if Caspase < 0.5 then node-2 elseif Caspase >= 0.5 then node-3 else class = 1 
node-2  if DISC < 0.5 then node-4 elseif DISC >= 0.5 then node-5 else class = 0 
node-3  class = 1 
node-4  class = 0 
node-5  if Ceramide < 0.5 then node-6 elseif Ceramide >= 0.5 then node-7 else class = 1 
node-6  class = 0 
node-7  class = 1 

 

Figure 20: Decision tree rules with a maximum split of four decision points. 

 The most useful output classes are finding states that belong to an attractor's true basin of 

attraction and finding states that are positively within a threshold range τ for attractor ܣ. The 

output classes are defined as <A, ߬> and ¬<A, ߬>. Using output classes allows for grouping and 

aggregating similar findings within one class from a group of related experiments. The output 

class consists of several elements. The first element, the attractors from experiment I-IV from the 

T-LGL GRN is used for this study. As mentioned previously, T-LGL is a large GRN, which was 

simulated with an asynchronous Boolean network that had 60 nodes. Each node is a transition 

function that changes the state of the GRN during simulation. The second element, the threshold 

range ߬ was set to ߬ = [0.9, 1.0]. Though, these were the ranges set for this study, it allows for 

future studies to adjust the ranges accordingly to their scientific needs. Along with the output 
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classes, there is a subset of states that were within the threshold ranges <A, ߬> and all other states 

that were outside threshold range ¬<A, ߬>. Another complement for the output classes are the 

rules generated by the decision tree. These rules are easy to understand and were generated from 

sampling statistics. Together, all of these elements formed the output class which gives enough 

information without burdening scientist with too much detail. 

Summary of Results 

 Four experiments were executed on the T-LGL GRN using different stimuli in each 

execution. A subset of states were sampled N=1000 times each. In each sampling process, an 

individual state would transition into a specified attractor or the state would not transition to that 

attractor. In addition, a fuzzy membership vector had been formed based on these hits and 

misses. Furthermore, states with similar fuzzy membership vectors are grouped together to form 

the bar chart to discover structures in fuzziness. Afterwards, a threshold range was set to further 

group states with fuzzy membership of ߬ = [߬௪,߬] = [0.9, 1.0] as the positive group and all 

other states as the negative group. Machine learning classifiers were trained on these thresholds 

for future prediction of other states not part of the original selected subset. The accuracy of these 

classifiers was tested using 10-fold validation and had shown to have extreme statistical 

significance. This process will be generalized to other GRNs and will be discussed in the next 

chapter. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

 Experiments were conducted with five GRNs: T-LGL, ABA, cardiac, Immune Bb, and 

mammalian cell cycle. The same process was used to generate start states for training and testing 

across all GRNs. The number of sampling taken in the T-LGL experiments, N=1000 for each 

state, was also used for each additional GRN. The attractor that received the most overall hits 

was selected for each GRN, and the number of hits or misses during sampling to that attractor 

was collected, and a visual chart based on the number of hits per state was generated. The 

visualizations of these charts are represented in Figures 10 - 17. Machine learning methods were 

trained on the collected data to predict whether a state will transition into a healthy attractor or 

not within threshold range τ. Taking the chi-square score and p-value will determine the 

significance of the hypothesis testing for each experiment. 

 This study uses asynchronous Boolean networks to model and simulate GRNs. An initial 

subset of states was used to determine fuzzy membership vectors. SVMs, decision trees, and 

naive Bayesian classifiers was used to discover patterns in the fuzzy membership vectors. The 

findings from this study suggest these machine learning methods can accurately predict whether 

a state is within a threshold range ߬. Experimenting with additional GRNs has shown in Table 10 

that SVMs, decision trees, and naïve Bayesian classifiers can have high accuracy and extreme 

statistical significance in their predictions. SVMs are the most accurate of the three machine 

learning classifiers whereas decision trees can produce easy to understand rules such as those 

listed in appendix A. These rules can be analyzed to determine how decision trees arrive to their 

conclusions. 
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Table 10: Machine learning prediction accuracy for ABA, cardiac development, Immune Bb, T-
LGL, and mammalian cell cycle. 
 
  For the GRNs studied in this research, it was seen to hold that realistic GRNs generally 

possess membership structures within overlapping attractors. For each GRN, the most active 

attractor was selected to be studied. Figures 10 - 17, mentioned in the previous chapter, shows 

the structure of the most active attractor for each GRN. Each visualization chart verifies the 

membership structures for a subset of states. The charts reveal that some states within 

overlapping attractors tend to transition to one attractor more than any other attractor being 

studied or will only transition to one attractor every time. The attractor that has the most 

transitions from a group of states is considered the most active attractor for this study. The other 
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states have less hits for the attractor being studied or simply have no hits in that attractor at all. 

Thus, some states are within the threshold range ߬ of being within the attractor where other states 

are not in that range. For the ABA GRN, a special case has arisen. ABA appears to have two 

non-overlapping attractors. Thus, a state is either in the healthy attractor A (stomatal closure) 

100% of the time during sampling or is never in attractor A, which means it is in attractor B 

(stomatal opening). 

  The study also shows that a group of states have similar fuzzy membership to 

overlapping attractors. For instance, some states invariably transitioned into an attractor A, 

whereas some states never transitioned into the same attractor A. Other states share similar 

percentages in between. The GRNs have states with similar fuzzy membership vectors which can 

be used to better formulate queries that are solvable by machine learning methods. These cluster 

of states can allow scientists in future studies to adjust their threshold range ߬ around states with 

common fuzziness. These states, grouped together, could be thought of as a super state, and these 

super states would adopt the fuzzy membership vector that represents the underlying states. 

 Machine learning can be used to identify accurate fuzzy membership vectors for states 

within a GRN. In the previous table (Table 10), SVMs ranged from being accurate 93% to 100% 

for all experiments. All machine learning methods had an extremely high statistical significance 

where the p-value (p) is less than 0.0001 for all experiments. Thus, using asynchronous Boolean 

networks as the simulation model can greatly improve the prediction accuracy of machine 

learning methods. However, this raises the question of whether asynchronous Boolean networks 

are too constrained as a modeling and simulation process for GRNs. 

As previously stated, the most effective machine learning method for accurate prediction 

accuracy was the SVM, however, the decision tree method produced easy to understand rules. 
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The SVM that was used makes linear separations of the data. The classifier outperformed all of 

the other classifiers in accuracy and had extreme statistical significance. Perhaps if a kernel was 

used to detect non-linearity within the data, the SVM could have improved its accuracy. A 

drawback on using SVMs is that it’s difficult to analyze how the classifier arrived to its 

prediction. Decision trees aren’t as accurate as SVM, but the classifier does produce rules that 

yield insight into the GRNs structure. These rules for each GRN are listed in appendix A. These 

rules can be analyzed to see how a classifier arrives to its predictions. The rules can be modified, 

written in another programming language, and embedded into other application to provide 

clinical analysis for scientists and useful for gaining insight. 

The output classes used for this study are the positive class <A, ߬> and its negation ¬<A, ߬>. In this study, the threshold was set to ߬ = [߬௪,߬] = [0.9, 1.0]. The best settings for each 

GRN could vary to get the most optimal results. But pursuing the best settings for each 

individual GRN was out of scope for this project. Also, these classes allow clinical biologist to 

repeat the same experiments in the future, possibly on a different subset of states, for validation 

and to solve their unique problems. 

A result found was that the ABA attractors do not overlap and this lack of overlap is the 

cause of a completely segregated structure. The fuzzy membership for the subset of states being 

tested is either 100% or 0% in attractor A. A possible reason for this outcome is that the 

asynchronous Boolean network model is simulating the opening and closing of guard cells that 

surrounds stomatal pores is a biological process that acts as a natural survival mechanism in 

taking in carbon dioxide and/or releasing oxygen. The stomatal guard cells are either opened (or 

in the process of opening) in the presence of ABA or closed (or in the process of closing) when 
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there is no ABA present. All fuzziness resides in the opening or closing of the guard cells 

whereas the attractors that represents opened or closed are absolute concepts. 

 Another result is that a four-node decision tree has a high degree of accuracy in its 

prediction rates for all GRNs considered. A possible reason for this unexpected outcome is that 

specific genes dominate the GRN process which contributes to the high success rate of a four-

node decision tree. One example for the four-node decision tree is that T-LGL has four dominant 

genes. Searching through the rules produced by the four-node decision tree reveals that the four 

genes with the most influence are TBET, Caspase, DISC, and Ceramide. This outcome suggests 

that complex GRNs, such as T-LGL, are dominated by a small group of genes for a specific task, 

in this case, apoptosis. Hence low-depth decision trees are effective. 

Four experiments were performed on T-LGL GRN and the study was extended to other 

GRNs, which was ABA, cardiac, Immune Bb, and mammalian cell cycle. With the other GRNs, 

the most active attractor was selected for study. After the machine learning classifiers were 

trained, the study also showed extreme statistical significance on the generalized study of the 

other GRNs too. However, for the overall methodology of this study, using asynchronous 

Boolean networks seems to constrain the overall project. The constraints help to structure the 

methodology to get meaningful results, but there is the possibility that using Boolean networks 

may not accurately simulate complex systems in cell biology. 

Contributions 

 It is difficult to predict the behavior of GRNs that are of realistic size and complexity. 

Asynchronous Boolean networks were used to model and simulate GRNs. They were used to 

efficiently identify a network's set of attractors and predict the likelihood of a state transitioning 
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into each of these network attractors. Fuzzy membership vectors were used to record the results 

of these probabilities through the modeling and simulation process. 

 The goal of this research was to explore methods to discover patterns for a meaningful 

classification of states in GRNs. The research design took a GRN and a machine learning method 

as input which produce the output classes <A, ߬> and ¬<A, ߬>. SVMs had the highest prediction 

rates, whereas naive Bayesian classifiers had the highest recall. However, decision trees 

produced easy to understand rules for prediction procedure. All experiments had an extreme 

significance with pvalue < 0.0001. 

This study has provided a process to model GRNs, which offered insight on how to 

optimize or control parts of the system by using machine learning techniques against fuzzy 

membership vectors. Using modeling and simulation of GRNs captured complex interactions 

between proteins, genes, and biochemicals. Thus, a fast prediction process to determine if a state 

or set of states has the likelihood of achieving a desired result was produced.  

The results had extreme statistical significance with all machine learning methods in all 

experiments showing a p-value of p < 0.0001. SVMs had the highest accuracy of all machine 

learning methods used. Although SVMs was generally higher in precision that all other methods, 

there was an exception in experiment VII (immune Bb). The decision tree with maximum of four 

nodes for decision had a precision=100.0% and naive Bayesian was next with precision=96.0%. 

Finally, naive Bayesian classifiers had the highest recall in general (ranges between 94.71% and 

98.75%), although SVMs weren't that far behind usually with a difference of one percentage 

point. However, naive Bayesian did poorly on recall with immune Bb with recall=3.67%. 

This study has shown that the design model has extreme statistical significance when 

predicting the outcome of a state. Once clinical biologist know the states produced by a 
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treatment, they can implement this design to predict the outcome of cancer. Although this 

research produced positive results, some recommendation will be given to improve this study. 

Recommendations 

While this study has demonstrated the modeling and simulation of a realistic GRN, many 

opportunities for extending the scope of this study remain. This section presents some of these 

directions. 

Additional Machine Learning Methods 

Extreme Gradient Boosting (XGBoost) can enhance the degree of flexibility and 

scalability as a machine learning method. The XGBoost classifier is implemented with the 

gradient boosting decision tree algorithm (Chen et al, 2016). Gradient boosting is a machine 

learning technique for regression and classification problems, which produces a prediction model 

in the form of an ensemble of weak prediction models in decision trees. It builds the model in a 

stage-wise fashion like other boosting methods do, and it generalizes them by allowing 

optimization of an arbitrary differentiable loss function. XGBoost utilizes parallelization of tree 

construction using all of your CPU cores during training, it uses distributed computing for 

training very large models using a cluster of machines, it manages very large datasets that don’t 

fit into memory, and utilizes cache optimization of data structures and algorithm to make best 

use of hardware. Implementation of this machine learning method can increase execution speed 

and model performance during the training phase. 

Neural Networks and Deep Learning Methods 

In another direction, using an overall model that is not constrained to be interpretable, a 

more accurate simulation model may be possible. A recurrent neural network model is one 

possibility. Some advantages of recurrent neural networks are having sigmoid non-linearity that 
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can be trained through gradient algorithms and comes with a learning algorithm with temporal 

behavior. These models can take a state s as input to produce a state s' as output. 

Perhaps a more complex recurrent neural network model based on long and short term 

memory deep learning (LSTM) algorithms could more efficiently solve the problem. LSTM 

blocks or networks are simple recurrent neural network which can be used as a building block of 

hidden layers for an eventually bigger recurrent neural network. The LSTM block is itself a 

recurrent network because it contains recurrent connections similar to connections in a 

conventional recurrent neural network. LSTM algorithms could learn traversal patterns for a start 

state but with a few exceptions compared to asynchronous Boolean networks. If a certain set of 

genes are expressed, LSTMs could abstract certain patterns to determine whether a state is likely 

to lead to an attractor. Asynchronous Boolean networks were not constrained to this requirement. 

Different paths that lead to the current state s can have an adverse effect on the probability of 

reaching the next state. The model, once trained, would have a traversal mechanism built in and 

a dynamic probability table to determine the changing percentages of reaching the next states. 

Developing Better Techniques 

A different approach is to develop better methods or techniques that accelerate state 

transition sequences that allow for larger training sets to be sampled. Larger training set would 

increase the accuracy of predictions for large GRNs such as T-LGL. Perhaps using parallel 

process and distributed processes could allow multiple states to be sampled at once. Or, 

developing better techniques for discovering structures in the GRN's state space to better identify 

useful output classes. 

Additional GRNs 

 This study used five GRNs, which were ABA, cardiac development, immune, T-LGL, 

and mammalian cell cycle. This study could be extended to a broader range of GRNs. Perhaps 
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GRNs based on groups of cells that form coordinated regulation where neighboring cells help 

regulate themselves as a group is another option. Or using GRNs where organisms mutate with 

environmental changes.  

Summary 

The research design takes a GRN and a machine learning method as input and produces 

output class <A, ߬> and its negation ¬<A, ߬>. The classifiers are trained to predict whether a state 

reaches a healthy attractor or not. The implementation of this methodology had extreme 

statistical significance where the pvalue < 0.0001 for all experiments, which means that all SVMs, 

naïve Bayesian classifiers, and decision trees had accurate predictions for all GRNs. 

Furthermore, the most accurate machine learning method was SVM, while decision trees 

produced easy to understand rules so clinical biologist can analyze the decision process. The 

GRN, ABA, does not have overlapping attractors which cause decision trees to produce rules 

that only had one line. The study also showed that clinical biologist can benefit from this method 

and can quickly get a response from this approach to solve their problems.  

Also discussed is that further research is needed. The implementation could be applied to 

other GRNs or consider using other machine learning classifiers too. Other suggestions offered 

are identifying characteristics of GRN that are best suited for a specific classifier. Also, deep 

learning is another alternative to extend this research. 
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Appendix A 

Decision Tree Rules 

----------------------------------------------------------------------------------------------------- 
ABA 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1 
2  class = 0 
3  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
1  if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1 
2  class = 0 
3  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
1  if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1 
2  class = 0 
3  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 20: ABA (experiment V) decision tree rules. 
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----------------------------------------------------------------------------------------------------- 
Cardiac Development 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0 
2  if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0 
3  class = 0 
4  class = 0 
5  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
1  if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0 
2  if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0 
3  class = 0 
4  class = 0 
5  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
1  if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0 
2  if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0 
3  class = 0 
4  class = 0 
5  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 21: Cardiac development (experiment VI) decision tree rules. 
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----------------------------------------------------------------------------------------------------- 
Immune Bb 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  class = 0 
 
medium 
----------------------------------------------------------------------------------------------------- 
 1  if Bb<0.5 then node 2 elseif Bb>=0.5 then node 3 else 0 
 2  if IL4II<0.5 then node 4 elseif IL4II>=0.5 then node 5 else 0 
 3  class = 0 
 4  class = 0 
 5  if IL12II<0.5 then node 6 elseif IL12II>=0.5 then node 7 else 0 
 6  if Cab<0.5 then node 8 elseif Cab>=0.5 then node 9 else 0 
 7  class = 0 
 8  class = 0 
 9  if Oab<0.5 then node 10 elseif Oab>=0.5 then node 11 else 0 
10  class = 0 
11  if DCII<0.5 then node 12 elseif DCII>=0.5 then node 13 else 0 
12  class = 0 
13  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
 1  if Bb<0.5 then node 2 elseif Bb>=0.5 then node 3 else 0 
 2  if IL4II<0.5 then node 4 elseif IL4II>=0.5 then node 5 else 0 
 3  if DCII<0.5 then node 6 elseif DCII>=0.5 then node 7 else 0 
 4  if Cab<0.5 then node 8 elseif Cab>=0.5 then node 9 else 0 
 5  if IL12II<0.5 then node 10 elseif IL12II>=0.5 then node 11 else 0 
 6  class = 0 
 7  if IL4II<0.5 then node 12 elseif IL4II>=0.5 then node 13 else 0 
 8  class = 0 
 9  if Oab<0.5 then node 14 elseif Oab>=0.5 then node 15 else 0 
10  if Cab<0.5 then node 16 elseif Cab>=0.5 then node 17 else 0 
11  if Cab<0.5 then node 18 elseif Cab>=0.5 then node 19 else 0 
12  class = 0 
13  if IL12II<0.5 then node 20 elseif IL12II>=0.5 then node 21 else 0 
14  class = 0 
15  if PIC<0.5 then node 22 elseif PIC>=0.5 then node 23 else 0 
16  if DCII<0.5 then node 24 elseif DCII>=0.5 then node 25 else 0 
17  if Oab<0.5 then node 26 elseif Oab>=0.5 then node 27 else 0 
18  class = 0 
19  if Oab<0.5 then node 28 elseif Oab>=0.5 then node 29 else 0 
20  if T0<0.5 then node 30 elseif T0>=0.5 then node 31 else 0 
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21  class = 0 
22  if IFNgI<0.5 then node 32 elseif IFNgI>=0.5 then node 33 else 0 
23  class = 0 
24  class = 0 
25  if T0<0.5 then node 34 elseif T0>=0.5 then node 35 else 0 
26  if T0<0.5 then node 36 elseif T0>=0.5 then node 37 else 0 
27  if DCII<0.5 then node 38 elseif DCII>=0.5 then node 39 else 0 
28  class = 0 
29  if PIC<0.5 then node 40 elseif PIC>=0.5 then node 41 else 0 
30  class = 0 
31  if DCI<0.5 then node 42 elseif DCI>=0.5 then node 43 else 0 
32  if IL10I<0.5 then node 44 elseif IL10I>=0.5 then node 45 else 0 
33  class = 0 
34  class = 0 
35  if DCI<0.5 then node 46 elseif DCI>=0.5 then node 47 else 0 
36  class = 0 
37  if DCII<0.5 then node 48 elseif DCII>=0.5 then node 49 else 0 
38  if IL10I<0.5 then node 50 elseif IL10I>=0.5 then node 51 else 0 
39  if T0<0.5 then node 52 elseif T0>=0.5 then node 53 else 1 
40  if IL10I<0.5 then node 54 elseif IL10I>=0.5 then node 55 else 0 
41  class = 0 
42  class = 0 
43  if PH<0.5 then node 56 elseif PH>=0.5 then node 57 else 0 
44  class = 0 
45  if DCI<0.5 then node 58 elseif DCI>=0.5 then node 59 else 0 
46  class = 0 
47  if Th2II<0.5 then node 60 elseif Th2II>=0.5 then node 61 else 0 
48  class = 0 
49  if DCI<0.5 then node 62 elseif DCI>=0.5 then node 63 else 0 
50  class = 0 
51  if IL12I<0.5 then node 64 elseif IL12I>=0.5 then node 65 else 0 
52  if IL10I<0.5 then node 66 elseif IL10I>=0.5 then node 67 else 0 
53  class = 1 
54  class = 0 
55  if IL12I<0.5 then node 68 elseif IL12I>=0.5 then node 69 else 0 
56  class = 0 
57  if AP<0.5 then node 70 elseif AP>=0.5 then node 71 else 0 
58  if IL12I<0.5 then node 72 elseif IL12I>=0.5 then node 73 else 0 
59  class = 0 
60  class = 0 
61  if BC<0.5 then node 74 elseif BC>=0.5 then node 75 else 1 
62  class = 0 
63  if Th2II<0.5 then node 76 elseif Th2II>=0.5 then node 77 else 0 
64  if Th1II<0.5 then node 78 elseif Th1II>=0.5 then node 79 else 0 
65  class = 0 
66  class = 0 
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67  if TrI<0.5 then node 80 elseif TrI>=0.5 then node 81 else 0 
68  if DCII<0.5 then node 82 elseif DCII>=0.5 then node 83 else 0 
69  class = 0 
70  class = 0 
71  if IL10I<0.5 then node 84 elseif IL10I>=0.5 then node 85 else 0 
72  if DCII<0.5 then node 86 elseif DCII>=0.5 then node 87 else 1 
73  class = 0 
74  if Oab<0.5 then node 88 elseif Oab>=0.5 then node 89 else 0 
75  class = 1 
76  class = 0 
77  if BC<0.5 then node 90 elseif BC>=0.5 then node 91 else 1 
78  if DP<0.5 then node 92 elseif DP>=0.5 then node 93 else 1 
79  class = 0 
80  class = 0 
81  if IL12I<0.5 then node 94 elseif IL12I>=0.5 then node 95 else 1 
82  if TrI<0.5 then node 96 elseif TrI>=0.5 then node 97 else 1 
83  class = 0 
84  if BC<0.5 then node 98 elseif BC>=0.5 then node 99 else 0 
85  class = 0 
86  class = 1 
87  class = 0 
88  class = 0 
89  class = 1 
90  class = 0 
91  class = 1 
92  class = 1 
93  class = 0 
94  class = 1 
95  class = 0 
96  class = 0 
97  class = 1 
98  class = 0 
99  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 22: Immune Bb (experiment VII) decision tree rules. 
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----------------------------------------------------------------------------------------------------- 
T-LGL – experiment I 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
3  class = 1 
4  class = 0 
5  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
6  class = 0 
7  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
 1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
 2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
 3  class = 1 
 4  if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0 
 5  if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1 
 6  class = 0 
 7  if DISC<0.5 then node 10 elseif DISC>=0.5 then node 11 else 0 
 8  if JAK<0.5 then node 12 elseif JAK>=0.5 then node 13 else 0 
 9  if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 1 
10  class = 0 
11  if Fas<0.5 then node 16 elseif Fas>=0.5 then node 17 else 0 
12  class = 0 
13  if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 1 
14  if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1 
15  class = 1 
16  class = 0 
17  if FasT<0.5 then node 22 elseif FasT>=0.5 then node 23 else 1 
18  if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0 
19  class = 1 
20  if Fas<0.5 then node 26 elseif Fas>=0.5 then node 27 else 1 
21  class = 1 
22  class = 0 
23  class = 1 
24  class = 0 
25  class = 1 
26  class = 0 
27  class = 1 
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complex 
----------------------------------------------------------------------------------------------------- 
 1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
 2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
 3  class = 1 
 4  if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0 
 5  if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1 
 6  if S1P<0.5 then node 10 elseif S1P>=0.5 then node 11 else 0 
 7  if DISC<0.5 then node 12 elseif DISC>=0.5 then node 13 else 0 
 8  if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 0 
 9  if JAK<0.5 then node 16 elseif JAK>=0.5 then node 17 else 1 
10  if Fas<0.5 then node 18 elseif Fas>=0.5 then node 19 else 0 
11  class = 0 
12  if S1P<0.5 then node 20 elseif S1P>=0.5 then node 21 else 0 
13  if Fas<0.5 then node 22 elseif Fas>=0.5 then node 23 else 0 
14  if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0 
15  if Ceramide<0.5 then node 26 elseif Ceramide>=0.5 then node 27 else 1 
16  if Ceramide<0.5 then node 28 elseif Ceramide>=0.5 then node 29 else 1 
17  class = 1 
18  class = 0 
19  if FasT<0.5 then node 30 elseif FasT>=0.5 then node 31 else 0 
20  if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0 
21  class = 0 
22  if Ceramide<0.5 then node 34 elseif Ceramide>=0.5 then node 35 else 0 
23  if FasT<0.5 then node 36 elseif FasT>=0.5 then node 37 else 1 
24  class = 0 
25  if S1P<0.5 then node 38 elseif S1P>=0.5 then node 39 else 0 
26  if Fas<0.5 then node 40 elseif Fas>=0.5 then node 41 else 0 
27  if S1P<0.5 then node 42 elseif S1P>=0.5 then node 43 else 1 
28  if Fas<0.5 then node 44 elseif Fas>=0.5 then node 45 else 1 
29  if FasT<0.5 then node 46 elseif FasT>=0.5 then node 47 else 1 
30  class = 0 
31  if NFKB<0.5 then node 48 elseif NFKB>=0.5 then node 49 else 0 
32  class = 0 
33  if FasT<0.5 then node 50 elseif FasT>=0.5 then node 51 else 0 
34  class = 0 
35  if FasT<0.5 then node 52 elseif FasT>=0.5 then node 53 else 0 
36  if NFKB<0.5 then node 54 elseif NFKB>=0.5 then node 55 else 0 
37  if S1P<0.5 then node 56 elseif S1P>=0.5 then node 57 else 1 
38  if FasT<0.5 then node 58 elseif FasT>=0.5 then node 59 else 0 
39  class = 0 
40  if BID<0.5 then node 60 elseif BID>=0.5 then node 61 else 0 
41  if SPHK1<0.5 then node 62 elseif SPHK1>=0.5 then node 63 else 1 
42  class = 1 
43  if FasT<0.5 then node 64 elseif FasT>=0.5 then node 65 else 1 
44  if PDGFR<0.5 then node 66 elseif PDGFR>=0.5 then node 67 else 0 



89 
 

 
 

45  if FasT<0.5 then node 68 elseif FasT>=0.5 then node 69 else 1 
46  if NFKB<0.5 then node 70 elseif NFKB>=0.5 then node 71 else 1 
47  class = 1 
48  class = 0 
49  if DISC<0.5 then node 72 elseif DISC>=0.5 then node 73 else 0 
50  class = 0 
51  if FasL<0.5 then node 74 elseif FasL>=0.5 then node 75 else 0 
52  class = 0 
53  if S1P<0.5 then node 76 elseif S1P>=0.5 then node 77 else 1 
54  class = 0 
55  if Ceramide<0.5 then node 78 elseif Ceramide>=0.5 then node 79 else 1 
56  class = 1 
57  if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 1 
58  class = 0 
59  if Ceramide<0.5 then node 82 elseif Ceramide>=0.5 then node 83 else 1 
60  class = 0 
61  if IAP<0.5 then node 84 elseif IAP>=0.5 then node 85 else 0 
62  class = 1 
63  if S1P<0.5 then node 86 elseif S1P>=0.5 then node 87 else 0 
64  if BID<0.5 then node 88 elseif BID>=0.5 then node 89 else 0 
65  class = 1 
66  if SPHK1<0.5 then node 90 elseif SPHK1>=0.5 then node 91 else 0 
67  class = 0 
68  if SPHK1<0.5 then node 92 elseif SPHK1>=0.5 then node 93 else 1 
69  class = 1 
70  if Fas<0.5 then node 94 elseif Fas>=0.5 then node 95 else 1 
71  class = 1 
72  class = 0 
73  class = 1 
74  class = 0 
75  class = 1 
76  class = 1 
77  class = 0 
78  class = 0 
79  class = 1 
80  class = 0 
81  class = 1 
82  class = 0 
83  class = 1 
84  class = 1 
85  class = 0 
86  class = 1 
87  class = 0 
88  class = 0 
89  class = 1 
90  class = 1 
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91  class = 0 
92  class = 1 
93  class = 0 
94  class = 0 
95  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 23: T-LGL (experiment I) decision tree rules. 
 
 
 
 

----------------------------------------------------------------------------------------------------- 
T-LGL – experiment II 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
3  class = 1 
4  class = 0 
5  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
6  class = 0 
7  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
 1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
 2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
 3  class = 1 
 4  if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0 
 5  if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1 
 6  class = 0 
 7  if DISC<0.5 then node 10 elseif DISC>=0.5 then node 11 else 0 
 8  if JAK<0.5 then node 12 elseif JAK>=0.5 then node 13 else 0 
 9  if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 1 
10  class = 0 
11  if Ceramide<0.5 then node 16 elseif Ceramide>=0.5 then node 17 else 0 
12  if S1P<0.5 then node 18 elseif S1P>=0.5 then node 19 else 0 
13  if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1 
14  if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1 
15  class = 1 
16  class = 0 
17  class = 1 
18  if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0 
19  class = 0 
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20  if SPHK1<0.5 then node 26 elseif SPHK1>=0.5 then node 27 else 1 
21  class = 1 
22  if Fas<0.5 then node 28 elseif Fas>=0.5 then node 29 else 1 
23  class = 1 
24  class = 0 
25  class = 1 
26  class = 1 
27  class = 0 
28  class = 0 
29  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
 1  if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1 
 2  if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0 
 3  class = 1 
 4  if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0 
 5  if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1 
 6  if S1P<0.5 then node 10 elseif S1P>=0.5 then node 11 else 0 
 7  if DISC<0.5 then node 12 elseif DISC>=0.5 then node 13 else 0 
 8  if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 0 
 9  if JAK<0.5 then node 16 elseif JAK>=0.5 then node 17 else 1 
10  if Fas<0.5 then node 18 elseif Fas>=0.5 then node 19 else 0 
11  class = 0 
12  if S1P<0.5 then node 20 elseif S1P>=0.5 then node 21 else 0 
13  if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 0 
14  if S1P<0.5 then node 24 elseif S1P>=0.5 then node 25 else 0 
15  if Ceramide<0.5 then node 26 elseif Ceramide>=0.5 then node 27 else 1 
16  if Ceramide<0.5 then node 28 elseif Ceramide>=0.5 then node 29 else 1 
17  class = 1 
18  class = 0 
19  if FasT<0.5 then node 30 elseif FasT>=0.5 then node 31 else 0 
20  if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0 
21  class = 0 
22  if Fas<0.5 then node 34 elseif Fas>=0.5 then node 35 else 0 
23  if S1P<0.5 then node 36 elseif S1P>=0.5 then node 37 else 1 
24  if Fas<0.5 then node 38 elseif Fas>=0.5 then node 39 else 0 
25  class = 0 
26  if SPHK1<0.5 then node 40 elseif SPHK1>=0.5 then node 41 else 1 
27  if S1P<0.5 then node 42 elseif S1P>=0.5 then node 43 else 1 
28  if Fas<0.5 then node 44 elseif Fas>=0.5 then node 45 else 1 
29  class = 1 
30  class = 0 
31  if Ceramide<0.5 then node 46 elseif Ceramide>=0.5 then node 47 else 0 
32  class = 0 
33  if Ceramide<0.5 then node 48 elseif Ceramide>=0.5 then node 49 else 0 
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34  class = 0 
35  if S1P<0.5 then node 50 elseif S1P>=0.5 then node 51 else 0 
36  if FasT<0.5 then node 52 elseif FasT>=0.5 then node 53 else 1 
37  if Fas<0.5 then node 54 elseif Fas>=0.5 then node 55 else 0 
38  class = 0 
39  if FasT<0.5 then node 56 elseif FasT>=0.5 then node 57 else 1 
40  if Fas<0.5 then node 58 elseif Fas>=0.5 then node 59 else 1 
41  if S1P<0.5 then node 60 elseif S1P>=0.5 then node 61 else 0 
42  class = 1 
43  if Fas<0.5 then node 62 elseif Fas>=0.5 then node 63 else 1 
44  if SPHK1<0.5 then node 64 elseif SPHK1>=0.5 then node 65 else 0 
45  if S1P<0.5 then node 66 elseif S1P>=0.5 then node 67 else 1 
46  class = 0 
47  if DISC<0.5 then node 68 elseif DISC>=0.5 then node 69 else 1 
48  class = 0 
49  if FasT<0.5 then node 70 elseif FasT>=0.5 then node 71 else 1 
50  class = 1 
51  class = 0 
52  if Fas<0.5 then node 72 elseif Fas>=0.5 then node 73 else 1 
53  class = 1 
54  class = 0 
55  if FasT<0.5 then node 74 elseif FasT>=0.5 then node 75 else 1 
56  if BID<0.5 then node 76 elseif BID>=0.5 then node 77 else 0 
57  if Ceramide<0.5 then node 78 elseif Ceramide>=0.5 then node 79 else 1 
58  if S1P<0.5 then node 80 elseif S1P>=0.5 then node 81 else 1 
59  class = 1 
60  if Fas<0.5 then node 82 elseif Fas>=0.5 then node 83 else 1 
61  class = 0 
62  if PDGFR<0.5 then node 84 elseif PDGFR>=0.5 then node 85 else 1 
63  class = 1 
64  if PDGFR<0.5 then node 86 elseif PDGFR>=0.5 then node 87 else 1 
65  class = 0 
66  class = 1 
67  if SPHK1<0.5 then node 88 elseif SPHK1>=0.5 then node 89 else 1 
68  class = 0 
69  class = 1 
70  class = 0 
71  class = 1 
72  class = 0 
73  class = 1 
74  class = 0 
75  class = 1 
76  class = 0 
77  class = 1 
78  class = 0 
79  class = 1 
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80  class = 1 
81  class = 0 
82  class = 0 
83  class = 1 
84  class = 1 
85  class = 0 
86  class = 1 
87  class = 0 
88  class = 1 
89  class = 0 
----------------------------------------------------------------------------------------------------- 
Figure 24: T-LGL (experiment II) decision tree rules. 
 
 
 
----------------------------------------------------------------------------------------------------- 
T-LGL – experiment III 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
3  class = 1 
4  class = 0 
5  if TBET<0.5 then node 6 elseif TBET>=0.5 then node 7 else 1 
6  class = 0 
7  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
 1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
 2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
 3  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
 4  if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0 
 5  if TBET<0.5 then node 10 elseif TBET>=0.5 then node 11 else 1 
 6  if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1 
 7  class = 1 
 8  class = 0 
 9  if GZMB<0.5 then node 14 elseif GZMB>=0.5 then node 15 else 0 
10  if Ceramide<0.5 then node 16 elseif Ceramide>=0.5 then node 17 else 0 
11  class = 1 
12  if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 1 
13  class = 1 
14  class = 0 
15  if MCL1<0.5 then node 20 elseif MCL1>=0.5 then node 21 else 0 
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16  class = 0 
17  if FasT<0.5 then node 22 elseif FasT>=0.5 then node 23 else 1 
18  if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 0 
19  class = 1 
20  class = 1 
21  class = 0 
22  class = 0 
23  class = 1 
24  class = 0 
25  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
  1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
  2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
  3  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
  4  if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0 
  5  if TBET<0.5 then node 10 elseif TBET>=0.5 then node 11 else 1 
  6  if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1 
  7  class = 1 
  8  if S1P<0.5 then node 14 elseif S1P>=0.5 then node 15 else 0 
  9  if GZMB<0.5 then node 16 elseif GZMB>=0.5 then node 17 else 0 
 10  if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 0 
 11  if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1 
 12  if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1 
 13  if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 1 
 14  if FasT<0.5 then node 26 elseif FasT>=0.5 then node 27 else 0 
 15  class = 0 
 16  if S1P<0.5 then node 28 elseif S1P>=0.5 then node 29 else 0 
 17  if MCL1<0.5 then node 30 elseif MCL1>=0.5 then node 31 else 0 
 18  if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0 
 19  if FasT<0.5 then node 34 elseif FasT>=0.5 then node 35 else 1 
 20  if Fas<0.5 then node 36 elseif Fas>=0.5 then node 37 else 1 
 21  if FasT<0.5 then node 38 elseif FasT>=0.5 then node 39 else 1 
 22  if TBET<0.5 then node 40 elseif TBET>=0.5 then node 41 else 0 
 23  if FasT<0.5 then node 42 elseif FasT>=0.5 then node 43 else 1 
 24  if IAP<0.5 then node 44 elseif IAP>=0.5 then node 45 else 1 
 25  class = 1 
 26  class = 0 
 27  if Fas<0.5 then node 46 elseif Fas>=0.5 then node 47 else 0 
 28  if Fas<0.5 then node 48 elseif Fas>=0.5 then node 49 else 0 
 29  class = 0 
 30  if BclxL<0.5 then node 50 elseif BclxL>=0.5 then node 51 else 1 
 31  if BID<0.5 then node 52 elseif BID>=0.5 then node 53 else 0 
 32  class = 0 
 33  if FasT<0.5 then node 54 elseif FasT>=0.5 then node 55 else 0 
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 34  if Fas<0.5 then node 56 elseif Fas>=0.5 then node 57 else 0 
 35  if Fas<0.5 then node 58 elseif Fas>=0.5 then node 59 else 1 
 36  if GZMB<0.5 then node 60 elseif GZMB>=0.5 then node 61 else 0 
 37  if RAS<0.5 then node 62 elseif RAS>=0.5 then node 63 else 1 
 38  if Fas<0.5 then node 64 elseif Fas>=0.5 then node 65 else 1 
 39  class = 1 
 40  if Fas<0.5 then node 66 elseif Fas>=0.5 then node 67 else 0 
 41  if GZMB<0.5 then node 68 elseif GZMB>=0.5 then node 69 else 1 
 42  if TBET<0.5 then node 70 elseif TBET>=0.5 then node 71 else 1 
 43  class = 1 
 44  class = 1 
 45  if Ceramide<0.5 then node 72 elseif Ceramide>=0.5 then node 73 else 1 
 46  class = 0 
 47  if Ceramide<0.5 then node 74 elseif Ceramide>=0.5 then node 75 else 0 
 48  class = 0 
 49  if Ceramide<0.5 then node 76 elseif Ceramide>=0.5 then node 77 else 0 
 50  class = 1 
 51  if BID<0.5 then node 78 elseif BID>=0.5 then node 79 else 0 
 52  class = 0 
 53  if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 0 
 54  class = 0 
 55  if S1P<0.5 then node 82 elseif S1P>=0.5 then node 83 else 1 
 56  class = 0 
 57  if S1P<0.5 then node 84 elseif S1P>=0.5 then node 85 else 0 
 58  if S1P<0.5 then node 86 elseif S1P>=0.5 then node 87 else 1 
 59  class = 1 
 60  class = 0 
 61  if BclxL<0.5 then node 88 elseif BclxL>=0.5 then node 89 else 1 
 62  class = 1 
 63  if S1P<0.5 then node 90 elseif S1P>=0.5 then node 91 else 1 
 64  if GZMB<0.5 then node 92 elseif GZMB>=0.5 then node 93 else 1 
 65  class = 1 
 66  class = 0 
 67  if FasT<0.5 then node 94 elseif FasT>=0.5 then node 95 else 0 
 68  if Fas<0.5 then node 96 elseif Fas>=0.5 then node 97 else 0 
 69  class = 1 
 70  if Fas<0.5 then node 98 elseif Fas>=0.5 then node 99 else 0 
 71  class = 1 
 72  if Fas<0.5 then node 100 elseif Fas>=0.5 then node 101 else 0 
 73  class = 1 
 74  class = 0 
 75  class = 1 
 76  class = 0 
 77  class = 1 
 78  class = 0 
 79  class = 1 
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 80  class = 0 
 81  class = 1 
 82  class = 1 
 83  class = 0 
 84  class = 1 
 85  class = 0 
 86  class = 1 
 87  class = 0 
 88  class = 1 
 89  class = 0 
 90  class = 1 
 91  class = 0 
 92  class = 0 
 93  class = 1 
 94  class = 0 
 95  class = 1 
 96  class = 0 
 97  class = 1 
 98  class = 0 
 99  class = 1 
100  class = 0 
101  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 25: T-LGL (experiment III) decision tree rules. 
 
 
 
----------------------------------------------------------------------------------------------------- 
T-LGL – experiment IV 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
3  class = 1 
4  class = 0 
5  if Ceramide<0.5 then node 6 elseif Ceramide>=0.5 then node 7 else 1 
6  class = 0 
7  class = 1 
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medium 
----------------------------------------------------------------------------------------------------- 
 1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
 2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
 3  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
 4  if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0 
 5  if Ceramide<0.5 then node 10 elseif Ceramide>=0.5 then node 11 else 1 
 6  if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1 
 7  class = 1 
 8  class = 0 
 9  if GZMB<0.5 then node 14 elseif GZMB>=0.5 then node 15 else 0 
10  if TBET<0.5 then node 16 elseif TBET>=0.5 then node 17 else 0 
11  if FasT<0.5 then node 18 elseif FasT>=0.5 then node 19 else 1 
12  if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1 
13  class = 1 
14  class = 0 
15  if MCL1<0.5 then node 22 elseif MCL1>=0.5 then node 23 else 0 
16  class = 0 
17  class = 1 
18  if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 1 
19  class = 1 
20  class = 0 
21  class = 1 
22  class = 1 
23  class = 0 
24  class = 0 
25  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
 1  if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1 
 2  if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0 
 3  if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1 
 4  if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0 
 5  if Ceramide<0.5 then node 10 elseif Ceramide>=0.5 then node 11 else 1 
 6  if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1 
 7  class = 1 
 8  if S1P<0.5 then node 14 elseif S1P>=0.5 then node 15 else 0 
 9  if GZMB<0.5 then node 16 elseif GZMB>=0.5 then node 17 else 0 
10  if TBET<0.5 then node 18 elseif TBET>=0.5 then node 19 else 0 
11  if FasT<0.5 then node 20 elseif FasT>=0.5 then node 21 else 1 
12  if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1 
13  if Ceramide<0.5 then node 24 elseif Ceramide>=0.5 then node 25 else 1 
14  if FasT<0.5 then node 26 elseif FasT>=0.5 then node 27 else 0 
15  class = 0 
16  if Fas<0.5 then node 28 elseif Fas>=0.5 then node 29 else 0 
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17  if MCL1<0.5 then node 30 elseif MCL1>=0.5 then node 31 else 0 
18  if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0 
19  if BID<0.5 then node 34 elseif BID>=0.5 then node 35 else 1 
20  if TBET<0.5 then node 36 elseif TBET>=0.5 then node 37 else 1 
21  if Fas<0.5 then node 38 elseif Fas>=0.5 then node 39 else 1 
22  if Fas<0.5 then node 40 elseif Fas>=0.5 then node 41 else 0 
23  if FasT<0.5 then node 42 elseif FasT>=0.5 then node 43 else 1 
24  if IAP<0.5 then node 44 elseif IAP>=0.5 then node 45 else 1 
25  class = 1 
26  class = 0 
27  if Fas<0.5 then node 46 elseif Fas>=0.5 then node 47 else 0 
28  class = 0 
29  if S1P<0.5 then node 48 elseif S1P>=0.5 then node 49 else 0 
30  if BclxL<0.5 then node 50 elseif BclxL>=0.5 then node 51 else 1 
31  if BID<0.5 then node 52 elseif BID>=0.5 then node 53 else 0 
32  class = 0 
33  if FasT<0.5 then node 54 elseif FasT>=0.5 then node 55 else 0 
34  if RAS<0.5 then node 56 elseif RAS>=0.5 then node 57 else 0 
35  if PDGFR<0.5 then node 58 elseif PDGFR>=0.5 then node 59 else 1 
36  if S1P<0.5 then node 60 elseif S1P>=0.5 then node 61 else 0 
37  if Fas<0.5 then node 62 elseif Fas>=0.5 then node 63 else 1 
38  if TBET<0.5 then node 64 elseif TBET>=0.5 then node 65 else 1 
39  class = 1 
40  if TBET<0.5 then node 66 elseif TBET>=0.5 then node 67 else 0 
41  if S1P<0.5 then node 68 elseif S1P>=0.5 then node 69 else 1 
42  if TBET<0.5 then node 70 elseif TBET>=0.5 then node 71 else 1 
43  class = 1 
44  class = 1 
45  if TBET<0.5 then node 72 elseif TBET>=0.5 then node 73 else 1 
46  class = 0 
47  if Ceramide<0.5 then node 74 elseif Ceramide>=0.5 then node 75 else 0 
48  if Ceramide<0.5 then node 76 elseif Ceramide>=0.5 then node 77 else 0 
49  class = 0 
50  class = 1 
51  if BID<0.5 then node 78 elseif BID>=0.5 then node 79 else 0 
52  class = 0 
53  if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 0 
54  class = 0 
55  if S1P<0.5 then node 82 elseif S1P>=0.5 then node 83 else 1 
56  if Fas<0.5 then node 84 elseif Fas>=0.5 then node 85 else 1 
57  class = 0 
58  class = 1 
59  if Fas<0.5 then node 86 elseif Fas>=0.5 then node 87 else 1 
60  if Fas<0.5 then node 88 elseif Fas>=0.5 then node 89 else 0 
61  class = 0 
62  if GZMB<0.5 then node 90 elseif GZMB>=0.5 then node 91 else 1 
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63  class = 1 
64  if S1P<0.5 then node 92 elseif S1P>=0.5 then node 93 else 1 
65  class = 1 
66  class = 0 
67  if BclxL<0.5 then node 94 elseif BclxL>=0.5 then node 95 else 0 
68  class = 1 
69  class = 0 
70  if Fas<0.5 then node 96 elseif Fas>=0.5 then node 97 else 0 
71  class = 1 
72  if S1P<0.5 then node 98 elseif S1P>=0.5 then node 99 else 0 
73  class = 1 
74  class = 0 
75  class = 1 
76  class = 0 
77  class = 1 
78  class = 0 
79  class = 1 
80  class = 0 
81  class = 1 
82  class = 1 
83  class = 0 
84  class = 0 
85  class = 1 
86  class = 0 
87  class = 1 
88  class = 0 
89  class = 1 
90  class = 0 
91  class = 1 
92  class = 1 
93  class = 0 
94  class = 1 
95  class = 0 
96  class = 0 
97  class = 1 
98  class = 1 
99  class = 0 
----------------------------------------------------------------------------------------------------- 
Figure 26: T-LGL (experiment IV) decision tree rules. 
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----------------------------------------------------------------------------------------------------- 
Mammalian Cell Cycle 
----------------------------------------------------------------------------------------------------- 
 
simple 
----------------------------------------------------------------------------------------------------- 
1  if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0 
2  class = 0 
3  class = 1 
 
medium 
----------------------------------------------------------------------------------------------------- 
1  if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0 
2  class = 0 
3  class = 1 
 
complex 
----------------------------------------------------------------------------------------------------- 
1  if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0 
2  class = 0 
3  class = 1 
----------------------------------------------------------------------------------------------------- 
Figure 27: Mammalian cell cycle (experiment VIII) decision tree rules. 
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