

5

Figure 1: HPA-GR-Immune-HPGa GRN. A green edge and arrowhead indicate
activation and a red edge and point indicate inhibition (Craddock et al., 2014).

HPA-GR-Immune-HPGa Boolean Network
Stress *= Stress
CRH *= Stress ˄ ¬CORT ˄ Th1Cyt ˄ IIR ˄ ¬TEST
ACTH *= CRH ˄ ¬GRD ˄ Th1Cyt ˄ IIR ˄ ¬TEST
CORT *= ACTH ˄ Th1Cyt ˄ IIR ˄ ¬TEST
GRD *= CORT ˄ GR
GR *= GRD
ICell *= ¬CORT ˄ IIR ˄ Th1Cyt ˄ ¬Th2Cyt
IIR *= ICell
Th1Cell *= IIR ˄ ¬Th2Cyt ˄ Th1Cyt ˄ TEST
Th1Cyt *= ICell ˄ Th1Cell
Th2Cell *= ¬Th1Cyt ˄ Th2Cyt
Th2Cyt *= Th2Cell
GnRH *= ¬TEST ˄ ¬CORT ˄ ¬Th1Cyt
LH/FSH *= ¬TEST ˄ GnRH ˄ ¬CORT ˄ ¬Th1Cyt
TEST *= LH/FSH ˄ ¬CORT

 Figure 2: HPA-GR-Immune-HPGa Boolean Network (Craddock et al., 2014).

In the format of Figure 2, each line has a left-hand side, a right-hand side that represents

the transition function, and the equality symbol *= that separates both sides. The left-hand side is

a set of Boolean variables that will be updated asynchronously by the Boolean expression on the

right-hand side. The Boolean variables correspond to genes, proteins, and so forth, with the GRN

from Figure 1. The Boolean operators appearing in the right-hand sides are the and symbol,

represented by �º; the or symbol, represented by �»; and the not symbol, represented by ¬. Figure

2 does not use the or symbol, but it is present in many Boolean networks.

6

Chosen at random, a state transition is performed by choosing one of the node's

coordinate functions and updating its corresponding Boolean variable to the current state for

asynchronous Boolean networks. This corresponds to the assumption that, in a genetic network,

gene expression levels are likely to change at different points of time (Thomas, 1991). The

importance of this modeling technique is that it resembles a Markov Chain, and during sampling,

the Markov Chain Monte Carlo method can be used to collect data to determine fuzzy

membership vectors. There is a noticeable transition difference between synchronous and

asynchronous networks. Every state in a synchronous network can only transition into one other

state. However, every state in an asynchronous network can transition into multiple states which

can lead to overlapping attractors.

Boolean networks have 2n states, where n is the total number of nodes in the network,

ensuring that a transition sequence must eventually revisit some states. These transitions will fall

into a cycle of visiting previously visited states. Such cycles are known as attractors (Hopfensitz,

Müssel, Maucher, & Kestler, 2013). Markov Chains have a similar phenomenon. A Markov

Chain that has cycles is known as an Absorbing Markov Chain. For instance, for a state ݏ, the set

of reachable states ܴ(ݏ) is defined to be the set of all states that can be reached from ݏ through a

finite sequence of state transitions. A set of states ܵ = ,ଵݏ} … , } is said to be an attractor if forݏ

every ݏ ∈ (ݏ)ܴ ,ܵ = ܵ. When ܴ(ݏ) = is called a steady state. All states that lead to an ݏ ,{ݏ}

attractor are part of that attractor’s basin. In asynchronous Boolean networks, some states may

lead to more than one attractor; those states will have fuzzy membership in each attractor due to

the overlapping nature of attractors in asynchronous networks.

Let ܻ represent a sequence of transitions starting from state ݏ leading to attractor A, with

a list of elements for ܻ denoted by ݕ. Thus ܻ = ,ଵݕ … , . A fuzzy set Ã in ܻ is characterized byݕ

7

a membership function ߤÃ(ݕ) which associates with each element in ܻ a real number in the

interval [0, 1], with the values of ߤÃ(ݕ) at ݕ representing the degree of membership of ݕ in Ã

(Zadeh, 1965). Thus, the nearer the value of ߤÃ(ݕ) to attractor A, the higher the degree of

membership of ݕ in Ã. Thus, the value 0 means that ݕ is not a member of the fuzzy set and the

value 1 means that ݕ is fully a member of the fuzzy set. Values that lie strictly between 0 and 1

characterize fuzzy membership, which belong to the fuzzy set only partially and the set of states ܵ resides in the fuzzy basin where two or more attractor basins overlap. The final result is an

approximation of the exact fuzzy membership vector.

The exact fuzzy membership vector in its canonical form is the transition probability

matrix, ܲ = ܳ௧ ܴ0 is the number of existing ݐ matrix of transient states and ݐ ݔ ݐ ൨. ܳ௧ is aܫ

transient states. A transient state is a state that is not part of the list of attractor states. ܫ is an ݎ ݎ identity matrix and r is the number of existing attractor states. ܴ is a non-zero ݐ ݎ matrix

which represents the probability of a transient state transitioning to an attractor state. Finally, 0 is

an ݎ ݐ zero matrix.

To determine the probability of reaching attractor state ݏ when starting from a transient

state ݏ, the probability matrix ܤ = ܴܰ has to be calculated. ܴ is a non-zero ݐ ݎ matrix stated

above and ܰ = ∑ ܳஶୀ = ௧ܫ) − ܳ)ିଵ. A problem with using this canonical form is calculating

all of the probabilities for a very large state space such as T-cell large granular lymphocytic

leukemia (T-LGL). Thus, approximating the fuzzy membership vectors can be done in

acceptable time or in deterministic polynomial time. Therefore, this research will continue using

asynchronous Boolean networks.

To identify that a state has led to an attractor, an algorithm for searching attractors

beforehand must be performed. A straightforward algorithm to identify attractors in

8

asynchronous Boolean networks starts from a set of start states and repeatedly performs state

transitions until a forward-set of states has been validated as an attractor (Hopfensitz et al.,

2013). There can be more than one successor state for each individual state within an

asynchronous Boolean network. The asynchronous attractor search heuristic begins at a start

state and applies transitions until an attractor is reached. The distribution used to select the

successor state in an asynchronous network is determined by ݔ∗(ݐ + 1) = ݂∗(ݔ௧) where ݅∗ is a

randomly selected node of the current state.

Asynchronous attractor search algorithm
Input: A Boolean network with n genes and n asynchronous state transition functions

௦௬()ࢀ ܤ : → ܤ
 A number of random transitions ݎ
 A set of m start states, ܵ = ,ଵଵݏ)} … , ,(ଵݏ … , ,ଵݏ) … , ݐݏ݅ܮݐ݈ݑݏ݁ݎ {(ݏ ← ∅
for all ݁ݐܽݐܵݐݎܽݐݏ ∈ ܵ do ܿ݁ݐܽݐܵݐ݊݁ݎݎݑ ← ݁ݐܽݐܵݐݎܽݐݏ
 for ݅ = 1, … , ݎ
 do {Perform a random asynchronous state transition on ܿ݁ݐܽݐܵݐ݊݁ݎݎݑ}
 ݅∗ ← (݊)݀݊ܽݎ

݁ݐܽݐܵݐ݊݁ݎݎݑܿ ← ௦௬(∗)ࢀ (݁ݐܽݐܵݐ݊݁ݎݎݑܿ)
 end for
ݎݐܿܽݎݐݐܽ ← (݁ݐܽݐܵݐ݊݁ݎݎݑܿ)ݐ݁ܵ݀ݎܽݓݎܨ
 if ܸ݈ܽ݅݀ܽ(ݎݐܿܽݎݐݐܽ)ݎݐܿܽݎݐݐܣ݁ݐ then {This is a true attractor}
← ݐݏ݅ܮݐ݈ݑݏ݁ݎ ݐݏ݅ܮݐ݈ݑݏ݁ݎ ∪ {ݎݐܿܽݎݐݐܽ}
 end if
end for
return ݐݏ݅ܮݐ݈ݑݏ݁ݎ

Figure 3: Asynchronous attractor search algorithm (Hopfensitz et al., 2013).

9

Function ForwardSet
Input: A state s for which the forward reachable set is determined ݐ݁ܵݐ݈ݑݏ݁ݎ ← ݇ܿܽݐݏ {ݏ} ← {ݏ}
repeat
ݐ݊݁ݎݎݑܿ ← (݇ܿܽݐݏ)
 for ݅ = 1, … , ݊
 do {Calculate successor states}

ݐݔ݁݊ ← ௦௬()ࢀ (ݐ݊݁ݎݎݑܿ)
 if (݊݁ݐݔ ∉ then (ݐ݁ܵݐ݈ݑݏ݁ݎ
ݐ݁ܵݐ݈ݑݏ݁ݎ ← ݐ݁ܵݐ݈ݑݏ݁ݎ ∪ {ݐݔ݁݊}
,݇ܿܽݐݏ)ℎݏݑ (ݐݔ݁݊
 end if
 end for
until (݇ܿܽݐݏ = ∅)

Figure 4: Forward Set Function (Hopfensitz et al., 2013).

Function ValidateAttractor
Input: A set of states S to be validated
for all ݏ ∈ ܵ do
 if ((ݏ)ݐ݁ܵ݀ݎܽݓݎܨ ≠ ܵ) then
 return false
 end if
end for
return true

Figure 5: Validate Attractor Function (Hopfensitz et al., 2013).

 States that reside in the fuzzy basin are sets whose elements have fuzzy degrees of

membership in multiple attractors. Fuzzy classification is the process of grouping elements into a

fuzzy set (Zadeh, 1965) whose degree of membership is defined by the ratio of the number of

times a state transitions into an attractor to the total times a simulation was executed.

Understanding fuzzy degree of membership for individual states allows scientists to use

exploratory data analysis techniques to see if there are any structures within the fuzzy basin area

such as clustering or other patterns that would be useful to life scientists.

The graph in Figure 6 shows data collected using the asynchronous Boolean network

from Figure 2. The stress variable is set to true and remains a constant throughout the simulation.

10

In addition, all of the states were part of the sampling process because this is a small network.

There are 214 states or 16384 states, and each state was sampled N=1000 times. The state will

transition into either attractor A or attractor B. The graph shows the bin count that a state will

transitions into attractor B out of 1000 trials. Not shown in Figure 6 are the states in the true

basins of attraction which appear in B either zero or 1000 times. There are 1536 states that

appear in B zero times and 4096 states that appear in B 1000 times. However, this data was

purposely left out of the graph. In the graph, the bars for these two instances would have been

much taller than the bar which represents 89 states that appear in B 500 times, currently the

tallest bar in Figure 6. Leaving these two instances in the graph would give a flatten appearance

and it would be difficult to visualize the fuzzy structure. This preliminary experiment exhibits

fuzzy membership structure in this small asynchronous Boolean network.

11

Figure 6: Fuzzy Membership for Attractor B. This Figure does not show the states that hit
attractor B zero times or the hits to attractor B every time.

 Markov chain analysis has methods for creating a transition matrix that, for this study,

would be a matrix with the probability of a state transitioning into a set of attractors. A transition

matrix is used to describe the transitions of a Markov chain (Asmussen, 2003). Each of its entries

is a nonnegative real number representing a probability. Unfortunately, for large and even

moderate size networks, transition matrices take up large amounts of resources and are very

expensive to compute. For this study, creating transition matrices for Boolean networks is

intractable. Therefore, this report will not use transition matrices. However, Markov Chain

Monte Carlo methods will be used for collecting data.

Problem Statement and Dissertation Goals

Due to the size and complexity of realistic GRNs, it is infeasible to use simulation to

estimate fuzzy membership vectors for all states. The goal of this dissertation is to use simulation

12

to determine fuzzy membership vectors for a select sample of states, and then to use machine

learning to discover patterns in membership that might extend to a much larger range of, or

perhaps all, states. These patterns, exemplified by rules, would yield fuzzy membership vectors

for states not subject to simulation. The machine learning methods to be employed are decision

trees, SVMs, and naïve Bayesian classifiers. The training data for these classifiers will be

obtained using Markov Chain Monte Carlo sampling, yielding fuzzy membership vectors. The

ideas presented here are predicated on the existence of structure in overlapping attractors; early

experiments have indicated that such structure often exists.

Research Questions

Preliminary work shows that HPA-GR-Immune-HPGa Boolean Network has fuzzy

membership structure for its state space. Do realistic GRNs such as T-LGL possess membership

structure? What is the nature of this structure?

Realistic GRNs have many nodes and finding the membership for all or many states is

intractable. Can machine learning methods be used to discover such structure? In practical terms,

can machine learning methods be used to identify accurate fuzzy membership vectors for states?

Three machine learning techniques will be used to make predictions of random states.

The machine learning algorithms to be in usage are support vector machines, naive Bayesian

classifier, and decision trees. Which machine learning methods, of those considered, are most

effective?

 What are the most useful output classes for this application of machine learning methods?

Examples are (a) finding a state belonging (or not) to an attractor’s true basin; and (b) for a given

attractor A and a specified threshold range ߬, the output class of a state is positive if the

probability of reaching attractor A starting from the state lying within the specified range ߬.

13

Relevance and Significance

With very large GRNs, it is not feasible to determine the fuzzy membership for all states

using simulation. A large GRN is modeled and simulated by an asynchronous Boolean network

that could have overlapping basins of attraction. Once the system can accurately predict the

basins of attraction to which a state belongs, life science experts can then predict the results of

different treatment regimens and see immediate results. This will allow experts to make critical

decisions and avoid applying a physical treatment directly to their subjects using trial and error.

Barriers and Issues

In very large realistic GRNs such as T-LGL, finding the basin of attraction and fuzzy

membership in that basin is an intractable task. Having 32 nodes pushes the upper limit of what a

physical machine can do to find attractors and their basins. However, T-LGL has 60 nodes, and it

would require a large cluster of machines at high cost to find all of the states’ fuzzy membership

in attractors (Hong et al, 2015). Therefore, using machine learning to predict only the states that

are important to an expert’s experiment is a feasible option.

The algorithms in Figures 3, 4, and 5 are presented partly for defining operationally the

meaning of identifying and validating attractors. These algorithms may be used, as they are in

this research, but where necessary, more efficient stochastic approaches could be used. There is a

significant amount of literature based on efficiently finding attractors; thus, exploring previous

work will help with this issue.

Assumptions, Limitations, and Delimitations

 This research is based on several assumptions. First, there is the assumption that a

structure exists in the state space of each GRN. This structure is necessary to determine the

output classes. Second, states with the same output classes can transition into each other. For

instance, suppose that the state-space of a Markov chain is divided into a disjointed subset of

14

states. Let ݐ be a subset of ܵ = ,ଵݏ} … , ܶ } andݏ = ,ଵݐ} … , ,} is the partition of all states. Thusݐ

all states within subset ݐ have a higher probability of transitioning into each other than with

states in another subset. These clusters of states will lead to the same output classes. Finally,

during the simulation process, attractors can be discovered quickly.

 This research also has some limitations. One limitation is that it is not known if one

cluster of states is actually a multiple number of sub-clusters and these sub-clusters are possibly

not interconnected. Several factors are under control in this research. Five GRNs were

selectively chosen. Also, three classifiers were selectively chosen. Furthermore, studying the

performance of a statistical approach to determine the outcome of a state is a problem chosen for

this research.

Summary

 Genes regulate each other’s activity through GRNs. Part of the gene expression process is

transcription in which a particular segment of DNA is copied into mRNA. Furthermore, post-

translational modifications lead to proteins with modified properties. When attempting to model

and simulate a GRN, the first step is to assemble the components of the network and the

interactions between them. For this research, asynchronous Boolean networks will serve as that

paradigm.

 A complete GRN model incorporates experimental knowledge about the components and

their interactions as well as the initial state of these components. This leads to the known final

state of attraction or dynamical behavior of the network. Validated models such as cell cycle or

T-LGL are able to investigate cases that cannot be explored experimentally, for example changes

in the initial state, in the components, or in the interactions, and these models can lead to

predictions and insights into the functioning of the system.

15

 The research questions ask about state space structures and their effects on a state’s fuzzy

membership vector to determine output classes. Also, the questions ask about which machine

learning techniques are best to determine the output class of a state. Finally, the question asks

what the best output classes are. This can be determined by running simulations on a subset of

states, creating a visualization of fuzzy membership to an attractor to identify structure,

implementing a threshold range on possibly the best cluster, train a machine learning classifier to

predict whether a state is in that cluster or not in that cluster, and measure that accuracy of the

prediction.

16

Chapter 2

Review of the Literature

Overview of the Literature

The synchronous Boolean update model has the expression level of every gene updated at

discrete time points. However, some genes retain their previous level under the transition

function. This approach is computationally tractable for very large networks but it does not

accurately represent different genes transitioning from one expression level to another at discrete

time intervals. Thus, synchronous Boolean networks are biologically imperfectly realistic. Prior

work on Boolean networks has focused primarily on synchronous update procedures which

include the analysis of the attractor’s state space and the basin of attraction for each attractor

(Faure, Naldi, Chaouiya, & Thieffry, 2006). The advantage of using synchronous update models

is in finding steady state attractors quickly in an exhaustive search. The steady state attractors

found in synchronous searches also exist in the asynchronous update model.

A large portion of current studies involves asynchronous Boolean models and have

focused mainly on finding attractors of a system or on identifying attractors reachable from a

nominal initial state or condition (Chaves, Albert, & Sontag, 2005). The asynchronous Boolean

update model has exactly one gene’s expression level changing at each discrete time point. The

gene is selected at random from among those whose expression levels would change under the

transition function. This update model closely represents biological activity but is more complex

to model and analyze. A state could potentially reside in the basin of attraction of multiple

attractors. For example, a state ݏ could transition into attractor ܣ in one sampling and transition

into attractor ܤ in another sampling. For this state ݏ, the two attractors overlap.

17

Few studies focus on identifying complex and overlapping attractors (Garg, Di Cara,

Xenarios, Mendoza, & De Micheli, 2008). Thus, the investigation of all possible attractors, their

basins of attraction, and fuzzy membership of states that fall into overlapping attractors for a

system under asynchronous updating schemes invites further research. This research will

perform a comprehensive study of all attractors of a large biological system, focusing on T-cell

large granular lymphocytic leukemia (T-LGL), selecting a number of initial states at random,

and using methods or performing simulations to determine the fuzzy membership of those states

using the asynchronous Boolean network model. This will identify the structures of the network

or the fuzzy membership clusters, which will assist in making predictions for states not in the

initial sampling process.

T-LGL leukemia affects lymphocytes (white blood cells) which are part of the body's

immune system and help fight infections. Some signs and symptoms of T-LGL are changes in

blood cell counts, decline in production of red blood cells, recurrent infections, and fever.

Diagnose can be confirmed by examining the patient's blood under a microscope by checking to

see if a large number of abnormal cells associated with T-LGL may be present, or by taking a

bone marrow aspiration, or biopsy. Some treatments currently in practice are immunosuppressive

therapy, such as methotrexate, oral cyclophosphamide (an alkylation agent), and cyclosporine

(an immunomodulatory drug).

The cell cycle process will respond to external environmental changes in order to

maintain their functional purpose such as growth, survival, division, and apoptosis (cell death).

This gene regulatory network (GRN) process is carried out through a chain reaction of gene,

protein, and chemical interactions forming a complex signaling network. An abnormal

expression between some of the components in the network will affect normal operations of the

18

cell, which will transition it from a healthy state to a poor state, translating to possible diseases

such as diabetes (Leibiger, Brismar, & Berggren, 2010), developmental disorders (Gordon &

Blobe, 2008), autoimmunity (Mavers, Ruderman, & Perlman, 2009), or cancer (Ikushima &

Miyazono, 2010).

Healthy cytotoxic T-lymphocytes (CTLs) are produced to eliminate cell infections of

viruses. However, healthy CTLs will initiate apoptosis after they successfully destroy the

infected cell; but, leukemic T-LGL cells fail to initiate apoptosis and remain in the system for

long periods (Sokol & Jr, 2006). A few components of the CTLs are responsible for the

abnormal behavior of the signal transduction network which activates apoptosis for T-cells

(Shah, Zhang, & Jr, 2009). Therefore, understanding which states lead to a healthy attractor, such

as apoptosis in T-LGL, will suggest treatments that switch from one state to a nearby state that

tends to lead to a healthy attractor.

A Boolean network model of T-cell survival signaling in the context of T-LGL leukemia

was implemented by Zhang et al. (Zhang, Shah, Yang, SB, & X, 2008). The implementation was

guided by performing an extensive literature search on the topic, compiling the data, and finding

the Boolean equivalent functions to match the results of the data. The T-LGL network consists of

60 components including receptors, proteins, mRNAs, and small molecules. The network

contains six nodes with no upstream components representing external input signals (Stimuli,

IL15, PDGF, Stimuli2, CD45, and TAX), and also contains three output nodes serving as

indicators of biological functions or cell fate (Cytoskeleton signaling, Proliferation, and

Apoptosis). The main input to the network is Stimuli, which represents a virus or antigen

stimulation, and the main output node is Apoptosis, which represents programmed cell death

(Zhang et al., 2008).

19

After implementing the T-LGL network, the methods of asynchronous Boolean network

exposed a small number of impairments that led to the cause of T-LGL survival, showing high

activity within proteins platelet-derived growth factor (PDGF) and interleukin 15 (IL15) (Zhang

et al., 2008). The preliminary analysis of T-LGL network dynamics was carried out by

performing numerical simulations starting from one specific condition in which the T-Cell

receives a stimuli and an overload of two proteins PDGF and IL15 (Zhang et al., 2008). Once the

issues of T-LGL leukemia was identified, each of these symptoms was interrupted individually

by reversing the node’s state in order to predict key mediators of the disease (Zhang et al., 2008).

However, a complete dynamic analysis of the system, its corresponding basins of attraction, as

well as a thorough perturbation analysis of the system considering all possible initial states was

not undertaken. Though, the attractors of T-LGL has been identified in previous experiments,

and the results are validated by other researchers (Zanudo & Albert, 2013). Implementing

machine learning methods to accurately predict fuzzy membership within the basins of

attractions for initial states can provide deeper insights into unknown aspects of T-LGL

leukemia. For this research, the predictive analysis of states relies on consistent detection of

clusters. These clusters will be used to train classifiers to determine if a state is in or not in a

specific cluster. This process will determine the fuzzy membership vectors for states. The

modeling and simulation of a GRN will be used to collect data and classifiers can be trained by

that data which will produce an optimize process to predict the outcome of states that was not

part of the initial selection.

Tables 1 and 2 show the attractors found in T-LGL leukemia GRN. The findings from the

experiments used to obtain these results are an exact match with the findings from Zanudo &

Albert, 2013. Columns A, B, C, and D represent the attractor findings based on different external

20

inputs values from Stimuli, IL15, PDGF, Stimuli2, CD45, and TAX. Each column overlaps with

the Apoptosis attractor for some individual start states. An external input value set to on/off

means that the external input node does not affect the outcome of finding that particular attractor.

Also, in columns A and C, when a state ݏ transitions into the attractor, P2 could be on in one

sampling and off on a different sampling which indicates two different attractors. Therefore, for

those columns, P2 is set to ON|OFF to indicate this particular sampling effect. Finally, all of the

nodes in a column marked with oscillation are nodes that make up the attractor.

21

Attractors A B C D Apoptosis
INPUT NODES

CD45 ON ON OFF OFF ON/OFF
PDGF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
IL15 ON/OFF ON/OFF ON ON ON/OFF

Stimuli ON ON ON ON ON
Stimuli2 OFF ON OFF ON ON/OFF

TAX ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
NODES
IL2RBT OFF OFF ON ON OFF
BclxL ON ON OFF OFF OFF
IFNGT ON ON ON ON OFF
PDGFR ON ON ON ON OFF
IFNG OFF OFF OFF OFF OFF
GAP OFF OFF OFF OFF OFF

Proliferation OFF OFF OFF OFF OFF
GZMB OFF OFF ON ON OFF
RAS ON ON ON ON OFF
TPL2 ON ON ON ON OFF
FasT ON ON ON ON OFF
FLIP ON ON ON ON OFF
LCK ON ON ON ON OFF

NFAT ON ON ON ON OFF
FasL ON ON ON ON OFF

Caspase OFF OFF OFF OFF OFF
NFKB ON ON ON ON OFF

IAP ON ON ON ON OFF
BID OFF OFF OFF OFF OFF

Cyto. Signal. Oscillates Oscillates ON ON OFF
TNF ON ON ON ON OFF

MCL1 OFF OFF ON ON OFF
Ceramide OFF OFF OFF OFF OFF

GRB2 Oscillates Oscillates ON ON OFF
PI3K ON ON ON ON OFF

SMAD ON ON ON ON OFF
P27 OFF OFF ON ON OFF

ZAP70 Oscillates Oscillates OFF OFF OFF
CREB OFF OFF OFF OFF OFF
DISC OFF OFF OFF OFF OFF
IL2RB OFF OFF ON ON OFF

Fas OFF OFF OFF OFF OFF
IL2RA Oscillates Oscillates OFF OFF OFF

S1P ON ON ON ON OFF
ERK ON ON ON ON OFF

SPHK1 ON ON ON ON OFF
A20 ON ON ON ON OFF
MEK ON ON ON ON OFF

CTLA4 Oscillates Oscillates Oscillates Oscillates OFF
TBET OFF OFF ON ON OFF

RANTES ON ON ON ON OFF
SOCS OFF OFF OFF OFF OFF
sFas ON ON ON ON OFF

IL2RAT ON ON OFF OFF OFF
TCR Oscillates Oscillates Oscillates Oscillates OFF

STAT3 OFF OFF ON ON OFF
GPCR ON ON ON ON OFF

P2 ON|OFF OFF ON|OFF OFF OFF
TRADD OFF OFF OFF OFF OFF
PLCG1 ON ON ON ON OFF

FYN Oscillates Oscillates ON ON OFF
IL2 ON ON OFF OFF OFF
JAK OFF OFF ON ON OFF

Apoptosis OFF OFF OFF OFF ON

 Table 1: The attractors of T-LGL leukemia survival network. This table shows the
state of the nodes for all possible combinations of input signals in the presence of antigen
(Stimuli=ON).

22

Attractors A B C D Apoptosis
INPUT NODES

CD45 ON ON OFF OFF ON/OFF
PDGF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
IL15 ON/OFF ON/OFF ON ON ON/OFF

Stimuli OFF OFF OFF OFF OFF
Stimuli2 OFF ON OFF ON ON/OFF

TAX ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
NODES
IL2RBT OFF OFF ON ON OFF
BclxL ON ON OFF OFF OFF
IFNGT ON ON ON ON OFF
PDGFR ON ON ON ON OFF
IFNG OFF OFF OFF OFF OFF
GAP OFF OFF OFF OFF OFF

Proliferation OFF OFF OFF OFF OFF
GZMB OFF OFF ON ON OFF
RAS ON ON ON ON OFF
TPL2 ON ON ON ON OFF
FasT ON ON ON ON OFF
FLIP ON ON ON ON OFF
LCK ON ON ON ON OFF

NFAT ON ON ON ON OFF
FasL ON ON ON ON OFF

Caspase OFF OFF OFF OFF OFF
NFKB ON ON ON ON OFF

IAP ON ON ON ON OFF
BID OFF OFF OFF OFF OFF

Cyto. Signal. OFF OFF ON ON OFF
TNF ON ON ON ON OFF

MCL1 OFF OFF ON ON OFF
Ceramide OFF OFF OFF OFF OFF

GRB2 ON ON ON ON OFF
PI3K ON ON ON ON OFF

SMAD ON ON ON ON OFF
P27 OFF OFF ON ON OFF

ZAP70 ON ON OFF OFF OFF
CREB OFF OFF OFF OFF OFF
DISC OFF OFF OFF OFF OFF
IL2RB OFF OFF ON ON OFF

Fas OFF OFF OFF OFF OFF
IL2RA Oscillates Oscillates OFF OFF OFF

S1P ON ON ON ON OFF
ERK ON ON ON ON OFF

SPHK1 ON ON ON ON OFF
A20 ON ON ON ON OFF
MEK ON ON ON ON OFF

CTLA4 OFF OFF OFF OFF OFF
TBET OFF OFF ON ON OFF

RANTES ON ON ON ON OFF
SOCS OFF OFF OFF OFF OFF
sFas ON ON ON ON OFF

IL2RAT ON ON OFF OFF OFF
TCR OFF OFF OFF OFF OFF

STAT3 OFF OFF ON ON OFF
GPCR ON ON ON ON OFF

P2 ON|OFF OFF ON|OFF OFF OFF
TRADD OFF OFF OFF OFF OFF
PLCG1 ON ON ON ON OFF

FYN OFF OFF ON ON OFF
IL2 ON ON OFF OFF OFF
JAK OFF OFF ON ON OFF

Apoptosis OFF OFF OFF OFF ON

Table 2: The attractors of T-LGL leukemia survival network. This table shows the
state of the nodes for all possible combinations of input signals without the presence of
antigen (Stimuli=OFF).

23

In this research, a detailed analysis of the T-LGL signaling network is found by

predicting the fuzzy membership of all possible initial states to understand the long-term

behavior of the underlying disease. An implementation of an asynchronous Boolean dynamic

framework will be used to verify the attractors of the system and analyze their basins of

attraction. The analysis of initial states of the Boolean network will allow for confirmation or

prediction of fuzzy membership. This will help identify structure or find fuzzy membership

clusters which will be used to find states that lead to healthy attractors.

Justification of the Literature and Identification of Prior Work

 Large realistic networks are difficult to simulate and analyze due to computational

intractability. Several current studies implemented a network reduction approach that consists of

iteratively removing single nodes that do not regulate their own function and simplifying the

redundant transfer functions using Boolean algebra (Zanudo & Albert, 2013). By pinpointing and

eliminating the stabilized nodes, and iteratively removing a node that has one incoming edge and

one outgoing edge while connecting its input ݊݁݀ to its target ݊݀ ݁, a large network can be

greatly simplified, which could be more manageable in simulation and analysis. The main

advantage of this reduction method is that very large networks, with 200 or more nodes, can be

simulated with ease (Zanudo & Albert, 2013). The reduced network can be used to infer

properties about the original network to better understand the role and dynamics of its network

topology.

 Although this simplification can increase performance for attractor search and GRN

simulation, this method cannot provide fuzzy membership analysis for individual states. For

instance, with the T-LGL network, when a start state ݏ transitions into attractors through multiple

samplings, fuzzy membership analysis is not necessarily the same with samplings of P2 being on

24

compared to samplings of P2 being off. Thus, this research will focus on asynchronous Boolean

networks with sampling of a subset of initial start states, overlapping attractors within a full

realistic network, fuzzy membership analysis, and machine learning methods to identify rules to

predict the outcome of other states within a network. This fine grain collection of data for

individual states will help identify fuzzy membership clusters to determine whether a state

transitions into a healthy or unhealthy attractor using machine learning methods.

Identification of Gaps in the Literature

 This research will investigate fuzzy membership vectors of large state spaces in

asynchronous Boolean networks. The size and complexity of realistic GRNs make it infeasible to

estimate fuzzy membership vectors for all states. Network reduction is a method used to bypass

this limitation (Saadatpour et al., 2011). Of particular interest is the use of fuzzy sets to

characterize a state’s degree of membership in different basins of attraction, based on the

likelihood of transitioning from the state to a given attractor. The three heuristics that are used to

estimate fuzzy membership degree in this research are decision trees, SVMs, and naïve Bayesian

classifiers. This work will also be applied to other GRNs such as ABA, Immune Bb, Cardiac

Development, and Mammalian Cell Cycle to validate the approach.

 Modeling and simulation will determine fuzzy membership vectors for a select sample of

states, and the use of machine learning will be used to identify patterns in membership that

would extend to a much larger range of states. The data for which the patterns exist is the

collection from Markov Chain Monte Carlo sampling. The discovery of rules for these patterns

will yield fuzzy membership vectors for states not subject to simulation. These vectors will make

it possible to predict the outcome of states that were not part of the initial sampling.

25

Analysis of Research Methods

 Markov Chain Monte Carlo method is a technique that solves the problem of sampling

from a complicated distribution such as asynchronous Boolean networks. It is a technique for

estimating by simulation of the expectation of a statistic in a complex model. Successive random

selections form a Markov chain, the stationary distribution of which is the target distribution

(Gilks, 2005). It is particularly useful for the evaluation of posterior distributions in

asynchronous Boolean networks and complex Bayesian models.

For this research, the definition of the sampling problem is written to support

asynchronous Boolean networks. Let ܵ be a distribution over a finite set of states {ݏଵ, … , .{ݏ

Given a state ݏ ∈ ܵ, the simulation selects at random, with equal likelihood, a successor state ݏ

based on updating a variable of ݏ with the transition function ݔ∗(ݐ + 1) = ݂∗(ݔ௧). This random

walk on the graph will lead to an attractor. An attractor will be encountered because all

asynchronous Boolean networks are absorbing Markov chains (Xiao, 2009). For example, every

state ݏ in an absorbing Markov chain will transition to another state ݏ௪ eventually forming

cycles with no escape. With the identification of attractors and multiple samplings per state ݏ to

determine fuzzy membership to those attractors, the state space structure can be identified and

machine learning can be used to predict the other states that are not part of the initial sampling.

Monte Carlo methods rely on repeated random sampling of start states to obtain fuzzy

membership results. They are a widely used class of computational algorithms for simulating the

behavior of various physical and mathematical systems, and for other computations

(Hammersley & Handscomb, 1964) such as system biology and financial engineering.

Furthermore, the methods also rely on repeated random asynchronous sampling of update

functions to transition from one state to another until an absorbing state is reached. Thus, with

26

multiple samplings of one state, its fuzzy membership can be estimated by the percentage of

times it reaches each absorbing state.

A state in a Markov chain is an absorbing state if, once the state is reached, it is

impossible to leave. A Markov chain is an absorbing chain if there is at least one absorbing state

and it is possible to go from any state to at least one absorbing state in a finite number of steps

(Grinstead & Snell, 1997). For Boolean networks, absorbing states of a Markov chain will

represent attractors. For this research, attractors that have multiple states forming cycles will be

treated as a super state to maintain the definition of absorbing Markov chains. Thus, once a

Markov chain reaches these super states, which are irreducible and a recurrent sets of states, it

cannot escape that set. Therefore, in determining the probability of reaching a recurring set of

states from the initial state, it will only be necessary to find the probability of reaching that super

state or recurring set.

 Absorbing Markov chains have the property that the powers of the transition matrix

approach a limiting matrix (Grinstead & Snell, 1997). For example, for the transition matrix A,

there is some integer n0 such that Am = An for all m, n >= n0. A transition matrix is used to

describe the transitions of a Markov chain, and a limiting matrix is used to describe the

probability of reaching an absorbing state or attractor. With transition matrices, for Markov

chains with one or more absorbing states to have limiting matrices, there is at least one absorbing

state, and the possibility must exist to go from each non-absorbing state to at least one absorbing

state in a finite number of steps. However, using transition matrices and limiting matrices are

very powerful tools for small Boolean networks. For large GRNs, using transition and limiting

matrices is not feasible. The size of a matrix for T-LGL would be 22ݔ, and computing its

powers is intractable. Thus, a subset of initial states must be sampled; calculating their fuzzy

27

membership status into each attractor and using machine learning methods, such as decision

trees, SVMs, and naïve Bayesian classifiers, to predict all other states not part of the initial

sampling process. These predictions will help researchers test their treatments on states that were

not part of the initial sampling without having to send those states through the sampling process,

which can take a large amount of time to complete.

 A decision tree is a flowchart-like structure consisting of decision nodes, chance nodes,

and end nodes. Each internal node represents a test on an attribute, with each branching from the

nodes representing the outcome of the test. Each leaf node represents a decision taken after

computing all of the attributes, which is known as a class label. The paths from root to leaf

represent classification rules. The goal of decision trees is to learn how to classify objects by

analyzing a set of instances of already solved cases whose classes are known (Podgorelec,

Kokol, Stiglic, & Rozman, 2002). Learning input consists of a set of attribute-value vectors, each

belonging to a known class, and the output consists of a mapping from attribute values to classes

(Podgorelec, Kokol, Stiglic, & Rozman, 2002).

 For this research, decision trees will be used as a variant of one-against-all formulation.

The ݅th decision function ݃(ݔ)(݅ = 1, … , ݊ − 1) is determined, such that if ݔ belongs to class ݅,
then ݃(ݔ) > 0, and when ݔ belongs to one of the classes {݅ + 1, … , ݊}, then ݃(ݔ) < 0.

Therefore, in classifying ݔ into a class ݅, starting from ଵ݃(ݔ), the first positive ݃(ݔ) is found and

classifies ݔ into class ݅. If there is no such ݅ among ݃(ݔ)(݅ = 1, … , ݊ − 1), then ݔ is classified

into class ݊ (Esposito, 2010).

 Decision trees are relatively easy to understand and interpret because the inferred

classification rules flow from a root node to a leaf node, and this path is based on conditions

created from a training set of data. Each leaf node represents one classification rule. Laypeople

28

are able to understand decision tree models after a brief explanation. Furthermore, decision trees

have value even with little hard data. Important insights can be generated based on experts

describing the alternatives, probabilities, and costs along with preferences for outcomes. Also,

decision trees allow the addition of new possible scenarios, and help determine worst, best, and

expected values for different scenarios. However, there are two disadvantages of decision trees.

First, information gained in decision trees can be biased in favor of those attributes with more

levels (Deng, Runger, & Tuv, 2011) for data that includes categorical variables with different

number of levels. The other disadvantage, calculations can get very complex particularly if many

values are uncertain or if many outcomes are linked.

 Another method for making predictions is Support Vector Machines (SVM). SVMs are

kernel-based methods of classification that employ a maximum margin approach using a

hyperplane to separate the classes. SVMs are based on the theory of decision planes that describe

decision boundaries (Shawe-Taylor & Sun, 2009). For classes that are not linearly separable, a

kernel function is used to transform the problem into a higher dimensional space so separation is

possible. SVMs use a decision rule ݀(ܵ) to predict the outcome of future inputs. The important

difference between SVMs and other supervised learning classifiers is that SVMs use the

optimization of maximum margin to reduce the number of weights that are nonzero to just a few

weights that correspond to the important features that matter in deciding the separating line or

hyperplane. These nonzero weights correspond to the support vectors because they support the

separating hyperplane.

 To find the optimal decision solution, the maximum margin must be found. So, let the

states ܵ = ,ଵݏ} … , In addition, let the .ܣ or not to classification ܣ } belong to classificationݏ

associated labels be ݕ ∈ {1, −1}, where 1 is classification ܣ and −1 is not in classification ܣ. If

29

the data is linearly separable, then the determination of the decision function is ݀(ܵ) = ࡿ்࢝ + ܾ,

where ݓ is the weighted vector, ܵ is the set of states, and ܾ is the bias term. Thus, ்࢙࢝ + ݕ ݎ݂ 0<} ܾ = 1, < ݕ ݎ݂ 0 = −1} satisfies linearly separable data, which simplifies to ݕ(்࢙࢝ +ܾ) ≥ 1. Furthermore, the hyperplane ݀(ܵ) = ࡿ்࢝ + ܾ = ܿ, ݎ݂ − 1 < ܿ < 1, forms a separating

hyperplane that separates ݏ. When ܿ = 0, the separating hyperplane is in the middle of the two

hyperplanes with ܿ = 1 and −1. The distance between the separating hyperplane and the training

data sample nearest to the hyperplane is called the margin. Therefore, the wider the margin, the

more accurate the predictions become.

 There are multiple decision functions that can separate linearly separable classes. Some

decision functions are more optimal than others. The SVMs uses criteria to look for a decision

boundary that has a maximum distance between any data point from two different classes

(Shawe-Taylor & Sun, 2009). Therefore, an optimal separating hyperplane must be found. The

optimal separating hyperplane can be obtained by solving ݉݅݊݅݉݅࢝)ܳ ݁ݖ, ܾ) = ଵଶ ଶ subject‖ݓ‖

to ݕ(்࢙࢝ + ܾ) ≥ 1. The data that supports ݕ(ݏ்࢝ + ܾ) = 1 are known as support vectors,

and all data that supports ݕ(ݏ்࢝ + ܾ) ≥ 1 are known as feasible solutions. The optimal

separating hyperplane and decision function are constrained to their current state space and must

be converted into an equivalent dual problem whose number of variables is the number of

training data.

 The constrained problem must be converted into an unconstrained problem using non-

negative Lagrange multipliers. Let ܳ(࢝, ܾ, (ߙ = ଵଶ ்࢝࢝ − ∑ ்࢙࢝)ݕ}ߙ + ܾ) − ୀࡿ{1 , where ߙ = ,ߙ} … , } are the nonnegative Lagrange multipliers. Using this formula, the KKTߙ

conditions,
డொ(࢝,,ఈ)డ࢝ = 0 and

డொ(࢝,,ఈ)డ = 0, can be reduced to ݓ = ∑ ௌୀଵ࢙ݕߙ and

30

∑ ௌୀଵ࢙ݕߙ = 0, respectively. When substituted back into the original unconstrained problem,

the following dual problem is obtained: ݉ܽ(ߙ)ܳ ݁ݖ݅݉݅ݔ = ∑ ௌୀଵߙ − ଵଶ ∑ ்ݏݕݕߙߙ ௌ,ୀଵݏ .

Thus, this reduces to an update decision rule of ݀(ݏ) = ∑ ்ݏݕߙ ௨௪ݏ + ܾ. The formula

works for linearly separable datasets. However, datasets that are not linearly separable need an

additional step.

 When datasets are not linearly separable then another perspective in the state space has to

be taken. Transforming to a higher dimension within the state space will lead to a separable

dataset (Shawe-Taylor & Sun, 2009). The decision rule, ݀(ݏ) = ∑ ்ݏݕߙ ௨௪ݏ + ܾ, can

have ݏ் and ݏ௨௪transformed by a kernel function. One such kernel function that satisfies

this is ݇൫ݔ, ൯ݔ = which is why SVMs are known as kernel methods. This has led ,(ݔ)்߮(ݔ)߮

to SVMs excelling in realms where other machine learning methods are dominant, and many

believe that SVMs are the best off-the-shelf supervised learning algorithms in the market (Ng,

2015).

 Some advantages of SVMs are maximization of generalization ability, no local minima,

applicable to a wide range of applications, and robustness to outliers. Some disadvantages are

extension to multiclass problems, long training time, and the time and effort needed for the

selection of parameters. However, by introducing a kernel function, the SVMs will gain

flexibility in separating classes that are not linearly separable.

 An easier method to implement for predictions is naïve Bayesian classifiers. These

classifiers are based on Bayes’ Theorem with statistically independent assumptions between

predictors. Naïve refers to the assumption that data attributes are independent, and the Bayesian

method still can be optimal even when this attribute independency is violated (Domingos &

Pazzani, 1997). A naïve Bayesian model is easy to build, with no complicated iterative parameter

31

estimation, making it particularly useful for very large networks. Despite its simplicity, the naïve

Bayesian classifier often does surprisingly well and is widely used because it frequently

outperforms more sophisticated classification methods. The naïve Bayesian classifier is easy to

understand, explain, and debug, and could be modified with new training data without having to

rebuild it.

 Bayes’ Theorem provides a way to calculate the posterior probability, ܲ(ܿ|ݔ), from ܲ(ܿ), ܲ(ݔ), and ܲ(ݔ|ܿ), such that ܲ(ܿ|ݔ) = (௫|)()(௫) , where ܿ is the class, and ݔ is the data,

predictor, or attributes. ܲ(ܿ|ݔ) is the posterior probability distribution for a classification given

its attributes, ܲ(ܿ) is the prior probability distribution for a classification, ܲ(ݔ|ܿ) is the

likelihood function which is the probability of attributes given the classification, and ܲ(ݔ) is the

prior probability distribution for attributes. A naïve Bayesian classifier assumes that the effect of

the value of a predictor on a given class is independent of the values of the other predictors. This

assumption is called class conditional independence. Furthermore, with knowledge of the

probabilities for each attribute, Bayes’ Theorem can be reduced to ܲ(ܿ|ݔଵ, … , (ݔ = ܲ(ܿ) ∏ ୀଵ(ܿ|ݔ)ܲ . This rule is extremely fast at calculating the probability of being in a class

compared to other sophisticated algorithms.

 For example, calculating the posterior probability can be done by constructing a

frequency table for each attribute against the classification target, then transforming the

frequency tables to likelihood tables, and finally using the naïve Bayesian equation to calculate

the posterior probability for each class. The class with the highest posterior probability is the

outcome of the prediction indicated by ݀ = argmax∈{ଵ,…,} ܲ(ܿ) ∏ ୀଵ(|ܿݔ)ܲ , where ݀ is

the decision function for the naïve Bayesian classifier. An advantage of using a naïve Bayesian

classifier is that it only requires a small amount of training data to estimate the parameters

32

necessary for classification. This allows a small proportion of states from a Boolean network to

be sampled to accurately predict all of the other states not part of the initial sampling.

Summary

 One particular use of synchronous and asynchronous Boolean networks is the modeling

and simulation of GRNs. Synchronous Boolean networks updates to functions are applied

simultaneously at each discrete time point, whereas, asynchronous Boolean networks update one

function, chosen randomly, at each discrete time point. However, with asynchronous Boolean

networks, an initial state in one sampling can transition into an attractor, whereas in another

sampling, an initial state can transition into a different attractor. This means that an initial state

can have overlapping attractors, the set of attractors reached by some sequence of state

transitions. Using Boolean networks can help to understand how GRNs behave and input nodes

can alter that behavior. For instance, understanding how genes work together to comprise

functional cell and life to cope with environments and disease will provide researchers with

novel drug targets, sensitive diagnostics for individualized therapy, and ways to manipulate its

topology to cure disease. In this research, the T-LGL GRN is used, which is a large network with

60 nodes, including six input nodes. In previous studies, the attractors have been identified, and

this study has validated their existence. Furthermore, large networks are difficult to simulate, so

the implementation of network reduction was introduced to make simulation much more

manageable. This method fails to find fuzzy membership status of individual states. As a result,

this research will use machine learning to predict the fuzzy membership outcome of states. The

techniques that this study will use to achieve its goals are Markov Chain Monte Carlo methods,

SVNs, decision trees, and naive Bayesian networks.

33

Chapter 3

Methodology

Introduction

Due to the intractable nature of identifying fuzzy membership for every state in a large

GRN, machine learning techniques will be used to predict the basin of attractions to which these

states belong. The methodology for this research is to use the T-LGL GRN model and machine

learning methods as inputs, and <߬௪, ߬> thresholds as the parameters for the output classes.

Next, collecting data from executing simulations starting from random states provides the

training and testing dataset for machine learning methods. Additionally, an exploratory data

analysis, to include visualizations and histograms, can expose the structure of fuzzy membership

to attractors. The output class or rule sets produced from the machine learning methods will be

tested to predict accurately fuzzy membership of other states at random. Once the process is

finalized, it will be applied to other GRNs to validate its accuracy.

Hypotheses

 Realistic GRNs, such as T-LGL, possess membership structures for its states based on

clusters defined by range ߬ = [߬௪,߬]. A function ܨ: ܵ → [0,1] maps a set of states to their

fuzzy membership vectors, where there are n attractors. Then ܨ projects to the component for

attractor ܣ. In other words ܨ(ݏ) is the component of the fuzzy membership vector (ݏ)ܨ

corresponding to attractor ܣ. Thus, there exist a fuzzy membership vector function ܨ(ݏ) for

attractor ܣ, such that there are a set of states whose values lie within a threshold range ߬, which

produces the output class 〈ܣ, ߬〉. Furthermore, there also exist a fuzzy membership function ܨ(ݏ), such that there are a set of different states whose values do not lie within a threshold range

34

߬, which produces the output class ¬〈ܣ, ߬〉. Also, executing ܰ = 1000 simulations on state ݏ

yields an approximation to (ݏ)ܨ. Additionally, for a state ݏ, its sets are defined as 〈ܣ, ߬〉 (ݏ)ܨ | ݏ}= ∈ ߬} and ¬〈ܣ, ߬〉 = (ݏ)ܨ | ݏ} ∉ ߬}. Furthermore, state ݏ is labeled by 〈ܣ, ߬〉 if and

only if ܨ(ݏ) ∈ ߬; else ݏ is labeled by ¬〈ܣ, ߬〉.
 For this study, healthy cluster of states are defined within a probability threshold range

of ߬ = [0.9, 1.0]. Additionally, a healthy state is a state that can reach apoptosis more than 90%

of the time. A state that lies in an overlapping basin of attraction of multiple attractors will have

fuzzy membership in each of those attractors. Through simulation, a state ݏ in an overlapping

basin will transition into one of the attractors. Furthermore, with a large number of samplings, a

state ݏ will eventually transition into all attractors that are part of the overlapping basin of

attraction. The number of times a state ݏ transitions into a specific attractor ܣ determines its

fuzzy membership with that attractor. For example, let a state ݏ transition into two overlapping

attractors which are attractors ܣ and ܤ. This represents one sampling. There will be N=1000

samplings. During each sampling, state ݏ will transition to either attractor ܣ or attractor ܤ. Once

the sampling phase is completed, state ݏ will have transitioned to attractor ݔ ܣଵ times and

attractor ݔ ܤଶ times, where ݔଵ + ݔଶ = N hits. Therefore, a state's fuzzy membership in each

attractor when added together will equal one [௫భଵ + ௫మଵ = 1] and the list of fuzziness for each

attractor is the state’s fuzzy membership vector. This generalizes over any number of attractors,

e.g. [௫భଵ + ௫మଵ … ௫ଵ = 1]. Once the fuzzy membership is known for a group of states within

attractor ܣ, then the discovery of good output classes bound by ߬௪ and ߬could be

determined for that attractor. For this study, ߬ = [߬௪ = 0.9, ߬ = 1.0] was chosen to form a

cluster states with a high success rate of reaching attractor ܣ. Finally, for all states that have

35

similar fuzzy membership to the same attractor, the data collected can be used to train machine

learning methods to predict other states that were not initially part of the simulation.

 States form natural clusters in the vector space NA where A is the number of attractors.

Clusters can be discerned using such methods, such as k-means, etc., and can also be visualized

such as the one in Figure 6. For example, a cluster could be defined by ߬ = [߬௪,߬] =[0.9, 1.0]. However, this may not be representative to all GRNs. ߬ = [߬௪,߬] has to be

determined independently for each GRN. If visualizations are not enough to form clusters then

the usage of clustering methods is another possibility.

 Machine learning methods when trained by clustering data defined by ߬ = [߬௪,߬]
can identify accurate fuzzy membership vectors for states. With data collected from a simulation,

a classifier is trained to determine whether a state ݏ, not part of the original simulation, is in the

range of ߬ or is outside the range of ߬ for binary classification. This means that a group of states

can transition into attractor ܣ within the range ߬ = [0.9, 1.0]. Furthermore, all other states can

transition into attractor ܣ with less probability within range ߬ = [0.0, 0.9]. Therefore, a trained

classifier with a state ݏ as its input can accurately determine if state ݏ is either in the range of ߬ or

outside the range of ߬. However, different classifiers may have different variations of accuracy in

determining their output.

 The comparison of machine learning methods’ effectiveness for predicting fuzzy

membership vectors for states of a GRN are similar. For instance, based on the visualization in

Figure 6, a cluster is defined by ߬ = [߬௪, ߬], and a classifier such as a decision tree has

prediction accuracy of 97% from a previous experiment. In addition, machine learning methods

such as Naive Bayesian Classifiers and SVMs also had similar accuracy of 97%. The feature set

of a GRN, such as T-LGL, will have a subset of features dominating the outcome of the

36

classifiers output. Therefore, future experiments are expected to have similar prediction

accuracy.

 The most useful output classes for this application of machine learning methods is: given

attractor ܣ and a specified threshold range ߬, the output class of a state is positive if the

probability of reaching attractor ܣ of a state lies within the specified range ߬, else it is negative if

the probability of reaching attractor ܣ lies outside the specified range ߬. This would allow a

clinical biologist to focus on healthy and unhealthy attractors. Furthermore, a clinical biologist

could implement treatments that can improve the chances of a state ݏ, defined by a specified

range ߬, to transition into a healthy attractor ܣ.

Research Design

 This research uses statistical machine learning to predict the output class of a state, where

that state was not part of the original simulation. The research design has two inputs, a GRN and

a classifier, and one output class. The output class consist of <A, ߬> and ¬<A, ߬> where ܣ is the

attractor and ߬ is the threshold range. A state ݏ classifies to attractor ܣ with probability ܲ(ݏ, (ܣ ∈߬, otherwise it classifies to ¬ܣ.

 There will be a total of eight experiments, four for T-LGL, and one for each of the

following GRNs: ABA, cardiac development, immune Bb, and mammalian cell cycle. Some

GRNs will have source input nodes that will remain static throughout the sampling process of the

experiment. For example, T-LGL has three nodes, stimuli (the presence of cancer), stimuli2 (the

extreme presence of cancer), and CD45. The GRN must have these nodes remain in its static

state to represent real world tests. Each experiment will follow a research design schematic to

collect data from sampling to train classifiers for predictions.

37

 Figure 7 is the research design schematic for this study in which the implementation is an

experiment. There are two sets of inputs, a GRN and a classifier. The GRN may have input

nodes that remain static throughout the experiment, such as the T-LGL GRN. For T-LGL, there

will be four set of experiments. The difference between these experiments are the source input

nodes will start with different values that will remain static throughout the experiment. A subset

of states will be selected randomly for sampling to collect data which will determine fuzzy

membership vectors for each of those states.

Figure 7: Research Design Schematic

38

 There will be N=1000 number of samplings of each state ݏ to determine its fuzzy

membership vector. During the sampling process, each state involves a stochastic process of

running through asynchronous transitions to reach an attractor. For each state ݏ, N=1000

samplings will be taken, and each sampling will transition into an attractor. Once the sampling

process is complete, each state ݏ fuzzy membership vector will be determined. Once a list of

fuzzy membership vectors has been compiled, exploratory data analysis can be performed to

determine the output classes <A, ߬> and ¬<A, ߬>.

 The exploratory data analysis step of this research design is used to form clusters of states

with similar fuzzy membership vectors, and the purpose is to devise significant output classes

defined by 〈ܣ, ߬〉. Visualizations, such as Figure 6 discussed in Chapter 1, can be used to identify

clusters. Once the clusters have been identified, each cluster is assigned a threshold range and

placed into a list. The list of threshold ranges for each attractor represents the output classes.

 For a state that was not part of the initial simulation, the prediction of its output class will

be determined by a classifier trained with the fuzzy membership vectors and the threshold

ranges. The data will randomly be partitioned into bins using k-fold cross-validation. The

purpose of cross-validation is to define a dataset or determine the widest margin to test the

classifier in the training phase, which will prevent the overfitting problem, and give insight on

how the classifier will generalize to an independent dataset. The goal of the k-fold cross-

validation is to measure how accurate the predictions are for a given classifier.

Variables

For much of this study, the focus will be on large realistic networks. Each experiment

comprises a GRN, which is executed with each of the three machine learning algorithms, and a

set of output class as another variable. The GRN network is one of the inputs. Another set of

39

inputs, the choice of machine learning algorithms, will be comprised of decision trees, naïve

Bayesian classifiers, or SVNs. These classifiers will undergo training and testing to accurately

predict fuzzy membership of a random state. Particular values of tau are GRN-dependent and

will be determined by exploratory data analysis. Another might indicate if a state has specified

fuzzy membership in any attractor. For instance, a state s that is in the output class ¬<A, ߬> may

still have fuzzy membership in attractor A, but such membership is outside of the ߬ range.

Choice of Genetic Regulatory Network

As previously mentioned, the T-LGL GRN is the network of choice for this research.

While this research will focus on T-LGL for presentation and refinement of the methods used, it

also will present results for other networks such as Abscisic Acid signaling model (ABA),

Mammalian Immune response to B. Bronchiseptica infection (Immune Bb), Cardiac

Development, and Mammalian Cell Cycle. T-LGL is a large realistic GRN model created from

hundreds of literature sources and validated experimentally (Zhang et al., 2008). Due to this

validation, this network makes an ideal situation to apply this approach, which is purely

computational and requires no expert level knowledge of the disease system. If the results on this

network show accurate predictions, then the approach may prove useful in predicting other large

networks, for which there is a lack of expert-level knowledge and/or the ability to simplify

systematically. Figures 8 and 9 show the structure of the T-LGL GRN and Boolean network

respectively.

40

Figure 8: The T-LGL survival signaling GRN. The rectangles, ellipses, and diamonds indicate
intracellular components, extracellular components, and receptors. In addition, the knowledge of
leukemic cells is represented by red, green, blue, and white, which indicates highly active
components, inhibition, deregulated, and unknown states. An arrowhead at the end of an edge
indicates activation, and a short perpendicular bar at the end of an edge indicates inhibition. The
inhibitory edges from Apoptosis to other nodes are not shown (Zhang et al., 2008).

41

T-LGL Boolean Network
IL2RBT *= (ERK ˄ TBET) ˄ ¬Apoptosis
BclxL *= (NFKB ˅ STAT3) ˄ ¬(BID ˅ GZMB ˅ DISC ˅ Apoptosis)
IFNGT *= (TBET ˅ STAT3 ˅ NFAT) ˄ ¬Apoptosis
PDGFR *= (S1P ˅ PDGF) ˄ ¬Apoptosis
IFNG *= ((IL2 ˅ IL15 ˅ Stimuli) ˄ IFNGT) ˄ ¬(SMAD ˅ P2 ˅ Apoptosis)
GAP *= (RAS ˅ (PDGFR ˄ GAP)) ˄ ¬(IL15 ˅ IL2 ˅ Apoptosis)
Proliferation *= STAT3 ˄ ¬(P27 ˅ Apoptosis)
GZMB *= ((CREB ˄ IFNG) ˅ TBET) ˄ ¬Apoptosis
RAS *= (GRB2 ˅ PLCG1) ˄ ¬(GAP ˅ Apoptosis)
TPL2 *= (TAX ˅ (PI3K ˄ TNF)) ˄ ¬Apoptosis
FasT *= NFKB ˄ ¬Apoptosis
FLIP *= (NFKB ˅ (CREB ˄ IFNG)) ˄ ¬(DISC ˅ Apoptosis)
LCK *= (CD45 ˅ ((TCR ˅ IL2RB) ˄ ¬ZAP70)) ˄ ¬Apoptosis
NFAT *= PI3K ˄ ¬Apoptosis
FasL *= (STAT3 ˅ NFKB ˅ NFAT ˅ ERK) ˄ ¬Apoptosis
Caspase *= ((((TRADD ˅ GZMB) ˄ BID) ˄ ¬IAP) ˅ DISC) ˄ ¬Apoptosis
NFKB *= ((TPL2 ˅ PI3K) ˅ (FLIP ˄ TRADD ˄ IAP)) ˄ ¬Apoptosis
IAP *= NFKB ˄ ¬(BID ˅ Apoptosis)
BID *= (Caspase ˅ GZMB) ˄ ¬(BclxL ˅ MCL1 ˅ Apoptosis)
Cytoskeleton signaling *= FYN ˄ ¬Apoptosis
TNF *= NFKB ˄ ¬Apoptosis
MCL1 *= (IL2RB ˄ STAT3 ˄ NFKB ˄ PI3K) ˄ ¬(DISC ˅ Apoptosis)
Ceramide *= Fas ˄ ¬(S1P ˅ Apoptosis)
GRB2 *= (IL2RB ˅ ZAP70) ˄ ¬Apoptosis
PI3K *= (PDGFR ˅ RAS) ˄ ¬Apoptosis
SMAD *= GPCR ˄ ¬Apoptosis
P27 *= STAT3 ˄ ¬Apoptosis
ZAP70 *= LCK ˄ ¬(FYN ˅ Apoptosis)
CREB *= (ERK ˄ IFNG) ˄ ¬Apoptosis
DISC *= (FasT ˄ ((Fas ˄ IL2) ˅ Ceramide ˅ (Fas ˄ ¬FLIP))) ˄ ¬Apoptosis
IL2RB *= (IL2RBT ˄ (IL2 ˅ IL15)) ˄ ¬Apoptosis
Fas *= (FasT ˄ FasL) ˄ ¬(sFas ˅ Apoptosis)
IL2RA *= (IL2 ˄ IL2RAT) ˄ ¬(IL2RA ˅ Apoptosis)
S1P *= SPHK1 ˄ ¬(Ceramide ˅ Apoptosis)
ERK *= (MEK ˄ PI3K) ˄ ¬Apoptosis
SPHK1 *= PDGFR ˄ ¬Apoptosis
A20 *= NFKB ˄ ¬Apoptosis
MEK *= RAS ˄ ¬Apoptosis
CTLA4 *= TCR ˄ ¬Apoptosis
TBET *= (JAK ˅ TBET) ˄ ¬Apoptosis
RANTES *= NFKB ˄ ¬Apoptosis
SOCS *= JAK ˄ ¬(IL2 ˅ IL15 ˅ Apoptosis)
sFas *= FasT ˄ S1P ˄ ¬Apoptosis
IL2RAT *= (IL2 ˄ (STAT3 ˅ NFKB)) ˄ ¬Apoptosis
TCR *= Stimuli ˄ ¬(CTLA4 ˅ Apoptosis)
STAT3 *= JAK ˄ ¬Apoptosis
GPCR *= S1P ˄ ¬Apoptosis
P2 *= (IFNG ˅ P2) ˄ ¬(Stimuli2 ˅ Apoptosis)
TRADD *= TNF ˄ ¬(IAP ˅ A20 ˅ Apoptosis)
PLCG1 *= (GRB2 ˅ PDGFR) ˄ ¬Apoptosis
FYN *= (TCR ˅ IL2RB) ˄ ¬Apoptosis
IL2 *= (NFKB ˅ STAT3 ˅ NFAT) ˄ ¬(TBET ˅ Apoptosis)
JAK *= (IL2RA ˅ IL2RB ˅ RANTES ˅ IFNG) ˄ ¬(SOCS ˅ CD45 ˅ Apoptosis)
Apoptosis *= Caspase ˅ Apoptosis

Figure 9: T-LGL signaling Boolean Network (Zhang et al., 2008).

Network Analysis

The network analysis for this research will include running simulations from random start

states and using methods such as visualization tools and clustering to discover fuzzy membership

structure. Implementing the asynchronous search algorithm, the ForwardSet() and

42

ValidateAttractor() functions will assist with the simulations. Sampling will collect data based

on the Markov Chain Monte Carlo method. The process starts from a randomly chosen set of

states ܵ = ,ଵݏ} … , }, where ݇ represents the number of states in a subset of the state space. Inݏ

Table 3, k=2n, where n=15 in all experiments except for experiment VIII (mammalian cell cycle)

where n=20. The mammalian cell cycle is a small GRN which contains a total of 20 nodes,

therefore all nodes were used. Each state is sampled N=1000 times. Then, a high number of state

transitions are performed in each sample to reach a potential attractor, where the maximum

number of transitions is r=5000. For this study, r=5000 is sufficient for all states to reach an

attractor. No statistics were collected for the number of iterations sufficient to reach an attractor.

The algorithm will use the ForwardSet() function to validate the attractor. The attractor is placed

into a list and it will be used for validation during the sampling process. During the sampling

process, a state ݏ will transition to another state using the T_Asynch() function, and the new state ݏ will be validated against the list of attractors. If the new state ݏ is not in the list of attractors,

then more transitions will take place until an attractor is hit; this hit will count as one sample. A

large number of samples, N=1000, will be taken for each state ݏ ∈ ,ଵݏ} … , }, because eachݏ

state can potentially hit different attractors per sample.

Table 3: Variables used for the experiments.

Formulate Criteria

 Next, all of the samples collected were saved to a file so other applications can access the

data quickly and reliably during subsequent exploratory data analysis. Applications that can use

43

this data are visualization tools such as Tableau. The purpose of exploratory data analysis for this

study is to identify patterns from the data collected. Two approaches were taken to gain intuition

into the data.

 The first approach was to identify a GRN independent output class. For instance, an

output class for T-LGL is defining the threshold to be ߬ = [߬௪,߬] = [0.9, 1.0]. Attractor ܣ

is representing the healthy option, apoptosis, which is the death of a cancerous cell. Thus, all

states would be classified as attractor ܣ, apoptosis, or not attractor ܣ, which means the cancerous

cell continues to live and reproduce.

 Another approach is to identify a GRN dependent output class. For example, using

network analysis mentioned previously can be used as the sampling phase for each state. The

number of hits is recorded each time state s reaches attractor A. Next, a histogram chart is

created, similar to Figure 6, starting with states with the lowest number of hits and progressing

with states that have larger number of hits. The histogram’s hills and valleys is one way of

identifying clusters. A cluster is a subset of states with similar fuzzy membership vectors. Once

the clusters have been discovered, then rules can be used to predict that a state s is leading to

attractor A with probability ܲ(ݏ, (ܣ ∈ ߬ = [߬௪,߬], otherwise not. ߬௪ and ߬ is used to

define the lower and upper bounds of a specific cluster. Trying to identify the best clusters for

this research is out of scope. Thus, all experiments uses ߬ = [߬௪,߬] = [0.9, 1.0].
These machine learning methods will help predict fuzzy membership vectors for

randomly chosen states. This research is intended to discover rules to predict that a state s

leading to attractor ܣ when ߬ = [߬௪,߬]. Once the output classes have been identified, the

use of decision trees, SVMs, and naïve Bayesian classifiers will be used in the classification

process.

44

Classification of States

Providing prediction based on statistical machine learning tools, such as decision trees,

SVMs, and naïve Bayesian classifiers, will show if a state belongs to a healthy output class. A

healthy output class is a class that is most desirable to clinical biologist. For example, reaching

apoptosis is the most desirable attractor in T-LGL because this is destroying cancer. Finding

states that can reach apoptosis within threshold range ߬ = [߬௪,߬] is a desirable output class

for T-LGL. Once a set of thresholds, ߬௪ and ߬, have been identified, then decision trees

will be used to identify a set of rules to predict accurately whether a state ݏ belongs to the output

class. Cross validation methods will be used to setup training and test sets from collected data in

order that the classifiers can be fitted correctly to make accurate predictions. A typical approach

in 10-fold cross-validation is to remove the test cases and partition the remaining observations

into 10 equal sets. In each of 10 training runs the classifier model is trained on 9 of the 10 sets

and the parameters are fine-tuned using the remaining set to improve performance. The model

with the fine-tuned parameters is tested using the held-back test data. But, for this research, no

test cases will be in usage. The cross-validation process will fine tune the parameters only.

SVMs and naïve Bayesian classifiers can be used to compare prediction accuracy. These rules

will be used to classify new initial states ݏ ∉ ܵ = ,ଵݏ} … , } as positive or negative, where S isݏ

not part of the initial sampling process. The research will communicate the results through

visualization, stories, and/or interpretable summaries.

Summary

 Machine learning techniques will be used to predict a state’s output class of a given

GRN. This research methodology will have a choice of GRN and a choice of a machine learning

algorithm, and an output class which is the threshold range and attractor ܣ as the output class.

45

Data will be collected during the simulation of a GRN on a random set of states. The data

collection will be used to identify threshold ranges and to train classifiers to accurately predict a

state’s output class. The output class or rule sets produced from the machine learning methods

will be tested to predict accurate fuzzy membership vectors of other states chosen at random.

This methodology will be applied to other GRNs to validate its accuracy. The output class

consists an attractor A and a threshold range ߬ = [߬௪,߬], and the threshold is measured in

percentage for fuzzy membership of a random state. While this research will focus on T-LGL for

presentation and refinement of the methods used, it also will present results for other networks

such as Abscisic Acid signaling model (ABA), Mammalian Immune response to B.

bronchiseptica infection (Immune Bb), Cardiac Development, and Mammalian Cell Cycle.

46

Chapter 4

Results

Introduction

 Fuzzy membership vectors are difficult to estimate for all states of large realistic GRNs.

A GRN has elements expressed as on (true) or off (false), and if it has size ݊ number of elements,

it will have a total number of 2n possible states. Such difficulty can be reduced by taking a subset

of states and finding their fuzzy membership vectors. These fuzzy membership vectors can be

used to train classifiers to predict the outcomes for the rest of the states with high accuracy.

 Finding attractors and fuzzy membership vectors for a subset of randomly chosen states

helped to determine the accuracy of fuzzy membership vectors for the rest of the states in

realistic GRNs. Attractors were discovered by using randomly chosen states that transitioned into

other states using Markov Chain Monte Carlo methods. This approach was used for all the GRNs

in this work except for Cardiac Development and Mammalian Cell Cycle, in which all states

were chosen for both GRNs. The Cardiac Development GRN has 215=32768 possible states and

Mammalian Cell Cycle has 220=1048576 possible states. These two GRNs were small enough to

choose all states for the study.

After r=5000 number of transitions, the final resting state is tested to determine if it

resides in an attractor. In preliminary tests, where r=2000 and r=4000, sometimes no attractor

was reached for some states and the tests had to be repeated until r=5000 satisfied the problem

for all states reaching an attractor. Each state is sampled N=1000 to estimate its fuzzy

membership vector. Next, a new set of randomly selected states are chosen to determine their

fuzzy membership vector. Once a threshold range ߬ = [0.9,1.0] is established and an attractor A

is identified, the output class <A, ߬> is established. The states’ fuzzy vectors are used to label

47

each state; these states now comprise the training set. Once trained, the classifier could predict

whether a state can reach the specified attractor or not. The 10-fold cross validation method was

used to get an estimate of classifier performance of SVMs, Bayesian classifiers, and decision

trees.

 The results from exploratory data analysis and predictive analytics are used to answer the

following research questions. Could machine learning methods identify accurate fuzzy

membership vectors for states within GRNs? Which machine learning methods were most

effective in accurately predicting fuzzy membership vectors for states? And, given a threshold,

what are the most useful output classes in determining whether a state reaches or not reach an

attractor? To accurately answer these questions, cross validation methods were used to train

classifiers. While cross validation methods helped classifiers perform better, naive Bayesian

classifiers needed principal component analysis for additional preprocessing to be competitive

with the other classifiers.

 Principal component analysis (PCA) is a statistical method for transforming large number

of features for a data set with high correlation into a new set of uncorrelated features referred to

as principle components. The state space for the data is reduced to a smaller space while

retaining a large amount of variability to prevent the degradation of prediction accuracy of Naive

Bayesian classifiers. GRNs, such as T-LGL, have large dimensional data that is highly

correlated, which can cause problems for naive Bayes methods. This research uses PCA to

improve the performance of Naive Bayesian classifiers to manage such high dimensional data.

The performance of SVM and decision trees in this research degraded when using PCA, thus the

results do not reflect the usage of PCA with SVMs or decision trees. After using PCA to improve

naive Bayesian classifiers, a measure of the importance of the study had to be implemented.

48

 For this research, the significance level was set to 0.01. The statistical significance was

attained whenever the observed p-value of a test statistic was less than the significance level

defined for this study. The p-value, which was derived from the chi-square value, was the

probability of obtaining results at least as extreme as those observed. Also, a confusion matrix

(Kohavi, 1998) was used to get information about actual and predicted classifications done by

the classification systems. In this study, the confusion matrix was used to determine the chi-

square value which leads to computing the p-value.

Experiments I, II, III, and IV

 The T-LGL model contains six external input nodes (or source input nodes) which

represent extracellular stimuli (Figure 10), adding a stochastic component to the network, or a

background noise that exists in all biological systems. The nodes are Interleukin 15 (IL15),

which is a cytokine that stimulates the proliferation of NK-cells (natural killer cells) and T-cells

(Thymus cells); Stimuli, which is an antigen stimulation of leukemia in a T-cell; Platelet-derived

growth factor beta polypeptide (PDGF), which is a key master switch in controlling these

survival pathways in T-LGL leukemia; Stimuli2, which is a new and stronger antigen stimulation

of leukemia in a T-cell; Protein tyrosine phosphatase, receptor type, C (CD45); and Tax p40

Human T-Lymphotropic virus 1 (TAX).

Source Input Nodes
IL15 Interleukin 15
Stimuli The presence of leukemia
PDGF Platelet-derived growth factor beta polypeptide
Stimuli2 A stronger presence of leukemia
CD45 Protein tyrosine phosphatase C
TAX Tax p40 Human T-Lymphotropic virus 1

Figure 10: Six external input nodes for T-LGL experiments.

 For each T-LGL experiment, IL15, Stimuli, PDGF, and TAX are expressed (on) or set to

true. Gene expression is the process by which information from a gene is used in the synthesis of

49

a functional RNA or protein. Stimuli2 and CD45 were chosen to be a combination of on or off,

which produces four experiments. CD45 is a complex enzymatic reactions that is performed by

the concerted action of protein kinase and phosphatase. When CD45 is not expressed, the cellular

process can result in disease conditions such as leukemia. When Stimilus2 is expressed, this

represents a strong presence of leukemia, and when it's not expressed, there is a weak presence of

leukemia since stimuli is always expressed. Apoptosis (attractor A for this study) was initially set

to false (off) for all states. If apoptosis is set to true (on), then all states with this setting will

reach apoptosis due to this initial setting.

 A subset of states, 215 = 32768 states or
ଶభఱଶలబ = 10ିଵଶ% of the states, was chosen ݔ 2.8422

randomly. Once chosen, these same states were used in experiments I, II, III, and IV. The

number of samplings per state was set to N=1000. The number of transitions allowed per state

was set to r=5000, which for this study was enough for every state to successfully hit an

attractor. Initially, r=1000 and r=2000 were used but there was a high rate of unsuccessful

attempts to reach an attractor, whereas r=5000 had a 100% success rate of reaching an attractor

in all experiments.

Experiment I (Stimuli2=false and CD45=true)

 Three attractors were discovered which are shown in Table 1. The healthy attractor A

(apoptosis) was considered for this study whereas the other two cancerous attractors were treated

as unhealthy. The state s was considered to be in attractor A if and only if it's within the threshold

range ߬, which forms the output classes of <A, ߬>. Each state was sampled and the number of

hits was recorded to determine its fuzzy membership vector. A histogram chart was created

based on these hits in Figure 11.

50

 The output class was used to train classifiers using 10-fold cross-validation to make

predictions for other states that were not part of the initial subset of states. A confusion matrix of

observed values was created during the cross-validation step. A confusion matrix of expected

values was also created from the confusion matrix of observed values. A chi-square calculation

was derived from both observed and expected confusion matrices. The p-value was calculated

from the chi-square calculation to show the significance of the experiment.

 Figure 11: Experiment I – T-LGL with stimuli2 set to false and CD45 set to true.

 The machine learning methods used were three decision trees (max splits=4, max

split=20, and max split=100), naive Bayesian classifier (using PCA to improve accuracy), and

support vector machines (SVM). The machine learning prediction accuracy in experiment I

(shown in Table 9) to determine whether a state s was predicted to be in <A, ߬> or ¬<A, ߬> was

89.1% for decision trees (max splits=4), 92.4% for decision trees (max splits=20), 94.1% for

decision trees (max splits=100), 93.0% for naive Bayesian classifiers, and 96.6% for SVMs. The

51

chi-square was calculated (Figure 19 show an example of calculation) to determine the p-value.

The chi-square calculations were 19221.954 for decision trees (max splits=4), 22334.182 for

decision trees (max splits=20), 24416.256 for decision trees (max splits=100), 22736.272 for

naive Bayesian classifiers, and 27681.290 for SVMs. In addition, once the chi-square calculation

values are known, then the p-values can be derived. For all machine learning methods in all

experiments, the p-value<0.0001 was extremely significant for this research. For all other

experiments, Table 9 has the values machine learning accuracy, chi-square calculations, and p-

values.

Experiment II (Stimuli2=true and CD45=true)

 Two attractors were discovered which are shown in Table 1. The healthy attractor A

(apoptosis) was again used for this study whereas the other cancerous attractor was treated as

unhealthy. The state s was considered to be in attractor A if and only if it's within the threshold

range ߬, which forms the output classes of <A, ߬>. Each state was sampled and the number of

hits was recorded to determine its fuzzy membership vector. A histogram chart was created

based on these hits in Figure 12. The output class was used to train classifiers using 10 fold

cross-validation to make predictions for other states that were not part of the initial subset of

states. Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values.

52

 Figure 12: Experiment II – T-LGL with stimuli2 set to true and CD45 set to true.

Experiment III (Stimuli2=false and CD45=false)

 Three attractors were discovered which are shown in Table 1. The healthy attractor A

(apoptosis) was again used whereas the other two cancerous attractors were treated as unhealthy.

The state s was considered to be in attractor A if and only if it's within the threshold range ߬,

which forms the output classes of <A, ߬>. Each state was sampled and the number of hits was

recorded to determine its fuzzy membership vector. A histogram chart was created based on

these hits in Figure 13. The output class was used to train classifiers using 10 fold cross-

validation to make predictions for other states that were not part of the initial subset of states.

Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-values.

53

 Figure 13: Experiment III – T-LGL with stimuli2 set to false and CD45 set to false.

Experiment IV (Stimuli2=true and CD45=false)

 Two attractors were discovered which are also shown in Table 1. The healthy attractor A

(apoptosis) was again used whereas the other cancerous attractor was treated as unhealthy. A

state s is considered to be in attractor A if and only if it were within the threshold range ߬ =[߬௪,߬] = [0.9, 1.0], which forms the output classes of <A, ߬> and ¬<A, ߬>. Each state was

sampled and the number of hits was recorded to determine its fuzzy membership vector. A

histogram chart was created based on these hits in Figure 14. The output class was used to train

classifiers using 10 fold cross-validation to make predictions for other states that were not part of

the initial subset of states. Table 9 shows the outcome to machine learning accuracy, chi-square

calculations, and p-values.

54

 Figure 14: Experiment IV – T-LGL with stimuli2 set to true and CD45 set to false.

Experiments V

Three source input nodes ABH1, ERA1, and AGB1 was set to true (on). If these three

nodes were allowed to vary in value, then there would be 16 attractors instead of two. During

preliminary testing, there were eight attractors for stomatal closure and the other eight for

stomatal opening. Thus, forcing the three nodes to remain static throughout state creation allows

for the study to focus on two attractors instead of 16. Also, the number of samplings per state

was set to N=1000, and the number of transitions allowed is set to r=5000. These parameters,

N=1000 and r=5000, also apply to experiments VI - VIII.

 Two attractors were discovered which are also shown in Table 4. The basin of attraction

for both attractors do not overlap. Each state was sampled N=1000 times. The transition of each

state either hit attractor A 0% or 100% of the time. The presence of ABA closes the guard cells

and the absent of ABA opens the guard cells. The ABA GRN does not include threshold for

ABA building up in guard cells to slowly close nor does it include pathways for guard cells to

55

absorb ABA to slowly reopen. The healthy attractor A (stomatal closure) was used whereas the

other attractor B (stomatal opening) was treated as unhealthy. Unhealthiness for this experiment,

represented by attractor B, is turgor pressure and water content are low but the stomatal guard

cell remains open.

 When turgor pressure is lost, the stoma closes. In angiosperms and gymnosperms,

abscisic acid (ABA) is the hormone that triggers the closing of the stomata guard cells when soil

water is insufficient to keep up with transpiration. Turgor pressure is the pressure exerted on a

plant cell wall by water passing into the cell by osmosis which forces the plant to stand upright.

The reduction of pressure causes the plant to wilt. The guard cells are specialized cells in the

epidermis of leaves, stems, and other organs that are used to control gas exchange. ABA binds to

receptors at the surface of the plasma membrane of the guard cells.

 A state s is considered to be in attractor A if and only if the probability that they transition

to the attractor is within the range ܲ(ݏ, (ܣ = [߬௪,߬] = [0.9, 1.0], which forms the output

classes of <A, ߬> and ¬<A, ߬>. Each state was sampled and the number of hits was recorded to

determine its fuzzy membership vector. The output class was used to train classifiers using 10

fold cross-validation to make predictions for other states that were not part of the initial subset of

states. Table 9 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values.

Experiments VI

For the cardiac development GRN, there are no source input nodes. Six attractors were

discovered which are also shown in Table 5. Attractor A was used because it had the majority of

hits compared to all of the other attractors. A state s is considered to be in attractor A if and only

if it were within the threshold range ߬ = [߬௪,߬] = [0.9, 1.0], which forms the output classes

56

of <A, ߬> and ¬<A, ߬>. Each state was sampled and the number of hits was recorded to

determine its fuzzy membership vector. A histogram chart was created based on these hits in

Figure 15. The output class was used to train classifiers using 10 fold cross-validation to make

predictions for other states that were not part of the initial subset of states. Table 10 shows the

outcome to machine learning accuracy, chi-square calculations, and p-values.

Figure 15: Experiment VI – Cardiac Development.

Experiments VII

For the Mammalian Immune Response to B. Bronchiseptica Infection (Immune Bb)

GRN, there are no source input nodes. Ten attractors were discovered which are also shown in

Table 6. The healthy attractor A was used because it had the majority of hits compared to all of

the other attractors. In addition, the other attractors were treated as unhealthy. A state s is

considered to be in attractor A if and only if it were within the threshold range ߬ = [߬௪,߬] =[0.9, 1.0], which forms the output classes of <A, ߬> and ¬<A, ߬>. Each state was sampled and the

57

number of hits was recorded to determine its fuzzy membership vector. A histogram chart was

created based on these hits in Figure 16. The output class was used to train classifiers using 10

fold cross-validation to make predictions for other states that were not part of the initial subset of

states. Table 10 shows the outcome to machine learning accuracy, chi-square calculations, and p-

values.

Figure 16: Experiment VII - Mammalian Immune Response to B. Bronchiseptica Infection
(Immune Bb).

Experiments VIII

 For the mammalian cell cycle GRN, there are no source input nodes. Three attractors

were discovered which are also shown in Table 7. The healthy attractor B was used because it

had the majority of hits compared to all of the other attractors. In addition, the other attractors

were treated as unhealthy. A state s is considered to be in attractor B if and only if it were within

the threshold range ߬ = [߬௪,߬] = [0.9, 1.0], which forms the output classes of <B, ߬> and

¬<B, ߬>. Each state was sampled and the number of hits was recorded to determine its fuzzy

58

membership vector. A histogram chart was created based on these hits in Figure 17. The output

class was used to train classifiers using 10 fold cross-validation to make predictions for other

states that were not part of the initial subset of states. Table 10 shows the outcome to machine

learning accuracy, chi-square calculations, and p-values.

 Figure 17: Experiment VIII - Mammalian Cell Cycle

Data Collection and Analysis

 This research identified all of the attractors for ABA, Cardiac Development, Immune Bb,

T-LGL, and Mammalian Cell Cycle. Tables 4, 5, 6, and 7 comprise the list of attractors for each

GRN with the exception of T-LGL. Tables 1 and 2, discussed earlier, provide the list of

attractors for T-LGL. The list of attractors was saved to a file for future use to avoid duplicating

the search.

59

Attractors A (Stomatal Closure) B (Stomatal Opening)
INPUT NODES

ABH1 ON ON
ERA1 ON ON
AGB1 ON ON

NODES
ABA ON OFF
GCR1 Oscillates Oscillates
SphK ON OFF
S1P ON OFF

GPA1 ON Oscillates
PLD ON Oscillates
PA ON Oscillates
pHc ON OFF

OST1 ON OFF
ROP2 ON Oscillates
Atrboh ON OFF
ROS ON OFF

H_ATPase OFF ON
ABI1 OFF OFF
RCN1 ON OFF
NIA12 ON OFF
NOS OFF OFF
NO OFF OFF
GC OFF OFF

ADPRc OFF OFF
cADPR OFF OFF
cGMP OFF OFF
PLC OFF OFF
InsP3 OFF OFF
InsPK ON OFF
InsP6 ON OFF
CIS OFF OFF

Ca2_ATPase OFF OFF
Ca2_c OFF OFF

AnionEM ON OFF
Depolar ON Oscillates
CaIM OFF OFF
KOUT ON Oscillates
KAP ON Oscillates
KEV OFF OFF
PEPC OFF ON
Malate OFF ON
RAC1 OFF ON
Actin ON OFF

Closure ON OFF

Table 4: The attractors of Abscisic Acid Signaling (ABA). This table shows the state of
the nodes for all possible combinations of input signals in the presence and lack of
presence of Abscisic acid. The healthy attractor chosen for this study on ABA is the
stomatal guard cell closure.

60

Attractors A B C D E F
INPUT NODES

NODES

exogen_BMP2_I OFF OFF OFF ON ON ON
Fgf8 OFF OFF OFF OFF OFF ON
Tbx1 OFF ON OFF OFF OFF ON
Tbx5 OFF OFF ON OFF ON OFF

Foxc1_2 OFF ON OFF OFF OFF ON
exogen_canWnt_II OFF ON OFF OFF OFF ON
exogen_BMP2_II OFF OFF OFF ON ON ON

Mesp1 OFF ON OFF OFF OFF OFF
Dkk1 OFF ON OFF OFF OFF OFF
Bmp2 OFF OFF OFF ON ON OFF
Isl1 OFF ON OFF OFF OFF ON

canWnt OFF ON OFF OFF OFF ON
GATAs OFF ON ON OFF ON ON

exogen_CanWnt_I OFF ON OFF OFF OFF ON
Nkx2_5 OFF ON ON OFF ON ON

 Table 5: The attractors of Cardiac Development.

Attractors A B C D E F G H I J
INPUT NODES

NODES

Bb OFF ON OFF OFF OFF OFF OFF OFF ON OFF
TTSSI OFF OFF OFF OFF OFF OFF OFF OFF ON OFF
TTSSII OFF OFF OFF OFF OFF OFF OFF OFF ON OFF

Oag OFF ON OFF OFF OFF OFF OFF OFF ON OFF
EC OFF ON OFF OFF OFF OFF OFF OFF ON OFF
Cab OFF ON ON OFF OFF ON ON OFF OFF ON
C OFF ON OFF OFF OFF OFF OFF OFF OFF OFF

AgAb OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
Oab ON ON ON ON OFF OFF ON OFF OFF OFF
BC OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
PIC OFF OFF OFF OFF OFF OFF OFF OFF ON OFF

IL12I OFF OFF OFF ON ON ON ON OFF ON OFF
IL12II OFF OFF OFF ON ON ON ON OFF ON OFF
IL4I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
IL4II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
IL10I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
IL10II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
IFNgI OFF OFF OFF ON ON ON ON OFF ON OFF
IFNgII OFF OFF OFF ON ON ON ON OFF ON OFF

RP OFF OFF OFF OFF OFF OFF OFF OFF ON OFF
DP OFF OFF OFF OFF OFF OFF OFF OFF ON OFF
MPI OFF OFF OFF ON ON ON ON OFF ON OFF
MPII OFF OFF OFF ON ON ON ON OFF ON OFF
AP OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
T0 OFF ON OFF ON ON ON ON OFF ON OFF
TrII OFF OFF OFF OFF OFF OFF OFF OFF ON OFF
TrI OFF OFF OFF OFF OFF OFF OFF OFF ON OFF

Th1II OFF OFF OFF ON ON ON ON OFF ON OFF
Th1I OFF OFF OFF ON ON ON ON OFF ON OFF
Th2II OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
h2I OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
DCI OFF ON OFF ON ON ON ON OFF ON OFF
DCII OFF ON OFF ON ON ON ON OFF ON OFF
PH OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

Table 6: The attractors of Mammalian Immune Response to B. Bronchiseptica Infection
(Immune Bb).

61

Attractors A B C
INPUT NODES

NODES

EGF OFF OFF ON
 CDK6 OFF ON ON
 CDK2 OFF ON ON
 ErbB1 OFF OFF ON

 ErbB2_3 OFF OFF ON
 ERa OFF ON ON

 cMYC OFF ON ON
 CycE1 OFF ON ON
 ErbB3 OFF OFF ON
 CycD1 OFF ON ON

 p21 OFF OFF OFF
 IGF1R OFF ON OFF
 MEK1 OFF ON ON
 CDK4 OFF ON ON
 Akt1 OFF ON ON
 pRB OFF ON ON

 ErbB2 OFF OFF ON
 ErbB1_2 OFF OFF ON

 p27 OFF OFF OFF
 ErbB1_3 OFF OFF ON

 Table 7: The attractors of Mammalian Cell Cycle.

 The list of attractors was collected using Markov Chain Monte Carlo method. The

method used a set of randomly chosen start states. Each state was sampled N=1000 times, where

each sample is a transition sequence that were run for each sampled state, to determine their

fuzzy membership vectors on overlapping attractors. Furthermore, each sampling of a start state

involved transitioning to one state then another state until this transition process ends at an

attractor. The maximum number of transitions was set to r=5000 to guarantee successful hits to

an attractor. The number of hits to each attractor was tallied, where the total number of hits to all

attractors for a state equals 1000.

 The number of randomly selected states for each GRN was 32768, with the exception of

the mammalian cell cycle, which used all 1048576 states. All states also were used for cardiac

development, which is a small GRN with only 15 nodes and has a total of 32768 states.

Choosing a subset of states reduced the amount of time needed to process the data collection

phase of this research.

 The data was stored in flat files. Each state was sampled N=1000 times and was

associated with the number of hits it had with each attractor, which totaled 1000 hits. Each

62

attractor was labeled A, B, C, etc., whereas for T-LGL, attractor A was renamed to apoptosis to

represent cellular death. Table 5 shows the first few states and their number of hits to each

attractor.

States Apoptosis Attractor B Attractor C

s000000000000001100110001010101001001000001001100011010011010 1000 0 0

s000000000000010000011111001100100000110101011100100010010000 1000 0 0

s000000000000011111110001110011111011000111010001000100001100 813 128 59

s000000000000101000011111110001011010000000111001010110011000 842 98 60

s000000000001001001000100111110100110011100110101001100011000 1000 0 0

s000000000001001100000100110100011101001100111111101111111110 1000 0 0

s000000000001010011111001100100011001000101101110110000010000 1000 0 0

s000000000001011011100101000001101000110001010111110001001000 1000 0 0

s000000000001101100011100011101001100111011001111110011000110 1000 0 0

s000000000001101100100010010101100110000111011100110110100110 1000 0 0

Table 8: The first 10 start states from T-LGL1 with N=1000 sampling each and the number of
times each hit a given attractor.

 The structure within a GRN was identified by grouping each state by the number of hits

to a specific attractor. A visualization of the structure was created such as those in Figure 11, 12,

13, and 14. The threshold range ߬ was set for states that reached apoptosis as ߬ = ൣ߬௪,߬൧ =[0.9, 1.0] to form the output classes of <A, ߬> and ¬<A, ߬>. Classifiers were trained using 10-

fold cross validation (and PCA to improve the accuracy of Naive Bayesian classifiers) to predict

whether a state reached apoptosis (or not) based on the threshold given.

 In initial research, naive Bayesian classifiers did not fare well with data that had high

multi-dimensional subspace, such as T-LGL GRN. Principal component analysis (PCA) can

solve the problem of high dimensions with dimensionality reduction methods. When PCA was

applied to the data before using naive Bayesian classifiers, the prediction accuracy greatly

improved, which allowed the classifier to compete closely with SVM and decision trees.

However, when PCA was applied before using SVM and decision trees, the classifiers prediction

63

accuracy was reduced; therefore this study reports only outcomes of naive Bayesian classifiers

using PCA and the other two classifiers without using PCA.

 Some PCA algorithms, such as the one used in this study, had a pre-processing stage

before applying PCA. This preprocessing normalized the mean and variance of the data. The

preprocessing algorithm is shown in Figure 18.

The first two steps zeros out the mean of the data.

ߤ ݐ݈݁ :1 ݁ݐܵ = 1݉ ()ݔ
ୀଵ

:2 ݁ݐܵ ()ݔ ℎݐ݅ݓ()ݔ ℎܿܽ݁ ݈ܴ݁ܿܽ݁ − ߤ
The last two steps rescales each coordinate for normalizing to unit variance.

:3 ݁ݐܵ ଶߪ ݐ݈݁ = 1݉ ()ݔ

݁ݐܵ 4: ݈ܴ݁ܿܽ݁ ݁ܽܿℎ ()ݔ ℎݐ݅ݓ ߪ()ݔ

 Figure 18: Preprocessing the data before PCA to normalize its mean and variance.

 Consider a training set, X, with the sample mean of each column shifted to zero, where

each of the n rows represents a different repetition of the experiment, and each of the p columns

gives a feature for a state s, which is a result (0 or 1) from a particular Boolean network function.

The transformation is defined by a set of p-dimensional vectors of weights ݓ() = ,ଵݓ) … , ()ݔ)() that maps each row vectorݓ ∈ to a new vector of principal ࢄ

components ݐ() = ,ଵݐ) … , ()ݐ)(), given byݐ = ()ݔ ∗ in such a way that the individual ()ݓ

variables of ݐ considered over the data set successively inherit the maximum possible variance

from ݔ, with each vector of weights w constrained to be a unit vector.

64

 The first principal component was calculated using the following steps. If ||ݓ|| = 1,

vector ݔ() project on ݓ has length ݔ() ∗ To maximize the variance of the projections, we .ݓ

chose a unit-length ݓ so as to maximize arg max‖௪‖ୀଵ{௪௪௪௪ }. The first loading vector ݓ(ଵ)
has to satisfy ݓ(ଵ) = arg max‖௪‖ୀଵ{∑ ଶ()(ଵݐ) } = arg max‖௪‖ୀଵ{∑ ()ݔ) ∗ ଶ(ݓ }. Rewriting this in

matrix form equivalently gives ݓ(ଵ) = arg max‖௪‖ୀଵ{‖ܺݓ‖ଶ} = arg max‖௪‖ୀଵ{ݓ்்ܺܺݓ}.

Since ݓ(ଵ) has been defined to be a unit vector, it equivalently also satisfies ݓ(ଵ) =
arg max‖௪‖ୀଵ{௪௪௪௪ }. After the first principal component ݓ(ଵ) has been found, then further

principal components ݓ(ଶ) to ݓ() can be computed.

 The kth component can be found by subtracting the first ݇ − 1 principal components

from ܺ, ܺ = ܺ − ∑ ିଵ௦ୀଵ்(௦)ݓ(௦)ݓܺ , and then finding the loading vector which extracts the

maximum variance from this new data matrix

()ݓ = arg max‖௪‖ୀଵ{ฮ ܺݓฮଶ} = arg max‖௪‖ୀଵ{௪ೖೖ௪௪௪ }. The full principal components

decomposition of ܺ can therefore be given as ܶ = ܹܺ. Finally, for dimensionality reduction, ܮ

dimensions can be kept. L in this research is computed by keeping 95% (or more) of the variance

within the data.

 This research used 10-fold cross-validation in training classifiers to accurately predict

outcomes of states. In 10-fold cross-validation, the original sample is randomly partitioned into

10 equal sized subsamples. Of the 10 subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining nine subsamples are used as training data. The

cross-validation process is then repeated 10 times (the folds), with each of the 10 subsamples

used exactly once as the validation data. The 10 results from the folds can then be averaged to

produce a single estimation. The advantage of this method over repeated random sub-sampling is

65

that all observations are used for both training and validation, and each observation is used for

validation exactly once.

Findings

 T-cell large granular lymphocytic (T-LGL) leukemia, which is a realistic genetic

regulatory network (GRN) used in this study, possessed a fuzzy membership structure within its

Boolean network state space. Figures 10 - 13 show the fuzzy membership of each start state

(randomly chosen) for the apoptosis attractor in the T-LGL GRN. The same randomly chosen

start states were used in all four histogram charts. Each state was sampled N=1000 times. During

sampling, each time a state reached apoptosis, a bin representing the total was increased by one,

forming the histogram charts. Furthermore, each bin represented the number of states with the

same totals which determined their fuzzy memberships. Bin count 1000 is not shown in the

Figures 10 and 11 because it will flatten all of the other bins in order to fit in the chart. All four

histogram charts have Interleukin 15 (IL15), Tax p40 - Human T-lymphotropic virus 1 (TAX),

Platelet-derived growth factor beta polypeptide (PDGF), and Antigen stimulation (Stimuli) set to

true in the Boolean network. A threshold range was set ߬ = [߬௪,߬] = [0.9, 1.0], where the

bins respectively are between 900 and 1000 hits. In this range, a state was considered to be in the

apoptosis attractor and all other states were considered not to be in the apoptosis attractor.

There are four histogram charts (Figures 10-13), one for each experiment (experiment I-

IV). In Figure 11, experiment I for T-LGL, new or stronger antigen stimulation (Stimuli2) was

set to false and Protein tyrosine phosphatase, receptor type, C (CD45) was set to true within the

Boolean network. In Figure 12, experiment II for T-LGL, stimuli2 was set to true and CD45 was

also set to true. In Figure 13, experiment III for T-LGL, stimuli2 was set to false and CD45 was

also set to false. And, in Figure 14, experiment IV for T-LGL, stimuli2 was set to true and CD45

66

was also set to false. Machine learning methods will use this range to predict whether other states

are within this threshold or not. The importance of knowing the structures and trends that the

histograms present helps in the implementation of machine learning methods to accurately

predict whether state is either going to reach apoptosis or not.

 Boolean networks were used to model GRNs. The T-LGL GRN has many Boolean

network nodes and finding a subset of the states' fuzzy membership vectors was time consuming.

For instance, each state was sampled N=1000 times and required maximum r=5000 transitions

per sample to reach an attractor. Furthermore, it was intractable to find fuzzy membership for all

states. Machine learning methods were used to predict the fuzzy membership of a state. A subset

of states was selected randomly for sampling. Each state was sampled N=1000 times to

determine its fuzzy membership vector. After the completion of sampling for all states, a

threshold was set to determine whether a state can reach apoptosis ߬ = [߬௪,߬] = [0.9, 1.0].
Thus, states within the threshold were classified as positive and are in the apoptosis attractor,

whereas states lower than 90% are classified as negative and were not in the apoptosis attractor.

After the classification process, machine learning methods were trained with the sampled

data. After training, the machine learning methods were used to predict the outcome for other

states that were not part of the initial sampling set. This will allow scientists to choose a set of

states to predict their classification without having to go through the sampling process, which

can be time consuming. Although, some machine learning methods outperform others in

prediction and readability.

 A support vector machine (SVM) has the best prediction accuracy for predicting the

outcome of whether a state will reach apoptosis in T-LGL GRN. Table 9 shows that SVMs led in

accuracy for all four experiments in the ML Accuracy column. ML Accuracy is simply the

67

measure of how many predictions the SVM was able to get correct out of the total number of

predictions.

 The first column of Table 9 is the GRN being studied and the main attractor, apoptosis,

which was used to determine whether a state is in apoptosis or not. Apoptosis was the only

attractor chosen because this was the most desired state that helps clinical biologists solves

problems with leukemia in white blood cells. The next column in Table 9 is the machine learning

methods used for this study. Three types of decision trees were used. The smallest had a

maximum of four decision splits to make predictions, the middle decision tree had a maximum of

20 decision splits, and the largest decision tree had a maximum of 100 splits. SVMs and naive

Bayesians classifiers use mathematics and statistics for prediction and do not use decision splits.

Furthermore, decision trees in this study had output decision rules so that scientist can follow the

logic of how the classifier makes its predictions.

 The next two columns of Table 9 show the proportion of correct classification for the

classifier to predict if a state that does not belong in apoptosis is indeed not in apoptosis or if a

state that does belong in apoptosis is indeed in apoptosis. The two columns together are derived

from a confusion matrix show in Figure 19. The first, not in attractor, is the true negative (TN)

divided by total rows and the second, in attractor, is the true positive (TP) divided by total rows.

 The next three columns of Table 9 are accuracy, precision, and recall. Accuracy is the

proportion of correct results that a classifier achieved. For a classifier to accurately predict

whether a state reaches apoptosis (or not), precision is the number of correct hits to attractor A

divided by the number of all attempts. Recall is the number of correct results divided by the

number of results that should have been returned. Chi-squared testing is used to compare two

sets of attributes, the predicted values of a classifier and the actual values, to determine whether

68

the study is statistically significant or not. In Chi-squared testing we compare a set of observed

values (O) against a set of expected values (E). The expected values are values that would be

expected if there were no association between the predicted and actual values. The calculation of ܿℎ݅ଶ is achieved by using the identity ܿℎ݅ଶ = ∑ (ைିா)మா . If the result is above a given critical

threshold value then the study has a statistical significance.

 Given a classification rule, it can be determined whether the rule is surprising (i.e.

unexpected) or not by determining whether there exists some special relationship between the

attributes and the classifier, or that the rule is simply one that is expected assuming a normal chi-

squared distribution. A probability value or p-value (p) derived from the critical values of chi-

square distribution has shown that all experiments in this study are statistically extremely

significant, where < 0.0001. SVM and decision trees both show extreme significances, but

SVM has the advantage of performing more accurately whereas decision trees output rules on

how its decisions were calculated.

69

 Predicted 0
(No)

Predicted 1
(Yes)

Row Total

Actual 0 (No) TN=9540 FP=513 10053

Actual 1 (Yes) FN=617 TP=22098 22715

Column Total 10157 22611 32768

 Predicted 0 (No) Predicted 1 (Yes) Row
Total

Actual 0
(No)

(10157)(10053)/(32768)
 =3116.099

(22611)(10053)/(32768)
=6936.901

10053

Actual 1
(Yes)

(10157)(22715)/(32768)
 =7040.901

(22611)(22715)/(32768)
 =15674.1

22715

Column
Total

10157 22611 32768

(a) Confusion Matrix - Observed Values

(b) Confusion Matrix - Expected Values

Observed (O) Expected (E) (ܱ − ଶ(ܧ ⁄ܧ

9540 3116.099 13237.7001

617 7040.901 5860.9692

513 6963.901 5948.8385

22098 15674.100 2632.7822

 Chi-square Total 27681.2900

Critical values of Chi-square Distribution

DF p<0.20 p<0.10 p<0.05 p<0.02 p<0.01 p<0.001 p<0.0001

1 chi>1.64 chi>2.71 chi>3.84 chi>5.41 chi>6.63 chi>10.83 chi>15.14

(c) Chi-square calculation

(d) P-value Calculation

Figure 19: The confusion matrix of observed values for the SVM in LGL1-Apoptosis. Steps a, b,
c, and d show the steps used to arrive at the p-value. It uses true negatives (TN), false negative
(FN), false positive (FP), true positive (TP), and degree of freedom (DF) to describe the
predicted data.

 Table 9: Machine learning prediction accuracy for the T-LGL GRN.

 Scientists that are focused only on accuracy could use SVMs without insight on why such

prediction methods are accurate. In all four experiments, SVMs outperformed decision trees and

70

naive Bayesian classifiers. For SVMs, experiment I was 96.6% accurate, experiment II was

96.9% accurate, experiment III was 93.7% accurate, and experiment IV was 93.6% accurate.

Naive Bayesian classifiers performed poorly and needed additional preprocessing to be

competitive. Thus, principal component analysis (PCA) was used to boost the performance of a

naive Bayesian classifier to get better accuracy in its predictions. PCA was used for SVM and

decision trees but their performance in accuracy was reduced. Thus, Table 9 only reflects naive

Bayesian classifiers with the usage of PCA. Furthermore, if the analysis of the processes that a

machine learning algorithm uses to achieve its predictions is more important than accuracy,

decision trees can fulfill that need with rules on how its predictions are calculated.

 The decision trees generated rules that are easy to understand. Figure 20 shows a small

decision tree's output of rules. This tree had at most four decision splits. The tree of questions are

used as a representation language, each node from the tree is either a test about an attribute or a

final decision. This four-node decision tree had good accuracy in prediction. For the four-node

decision tree (Table 9), experiment I was 89.0% accurate, experiment II was 87.7% accurate,

experiment III was 76.6% accurate, and experiment IV was 76.9% accurate. In addition, 20-node

and 100-node decision trees showed more accuracy that the four-node counterpart. Theirs were

92.4% and 94.1% respectively for experiment I, 91.7% and 93.7% respectively for experiment II,

80.4% and 83.7% respectively for experiment III, and 79.9% and 83.5% respectively for

experiment IV. While accuracy and rules are an important part of this study, output classes can

affect the outcome of those accuracies and rules.

71

T-LGL1
node-1 if TBET < 0.5 then node-2 elseif TBET >= 0.5 then node-3 else class = 1
node-2 if Caspase < 0.5 then node-4 elseif Caspase >= 0.5 then node-5 else class = 0
node-3 class = 1
node-4 class = 0
node-5 if DISC < 0.5 then node-6 elseif DISC >= 0.5 then node-7 else class = 1
node-6 class = 0
node-7 class = 1

T-LGL2
node-1 if TBET < 0.5 then node-2 elseif TBET >= 0.5 then node-3 else class = 1
node-2 if Caspase < 0.5 then node-4 elseif Caspase >= 0.5 then node-5 else class = 0
node-3 class = 1
node-4 class = 0
node-5 if DISC < 0.5 then node-6 elseif DISC >= 0.5 then node-7 else class = 1
node-6 class = 0
node-7 class = 1

T-LGL3
node-1 if Caspase < 0.5 then node-2 elseif Caspase >= 0.5 then node-3 else class = 1
node-2 if DISC < 0.5 then node-4 elseif DISC >= 0.5 then node-5 else class = 0
node-3 class = 1
node-4 class = 0
node-5 if TBET < 0.5 then node-6 elseif TBET >= 0.5 then node-7 else class = 1
node-6 class = 0
node-7 class = 1

T-LGL4
node-1 if Caspase < 0.5 then node-2 elseif Caspase >= 0.5 then node-3 else class = 1
node-2 if DISC < 0.5 then node-4 elseif DISC >= 0.5 then node-5 else class = 0
node-3 class = 1
node-4 class = 0
node-5 if Ceramide < 0.5 then node-6 elseif Ceramide >= 0.5 then node-7 else class = 1
node-6 class = 0
node-7 class = 1

Figure 20: Decision tree rules with a maximum split of four decision points.

 The most useful output classes are finding states that belong to an attractor's true basin of

attraction and finding states that are positively within a threshold range τ for attractor ܣ. The

output classes are defined as <A, ߬> and ¬<A, ߬>. Using output classes allows for grouping and

aggregating similar findings within one class from a group of related experiments. The output

class consists of several elements. The first element, the attractors from experiment I-IV from the

T-LGL GRN is used for this study. As mentioned previously, T-LGL is a large GRN, which was

simulated with an asynchronous Boolean network that had 60 nodes. Each node is a transition

function that changes the state of the GRN during simulation. The second element, the threshold

range ߬ was set to ߬ = [0.9, 1.0]. Though, these were the ranges set for this study, it allows for

future studies to adjust the ranges accordingly to their scientific needs. Along with the output

72

classes, there is a subset of states that were within the threshold ranges <A, ߬> and all other states

that were outside threshold range ¬<A, ߬>. Another complement for the output classes are the

rules generated by the decision tree. These rules are easy to understand and were generated from

sampling statistics. Together, all of these elements formed the output class which gives enough

information without burdening scientist with too much detail.

Summary of Results

 Four experiments were executed on the T-LGL GRN using different stimuli in each

execution. A subset of states were sampled N=1000 times each. In each sampling process, an

individual state would transition into a specified attractor or the state would not transition to that

attractor. In addition, a fuzzy membership vector had been formed based on these hits and

misses. Furthermore, states with similar fuzzy membership vectors are grouped together to form

the bar chart to discover structures in fuzziness. Afterwards, a threshold range was set to further

group states with fuzzy membership of ߬ = [߬௪,߬] = [0.9, 1.0] as the positive group and all

other states as the negative group. Machine learning classifiers were trained on these thresholds

for future prediction of other states not part of the original selected subset. The accuracy of these

classifiers was tested using 10-fold validation and had shown to have extreme statistical

significance. This process will be generalized to other GRNs and will be discussed in the next

chapter.

73

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 Experiments were conducted with five GRNs: T-LGL, ABA, cardiac, Immune Bb, and

mammalian cell cycle. The same process was used to generate start states for training and testing

across all GRNs. The number of sampling taken in the T-LGL experiments, N=1000 for each

state, was also used for each additional GRN. The attractor that received the most overall hits

was selected for each GRN, and the number of hits or misses during sampling to that attractor

was collected, and a visual chart based on the number of hits per state was generated. The

visualizations of these charts are represented in Figures 10 - 17. Machine learning methods were

trained on the collected data to predict whether a state will transition into a healthy attractor or

not within threshold range τ. Taking the chi-square score and p-value will determine the

significance of the hypothesis testing for each experiment.

 This study uses asynchronous Boolean networks to model and simulate GRNs. An initial

subset of states was used to determine fuzzy membership vectors. SVMs, decision trees, and

naive Bayesian classifiers was used to discover patterns in the fuzzy membership vectors. The

findings from this study suggest these machine learning methods can accurately predict whether

a state is within a threshold range ߬. Experimenting with additional GRNs has shown in Table 10

that SVMs, decision trees, and naïve Bayesian classifiers can have high accuracy and extreme

statistical significance in their predictions. SVMs are the most accurate of the three machine

learning classifiers whereas decision trees can produce easy to understand rules such as those

listed in appendix A. These rules can be analyzed to determine how decision trees arrive to their

conclusions.

74

Table 10: Machine learning prediction accuracy for ABA, cardiac development, Immune Bb, T-
LGL, and mammalian cell cycle.

 For the GRNs studied in this research, it was seen to hold that realistic GRNs generally

possess membership structures within overlapping attractors. For each GRN, the most active

attractor was selected to be studied. Figures 10 - 17, mentioned in the previous chapter, shows

the structure of the most active attractor for each GRN. Each visualization chart verifies the

membership structures for a subset of states. The charts reveal that some states within

overlapping attractors tend to transition to one attractor more than any other attractor being

studied or will only transition to one attractor every time. The attractor that has the most

transitions from a group of states is considered the most active attractor for this study. The other

75

states have less hits for the attractor being studied or simply have no hits in that attractor at all.

Thus, some states are within the threshold range ߬ of being within the attractor where other states

are not in that range. For the ABA GRN, a special case has arisen. ABA appears to have two

non-overlapping attractors. Thus, a state is either in the healthy attractor A (stomatal closure)

100% of the time during sampling or is never in attractor A, which means it is in attractor B

(stomatal opening).

 The study also shows that a group of states have similar fuzzy membership to

overlapping attractors. For instance, some states invariably transitioned into an attractor A,

whereas some states never transitioned into the same attractor A. Other states share similar

percentages in between. The GRNs have states with similar fuzzy membership vectors which can

be used to better formulate queries that are solvable by machine learning methods. These cluster

of states can allow scientists in future studies to adjust their threshold range ߬ around states with

common fuzziness. These states, grouped together, could be thought of as a super state, and these

super states would adopt the fuzzy membership vector that represents the underlying states.

 Machine learning can be used to identify accurate fuzzy membership vectors for states

within a GRN. In the previous table (Table 10), SVMs ranged from being accurate 93% to 100%

for all experiments. All machine learning methods had an extremely high statistical significance

where the p-value (p) is less than 0.0001 for all experiments. Thus, using asynchronous Boolean

networks as the simulation model can greatly improve the prediction accuracy of machine

learning methods. However, this raises the question of whether asynchronous Boolean networks

are too constrained as a modeling and simulation process for GRNs.

As previously stated, the most effective machine learning method for accurate prediction

accuracy was the SVM, however, the decision tree method produced easy to understand rules.

76

The SVM that was used makes linear separations of the data. The classifier outperformed all of

the other classifiers in accuracy and had extreme statistical significance. Perhaps if a kernel was

used to detect non-linearity within the data, the SVM could have improved its accuracy. A

drawback on using SVMs is that it’s difficult to analyze how the classifier arrived to its

prediction. Decision trees aren’t as accurate as SVM, but the classifier does produce rules that

yield insight into the GRNs structure. These rules for each GRN are listed in appendix A. These

rules can be analyzed to see how a classifier arrives to its predictions. The rules can be modified,

written in another programming language, and embedded into other application to provide

clinical analysis for scientists and useful for gaining insight.

The output classes used for this study are the positive class <A, ߬> and its negation ¬<A, ߬>. In this study, the threshold was set to ߬ = [߬௪,߬] = [0.9, 1.0]. The best settings for each

GRN could vary to get the most optimal results. But pursuing the best settings for each

individual GRN was out of scope for this project. Also, these classes allow clinical biologist to

repeat the same experiments in the future, possibly on a different subset of states, for validation

and to solve their unique problems.

A result found was that the ABA attractors do not overlap and this lack of overlap is the

cause of a completely segregated structure. The fuzzy membership for the subset of states being

tested is either 100% or 0% in attractor A. A possible reason for this outcome is that the

asynchronous Boolean network model is simulating the opening and closing of guard cells that

surrounds stomatal pores is a biological process that acts as a natural survival mechanism in

taking in carbon dioxide and/or releasing oxygen. The stomatal guard cells are either opened (or

in the process of opening) in the presence of ABA or closed (or in the process of closing) when

77

there is no ABA present. All fuzziness resides in the opening or closing of the guard cells

whereas the attractors that represents opened or closed are absolute concepts.

 Another result is that a four-node decision tree has a high degree of accuracy in its

prediction rates for all GRNs considered. A possible reason for this unexpected outcome is that

specific genes dominate the GRN process which contributes to the high success rate of a four-

node decision tree. One example for the four-node decision tree is that T-LGL has four dominant

genes. Searching through the rules produced by the four-node decision tree reveals that the four

genes with the most influence are TBET, Caspase, DISC, and Ceramide. This outcome suggests

that complex GRNs, such as T-LGL, are dominated by a small group of genes for a specific task,

in this case, apoptosis. Hence low-depth decision trees are effective.

Four experiments were performed on T-LGL GRN and the study was extended to other

GRNs, which was ABA, cardiac, Immune Bb, and mammalian cell cycle. With the other GRNs,

the most active attractor was selected for study. After the machine learning classifiers were

trained, the study also showed extreme statistical significance on the generalized study of the

other GRNs too. However, for the overall methodology of this study, using asynchronous

Boolean networks seems to constrain the overall project. The constraints help to structure the

methodology to get meaningful results, but there is the possibility that using Boolean networks

may not accurately simulate complex systems in cell biology.

Contributions

 It is difficult to predict the behavior of GRNs that are of realistic size and complexity.

Asynchronous Boolean networks were used to model and simulate GRNs. They were used to

efficiently identify a network's set of attractors and predict the likelihood of a state transitioning

78

into each of these network attractors. Fuzzy membership vectors were used to record the results

of these probabilities through the modeling and simulation process.

 The goal of this research was to explore methods to discover patterns for a meaningful

classification of states in GRNs. The research design took a GRN and a machine learning method

as input which produce the output classes <A, ߬> and ¬<A, ߬>. SVMs had the highest prediction

rates, whereas naive Bayesian classifiers had the highest recall. However, decision trees

produced easy to understand rules for prediction procedure. All experiments had an extreme

significance with pvalue < 0.0001.

This study has provided a process to model GRNs, which offered insight on how to

optimize or control parts of the system by using machine learning techniques against fuzzy

membership vectors. Using modeling and simulation of GRNs captured complex interactions

between proteins, genes, and biochemicals. Thus, a fast prediction process to determine if a state

or set of states has the likelihood of achieving a desired result was produced.

The results had extreme statistical significance with all machine learning methods in all

experiments showing a p-value of p < 0.0001. SVMs had the highest accuracy of all machine

learning methods used. Although SVMs was generally higher in precision that all other methods,

there was an exception in experiment VII (immune Bb). The decision tree with maximum of four

nodes for decision had a precision=100.0% and naive Bayesian was next with precision=96.0%.

Finally, naive Bayesian classifiers had the highest recall in general (ranges between 94.71% and

98.75%), although SVMs weren't that far behind usually with a difference of one percentage

point. However, naive Bayesian did poorly on recall with immune Bb with recall=3.67%.

This study has shown that the design model has extreme statistical significance when

predicting the outcome of a state. Once clinical biologist know the states produced by a

79

treatment, they can implement this design to predict the outcome of cancer. Although this

research produced positive results, some recommendation will be given to improve this study.

Recommendations

While this study has demonstrated the modeling and simulation of a realistic GRN, many

opportunities for extending the scope of this study remain. This section presents some of these

directions.

Additional Machine Learning Methods

Extreme Gradient Boosting (XGBoost) can enhance the degree of flexibility and

scalability as a machine learning method. The XGBoost classifier is implemented with the

gradient boosting decision tree algorithm (Chen et al, 2016). Gradient boosting is a machine

learning technique for regression and classification problems, which produces a prediction model

in the form of an ensemble of weak prediction models in decision trees. It builds the model in a

stage-wise fashion like other boosting methods do, and it generalizes them by allowing

optimization of an arbitrary differentiable loss function. XGBoost utilizes parallelization of tree

construction using all of your CPU cores during training, it uses distributed computing for

training very large models using a cluster of machines, it manages very large datasets that don’t

fit into memory, and utilizes cache optimization of data structures and algorithm to make best

use of hardware. Implementation of this machine learning method can increase execution speed

and model performance during the training phase.

Neural Networks and Deep Learning Methods

In another direction, using an overall model that is not constrained to be interpretable, a

more accurate simulation model may be possible. A recurrent neural network model is one

possibility. Some advantages of recurrent neural networks are having sigmoid non-linearity that

80

can be trained through gradient algorithms and comes with a learning algorithm with temporal

behavior. These models can take a state s as input to produce a state s' as output.

Perhaps a more complex recurrent neural network model based on long and short term

memory deep learning (LSTM) algorithms could more efficiently solve the problem. LSTM

blocks or networks are simple recurrent neural network which can be used as a building block of

hidden layers for an eventually bigger recurrent neural network. The LSTM block is itself a

recurrent network because it contains recurrent connections similar to connections in a

conventional recurrent neural network. LSTM algorithms could learn traversal patterns for a start

state but with a few exceptions compared to asynchronous Boolean networks. If a certain set of

genes are expressed, LSTMs could abstract certain patterns to determine whether a state is likely

to lead to an attractor. Asynchronous Boolean networks were not constrained to this requirement.

Different paths that lead to the current state s can have an adverse effect on the probability of

reaching the next state. The model, once trained, would have a traversal mechanism built in and

a dynamic probability table to determine the changing percentages of reaching the next states.

Developing Better Techniques

A different approach is to develop better methods or techniques that accelerate state

transition sequences that allow for larger training sets to be sampled. Larger training set would

increase the accuracy of predictions for large GRNs such as T-LGL. Perhaps using parallel

process and distributed processes could allow multiple states to be sampled at once. Or,

developing better techniques for discovering structures in the GRN's state space to better identify

useful output classes.

Additional GRNs

 This study used five GRNs, which were ABA, cardiac development, immune, T-LGL,

and mammalian cell cycle. This study could be extended to a broader range of GRNs. Perhaps

81

GRNs based on groups of cells that form coordinated regulation where neighboring cells help

regulate themselves as a group is another option. Or using GRNs where organisms mutate with

environmental changes.

Summary

The research design takes a GRN and a machine learning method as input and produces

output class <A, ߬> and its negation ¬<A, ߬>. The classifiers are trained to predict whether a state

reaches a healthy attractor or not. The implementation of this methodology had extreme

statistical significance where the pvalue < 0.0001 for all experiments, which means that all SVMs,

naïve Bayesian classifiers, and decision trees had accurate predictions for all GRNs.

Furthermore, the most accurate machine learning method was SVM, while decision trees

produced easy to understand rules so clinical biologist can analyze the decision process. The

GRN, ABA, does not have overlapping attractors which cause decision trees to produce rules

that only had one line. The study also showed that clinical biologist can benefit from this method

and can quickly get a response from this approach to solve their problems.

Also discussed is that further research is needed. The implementation could be applied to

other GRNs or consider using other machine learning classifiers too. Other suggestions offered

are identifying characteristics of GRN that are best suited for a specific classifier. Also, deep

learning is another alternative to extend this research.

82

Appendix A

Decision Tree Rules

ABA

simple

1 if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1
2 class = 0
3 class = 1

medium

1 if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1
2 class = 0
3 class = 1

complex

1 if ABA<0.5 then node 2 elseif ABA>=0.5 then node 3 else 1
2 class = 0
3 class = 1

Figure 20: ABA (experiment V) decision tree rules.

83

Cardiac Development

simple

1 if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0
2 if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0
3 class = 0
4 class = 0
5 class = 1

medium

1 if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0
2 if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0
3 class = 0
4 class = 0
5 class = 1

complex

1 if exogen_BMP2_I<0.5 then node 2 elseif exogen_BMP2_I>=0.5 then node 3 else 0
2 if exogen_CanWnt_I<0.5 then node 4 elseif exogen_CanWnt_I>=0.5 then node 5 else 0
3 class = 0
4 class = 0
5 class = 1

Figure 21: Cardiac development (experiment VI) decision tree rules.

84

Immune Bb

simple

1 class = 0

medium

 1 if Bb<0.5 then node 2 elseif Bb>=0.5 then node 3 else 0
 2 if IL4II<0.5 then node 4 elseif IL4II>=0.5 then node 5 else 0
 3 class = 0
 4 class = 0
 5 if IL12II<0.5 then node 6 elseif IL12II>=0.5 then node 7 else 0
 6 if Cab<0.5 then node 8 elseif Cab>=0.5 then node 9 else 0
 7 class = 0
 8 class = 0
 9 if Oab<0.5 then node 10 elseif Oab>=0.5 then node 11 else 0
10 class = 0
11 if DCII<0.5 then node 12 elseif DCII>=0.5 then node 13 else 0
12 class = 0
13 class = 1

complex

 1 if Bb<0.5 then node 2 elseif Bb>=0.5 then node 3 else 0
 2 if IL4II<0.5 then node 4 elseif IL4II>=0.5 then node 5 else 0
 3 if DCII<0.5 then node 6 elseif DCII>=0.5 then node 7 else 0
 4 if Cab<0.5 then node 8 elseif Cab>=0.5 then node 9 else 0
 5 if IL12II<0.5 then node 10 elseif IL12II>=0.5 then node 11 else 0
 6 class = 0
 7 if IL4II<0.5 then node 12 elseif IL4II>=0.5 then node 13 else 0
 8 class = 0
 9 if Oab<0.5 then node 14 elseif Oab>=0.5 then node 15 else 0
10 if Cab<0.5 then node 16 elseif Cab>=0.5 then node 17 else 0
11 if Cab<0.5 then node 18 elseif Cab>=0.5 then node 19 else 0
12 class = 0
13 if IL12II<0.5 then node 20 elseif IL12II>=0.5 then node 21 else 0
14 class = 0
15 if PIC<0.5 then node 22 elseif PIC>=0.5 then node 23 else 0
16 if DCII<0.5 then node 24 elseif DCII>=0.5 then node 25 else 0
17 if Oab<0.5 then node 26 elseif Oab>=0.5 then node 27 else 0
18 class = 0
19 if Oab<0.5 then node 28 elseif Oab>=0.5 then node 29 else 0
20 if T0<0.5 then node 30 elseif T0>=0.5 then node 31 else 0

85

21 class = 0
22 if IFNgI<0.5 then node 32 elseif IFNgI>=0.5 then node 33 else 0
23 class = 0
24 class = 0
25 if T0<0.5 then node 34 elseif T0>=0.5 then node 35 else 0
26 if T0<0.5 then node 36 elseif T0>=0.5 then node 37 else 0
27 if DCII<0.5 then node 38 elseif DCII>=0.5 then node 39 else 0
28 class = 0
29 if PIC<0.5 then node 40 elseif PIC>=0.5 then node 41 else 0
30 class = 0
31 if DCI<0.5 then node 42 elseif DCI>=0.5 then node 43 else 0
32 if IL10I<0.5 then node 44 elseif IL10I>=0.5 then node 45 else 0
33 class = 0
34 class = 0
35 if DCI<0.5 then node 46 elseif DCI>=0.5 then node 47 else 0
36 class = 0
37 if DCII<0.5 then node 48 elseif DCII>=0.5 then node 49 else 0
38 if IL10I<0.5 then node 50 elseif IL10I>=0.5 then node 51 else 0
39 if T0<0.5 then node 52 elseif T0>=0.5 then node 53 else 1
40 if IL10I<0.5 then node 54 elseif IL10I>=0.5 then node 55 else 0
41 class = 0
42 class = 0
43 if PH<0.5 then node 56 elseif PH>=0.5 then node 57 else 0
44 class = 0
45 if DCI<0.5 then node 58 elseif DCI>=0.5 then node 59 else 0
46 class = 0
47 if Th2II<0.5 then node 60 elseif Th2II>=0.5 then node 61 else 0
48 class = 0
49 if DCI<0.5 then node 62 elseif DCI>=0.5 then node 63 else 0
50 class = 0
51 if IL12I<0.5 then node 64 elseif IL12I>=0.5 then node 65 else 0
52 if IL10I<0.5 then node 66 elseif IL10I>=0.5 then node 67 else 0
53 class = 1
54 class = 0
55 if IL12I<0.5 then node 68 elseif IL12I>=0.5 then node 69 else 0
56 class = 0
57 if AP<0.5 then node 70 elseif AP>=0.5 then node 71 else 0
58 if IL12I<0.5 then node 72 elseif IL12I>=0.5 then node 73 else 0
59 class = 0
60 class = 0
61 if BC<0.5 then node 74 elseif BC>=0.5 then node 75 else 1
62 class = 0
63 if Th2II<0.5 then node 76 elseif Th2II>=0.5 then node 77 else 0
64 if Th1II<0.5 then node 78 elseif Th1II>=0.5 then node 79 else 0
65 class = 0
66 class = 0

86

67 if TrI<0.5 then node 80 elseif TrI>=0.5 then node 81 else 0
68 if DCII<0.5 then node 82 elseif DCII>=0.5 then node 83 else 0
69 class = 0
70 class = 0
71 if IL10I<0.5 then node 84 elseif IL10I>=0.5 then node 85 else 0
72 if DCII<0.5 then node 86 elseif DCII>=0.5 then node 87 else 1
73 class = 0
74 if Oab<0.5 then node 88 elseif Oab>=0.5 then node 89 else 0
75 class = 1
76 class = 0
77 if BC<0.5 then node 90 elseif BC>=0.5 then node 91 else 1
78 if DP<0.5 then node 92 elseif DP>=0.5 then node 93 else 1
79 class = 0
80 class = 0
81 if IL12I<0.5 then node 94 elseif IL12I>=0.5 then node 95 else 1
82 if TrI<0.5 then node 96 elseif TrI>=0.5 then node 97 else 1
83 class = 0
84 if BC<0.5 then node 98 elseif BC>=0.5 then node 99 else 0
85 class = 0
86 class = 1
87 class = 0
88 class = 0
89 class = 1
90 class = 0
91 class = 1
92 class = 1
93 class = 0
94 class = 1
95 class = 0
96 class = 0
97 class = 1
98 class = 0
99 class = 1

Figure 22: Immune Bb (experiment VII) decision tree rules.

87

T-LGL – experiment I

simple

1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
3 class = 1
4 class = 0
5 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
6 class = 0
7 class = 1

medium

 1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
 2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
 3 class = 1
 4 if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0
 5 if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1
 6 class = 0
 7 if DISC<0.5 then node 10 elseif DISC>=0.5 then node 11 else 0
 8 if JAK<0.5 then node 12 elseif JAK>=0.5 then node 13 else 0
 9 if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 1
10 class = 0
11 if Fas<0.5 then node 16 elseif Fas>=0.5 then node 17 else 0
12 class = 0
13 if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 1
14 if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1
15 class = 1
16 class = 0
17 if FasT<0.5 then node 22 elseif FasT>=0.5 then node 23 else 1
18 if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0
19 class = 1
20 if Fas<0.5 then node 26 elseif Fas>=0.5 then node 27 else 1
21 class = 1
22 class = 0
23 class = 1
24 class = 0
25 class = 1
26 class = 0
27 class = 1

88

complex

 1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
 2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
 3 class = 1
 4 if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0
 5 if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1
 6 if S1P<0.5 then node 10 elseif S1P>=0.5 then node 11 else 0
 7 if DISC<0.5 then node 12 elseif DISC>=0.5 then node 13 else 0
 8 if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 0
 9 if JAK<0.5 then node 16 elseif JAK>=0.5 then node 17 else 1
10 if Fas<0.5 then node 18 elseif Fas>=0.5 then node 19 else 0
11 class = 0
12 if S1P<0.5 then node 20 elseif S1P>=0.5 then node 21 else 0
13 if Fas<0.5 then node 22 elseif Fas>=0.5 then node 23 else 0
14 if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0
15 if Ceramide<0.5 then node 26 elseif Ceramide>=0.5 then node 27 else 1
16 if Ceramide<0.5 then node 28 elseif Ceramide>=0.5 then node 29 else 1
17 class = 1
18 class = 0
19 if FasT<0.5 then node 30 elseif FasT>=0.5 then node 31 else 0
20 if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0
21 class = 0
22 if Ceramide<0.5 then node 34 elseif Ceramide>=0.5 then node 35 else 0
23 if FasT<0.5 then node 36 elseif FasT>=0.5 then node 37 else 1
24 class = 0
25 if S1P<0.5 then node 38 elseif S1P>=0.5 then node 39 else 0
26 if Fas<0.5 then node 40 elseif Fas>=0.5 then node 41 else 0
27 if S1P<0.5 then node 42 elseif S1P>=0.5 then node 43 else 1
28 if Fas<0.5 then node 44 elseif Fas>=0.5 then node 45 else 1
29 if FasT<0.5 then node 46 elseif FasT>=0.5 then node 47 else 1
30 class = 0
31 if NFKB<0.5 then node 48 elseif NFKB>=0.5 then node 49 else 0
32 class = 0
33 if FasT<0.5 then node 50 elseif FasT>=0.5 then node 51 else 0
34 class = 0
35 if FasT<0.5 then node 52 elseif FasT>=0.5 then node 53 else 0
36 if NFKB<0.5 then node 54 elseif NFKB>=0.5 then node 55 else 0
37 if S1P<0.5 then node 56 elseif S1P>=0.5 then node 57 else 1
38 if FasT<0.5 then node 58 elseif FasT>=0.5 then node 59 else 0
39 class = 0
40 if BID<0.5 then node 60 elseif BID>=0.5 then node 61 else 0
41 if SPHK1<0.5 then node 62 elseif SPHK1>=0.5 then node 63 else 1
42 class = 1
43 if FasT<0.5 then node 64 elseif FasT>=0.5 then node 65 else 1
44 if PDGFR<0.5 then node 66 elseif PDGFR>=0.5 then node 67 else 0

89

45 if FasT<0.5 then node 68 elseif FasT>=0.5 then node 69 else 1
46 if NFKB<0.5 then node 70 elseif NFKB>=0.5 then node 71 else 1
47 class = 1
48 class = 0
49 if DISC<0.5 then node 72 elseif DISC>=0.5 then node 73 else 0
50 class = 0
51 if FasL<0.5 then node 74 elseif FasL>=0.5 then node 75 else 0
52 class = 0
53 if S1P<0.5 then node 76 elseif S1P>=0.5 then node 77 else 1
54 class = 0
55 if Ceramide<0.5 then node 78 elseif Ceramide>=0.5 then node 79 else 1
56 class = 1
57 if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 1
58 class = 0
59 if Ceramide<0.5 then node 82 elseif Ceramide>=0.5 then node 83 else 1
60 class = 0
61 if IAP<0.5 then node 84 elseif IAP>=0.5 then node 85 else 0
62 class = 1
63 if S1P<0.5 then node 86 elseif S1P>=0.5 then node 87 else 0
64 if BID<0.5 then node 88 elseif BID>=0.5 then node 89 else 0
65 class = 1
66 if SPHK1<0.5 then node 90 elseif SPHK1>=0.5 then node 91 else 0
67 class = 0
68 if SPHK1<0.5 then node 92 elseif SPHK1>=0.5 then node 93 else 1
69 class = 1
70 if Fas<0.5 then node 94 elseif Fas>=0.5 then node 95 else 1
71 class = 1
72 class = 0
73 class = 1
74 class = 0
75 class = 1
76 class = 1
77 class = 0
78 class = 0
79 class = 1
80 class = 0
81 class = 1
82 class = 0
83 class = 1
84 class = 1
85 class = 0
86 class = 1
87 class = 0
88 class = 0
89 class = 1
90 class = 1

90

91 class = 0
92 class = 1
93 class = 0
94 class = 0
95 class = 1

Figure 23: T-LGL (experiment I) decision tree rules.

T-LGL – experiment II

simple

1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
3 class = 1
4 class = 0
5 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
6 class = 0
7 class = 1

medium

 1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
 2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
 3 class = 1
 4 if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0
 5 if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1
 6 class = 0
 7 if DISC<0.5 then node 10 elseif DISC>=0.5 then node 11 else 0
 8 if JAK<0.5 then node 12 elseif JAK>=0.5 then node 13 else 0
 9 if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 1
10 class = 0
11 if Ceramide<0.5 then node 16 elseif Ceramide>=0.5 then node 17 else 0
12 if S1P<0.5 then node 18 elseif S1P>=0.5 then node 19 else 0
13 if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1
14 if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1
15 class = 1
16 class = 0
17 class = 1
18 if Fas<0.5 then node 24 elseif Fas>=0.5 then node 25 else 0
19 class = 0

91

20 if SPHK1<0.5 then node 26 elseif SPHK1>=0.5 then node 27 else 1
21 class = 1
22 if Fas<0.5 then node 28 elseif Fas>=0.5 then node 29 else 1
23 class = 1
24 class = 0
25 class = 1
26 class = 1
27 class = 0
28 class = 0
29 class = 1

complex

 1 if TBET<0.5 then node 2 elseif TBET>=0.5 then node 3 else 1
 2 if Caspase<0.5 then node 4 elseif Caspase>=0.5 then node 5 else 0
 3 class = 1
 4 if JAK<0.5 then node 6 elseif JAK>=0.5 then node 7 else 0
 5 if DISC<0.5 then node 8 elseif DISC>=0.5 then node 9 else 1
 6 if S1P<0.5 then node 10 elseif S1P>=0.5 then node 11 else 0
 7 if DISC<0.5 then node 12 elseif DISC>=0.5 then node 13 else 0
 8 if JAK<0.5 then node 14 elseif JAK>=0.5 then node 15 else 0
 9 if JAK<0.5 then node 16 elseif JAK>=0.5 then node 17 else 1
10 if Fas<0.5 then node 18 elseif Fas>=0.5 then node 19 else 0
11 class = 0
12 if S1P<0.5 then node 20 elseif S1P>=0.5 then node 21 else 0
13 if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 0
14 if S1P<0.5 then node 24 elseif S1P>=0.5 then node 25 else 0
15 if Ceramide<0.5 then node 26 elseif Ceramide>=0.5 then node 27 else 1
16 if Ceramide<0.5 then node 28 elseif Ceramide>=0.5 then node 29 else 1
17 class = 1
18 class = 0
19 if FasT<0.5 then node 30 elseif FasT>=0.5 then node 31 else 0
20 if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0
21 class = 0
22 if Fas<0.5 then node 34 elseif Fas>=0.5 then node 35 else 0
23 if S1P<0.5 then node 36 elseif S1P>=0.5 then node 37 else 1
24 if Fas<0.5 then node 38 elseif Fas>=0.5 then node 39 else 0
25 class = 0
26 if SPHK1<0.5 then node 40 elseif SPHK1>=0.5 then node 41 else 1
27 if S1P<0.5 then node 42 elseif S1P>=0.5 then node 43 else 1
28 if Fas<0.5 then node 44 elseif Fas>=0.5 then node 45 else 1
29 class = 1
30 class = 0
31 if Ceramide<0.5 then node 46 elseif Ceramide>=0.5 then node 47 else 0
32 class = 0
33 if Ceramide<0.5 then node 48 elseif Ceramide>=0.5 then node 49 else 0

92

34 class = 0
35 if S1P<0.5 then node 50 elseif S1P>=0.5 then node 51 else 0
36 if FasT<0.5 then node 52 elseif FasT>=0.5 then node 53 else 1
37 if Fas<0.5 then node 54 elseif Fas>=0.5 then node 55 else 0
38 class = 0
39 if FasT<0.5 then node 56 elseif FasT>=0.5 then node 57 else 1
40 if Fas<0.5 then node 58 elseif Fas>=0.5 then node 59 else 1
41 if S1P<0.5 then node 60 elseif S1P>=0.5 then node 61 else 0
42 class = 1
43 if Fas<0.5 then node 62 elseif Fas>=0.5 then node 63 else 1
44 if SPHK1<0.5 then node 64 elseif SPHK1>=0.5 then node 65 else 0
45 if S1P<0.5 then node 66 elseif S1P>=0.5 then node 67 else 1
46 class = 0
47 if DISC<0.5 then node 68 elseif DISC>=0.5 then node 69 else 1
48 class = 0
49 if FasT<0.5 then node 70 elseif FasT>=0.5 then node 71 else 1
50 class = 1
51 class = 0
52 if Fas<0.5 then node 72 elseif Fas>=0.5 then node 73 else 1
53 class = 1
54 class = 0
55 if FasT<0.5 then node 74 elseif FasT>=0.5 then node 75 else 1
56 if BID<0.5 then node 76 elseif BID>=0.5 then node 77 else 0
57 if Ceramide<0.5 then node 78 elseif Ceramide>=0.5 then node 79 else 1
58 if S1P<0.5 then node 80 elseif S1P>=0.5 then node 81 else 1
59 class = 1
60 if Fas<0.5 then node 82 elseif Fas>=0.5 then node 83 else 1
61 class = 0
62 if PDGFR<0.5 then node 84 elseif PDGFR>=0.5 then node 85 else 1
63 class = 1
64 if PDGFR<0.5 then node 86 elseif PDGFR>=0.5 then node 87 else 1
65 class = 0
66 class = 1
67 if SPHK1<0.5 then node 88 elseif SPHK1>=0.5 then node 89 else 1
68 class = 0
69 class = 1
70 class = 0
71 class = 1
72 class = 0
73 class = 1
74 class = 0
75 class = 1
76 class = 0
77 class = 1
78 class = 0
79 class = 1

93

80 class = 1
81 class = 0
82 class = 0
83 class = 1
84 class = 1
85 class = 0
86 class = 1
87 class = 0
88 class = 1
89 class = 0

Figure 24: T-LGL (experiment II) decision tree rules.

T-LGL – experiment III

simple

1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
3 class = 1
4 class = 0
5 if TBET<0.5 then node 6 elseif TBET>=0.5 then node 7 else 1
6 class = 0
7 class = 1

medium

 1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
 2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
 3 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
 4 if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0
 5 if TBET<0.5 then node 10 elseif TBET>=0.5 then node 11 else 1
 6 if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1
 7 class = 1
 8 class = 0
 9 if GZMB<0.5 then node 14 elseif GZMB>=0.5 then node 15 else 0
10 if Ceramide<0.5 then node 16 elseif Ceramide>=0.5 then node 17 else 0
11 class = 1
12 if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 1
13 class = 1
14 class = 0
15 if MCL1<0.5 then node 20 elseif MCL1>=0.5 then node 21 else 0

94

16 class = 0
17 if FasT<0.5 then node 22 elseif FasT>=0.5 then node 23 else 1
18 if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 0
19 class = 1
20 class = 1
21 class = 0
22 class = 0
23 class = 1
24 class = 0
25 class = 1

complex

 1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
 2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
 3 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
 4 if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0
 5 if TBET<0.5 then node 10 elseif TBET>=0.5 then node 11 else 1
 6 if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1
 7 class = 1
 8 if S1P<0.5 then node 14 elseif S1P>=0.5 then node 15 else 0
 9 if GZMB<0.5 then node 16 elseif GZMB>=0.5 then node 17 else 0
 10 if Ceramide<0.5 then node 18 elseif Ceramide>=0.5 then node 19 else 0
 11 if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1
 12 if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1
 13 if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 1
 14 if FasT<0.5 then node 26 elseif FasT>=0.5 then node 27 else 0
 15 class = 0
 16 if S1P<0.5 then node 28 elseif S1P>=0.5 then node 29 else 0
 17 if MCL1<0.5 then node 30 elseif MCL1>=0.5 then node 31 else 0
 18 if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0
 19 if FasT<0.5 then node 34 elseif FasT>=0.5 then node 35 else 1
 20 if Fas<0.5 then node 36 elseif Fas>=0.5 then node 37 else 1
 21 if FasT<0.5 then node 38 elseif FasT>=0.5 then node 39 else 1
 22 if TBET<0.5 then node 40 elseif TBET>=0.5 then node 41 else 0
 23 if FasT<0.5 then node 42 elseif FasT>=0.5 then node 43 else 1
 24 if IAP<0.5 then node 44 elseif IAP>=0.5 then node 45 else 1
 25 class = 1
 26 class = 0
 27 if Fas<0.5 then node 46 elseif Fas>=0.5 then node 47 else 0
 28 if Fas<0.5 then node 48 elseif Fas>=0.5 then node 49 else 0
 29 class = 0
 30 if BclxL<0.5 then node 50 elseif BclxL>=0.5 then node 51 else 1
 31 if BID<0.5 then node 52 elseif BID>=0.5 then node 53 else 0
 32 class = 0
 33 if FasT<0.5 then node 54 elseif FasT>=0.5 then node 55 else 0

95

 34 if Fas<0.5 then node 56 elseif Fas>=0.5 then node 57 else 0
 35 if Fas<0.5 then node 58 elseif Fas>=0.5 then node 59 else 1
 36 if GZMB<0.5 then node 60 elseif GZMB>=0.5 then node 61 else 0
 37 if RAS<0.5 then node 62 elseif RAS>=0.5 then node 63 else 1
 38 if Fas<0.5 then node 64 elseif Fas>=0.5 then node 65 else 1
 39 class = 1
 40 if Fas<0.5 then node 66 elseif Fas>=0.5 then node 67 else 0
 41 if GZMB<0.5 then node 68 elseif GZMB>=0.5 then node 69 else 1
 42 if TBET<0.5 then node 70 elseif TBET>=0.5 then node 71 else 1
 43 class = 1
 44 class = 1
 45 if Ceramide<0.5 then node 72 elseif Ceramide>=0.5 then node 73 else 1
 46 class = 0
 47 if Ceramide<0.5 then node 74 elseif Ceramide>=0.5 then node 75 else 0
 48 class = 0
 49 if Ceramide<0.5 then node 76 elseif Ceramide>=0.5 then node 77 else 0
 50 class = 1
 51 if BID<0.5 then node 78 elseif BID>=0.5 then node 79 else 0
 52 class = 0
 53 if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 0
 54 class = 0
 55 if S1P<0.5 then node 82 elseif S1P>=0.5 then node 83 else 1
 56 class = 0
 57 if S1P<0.5 then node 84 elseif S1P>=0.5 then node 85 else 0
 58 if S1P<0.5 then node 86 elseif S1P>=0.5 then node 87 else 1
 59 class = 1
 60 class = 0
 61 if BclxL<0.5 then node 88 elseif BclxL>=0.5 then node 89 else 1
 62 class = 1
 63 if S1P<0.5 then node 90 elseif S1P>=0.5 then node 91 else 1
 64 if GZMB<0.5 then node 92 elseif GZMB>=0.5 then node 93 else 1
 65 class = 1
 66 class = 0
 67 if FasT<0.5 then node 94 elseif FasT>=0.5 then node 95 else 0
 68 if Fas<0.5 then node 96 elseif Fas>=0.5 then node 97 else 0
 69 class = 1
 70 if Fas<0.5 then node 98 elseif Fas>=0.5 then node 99 else 0
 71 class = 1
 72 if Fas<0.5 then node 100 elseif Fas>=0.5 then node 101 else 0
 73 class = 1
 74 class = 0
 75 class = 1
 76 class = 0
 77 class = 1
 78 class = 0
 79 class = 1

96

 80 class = 0
 81 class = 1
 82 class = 1
 83 class = 0
 84 class = 1
 85 class = 0
 86 class = 1
 87 class = 0
 88 class = 1
 89 class = 0
 90 class = 1
 91 class = 0
 92 class = 0
 93 class = 1
 94 class = 0
 95 class = 1
 96 class = 0
 97 class = 1
 98 class = 0
 99 class = 1
100 class = 0
101 class = 1

Figure 25: T-LGL (experiment III) decision tree rules.

T-LGL – experiment IV

simple

1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
3 class = 1
4 class = 0
5 if Ceramide<0.5 then node 6 elseif Ceramide>=0.5 then node 7 else 1
6 class = 0
7 class = 1

97

medium

 1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
 2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
 3 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
 4 if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0
 5 if Ceramide<0.5 then node 10 elseif Ceramide>=0.5 then node 11 else 1
 6 if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1
 7 class = 1
 8 class = 0
 9 if GZMB<0.5 then node 14 elseif GZMB>=0.5 then node 15 else 0
10 if TBET<0.5 then node 16 elseif TBET>=0.5 then node 17 else 0
11 if FasT<0.5 then node 18 elseif FasT>=0.5 then node 19 else 1
12 if Ceramide<0.5 then node 20 elseif Ceramide>=0.5 then node 21 else 1
13 class = 1
14 class = 0
15 if MCL1<0.5 then node 22 elseif MCL1>=0.5 then node 23 else 0
16 class = 0
17 class = 1
18 if TBET<0.5 then node 24 elseif TBET>=0.5 then node 25 else 1
19 class = 1
20 class = 0
21 class = 1
22 class = 1
23 class = 0
24 class = 0
25 class = 1

complex

 1 if Caspase<0.5 then node 2 elseif Caspase>=0.5 then node 3 else 1
 2 if DISC<0.5 then node 4 elseif DISC>=0.5 then node 5 else 0
 3 if DISC<0.5 then node 6 elseif DISC>=0.5 then node 7 else 1
 4 if TBET<0.5 then node 8 elseif TBET>=0.5 then node 9 else 0
 5 if Ceramide<0.5 then node 10 elseif Ceramide>=0.5 then node 11 else 1
 6 if BID<0.5 then node 12 elseif BID>=0.5 then node 13 else 1
 7 class = 1
 8 if S1P<0.5 then node 14 elseif S1P>=0.5 then node 15 else 0
 9 if GZMB<0.5 then node 16 elseif GZMB>=0.5 then node 17 else 0
10 if TBET<0.5 then node 18 elseif TBET>=0.5 then node 19 else 0
11 if FasT<0.5 then node 20 elseif FasT>=0.5 then node 21 else 1
12 if Ceramide<0.5 then node 22 elseif Ceramide>=0.5 then node 23 else 1
13 if Ceramide<0.5 then node 24 elseif Ceramide>=0.5 then node 25 else 1
14 if FasT<0.5 then node 26 elseif FasT>=0.5 then node 27 else 0
15 class = 0
16 if Fas<0.5 then node 28 elseif Fas>=0.5 then node 29 else 0

98

17 if MCL1<0.5 then node 30 elseif MCL1>=0.5 then node 31 else 0
18 if Fas<0.5 then node 32 elseif Fas>=0.5 then node 33 else 0
19 if BID<0.5 then node 34 elseif BID>=0.5 then node 35 else 1
20 if TBET<0.5 then node 36 elseif TBET>=0.5 then node 37 else 1
21 if Fas<0.5 then node 38 elseif Fas>=0.5 then node 39 else 1
22 if Fas<0.5 then node 40 elseif Fas>=0.5 then node 41 else 0
23 if FasT<0.5 then node 42 elseif FasT>=0.5 then node 43 else 1
24 if IAP<0.5 then node 44 elseif IAP>=0.5 then node 45 else 1
25 class = 1
26 class = 0
27 if Fas<0.5 then node 46 elseif Fas>=0.5 then node 47 else 0
28 class = 0
29 if S1P<0.5 then node 48 elseif S1P>=0.5 then node 49 else 0
30 if BclxL<0.5 then node 50 elseif BclxL>=0.5 then node 51 else 1
31 if BID<0.5 then node 52 elseif BID>=0.5 then node 53 else 0
32 class = 0
33 if FasT<0.5 then node 54 elseif FasT>=0.5 then node 55 else 0
34 if RAS<0.5 then node 56 elseif RAS>=0.5 then node 57 else 0
35 if PDGFR<0.5 then node 58 elseif PDGFR>=0.5 then node 59 else 1
36 if S1P<0.5 then node 60 elseif S1P>=0.5 then node 61 else 0
37 if Fas<0.5 then node 62 elseif Fas>=0.5 then node 63 else 1
38 if TBET<0.5 then node 64 elseif TBET>=0.5 then node 65 else 1
39 class = 1
40 if TBET<0.5 then node 66 elseif TBET>=0.5 then node 67 else 0
41 if S1P<0.5 then node 68 elseif S1P>=0.5 then node 69 else 1
42 if TBET<0.5 then node 70 elseif TBET>=0.5 then node 71 else 1
43 class = 1
44 class = 1
45 if TBET<0.5 then node 72 elseif TBET>=0.5 then node 73 else 1
46 class = 0
47 if Ceramide<0.5 then node 74 elseif Ceramide>=0.5 then node 75 else 0
48 if Ceramide<0.5 then node 76 elseif Ceramide>=0.5 then node 77 else 0
49 class = 0
50 class = 1
51 if BID<0.5 then node 78 elseif BID>=0.5 then node 79 else 0
52 class = 0
53 if Ceramide<0.5 then node 80 elseif Ceramide>=0.5 then node 81 else 0
54 class = 0
55 if S1P<0.5 then node 82 elseif S1P>=0.5 then node 83 else 1
56 if Fas<0.5 then node 84 elseif Fas>=0.5 then node 85 else 1
57 class = 0
58 class = 1
59 if Fas<0.5 then node 86 elseif Fas>=0.5 then node 87 else 1
60 if Fas<0.5 then node 88 elseif Fas>=0.5 then node 89 else 0
61 class = 0
62 if GZMB<0.5 then node 90 elseif GZMB>=0.5 then node 91 else 1

99

63 class = 1
64 if S1P<0.5 then node 92 elseif S1P>=0.5 then node 93 else 1
65 class = 1
66 class = 0
67 if BclxL<0.5 then node 94 elseif BclxL>=0.5 then node 95 else 0
68 class = 1
69 class = 0
70 if Fas<0.5 then node 96 elseif Fas>=0.5 then node 97 else 0
71 class = 1
72 if S1P<0.5 then node 98 elseif S1P>=0.5 then node 99 else 0
73 class = 1
74 class = 0
75 class = 1
76 class = 0
77 class = 1
78 class = 0
79 class = 1
80 class = 0
81 class = 1
82 class = 1
83 class = 0
84 class = 0
85 class = 1
86 class = 0
87 class = 1
88 class = 0
89 class = 1
90 class = 0
91 class = 1
92 class = 1
93 class = 0
94 class = 1
95 class = 0
96 class = 0
97 class = 1
98 class = 1
99 class = 0

Figure 26: T-LGL (experiment IV) decision tree rules.

100

Mammalian Cell Cycle

simple

1 if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0
2 class = 0
3 class = 1

medium

1 if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0
2 class = 0
3 class = 1

complex

1 if EGF<0.5 then node 2 elseif EGF>=0.5 then node 3 else 0
2 class = 0
3 class = 1

Figure 27: Mammalian cell cycle (experiment VIII) decision tree rules.

101

References

Albert, I., Thakar, J., Li, S., Zhang, R., & Albert, R. (2008). Boolean network simulations for life

scientists. BioMed Central.

Asmussen, S. R. (2003). Markov Chains. Applied Probability and Queues, 51, 3 - 38. doi:

10.1007/0-387-21525-5_1

Cao, Y. S. G. F. J. (2010, December). A New Approach to Dynamic Fuzzy Modeling of Genetic

Regulatory Networks. NanoBioscience, IEEE Transactions on, 9(4), 263 - 272. doi:

10.1109/TNB.2010.2082559

Chaves, M., Albert, R., & Sontag, E. (2005). Robustness and fragility of Boolean models for

genetic regulatory networks. J Theor Biol, 235, 431-449.

Chen, Tianqi, & Guestrin, Carlos (2016). XGBoost: A Scalable Tree Boosting System,

arXiv:1603.02754v3 [cs.LG] 10 Jun 2016.

Craddock, T. J. A., Fritsch, P., Mark, A., Rice, J., Rosario, R. M. d., Miller, D. B., Fletcher, M.

A., Broderick, G. (2014). A Role for Homeostatic Drive in the Perpetuation of Complex

Chronic Illness: Gulf War Illness and Chronic Fatigue Syndrome. Plos One. doi:

10.1371/journal.pone.0084839

Deng, H., Runger, G., & Tuv, E. (2011). Bias of Importance Measures for Multi-valued

Attributes and Solutions. In T. Honkela, W. Duch, M. Girolami, & S. Kaski (Eds.),

Artificial Neural Networks and Machine Learning – ICANN 2011 (Vol. 6792, pp. 293-

300): Springer Berlin Heidelberg.

Domingos, P., & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier Under

Zero-One Loss. Machine Learning, 29, 103-130.

102

Esposito, G. (2010). LP-type methods for Optimal Transductive Support Vector Machines.

Dissertation. Retrieved from http://www.cs.upc.edu/~gesposit/phd3/phd3_esposito.pdf

Faure, A., Naldi, A., Chaouiya, C., & Thieffry, D. (2006). Dynamical analysis of a generic

Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22(14),

E124-E131. doi: 10.1093/bioinformatics/btl210

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., & De Micheli, G. (2008). Synchronous versus

asynchronous modeling of gene regulatory networks. Bioinformatics, 24(17), 1917-1925.

doi: 10.1093/bioinformatics/btn336

Gilks, W. R. (2005). Markov Chain Monte Carlo Encyclopedia of Biostatistics: John Wiley &

Sons, Ltd.

Gordon, K., & Blobe, G. (2008). Role of transforming growth factor-beta superfaminly signaling

pathways in human disease. Biochim Biophys Acta, 1782, 197-228.

Grinstead, C. M., & Snell, J. L. (1997). Introduction to Probability. American Mathematical

Society, Ch. 11: Markov Chains. Retrieved from

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapt

er11.pdf

Hallinan, J. S. N. U., Tyne; Bradley, D.R.; Mattick, J.S.; Wiles, J. (2006). Effects of an RNA

control layer on the state space of Boolean models of genetic regulatory networks.

Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 2551 - 2555. doi:

10.1109/CEC.2006.1688626

Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo Methods.

103

Hong C, Hwang J, Cho K-H, Shin I (2015) An Efficient Steady-State Analysis Method for Large

Boolean Networks with High Maximum Node Connectivity. PLoS ONE 10(12):

e0145734. https://doi.org/10.1371/journal.pone.0145734

Hopfensitz, M., Müssel, C., Maucher, M., & Kestler, H. (2013). Attractors in Boolean Networks:

A Tutorial. Computational Statistics, 28(1), 19-36. doi: 10.1007/s00180-012-0324-2

Ikushima, H., & Miyazono, K. (2010). TGFB signalling: a complex web in cancer progression.

Nat Rev Cancer, 10, 415-424.

Jong, H. D. (2002). Modeling and Simulation of Genetic Regulatory Systems: A Literature

Review. Journal of Computational Biology, 9, 67-103.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.

Journal of Theoretical Biology, 22(3), 437-467. doi: http://dx.doi.org/10.1016/0022-

5193(69)90015-0

Leibiger, I., Brismar, K., & Berggren, P. (2010). Novel aspects on pancreatic beta-cell signal-

transduction. Biochem Biophys Res Commun, 396, 111-115.

Mavers, M., Ruderman, E., & Perlman, H. (2009). Intracellular signal pathways: potential for

therapies. Curr Rheumatol Rep, 11, 378-385.

Ng, A. (2015). Support Vector Machines. Stanford University, CS229 Machine Learning

Lecture(Part V).

Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision Trees: An Overview and

Their Use in Medicine. Journal of Medical Systems, 26(5), 445-463.

doi:10.1023/A:1016409317640

104

Kohavi, R., and Provost, F. 1998. On Applied Research in Machine Learning. In Editorial for

the Special Issue on Applications of Machine Learning and the Knowledge Discovery

Process, Columbia University, New York, volume 30.

Saadatpour, A., Wang, R.-S., Liao, A., Liu, X., Loughran, T. P., Albert, I., & Albert, R. (2011).

Dynamical and Structural Analysis of a T-Cell Survival Network Identifies Novel

Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia. PLoS

computational biology, 7(11), e1002267. doi:10.1371/journal.pcbi.1002267

Shah, M., Zhang, R., & Jr, T. L. (2009). Never say die: survival signaling in large granular

lymphocyte leukemia. Clin Lymphoma Myeloma, 9(3), s244-253.

Shawe-Taylor, J., & Sun, S. (2009). Kernel Methods and Support Vector Machines. Lecture

notes.

Sokol, L., & Jr., T. L. (2006). Large granular lymphocyte leukemia. Oncologist, 11, 263-273.

Sveiczer, A., Novak, B., Mitchison, J. M. (1996). The Size Control of Fission Yeast Revisited.

Journal of Cell Science, 109, 2947-2957.

Thomas, R. (1991). Regulatory networks seen as asynchronous automata: A logical description.

Journal of Theoretical Biology, 153(1), 1-23. doi: http://dx.doi.org/10.1016/S0022-

5193(05)80350-9

Xiao, Y. (2009). A Tutorial on Analysis and Simulation of Boolean Gene Regulatory Network

Models. Current Genomics, 10, 511-525.

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338 - 353.

Zanudo, J., & Albert, R. (2013). An effective network reduction approach to find the dynamical

repertoire of discrete dynamic networks. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 23(2), 025111.

105

Zhang, R., Shah, M., Yang, J., SB, N., & X, L. (2008). Network model of survival signaling in

large granular lymphocyte leukemia. Proc Natl Acad Sci USA, 105, 16308-16313.

