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HIGHLIGHTS 

 Humans harbor traceable skin microbiota that discriminatively shape the microbial community 

structures in their residence 

 Humans harbor unique and stable microbial combinations (uESVs) that can be used to trace 

human interactions with surfaces within residences 

 Utilizing uESVs, burglars can be sourced to surface interactions during mock burglaries 

leaving behind traceable skin microbiota 
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ABSTRACT 

 

When mapped to the environments we interact with on a daily basis, the 36 million microbial cells 

per hour that humans emit leave a trail of evidence that can be leveraged for forensic analysis. 

We employed 16S rRNA amplicon sequencing to map unique microbial sequence variants 

between human skin and building surfaces in three experimental conditions: over time during 

controlled and uncontrolled incidental interactions with a door handle, and during multiple mock 

burglaries in ten real residences. We demonstrate that humans (n=30) leave behind microbial 

signatures that can be used to track interaction with various surfaces within a building, but the 

likelihood of accurately detecting the specific burglar for a given home was between 20-25%. 

Also, the human microbiome contains rare microbial taxa that can be combined to create a unique 

microbial profile, which when compared to 600 other individuals can improve our ability to link an 

individual ‘burglar’ to a residence. In total, 5,512 discriminating, non-singleton unique exact 

sequence variants (uESVs) were identified as unique to an individual, with a minimum of 1 and a 

maximum of 568, suggesting some people maintain a greater degree of unique taxa compared to 

our population of 600. Approximate 60-77% of the unique exact sequence variants originated 

from the hands of participants, and these microbial discriminators spanned 36 phyla but were 

dominated by the Proteobacteria (34%). A fitted regression generated to determine whether an 

intruder’s uESVs found on door handles in an office decayed over time in the presence or absence 

of office workers, found no significant shift in proportion of uESVs over time irrespective of the 

presence of office workers. While it was possible to detect the correct burglars’ microbiota as 

having contributed to the invaded space, the predictions were very weak in comparison to 

accepted forensic standards. This suggests that at this time 16S rRNA amplicon sequencing of 

the built environment microbiota cannot be used as a reliable trace evidence standard for criminal 

investigations. 

 

KEYWORDS 

Forensic microbiology, built-environment, host-microbe, trace evidence, human microbiome 

 

INTRODUCTION 

Utilizing biological markers as trace evidence generally relies on identifying discriminate variants 

that are stable relative to the suspect and persistent in the environment over time, as is the case 

for human DNA profiling [1]. Humans cultivate a highly individualized microbial population on their 

skin, and shed approximately 36 million of these bacterial cells per hour into their immediate 

environment [2], [3], and it is possible to detect this individualized signature on an environmental 

surface following a person’s interaction with that surface [4]–[6]. For example, the microbial 

signature on a participant’s finger tips to the keys on a computer keyboard [7], as well as an 

individual’s personal devices such as a smart phone [8], [9].  

 

This creates the intriguing possibility that the microbial signature of an individual could be reliably 

detected if they transiently interact with a surface, such as in a home environment [10]. Yet the 

proportions of each bacterial species in the human microbiome are not as stable as our genomic 

DNA. Even following the onset of an ‘adult-like’ signature, the gut microbiome is constantly 

adapting to a myriad of factors, such as diet and medicines, which creates shifting selection 
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pressures that promote one species over another, often leading to daily fluctuations in relative 

proportions [11]–[13]. However, in the absence of major disturbances such as antibiotic use, the 

skin microbiome appears to remains relatively stable, both in terms of composition and the 

proportion of each taxon [14], [15]. Is it therefore possible that the residual skin microbial profile 

left behind when someone transiently interacts with a physical surface in the built environment 

could be used to identify that person with a reasonable degree of accuracy? 

 

Provided each person is unique in their ancestry, genetics and lifestyle, the composition of the 

microbial community that inhabits our bodies is predicted to be unique between those individuals. 

Of course, there remains the possibility that two individuals may have an compliment of species 

that are indistinguishable using 16S rRNA amplicon sequencing techniques, but even the 

microbiome of identical twins failed to identify such a phenomenon [16]. Recently, researchers 

have demonstrated that people emit a microbial ‘cloud’ that can be traced to the individual [17], 

and studies of different home environments have shown that the microbial communities deposited 

on high-touch surfaces are most similar to the occupants that frequently use that space and touch 

those surfaces, and that the use of a space could also be predicted based on microbial signatures 

[6], [10], [18]. Interestingly, continental scale biogeography has also been implicated in driving the 

differences in the home-associated microbial signatures e.g. [19], [20], which means this must be 

taken into consideration in any experimental design. 

 

Here, we determine whether the residual skin microbiota left behind by transient interaction with 

a surface could serve as trace evidence of that individual’s presence using two experimental 

systems. First, an individual physically interacted with the door handles of 12 offices on two 

separate days, and the door handles were then sampled sequentially to determine a decay rate 

for the ability to detect the residual microbiota signature of that individual in the context of both 

the presence (day 1) and absence (day 2) of office workers in the space. Second, a series of 

‘mock’ home invasions were conducted in residential homes in two different cities (Naperville, 

Illinois and Fort Lauderdale, Florida, USA) to determine if a ‘burglar’s’ residual skin microbiota 

could be detected and reliably used to identify the same individual’s presence in that home. The 

microbiota of occupants, ‘burglars’ and surfaces were characterized using a relatively inexpensive 

but powerful molecular tool, 16S rRNA amplicon sequencing. This was followed with statistical 

tests to determine the likelihood that an individual’s residual skin microbial signature could be 

used as trace evidence to infer their presence. 

  

METHODS 

Study Design. Two principle experiments were performed. 

 

Experiment 1. A time series analysis was conducted to analyze the stability of unique microbial 

profiles over time on a physical surface i.e. door handle in two different contexts i.e. the absence 

versus presence of other individuals (Table 1). Door handles from offices (n = 12) found within 

the same area were interacted with by a prime individual who had not been in that building before. 

This experiment was performed on two consecutive days, first a Sunday during which no workers 

were present, and second a Monday morning during which all offices spaces (and hence door 

handles) were being utilized by the workers. Door handles were sanitized using a 70% bleach 
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solution approximately ten minutes prior to the first interaction.  Each experimental period was 

~60 mins, whereby a 5-minute interval occurred between each time the prime individual interacted 

with a different door handle. At the end of the experimental period, each door handle was sampled 

by swabbing two sterile cotton BD-Swube applicators over the whole door handle for 20 seconds 

(Fig. 1). Therefore, each door handle had a different time elapse between interaction with the 

prime individual’s hand and sampling. We hypothesized that during the Sunday event, all door 

handles would remain mostly microorganism free prior to the interaction by the prime individual, 

while on the Monday event, each door handle would have a differential probability of having been 

interacted with by an office worker both prior and post the interaction with the prime individual. 

During the Monday event, tallies were taken by observers to record the number of times each 

door handle was touched by an office worker. 

 

Experiment 2. A series of mock burglaries were conducted in three residential homes in 

Naperville, Illinois (USA) and five residential homes in Fort Lauderdale (FL), Florida (USA) in 

August 2016 (Table 2), and then repeated in March 2017. For each home, duplicate samples 

were collected by swabbing two sterile cotton BD-Swube applicators against various surfaces 

within each home for 20 seconds prior to and following burglarlies. The nares and hand of each 

occupant and of each mock burglar (n = 4) were sampled prior to the burglar’s introduction to the 

home. For each location, a pair of individuals (n = 2) that were not residents to any of the homes 

served as burglars. The burglar pair had no previous interactions with the homes in August 2016 

and had not interacted with the homes for more than 6 months in March 2017. During a burglary, 

occupants were asked to temporarily vacate the premises, and the burglar was asked to enter via 

the front door. They were allowed to interact with the home environment (as dictated by the owner, 

i.e. they were not allowed in rooms identified by the owner as private) for 10 mins, during which 

time they applied a piece of colored tape to each physical surface they interacted with which were 

limited to surfaces that had been sampled beforehand. This was done to limit the number of 

possible surfaces within each home, as well as to ensure a comparison of microbial communities 

pre- and post-burglary. At no time were any physical objects removed from the premises, and as 

such these events are considered failed burglaries. Following the mock burglary, the ‘burglar’ was 

sampled again, on their hands and in their nares (Fig. 2). Subsequently, an investigator entered 

the premises with a disposable face mask, hair covering, gloves and full clothing (to minimize 

their microbial impact on the space, as well as to reproduce how real crime scene investigators 

might interact with the space to minimize trace evidence disruption). The investigator proceeded 

to swab each surface identified by colored tape as having been interacted with. All samples were 

stored on wet ice, and then transferred to a -80C freezer within 3 hours for storage until 

processing.   

 

Sample processing. DNA was extracted from each sample using a low biomass variation of the 

MO BIO Powersoil DNA extraction, and the 16S rRNA was amplified with the Earth Microbiome 

16S Illumina Amplicon Protocol [21]. The V4 region of the 16S rRNA gene was targeted with the 

515F-806RB primer pair and sequenced using a Illumina MiSeq sequencer [22], [23].  

 

Sequence processing. Deblur. Exact Sequence Variants (ESVs) were assigned and clustered 

using Deblur [24]. Deblur circumvents the problems surrounding clustering of OTUs at an 
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arbitrarily threshold by obtaining single-nucleotide resolution ESVs after correcting for Illumina 

sequencing errors. This results in exact/amplicon sequence variants, also called ESVs differing 

from the traditional 97% clustering approach [25]. ESVs identified within sequencing blanks were 

filtered from the raw microbial table. The minimum reads-option was set to 0 to disable filtering 

inside Deblur and sequences were trimmed to 150bp. Following filter of samples with less than 2 

reads, a table was constructed mapping the abundance of each ESV to each sample rarefied to 

1000 sequences per sample to ensure that all samples contained the same number of sequences 

for downstream analysis. To determine unique ESV identification (uESVs), human-associated 

samples were grouped based on their originating source for hand- and nare-associated samples. 

ESVs that were solely expressed in one individual in comparison the entire population were 

identified as unique ESVs (uESVs). uESV sequences that did not occur at least twice were 

discarded prior to analysis.  

 

Data Analysis. Diversity metrics were calculated using Bray-Curtis distances for ESVs including 

community similarity summarized by Principle Coordinate Analysis (PCoA). PCoA results were 

visualized using the R package ‘phyloseq’ [26], which allows for sample distances and natural 

clustering behavior to be visualized in the context of sample metadata. Unique ESV profiles were 

generated using QIIME v1.9.1 [27]. Sourcetracker was implemented to observe the probability of 

finding microbial assemblages associated with families (source) with various surfaces in the built 

environment (sink) [28]. Posterior probabilities were plotted using the R package ‘ggplot2’ [29]. 

Sequences were retrieved from longitudinal studies [10], [14] observing the microbial community 

structure in residential homes, as well as  the American Gut Project [30]. Only hand- and nares-

associated samples were utilized for downstream processing with sequence data obtained from 

our studies and produced a participant sample size of n = 1,884. Samples were grouped by the 

originating individual for all studies, including American Gut Initiative, and selected for ESVs that 

were only observed in a single individual. Unique ESV counts were converted into presence 

versus absence using the R package ‘vegan’ and heatmaps were generated using the ‘gplots’ 

package. Random forest models were generated to discern the importance of environmental 

features on microbial community composition. uESVs were mapped to surfaces in the built 

environment using ‘ggplot2’. Using the R package ‘microbiome’, we computed core microbial 

communities using only ESVs. Densities of ESVs found in this study were compared against those 

of the other studies.   

 

To identify if uESVs in a surface microbiome community can be significantly attributed to 

interactions with a specific human microbiome we derived a probability estimate based on 

comparison to a database of 662 human skin microbiota. This analysis was based on some 

underlying observations. There are ‘unique’ ESVs found in surface microbiota not found in 

Intruders or Residents.  Not all Resident and Intruder uESVs are represented in surface 

microbiota.  This suggests that the Home microbial composition is larger and is comprised of more 

possible interactions than can be accounted for by only resident-surface or intruder-surface 

interactions.  Therefore, our observations here are only a thin slice of a much larger network of 

interactions. ‘Unique’ human ESVs aren’t really unique to the home microbiota.  Some uESVs are 

found on surfaces and humans that did not interact.  Therefore, for this analysis we considered 

‘Unique’ ESVs to be merely ‘rare’ in the meta-human microbiota and to occur at a frequency of 1 
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in 662 (which is the total number of microbial samples we analyzed here). Finally, not every rare 

ESV found on a human resident can be found on their home’s surfaces.  Therefore, absence of 

a rare ESV on a surface cannot be considered evidence of non-interaction or true absence. We 

took a ‘surface-centric’ approach for the calculation of probability; i.e. what is the probability that 

the population of ESVs on a particular surface is significantly enriched for a specific human’s 

composition of uESVs?  In this framework, we can imagine a microbiome on a subway handrail 

that has every uESV found in an individual’s skin microbiota but isn’t significantly enriched for any 

of their uESVs. Therefore, the population on the subway handrail is so diverse that it has the 

possibility of harboring the uESVs of virtually everyone on the subway.  Conversely, an 

infrequently touched lockbox that has a very limited uESV composition, say as deriving from 1 

person that interacts with it, can be significantly statistically enriched for another person’s uESVs 

even if it that individual only leaves behind 2 detectable uESVs. To calculate this, we considered 

the enrichment of a surface microbiome for a specific human microbiome using a Cumulative 

Binomial Distribution (CBD): 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 1 −  ∑ (
𝑛

𝑦
) 𝑝𝑛(1 − 𝑝)𝑛−𝑦

𝑘

𝑦=0

 

Where  n = number of uESVs present on surface 

 k = number of uESVs shared by the surface and human microbiome 

 p = frequency of uESVs in a defined human population (=1/662) 

 

From this, we can calculate a p-value for surface microbiome enrichment.  However, to determine 

if even a 1-in-million match is statistically inevitable given the vast number of possible ESV 

combinations in a million human microbiota we calculated a Family Wise Error Rate (FWER). We 

set a threshold for significance using the CBN of 0.05.  We calculate the uESV enrichment for all 

known human microbiota (n=662 in this case). The FWER is calculated: 

 

FWER = # human uESVs found to be enriched on surface / Total # human samples in database 

 

In this study, FWER will always be some integer number over 662.  For the FWER table provided, 

we converted that decimal to the nearest integer for “# expected enriched uESVs / 1000 microbial 

samples”.  

 

RESULTS 

Skin-microbiota profiles both discriminate between individuals and leave a residual 

signature on building surfaces. 

Following filtering and normalization, 1,884,000 sequence reads were generated comprising 

39,346 Exact Sequence Variants (ESVs) for both experiments. Experiment 1 was conducted to 

understand the transfer and stability of traceable microbiota to a specified surface (door handle). 

This longitudinal analysis was conducted in an office space under 2 different scenarios: either the 

presence or absence of office workers co-interacting with the door handles. An intruder interacted 

with the door handles, which was then be sampled every 5 mins for 1 hour to determine if the 

intruder’s signature decayed or remained stable under both scenarios. Regardless of occupancy, 

the microbial community structure showed similar trends over time, i.e. showing an initial 
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decrease in similarity followed by an increase, and finally a large decrease (Fig. 3A), suggesting 

that the presence of office workers co-interacting with the door handles had no significant impact 

on the longitudinal variance in microbial community structure (ANOVA, p > 0.05) (Fig. 3B). 

Furthermore, a fitted regression generated to determine whether the intruder’s uESVs found on 

the door handles decayed over time under the different scenarios found no significant shift in 

proportion of uESVs over time (Fig. 3C-D). This suggests that for at least 1 hour after an 

interaction event, traceable microbiota left behind by an individual may remain detectable on a 

built-environment surface irrespective of other people’s random interaction with that surface. 

 

Skin-microbiota profiles both discriminate between individuals and leave a residual 

signature on building surfaces. 

For experiment 2 (the mock burglaries conducted in Naperville (Illinois, USA) and Fort Lauderdale 

(Florida, USA)), Bray-Curtis distances were generated to quantify microbial community beta 

diversity dissimilarity among residents and burglars. Both nares-associated microbiota (Fig. 4A; 

PERMANOVA, p < 0.001, R = 0.731) and hand-associated (Fig. 4B; PERMANOVA, p < 0.001, R 

= 0.387) had significantly greater beta diversity between individuals than within individuals, with 

nares microbiota exhibiting more variation between individuals than the hand microbiota (Fig. 

4C). As hand and nares samples were acquired from each of the mock burglars both prior to and 

following the burglary, temporal stability of their microbiota was assessed for each site. Hand 

microbiota displayed a significantly greater shift (ANOVA, p < 0.05) in microbial community 

structure post burglary in comparison to nares microbiota, suggesting greater temporal instability 

in the hand microbiota; this is potentially as a result of the physical interaction between hands and 

home surfaces. Additionally, burglar pairs shared more microbial ESVs and shared more ESVs 

with the home surfaces, post burglary, suggesting acquisition of microbes from the home 

environment (Table 3). 

 

Microbial community structure for the surfaces in the residential homes was also analyzed. The 

beta diversity (Bray Curtis dissimilarity) of each home was significantly different, while no 

significant difference was found based on regional location (i.e. Illinois versus Florida; Fig. 3D). 

Following mock burglaries, ESVs belonging to 10 bacterial genera were enriched on home 

surfaces; specifically, Acinetobacter, Bacteroides, Bifidobacterium, Chroococcidiopsis, 

Chryseobacterium, Comamonas, Corynebacterium, Lactobacillus, Sphingomonas, and 

Streptococcus; (Fig. 4E). When comparing home surfaces prior to and following burglaries, 

microbial community structures were highly dissimilar with an average Bray-Curtis dissimilarity of 

76.9% (Fig. 4F), suggesting microbial community structure within the residential homes were 

altered following mock burglaries. The different proportions of bacterial genera across homes 

(Supp. Fig 1A), suggests that each home had an individually distinguishable background 

microbiota, and that this was only slightly altered by a burglary. Random Forest models 

demonstrated that variance in the proportion of differentially enriched taxa could mostly be 

accounted for by differences in the microbiome of the residence (Supp. Fig. 1B; OOB, R = 0.27). 

Sourcetracker was used to determine whether the surface associated ESVs found in homes post 

burglary had a significantly greater probability of having originated from one of the burglars 

compared to one of the residents or other people associated with the available datasets. While 

the likelihood of accurately detecting the specific burglar for a given home was very low (an 
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average of 25% for Naperville and 20.8% for Fort Lauderdale), the likelihood of predicting a Fort 

Lauderdale burglar as having invaded a Naperville home, or vice versa, was significantly lower 

than correctly matching the burglar to their specific city (Fig. 4G; ANOVA, p < 0.05). 

  

Rare ESVs as trace evidence in residential homes 

We analyzed the ESV profiles of all participants in this study (n = 30) in comparison to individuals 

who provided skin samples to the American Gut Project (n = 577), and created a database of 

ESVs that were unique to each individual; specifically, an ESV was unique to an individual if it 

was not shared between any two individuals among the observed population. We hypothesized 

that these unique ESVs (uESVs) may provide discriminate variants to detect a burglar’s presence. 

The phylogenetic resolution of 16S rRNA amplicon sequencing is such that some ESVs may 

represent sequences from taxa that are inherently more variable than others, and as such those 

would be likely to be able to discriminate between individuals more accurately. Following filtering, 

5,512 non-singleton uESVs were identified across all the residents and burglars (n=29; Supp. 

Fig. 2). uESVs were detected with a minimum of 2, a maximum of 568 and a mean of 13; 

suggesting some people maintain a greater degree of unique ESVs compared to our population 

(Supp. Fig. 3). The number of uESVs detected increased with the size of the population observed, 

which suggests that for at least a randomized selection of ~400 individuals, each person will have 

unique discriminators (Supp. Fig. 4). In total, 77% and 60% of the uESVs originated from the 

hands of the burglars and residents, respectively (Fig. 5A). While uESVs spanned 36 phyla, >70% 

of all uESVs belonged to Proteobacteria (34%), Bacteroidetes (15%), Firmicutes (12%), and 

Actinobacteria (11%) (Fig. 5B). 

 

We then asked the question, what is the probability that surfaces in Home X are enriched for 

uESVs found in Suspect Y post burglary? To answer this question, we applied a cumulative 

binomial distribution analysis to identify uESVs that were enriched on a surface, and then applied 

additional family-wise error correction approach that accounted for the number of human 

microbiota compared in the analysis (n=662; Table 4). In the Naperville, Illinois homes, surfaces 

were significantly enriched (FWER-corrected p-value < 0.01) for uESVs from persons 8 and 13 

(Naperville burglars) post burglary. While, in the Fort Lauderdale, Florida homes, surfaces were 

significantly enriched for uESVs from persons 6 and 7 (Fort Lauderdale Burglars) post burglary. 

Hence, of all the ESVs unique to the burglars, only certain ones were found to be significantly 

enriched on surfaces in the relevant homes. We next applied Sourcetracker to determine if the 

uESVs from the burglars were a significant source of ESVs to the surfaces in each home, and 

whether these proportions varied between uESVs that were significantly enriched, compared to 

those that were not. However, the likelihood of uESVs being a source to the home surfaces post-

burglary did not differ, irrespective of whether they were significantly enriched post burglary 

compared to pre-burglary (Fig. 5C); likely because the burglars uESVs that were enriched were 

very rare. Interestingly, floor samples were always the most significantly enriched for burglar-

associated uESVs post burglary, when compared to tables, dressers, doorknobs or counters, 

which suggests that microbes shed from burglars during their movements throughout the home 

are more likely to be deposited on the floor than they are on surfaces touched by hands (Fig. 5D). 

Sourcetracker was used to determine the percentage of uESVs that could be traced to the 

burglars for each surface (Fig. 5E). While burglars’ uESVs were observed across all surfaces in 
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most homes, in Naperville homes 1, 2, and 3 uESVs from burglars were differentially detected 

across surfaces, suggesting less uniform distribution. Together, these data suggest that 

identifiable and discriminatory uESVs exist, and can be detected on home surfaces albeit at very 

low proportional abundance and with variable detection success. 

 

DISCUSSION 

This study adds further evidence that the human microbiome embellishes the built environment 

in a way that could be used to identify individuals interacting with a space. We were able to 

observe significant shifts in microbial community structure of building surfaces following repeated 

mock burglaries of residential homes that mirrored changes in the skin microbiota of the burglars. 

We also demonstrated that this signal could be reliably detected for up to 1-hour post invasion, 

irrespective of incidental interaction with that surface by other occupants. The results suggest that 

the act of transient, elicit interaction with a built space does have an observable impact of the 

microbial community both on built surfaces and human skin. However, since microbial retention 

may not sustain for more than an hour, longitudinal data from participants would be needed to 

determine the stability of these impacts and whether they continue to be observable for a long 

duration, as well as to determine the temporal variability in signal detection on different surface 

materials (we only examined this on metal door handles). That is, would it be possible to detect a 

signature of a burglar hours to days after an event, or conversely would the influence of a built 

environment on a burglar be detectable hours to days after the intrusion?? We also demonstrated 

that Exact Sequence Variants of the 16S rRNA V4-5 hypervariable region that are unique to 

individuals (based on a comparison of skin-microbiota from 600 people) are left behind on 

surfaces by burglar’s post invasion of a home, and that these can be used to correctly identified 

the intruder. More importantly, we demonstrated that skin microbiota can be used to track 

individuals to various surfaces, which was previously believed to be unlikely due to frequent 

microbial turnover within the built-environment . This study is novel in that it uses the human 

microbiota as trace evidence to connect potential burglars to a crime scene, as well as observing 

the likelihood of the number of contributors [31]. 

 

Despite being inside each home for no more than 10 minutes, we observed changes in hand- and 

nares-associated microbiota for the burglars, as well as noticeable shift among numerous built-

environment surfaces. This supports previous findings that humans shape the immediate spaces 

they interact with and that the built-environment serves as a place for human microbiota to 

accumulate [32]. More importantly, our findings demonstrate that given a number of possible 

microbiomes, an individual’s microbial contribution can be detected on surfaces within a 

residential home. Our study was designed to determine the likelihood of detecting human intrusion 

into a space using their microbiome, but we could not properly assess the longevity of their 

microbial signature as the homes were not continuously sampled following each burglary. As 

databases and the number of human microbiomes grow, so will our statistical power and its ability 

to be implemented as a forensic tool.  

 

We identified unique ESVs from a moderately sized human population (~600 individuals), which 

when we randomized to 400 people demonstrated that each individual has at least 13 uESVs on 

average. Interestingly, the majority of uESVs were annotated to the phylum Proteobacteria, a 
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common human skin associated phylum [33]. This is a significant advance on most microbial 

forensic investigations, which could not differentiate on whether microbial markers were from 

human sources or a result of dispersion from the environmental exposure [7], [8], [34], [35]. By 

cataloguing potentially unique ESVs we were able to say with greater certainty that an individual 

had been associated with the space for a period of time, although as before, this may not be true 

across time. Longitudinal analysis of the stability of unique ESVs would be required, and as of yet 

there are too few dense longitudinal time series of skin microbiota to be able to adequately assess 

this phenomenon. However, it is likely that as most of the uESVs detected had very low 

proportional abundance that more comprehensive sequencing of people (i.e. sequencing more 

reads per sample) may eradicate some of this uniqueness. Furthermore, we do recognize that it 

is not definitively clear whether the uESVs detected in this preliminary study would remain forensic 

identifiers of each individual were the population size were to increase 10- or 100-fold. Also, it is 

also plausible that some of the lowly abundant uESVs may be products of background noise likely 

from environmental dispersion considering samples were taken from skin. While we did generate 

uESVs for approximately 600 individuals to serve as a comparative control in order to remove 

false positives, we do acknowledge that it would have been better to compare uESV profiles for 

mock burglars against burgled and non-burgled homes. It is also likely, and untested by this study, 

that people who frequently physically interact are more likely to share a much greater proportion 

of uESVs, which obviously is a significant flaw for forensic utility.  

 

Importantly, the FWER calculation we employed to determine the probability that enriched uESVs 

can predict a burglar’s interaction with a space will be skewed due to the lack of truly independent 

observations in the database; for example, out of the 662 microbiota included in the FWER 

analysis, a large proportion of those included people living together, who due to sharing of 

microbes tend to have substantially similar microbiota. Another weakness of the FWER analysis, 

is that our determination of the frequency of uESVs as 1/662 is only a rough estimate of true 

frequency in the meta-human microbiome, due to substantial variance in the detection threshold 

of the total compliment of ESVs in anyone sample. To improve this analysis, we would need 

substantially more samples, sequenced at significantly greater depth, across multiple time points. 

We would need to improve the likelihood of true negatives, i.e. if an uESV is not detected in an 

individual we are certain that the probability it was missed due to a lack of observational depth is 

virtually improbable. Due to the inherent complexity of the microbiota and the way in which 

microbial communities are sampled, this outcome seems highly unlikely. As it stands, we can 

think of no feasible way to achieve this. 

 

We have only begun to explore the potential of the human microbiome as a tool for forensics, and 

while our initial analysis, and that of previous studies, tends to suggest that it lacks obvious utility, 

further research is needed to absolutely confirm this finding. However, this study demonstrates 

that humans do leave behind traceable microbial signatures that can be used to track interaction 

with various surfaces within a building. Also, we observed that humans maintain rare microbiota 

that can be combined to create a unique microbial profile when compared to 600 other individuals; 

whether this uniqueness is an artefact of the population size under comparison or of the lack of 

depth or duration of observation in individuals, remains to be seen. Finally, we demonstrated that 

the unique microbial fingerprint of an intruder was detectable on a surface for up to 1 hour with 
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no obvious decay, irrespective of incidental use of these surfaces by other occupants. These 

findings present tantalizing evidence that the microbiota may be able to provide valuable forensic 

information in conjunction with more traditional methods. However, it is clear that there is a need 

to build better models to source individuals based on their microbial community composition, and 

to more accurately determine if a microbial signature is truly unique and stable for an individual. 

Future studies would benefit from focusing on the stability of traceable microbial markers over 

time in both people and on surfaces. Additionally, while the 16S rRNA gene is a serviceable and 

cheap indicator of microbial composition and structure, analyzing microbial metagenomes to 

identify genotype level differences, while more expensive and time consuming, might be better 

suited for forensic analysis. This will be true only if bacterial strains remain stable and unique to 

individuals over time, which due to the great dispersal rate of microbes between people maybe 

highly improbable. In summary, we believe the human microbiome, while having some potential 

value as a trace evidence marker for forensic analysis, is currently under-developed and unable 

to provide the level of security, specificity and accuracy required for a forensic tool.  
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FIGURE LEGEND 

Figure 1. A schematic for experiment 1 is depicted demonstrating the burglar’s interactions with 

connected offices during the absence (Day 1) and presence (Day 2) of other individuals.  

 
Figure 2. A schematic for experiment 2 is depicted demonstrating the sampling design for mock 

burglaries in Naperville, IL and Fort Lauderdale, FL. Swabbed samples were taken prior to 

(burglars, residents, and residential home) and following (burglars and residential home) mock 

burglaries. 
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Figure 3. (A) Temporal changes in microbial community structure were plotted for office door 

handle samples. (B) Overall change in microbial community structure were compared for Day 1 

(absence of co-workers) and Day 2 (presence of coworkers). Means were compared to assess 

whether changes were significantly different between days. (C) Changes in burglar uESV 

abundances were tracked for both days. (D) Overall change in uESV abundances were compared 

and means were compared to asses significance.  

 
Figure 4. (A and B) Principle coordinate analysis (PCoA) were generated for nare and hand 

microbiota and colored by burglars in Naperville, IL and Fort Lauderdale, FL. (C) Densities were 

plotted to observe changes in microbial community structure for nare and hand microbiota. (D) 

Principle coordinate analysis (PCoA) was generated for residences in Naperville, IL and Fort 

Lauderdale, FL. (E) Log-fold change were detected using DESEQ2 to analyze differentially 

enriched taxa before versus after burglaries for surfaces within the residences. (F) Densities were 

plotted to observe changes in microbial community structure for residences. (G) Sourcetracker 

was utilized to report a burglar’s likelihood of interacting with a residence. 
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Figure 5. (A) Relative distribution of unique ESVs were plotted for hand and nare microbiota 

among burglars and residents. (B) Microbial composition of uESVs were plotted at the phylum for 

burglars and residents. (C) Probabilities were generated to discern between significant (ANOVA, 

p < 0.05) and non-significant (ANOVA, p > 0.05) and combined with Sourcetracker to plot the 

likelihood of detection. (D) Using Sourcetracker, uESV distribution was plotted among surfaces 

within residences in Naperville, IL and Fort Lauderdale, FL. (E) Using Sourcetracker, likelihood of 

burglar detection among various surfaces within residences were plotted.  
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Table 1. For experiment 1, the elapsed time for single source interactions were recorded for both 

days, as well as the number of touches by resident office workers.  

Date Sample ID 

Time 
Between 

Interaction 
and 

Sampling 
(min) 

No. of 
Touches 

by Officer 
Worker 

1/28/2018 

FD009 20 0 

FD005 10 0 

FD011 25 0 

FD021 50 0 

FD015 35 0 

FD001 0 0 

FD003 5 0 

FD019 45 0 

FD017 40 0 

FD018 55 0 

FD019 30 0 

FD020 15 0 

1/29/2018 

FD021 40 3 

FD022 45 2 

FD023 10 1 

FD024 25 1 

FD025 35 5 

FD026 20 1 

FD027 15 2 

FD028 55 3 

FD029 0 2 

FD030 5 1 

FD031 30 2 

FD032 50 1 

 

Table 2. For experiment 2, the number of occupants and their physical characteristics were 

detailed for each home including burglars interacting with residences during mock burglaries.  

Residence Location of home 

Number of 

Occupants 

Age ranges; 

gender of 

occupants 

Age of burglars 

Home 1 Naperville, IL 3 7-52; M,F 21-40 
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Home 2 Naperville, IL 4 4-39; M,F 21-40 

Home 3 Naperville, IL 4 6-47; M,F 21-40 

Home 6 Fort Lauderdale, FL 4 10 – 50; M,F 24-28 

Home 7 Fort Lauderdale, FL 2     58-68; M, F 24-28 

Home 8 Fort Lauderdale, FL 3 18 – 68; M,F 24-28 

Home 9 Fort Lauderdale, FL 3 5 – 38; M, F 24-28 

Home 10 Fort Lauderdale, FL 4 7-35: M, F 24-28 

 

Table 3. Shared ESVs were analyzed prior to and following mock burglaries for burglar pairs, as 

well as the number of burglar ESVs observed among residences.   

 Location Shared ESVs  

  Before After 

Burglars Naperville 157 821 

 Fort Lauderdale 387 1562 

Residences Naperville 655 1177 

 Fort Lauderdale 1103 2132 

 

Table 4. Significance of enrichment for intruder microbiome signature by residence were 

calculated using FWER p-values, which indicate the probability that a given individual (out of 

1,000) will match the uESVs of the indicated burglar.   

Residence Burglar ID 

Enriched for uESVs 
FWER p-vlaue 

Home 1 Person 8 0.002 

 Person 13 0.000 

Home 2 Person 8 0.006 

 Person 13 0.008 

Home 3 Person 8 0.002 

 Person 13 0.006 

Home 6 Person 6 0.000 

 Person 7 0.002 

Home 7 Person 6 0.000 

 Person 7 0.003 

Home 8 Person 6 0.000 

 Person 7 0.002 
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Home 9 Person 6 0.000 

 Person 7 0.003 

Home 10 Person 6 0.000 

  Person 7 0.002 
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