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Chapter 1 

Introduction 

 

 

Background 

Electricity generation accounts for over 40% of the carbon dioxide emitted by the 

United States (Chen et al., 2015).  Currently, United States electricity consumers lose 

billions of dollars per year by not reducing residential energy usage.  Per the United 

States Energy Information Administration (EIA), the average national price of electricity 

was 12.00 cents per kilowatt hour in 2014, which is up from 8.00 cents per kilowatt hour 

in 2003 (EIA, 2014c).   While United States residential electricity sales per household declined 

7% between 2010 and 2016, electricity sales show an increase of 12% from 1990 to 2016 (EIA, 

2017).  In 2015, household appliances accounted for 35% of U.S. household energy 

consumption, up from 24% in 1993 (EIA, 2016).   Although appliances have become more 

energy-efficient over the years, consumers tend to have more energy-consuming appliances than 

before, which results in a higher combined energy consumption (Bhati et al., 2017). 

To implement energy efficiency programs that lead to operational efficiency and to help 

consumers better monitor their energy consumption, utility service providers upgraded their 

utility infrastructures from a mechanical-analog based infrastructure to an interconnected-

digital Smart Grid infrastructure (NIST, 2016) capable of real-time energy information 

exchange.  An Energy Management Information System (EMIS) is a component of the Smart 

Grid intelligence infrastructure.  Energy Management Information Systems are designed to 

collect consumer energy consumption data using smart grid monitoring devices and to provide 
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feedback to customers regarding their energy consumption (Piti et al., 2017; Hooke, 2014).  

Figure 1 illustrates the Smart Grid infrastructure. 

 

Figure 1.  The Smart Grid Infrastructure Service Provider View.  Source: (NIST, 2012). 

 

An EMIS utilizes a smart meter installed at the customer’s home to collect energy load 

data (Piti et al., 2017; Hooke, 2014).  The smart meter is an essential tool for linking energy 

consumption measurements and utility production measurements with the customer’s identity 

and Time-of-Use data (Piti et al., 2017).  Smart meters (or automated metering infrastructure 

devices) serve as a gateway between the utility, customer site, and the customer’s load 

controllers.   
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Smart meters measure, record, display, and transmit data such as energy usage, 

generation, text messages, and event logs to authorized utility systems (DOE, 2014c).  Services 

that utilities provide to customers via smart meters include utility feedback on different 

timescales, past (hourly, daily, weekly, monthly), present (or real time), and future (forecasting) 

to help consumers know when and over what timescale energy was consumed and wasted 

(Kazmi, O'Grady, Delaney, Ruzzelli, & O'Hare, 2014).  This data is typically distributed via 

online web portals, home energy reports, and downloadable energy usage data (Cooper, 2016).  

An EMIS can be characterized by its deliverables, features, elements, and support.  Deliverables 

include the early detection of poor performance, effective energy reporting, and support for 

decision-making.   

However, utility energy consumers today have little-to-no experience interacting with a 

utility service provider’s EMIS smart meter web portal as an EMIS is a relatively new 

technological innovation.  An effective EMIS smart meter web portal should have adequate 

system quality, information quality, and service quality.  It should provide an adequate support 

structure and be reliable and accessible, as utility consumers can only use a system successfully 

if they can access it and have access to support services when needed.  In addition, customers 

must perceive a utility’s EMIS web portal as trustworthy–in terms of data integrity, privacy, and 

security.  Smart meter data should be accurate, relevant, and easily understood, keeping 

consumers engaged–as energy portals can lose their effectiveness if they fail to keep customers 

actively engaged (Verkade & Hoffken, 2017; Chen, 2017; Hartman & LeBlanc, 2015).   
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Problem Statement 

An EMIS enables individuals and organizations to plan, make decisions, and take 

effective action to manage energy use and costs (Sovacool et al., 2017; Piti et al., 2017; Hooke, 

2014).  The economic value to utility service providers is to adjust the price of electricity 

depending on the level of demand, since off-peak electricity and gas requires less of an energy 

load to service than on-peak demands.  This time-of-use pricing reduces operating costs because 

lower energy demand equates to lower energy rates.  An EMIS’ sustainability value is to 

influence changes in consumer behavior by providing energy consumption data to utility 

consumers.  Because smart meter web portals are relatively new, there is a dearth of research on 

which to guide the evaluation of such systems or to outline utility customer expectations of the 

benefits associated with using them.  Although many studies have evaluated information 

systems success in different organizational settings, how Energy Management Information 

System success is achieved has not been clearly articulated.   

EMIS smart meter web portals are designed to communicate energy consumption 

information to utility consumers, but few guidelines and little sustainability design research 

exists to determine the usefulness and satisfaction with these web portals.  A major problem 

utility service providers face is how to develop and deliver effective customer engagement tools 

to assist energy consumers in understanding EMIS smart meter data output.  While massive 

deployment of metering devices allows collecting a plethora of data, considerable efforts 

are required to make this data accessible and easy to understand by users, especially 

when the purpose is addressing energy saving objectives (Pasini et al., 2017; Smith, 

2013). 
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Other problems include customer concerns about system trust, as interconnected systems 

can increase the amount of private information that is exposed.   Privacy concerns include:  1) 

loss of confidentiality (unauthorized disclosure of information); (2) loss of integrity (the 

unauthorized modification or destruction of information); and (3) loss of availability (the 

disruption of access to or use of an information system) (Sovacool, 2017; Rodden et al., 2013; 

NIST, 2012).   

The typical online customer is information seeking, e.g. seeking information on 

products, services, health, social communications, or entertainment, etc. (Jalal & Al-Debei, 

2013).  The typical online energy customer may visit a utility web portal to perform a 

transaction such as paying a utility bill, but does not typically seek information on energy 

consumption or view their energy usage data (Accenture, 2015).  Similar to e-commerce and 

information-oriented web portals, smart meter web portals employ similar evaluative use cases, 

e.g. how easy is it to log in, change a password, view usage information, change a customer 

profile, navigate, get relevant information, or obtain help when using a web portal?   

However, EMIS smart meter web portals may also require additional evaluative use 

cases.   For example, does the residential utility consumer have the ability to change the way 

energy data is visualized, e.g. change chart type from a line chart to a bar chart?  Or, change the 

chart attributes to better accommodate personal preferences?  Does the residential customer 

have the option to download their energy usage data?  Does the residential customer have the 

option to allow authorization to a Third Party to view their usage data?  How easy is it to grant 

this option?  Is it easy for the residential customer to change, review, and revoke access of a 

Third Party that has authorization currently to view the residential customer’s usage data 
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(Zientara, Rankin, & Wornat, 2016)?  Specifying user interface requirements is a key to success 

in any development activity as the user interface requirements describe system behavior 

(Shneiderman, Plaisant, Cohen, Jacobs, Elmqvist & Diakopoulos, 2017). 

 The goal of an energy portal is to encourage the customer to save energy and money, 

but it is too early in the evolution of smart meter portals to determine which elements are critical 

to driving energy savings (Gölz et al., 2016; Hartman & LeBlanc, 2015).  Vassileva et al. (2016) 

argued that the real impact of consumer interaction with smart meters and the services obtained 

from them is still uncertain and limited.  Several studies have estimated how much energy 

conservation is achieved by providing households with real-time information on energy use via 

in-home displays (Piti et al., 2017; DECC, 2015; Westskog et al., 2015; Alcott et al., 2014; 

Pierce & Paulos, 2012), but factors that influence EMIS web portal success have not been 

widely studied in the context of utility customer usage, satisfaction, or net benefits.   

To date, insufficient research has been conducted in identifying what quality factors 

contribute to EMIS success.  The quality factors of system quality, information quality, and 

service quality and their impact on a utility customer’s EMIS use and user satisfaction have not 

been addressed in the literature.  The addressable problem of this study was the lack of an 

established way to measure EMIS web portal usefulness, user satisfaction, and net benefits.   

DeLone and McLean (2016) observed that although many research studies have tested 

and validated IS success measurement instruments, most of them have focused on a single 

dimension of success, such as system quality, impacts, or user satisfaction.  Few studies have 

measured and accounted for the multiple dimensions of success and the interrelationships 

among these dimensions.  This research study utilized the DeLone and McLean (2003) 
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Information Systems (IS) Success Model to assess EMIS success using Structural Equation 

Modeling (SEM).  The Information Systems Success Model developed by DeLone and McLean 

(2003) provides a clear taxonomy for conceptualizing and operationalizing IS success (DeLone 

& McLean, 2016; Zheng, Zhao, & Stylianou, 2013).  A successful EMIS should not only collect 

energy consumption data but it should also provide good system quality, information quality, 

and service quality – it should be easy to use, learn, and provide relevant information and 

functions to aid utility consumers in reducing their energy consumption and the cost of their 

energy bills. 

 

Research Goal 

The goal of this research study was to measure IS success based on the DeLone and 

McLean IS (2003) success model construct’s net benefits.  Improved energy management 

decision-making is the net benefit derived from an efficient and useful EMIS, which may 

achieve both economic and social benefits for the utility customer and operational efficiencies 

for the utility service provider.  The DeLone and McLean IS Success Model provides 

a valuable framework for understanding the multi-dimensionality of IS success (DeLone & 

McLean, 2016).  Therefore, the study employed Structural Equation modeling (SEM) based on 

Partial Least Squares (PLS) to evaluate the model. 
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Research Questions 

Three research questions framed this empirical study.    

1. To what degree do information quality, system quality, and service quality 

influence EMIS use?  

2. To what degree do information quality, system quality, and service quality 

influence user satisfaction with an EMIS?  

3. To what degree do EMIS use and user satisfaction benefit utility customers in 

managing their energy consumption? 

Relevance and Significance 

Information systems success research evaluates the effective creation, distribution, and 

use of information via technology (DeLone & McLean, 2016).  Failure to account for all six 

constructs (e.g. system quality, information quality, service quality, use, user satisfaction, and net 

benefits) can lead to possible confounding results or an incomplete understanding of the system 

under investigation.  Research on IS success that measures only some of these variables (e.g. 

satisfaction), and fails to measure or control for the others (e.g. service quality), has resulted in 

the many conflicting reports of success that are found in the IS success literature (Petter et al., 

2008).  This research measured all six constructs of the DeLone and McLean (2003) IS Success 

Model at the individual level of analysis.   This research is deemed significant as little research 

has assessed the success of EMIS smart meter web portals as an Information System in 

delivering benefits to the utility customer using the six constructs in DeLone and McLean’s IS 

Success Model.   
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Energy consumers need an adequate frame of reference to understand whether their 

consumption levels are excessive – and this frame of reference depends on system quality, 

information quality, and service quality.  Energy consumption data captured by the smart meter 

is the heart of an Energy Management Information System.  The ability to monitor energy usage 

effectively provides consumers with an opportunity to develop energy-saving decision-making 

strategies, which may result in decreased pressure on the power grid, less need to build new 

power plants, reduced carbon emissions, and lower utility operating costs for utility service 

providers (Sovacool et al., 2017; Pacific Gas & Electric, 2015; DECC, 2015).  The sustainability 

value of the study to Human Computer Interaction (HCI) design is the utilization of IS theory to 

investigate EMIS smart meter web portal success based upon information quality, system quality, 

and service quality – quality factors that can facilitate EMIS web portal design.   

This study investigated the perspective of the individual utility consumer, whose energy 

consumption behavior an EMIS smart meter web portal is designed to affect.  A benefit of the 

study is an evaluative model for EMIS success measures that can aide in the planning, design/re-

design, and implementation of an Energy Management Information System smart meter web 

portal.    

 

Barriers and Issues 

There are significant barriers to the adoption of new technologies, especially for the 

energy consumer with little exposure to an Energy Management Information System.  The DOE 

(2014c) has reported low customer participation in smart meter web portals and Zvingilaite and 

Togeby’s (2015) literature review of feedback studies noted that website visits to smart meter 
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web portals tends to be small.  Chen (2017) noted low smart meter technology adoption rates in 

the United States.  There is a learning curve associated with EMIS use.  Therefore, a potential 

issue was that survey respondents may not have been completely honest in their answers to 

survey questions due to a lack of exposure to smart meter web portals.   This issue may impact 

the generalizability of the study. 

Defining and measuring “success” has been a challenge for the IS field.  As Information 

Systems have become more complex, so has the evaluation of the effectiveness or success of 

those systems.  In evaluating the success of an information system, it is paramount to define 

success based on the context of the information system and its stakeholders (DeLone & 

McLean, 2016).  Thus, the complexity and multidimensional nature of the IS success concept 

and the measurement of the success constructs may have influenced survey results.   

 

Definition of Terms 

The following terms were used throughout this study. 

Average Variance Extracted (AVE) – Average variance extracted is a criterion of convergent 

validity.  An AVE value of at least 0.5 indicates sufficient convergent validity, meaning that a 

latent construct explains more than half of the variance of its indicators on average (Chin, 1998).  

British Thermal Unit (BTU) – A BTU is a standard unit of measurement used to denote both 

the amount of heat energy in fuels and the ability of appliances and air conditioning systems to 

produce heating or cooling.  A BTU is the amount of heat required to increase the temperature of 

a pint of water (which weighs exactly 16 ounces) by one degree Fahrenheit (EIA, 2014d).                                                                                                                                

California Alternate Rates for Energy (CARE) – The CARE program gives utility discounts 
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to qualified households with limited income.  Limited-income customers enrolled in the CARE 

program receive a monthly discount on their electric and natural gas bills (Pacific Gas & 

Electric, 2016). 

Electronic Service Quality (E-S-QUAL) – Electronic Service Quality measures the service 

quality delivered by websites on which customers shop online (Parasuraman et al., 2005).  

Energy Management Information System (EMIS) – An EMIS is a component of the Smart 

Grid intelligence infrastructure.  Energy Management Information Systems are designed to 

collect consumer energy consumption data using smart grid monitoring devices and provide 

feedback to customers regarding their energy consumption (NIST, 2016).  

Endogenous Variables – Endogenous (“of internal origin”) variables represent the effects of 

other variables (i.e., at least one arrow pointing to it).  They can be described as a factor in a 

causal model or causal system whose value is determined by the states of other variables in the 

system (Chin et al., 2003). 

End-User Computing Satisfaction (EUCS) – EUCS is a 12-item instrument developed by Doll 

and Torkzadeh (1988) to measure end-user satisfaction with information systems. 

Exogenous Variables – Exogenous (“of external origin’) variables are described as factors in a 

causal model or causal system whose value is independent from the states of other variables in 

the system; their value is determined by factors or variables outside the causal system under 

study (Chin et al., 2003). 

Family Electric Rate Assistance Program (FERA) – The FERA program gives qualified 

households with limited income discounts on a portion of their electricity bills 

(Pacific Gas & Electric, 2016). 
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Green Button – The Green Button allows utility customers to download energy usage data from 

a utility service provider’s website.  This file is in an Extensible Markup Language (.XML) 

format and requires an application to properly read and determine the contents of the file. 

Human-Computer Interaction (HCI) – HCI is an area of research and practice that emerged in 

the early 1980s, initially as a specialty area in computer science embracing cognitive science and 

human factors engineering.  HCI now aggregates a collection of semi-autonomous fields of 

research and practice in human-centered informatics (Carroll,1997). 

Information Quality – Information quality is concerned with the timeliness, accuracy, format, 

accuracy, and relevance of the information (DeLone & McLean, 2003). 

Kilowatt Hour – A kWh is unit or measure of electricity supply or consumption of 1,000 Watts 

over the period of one hour; equivalent to 3,412 BTU (EnergyLens, 2013). 

Missing Completely at Random (MCAR) – MCAR means that the probability that an 

observation (Xi) is missing is unrelated to the value of Xi or to the value of any other variables. 

Another way to think of MCAR is to note that any piece of data is just as likely to be missing as 

any other piece of data (Little, 1988). 

MySQL  –  MySQL is an open-source relational database management system. 

Net Benefits –  Net benefits is defined as the extent to which information systems contribute to 

the success of individuals, groups, organizations, industries, and government.  For example, 

improved decision-making, improved productivity, increased sales, cost reductions, improved 

profits, market efficiency, and customer welfare (DeLone & McLean, 2016; Petter et al., 2008). 

Partial Least Squares SEM (PLS-SEM) – PLS-SEM is a soft modeling approach to 

Structural Equation Modeling with no assumptions about data distribution.  The partial least 

file:///C:/Users/Downloads/Smartpls.docx%23_bookmark5
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squares approach to SEM (or PLS path modeling) offers an alternative to covariance-based 

Structural Equation Modeling (Hair, Ringle, & Sarstedt, 2011). 

Service Quality (SERVQUAL) – The SERVQUAL framework was developed by Parasuraman 

et al. in 1988 as a method of evaluating service quality for service industries, e.g. a bank, a credit 

card company, a repair and maintenance firm, and a phone service carrier (Parasuraman et al., 

1988).  

Structural Equation Modeling (SEM) – SEM is a second-generation multivariate data analysis 

method that is used in research because it can test theoretically supported linear and additive 

causal models (Chin et al., 2003; Haenlein & Kaplan, 2004).  With SEM, researchers can 

visually examine the relationships that exist among unobservable, hard-to-measure latent 

variables.  Latent variables are underlying variables that cannot be observed directly (Chin et al., 

2003). 

System Quality – Important attributes of system quality include usability, availability, 

reliability, adaptability, system flexibility, system reliability, functionality, and ease of learning 

(DeLone & McLean, 1992). 

System Use – System use is concerned with actual use, the nature of use, frequency, 

thoroughness, and appropriateness of use (DeLone & McLean, 2016). 

Technology Acceptance Model (TAM) – TAM suggests that when users are presented with a 

new technology, a number of factors influence their decision about how and when they will use 

or accept it (Davis, 1989). 
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User Information Satisfaction(UIS) – UIS is a model of user involvement which shows 

system quality and system use as influenced by user involvement - which are mediated by 

cognitive factors and motivational factors (Ives & Olson, 1984).   

User Satisfaction – User satisfaction is the affective attitude towards a specific computer 

application of someone who interacts with the application directly (Doll & Torkzadeh, 1988).   

Variance Inflation Factors (VIF) – VIF is the degree to which the standard error has been 

increased due to the presence of collinearity.  It is used to describe how much 

multicollinearity (correlation between predictors) exists in a regression analysis. 

Multicollinearity is problematic because it can increase the variance of the regression 

coefficients, making them unstable and difficult to interpret (Allison, 1999).   

 

List of Acronyms 

AVE    Average Variance Extracted   

BTU    British Thermal Unit 

CARE   California Alternate Rates for Energy  

EMIS    Energy Management Information System  

E-S-QUAL   Electronic Service Quality  

EUCS    End-User Computing Satisfaction  

FERA    Family Electric Rate Assistance Program 

HCI    Human-Computer Interaction  

kWh    Kilowatt Hour  

MCAR   Missing Completely at Random  

PLS-SEM   Partial Least Squares Structural Equation Modeling  
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SEM    Structural Equation Modeling  

SERVQUAL   Service Quality  

TAM    Technology Acceptance Model  

UIS    User Information Satisfaction  

VIF    Variance Inflation Factors  

 

Summary 

An EMIS is a relatively new technological innovation that is in the nascent stages of 

technological diffusion, which affords an opportunity to baseline EMIS usefulness and user 

satisfaction in the residential domain.  The residential domain is important because of the 

significantly high number of end users impacted.  In the United States alone, residential energy 

consumption affects hundreds of millions of homes and other residences (Venkatesh et al., 

2013).  The energy industry is developing and deploying Energy Management Information 

Systems to mitigate the problem of unmanaged energy consumption.  EMIS communicate 

energy consumption information to utility consumers to influence their consumption behavior.  

However, there were few guidelines or little research to determine the usefulness of these 

systems.  Sustainability research integrated with information systems research faces many 

barriers, one of which includes a potentially steep learning curve.  The Information Systems 

success model developed by DeLone and McLean (2003) was used to gauge EMIS success.  This 

study employed structural equations modeling (SEM) based on partial least square (PLS) to 

evaluate sample data and model fit. 
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Chapter 2 

Review of the Literature 

 

This chapter presents the literature review and consists of three sections:   

(1) Energy behavior; (2) Information Systems success; and (3) Energy Management 

Information Systems.    

 

Theoretical Background:  Energy Behavior 

 

A review of the literature revealed that technologies developed to encourage 

sustainability awareness through human interaction with technological devices has 

increased.  Human Computer Interaction sustainability research has centered on homes 

that adaptively control energy systems for consumers and persuasive technology 

interfaces that attempt to persuade people to conserve energy (D’Oca, Corgnati, & Buso, 

2014; Bonanni, Arroyo, Lee, & Selker, 2005; Beckmann, Consolvo, & LaMarca, 2004).  

Prior empirical research also ranged from a focus on basic interactions within the 

home (e.g., accounting for energy reductions in terms of specific appliances and 

interactions) to more complex issues (e.g., the subjective experiences of using and living 

with energy feedback systems) (Pierce & Paulos, 2012; Pierce, Fan, Lomas, Marcu, & 

Paulos, 2010).  Residential energy sustainability studies of any scale tend to implement 

one prototype, usually monitoring one utility, and mainly focus on outcome measures of 

consumption and savings (Ma et al., 2017; Bager & Mundaca, 2017; Ghazal et al., 2016; 

D’Oca, Corgnati, & Buso, 2014; Fitzpatrick & Smith, 2009).    
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The Rational/Irrational Energy Consumer 

Changes in energy management behavior are primarily a function of technological 

innovation and technological diffusion as determined by income, price, payback, profitability 

(Darby, 2006; Ehrhardt-Martinez, 2008; Owen & Ward, 2006), and educational attainment.  The 

primary approach to understanding energy management has been the assumption of a rational 

actor model in which individuals make rational choices regarding the adoption of new, more 

energy efficient technologies for use in home, business, or industry (Verkade & Höffken, 2017; 

Darby, 2006; Ehrhardt-Martinez, 2008).  This framework identified the individual in terms of 

his/her role as a rational economic actor making rational choices regarding the adoption of 

efficient technologies and behaviors (Verkade & Höffken, 2017; Darby, 2006; Ehrhardt-

Martinez, 2008).    

Previous research has highlighted the many ways in which energy use is 

particularly prone to what traditional economics would deem “irrational” behavior.  

Factors that influence irrational behavior include: the effective invisibility of electricity 

and heat, the abstract and unfamiliar units used to delineate their prices, and the temporal 

distance between usage and receipt of monthly billing statements (Davis, 2011).  

Although managing energy consumption would benefit the energy consumer in terms of 

cost savings, the “invisibility” of this commodity leads to an irrational economic actor 

making irrational decisions or choices.  Rational decision making models involve a 

cognitive process where each step follows a progression in a logical order from the one 

before.  Cognitive here means the thinking through and weighing of all the alternatives to 

arrive at the best potential result.    
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Kahneman (2003) observed that the fundamental assumption aligned with 

rational choice theory is that when people make rational preferences among outcomes, 

they always strive to maximize utility, and thus will act based on full and relevant 

information.   Based on this assumption, traditional economic models predict that people 

will make decisions that yield the optimal result given budget constraints, and that 

behavioral choices can be improved by providing people with more information (i.e., by 

increasing knowledge/awareness) and/or more options (i.e., by increasing choices).    

Frederiks, Stenner, and Hobman (2015) noted that consumers are far from the 

purely rational decision-makers assumed by traditional economic models; there is often a 

wide gap between peoples' values, material interests, and their actual behavior.  Put 

simply, people often act in ways that both fail to align with their knowledge, values, 

attitudes, and intentions, and fall short of maximizing their material interests.  A growing 

body of research indicates that consumer choices and behavior are largely driven by 

cognitive biases, heuristics, and other predictably irrational tendencies—for example, 

people tend to use mental shortcuts to cut through complexity.  

According to Kahneman (2011), when you think, your mind uses two cognitive 

systems.  System 1 works easily and automatically and does not take much effort; it 

makes quick judgments based on familiar patterns.  System 2 takes more effort; it 

requires intense focus and operates methodically.  These two systems interact 

continually, but not always smoothly.  For example, [a consumer’s] use of electricity 

depends on what [the consumer] chooses to do, e.g.  whether to heat a room, toast a piece 

of bread or do nothing at all.  If the consumer decides to accept the gain that electricity 
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provides for the risk of monetary loss, then System 1 makes that decision easier, as there 

is no effort expended to decide whether we want to be warm or hungry (Kahneman, 

2011).    

System 2 takes more effort, as it would require calculation or at least the 

consideration that there is a cost for the energy associated with our decision.  System 1 

makes the decision to turn on the heat.  System 2 reads/views the electrical bill and tries 

to make sense of what the numbers and graphs mean.  The two systems are two sides of 

the same coin.  Intuitive System 1 does the fast thinking while the slower and effortful 

System 2 monitors System 1 and maintains decision control as best it can within its 

limited resources (Kahneman, 2011).  Ecologic (2013) suggested that energy consumers 

value the immediate future too highly and do not value the distant future enough and that 

there is a tendency to favor immediate rewards and avoid immediate costs.    

As March (1994) observed, the most common and best-established elaboration of 

pure theories of rational choice is one that recognizes the uncertainty surrounding future 

consequences of present action.  Decision-makers are assumed to choose among 

alternatives based on their expected consequences, but those consequences are not 

known with certainty.  Information is seen to reduce decision-maker uncertainty.  

Information that is perceived as valuable allows decision-makers to know the likelihood 

of various possible outcomes and thus make better-informed decisions.  Ecologic (2013) 

noted that when consumers make decisions, they are caught between two competing 

thought processes:  (1) slow, reflective thinking, which enables them to consider some of 
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the costs and benefits of a choice before making it; or (2) emotive thoughts, which often 

persuade them to buy things that might not be beneficial in the long term.    

Frederiks, Stenner, and Hobman (2015) argued that consumers seem to be 

gaining greater awareness of the value and need for sustainable energy practices, yet 

even with adequate knowledge of how to save energy and a professed desire to do so, 

many consumers still fail to take noticeable steps towards energy efficiency and 

conservation.  There is often a sizeable discrepancy between consumers’ self-reported 

knowledge, values, attitudes, intentions, and their observable behavior.  Examples 

include the well-known “knowledge-action gap” and “value-action gap.”  

Ploderer, Reitberger, Oinas-Kukkonen, and Gemert-Pijnen (2014) suggested two 

approaches to behavior change:  (1) reflection-in-action; and (2)  reflection-on-action.  

Reflection-in-action is supported by systems that provide feedback at the time of action.  

These systems can be effective as they offer resources for reflection at the right time.  

Reflection-on-action is encouraged by systems where resources for reflection are offered 

after the activity has ended.  A key challenge is how to best represent data for a particular 

activity, i.e. activities yield many data points; the challenge is to understand what data to 

choose for representation, the extent of concreteness (or ambiguity) in its representation, 

and how different sources of data are structured and related to one another (Costanza, 

Ramchurn, & Jennings, 2012; Ploderer, Reitberger, Oinas-Kukkonen, & Gemert-Pijnen, 

2014).  

 Verkade and Höffken (2017) argued that the paradigm of a “rational actor” when 

provided energy information through technological interventions will change behavior is a false 
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paradigm.  Energy monitoring devices operate on the basis that when they provide new 

information and/or instructions, individuals will change their respective energy usage behavior 

accordingly.  This individual, positivist, and technology centered approach to understanding 

energy usage envisages homeowners as smart energy users who can be persuaded to take control 

of’ energy consumption through monitors and apps.  Using ever more accurate energy data, the 

smart energy consumer makes conscious and informed consumption decisions to be more 

economical and sustainable.  This vision can be quite different for most people where there is a 

lack of engagement with energy monitoring in their daily lives.   

Behavior Change through Technological Interventions 

Energy savings based on technology enabled feedback devices may not be as 

effective in reducing energy consumption (Fabi et al., 2017; Carroll, Lyons, & Denny, 

2014; Darby, 2001; Hargreaves, Nye, & Burgess, 2013; Pierce et al., 2010).  Other 

studies show the effectiveness of feedback devices in reducing energy consumption 

(Gans et al., 2013; Grønhøj & Thøgersen, 2013; Darby, 2001).  Darby (2006) noted that 

savings in the region of five to fifteen percent for technology enabled feedback devices 

have been observed.   

Pierce and Paulos (2012) argued that energy consumption feedback research is 

focused on a specific type of intervention while energy awareness and conservation 

behavior research is focused on a specific goal, namely promoting individual energy 

conservation behavior and/or cognitive awareness of energy consumption.  Smart meters 

and in-home displays (see Figure 2) clearly dovetail with the types of home energy 
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monitoring displays and visualizations characteristic of current energy consumption 

feedback research (Fabi et al., 2017; DECC, 2015).   

 

Figure 2.  e-Wave In-Home Display.  Source: (Westskog, 2015). 

 

Fabi et al. (2017) observed that current electricity consumption feedback models only 

convey the monitored information in data records and statistical charts.  Feedback models that 

emphasize and enhance the visualization of feedback information could persuade energy 

consumers into practicing behavior that would reduce electricity consumption.  The process of 

persuasion is derived from the characteristics and tendencies of the user.  As such, feedback 

models should attempt to gauge the strength of user interaction with the system.   

The literature reveals that there is not a clear picture of an ideal design for or how to 

assess the effectiveness of energy technology device research (Pepermans, 2014).  Suppers and 

Apperley (2014) argued that to design effective and useful residential energy usage visualizations 

aimed at greater awareness and better management, there is a need to understand user type.  The 

authors suggested analyzing individual personal characteristics influencing and motivating 
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behavior as well as the impact of social effects to understand how to create successful domestic 

energy use visualizations.  

For example, Pepermans (2014) assessed to what extent consumers are willing to make 

use of the features and capabilities smart meters offer.  Experimental households were offered 

the choice between a set of smart meters, described by five attributes: impact on the comfort and 

privacy level, functionality, visibility, cost savings, and investment outlay.  The results indicated 

that households have heterogeneous preferences for some attributes but not for others, suggesting 

that sufficient effort be devoted to designing smart metering devices.  

Technology systems that deliver current, relevant, and well-coordinated information has 

greater potential to create attitude or behavior change (Fogg, 2003).  In a study of factors related 

to household energy use and information, Abrahamse, Steg, and Rothengatter (2005) found that 

users who received tailored energy information via an easy to navigate website interface adopted 

more energy-savings measures and had more knowledge of energy conservation compared to a 

control group who received traditional paper-based billing information.  The literature supports 

the effectiveness of information feedback that is specific (e.g. personalized) to the customer and 

allows the customer to control their energy use more effectively (Pasini et al., 2017; Chen et al., 

2014; Chiang et al., 2014; Darby, 2001).    

 Johnson et al. (2017) reviewed 25 research studies to assess the effectiveness of 

gamification and serious (non-entertainment) games in impacting domestic energy consumption.  

Their findings indicate that gamification and serious games appear to provide information value, 

with varying degrees of evidence of positive influence found for behavior, knowledge and 

learning and the user experience.  Morganti et al. (2017) found that both serious games and 
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gamification can foster energy-saving behaviors and vary widely in terms of type of games and 

of features that might be appealing and motivating.  Ro et al. (2017) designed a game-based 

sustainability intervention and tested its effectiveness in two large-scale field studies.  In study 

one, the sustainability game significantly reduced people's household electricity consumption six 

months after the game.  In study two, the authors found that high-energy (digitally engaged) 

consumers changed their environmental behaviors and attitudes more than hypothesized. 

Digital Customer Engagement 

Utilities have typically interacted with customers on a limited basis—usually to start or 

stop service, troubleshoot service issues, or process monthly bills.  However, unlike other smart 

grid investments, customer-facing technologies require effective communications and new 

interactions between utilities and customers to maximize the value of new capabilities.  Smart 

meters (and the services they provide via web portals) involve complicated equipment and 

require customers to “climb learning curves” that require extensive communication and 

education (DOE, 2014a).    

Although many energy providers have invested in improving website designs, 

developing mobile applications, and building social media engagement, 56% of energy 

customers are not digitally engaged, e.g. they have not interacted with their utilities online at 

least once during the past 12 months (Accenture, 2015).  Just 44% are digitally engaged.  Even 

fewer have an electric-company-provided energy app.  Consumers have passed a tipping point 

of mass adoption of self-serve and digital engagement, yet in the energy industry consumers are 

not adopting digital at the same levels.  Per Accenture (2015), 41% of energy consumers believe 
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their digital experience with their energy providers is more difficult than with other types of 

providers—with younger consumers more likely to have that perception. 

Design is critical when engaging digital consumers. A critical step in engaging customers 

in smart meter data is presenting smart meter data as effective information, which can be 

accomplished via website portals that are compelling, actionable, scalable, secure, and available 

on customers’ preferred communications channels.  However, wrangling smart meter data and 

consolidating it into a comprehensive, searchable, relational database from which utility service 

providers can implement a customer engagement platform is challenging.  Typically, data is 

stored across multiple divisions and departments within a utility.  However, as many utilities 

seek to replace aging, legacy customer information systems, there are increasing opportunities to 

provide a holistic customer engagement platform (Orfanedes et al., 2016). 

Cooper (2016) notes that utility companies are providing the following enhanced services 

to customers with smart meters – with varying degrees of engagement: (1) budget setting options 

that allow customers to set spending goals and that provide weekly updates to show how they 

are performing against their goals; (2) high usage alerts that provide customers an early warning 

if their bill is projected to be higher than normal; (3) power alerts that notify customers if their 

power is out and provide an estimated time to restore service; and (4) time-based pricing and 

load management services that provide an economic incentive to customers to shift usage and/or 

respond to price signals.  Utilities also provide the ability for customers to download energy 

usage data from a smart meter website.  This file is in an Extensible Markup Language (.XML) 

format and requires an application to properly read and determine the contents of the file. 
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Theoretical Background:  Information Systems Success Models 

Researchers and practitioners alike face a daunting challenge when evaluating the 

“success” of information systems (DeLone & McLean, 2016; Behrens, Jamieson, Jones, & 

Cranston, 2005).  This may be in part due to the complex nature of IS success measurement 

driven by the constantly changing role and use of information technology (DeLone & McLean, 

2016).  There are numerous IS success definitions (e.g. individual or organizational performance, 

increased productivity, cost reductions, user acceptance or user satisfaction), and a plethora of 

models (e.g. Zmud's Individual Differences Model (1979), Ives and Olson’s User Involvement 

Success Model (1984), Doll and Torkzadeh’s (1988) End-User Computing Satisfaction Model, 

Davis’ Technology Acceptance Model (1989), DeLone and McLean’s IS success model (1992, 

2003), and Gable’s IS Impact Model (2008). 

Zmud’s Individual Differences Affect MIS Success 

  Seeking to understand the determinants of IS success, Zmud (1979) synthesized 

the literature of more than 100 multidisciplinary empirical studies examining decision 

behavior and its effect on the successful development of an organization’s Management 

Information System (MIS).  The author concluded that individual differences exert a 

major force in determining MIS success.   

Zmud (1979) developed a model that portrays the manner in which individual 

differences influence MIS success.  Two distinct paths are conceptualized.  An upper 

path finds individual differences amplifying or dampening limitations in human 

information processing and decision behavior, which in turn impose or suggest MIS 

design alternatives directed toward motivating or facilitating MIS usage.  A lower path 
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reflects the impact of individual differences upon the attitudes held by potential MIS 

users and upon the tendencies for MIS users to involve themselves in the MIS 

development effort.  These paths can thus be characterized as representing the cognitive 

and attitudinal influences of individual differences upon MIS success (Chen, 2011).  

Zmud (1979) categorized individual differences into three different classes: cognitive 

style, personality, and demographic/situational variables.  Demographic variables are personal 

characteristics such as gender, education, age, and experience with computers.  Personality 

variables relate to the cognitive and affective structures maintained by individuals to facilitate 

their adjustments (or to understand) events, people, and situations encountered in life.  The 

cognitive behavior as it affects MIS success refers to the human limitations in cognition; these 

limitations, the author argues, are directly related to how an information system is designed.  

Thus, the author concluded that individual differences influence information systems success.  

There are seven components in the model.  Individual differences influence cognitive behavior, 

which influence MIS design characteristics, which then influence MIS success.  Attitude of the 

user towards the MIS system before and after the use also affects MIS success or failure.  Figure 

3 illustrates Zmud’s (1979) MIS Success Model. 
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Figure 3.  Zmud's Individual Differences MIS Success Model (1979). 

 

 

Huber (1983) rejected Zmud’s (1979) conclusions, noting that there are many 

individual differences related to an individual’s decision to use a management 

information system.  Huber (1983) argued that the task of constructing empirically based 

normative design models that accounts for all their individual effects is overwhelming.  

Dishaw (1998) concurred, noting that other important individual differences (or 

confounding factors) may influence MIS design.  Huber (1983) noted that the matter of 

an a priori determination of the user’s style as a basis for identifying the most 

appropriate design becomes largely irrelevant because of multiple differences that exist 

between individuals.  However, what is notable about Zmud’s (1979) research are his 

observations regarding how MIS design characteristics may affect MIS success.    

According to Zmud (1979), users are more satisfied if the information presented 

is exactly matched with the user’s information needs and also if the information 

presented is dynamic (e.g. reports could be modified by the user).  The author’s research 
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also revealed that graphical, color-coded reports help to improve decision-making, and 

that an easy to use system interface is positively related to user satisfaction.  If the MIS 

system is accessible and reliable, the author observed, online usage is more consistent.  

Ives and Olson’s User Involvement Success Model 

 Five years after Zmud’s (1979) research on the importance of individual differences in  

MIS success, Ives and Olson (1984) challenged the prevailing assumptions regarding the 

importance of user involvement in systems development as a factor for system success.  

Ives and Olson’s (1984) IS literature review suggested that the relationship between user 

involvement in information system development and system success was not strongly 

supported.  According to Ives and Olson (1984), research on participation and 

involvement yielded mixed results, as there was no clear positive relationship between 

user participation and various outcome variables.  The authors argued that there are 

systems that cannot be developed without the input of the user and there are systems 

where the input of the user would not be necessary at all.   

Ives and Olson (1984) developed a model of user involvement (as shown in 

Figure 4) which shows system quality and system use as influenced by user involvement 

- which are mediated by cognitive factors and motivational factors.  Cognitive factors 

refer to improved understanding of the system, system needs, and improved evaluation of 

system features.  The motivational factors that lead to system acceptance (e.g. user 

satisfaction) are increased ownership, decreased resistance to change, and increased 

commitment.    
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Figure 4.  Ives & Olson's User Information Satisfaction Model (1984). 

 

 

According to Ives and Olson (1984), user participation is a critical success factor 

during the definition stage and becomes less important in the installations stages.  The 

authors suggested that future research on system success should focus on the conditions 

under which user involvement may or may not be appropriate.  Using meta-analytical 

techniques, Hwang and Thorn (1999) reviewed information systems literature and 

concluded that user participation has a positive correlation with system success as 

measured by system quality, use, and user satisfaction.   

However, Ives and Olson’s (1984) model, which is based on a study in a data 

processing computing environment, where the emphasis was on computing tasks that 

were carried out by the data processing group in an organization, is not considered an 

adequate measure of user satisfaction.  Due to this context limitation, the end user 
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satisfaction instrument developed by Doll and Torkzadeh (1988) is often used as a 

measure of end user satisfaction.  

Doll and Torkzadeh End-User Computing Satisfaction Model 

  Doll and Torkzadeh (1988) noted that user participation will not yield the expected 

results if users do not desire to participate and thus proposed an “end-user computing model” 

where the end-user interacts directly with the IS to obtain information.  The authors 

developed a 12-item End-User Computing Satisfaction (EUCS) instrument by contrasting 

traditional data processing environments and end-user computing environments (Figure 5).    

 

Figure 5.  Doll and Torkzadeh’s End-User Computing Satisfaction Instrument (1988). 
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Doll and Torkzadeh’s (1988) model evaluated the following context items shown in Table 1. 

Table 1 

 

End-User Computing Satisfaction 

 

Construct Items 

 

Accuracy A1: Is the system accurate? 

 A2: Are you satisfied with the accuracy of the system? 

  

Content C1: Does the system provide the precise information you need? 

C2: Does the information content meet your needs? 

C3: Does the system provide reports that seem to be about exactly 

what you need? 

C4: Does the system provide sufficient information? 

 

Ease of Use E1: Is the system user friendly? 

E2: Is the system easy to use? 

 

Format  F1: Do you think the output is presented in a useful format? 

F2: Is the information clear?  

 

Timeliness T1: Do you get the information you need in time? 

T2: Does the system provide up-to-date information? 

  

 

Doll and Torkzadeh (1988) posited that their 12-item instrument has adequate 

reliability and validity because they reviewed previous work on user satisfaction in their 

search for a comprehensive list of items.  The authors also included a measurement of 

“ease of use,” which was not included in earlier IS research.  Thus, the authors noted, 

their 12-item instrument is a convenient measure to evaluate the efficiency and 

effectiveness of an Information System.   

However, Etezadi-Amoli and Farhoomand (1996) argued that different weights 

be applied to the 12-items according to the scale of responses.  In Doll and Torkzadeh’s 
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(1988) model, each item receives an equal weight.  The authors argued that the 

instrument is intended to evaluate the level of end-user satisfaction as a dependent 

variable of user perception on the successful development and implementation of an IS; 

the instrument is not intended to predict the psychological behavior of end-users.  Doll, 

Xia, and Torkzadeh (1994) conducted a confirmatory analysis using a test-retest of 

reliability of the EUCS instrument, indicating the instrument was reliable over time.  

Davis’ Technology Acceptance Model 

  Davis’ (1989) Technology Acceptance Model (TAM) is a widely accepted 

theoretical framework used to measure system acceptance.  The Technology Acceptance 

Model is based on the premise that if a system is accepted it will have a higher likelihood 

of being used and therefore positively encourage success.  Based on Fishbein and 

Ajzen’s (1975) Theory of Reasoned Action, Davis (1989) developed the Technology 

Acceptance Model to ascertain what factors cause people to accept or reject an 

information technology. 

The Technology Acceptance Model suggests that when users encounter a new IS 

innovation two main factors influence how and when they will use it - perceived 

usefulness and perceived ease of use.  Perceived usefulness is the degree to which a 

person believes that using a particular system would enhance his or her job performance.  

Perceived ease of use is the degree to which a person believes that using a particular 

system would be free from effort (Davis 1989).  

According to TAM (see Figure 6), perceived usefulness and perceived ease of use 

affect a users’ motivation and behavioral intentions.  Perceived usefulness, followed by 


