The Complete Mitochondrial Genome of an Atlantic Ocean Shortfin Mako Shark, Isurus oxyrinchus

Jonathan Gorman
Nicholas J. Marra
Mahmood S. Shivji
Bryce J. Stanhope

Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles

Part of the Biology Commons
The complete mitochondrial genome of an Atlantic Ocean Shortfin Mako Shark, *Isurus oxyrinchus*

Jonathan Gorman, Nicholas Marra, Mahmood S. Shivji & Michael J. Stanhope

To cite this article: Jonathan Gorman, Nicholas Marra, Mahmood S. Shivji & Michael J. Stanhope (2019) The complete mitochondrial genome of an Atlantic Ocean Shortfin Mako Shark, *Isurus oxyrinchus*, Mitochondrial DNA Part B, 4:2, 3642-3643

To link to this article: https://doi.org/10.1080/23802359.2019.1677524
The complete mitochondrial genome of an Atlantic Ocean Shortfin Mako Shark, *Isurus oxyrinchus*

Jonathan Gorman, Nicholas Marra, Mahmood S. Shivji and Michael J. Stanhope

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA;
Department of Biology, Drury University, Springfield, MO, USA;
Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USA

ABSTRACT

We report the first complete mitochondrial genome of a shortfin mako shark from the Atlantic Ocean. The genome had 16,700 base pairs and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding D-loop. There were 81 individual differences compared to the published mitochondrial genome of a shortfin mako from the Pacific Ocean, with most variability found in protein coding genes, especially ND5, ND3, and ND1. These highly variable genes may be useful population markers in future studies, and availability of a second mitogenome will assist with future, genome-scale studies of this IUCN Endangered species.

CONTACT Michael J. Stanhope mjs297@cornell.edu

Shortfin mako sharks are globally distributed in pelagic, temperate and tropical waters, and this species is listed as Endangered by the IUCN (Rigby et al. 2019). Limited mitochondrial studies of shortfin makos have indicated matrilineal structuring across large geographic scales (Heist et al. 1996; Corrigan et al. 2018), but microsatellite studies have produced mixed results regarding the connectivity between Atlantic and Pacific populations (Schrey and Heist 2003; Corrigan et al. 2018). The only published shortfin mako mitochondrial genome (mitogenome) available is a Pacific specimen (Chang et al. 2013). The addition of the first Atlantic-sourced mitogenome will aid future studies of this endangered species based on genome-scale data.

We acquired heart tissue from an adult male shark captured in 2013 off the coast of Florida (geospatial coordinates: 30.0625, −76.9194), and the tissue is stored under accession number OC-298 at Nova Southeastern University, College of Natural Sciences and Oceanography. We extracted DNA from this tissue and sequenced a genomic library using two lanes of 250 bp PE on an Illumina HiSeq2500. Mapping assembly was conducted using MITObim v.1.9 (Hahn et al. 2013) with the Pacific specimen mitogenome as a reference. We annotated the assembly using DOGMA (Wyman et al. 2004), with annotations verified through comparisons to mitogenomes of other lamnids (Figure 1). This mitogenome is deposited as MF537044 (BioSample SAMN04526263).

The Atlantic shortfin mako mitogenome was 16,700 bp and had the following composition: 28.8% A, 28.0% C, 15.2% G, and 28.0% T with a GC content of 43.2%. It contained 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes, and a non-coding region. The Atlantic and Pacific mitogenomes have a sequence identity of 99.5% with 81 polymorphisms. Three of these polymorphisms were in rRNA genes, 3 were in tRNA genes, 9 were in non-coding regions (in D-loop), and 66 were in protein-coding genes. All polymorphisms were SNPs except for one indel in the 12S rRNA region. Only 10 of the polymorphisms in protein-coding genes were nonsynonymous. Some of the individual genes had a larger number of Pacific vs. Atlantic differences, including ND5, ND3, and ND1 with sequence identities of 99.07%, 99.20%, and 99.28% respectively, which are all lower than the sequence identity across the entire mitogenomes. The genetic differences between the Atlantic and Pacific mitogenomes may be potential markers for distinguishing the two populations in future studies.

We also analysed genetic differences between two published mitochondrial genomes (RefSeq: NC_022415.1 and gb: KX389266.1) from the con-familial white shark (IUCN Vulnerable) from the Pacific and Atlantic to see if the protein-coding genes that were the most variable in shortfin makos were also the most variable in white sharks. The 13 protein-coding genes were ranked by sequence identity for both species and a Friedman test returned a marginally significant p-value of 0.0857. This indicates that there may be consistency amongst lamnid sharks in terms of which mitochondrial genes have the most variation, although more comparisons are needed to confirm this finding. If these genes are consistently variable, they might be useful as
genetic markers in other lamnid shark species, some of which are fishery exploited.

Acknowledgments

We thank P. Schweitzer and the BRC Genomics Facility at Cornell’s Institute of Biotechnology for sequencing.

Disclosure statement

We have no conflicts of interest to report and the authors are solely responsible for the content and writing of this paper.

Funding

This work was supported by the Save Our Seas Foundation and a Nova Southeastern University President’s Faculty Research & Development Grant. JG was funded by a Veterinary Investigator award from the Cornell College of Veterinary Medicine and the Boehringer Ingelheim Veterinary Scholars Programme.

References

