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ABSTRACT 
 

Objectives: The tropics harbor a large part of the world’s biodiversity and have a long history of 
human habitation. However, paleogenomics research in these climates has been constrained so 
far by poor ancient DNA yields. Here we compare the performance of two DNA extraction 
methods on ancient samples of teeth and petrous portions excavated from tropical and semi-
tropical sites in Tanzania, Mexico, and Puerto Rico (N=12).  
 
Materials and Methods: All samples were extracted twice, built into double-stranded 
sequencing libraries, and shotgun sequenced on the Illumina HiSeq 2500. The first extraction 
protocol, Method D, was previously designed for recovery of ultrashort DNA fragments from 
skeletal remains. The second, Method H, modifies the first by adding an initial EDTA wash and 
an extended digestion and decalcification step. 
 
Results: No significant difference was found in overall ancient DNA yields or post-mortem 
damage patterns recovered from samples extracted with either method, irrespective of tissue 
type. However, Method H samples had higher endogenous content and more mapped reads after 
quality-filtering, but also higher clonality. In contrast, samples extracted with Method D had 
shorter average DNA fragments. 
 
Discussion: Both methods successfully recovered endogenous ancient DNA. But, since 
surviving DNA in ancient or historic remains from tropical contexts is extremely fragmented, our 
results suggest that Method D is the optimal choice for working with samples from warm and 
humid environments. Additional optimization of extraction conditions and further testing of 
Method H with different types of samples may allow for improvement of this protocol in the 
future.  
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Ancient DNA (aDNA) is a low quality and low quantity source of genetic material, 
which is highly susceptible to external contamination (Gilbert et al., 2006; Hofreiter et al., 2001; 
Pääbo, 1989). Due to the variety of taphonomic and diagenetic processes that take place after 
death, DNA decays exponentially once cell repair functions cease in biological tissues (Hofreiter 
et al., 2001). Consequently, most genetic information obtained from ancient samples is contained 
in small, degraded DNA fragments (Allentoft et al., 2012; Briggs et al., 2007; Dabney et al., 
2013a). Because of this, until recently, aDNA studies have focused on short but informative 
fragments of the autosomal genome or, alternatively, on multicopy loci such as mitochondrial 
DNA (Ho & Gilbert, 2010). Recent advances in DNA extraction, target enrichment, and next-
generation sequencing methods now allow the recovery of complete genomes from remains 
dating as far back in time as the early Holocene and Middle Pleistocene (Meyer et al., 2016; 
Meyer et al., 2014; Orlando et al., 2013). 

Despite these improvements in stretching the time depth for aDNA recovery, 
paleogenomics research continues to be constrained in its geographic focus because DNA 
preservation is negatively correlated with thermal age due to the accelerating effect of high 
temperatures on biomolecule decay and fragmentation (Adler et al., 2011; Allentoft et al., 2012; 
Hofreiter et al., 2015; Kistler et al., 2017; Lindahl, 1993; Smith et al., 2001). Therefore, most 
aDNA studies focus on archaeological remains excavated from cold and temperate world 
regions, which have the highest chance of DNA survival (Paijmans et al., 2013; Wade, 2015). 
Nevertheless, despite the challenges of working with poorly preserved samples, several studies 
have successfully recovered aDNA from tropical sites in the Caribbean, the Yucatan peninsula 
and South-East Asia (Damgaard et al., 2015; Gamba et al., 2014; Gutierrez-Garcia et al., 2014; 
Kehlmaier et al., 2017; Mendisco et al., 2015; Schroeder et al., 2015). Both today and in the past, 
the tropics harbor a large portion of the world’s biodiversity and human settlements (Brown, 
2014; Buzas et al., 2002). Therefore, understanding how DNA is preserved in degraded remains 
excavated from these environments and optimizing or improving methods that facilitate aDNA 
recovery from these contexts is of great interest to advance anthropology, paleontology, and 
conservation genetics, among other fields.  

Here we test the performance of two DNA extraction protocols on tooth and petrous 
portion samples from degraded skeletal remains recovered from tropical sites in Tanzania, 
Mexico and Puerto Rico (N=12). Specifically, we compare the method developed by (Dabney et 
al., 2013a), hereafter Method D, to a second approach, Method H. Method H modifies the former 
by adding an initial EDTA wash, as in Warinner et al. (2014), and an extended digestion and 
decalcification step as in Gamba et al. (2016). Method D was specifically designed to increase 
recovery of extremely short DNA fragments (as small as 30 base pairs) in ancient bone and tooth 
extractions. In line with earlier protocols (Höss & Pääbo, 1993; Rohland & Hofreiter, 2007), this 
method employs a 24-hour proteinase K digestion to break up cell proteins, and uses a chaotropic 
guanidium-based salt to bind DNA fragments and remove inhibitors. It differs from previous 
approaches in its use of silica spin columns and a guanidine hydrochloride binding buffer 
(instead of guanidine thiocyanate). Method D has been successfully employed in the recovery of 
aDNA from Late Pleistocene cave bear remains (Dabney et al., 2013a), from Middle Pleistocene 
hominin fossils (Meyer et al., 2016; Meyer et al., 2014), and from a large variety of more 
recently dated human and animal remains, including at least one from a tropical context (Günther 
et al., 2015; Heintzman et al., 2015; Kehlmaier et al., 2017; Seguin-Orlando et al., 2014).  

Since Method D was developed, several extraction protocol modifications have been 
proposed for improving endogenous aDNA recovery. Comparing different extraction methods, 
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Gamba et al. (2016) found that a secondary digestion and decalcification using lysis buffer with 
EDTA, proteinase K and N-laurylsarcosyl detergent solution, aided in solubilizing cell proteins 
and resulted in increased aDNA yields. Similarly, Damgaard et al. (2015) observed that a brief 
pre-digestion (between 15 and 30 minutes) with an EDTA and proteinase K buffer was 
successful in reducing proportions of exogenous, contaminant DNA and in enriching extracts for 
endogenous aDNA. The use of similar detergent solutions has been implemented previously in 
extraction protocols designed by Richards et al. (1995) and was also recently reported in 
extractions of petrous portion tissue (Gamba et al., 2014; Pinhasi et al., 2015). Likewise, 
Warinner et al. (2014) used an initial EDTA wash to remove loosely bound surface contaminants 
on mineralized dental calculus without significant DNA loss. This finding was mirrored by 
Tromp et al. (2017) who observed that EDTA decalcification was more effective at recovering 
microparticles from dental calculus than hydrochloric acid.  

In this study, we evaluate whether using a modified version of the Method D protocol 
(henceforth Method H), with an initial EDTA wash and an extended digestion and 
decalcification step, results in improved endogenous aDNA recovery. In addition, because the 
majority of development in aDNA extraction protocols has been conducted with samples from 
temperate or cold contexts (Barlow et al., 2016; Boessenkool et al., 2016; Dabney et al., 2013a; 
Gamba et al., 2016; Gamba et al., 2014; Glocke & Meyer, 2017) but see (Damgaard et al., 2015; 
Pinhasi et al., 2015; Tromp et al., 2017), this work focuses on protocol optimization with tooth 
and petrous portion samples recovered from tropical sites. Here we examine raw DNA yields and 
endogenous reads, recovered after shotgun Illumina sequencing from parallel, paired extractions 
and characterize differences in base pair composition, sequence read complexity, post-mortem 
damage profiles, and average read lengths recovered between the two methods. Archaeological 
samples included in this research were obtained from human remains excavated at three Ceramic 
Age sites from Puerto Rico (n=5) and one tomb from the Maya site of Yaxuna in Yucatán, 
Mexico (n=6). Additionally, one historic sample from a Tanzanian chimpanzee was also 
included.  

Study results suggest that both methods were similarly efficient at aDNA recovery. 
Libraries sequenced from Method H extracts had higher endogenous content but also higher 
clonality, while libraries sequenced from Method D extracts have shorter DNA fragments. Since 
most of the archaeological samples had extremely low endogenous content (<5%), and average 
DNA fragment sizes were under 80 bp, we conclude that Method D is better suited than Method 
H for maximized recovery of informative ancient DNA molecules from remains buried in 
tropical environments. However, one important caveat of our study is that these findings are only 
applicable to tooth samples, since the small sample of petrous portions obtained led to 
inconclusive results in statistical tests conducted with this tissue.  

 

 

MATERIALS AND METHODS 

Sample and site information 

 Samples were collected from skeletal remains excavated from three tropical contexts. 
Tissue samples from petrous portions and/or teeth were obtained from six human skeletons 
excavated from a single tomb in the archaeological site of Yaxuna in Yucatán, Mexico. This was 
an originally unfilled burial space that dates to the Maya Early Classic period (specifically from 
the 6th century A.D.) During the centuries of deposition, the burial space gradually filled with 
rubble and fill falling from the ceiling of the chamber. In most skeletons, only one tissue type, 
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petrous portion or teeth was available for sampling, while only two individuals (AD-372 and 
AD-373) could be sampled in both anatomic locations (Table 1). Additionally, five teeth were 
collected from humans remains excavated from three open-air sites in Puerto Rico: Tibes (n=1), 
Paso del Indio (n=2), and Punta Candelero (n=2). All five individuals date from pre-contact 
Ceramic Age contexts, between A.D. 500-1300 (Pestle, 2010; Pestle & Colvard, 2012). Lastly, 
one tooth was collected from the skeletal remains of a wild chimpanzee (Pan troglodytes 
schweinfurthii) who died in 1966. The chimpanzee was named McDee by scientific observers in 
western Tanzania (prior to Gombe becoming a national park) and is referred to in this study as 
GB-7. After death, MacDee’s remains were stored in a metal box. Flesh was eaten away by 
insects and the skeleton was subsequently cleaned. Petrous portion tissue was not available from 
the Puerto Rican or Tanzanian remains. In total, 12 individual skeletons were sampled producing 
ten teeth and four petrous portions.  
 
[Table 1 here] 
 

Sample processing and DNA extraction 

Sample processing and DNA extractions were conducted at the Arizona State University 
Ancient DNA Laboratory, a Class 10,000 clean-room facility. To eliminate surface contaminants 
and inhibitors, tooth and bone samples were cleaned with a 1% sodium hypochlorite solution. 
The outer surface was mechanically removed with a Dremel tool (Rohland & Hofreiter, 2007) 
and samples were UV irradiated for 5 minutes on each side in a UVP CL-1000 Ultraviolet 
Crosslinker. Teeth were sliced transversally at the cemento-enamel junction using a Dremel tool. 
The roots were covered in aluminum foil and pulverized by blunt force with a hammer as in 
Schuenemann et al. (2011). Petrous portions were sampled as recommended by Pinhasi et al. 
(2015). All laboratory procedures were conducted using contamination controls, such as use of 
full body coverings, bleach decontamination and UV irradiation of tools and work area before 
and between uses (Cooper & Poinar, 2000; Gilbert et al., 2006). 

Each sample was extracted twice, one time using Method D and a second time using 
Method H. Method D was implemented as in (Dabney et al., 2013a) with the modification that 
the TET buffer was warmed to 65 °C in a heat block. Method H combines steps from earlier 
protocols including an initial EDTA wash as in Warinner et al. (2014), an extended digestion and 
decalcification step as in Gamba et al. (2016), and binding and purification steps as in (Dabney et 
al., 2013a). See Supplementary File S1 for complete Method H protocol. Approximately 100 mg 
of bone or tooth powder were used for each extraction. 1 µl of each extract was used to measure 
DNA yields through fluorometric quantification with the Qubit 2.0 High Sensitivity assay (Table 
S1) (Simbolo et al., 2013). Extraction blanks were included throughout the process to monitor 
potential contamination. 

 
Library preparation and sequencing 

 Double stranded libraries were built following the protocol by Meyer and Kircher (2010) 
and including negative controls. DNA content in the libraries was quantified using real-time PCR 
(qPCR) with the 2X Dynamo SYBR Green qPCR Master Mix to determine the ideal amount of 
indexing cycles. All libraries were double indexed and amplified for 11-25 cycles following 
published guidelines (Kircher et al., 2012; Seguin-Orlando et al., 2015). Indexed libraries were 
purified using the Qiagen MinElute PCR purification kit, and DNA content after amplification 
was determined via qPCR using the KAPA Library Quantification kit following manufacturer 
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instructions (Kapa Biosystems). Fragment analysis of the indexed libraries was conducted with 
the DNA 1000 assay on the Agilent 2100 Bioanalyzer. Heteroduplexes that arose during 
indexing were eliminated through reconditioning PCR and all libraries were purified and re-
quantified as detailed above. Reconditioned shotgun libraries were sequenced on one lane across 
two runs on the Illumina HiSeq 2500 in Rapid Run mode (2 x 100 bp reads) at the Yale Center 
for Genomic Analysis. See Supplementary File S1 for additional details of library preparation, 
PCR primers and conditions.  
 

Shotgun read mapping and processing 

Illumina sequence reads were merged and adapters trimmed using SeqPrep 
(https://github.com/jstjohn/SeqPrep). To compare sequencing results directly across extraction 
treatments and to control for differences in sequencer output, 1 million reads were randomly 
selected for all samples using seqtk with default parameters (https://github.com/lh3/seqtk). For 
the human samples, the downsampled reads were mapped to the GRCh37 (hg19) reference with 
the mitochondria replaced by the revised Cambridge Reference Sequence (rCRS) (Andrews et 
al., 1999). For the chimpanzee samples, the reads were mapped to the PanTro4 assembly. 
Mapping was performed using BWA v. 0.7.5 (Heng Li & Durbin, 2009) following 
recommendations by Schubert et al. (2014). Duplicate reads were identified using the 
MarkDuplicates module v.2.12.1 within Picard Tools (http://broadinstitute.github.io/picard). 
Quality filtering (≥ Q30), removal of duplicates and of reads with multiple mappings was 
performed with SAMtools v. 0.1.19 (H. Li et al., 2009). BAM files were rescaled and damage 
patterns were characterized using mapDamage v.2.0.2 (Ginolhac et al., 2011; Jónsson et al., 
2013). Parameters examined included deamination patterns, probability of C to T 
misincorporations at first position, probability of G to A misincorporations at last position, 
probability of a DNA fragment terminating in a single-stranded overhang (λ), probability of 
observing cytosine deamination in a double strand (δD), and probability of observing cytosine 
deamination in a single strand context (δS). Library complexity estimates were generated using 
preseq v2.0 (Daley & Smith, 2013) on downsampled BAM files containing all mapped reads. 
Summary statistics were estimated on rescaled BAM files using Qualimap v.2.2.1 
(Okonechnikov et al., 2016). See Supplementary File S2 for additional details of shotgun 
sequence read processing. 

Future experiment yield predictions were calculated for the two libraries with highest 
number of reads: GB-7 and PI-67. For these two samples, random downsampling was repeated 
matching the lowest number of reads obtained per sample-treatment combination after adapter 
trimming and merging: GB-7: 5,192,848 reads and PI-67: 6,876,556 reads. Read mapping and 
quality filtering were repeated for these data using the same parameters listed above. 
Extrapolation curves were calculated in preseq using the default step size parameter (-s 1000000) 
and extrapolating to 600,000,000 total reads. This is the maximum number of paired-end reads 
produced on a single flow-cell of the Illumina HiSeq 2500 in Rapid Run mode. For all other 
paired sample-treatment combinations extrapolation estimates failed due to low read depth. 

 

Statistical Analyses 

 Extraction yields (ng/µL), number of mapped, unique reads (defined as a mapped 
sequence read that has unique external coordinates), percent endogenous content, library 
complexity (percent distinct reads as measured by the preseq ccurve function), clonality 
(measured as fraction of the mapped reads that are duplicates: number of duplicate reads / 
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number of mapped reads), percent GC content, average fragment lengths, and damage 
parameters were compared for each sample across extraction treatments by using paired T tests 
or non-parametric Wilcoxon signed rank tests. For these analyses, samples were subdivided 
according to type of tissue. Normality assumptions were evaluated using a Shapiro-Wilk 
normality test (Table S3) and through visual examination of Quantile-Quantile plots and 
histograms of the difference between paired values as recommended by Ghasemi and Zahediasl 
(2012) (Figure S1 and S2). Correlations between variables were tested using Pearson’s r as 
implemented in the R cor.test function.  
 

Computational resources and R packages 

 This research was conducted using resources from the ASU High Performance 
Computing Saguaro environment. All calculations were performed in R 3.2.4. Scripts written for 
this project are available at: https://github.com/mnievesc/aDNAExtMethodsPaper_scripts. All 
plots and figures were generated using the ggplot2 (H Wickham, 2009), gridExtra (Auguie, 
2016), tidyr (H Wickham, 2016) and reshape 2 (Hadley Wickham, 2007) packages or with R 
base graphics (R Core Team, 2016).  
 

 

RESULTS 

 

DNA yields 

 DNA yields were evaluated through flourometric quantifications of raw extracts (ng/µL) 
(Figure S3). These analyses did not reveal significant differences in mean DNA yields between 
samples extracted with either method irrespective of tissue (Table 2).  
 
[Table 2 here] 
 

Endogenous content and library complexity 

 For each DNA library, between 1 and 27 million reads were obtained after shotgun 
sequencing. For consistency, statistical analyses were performed with a starting number of one 
million randomly selected reads for all samples. Percentage endogenous content was calculated 
as the proportion of unique reads mapping to the reference (after duplicate removal and quality 
filtering) over the total amount of down sampled reads (Table S2). Most samples had <5% 
endogenous content, except for the chimpanzee sample, GB-7, which yielded >10% endogenous 
content, an up to sixteen-fold higher content than that found in the human libraries. This 
difference may be attributable to the younger age of the historic chimpanzee sample. Overall, 
samples extracted with Method H tended to have higher endogenous content and more unique 
reads mapping to the reference post-quality filtering (Figure 1, Figure S4). These differences 
were statistically significant for teeth but not petrous portion samples (Table 1). 
  
[Figures 1 and 2 here] 
 

Sequence clonality (measured as fraction of the mapped reads that are duplicates) ranged 
between 0% to 14%, and tended to be higher for Method H libraries (Figure 2, Figure S5). 
Percent clonality was found to be significantly different between extraction methods for teeth, 
but not petrous portion samples (Table 2). The relationship between clonality and endogenous 
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content is shown in Figure S6A. It was not linear or significant for either tissue (Teeth: Pearson’s 
r =-0.1265, t = -0.5409, df = 18, p=0.5952; Petrous portions: Pearson’s r =-0.2466, t = -0.6234, 
df = 6, p=0.5559).  

To examine this question further and test which method produced higher complexity 
libraries, we used the c_curve function in preseq to estimate the number of distinct reads 
recovered for each library. High complexity libraries have a large proportion of distinct reads 
that map to different parts of the reference genome. Therefore, more parts of the reference are 
covered with a single sequencing experiment. In contrast, low complexity libraries have a large 
proportion of distinct reads that map to the same sites and therefore may have a strong bias and 
high redundancy (Head et al., 2014). In this dataset, complexity was high regardless of extraction 
method. Method D libraries had a slightly higher mean proportion of distinct reads than Method 
H libraries, irrespective of tissue type, but this difference was not statistically significant (Figure 
S7). The relationship between complexity and endogenous content in the tested libraries is 
shown in Figure S6B. No significant correlation was observed between the two values (Teeth: 
Pearson’s r = 0.1288, t = 0.5514, df = 18, p=0.5881; Petrous portions: Pearson’s r = 0.3789, t = 
1.003, df = 6, p=0.3546). 

We used the lc_extrap function within preseq to predict the expected yield for a larger 
sequencing effort with the same libraries. This extrapolation analysis is highly sensitive to the 
amount of sequence data generated, and can give false estimates with low amounts of reads 
(Daley & Smith, 2013). Therefore, this analysis was only possible for sample-treatment 
combinations in the two libraries that yielded the highest number of reads: PI-67 and GB-7. 
Figure 3 demonstrates that, in both cases, libraries constructed with Method H extracts were 
predicted to yield a higher amount of complex DNA fragments with deeper sequencing (up to 
600 million reads). In both cases, saturation of the complexity curve is reached earlier for 
libraries created from Method D extracts.  
 
 [Figure 3 here] 
 

DNA fragment lengths and GC content 

All samples, irrespective of extraction method had average DNA fragment lengths <100 
bp. This small size is consistent with expectations for degraded remains (Briggs et al., 2007; 
Dabney et al., 2013b; Meyer et al., 2014) and similar to sizes obtained in previous aDNA 
research with tropical samples (Kehlmaier et al., 2017; Schroeder et al., 2015). Samples 
extracted with Method D yielded smaller average DNA fragment sizes (Tooth: 58.63 bp and 
Petrous portion: 53.65 bp) than those extracted with Method H (Tooth: 77.22 and Petrous 
portion: 72.07 bp) (Figure 4A). Overlaid plots showing the length distribution of sequence reads, 
both before and after mapping and filtering, demonstrate that Method H libraries had a higher 
proportion of larger fragments (Figure S8-10). Although this pattern of higher average fragment 
lengths in Method H libraries is evident in boxplots for both tooth and petrous portion samples, 
this difference was only found to be statistically significant in teeth (Figure 4A). We suspect this 
finding is influenced by low statistical power due to the smaller size of the petrous portion 
sample. No significant correlation was found between endogenous content and read length in 
either tissue type (Teeth: Pearson’s r = 0.3321 t = 1.4936, df = 18, p=0.1526; Petrous portions: 
Pearson’s r = 0.2647, t = 0.6724 df = 6, p=0.5263) (Figure S11A). 
 
 [Figure 4 here] 
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Method D libraries had higher GC content irrespective of tissue, but this difference was 

not found to be statistically significant (Table 2, Figure 4B). A scatterplot of average DNA 
fragment lengths versus average percent GC content clearly distinguishes between samples 
generated with each method for both tissues (Figure 4C). A significant negative correlation was 
found between average DNA fragment length and GC content for all samples (Teeth: Pearson’s r 
= -0.5585, t = -2.8566, df = 18, p=0.01048; Petrous portions: Pearson’s r = -0.7181, t = -2.5278 
df = 6, p=0.0448). No significant correlation was observed between percent GC and endogenous 
content (Teeth: Pearson’s r = -0.4092, t = -1.903 df = 18, p=0.0732; Petrous portions: Pearson’s 
r = -0.6578, t = -2.1395, df = 6, p=0.0762) (Figure S11B). 

 
DNA damage 

 Neither of the three DNA damage patterns examined (λ,δD, δS) differed significantly 
between samples extracted with either extraction method (Figure S12). Most samples had high 
probabilities (>0.70) of C to T and G to A misincorporations caused by DNA damage at the first 
and last position of each fragment (see Supplementary File 3 for damage plots). This is 
consistent with known damage patterns of authentic aDNA sequences (Briggs et al., 2007; 
Dabney et al., 2013b; Overballe-Petersen et al., 2012). Replicates PC-117-D (tooth), AD-373-H 
(petrous portion) and AD-377-H (tooth) had the lowest damage patterns (~0.50 probability of C 
to T or G to A misincorporations). Coverage of the autosomal and mitochondrial genomes were 
insufficient for contamination determination with Bayesian tools which require >3-5X minimum 
read depth for confident assessment (Fu et al., 2013; Racimo et al., 2016; Renaud et al., 2015). 
However visual examination of BAM files did not reveal patterns consistent with contamination, 
such as multiple populations of sequence reads or high mismatch rates.  
 
 

DISCUSSION 

 In this research, we explored the performance of two extraction protocols on poorly 
preserved tooth and petrous portion remains excavated from tropical contexts. Our experimental 
results suggest that both Method D and Method H successfully recovered degraded genetic 
material from tooth and petrous portion samples. No statistically significant difference was 
observed in raw DNA yields, library complexity or postmortem damage patterns in shotgun 
reads. The latter suggests that neither method is biased against recovery of degraded DNA 
fragments. This finding is consistent with results previously reported by Gamba et al. (2016), 
who found that ancient samples extracted with several silica-based extraction methods did not 
exhibit different postmortem damage patterns. Other studies have demonstrated that modifying 
digestion or pre-digestion wash steps also had negligible effects on DNA damage profiles 
(Boessenkool et al., 2016; Damgaard et al., 2015).  
 Significant differences between methods were observed in DNA fragment length, 
endogenous content, clonality and number of mapped, unique reads (post-quality filtering). DNA 
fragments recovered with Method H were, on average, 19 base pairs longer than those recovered 
with Method D, irrespective of tissue. These differences were visible in boxplots for all tissue 
types but were only significant for comparisons with tooth extracts. The small size of the petrous 
portion sample likely resulted in low statistical power to detect significant differences. Because 
of this, we refrain from extrapolating meaningful conclusions based on the petrous portion 
datasets and note that further research with more comprehensive samples of petrous portion 
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tissue is needed to resolve this question. The following discussion focuses on statistically 
significant trends observed in tooth samples only.  

Extraction Method D was designed for recovery of ultrashort DNA fragments (Dabney et 
al., 2013a). Given that Method H uses the same binding and purification steps implemented in 
Method D, short DNA fragment loss may have occurred during the pre-digestion EDTA wash or 
during the extended digestion and decalcification step. Warinner et al. (2014) did not observe 
reductions in raw DNA yields after pre-extraction washes of calculus samples with EDTA. Other 
studies conducted with tooth and bone tissue also found no significant differences in average 
DNA fragment lengths recovered after modifying extraction procedures with extended digestion 
steps or bleach-based decontamination washes (Damgaard et al., 2015; Gamba et al., 2016; 
Korlevic et al., 2015). But a more recent report by Glocke and Meyer (2017) found that EDTA 
interferes with recovery of short DNA fragments. In general, reports comparing aDNA extraction 
methods have suggested that digestion time may be a strong influence on recovery rates and 
characteristics of endogenous aDNA. For instance, Damgaard et al. (2015) observed diminished 
aDNA recovery with digestion steps longer than one hour. More recently, Boessenkool et al. 
(2016) found that mean aDNA fragment lengths were smaller and GC content was higher in 
bone extractions performed with short digestions.  

Method H implements an initial wash of 0.5M EDTA solution followed by an extended 
two-part digestion step in which bone powder is first incubated for one hour in lysis buffer, and 
then further kept overnight at 37°C. It is possible that further optimization of the EDTA wash 
solution and of subsequent digestion conditions, such as temperature and incubation time, are 
needed to avoid loss of small DNA fragments. Future optimization efforts may also benefit from 
separate library preparation and sequencing of EDTA wash and pre-digestion fractions to 
identify where small DNA fragments are being lost in the extraction process. 

We additionally found that libraries built from Method H extracts had higher endogenous 
content and more reads mapping to the reference after quality-filtering. But, on average, these 
samples also had higher clonality. In other words, Method H libraries had more PCR duplicates 
and sequence reads with the same starting and ending coordinates. However, extrapolation of 
predicted library complexity with the two best preserved samples (PI 67 and GB 7) indicated that 
Method H libraries would yield more unique DNA fragments upon repeated sequencing 
experiments. Complexity analyses are highly sensitive to the amount of sequence data generated. 
Low amounts of reads can lead to false estimates due to uncertainty of the extrapolation (Daley 
& Smith, 2013). Examination of the complexity curves for both methods demonstrates that 
despite the high clonality of Method H libraries, deeper sequencing would likely be most useful 
with Method H versus Method D extracts. This pattern may be due to the higher number of 
unique reads after quality filtering that were recovered with Method H in the two samples 
examined (Table S2). 

Lastly, although not a significant trend, we observed that average GC content was at least 
three percentage points higher in paired tooth samples extracted with Method D versus Method 
H. But all samples, irrespective of extraction method, showed a decrease in GC content with 
larger average fragment size. This finding is consistent with previous research which has shown 
that differential DNA preservation can cause compositional bias towards higher GC content in 
ancient genomes composed of short DNA fragments (Briggs et al., 2007; Glocke & Meyer, 
2017; Krause et al., 2010; Schuenemann et al., 2011). Higher GC content has also been 
correlated with lower contamination due to reduced presence of exogenous DNA (Racimo et al., 
2016). As GC content can be strongly affected by amplification enzymes used in the library 
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preparation process (Aird et al., 2011; Dabney & Meyer, 2012; Seguin-Orlando et al., 2015), all 
samples in this study were amplified with the same conditions so we consider this unlikely to 
explain the observed differences in base composition between extraction treatments. At a first 
glance, these results suggest that since Method D likely allowed for higher recovery rates of GC-
rich DNA, it may be better suited for ancient tropical samples. However, we did not identify a 
significant correlation between percent GC and endogenous content (Figure S11B). High GC 
content can also lead to low sequence coverage in aDNA due to difficulty with mapping and 
alignment (Krause et al., 2010; Schuenemann et al., 2011). Although this problem may be 
alleviated somewhat by deep sequencing and high read depths, increased recovery of GC-rich 
DNA, may not necessarily lead to better results when read depth and coverage is inherently low, 
such as in poorly preserved tropical samples.  
 Several recent studies have found that the combination of extraction methods geared 
towards ultrashort DNA fragment recovery with single-stranded library preparation substantially 
increase endogenous aDNA yields (Barlow et al., 2016; Glocke & Meyer, 2017). While we are 
cognizant of these recent advances, in this work we have focused on libraries built with the more 
commonly used double stranded library protocol (Meyer & Kircher, 2010). Except for the 
historic chimpanzee sample, all archaeological remains examined in this study contained very 
low levels of endogenous DNA (<2%). This suggests that enrichment approaches are essential 
for increasing informative sequence content with poorly preserved tropical samples (Carpenter et 
al., 2013; Schroeder et al., 2015). Ongoing research in our laboratory has found that aDNA 
samples from Puerto Rico contain sufficient endogenous DNA for effective enrichment of 
complete mitochondrial DNA genomes (Nieves-Colon et al., 2016). Thus, here we follow 
recommendations by Wales et al. (2015) and focus on double-stranded library protocols which 
are better suited for studies geared towards enrichment of multi-copy organellar DNA. 
Additionally, previous reports have demonstrated that extremely short molecules obtained after 
single-stranded library preparation (Gansauge et al., 2017; Gansauge & Meyer, 2013; Glocke & 
Meyer, 2017), are often lost during target enrichment capture (Ávila-Arcos et al., 2015).  
 
 

CONCLUSIONS 

This study has demonstrated that Method D and Method H were similarly efficient in 
recovering endogenous DNA in archaeological and historic skeletal samples from tropical 
contexts. However, significant differences exist in the composition of the recovered sequence 
data. Although libraries from Method H yielded more unique sequence reads and higher 
endogenous content, libraries built with this method also had higher clonality and yielded more 
PCR duplicates. In contrast, Method D recovered smaller aDNA fragments. Because of the 
exacerbated aDNA degradation that takes place in the tropics, we expect most informative 
sequence content to come from small DNA fragments in ancient remains (Allentoft et al., 2012; 
Hofreiter et al., 2015). Therefore, our findings suggest that, until further optimization of new 
protocols can take place, Method D continues to be the optimal choice for maximizing aDNA 
recovery in tropical tooth samples from ancient or historic contexts.   

We also note that the insights derived from this work are restricted to tooth samples only. 
The smaller sample sizes obtained for petrous portion samples did not allow for conclusive 
statements regarding each method’s performance with this tissue type. Future efforts to develop 
methodologies tailored for tropical aDNA samples will benefit from increased sampling of 
suitable petrous portions and other tissues, such as dental calculus. A larger dataset shall further 
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allow for finer sub settings of the data so that study results will control for differences between 
relatively well versus poorly preserved samples and/or for differences in site-specific aDNA 
preservation patterns. 
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Sample Site 
Region, 

Country 

Köppen-Geiger 

environment 

classification 

Sample 

Age 

(A.D.) 

Tissue Species 

PC E24 
Punta 

Candelero 

Humacao, 

Puerto Rico 
Tropical monsoon  400-600

1
 Tooth Homo sapiens 

PC 117 
Punta 

Candelero 

Humacao, 

Puerto Rico 
Tropical monsoon  400-600

1
 Tooth Homo sapiens 

T 251 Tibes 
Ponce, Puerto 

Rico 
Tropical monsoon  616

2
 Tooth Homo sapiens 

PI 67 
Paso del 

Indio 

Vega Baja, 

Puerto Rico 
Tropical monsoon  1022

2
 Tooth Homo sapiens 

PI 388 
Paso del 

Indio 

Vega Baja, 

Puerto Rico 
Tropical monsoon  822

2
 Tooth Homo sapiens 

AD 368 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Tooth Homo sapiens 

AD 372 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Petrous 

portion & 

Tooth 

Homo sapiens 

AD 373 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Petrous 

portion & 

Tooth 

Homo sapiens 

AD 375 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Petrous 

portion 
Homo sapiens 

AD 376 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Petrous 

portion 
Homo sapiens 

AD 377 Yaxuna 
Yucatán, 

México 
Tropical savanna  

6
th
 

century
1
 

Tooth Homo sapiens 

GB 7 

Gombe 

National 

Park 

Kigoma, 

Tanzania 
Tropical savanna  1966

3
 Tooth 

Pan troglodytes 

schweinfurthii 

1
 Approximate date, based on archaeological context. 

2
 Radiocarbon date median probability calAD. 

3
 Date of individual death. 

 

Page 18 of 24

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

tTable 2. Results of paired tests. Significant values P<0.05 bolded.  

 

Test comparison Tissue Paired test 
Test 

statistic 
DF P-value 

DNA yields (ng/µL) 
Tooth T-test t = -0.1924 9 0.8517 

Petrous portion T-test t = -1.2219 3 0.3090 

Number of mapped, unique 

reads 

Tooth Wilcoxon signed ranks V = 4 n/a 0.0136 

Petrous portion Wilcoxon signed ranks V = 0 n/a 0.1250 

Percent endogenous content 
Tooth Wilcoxon signed ranks V = 4.5 n/a 0.0217 

Petrous portion Wilcoxon signed ranks V = 0 n/a 0.1250 

Percent clonality 
Tooth Wilcoxon signed ranks V = 7 n/a 0.0371 

Petrous portion T-test t = -0.3852 3 0.7257 

Percent distinct reads 
Tooth Wilcoxon signed ranks V = 36 n/a 0.1232 

Petrous portion T-test t = 0.5300 3 0.6328 

Average fragment length 
Tooth Wilcoxon signed ranks V = 2 n/a 0.0058 

Petrous portion Wilcoxon signed ranks V = 1 n/a 0.2500 

Percent average GC content  
Tooth Wilcoxon signed ranks V = 46 n/a 0.0644 

Petrous portion Wilcoxon signed ranks V = 10 n/a 0.1250 

Damage parameter δD 
Tooth Wilcoxon signed ranks V = 30 n/a 0.8457 

Petrous portion Wilcoxon signed ranks V = 3 n/a 0.625 

Damage parameter δS 
Tooth Wilcoxon signed ranks V = 35 n/a 0.4922 

Petrous portion Wilcoxon signed ranks V = 6 n/a 0.8750 

Damage parameter λ 
Tooth Wilcoxon signed ranks V = 42 n/a 0.1601 

Petrous portion Wilcoxon signed ranks V - 4 n/a 0.8750 

 

Page 19 of 24

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t   

 

 

Figure 1. Number of mapped, unique reads per sample. (A) Tooth samples, inset zooms in to samples with 
less than 60,000 reads. (B) Petrous portion samples.  
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Figure 2. Boxplots comparing distributions of (A) percent endogenous content (calculated as number of 
mapped, unique reads divided over total down sampled reads) and (B) percent clonality (calculated as 

fraction of downsampled reads that are duplicates).  
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Figure 3. Extrapolation curves for shotgun library complexity estimation. Curves are shown for the two 
samples with highest number of reads: PI-67 and GB-7. Top inset shows zoomed in results for PI-67. 
Extrapolation curve and confidence intervals were estimated in preseq using default parameters and 

assuming a sequencing effort of 600 million reads. The dotted line denotes the number of reads randomly 
downsampled for each sample pair: 5.1 million reads for GB-7 and 6.8 million reads for PI-67.  
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Figure 4. Fragment length and GC content. (A) Boxplots comparing distributions of DNA fragment lengths. 
(B) Boxplots comparing distributions of average %GC content. (C) Scatterplot of mean fragment length 

versus average %GC content.  
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tFigure 1. Number of mapped, unique reads per sample. (A) Tooth samples, inset zooms in to 

samples with less than 60,000 reads. (B) Petrous portion samples. 

 

Figure 2. Boxplots comparing distributions of (A) percent endogenous content (calculated as 

number of mapped, unique reads divided over total down sampled reads) and (B) percent 

clonality (calculated as fraction of downsampled reads that are duplicates). 

 

Figure 3. Extrapolation curves for shotgun library complexity estimation. Curves are shown for 

the two samples with highest number of reads: PI-67 and GB-7. Top inset shows zoomed in 

results for PI-67. Extrapolation curve and confidence intervals were estimated in preseq using 

default parameters and assuming a sequencing effort of 600 million reads. The dotted line 

denotes the number of reads randomly downsampled for each sample pair: 5.1 million reads for 

GB-7 and 6.8 million reads for PI-67. 

 

Figure 4. Fragment length and GC content. (A) Boxplots comparing distributions of DNA 

fragment lengths. (B) Boxplots comparing distributions of average %GC content. (C) Scatterplot 

of mean fragment length versus average %GC content. 
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