
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2016

Automatically Defined Templates for Improved
Prediction of Non-stationary, Nonlinear Time
Series in Genetic Programming
David Moskowitz
Nova Southeastern University, dave@infoblazer.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Artificial Intelligence and Robotics Commons, Finance and Financial Management
Commons, Software Engineering Commons, and the Theory and Algorithms Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
David Moskowitz. 2016. Automatically Defined Templates for Improved Prediction of Non-stationary, Nonlinear Time Series in Genetic
Programming. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and
Computing. (953)
https://nsuworks.nova.edu/gscis_etd/953.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Automatically Defined Templates for Improved Prediction of Non-stationary,

Nonlinear Time Series in Genetic Programming

by

David Moskowitz

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2016

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Automatically Defined Templates for Improved Prediction of

Non-stationary, Nonlinear Time Series in Genetic Programming

by

David Moskowitz

2016

Soft methods of artificial intelligence are often used in the prediction of non-deterministic time

series that cannot be modeled using standard econometric methods. These series, such as occur

in finance, often undergo changes to their underlying data generation process resulting in

inaccurate approximations or requiring additional human judgment and input in the process,

hindering the potential for automated solutions.

Genetic programming (GP) is a class of nature-inspired algorithms that aims to evolve a

population of computer programs to solve a target problem. GP has been applied to time series

prediction in finance and other domains. However, most GP-based approaches to these

prediction problems do not consider regime change.

This paper introduces two new genetic programming modularity techniques, collectively referred

to as automatically defined templates, which better enable prediction of time series involving

regime change. These methods, based on earlier established GP modularity techniques, take

inspiration from software design patterns and are more closely modeled after the way humans

actually develop software. Specifically, a regime detection branch is incorporated into the GP

paradigm. Regime specific behavior evolves in a separate program branch, implementing the

template method pattern.

A system was developed to test, validate, and compare the proposed approach with earlier

approaches to GP modularity. Prediction experiments were performed on synthetic time series

and on the S&P 500 index. The performance of the proposed approach was evaluated by

comparing prediction accuracy with existing methods.

One of the two techniques proposed is shown to significantly improve performance of time series

prediction in series undergoing regime change. The second proposed technique did not show any

improvement and performed generally worse than existing methods or the canonical approaches.

The difference in relative performance was shown to be due to a decoupling of reusable modules

from the evolving main program population. This observation also explains earlier results

regarding the inferior performance of genetic programming techniques using a similar,

decoupled approach. Applied to financial time series prediction, the proposed approach beat a

buy and hold return on the S&P 500 index as well as the return achieved by other regime aware

genetic programming methodologies. No approach tested beat the benchmark return when

factoring in transaction costs.

iii

Acknowledgements

I would like to thank my dissertation committee members, Dr. Michael Laszlo and Dr. Francisco

Mitropoulos, for their review and feedback of this work. I would especially like to acknowledge

the advice, input, and guidance I received from my dissertation advisor, Dr. Sumitra Mukherjee,

for the past several years.

Most importantly, to my wife Anna and son Gabriel, for their support, sacrifices, and inspiration

over the past six years of being a "PhD family".

This dissertation was made possible by copious amounts of energy drinks and large doses of

heavy metal.

iv

Table of Contents
List of Figures ... vii

List of Tables ... xvi

Chapter 1: Introduction ... 1

Background ... 2

Problem Statement ... 6

Dissertation Goals ... 7

Research Questions .. 8

Relevance and Significance ... 9

Barriers and Issues .. 9

Assumptions, Limitations, and Delimitations ... 11

Definitions of Terms .. 12

Summary ... 13

Chapter 3: Review of the Literature .. 15

Time Series Prediction and the Stock Market ... 15

Econometric Methods for Time Series Prediction .. 18

Artificial Intelligence Methods for Time Series Prediction ... 25

Neural networks. ... 25

Genetic algorithms. ... 27

Genetic programming. .. 29

DyFor GP. .. 38

Modularity in genetic programming. .. 42

Patterns in Software Engineering ... 44

Chapter 3: Methodology ... 48

Overview ... 48

Fitness and Selection .. 55

Decoupled approach to selection. .. 55

Coupled approach to selection. .. 57

Fitness calculation. .. 58

Automatically defined templates. ... 59

Crossover. ... 60

v

Automatically acquired templates. ... 60

Crossover. ... 61

Sufficiency ... 62

Specific Methodology ... 62

Automatically defined template example. ... 63

Automatically acquired templates example. .. 65

Implementation. ... 69

Optimizations. ... 73

Omniscient regime detection. .. 75

Experiments. ... 76

Measuring performance. .. 78

Resource Requirements .. 81

Summary ... 82

Chapter 4: Results ... 83

Synthetic Series ... 83

Data analysis. .. 84

Findings. .. 93

Summary. .. 108

Market Data Series.. 109

Data analysis. .. 109

Findings. .. 118

Summary. .. 125

Summary of Results .. 126

Chapter 5: Conclusions, Implications, Recommendations, and Summary 127

Conclusions ... 127

Implications ... 129

Recommendations for Future Work ... 130

Adaptive training and dynamic training generations. .. 130

Optimization of parameters. ... 131

Computational optimization. .. 131

Improving market data prediction. ... 133

Summary ... 134

Appendix A ... 137

vi

Design Pattern Example .. 137

Appendix B ... 146

Stock Prediction Example.. 146

Java implementation. .. 147

Clojure implementation. ... 150

Appendix C ... 152

Primitives .. 152

Functions. .. 152

Terminals. .. 154

Appendix D ... 156

Program Parameters ... 156

Parameter descriptions. .. 156

Parameter files. ... 162

Appendix E ... 178

Best Symbolic Regression Programs ... 178

Appendix F.. 185

MGHENMG Initial Random Parameters .. 185

Appendix G ... 186

Full Results .. 186

SINCOS. ... 186

LGOZLG. ... 190

MGHENMG. ... 200

S&P 500 market data prediction. .. 205

Appendix H ... 215

Best S&P 500 Prediction Programs ... 215

Transaction costs considered. ... 215

No transaction costs. .. 230

Appendix I .. 248

Raw Data Files ... 248

References ... 249

vii

List of Figures

Figures

Figure 1. Series created by superimposing a Hénon map on a Mackey-Glass series. 4

Figure 2. S&P 500 index close price during the stock market crash of 2008 4

Figure 3. Overlapping training period approach used by Yu et al. 17

Figure 4. VIX index .. 21

Figure 5. Markov state transition diagram. ... 24

Figure 6. Sample genetic algorithm chromosome used by Canelas et al. 28

Figure 7. Average historical NYSE transaction costs ... 34

Figure 8. The Backus-Naur grammar used in EDDIE 7 .. 35

Figure 9. Nonlinear equations analyzed by Chen & Ye ... 36

Figure 10. DyFor GP sliding window example, 1 of 5. .. 38

Figure 11. DyFor GP sliding window example, 2 of 5. .. 39

Figure 12. DyFor GP sliding window example, 3 of 5. .. 39

Figure 13. DyFor GP sliding window example, 4 of 5. .. 39

Figure 14. DyFor GP sliding window example, 5 of 5. .. 39

Figure 15. Template method pattern class diagram .. 46

Figure 16. Strategy pattern class diagram ... 47

Figure 17. Canonical genetic programming flow. ... 49

Figure 18. Program tree including an ADF branch... 50

Figure 19. Regime determining program branch tree structure. 51

Figure 20. ADT tree structure. ... 52

Figure 21. ADT algorithm flow chart. .. 54

viii

Figure 22. Tree structure for coupled ADT. ... 58

Figure 23. Sample regime determining program tree. .. 63

Figure 24. Program tree incorporating an abstract method. .. 64

Figure 25. Regime specific template implementations. .. 65

Figure 26. Module acquisition compression operation. .. 66

Figure 27. Program tree prior to AAT extraction. .. 67

Figure 28. Program tree after AAT extraction. ... 67

Figure 29. Function tree extracted by AAT. ... 68

Figure 30. Regime specific template implementations created by AAT extraction. 69

Figure 31. Primitives set used in GP example. ... 70

Figure 32. Tree structure representing the sample Clojure expression (+ (+ 5 x) 5). 71

Figure 33. Java implementation of a sample S-expression tree. 71

Figure 34. LG-OZ-LG synthetic time series used by Wagner & Michalewicz. 77

Figure 35. MG-HEN-MG synthetic time series used by Wagner & Michalewicz. 77

Figure 36. SINCOS synthetic time series. .. 85

Figure 37. LGOZLG synthetic time series. .. 87

Figure 38. MGHENMG synthetic time series. ... 89

Figure 39. Average fitness for SINCOS symbolic regression experiment. 95

Figure 40. Relative performance of ADT vs. DyFor GP in LGOZLG experiment. 98

Figure 41. Relative performance of ADT vs. DyFor GP in MGHENMG experiment.. . 102

Figure 42. Relative performance of ADT vs DyFor GP in LGOZLG validation tests. 105

Figure 43. Relative performance of ADT vs. DyFor GP in MGHENMG experiment.. . 106

Figure 44. S&P 500 index. .. 110

ix

Figure 45. S&P 500 index during study period. ... 110

Figure 46. S&P 500 index during prediction period. .. 111

Figure 47. S&P 500 normalized series ... 112

Figure 48. Overlapping training, validation, and testing periods used by Chen et al. 113

Figure 49. 3-month Treasury bill historical yield ... 114

Figure 50. Total return calculation algorithm used in market data experiments. 115

Figure 51. 95% CI for market experiments. ... 120

Figure 52. 95% CI for sliding window market experiments. .. 121

Figure 53. 95% CI for market experiments without transaction cost 123

Figure 54. 95% CI for sliding window experiments without transaction costs. 124

Figure 55. Program tree containing an intron. .. 132

Figure A1. Sample racing domain. ... 137

Figure A2. Initial implementation of Automobile class in autocross example. 138

Figure A3. Initial implementation of Motorcycle class in autocross example. 139

Figure A4. Turn method for Automobile class in autocross example. 139

Figure A5. Turn method for Motorcycle class in autocross example. 140

Figure A6. Race method for Automobile class in autocross example. 140

Figure A7. Race method for Motorcycle class in autocross example. 140

Figure A8. Object model showing one parent and two subclasses. 141

Figure A9. Methods in abstract parent class. .. 141

Figure A10. Additional methods in abstract parent class. .. 141

Figure A11. Race method in abstract class. .. 141

x

Figure A12. Full class diagram for abstract and concrete classes. 142

Figure A13. Java code for abstract parent class. ... 142

Figure A14. Java code for Automobile concrete class. .. 143

Figure A15. Java code for Motorcycle concrete class. ... 143

Figure A16. Object model for strategy pattern implementation. 144

Figure A17. Java code for applying strategy pattern in concrete Automobile class. 145

Figure B1. Example investment model logic. ... 147

Figure B2. Java method for example investment decision ... 148

Figure B3. Class diagram for template method pattern implementation 148

Figure B4. Regime indicator implementation. .. 148

Figure B5. Investment decision Java interface. .. 149

Figure B6. Template method Java implementation. ... 149

Figure B7. Regime specific logic implementing abstract template methods. 149

Figure B8. Final program using template method pattern. ... 150

Figure B9. Clojure implementation of investment decision example............................. 150

Figure B10. Clojure implementation incorporating modularity features. 151

Figure C1. Primitive functions class diagram. .. 152

Figure C2. Primitive terminals class diagram. .. 154

Figure D1. ADT LGOZLG parameters .. 162

Figure D2. ADT Omni LGOZLG parameters. ... 163

Figure D3. AAT LGOZLG parameters. ... 164

xi

Figure D4. AAT Omni LGOZLG parameters. ... 165

Figure D5. DyFor GP LGOZLG parameters. ... 165

Figure D6. ADT MGHENMG parameters. .. 166

Figure D7. ADT Omni MGHENMG parameters. .. 167

Figure D8. AAT MGHENMG parameters. .. 168

Figure D9. AAT Omni MGHENMG parameters. .. 169

Figure D10. DyFor GP MGHENMG parameters. .. 170

Figure D11. GP SINCOS parameters. .. 170

Figure D12. ADF SINCOS Parameters .. 171

Figure D13. ADT SINCOS parameters. ... 172

Figure D14. AAT SINCOS parameters. ... 172

Figure D15. ADF S&P 500 prediction sample parameter file .. 173

Figure D16. ADT S&P 500 prediction sample parameter file .. 174

Figure D17. GP S&P 500 prediction sample parameter file ... 175

Figure D18. ADT sliding window S&P 500 prediction sample parameter file 176

Figure D19. DyFor GP S&P 500 prediction sample parameter file 177

Figure E1. Best Regression Program recorded by GP approach. 178

Figure E2. Best symbolic regression program recorded by ADF approach. 179

Figure E3. Best symbolic regression program recorded by ADT approach. 180

Figure E4. Best symbolic regression program recorded by AAT approach. 181

Figure E5. Best symbolic regression program recorded by coupled ADT approach. 183

Figure E6. Best symbolic regression program recorded by coupled AAT approach. 184

xii

Figure G1. Best fitness in symbolic regression SINCOS experiments. 186

Figure G2. Best regressions in SINCOS experiments. ... 188

Figure G3. Best regime regressions in SINCOS experiments. 189

Figure G4. Average training fitness in LGOZLG experiments. 190

Figure G5. Average training fitness in LGOZLG 1-100 experiments. 190

Figure G6. Average error in LGOZLG experiments. ... 192

Figure G7. Average error in LGOZLG 1-100 experiments. ... 193

Figure G8. LGOZLG regime determination by best performing individuals. 194

Figure G9. LGOZLG 1-100 regime determination by best performing individuals. 195

Figure G10. LGOZLG best prediction.. 198

Figure G11. LGOZLG 1-100 best prediction. .. 199

Figure G12. MGHENMG average training fitness. .. 200

Figure G13. MGHENMG 30-130 average training fitness. .. 200

Figure G14. MGHENMG regime determination by best performing individuals. 201

Figure G15. MGHEMMG 1-100 regime determination best performing individuals. .. 202

Figure G16. MGHENMG best prediction. ... 203

Figure G17. MGHENMG 1-100 best prediction. ... 204

Figure G18. S&P 500 investment performance. ... 207

Figure G19. Investment performance in S&P 500 sliding window experiments. 208

Figure G20. S&P 500 investment performance with transaction costs ignored. 212

Figure G21. Performance in S&P 500 sliding window tests w/o transaction costs 213

xiii

Figure H1. Best performing approach for 1999-2000 period with transaction costs 216

Figure H2. Regime predicted by ADT for 1999-2000 period with transaction costs 216

Figure H3. Regime predicted by ADT for 1999-2000 period with transaction costs plotted

against normalized S&P 500 index. .. 217

Figure H4. Best Performing GP Program for 1999-2000 period with transaction costs. 217

Figure H5. Best ADT program for 1999-2000 period with transaction costs. 218

Figure H6. Best ADT regime program for 1999-2000 period with transaction costs. ... 220

Figure H7. Best performing approach for 2001-2002 period with transaction costs. 221

Figure H8. Regime predicted by best approach for 2001-2002 with transaction costs. . 221

Figure H9. Regime predicted by best approach for 2001-2002 with transaction costs

plotted against normalized target series. ... 222

Figure H10. Best performing ADT program for 2001-2002 with transaction costs. 223

Figure H11. Regime predicted by ADT for 2001-2002 period with transaction costs. .. 224

Figure H12. Best performing approach for 2003-2004 period with transaction costs. ... 225

Figure H13. Regime predicted by best approach for 2003-2004 with transaction costs. 225

Figure H14. Regime predicted by best approach for 2003-2004 with transaction costs

plotted against normalized target series. ... 226

Figure H15. Best performing ADF program for 2003-2004 with transaction costs. 227

Figure H16. Best performing ADT program for 2003-2004 with transaction costs. 227

Figure H17. Regime program for ADT for 2003-2004 with transaction costs. 228

Figure H18. Best returns for 1999-2014 period with transaction costs. 229

Figure H19. Regime predicted by ADT for 1999-2004 with transaction costs. 229

xiv

Figure H20. Regime predicted by ADT for 1999-2004 with transaction costs, plotted

against normalized target series. ... 230

Figure H21. Best performing approach for 1999-2000 period w/o transaction costs. 231

Figure H22. Regime predicted by ADT for 1999-2000 period w/o transaction costs. ... 231

Figure H23. Regime predicted by ADT for 1999-2000 period w/o transaction costs

plotted against normalized target series .. 232

Figure H24. Best Performing ADF Program for 1999-2000 without transaction costs. 233

Figure H25. Best performing ADT program for 1999-2000 without transaction costs.. 235

Figure H26. Best ADT regime program for 1999-2000 without transaction costs. 235

Figure H27. Best performing approach for 2001-2002 period w/o transaction costs. 237

Figure H28. Regime predicted by best approach for 2001-2002 w/o transaction costs. 237

Figure H29. Regime predicted by best approach for 2001-2002 w/o transaction costs,

plotted against normalized target series. ... 238

Figure H30. Best ADF program for 2001-2002 period without transaction costs. 238

Figure H31. Best ADT program for 2001-2002 period without transaction costs. 240

Figure H32. Regime predicted by ADT for 2001-2002 period w/o transaction costs. ... 241

Figure H33. Best performing approach for 2003-2004 period w/o transaction costs. 243

Figure H34. Regime predicted by best approach for 2003-2004 w/o transaction costs. 243

Figure H35. Regime predicted by best approach for 2003-2004 without transaction costs,

plotted against normalized target series. ... 244

Figure H36. Best performing ADT program for 2003-2004 without transaction costs.. 245

Figure H37. Regime program for ADT for 2003-2004 without transaction costs.......... 246

Figure H38. Best returns for 1999-2014 period without transaction costs. 246

xv

Figure H39. Regime predicted by ADT for 1999-2004 without transaction costs. 247

Figure H40. Regime predicted by ADT for 1999-2004 without transaction costs, plotted

against normalized series. ... 247

xvi

List of Tables

Tables

Table 1. Regime Determination Using Two Indicators .. 63

Table 2. Sample Fitness Evaluation Using Mean Error .. 72

Table 3. Common Parameters Used in Experiments .. 90

Table 4. ADT Parameters ... 90

Table 5. AAT Parameters ... 90

Table 6. DyFor GP Parameters ... 91

Table 7. SINCOS Symbolic Regression Results .. 94

Table 8. LGOZLG Prediction Results .. 95

Table 9. LGOZLG Total Evaluations ... 99

Table 10. MGHENMG Prediction Results ... 100

Table 11. MGHENMG Total Evaluations .. 102

Table 12. Results for LGOZLG and MGHENMG Validation Tests 104

Table 13. Results Reported in Wagner & Michalewicz Benchmark Experiment 107

Table 14. Average Population Node Counts... 108

Table 15. Experimental Parameters Used in Market Prediction Tests 117

Table 16. DyFor GP Parameters Used in Market Data Experiments 118

Table 17. Market Data Experiment Results Including Transaction Costs 119

Table 18. Sliding Window Market Data Experiment Results With Transaction Costs .. 120

Table 19. Findings Reported by Chen, Kuo, & Hoi ... 121

Table 20. Market Data Experiment Results Not Including Transaction Costs 122

Table 21. Sliding Window Market Data Experiment Results w/o Transaction Costs 124

xvii

Table C1. Function Primitives .. 153

Table C2. Terminal Primitives .. 155

Table D1. Common Parameters Used in Experiments ... 156

Table D2. ADT/AAT Parameters ... 160

Table D3. ADT Parameters... 161

Table D4. AAT Parameters... 161

Table D5. DyFor GP Parameters .. 161

Table F1. MGHENMG Initialization Parameters ... 185

Table G1. Number of Trades Executed, Including Transaction Costs 209

Table G2. Number of Trades Executed, Not Including Transaction Costs 214

Table H1. Best Return, 1999-2000, With Transaction Costs ... 215

Table H2. Best Return, 2001-2002, With Transaction Costs ... 220

Table H3. Best Return, 2003-2004, With Transaction Costs ... 224

Table H4. Best Return, 1999-2004, With Transaction Costs ... 228

Table H5. Best Return, 1999-2000, Without Transaction Costs 230

Table H6. Best Return, 2001-2002, Without Transaction Costs 236

Table H7. Best Return, 2003-2004, Without Transaction Costs 242

Table H8. Best Return, 1999-2004, Without Transaction Costs 246

1

Chapter 1

Introduction

A stated aim of artificial intelligence is “to get machines to exhibit behavior, which if

done by humans would be assumed to involve the use of intelligence”- Arthur Samuel, quoted in

(Keane, Streeter, Mydlowec, Lanza, & Yu, 2006, p. 3). Samuel’s view of artificial intelligence

appears to promote a black box approach, where only the external results of a process are

considered. An example of such an approach is the iconic Turing Test, where a human

interrogator queries a human and a computer (without knowing which is which), trying to

ascertain the correct identities of each (Turing, 1950). However, a peek behind the curtain would

reveal that the intelligent machine that just successfully mimicked a human is only a simple

program regurgitating the interrogator’s questions or offering canned responses. The equally

iconic ELIZA (Weizenbaum, 1966) is an example of one such “intelligent” machine. Inarguably,

Turing’s question in his famous paper (Turing, 1950), “can machines think”, would certainly be

answered “not in this case”. But this realization is often only evident when removing the curtain

and taking a white box approach to artificial intelligence—examining the internals as well as the

external results of the process.

Genetic programming (GP), a subset of a broader class of evolutionary algorithms, is a

method for automatically generating computer programs using biological evolution inspired

operators with little thought to structure of the solutions, other than their fitness (Koza, 1992).

Though this description seems to imply a black box approach, progress in the field of genetic

programming since its inception has shown this is not necessarily the case.

A widely acknowledged advantage of evolutionary algorithms over other artificial

intelligence based search techniques, such as neural networks, is the ease of interpreting and

2

understanding the result solutions. Koza, Streeter, & Keane (2008), describes numerous results

from genetic programming that have replicated existing patents in the area of controller design,

indicating the transparent nature of the solutions. While the earliest examples of genetically

evolved programs were, though syntactically correct, far from what a human programmer would

produce, subsequent research incorporated more human-like behavior. Many of the advances in

the field have been achieved by incorporating additional elements often associated with language

design, such as functions (Koza, 1994), shared code modules (Angeline, 1994) , and recursion

(Yu & Clack, 1998).

Modeling genetic programming internals on how humans actually program has been an

ongoing research trend (Woodward, 2003). Incorporating additional software engineering

methods into the genetic programming paradigm should further improve performance of this

artificial intelligence technique and move further towards the true goal of AI as stated by

Samuel. While past research has focused on incorporating features of programming languages

into genetic programming, there is potential for further improvements by incorporating non-

language elements such as software design patterns.

Background

Evolutionary and other artificial intelligence approaches are often used in time series

prediction problems. In many cases, no deterministic solution to these problems exists, so non-

deterministic methods, such as artificial neural network or genetic algorithms, are often applied

(Srinivas & Patnaik, 1994). Furthermore, many time series, especially financial time series,

involve regime change, where the underlying data generation processes may abruptly change.

Financial time series regimes can change due to political or economic events, such as the US

3

housing crisis of the late 2000s, or Federal Reserve policy changes, such as the current low

interest rate environment.

Forecasting algorithms often adopt an autoregressive approach, generating prediction

rules by analyzing historical values of the time series to be predicted. The entire series history, or

only a portion of that history, can be analyzed. The choice of analysis window size is often made

due to data volume considerations. As time series can involve a large number of data points,

analyzing the entire history may prove unfeasible. In either approach, most algorithms will

produce a single prediction, hopefully applicable to any past or future period. As time series can

involve distinct periods when underlying data generation processes change, a “one size fits all"

result may be insufficient and only produce average results across multiple regimes. Most

existing time series forecasting methods do not consider regime change situation (Wagner,

Khouja, Michalewicz, & McGregor, 2008). Those methods that do consider regime change

generally require additional human input and judgment, forcing the analyst to choose the

appropriate time window for analysis and limiting potential automated solutions (Wagner et al.,

2007, p. 2).

A fabricated example of a change in the underlying data generation process presented in

(Wagner & Michalewicz, 2008) and is reproduced in Figure 1. This series is created by

superimposing a Hénon map series (Hénon, 1976) on a Mackey-Glass series (Mackey & Glass,

1977).

4

Figure 1. Synthetic series created by superimposing a Hénon map on a

Mackey-Glass series. Taken from (Wagner & Michalewicz, 2008).

A real world example of regime change is the stock market crash of 2008 which resulted

in a 50% drop followed by a 50% gain in the S&P 500 index, as shown in Figure 2.

Figure 2. S&P 500 index close price during the stock market crash of 2008

(Yahoo, 2013).

The underlying factors influencing the drop from mid-2007 through early 2009 likely differ from

those factors influencing the subsequent bull market over the following years.

 This dissertation examines applying genetic programming to predict non-linear time

series, such as those shown in the examples above, and discusses how performance can be

improved by incorporating software design patterns that enable regime specific behavior in the

5

evolutionary framework. The following section provides additional background and explanation

of these and other technologies addressed in this document.

A genetic programming approach to handling changing regimes in time series forecasting

was developed by Wagner, Michalewicz, Khouja, McGregor (2007). Recognizing that most

existing forecasting methods assumed a static data generating environment that may not apply to

nonlinear data such as stock series, Wagner et al. developed the Dynamic Forecasting Genetic

Program (DyFor GP) model. DyFor GP uses an automated, online regime handling

methodology. Two sliding analysis windows are used, instead of a more typically used single

window. Two program populations are independently evolved based on the data in each window.

Fitness is determined by calculating forecasting accuracy of future points (those points

immediately after the sliding window). Regime changes are inferred by comparing the accuracy

of the best individuals from the two program populations.

DyFor GP does not explicitly detect regimes; it only determines if a regime is stable or

changing and fine tunes the analysis windows to favor the current regime. DyFor GP assumes

that during stable regimes a larger analysis window will yield better results as it includes more

data points within the same regime. If prediction accuracy decreases, DyFor GP assumes the

regime is changing and the sliding windows are shrunk to include less data from the prior

regime. If prediction accuracy increases, DyFor GP assumes a new regime has stabilized and the

windows are increased to include more data points from the current regime. Following each

comparison, the resultant windows are slid forward along the time series with additional

iterations performed, using the same approach over the new data set.

DyFor GP has several limitations. DyFor GP is only applicable as an online method that

has been trained on prior data. A generated DyFor solution could not be used at an arbitrary

6

future point, as regime detection is based only on performance differentials over time. This

dissertation incorporates a regime discovery step into the process where programs are evolved to

determine the current regime using all the data available at any point in time. This approach also

allows pluggable regime detection algorithms. DyFor GP could even be used as a regime

detection implementation, as could domain knowledge or other statistical methods.

Problem Statement

Most evolutionary methods for predicting time series do not consider regime change:

changes to the underlying data generating process. Even when training occurs across different

regimes, most existing algorithms do not explicitly consider regime change in testing or in actual

prediction. One methodology that addresses this concern is DyFor GP, which attempts to

automatically detect changing regimes and steer the algorithm towards training data primarily in

the current regime (Wagner et al., 2007). Performance, however, can be improved by addressing

several limitations of the DyFor GP methodology.

DyFor GP does not specifically address modularity; Entire programs are evolved as a

single unit. Crossover between program code specific to different regimes can occur and may

negatively affect the performance of the overall solution. Regime specific code is only used as

“hints” for current period, or as its creators state “this knowledge allows for faster convergence

to current conditions by giving the model searching process a ‘head-start’” (Wagner et al., 2007,

p. 433). In addition, code optimized for prior regimes is injected into the current program

population whenever a new regime is discovered with the hope that the injected code will be

applicable to the new regime, or evolved out if not. It may be more optimal to explicitly detect

regimes and isolate regime specific code in a separate evolvable program branch. Besides the

performance implications, the explanatory benefit of genetic programming, a key advantage of

7

evolutionary algorithms, is limited, as prior regime specific rules are lost as they are evolved out

in favor of code more fit for the current period.

Modularity is listed as an open issue in genetic programming by O’Neill, Vanneschi,

Gustafson, & Banzhaf (2010). They state that “Adopting practices from other computer science

methods may be one source of tools” for achieving greater modularity (ibid., p. 12). Specifically

addressing automatically defined functions (ADF), an early GP approach to evolving reusable

functions (Koza, 1992), the paper further asks:

Are ADFs necessary/sufficient as a formalism to help solve grand-challenge problems i.e.

to provide scalability? And even more ambitiously: Can we achieve modularity,

hierarchy and reuse in a more controlled and principled manner? Can Software

Engineering provide insights and metrics on how to achieve this? (ibid., p. 13)

This dissertation argues that software design patterns can facilitate the “controlled and principled

manner” needed to achieve greater modularity and formalism.

Dissertation Goals

The goal of this dissertation was to improve upon the performance of DyFor GP for time

series prediction in the presence of regime change. This goal was achieved by incorporating a

regime detection branch into the genetic programming paradigm. The results of the regime

detection are used in the prediction process through two new modularity techniques:

automatically defined templates (ADT), a variation on automatically defined functions (Koza,

1994), and automatically acquired templates (AAT), a variation on module acquisition (Angeline

& Pollack, 1993). These new modularity techniques enable regime specific behavior in the

canonical genetic programming algorithm. The dissertation goal was measured by comparing

results achieved by the proposed approach to an implementation of DyFor GP created for this

8

study. Performance was measured by comparing the prediction accuracy and computational cost

of each approach.

The dissertation goal was realized by the development of a genetic programming system

incorporating and enhancing prior approaches to improved modularity (automatically defined

function and module acquisition) and regime change (DyFor GP). The system, though flexible

enough to address varied domains, focused primarily on financial prediction. Therefore, a

sufficient set of financial functions to enable realistic predictions was incorporated into the final

system.

Research Questions

This document presents a new approach for improving modularity in genetic

programming using software design patterns. This new approach must be compared to earlier

efforts at improving GP modularity. Automatically defined functions (Koza, 1994) and module

acquisition (Angeline & Pollack, 1993) are considered canonical approaches to modularity as

these were the first solutions addressing this problem and are widely referenced in academic

literature. Several related questions were addressed:

1. How do ADT and AAT compare with DyFor GP in performance accuracy and

computational cost? What is the benefit of these approaches over automatically

defined functions, with and without the presence of regime change?

2. Can the necessary computational performance be achieved using Clojure as the target

representational language? As a LISP dialect, Clojure can conveniently represent and

evaluate program trees directly. Though not an explicit goal of the project, its

implementation will determine the feasibility of this approach and whether an

9

alternate approach, such as another language like Scala, or alternate evaluation

method, such as direct expression tree evaluation in Java, is necessary.

Relevance and Significance

Genetic programming is only beginning to achieve the fundamental goals of artificial

intelligence, as stated by Arthur Samuel and quoted earlier in this paper. Koza et al. (2008) list

38 “human competitive” results produced through genetic programming. This number is only a

small fraction of the achievements realized by other automated or non-automated areas of human

research and discovery. In addition, programs generated by computers do not currently resemble

the highly structured code produced by humans. Incorporating additional software engineering

principles into the genetic programming model should help further this goal. There is no

theoretical limit to the quality of programs that can be automatically generated by genetic

programming. Producing code “which if done by humans would be assumed to involve the use

of intelligence” would prove a significant advancement.

Though the research presented primarily addresses the domain of finance, this research

more broadly applies to predicting any time series. Such data is prevalent in many scientific

domain, such as medical monitoring and especially in more random series, such as climate

modeling, where governing influencers may not be known beforehand.

Barriers and Issues

Predicting financial time series is difficult. That this problem has not been widely

accepted as being solved is proof of this difficulty. Many researchers believe, as described by

efficient market theory (Fama, 1965), that all available information and future expectations are

factored into the current price of any financial instrument and any future price movement is

caused only by unexpected events. If this theory is true, it would be impossible to make

10

predictions consistently superior to a buy and hold strategy. Some researchers, often subscribing

to technical analysis, hold that markets are not entirely efficient and are moved by human,

potentially irrational, factors and beliefs. This is evidently true as human decision making does

not use a single algorithm for determining when to buy or sell. No matter which side is correct,

there exists a multi-billion-dollar industry built around making correct investment decisions and

beating the market. While the primary goal of the proposed research is not to develop new

market beating strategies, adequate performance in such as task is necessary to justify the

approach and results. In addition, the stochastic approach used in genetic programming may not

always yield a successful outcome.

Genetic programming has its own set of complexities. A prime concern in GP is bloat, or

the tendency of generated programs to grow larger and larger, after a period of stability (Poli,

Vanneschi, Langdon, & McPhee, 2010). Bloat can complicate solutions and make them harder to

understand or slow down processing, allowing fewer and less optimum solutions to be

discovered (Jong, Watson, & Pollack, 2001). Often, limits on the size or depth of generated

solutions are applied. Modularity techniques, such as ADF, can also help combat bloat (Bleuler,

Brack, Thiele, & Zitzler, 2001).

Finally, though GP packages exist in many languages, extending GP in the manner

necessary required custom development to facilitate techniques not available in existing systems.

This undertaking was not trivial but was needed to achieve the desired goals. Alternative

approaches to genetic programming were implemented for comparison to the new methodology

presented. As no canned software exists or is generally available for these alternative

approaches, they were built based solely on descriptions in the literature.

11

Assumptions, Limitations, and Delimitations

The primary focus of this dissertation was on improving genetic programming

performance through enhanced modularity. While modularity in GP is an established research

area, the volume of existing research does not compare to the abundance of studies, academic

and industrial, on stock market prediction. Due to the potential financial reward, a large number

of studies on market prediction have been done. Many of these studies are not public, but kept

hidden behind the walls of hedge funds, as sharing this research would not necessarily be

beneficial. Regarding the widely known approaches to market prediction, many of the more

successful approaches often lose their performance edge at later times, pointing to regime

dependent factors. Even if regimes are considered in the prediction process, efficient markets

likely apply to some markets at some times, so a prediction approach consistently superior to a

random walk model is not likely achievable.

Another limitation of this study was the choice to restrict the number of predictor series

considered and focus development on the core algorithm, potentially at the expense of better

predictions. However, this methodology is easily extended to include additional predictors.

Another aspect of the presented approach that could affect prediction accuracy is the limitation to

a predetermined number of regimes. This constraint may limit performance accuracy if the

choice is incorrect. Typical of first implementations of new methodologies, future work can

extend this approach and incorporate regime number determination. This was the case with ADF,

which originally required declaration of a fixed number of ADF branches and was later extended

to discover the optimal number (Koza, 1994).

A core requirement in genetic programming is sufficiency, which holds that the primitive

operators available should be capable of solving the problem at hand (Koza, 1992). This

12

requirement demands a certain level of domain specific knowledge. In the case of non-

deterministic prediction problems, such as financial time series forecasting, the set of operators

sufficient for prediction is not agreed upon or even known. There exists a multitude of technical

indicators and possible predictor series available. There is no guarantee that the set of primitives

chosen by the analyst is indeed sufficient for the problem, though a good set of primitives can be

discovered via trial and error over multiple runs. However, comparative performance of the

proposed approach versus other GP approaches can still be measured.

There is no guarantee that either of proposed approaches will improve on existing

methods—there is no guarantee in any scientific endeavor. However, in the domain of financial

prediction, even a small improvement in performance will be extremely beneficial.

Definitions of Terms

Design Pattern – Common solutions to recurring problems. In software design, this term often

refers to patterns cataloged by the Gang of Four (Gamma, Helm, Johnson, & Vlissides, 1995) but

later expanded by other researchers.

Efficient Market Hypothesis/ Efficient Market Theory (EMT/EMH) – The theory that consistently

predicting stock prices is not possible since all currently known information is already factored

into the current price and future price movement is exclusively due to unforeseen events.

Data Generating Process (DGP) – The actual process producing the data observed in a time

series. This process is often unknown and only inferable through data observations.

Individual – A single program in a population of evolving programs.

Nonlinear Time Series – A series that cannot be modeled as a simple linear equation of

dependent variables. Structural breaks/regime change and chaotic series are examples on

nonlinear behavior.

13

Predictor Series – A time series that may be used to help predict another, target time series (see

Target Series below). An autoregressive approach implies the target series is itself a predictor.

Regime Change –A distinct shift in the appearance and behavior of a time series, perhaps due to

a fundamental change in the DGP (see above).

Stationary Time Series – A time series with a mean and variance that does not changes over time.

Informally, the series looks the same at any time period.

Stock Return – Percent change in price over a given period. Many studies use this metric instead

of absolute price as it is normalized to take into account varying magnitudes. Log return is also

frequently used in econometric studies, depending on the expected distribution of returns.

Target Series – The time series being predicted.

Technical Analysis - Financial series prediction approach based on historical pricing and volume

metrics of the target series. This approach often involves the search for visual patterns thought to

predict future trends.

Template – Related to the template method pattern (see Design Patterns above), an algorithm

where certain steps are deferred to multiple, context specific implementations.

Summary

A shortcoming of statistical methods of time series prediction is their non-realistic

assumptions, such as stationary and linearity. Soft methods of AI have been applied to prediction

problems to overcome some of these limitations or when the underlying data generation process

is unknown and cannot be modeled. However, most AI approaches do not address regime

change. Such a situation was shown to be common in time series such as occur in finance.

This dissertation presents a methodology to better predict time series in the present of

regime change using genetic programming. An existing GP methodology, DyFor GP, was

14

discussed and various ways to improve on this approach were presented. Most critically, DyFor

does not incorporate modularity features. Such features were shown to be a common path of

development in GP research and may hold promise for improved prediction performance. Two

modularity approaches, automatically defined templates (ADT) and automatically acquired

templates (AAT) are presented to address this problem.

15

Chapter 2

Review of the Literature

This paper presents automatically defined templates (ADT), a new approach to genetic

programming modularity that may improve time series prediction, especially in the presence of

regime change or other nonlinearities. Rather than an exhaustive review, this section highlights

the most prevalent methods of time series prediction from the econometric and AI literature.

Domain specific techniques that may be incorporated into the prediction are not. For example,

numerous stock prediction approaches exist in the academic and trade financial literature such as

put/call ratios, investment sentiment, etc. These techniques will only be discussed where

applicable to the methodology or a specific experiment. The actual methods used are

independent from the ADT methodology. The framework is able to choose and incorporate any

method specified as part of the set of primitives, as can most genetic programming approaches.

Time Series Prediction and the Stock Market

How to beat the stock market? This question motivates countless amateur and

professional financial researchers and traders. To beat the market, or at least trade profitably, the

trader must make appropriate buy and sell decisions. Such actions require a general idea of the

direction of the market. As this is a potentially lucrative problem to solve, numerous approaches

have been tried. These include classical time series forecasting approaches, such as such as

autoregressive methods, as well as “soft” methods of artificial intelligence, such as neural

networks and evolutionary programming. There is a long history of attempts at stock market

prediction. An exhaustive list of AI approaches are given in (Atsalakis & Valavanis, 2009).

Those most relevant to the proposed research is briefly described in this section.

16

Hellstrom compared the time series prediction approach with the model-driven approach

(Hellstrom & Holmstrom, 1999). In the former, epitomized by an autoregressive model, the

value of a time series at a future point is predicted using a root mean square error calculation.

The input is often a fixed-sized, prior slice of that time series. Investment decisions are taken

based on the predicted future value. In the latter model-driven approach, called by Hellstrom the

trading simulation approach, the prediction and investment decisions are separated. The input to

the model is a set of data available at the current time. The input can be a variety of indicators—

not only prior series values. The output of the model function provides a value that can be used

for investment decisions. The advantage of the model-driven approach is greater flexibility. The

model building task is described as “The task for the learning process in the trading simulation

approach is to find the function g to maximize the profit, when applying the rule on real data

(ibid., p. 4)”. However, though individual model parameters can be optimized via search, this

approach applied predefined models which were limited and static. The description of the model

approach is consistent with the techniques proposed in this paper. The proposed research

however takes a model discovery approach instead using of predefined trading rules.

Forecasting of time series is useful in many domains such as sales, marketing, and

finance. Wagner et al. (2007) discuss classical methods of time series prediction, which include

both linear and nonlinear regression methods, and non-deterministic AI-based approaches. They

note that all these methods “assume that the underlying data generating process of the time series

is constant” (ibid., p. 434). In addition, existing methods do not automatically handle regime

change and require human judgment in how and where to apply forecasting techniques in such

an environment (ibid.).

17

Often, attempts to reconcile this problem are handled by setting up training periods to

include [what are known to be] different regimes. In a study on profitable trading pattern

discovery using genetic algorithms, Canelas, Neves, & Horta (2012) make a stated choice to use

data from 1998 to 2010 , specifically to include both a bull and bear market in the single testing

period and “to include the instabilities and crisis of the year 2008 and beyond, to test our

algorithm on the worst market conditions of the last years (ibid., p. 1060)”. Even if training

occurs across different time periods and regimes, any approach which yields a single, static result

is limiting. It is likely that the US financial crisis of 2008 exhibit different underlying patterns

than the bull market of the late 1990s and those may differ from patterns seen in earlier decades.

Another attempt at addressing this problem was made by Yu, Chen, & Kuo (2005). This

study incorporated multiple, overlapping training/testing periods. Different GP runs were

alternatively processed against different periods, as shown in Figure 3.

Figure 3. Overlapping training period approach used by Yu et al. (2005, p. 18).

This approach, while perhaps more valid that those that employ single training and testing

periods, still has the disadvantage of discovering only a single set of prediction rules to be used

in all future periods and may not be optimal across regimes.

18

Econometric Methods for Time Series Prediction

The following methods are the most common and established in the time series prediction

literature. These are described with the intent of capturing these approaches in a GP model,

either as explicit functions or constructively from lower level building blocks. These methods

can also be extended for more general time series model building, where additional factors other

than the time series under analysis are considered.

The most basic statistical prediction method is linear regression. Linear regression was

also used as a basic example in (Koza, 1992).1 This technique attempts to explain a dependent

variable, such as the future value of a time series, via a series of observed independent variables.

The relationship is constant over of time and can be modeled in Equation (1), representing a line

with slope β and y intercept α.

y=α + βx (1)

For relationships with linear coefficients, a best fit line can be determined via the

ordinary least squares (OLS) method. As the observed values will not generally fall on the best

fit line for all but synthetic series, an error term is added to the model to yield the general

Equation (2):

𝑦𝑡=α + β𝑥𝑡 + 𝜇𝑡 (2)

Since 𝜇𝑡 is by definition unknown, the error term does not factor into any forecast.

Linear regression requires certain assumptions. Ordinary least squares estimation

assumes that the error terms follow a normal distribution with zero mean and constant variance

1 Koza called this symbolic regression and generalized this to an arbitrary, non-linear curve.

19

with no correlation between error terms. Real world time series do not follow this assumption

due to changing mean or variance (volatility), autocorrelation of error terms, or structural

breaks/regime change. The following econometric models address these limitations in the

attempt to provide more realistic and accurate predictions.

Equation (1) uses independent variables to predict a single dependent variable. However,

there is often no independent variable or explanatory model available, so the approach uses

lagged values of the dependent variable are used as predictors. This approach, called an

autoregressive model, is described by Equation (3):

𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡

Where: 𝑢𝑡 is a random shock occurring at period t

 µ is the process mean

 𝜙1 … 𝜙𝑝 are unknown coefficients weighing prior lagged values

 P is the order of the process

(Brooks, 2014, Section 6.3)

(3)

The above model is considered an AR(p) process, incorporating p lagged values. This model

ignores shocks from earlier periods (i.e. 𝑢𝑖<𝑡). Coefficients can be estimated using ordinary least

squares on sample data, as all the independent variables are observed.

In the linear regression and autoregressive models, the random shock at time t is assumed

to immediately decay to 0 at time t+1. However, a slower decaying noise can also be modeled,

assuming that such a shock takes several periods to be fully incorporated by the dependent

variable. Such a process is called a moving average process and can be modeled Equation (4):

𝑦𝑡 = 𝜇 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞

(Brooks, 2014, Section 6.3)

(4)

20

Unknown coefficients 𝜃1 through 𝜃𝑞 can be estimated using maximum likelihood or other

numeric methods. Least squares cannot be used, as the error terms u are not directly observable.

A common variation on the moving average process is exponential moving average. An

advantage of this approach is that only the prior period smoothed value is needed to predict the

current value, as illustrated in Equation (5):

𝑆 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1

(Brooks, 2014, Section 6.10)

(5)

𝑆𝑡 is the smoothed value at time t. α (0<=α<=1) is a smoothing constant weighing the current

value to past values. In forecasting, 𝑆𝑡 is taken as the predicted value for any future period.

The above two methods are combined into an ARMA (autoregressive moving average)

process, where both the influence of the random shocks and autoregressive effects are modeled.

An ARMA (p, q) process is composed of an AR(p) process and an MA(q) process. The

combination of Equations (3) and (4) yield Equation (6). Future forecasts are made by

extrapolating the model forward in time.

𝑦𝑡 = 𝜇 + Ǿ𝑦𝑡−1 + Ǿ2𝑢𝑡−2 + ⋯ + Ǿ𝑞𝑢𝑡−𝑝 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞 + 𝑢𝑡

(Brooks, 2014, Section 6.6)

(6)

Box and Jenkins (1976) popularized an iterative method for determining the parameters

of the ARMA process, making this arguably the most popular approach to time series prediction

(Zhang, 2003). The steps in this methodology are:

1. Identify the order of the process via graphical inspection.

2. Estimate the parameters (coefficients).

3. Test the model to determine errors.

4. Repeat until an appropriate model is determined.

21

ARMA assumes a stationary process. Often a non-stationary process can be made

stationary through techniques such as differences. A differencing factor is added into the model

description to yield an ARIMA (p, d, q) process, where d is the number of times the target

variable is differenced.

The econometric models previously described in this section assume stationary and linear

processes. It has been observed that many financial time series are nonlinear. This can be seen in

looking at stock volatility, as evidenced by the VIX index (Chicago Board Options Exchange,

2014), a measure of the volatility of the S&P 500 index, shown in Figure 4. Changing volatility

violates the constant variance condition of stationarity.

Figure 4. VIX index (Chicago Board Options Exchange, 2014).

Non-stationary series can often be made stationary by differencing methods, such as

using change in stock price (return) instead of absolute stock price. However, other

nonlinearities, such as structural breaks and changing volatility, can invalidate techniques such as

ARIMA (Zhang, 2003).

The ARCH (Autoregressive conditional heteroskedasticity) model applies an

autoregressive model to the series variance. Such an approach is widely used to financial series

22

modelling where the variance is seen to change over time in a correlated manner. The variance of

the ARCH model is governed by Equation (7):

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2

(Brooks, 2014, Section 6.6)

 (7)

The variance is assumed to follow an autoregressive AR(1) trend. The model for the dependent

variable is not restricted and may be linear, autoregressive, or other model. However, the

variance of the error is no longer assumed constant. Maximum likelihood numeric estimation can

be used to determine ARCH parameters from sample data.

Many observers have noticed that financial time series tend to make sudden shifts, such

as abrupt changes in mean or variance. Two models that address this concern are the threshold

autoregressive model and the Markov regime switching model. These methods are the primary

econometric alternative to the regime determination GP approach proposed in this paper. Both

approaches break the time series into two or more separate series, one for each regime, and apply

traditional modeling techniques, such as ARMA, to each independently. These methods differ in

how they determine regimes when the regime breaks are unknown. In cases when the breaks are

known, a more traditional seasonality approach using dummy variables can be used. The

widespread acceptance of these econometric methods also support the notion proposed in this

paper of using separate functions to determine regime breaks, independent of the primary time

series model.

The threshold autoregressive model uses a variation of a piecewise linear approach.

Regimes are determined by examining a time series of a chosen, observable variable, such as a

lagged value of the target series or another independent variable. Different models may then be

applied to each series. In Equation (8), two separate AR(1) models are applied depending on the

23

state variable in relation to a threshold r. Parameters can be estimated by maximum likelihood

method.

𝑦𝑡 = {
 𝜇1 + 𝜙1𝑦𝑡−1 + 𝑢1𝑡 𝑖𝑓 𝑠𝑡−𝑘 < 𝑟
 𝜇2 + 𝜙2𝑦𝑡−1 + 𝑢2𝑡 𝑖𝑓 𝑠𝑡−𝑘 ≥ 𝑟

(Brooks, 2014, Section 10.23)

(8)

By contrast, in Markov switching models, the regime boundaries are determined based on

a probabilistic model of an unobservable variable. This model was proposed by Hamilton (1989)

as an attempt to better estimate GNP (US gross national product) growth. Prior studies assumed

GNP “followed a stationary linear process”, often using standard first order differencing of the

return. Hamilton attempted to model a nonlinear stationary process governed by “discrete regime

shifts”

 A simple example is an AR(1) model subject to a regime dependent movement of the y

intercept, modeled in Equation (9).

𝑦𝑡 = 𝑐𝑠𝑡
+ 𝜙𝑦𝑡−1 + 𝜀𝑡

(Hamilton, 2008)

(9)

𝑐𝑠𝑡
, the y-intercept in Equation (9), takes two different values depending on the unobservable

regime governing variable s at time t. The result of the regime change is a vertical shift in the

trend line. S is determined probabilistically from the following equation.

𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖, 𝑠𝑡−2 = 𝑘, … . , 𝑦𝑡−1, 𝑦𝑡−2 …) = 𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑃𝑖𝑗

(Hamilton, 2008)

(10)

This model assumes two states. Each state is probabilistically determined by only the prior state.

Equation (10) states that the probability of being in state j at time t is based only the state at

time 𝑡−1. p is the probability of being in state 1 and staying in state 1. q is the probability of

24

being in state q and staying in state q. The state transition table of the two state Markov process

is:

𝑃𝑟𝑜𝑏[𝑆𝑡 = 1 |𝑆𝑡−1 = 1] = 𝑝,

𝑃𝑟𝑜𝑏[𝑆𝑡 = 0 |𝑆𝑡−1 = 1] = 1 − 𝑝,

𝑃𝑟𝑜𝑏[𝑆𝑡 = 0 |𝑆𝑡−1 = 0] = 𝑞,

𝑃𝑟𝑜𝑏[𝑆𝑡 = 1 |𝑆𝑡−1 = 0] = 1 − 𝑞

(Hamilton, 1989, p. 360)

(11)

The state transitions can be represented as a Markov state transition diagram, shown in the

Figure 5.

St=1 St=0

qp

1-q

1-p

Figure 5. Markov state transition diagram.

Even though financial series are certainly nonlinear, nonlinear models do not always

improve the out of sample performance over linear models (Dacco & Satchell, 1999). Regarding

regime switching models, a small error in calculating the correct regime often results in a larger

mean squared error compared to a random walk prediction (ibid.). Other researchers, (Allen &

Karjalainen, 1999) for example, have noted that the additional complexity of nonlinear models

encourage overfitting of the sample data at the expense of the out of sample forecasts.

25

Artificial Intelligence Methods for Time Series Prediction

The linear and nonlinear econometric methods described above attempt to specify a

model describing the underlying data generating process seen in observed data. The first step of

this approach is often to analyze the sampled data to determine the best choice of models and

initial estimates of parameters. Often, a model is not evident or does not sufficiently explain the

observed data. AI methods do not require this step and attempt to discover the correct model

directly from sample data. Neural networking and evolutionary algorithms fall into this category.

Neural networks.

Whereas evolutionary algorithms model biological evolution, neural networks attempt to

model the biological brain. Artificial neural networks (ANN) are composed of a network of

neurons and connections between neurons. ANNs attempt to model an unknown nonlinear

function. Given a set of inputs and, generally, one output, the system is trained and adjusted

incrementally on observed data. Once the system is adequately trained, forecasts can be made by

sending additional input into the system and observing the network’s output.

Neural network are able to approximate any nonlinear function, given enough internal

nodes (Zhang, Patuwo, & Hu, 1998). When lagged values of the series are used as input, the

network is the equivalent of the following nonlinear autoregressive function:

𝑦𝑡 = 𝑓(𝑦𝑡−1,𝑦𝑡−2, … , 𝑦𝑡−𝑝, w) + 𝜀𝑡

where w is a vector of connection weights.

(Zhang, 2003)

(12)

An ANN is typically composed of three layers of nodes with each node connected to all

the nodes in the next layer. The first layer, the input layer, accepts network input values. The

second layer, the hidden layer, takes the sum of the weighted values of the input layer as input. A

26

nonlinear activation function is applied to the sum of the weighted inputs at each node, with that

value propagated to the final, output layer. Each connection is modeled by a nonlinear activation

function, typically a logistic function that maps any real input to an output y in the range [-

1<y<1].

An autoregressive, time series prediction problem typically takes a sliding window of

lagged values as input to the network. During multiple iterations, a window of series data is fed

into the neural network and a back propagation algorithm is used to adjust network connection

weights based on the observed error at the output layer. This process is repeated for all training

data to arrive at a final network configuration. The ANN is then ready to predict of out of sample

data. Boolean output can be modeled by a defined threshold in the network’s output with any

real value over that threshold taken as true.

A limitation of neural networks is that the structure is relatively static and generally

limited to a small number of inputs, such as several lagged values of a target time series. By

contrast, the structure of genetic programming is essentially unlimited, bounded only by what

can be stated in its target language. GP also allows inclusion of a larger set of possible input

values, as the structure is less fixed and more options can be explored due to its inherent parallel

search across a large solution population. While ANNs contain a high level of parallelism, only

one model is typically built. Evolutionary algorithms build numerous, competing models in

parallel. ANNs typically only search for weights in a single, fixed network. The function

modeled by the ANN is also a black box with unobservable and uninterpretable inner workings.

While useful for forecasting, validating the model is challenging and little knowledge can be

gained from observing its workings.

27

Genetic algorithms.

Evolutionary algorithms produce software artifacts by applying principles of biology and

Darwinian fitness. Evolutionary algorithms are often used for problems where no deterministic

method is available and when a large solution space must be searched (Srinivas & Patnaik,

1994). In this methodology, a population of individual solutions is evolved using genetic

operators inspired from biology, such as mating and mutation, narrowing the search space while

producing increasingly better solutions. Branches of evolutionary algorithms include genetic

algorithms (GA), which models solutions as chromosome structures (ibid.) and genetic

programming (GP), which models solutions as computer programs (Koza, 1990). This section

briefly discusses some applications of genetic algorithms to prediction problems. The following

section addresses genetic programming in greater detail.

Most applications of genetic algorithms to stock prediction aim to optimize encoded

model. Mahfoud & Mani (1996) encoded variables into a GA chromosome to “represent various

factors, such as company earnings, that one might reasonably expect to have predictive value for

the future performance of a stock” (ibid.). Their study used 15 attributes such as, price/earnings

ratio and growth rate, as well as the stock’s return over a given prior period. The GA was able to

encode rules such as:

IF [Earnings Surprise Expectation > 10% and Volatility > 7% and . . .]

THEN Prediction = Up

 (Mahfoud & Mani, 1996, p. 567)

This approach is similar to that used in financial models. A limitation with this approach is that

the choice of variables needs to be fixed to a single or limited number of points in time. While all

28

these variables change over time, most models are restricted to values at a fixed point in time,

such as the stock price a week ago.

The limitation of genetic algorithms—and a reason why genetic programming may be

more applicable to the problem of stock prediction—is seen in the work of Canelas et al. (2012).

In this approach to stock prediction, most parameters were predefined and the GA simply found

optimal values for these parameters. An example GA chromosome used in the study is shown in

Figure 6.

Figure 6. Sample genetic algorithm chromosome used for stock

prediction by Canelas et al. (2012).

This example is the most complex chromosome in the referenced study and attempts to include a

reasonably large number of discoverable parameters in the search. However, there are still many

fixed assumptions made using the GA approach. Some of these assumptions are:

 A separate “exit long” pattern is assumed instead of “exiting long” when “enter

long” is not true.

 The strategy always sells after a period of time.

29

 The only indicator used is the discovered pattern in the time series under analysis.

This approach cannot take into account other commonly indicators such as new

lows/high, moving average correlation, and filter rules.

The limitations just described arise from the linear nature of a GA chromosome. Many tasks will

require a more complex problem representation—such as a computer program.

Genetic algorithms have also been used to address regime change. Davis, Lee, &

Rodriguez-Yam (2006) used a GA to model nonlinear time series subject to structural breaks.

The series is modeled by piecewise decomposition with each piece modeled as an autoregressive

process. The model is fully defined by specifying the number and location of the breakpoints and

the AR process order of each segment. These unknown parameters were determined using a GA.

The GA optimizes a maximum likelihood function with penalties for parameter size (such as

number of breaks) on the domain of all possible breaks over the series. Penalties are

incorporated to limit overfitting of the training data. Li and Lund (2012) applied a similar

approach to modeling climatic time series. Determining change points is necessary in climate

modeling in order to normalize data to account for occurrences such as moving of weather

stations or methodological changes. They observed that existing subsegmentation approaches,

where a series is recursively broken down by adding an additional change point, were not

optimal, especially where breakpoints occurred close in time. The study looked only at climate

annual data. Expanding the domain to daily or even hour data might prove too granular for this

approach.

Genetic programming.

Genetic programming is arguably the most flexible branch of evolutionary algorithms

and can model any problem whose solution can be described in computer language. Genetic

30

programming is also preferred over other forms of evolutionary algorithms in problems where

the parameters of the problem, called the size and shape, is not known beforehand (Koza et al.,

2006). While other evolutionary algorithms use a more fixed representation, such as bit strings,

the forms and solutions of genetic programming are essentially limitless.2

Programs evolved by genetic programming are often represented as tree structures. As

trees are the native syntax of the LISP family of languages, many early implementations of GP

used LISP programs as the target representation. To be applicable to GP, a method of

automatically ranking potential solutions, by a fitness function, must be definable. Fitness

functions can more easily be defined for prediction problems than for more abstract or subjective

problems, such as web site development or system architecture design.

Koza (1992, pp. 507-513) examined prediction of the logistics equation, an example of a

nonlinear chaotic time series. In such a chaotic series, described by Equation (13), the shape is

highly dependent on the initial parameters, 𝑥0 and 𝑟.

𝑥𝑡+1 = 𝑟𝑥𝑡[1 − 𝑥𝑡]

 Where 𝑥0 0<=𝑥𝑡<=1and 0< 𝑟 <=4 are fixed parameters

 (Koza, 1992, p. 508)

(13)

Dynamical systems are modeled for GP prediction by the inclusion of a lagged series prior value

(PV =𝑥𝑡−1, the equivalent of an AR(1) process) as an independent variable in a symbolic

regression model. When the initial condition is not known, Koza defined a two-part primitive,

2 In practice, these programs are often functional or expression oriented and do not necessarily resemble

human created software, though there is no theoretical reason why this needs to be the case.

31

syntactically constrained to appear only in the root of the GP expression tree. The first parameter

of this new primitive contains the initial real value 𝑥0 and the second component contains the

series prediction expression. Accurate results were found for x values in the range 1-10.

Mulloy, Riolo, & Savit (1996) investigated prediction of more complex nonlinear time

series than those examined by Koza, specifically the Mackey-Glass equation, which prior studies

had not successfully modeled. The authors incorporate additional lagged values but limit the

lagged input to ten prior values, noting that the size of the search space increase along with the

size of the terminal set and that this is an “interesting and perhaps fundamental issue for both

time series prediction research and GP dynamics research” (ibid., p. 169). The study used a

modified crossover approach to avoid premature convergence to random walk predictions where

the next predicted value equals the current observed value. Such behavior can occur in early

generations of solution evolution, before more detailed models can be evolved, as the prior value

is often a good prediction of the current value. A modified crossover operation, FONTX (forbid

one-node tree crossover), was used which simply rejects and reselects nodes when they are both

one node trees. This approach improved upon prior results in nonlinear GP prediction. While

having a higher MSE in training data, the study reported a lower MSE in testing data. They also

claim that an elitist approach, where the best individual of each generation is retained, might

further improve performance.

Kaboudan (1998) looked at determining whether a particular series can be predicted at all

or is purely random. This simple test was done by running a symbolic regression on the target

series and also on a shuffled (randomized) version of that same series. If any regularities exist in

the original data, the prediction error of the actual series should be less than that of the shuffled

series. The predictability metric used is shown in Equation (14).

32

𝐸 =
𝑆𝑆𝐸𝑠 − 𝑆𝑆𝐸𝑦

𝑆𝑆𝐸𝑠

Where 𝑆𝑆𝐸𝑠 is the sum of the squared errors of the shuffled series

𝑆𝑆𝐸𝑦 is the is the sum of the squared errors of the actual series

(Kaboudan, 1998)

(14)

A predictability value of E≈0 indicates random data while a value ≈1 indicates fully

deterministic data. Several commonly analyzed nonlinear series, with and without added noise,

were analyzed and it was shown that the predictability was proportional to the signal-noise ratio.

The approach just described was applied to prediction of individual stock returns and

stock prices (Kaboudan, 2000). The following three step process was outlined.

1- Use the predictability metric to determine if a series is predictable

2- Decide which prediction factors to incorporate.

3- Run GP to determine the underlying data generating process

To determine predictability, Kaboudan looked at only lagged values of the series to

determine whether a pattern could be uncovered in the data. For actually prediction, Kaboudan

used 35 indicators that included lagged pricing metrics and changes measured in the Dow Jones

Industrial Average. The study compared pricing series with returned series and found only prices

were deemed predictable as per step one above. This observation is likely due to the known

autocorrelation of absolute pricing levels. One day ahead prediction of pricing was done using

the evolved GP method and compared to a random walk. The GP method showed greater

accuracy than the random walk method. Accurate prediction of values further in the future was

not successful in this study.

33

The third step in the process described above has become a common approach to GP

stock prediction, where standard operators, technical indicators, and lagged series values are

established as the primitive set and an investment decision is made base on an evolved

expression approximating the underlying data generating process and its impact on investment

decisions. Individual prediction studies will vary due to researcher’s judgment in determining GP

parameters and experiment specifics.

Another pioneering study of GP and stock market prediction was made by Allen &

Karjalainen (1999). This approach can be taken as the canonical approach to GP based stock

prediction. This study used GP to investigate the value of technical trading rules, asserting that

prior econometric studies have been biased since the researchers choose the specific technical

rules to incorporate. This study attempted to use GP to uncover the rules and therefore avoid bias

since these would be discovered by machine learning. The study looked at the S&P 500 index

daily close from 1925-1995. An expression was evolved to determine whether to be fully

invested or fully out of the market. Fitness was evaluated by investment return, with out of the

market days accumulating a risk free return rate. Available functions included moving average

and extremum values (ma(n), max(n), min(n), over the prior n values), arithmetic functions (+, -,

/, *), logical (if-then-else, and, not, or, >, <) as well as Boolean and real valued (randomized

between 0 and 2) constants. Also included were current price (price()) and lagged values (lag(n))

functions from the target series. Fitness was calculated as the excess return over buy and hold.

Transaction costs were factored into the fitness calculation, greatly affecting the performance

and behavior of the reported results. Higher costs led to lower returns and more importantly,

fewer trades per year. This is an important consideration as it shows transaction costs cannot be

ignored during evolution and then factored in at a later time to calculate actual returns.

34

Allen & Karjalainen determined that the GP could not beat buy and hold when transaction costs

are considered. The study also, however, showed that the average return during periods in the

market periods is higher than the return during periods out of the market, indicating a strong

predictive value to the algorithm (ibid.). It should also be noted that transaction costs have been

continually falling. Figure 7 shows the drop in transaction costs from the mid-1970s through the

study period and can likely be extrapolated further. In addition, the 2000s saw the rise of high

frequency trading which further served to remove additional arbitrage possibilities in the spread

between bid and ask prices. Also, decimalization of US stock markets in 2001 (Securities and

Exchange Commission, 2001) lowered the minimum spread from 1/16 dollar to a penny, further

reducing trading costs. Reaching its ultimate conclusion, many services such as Robinhood

(Robinhood Financial, 2016) currently offer commission free trading with no apparent restriction

on trade frequency. Such trends show that transaction costs may factor less into realistic

performance models. Backtesting studies, however, may wish to replicate financial conditions at

the historical period, including transaction cost and risk free returns.

Figure 7. Average historical NYSE transaction costs, calculated as half-spread plus

NYSE commission. Taken from (Jones, 2002, p. 43).

35

A study claiming more success in forecasting future returns was presented in (Tsang &

Butler, 1998). The authors discuss the EDDIE 7 (Evolutionary Dynamic Data Investment

Evaluator) tool that assists in financial decision making. Users of EDDIE select a set of predictor

variables and choose a fitness measure of the form “will the target series gain X% in M days”,

where X and M are user supplied values. Standard GP methods are used to evolve Boolean

answers, which the user can interactively accept or further refine. EDDIE enforced a strict

grammar on the GP tree, constrained by the BNF syntax in Figure 8. In testing, a result of true is

taken as to indicate a fully invested position while a negative result indicates an out of the market

position.

Figure 8. The Backus-Naur grammar used in EDDIE 7 (Kampouridis & Tsang, 2012, p.

531). The root if-then-else condition results in a buy/don’t buy answer. The variables are

an arbitrary selection of technical analysis metrics.

Prediction of the S&P 500 index was done using the fitness goal “the index will rise by 4%

within 63 trading days (3 months)”. Results were compared to a randomized approach and

achieved an accuracy of 53.59% compared to 49.47% for the randomized approach. These

results, however, may not always beat a buy and hold strategy, which is highly dependent on

market trends over the analysis period.

The approach taken in EDDIE differs slightly from studies where the fitness criteria and

predictor variables are fixed, as it is designed as an end user research tool. This design choice

also avoids issues such as the combinatorial explosion of possible predictors, pinning that

36

decision on the user. A more recent version of the tool (EDDIE 8) (Kampouridis & Tsang, 2010)

incorporated a broader search by allowing parameters (input to the technical analysis indicators

variables in Figure 8, which were fixed at 12 and 50) to also be randomly generated. Analysis

using actual and synthetic data determined that the wider search space of EDDIE 8 can produce

better individual solutions though not improve the overall average (Kampouridis & Tsang,

2012). Specifically, the more constrained EDDIE 7 can perform better where the optimal

answers where contained in the smaller, original search space, indicating the tradeoff between

search convergence and search space. However, as the optimal solutions are invariably unknown

beforehand, the larger search space of EDDIE 8 appeared to be the preferable approach.

Chen & Yeh (1997) investigated the operations of efficient market theory (EMT) using

genetic programming. Instead of the probabilistic theories used in econometrics, could search

intensity—the difficulty to find any underlying patterns—be a reason why EMT holds? The

study first looked at several synthetic nonlinear equations, shown in Figure 9, and concluded that

search intensity is a valid measure to gauge the difficulty, or impossibility, of solving certain

equations.

𝑋𝑡+1 = 4𝑥𝑡(1 − 𝑥𝑡), 𝑥𝑡 ∈ [0,1] ∀𝑡

𝑋𝑡+1 = 4𝑥𝑡
3 − 3𝑥𝑡, 𝑥𝑡 ∈ [−1,1] ∀𝑡

𝑋𝑡+1 = 8𝑥𝑡
4 − 8𝑥𝑡

2 + 1, 𝑥𝑡 ∈ [−1,1] ∀𝑡

Figure 9. Nonlinear equations analyzed by Chen & Ye (1997, p. 1047)

As part of this investigation, a prediction study of the rate of return of the S&P 500 index

was done. That study concludes that GP can beat random walk prediction, but the computational

costs expended in finding appropriate models is too great and therefore cannot disprove EMT.

The methodology used was based on prior research which showed that though regularities in

37

price do not exist, or are averaged out, over the long term, they may exist for short periods. The

study chose a smaller analysis window that might exhibit such nonlinear dependencies. They

(arbitrarily) chose to look at windows of 50 values and uses a minimum description length

criteria to choose the most complex 50 value window across the entire time series, using that as

training data. Testing was done by predicting the rate of return for the five following values and

measuring mean absolute percentage error (MAPE). The study also compares AR(p=1..10)

processes and show that none of these beat random walk while 100% of the GP tests beat a

random walk in the in-sample data. Out of sample prediction was also compared to random walk

and shows approximately 50% beating a random walk. However, there was a negative

correlation between performance of in sample and out of sample predictions, implying

overfitting of the model, though many models were able to find regularities in both training and

testing data.

The existence of short term regularities and the potential for prediction over shorter time

periods is consistent with regime based behavior and the methodology presented in this

dissertation. Also, computational processing and availability of data is continually improving so

evaluation of any past must continually be revisited.

In examining earlier results in market prediction and genetic programming, Chen, Kuo, &

Hoi (2008), noted "the diversity of the results: They are profitable in some markets some of the

time, while they fail in other markets at other times, and so they are very inconclusive. (ibid., p.

99)". This may be due to the wide choice of parameters, data setup, and other implementation

decisions in the various studies. They further write:

The real issue is that research in this area is so limited that we are far from concluding

anything firm. In particular, GP is notorious for its large number of user- supplied

38

parameters, and the current research is not rich enough to allow us to inquire whether

these parameters may impact the performance of GP. Obviously, in order to better

understand the present and the future of GP in evolving trading rules, more research

needs to be done. (ibid., p. 100)

DyFor GP.

While recent GP prediction research has seen expansion into additional application

domains and investigation of optimal parameters, modularity, and alternate GP representations,

little has been done in addressing the issue of regime change—an area addressed by several

econometric methods. One GP approach that does address this concern is the DyFor GP

methodology (Wagner et al., 2007). As this primary goal of the proposed research is enhancing

this methodology, DyFor GP is now examined in greater detail.

The DyFor GP process is illustrated in Figure 10 through Figure 14. Figure 10 shows a

time series with two underlying data generation processes applicable at segment1 and segment2.

Two initial sliding windows, labeled win1 and win2, are used and a prediction made for a period

after the end of the two windows, labeled pred. As both windows are within segment1 and

therefore within a stable regime, it is likely that win2 will give a better result as it includes more

data points from the current regime.

Figure 10. DyFor GP sliding window example, 1 of 5.

Based on the prior comparison, the size of both windows are increased as shown in

Figure 11. As win2 still encompassed more of the current regime, it will likely still have better

39

predictive results than win1, so both windows are again expanded to include more of the current

regime.

Figure 11. DyFor GP sliding window example, 2 of 5.

In Figure 12, the regime begins to change. Win1 will likely have a better prediction, as it

includes less of the prior regime and an equal portion of the current regime.

Figure 12. DyFor GP sliding window example, 3 of 5.

Therefore, both windows are decreased in Figure 13.

Figure 13. DyFor GP sliding window example, 4 of 5.

In Figure 14, when the regime is once again stable, win2 should yield better predictions

than win1, so both windows are expanded to encompass more of the current regime.

Figure 14. DyFor GP sliding window example, 5 of 5.

By analyzing the pattern of window resizing, regime boundaries can also be estimated.

40

DyFor GP can also learn from experience by saving program snapshots for future use.

This approach may provide a performance benefit if future regimes are similar to those already

encountered during earlier iterations. When a stable regime is indicated (by a certain number of

consecutive window expansions) several of the fittest programs are selected and stored. As long

as the regime remains stable, these programs are overwritten with newer, presumably fitter

solutions. When a regime change is detected, the selected solutions are saved for future use.

When the next regime change is indicated, these stored solutions are incorporated into the

current program population in hope that these may be applicable to the new regime if it

resembles the period where these solutions were first generated. Stored solutions will be injected

into the current population until the regime is stable, at which point new solutions are once again

saved. As there is no fixed limit on potential regimes, solution injection may include code both

applicable and non-applicable to the current regime. However, program evolution should ideally

favor solutions that are more applicable to the current regime.

Bloat control in DyFor GP.

 Bloat is a long known problem in genetic programing where successive crossovers can

result in exponential program growth without increasing program fitness (Jong et al., 2001).This

problem is generally remedied by incorporating a fixed program depth or program size limit

(ibid.). Other approaches exist such as penalizing larger programs with decreased fitness.

Wagner and Michalewicz (2001) proposed alternative measure to control bloat and achieve

quicker solution convergence. These approaches were also incorporated into the DyFor GP

methodology.

 Instead of a fixed depth limit or maximum program size, DyFor GP incorporates a global

population size limit. Each evolving program can grow as needed with the restriction that total

41

population node count does not exceed a set limit. Simply replacing population node limits for

program size limits will not control bloat and still may evolve inordinately large programs which

will impact system performance.3 Instead, a new method of selection is used (Wagner et al.,

2007). After each dynamic generation4, the next generation population is created from two

groups:

1- Randomly generated programs

2- Subtrees of the fitter programs from the last generation

When dormant solutions are used and a regime change is in process (as described in the

section above), programs are also selected from

3- Subtrees of saved solutions from a prior environment

This approach differs from canonical GP and the approach presented in this dissertation, where

the next generation is constructed exclusively from the full fitter programs from the prior

generation.

Wagner and Michalewicz do not explicitly state how the fitter programs are determined

or how the subtrees are constructed. However, it can be inferred that after a series of training

generations within a single dynamic generation, a subset of the evolved programs is selected via

a tournament and a random subtree from each winning program is promoted to the next

generation. A percentage of next generation programs will also be generated from scratch. The

successive introduction of new programs necessitates additional training during each dynamic

3 This was confirmed experimentally in this dissertation while testing various size limit approaches.
4 A dynamic generation in DyFor GP includes one or more training generations and a prediction. After

dynamic generation, the window is slid forward in time.

42

generation, similar to the initial training phase that occurs during a typical new genetic

programming run. Wagner and Michalewicz (2001) show that this approach, independent from

the regime handling features of DyFor GP, achieves comparable results to other bloat control

approaches but uses less computer resources.5

Modularity in genetic programming.

An ongoing trend in genetic programming has been towards greater modularity. Besides

mimicking human programmer practices, modularity can optimize performance via code reuse

and increase program understandability (O’Neill et al., 2010). Modularity does not add any new

capabilities to GP, as most languages can express the same algorithm with or without functions

or similar constructs. On the surface, it simply allows a program to express the same functionally

in a smaller size (Woodward, 2003), though it can be shown to improve the performance of

certain classes of problems through decomposition and evolutionary development of individual

components (Koza, 1992).

GP research shows that enhanced modularity can produce programs more similar to what

a human programmer might produce, rather than indecipherable though syntactically and

functionally correct code. Banzhaf, Nordin, Keller, & Francone (1998, p. 84) provide an

informal comparison of steps in manual programming, such as cut-paste-modify of existing code,

to genetic methods, such as crossover and mutation. This comparison further shows the parallel

between manual and GP approaches to program creation and the potential to further model

genetic programming techniques on established software engineering principles and practices.

5 Wagner and Michalewicz (2001) did not examine the regime change features of DyFor GP.

43

Past research has seen genetic programming move in this direction by incorporating additional

stylistic elements over purely syntactic concerns.

 The first attempt at incorporating modularity into genetic programming was through

automatically defined functions (ADF) (Koza, 1992). ADF declares a fixed number of functions.

These functions are developed independently of, and can be used by, the evolving main program

branch.6 ADFs are specific to a program instance and are not shared by the larger population of

evolving programs. Developed concurrently with ADF, module acquisition (Angeline & Pollack,

1992) enables the evolution of code shared by all programs in the GP population. Instead of a

predefined number of functions, the module acquisition approach randomly extracts subtrees

from the main program tree in a single program and replaces this code with a call to the new

function. The function may be propagated to other programs in the population through genetic

crossover. High fitness functions that spread throughout the population become the equivalent of

shared code modules.

In examining modularity in GP-based approaches to stock market prediction, Yu et al.

(2005) showed that black box functions tend to evolve into true/false constants, eliminating the

benefit of modularity as equivalent code could be written with simple Boolean terminals.

Automatically defined macros (Spector, 1995) attempt to evolve control structures, not just black

box functions, and address the halting problem of recursive programs by lazy argument

evaluation. Yu & Clark (1998) achieved modularity through the use of lambda abstractions,

6 (Koza, 1994) discusses dynamically determining ADF parameters in a more detailed treatment of the

subject.

44

anonymous functions used as parameters to other functions. By expanding the primitive set to

include higher order functions that accept other functions as parameters, incorporating operations

such as map and fold which apply functions to a list of values, they were able to improve

performance in the Even-N-Parity problem (Koza, 1992) compared to the canonical GP approach

with ADF. Whenever a higher order function is chosen as a program element, a lambda

abstraction (anonymous function) is generated. These elements are pinned to the higher order

function as a strongly typed parameter and can mate with other lambda abstractions of the same

type. This approach also allows a limited form of recursion without the risk of an infinite loop.

While not specifically addressing the type of regime behavior discussed in this proposal,

incorporating higher order function could prove beneficial as an expansion of the GP primitive

set if complexity does not increase disproportionally.

Though these and other approaches for improved modularity have been proposed, ADF

still remain the most prevalent in the academic literature, perhaps because of its simplicity. ADF

will be used in comparison to the modularity approaches presented in this dissertation. Module

acquisition is also addressed as it was an early approach to modularity and holds many features

and goals in common with this dissertation research.

Patterns in Software Engineering

Design patterns are recurring solutions to common problems. Software design patterns

are often used as the basis for individual components within a larger application (Schmidt,

Fayad, & Johnson, 1996). Design patterns differ from software frameworks, which are the basis

for entire applications (Johnson, 1997). Design patterns can simplify code, improve

understandability, and accelerate development. Such a form of modularity may also improve the

45

performance of programs generated by genetic programming as measured by structural

complexity and computational effort.

Design patterns are perhaps the next stage in genetic programming development. Earlier

GP research focused on elements of modularity such as automatically defined functions and

recursion, more associated with the target language itself. Design patterns are software

engineering techniques that can be applied to a broad range of problems. Both approaches serve

to improve the quality of applications in terms of modularity, readability, and performance,

therefore increasing the potential knowledge gained from the transparent nature of genetic

programming solutions.

Gamma, Helm, Johnson, & Vlissides (1995) list 23 software design patterns to “record

experience in designing object-oriented software as design patterns. Each design pattern

systematically names, explains, and evaluates an important and recurring design in object-

oriented systems” (ibid., p. 2). They add “Design patterns make it easier to reuse successful

designs and architectures” (ibid.). For each pattern, Gamma et al. describe the pattern’s intent,

motivation, applicability, structure (using class diagrams), implementation, and other details.

These patterns are often referred to as Gang of Four (GOF) patterns.

The template method pattern is one of the original Gang of Four patterns. The template

method pattern defines “the skeleton of an algorithm in an operation, deferring some steps to

subclasses. Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure” (ibid., p. 325). This pattern allows an overall algorithm to be

defined while allowing multiple implementations of individual steps. This pattern is typically

implemented in object-oriented programming using an abstract class that cannot be directly

instantiated. Only concrete subclasses of the abstract class may be instantiated. The concrete

46

subclasses must implement any methods in the overall algorithm that are not implemented in the

abstract class. This approach allows for a great deal of code reuse and targeted behavior by

instantiation of appropriate subclasses.

Figure 15 shows a class diagram illustrating the template method pattern. In this figure,

an abstract class defines a concrete template method that references two local methods,

primitiveOperation1 and primitiveOperation2. These two methods are declared abstract, meaning

that the abstract class does not contain implementations for these methods but instead will defer

to a concrete (non-abstract) subclass. These concrete classes must implement the abstract

methods declared by the parent. Additionally, an interface specifies the contract that must be

followed by the abstract and concrete classes. The template method defines the overall logic of

the process, utilizing abstract and concrete methods contained or declared within the abstract

class.

Figure 15. Template method pattern class diagram (Gamma et al., p. 327).

Another GOF pattern that allows for multiple implementations of an overall algorithm is

the Strategy pattern. This pattern defines “a family of algorithms, encapsulate each one, and

make[s] them interchangeable (ibid., p. 315)”. The pattern “lets the algorithm vary independent

from the clients that use it (ibid.)”.

47

Figure 16. Strategy pattern class diagram (Gamma et al., p. 316).

In Figure 16, Context contains logic necessary to implement a task. Three possible strategies

exist for a portion of this task. Instead of incorporating all logic into Context and deciding which

approach to execute using conditionals, the pattern defines a Strategy interface along with

concrete implementations of this interface. The interface is injected into the context at run time

(at Context creation or later). The strategy pattern is often applied at program run time while the

abstract template pattern is typically defined at compile time. However, template method pattern

classes can be instantiated dynamically if needed.

 The template and strategy patterns are described in greater detail in Appendix A. The

template method pattern is used exclusively as a basis for the methods presented in this

dissertation. Though closely related, the strategy pattern was not incorporated and is left for

future consideration.

48

Chapter 3

Methodology

Overview

This dissertation expands upon prior research in applying genetic programming to time

series prediction. Two new modularity techniques were developed: automatically defined

templates (ADT) and automatically acquired templates (AAT). These methods are specifically

suited to handle dynamic changes in the underlying data generation process.

In the context of this research, templates (also called template methods or abstract

template methods) refer to the abstract operations specified in the template method pattern as

described in (Gamma et al., 1995, p. 328). In this software pattern, these abstract operations must

be implemented by concrete implementations. In the context of this research, the concrete

implementations are regime specific. This new approach is compared to DyFor GP, an existing

GP methodology that also addresses regime change in time series prediction, and is also

compared to other standard GP approaches.

A genetic programming system was developed that incorporates the two new modularity

approaches. The DyFor GP methodology was also implemented to enable direct comparison of

performance gains and uncover limitations of either approach.7 The design and implementation

of the system developed are presented in the following sections. The two new modularity

methods are briefly described. Regime handling is also discussed as are other common GP

related concerns.

7 The bloat control features of DyFor GP were not considered, as these features concern program efficiency

and not necessarily regime change

49

Most genetic programming implementations follow the canonical flow developed by

Koza (1992) and reproduced in Figure 17.

Figure 17. Canonical genetic programming flow. The lower two branches

represent probabilistic selection of genetic operators involving two parents, such as

crossover, or one parent, such as mutation. Taken from (Koza, 1992, p. 76).

The flow when automatically defined functions are included into the process is essentially the

same. Several function definition branches are defined and incorporated into the single evolving

program which is treated as a single unit, as shown in Figure 18. Koza (1994) specified a single

results producing branch and one or more function definition branches. The only change when

incorporating ADFs is that two-parent genetic operations can only occur between nodes in the

same branch.

50

Figure 18. Program tree including an ADF branch.

Taken from (John R. Koza, 1994, p. 74).

The methodology developed for this dissertation follows the same paradigm as ADF,

with the addition of several new program branch types. Besides the results producing branch, this

approach also contains the following elements:

 One regime determination branch, modeled as a separate program.

 One or more template definition branches. These branches implement regime

specific modularity as defined by the appropriate method: ADT or AAT. In

general, there will be one implementation of each template definition branch per

regime.

Instead of a single program, each individual in the population references two evolving

programs—a result producing program (RPP) and a regime indicator group (RIG)—as shown in

Figure 19. As in the canonical approach, each program is treated as a single evolving unit. Two

parent crossover is only allowed between branches of the same. Selection and fitness operations

are modified and are described below.

A population of regime indicator groups evolves in parallel with the main program

branch. A regime indicator group will contain 2n Boolean indicators for n possible regimes. The

number of potential regimes, n, is predetermined by the analyst. Domain knowledge can

51

reasonably determine this number. For example, stock markets regimes are typically classified as

bull/bear/sideways markets. Regimes can also be applied to other situations, such as low or high

inflation periods.

Evolutionary regime discovery is optional. Predefined, rather than evolved, regime

determination logic may be used, if domain knowledge, or other algorithms, such as pattern

recognition or classification, makes this possible.

Values

Regime
determining
binary result

progn

Regime Determining Program

Values

defun

ADF0
Argument

List

Body of
Function

Definition
Branch

Regime Determining BranchFunction Definition Branch

Values

defun

RI0
Argument

List

Body of
Regime

Indicator 0

Values

defun

RI1
Argument

List

Body of
Regime

Indicator 1

Regime Indicator Groups

Figure 19. Regime determining program branch tree structure.

The result producing program in ADT is similar to the ADF approach shown in Figure

18, but replaces the function definition branch with a template definition branch. A sample

program of this type is shown in Figure 20.

52

progn

ValuesValues

defun

ADT0
Argument

List

Abstract body of
ADT0 template

definition

Body of Results
Producing

Branch

Concrete
implementa-

tion0

Concrete
implementa-

tion1

Result Producing Program

Results Producing Branch
Template Definition Branch

Figure 20. ADT tree structure. Both branches are represented as a

single program containing two possible regimes. Labels artificially

conform to common LISP syntax used by Koza (1992, 1994).

Fitness of RPP individuals can only be calculated independently if no regime dependency

logic is needed, as in canonical GP or ADF. In ADT, a regime program is required to fully

calculate the fitness of a RPP program. Fitness calculation is not possible for RIG programs, as

there is generally no fitness function to determine its performance at regime detection other than

in synthetically created cases. These two programs must be joined prior to fitness calculation.

The modified ADT algorithm is shown in Figure 21. The major steps are the following:

1. The initial population of regime indicator groups (RIG) and results producing program

(RPP) is randomly initialized using available primitives and modularity approaches.

2. Calculate initial population fitness using an appropriate selection approach. Details of this

fitness calculation method is discussed below.

53

3. The termination criteria are checked after each iteration.

4. Calculate population fitness at the start of each generation using an appropriate selection

method. Details of this fitness calculation method is discussed below.

5. Probabilistically determine which genetic operation will be applied to the RIG and RPP.

The selected operation may be different for each program group. Candidate individuals

from RIG and RPP are chosen by traditional N-way tournament selection.

6. For crossover, two parents are needed to produce two offspring. For all other selected

genetic operations, one parent is needed to produce one offspring. Determine if another

offspring is needed for either RIG or RPP. If yes, execute tournament selection again.

7. Execute the required genetic operation and insert the new offspring into the current

program population.

54

Gen:=0

Create Initial Regime Indicator
Group Random population

Create Initial Result Producing
Program Random population

Termination
Criteria

Satisfied?

Designated
Result

End

Randomly select N
individuals from
Regime Indicator

Group

Randomly select N
individuals from
Result Producing

program

Gen := gen + 1

N -Way
tournament

parentsRIG>
winnersRIG?

Probabilistically
Select Genetic
Operation for

Regime Indicator
Group

Probabilistically
Select Genetic

Operation for Result
Producing Program

parentsRIG = 1 parentsRIG = 2 parentsRPP = 1 parentsRPP = 2

winnersRIG :=
winnersRIG +1

winnersRPP :=
winnersRPP + 1

winnersRIG:=0 winnersRPP:=0

parentsRPP>
winnersRPP?

Yes Yes

winnersRIG
=1?

winnersRPP
=1?

Perform
Mutation in

Regime Indicator
Group

Perform
Crossover in

Regime Indicator
Group

Perform
Mutation in

Result Producing
Program

Perform
Crossover in

Result Producing
Program

Winner Replaces
Parent in Regime
Indicator Group

Winners Replace
Parents in

Regime Indicator
Group

Winner Replaces
Parent in Result

Producing
Program

Winners Replace
Parents in Result

Producing
Program

Go To Next Iteration

Yes

No

Pm

Pc Pm

Pc

No No

Yes No
Yes No

1

2

3

4

5

6 7

Start

Calculate Population
Fitness using 4-way

Selection

Calculate
Population Fitness
using Super-Parent

Selection

Figure 21. ADT algorithm flow chart.

Two different approaches to evolving the regime indicator population were developed

and tested. In the first approach, the RIG population was completely decoupled from the RPP

population; each population evolved independently. For a fitness calculation to occur, an

individual from the RIG population must be selected and paired with an individual from the RPP

55

population at calculation time. An alternative approach, also implemented, permanently couples

an RPP program with an RIG program, similar to the coupling of a results producing branch and

a function defining branch in ADF. Note that the decoupled approach allows the total population

size of each program group to be definitely separately, while the couple approach requires the

same number of RPP individuals as RIG individuals. This flexibility may be valuable for

domains where more resource must be directed to one type of program, though this capability did

not prove an advantage in the domain addressed in this dissertation. These two approaches are

discussed in greater detail below. Both approaches were compared in an initial set of

experiments, with the best approach used exclusively in the final set of experiment.

Fitness and Selection

The primary difference between the proposed approach and canonical GP is the use of

and interaction between two program branches: the regime detection branch and the results

producing branch. Tournament selection is used exclusively as the proposed approach does not

easily lend itself to rank based selection. As typically done in tournament selection, several

individuals are selected from the RIG and RPP populations. The individual with the best fitness

in each population is chosen for further propagation.

Decoupled approach to selection.

Decoupled evolution maintains independence between the RPP and RIG program

populations; these two populations evolve separately. In order to calculate the fitness of an

individual program, a program from the other branch is required. Two variations on selection are

used: super parent tournament and four-way tournament. Probabilistic choice can be used to

determine which approach is used in each instance.

56

Super parent.

In the super parent approach, the best (elite) results producing program and best regime

detection program from the prior generation are used as the “other” program in every fitness

calculation for the subsequent generation. In this approach, the fitness of any one program can

be interpreted as the incremental effect that program will have on the best results so far. This

approach also allows the calculation of the full population fitness prior to selection, a feature

necessary for other selection strategies such as rank or fitness proportional selection.

The super parent approach is not possible for the initial fitness evaluation in generation 1,

as no best programs yet exist. In this case, another approach described below, four-way

tournament, may be used, or a simple random selection of individuals may be performed.

Four-way tournament.

Regime indication often has no applicable fitness function, as regimes are not necessarily

observable. Therefore, the fitness of a regime indicator program is defined as the fitness of the

result producing program using its functionality. As no independent fitness measures exist, the

regime indicator fitness is evaluated on a relative basis, looking at its impact on two (or more)

result producing programs.

 To implement four-way tournament selection, two regime groups are selected at random

to participate in a 4-way tournament. Two RPP programs are also selected at random for

participation. Both regime indicator functions are applied to each main program to determine

which of the two indicator groups better predicts the actual regime. A total of four fitness

calculations will therefore be made. Each regime indicator will have two fitness score, one

related to each main program. The regime indicator group with the higher total fitness score will

57

be considered the winner of the tournament. Likewise, the main program with the higher total

fitness score will be considered the winner of the tournament. The winners in each group will be

selected for mating with the winners from a subsequent tournament.

Comparison between the effects of two different regime indicators serves the same

purpose as dual sliding windows in DyFor GP. The more fit a regime indicator, the more likely it

will propagate to the next generation. As each indicator group contains logic to determine any

potential regime, these do not need to be saved off for later use, as is done in DyFor GP, but can

continually evolve. Allowing continued evolution of regime indicator groups should provide

improved fitness in subsequent generations by effectively increasing the number of program

generations.

Coupled approach to selection.

The coupled approach permanently associates a single RPP with a single RIG individual.

Each program still only participates in evolutionary operations with other programs of the same

type, but no selection step for joining a regime determining program with a result producing

program is necessary. The programs shown in Figure 19 and Figure 20 are combined in the

coupled approach into a single program, as shown in Figure 22. The architecture of the joined

program is essentially identical to the architecture of an ADF program, Figure 18, with the

inclusion of regime specific, template oriented, behavior.

58

progn

ValuesValues

defun

ADT0
Argument

List

Abstract body
of ADT0

template
definition

Body of
Results

Producing
Branch

Concrete
implementa

-tion0

Concrete
implementa

-tion1

Result Producing Program

Results
Producing

Branch

Template
Definition

Branch

Values

Regime
determining
binary result

progn

Regime Determining Program

Values

defun

ADF0
Argument

List

Body of
Function

Definition
Branch

Regime
Determining

BranchFunction
Definition Branch

Values

defun

RI0
Argument

List

Body of
Regime

Indicator 0

Values

defun

RI1
Argument

List

Body of
Regime

Indicator 1

Regime Indicator
Groups

Figure 22. Tree structure for coupled ADT.

N-way tournament.

For the coupled approach, no selection step is needed to pair regime determining

programs with result producing programs. Therefore, a standard N-Way tournament is

appropriate whenever program selection is required. In this type of tournament section, N

programs are randomly chosen with the program with the best fitness determined the winner.8

Fitness calculation.

Fitness evaluation requires both a result producing program and a regime detection

program. For each evaluation, the regime is first determined by executing the applicable regime

determining program. The RPB program is then evaluated in the context of the selected regime.

Any included templates in the program will be evaluated using the concrete implementation for

the predicted regime. Actual fitness is determined by the domain specific calculation used,

applied to all points in the applicable data window. For symbolic regression and synthetic time

series prediction, this final fitness is the mean squared error or mean error compared to the

8 N is typically between 2 and 4.

59

known correct value. The final fitness value is generally the average error over all individual

calculations.

Exponential moving average.

Fitness calculations of predictions taken over a data window typically average the results

over the entire window. This approach, essentially identical to a simple moving average of

period equal to the data window size, gives equal weight to all predictions; those predictions at

the start of the period impact fitness the same as the most recent data points. When regime

change is encountered, this equal weighting may hurt subsequent predictions, especially when a

large data window is used. DyFor GP uses an adjustable sliding window to better handle this

situation. A method proposed here is to use an exponential moving average fitness calculation

instead of a simple moving average.

In an exponential moving average (EMA), more recent values are weighed higher than

older values. The weighing of older data points decreases exponentially and approaches, but does

not reach, zero. EMA is frequently used in time series prediction to model the decreasing impact

of earlier shocks to the series. In the current context, shocks are prediction errors, as determined

by the applicable fitness function. As was already shown in Equation (5), the EMA is calculated

recursively, its value being a simple proportioning between the current series value and the prior

EMA. The proportion allocated to each of the two values may vary as needed in order to give

more or less weight to recent values.

Automatically defined templates.

The first and simplest modularity approach presented in this dissertation, automatically

defined templates (ADT), is patterned after automatically defined functions (Koza, 1994), the

pioneering GP modularity method. In ADT, one or more abstract template methods are specified

60

as part of the system parameters. These template methods become a part of the available program

primitives and are evaluated at execution time using a regime specific implementation. As in

ADF, these template methods evolve separately from the result producing branch, which may

include the template method(s) in its available function set. Each program contains multiple

implementations for each defined template, one for each potential regime. In ADF, by contrast,

each program contains exactly one implementation of any function.

Crossover.

As in ADF, crossover in ADT is constrained to program branches of the same type. If an

ADT is chosen for crossover, another ADT from the other program must also be chosen. If a

program contains multiple ADTs, only one is chosen for crossover. Crossover may therefore

occur between ADTs of different arities. Each ADT contains an implementation for each

regime. Crossover occurs only between program trees implementing the same regime.

Automatically acquired templates.

The second modularity approach presented, automatically acquired template (AAT), is

patterned after module acquisition (Angeline & Pollack, 1993). Templates methods are

discovered during program evolution and extracted from the evolving program into a shared

library. AAT allows templates to be shared across programs within the population. This form of

shared code is not available in ADF or ADT.

As in MA, AAT randomly selects a node in a program from the population and extracts

that sub tree as a new abstract template method. The extracted code is replaced by a call to this

new method in the original program. The extracted template method is inserted into a shared,

global library. Separate results producing and regime determining libraries are maintained,

associated with the two respective program branches.

61

Module acquisition enabled sharing code modules through the crossover operations.

Similarly, when a subtree containing an AAT call is selected for crossover, the AAT call may be

exchanged with the other program. Differently from MA, AATs also continue evolving. In the

case where two AAT nodes are selected for crossover, the two library methods will be used in

the crossover instead of the RPP program. As multiple programs may be referencing these shared

templates, these evolutionary changes may be propagated across a large number of programs.

Similar to module acquisition, AAT compression does not add the newly extract module

to the list of available program primitives. Adding these extracted methods primitives would

likely decrease program efficiency, as the number of library functions can expand quickly. MA

also defines an “expand” method that replaces any module calls in a single program with the

module code. This is done to avoid a proliferation of modules and to add back some diversity in

the program population that was removed by the extraction operation. If a module is expanded

and no references to that module remain, it is removed from the program population. AAT also

implements this feature.

Crossover.

A major difference between AAT and MA is that in MA, extracted modules are immune

from any further modification. Kinnear (1994) listed this as a possible deficiency in MA

compared to ADF. In AAT, by contrast, further module evolution is allowed. During AAT

crossover, if an AAT and a non AAT node are selected, those nodes and their contained subtrees

are exchanged. The AAT implementation simply moves between programs. This approach

would not allow for further modification of AATs. To allow for further evolution, if two AATs

are selected for crossover, the AAT implementations are exchanged and not the calling

62

programs. As in ADT, regime implementations will only crossover with the corresponding

regime implementation from the other program.

Sufficiency

A core principle of genetic programming is sufficiency: the primitive operators available

should be capable of solving the problem at hand (Koza, 1992). As financial time series is a

principle domain of this research, a reasonable selection of financial was developed as part of the

implementation based on reference experiments. Common mathematical operators used to model

time series are also included. These primitives are described in Appendix C.

Specific Methodology

The methodology described above can be illustrated in the following simplistic example.

The basic genetic programming framework is not described here. A standard GP framework,

such as discussed in (Koza, 1992) with modifications described above should be assumed. Only

features specific to this dissertation are discussed in greater detail below. An additional example

of stock market prediction along with a template oriented implementation is discussed in

Appendix B.

The following example aims to evolve a population of Boolean expressions to determine

whether to be invested in the stock market at any point in time. The fitness measure is not

relevant to this example, but can be assumed to be simple profit over a discrete time horizon.

Investment decisions are based on a long-flat Boolean indicator dictating either full investment

or no exposure. Four regimes are initially defined by the analyst. Each regime indicator group

must therefore contain two indicators, each returning a Boolean value of true or false. Regimes

can be determined by the indicator group values in a simple manner as illustrated in Table 1.

63

Table 1. Regime Determination Using Two Indicators

Indicator 1 Indicator 2 Binary Regime

false false 00 1

false true 01 2

true false 10 3

true true 11 4

Each indicator group can be seen as a single expression tree involving two indicator

functions concatenated to form a binary number. The internals of each indicator expression is

constrained only by the available primitive functions and by the strongly-typed Boolean return

type requirement.

Determine
Regime

indicator1 indicator2

?.. ?.. ?.. ?..

Figure 23. Sample regime determining program tree. The bottom nodes represent

the parameters to the Boolean indicator functions and may be any evolvable

expression tree.

Automatically defined template example.

Automatically defined templates (ADT) is in most ways identical to automatically

defined functions (ADF). ADT requires prior specification of the number of template-defining

branches. The return types of the templates and number of parameters are also determined by the

64

analyst. Each template method is then made available to the result producing branch as a

primitive operation. The principal difference between ADT and ADF is that ADT contains a

distinct implementation of the function for each regime.

At some point in program evolution, the following Boolean expression may exist:

MA(20,0) > MA(60,0) and MA(20,-20) > MA(00,0) and ADT0()

MA() is a simple moving average calculation defined as:

Integer MA (int Days, int Offset)

Days: calculate moving average over this number of periods (i.e.

60 day moving average)

Offset: take the moving average value a fixed number of days in

the past (i.e. Value of moving average 15 days ago)

ADTO is an automatically defined template with four regime specific implementations. The

evolved program can be seen as a combination of regime specific logic (ADTO) and fixed logic

(everything else). The example program is shown in Figure 24 in tree structure. ADT0 is

implemented for each discovered regime, as shown in Figure 25.

AND

> > ADT0

MA MA
MA MA

20 0 60 0 20 -20 20 0

Figure 24. Program tree incorporating an abstract method.

65

0 Regime 1-4

ADT0
(1)

ADT0
(2)

ADT0
(3)

ADT0
(0)

>

MA MA

45 0 45 0

>

MA MA

45 0 45 0

... ...

1 2 3

Figure 25. Regime specific template implementations. A numeric regime indicator

determines which implementation is executed.

The program in Figure 24 can be interpreted as a single template method containing one

abstract operation (ADT0) and additional concrete operations (everything else). If the root AND

node was a child of another parent node (i.e. used by another operation in a larger program),

either the AND node or the parent node could be considered the root of a template method.

Neither interpretation will affect the functionality of this approach.

Automatically acquired templates example.

The second form of modularity developed in this dissertation is automatically acquired

templates (AAT). This approach is modeled after module acquisition (MA) (Angeline & Pollack,

1993). In MA, a node is randomly chosen in a program tree for extraction. That node’s subtree is

removed from the results producing branch and is used to create a new function in the module

library. The extracted code is replaced by a call to the new function. In MA, any nodes more than

given depth below the root of the function are not included in the new function, but are instead

66

defined as parameters to the new function, and therefore kept part of the results producing branch

(Angeline, 1994).

Figure 26. Module acquisition compression operation. A depth limited subtree is extracted

and a new function, newfunc, is defined. newfunc includes parameters for each branch not

included in the function because of the depth limit. Taken from (Angeline, 1994, p. 13).

AAT includes a similar approach, but, as in ADT, regime specific implementations is

created for each extracted function. Further evolution of the extracted modules is allowed within

the crossover constraints discussed earlier in this paper. Extracted node depth limit was not

incorporated into the current implementation of AAT, but could be added in the future.

AAT is illustrated in the Figure 27 through Figure 30. Figure 27 shows a program tree

similar to the example in Figure 26.

67

or

not or

and
not d2

d0
notd1

d0

AND

MA

60 0

Max Depth

Figure 27. Program tree prior to AAT extraction. Target node for extraction and maximum depth

are show in red. Depth limit is not implemented in the current version of AAT.

The left sub tree, rooted at the topmost OR, is chosen for extraction into a separate

template method. The original tree is modified as shown in Figure 28.

AND

MA

60 0

newfunc

d1 not

d0

d0

Figure 28. Program tree after AAT extraction.

68

Three parameters were created for the new function, using the depth limiting extraction

operation of module acquisition. The new function will therefore accept three parameters and is

shown in Figure 29.

or

not or

and not d2

p3p2p1

Figure 29. Function tree extracted by AAT. The “not” node,

shown in red, is chosen for abstraction.

A template method is now abstracted as a separate, evolvable, function. Further pattern-

based modularity is now applied to the new template method. Each node within the method is

assigned a random possibility for abstraction. Those nodes within the new template method

chosen for abstraction will reference regime specific implementations. In this example, the

leftmost NOT operation is selected for abstraction. Therefore, a concrete function of Boolean

type must be implemented for each regime as shown in Figure 30. The regime specific functions

are seeded with the original abstract method code but each will evolve independently. P1 and P2

are the same nodes from the original abstract method.

69

0 Regime 1-4

ADT0
(1)

ADT0
(2)

ADT0
(3)

ADT0
(0)

1 2 3

and

p2p1

and

p2p1

and

p2p1

and

p2p1

Figure 30. Regime specific template implementations created by AAT extraction.

Implementation.

The methodology described above was implemented and validated through the creation

of a genetic programming system. GP systems have been successfully built using a variety of

languages and platforms. Due to the expertise of the researcher, a Java system was developed.

Using Java also allows a large number of third party libraries, such as for technical analysis or

other domain specific purposes, to be used.9

Many early tree-based GP implementations used LISP as the program representation, as

LISP syntax corresponds directly to the underlying abstract syntax tree (Koza, 1992, p. 81).

Clojure is a dialect of LISP that runs on the Java virtual machine and integrates with the Java

language (Hickey, 2014). Initially, the implemented system was built to evolve executable

Clojure programs. The evolved code was able to incorporate Java libraries to reference domain

specific functionality such as econometric functions. However, initial performance profiling

9 Python and C also provide a large number of third party libraries suitable this purpose.

70

determined that the overhead of evaluating Clojure programs from a Java framework and having

those Clojure programs call other Java methods, while functional, performed poorly. Therefore,

an alternative approach evaluating the Java tree representation directly was implemented. This

method performed extremely well.

Each evolved program branch is represented internally as Java tree. Evolutionary

operations will take place on Java object trees. Each node in the tree will contain objects that

map directly to the available primitive set. To determine program fitness, the expression tree is

evaluated, beginning at the root node and proceeding in a depth first manner incorporating eager

node evaluation.

The following symbolic regression example attempts to fit a function to approximate

sample data. In this example, the sample data is generated by the function 𝑥2 + 𝑥 + 1 in the

domain [-5 ... 5]. In additional to typical GP parameters such as population size, crossover

probabilities, selection methods, etc., the available primitives must be specified.

Two types of primitives are defined: terminals and functions. Any Java class that

implements the interface Terminal and Function may be included as an available primitive. For

this example, a set of terminals and functions are defined and are shown in Figure 31. These two

sets combine to make up the primitives available to the evolutionary process. Other domains,

such as financial prediction, will include a different, and generally much larger, primitive set.

Terminal[] terminals = new Terminal[]{

 new RandomInteger(lowRandom, highRandom), new Variable("x")};

Function[] functions = new Function[]{

new ClojureAdd(), new ClojureDivide(), new ClojureSubtract(),

new ClojureMultiply()};

Figure 31. Primitives set used in GP example.

71

Each of the concrete terminal classes must implement the Terminal interface. Each of the

concrete function classes must implement the Function interface. This relationship is illustrated

in the class diagrams in Figure C1 and Figure C2 in Appendix C.

As an example, at some point during evolution, the following program is evolved,

represented by the Clojure expression (+ (+ 5 x) 5) and shown in Figure 32 in tree structure.

+

+

5 x

5

Figure 32. Tree structure representing the sample Clojure expression (+ (+ 5 x) 5).

The java implementation builds a similar tree, but uses the classes shown in Figure 33.

Add

Add

RandomInteger
5

Variable
x

RandomInteger
5

Figure 33. Java implementation of a sample S-expression tree.

Directional linkages are implemented via a parameter array in each function of the same size as

the arity of that function. For example, the Add class contains an array of two primitives,

representing the two parameters to the addition function.

72

It is this Java tree structure that actually undergoes the evolutionary operation. For

evaluation, the root node is passed to an evaluation processor, along with the relevant test data,

for fitness evaluation. The evaluation processor evaluates the root Add node and eagerly

evaluates all child nodes, before returning the evaluation result. In this case, the test data is

simply the integers in the range -5 to 5, along with the actual value of the function 𝑥2 + 𝑥 + 1.

Using a fitness function that minimizes average error, this individual program would have an

error of 7.36, as shown in Table 2. A simple regression example such as this will generally

converge to the correct answer quickly.

Table 2. Sample Fitness Evaluation Using Mean Error

X Calculated Expected Error

-5 5 21 16

-4 6 13 7

-3 7 7 0

-2 8 3 5

-1 9 1 8

0 10 1 9

1 11 3 8

2 12 7 5

3 13 13 0

4 14 21 7

5 15 31 16

Average Error: 7.3

As part of this dissertation, an implementation of DyFor GP was created based on the

specifications in (Wagner, 2005) and (Wagner et al., 2007). A new implementation was needed

as no extensible version of DyFor GP was available and to provide a common implementation

73

platform for realistic comparisons. ADF was also implemented and used as a baseline

comparison for project experiments.

The template method and most other gang of four patterns is typically implemented in

object oriented languages using subclasses (Gamma et al., 1995, p. 325). Many functional

languages, such as LISP and Clojure, do not use literal subclasses. To simulate subclasses and

regime specific behavior, the regime is first determined and passed as a parameter to the result

producing program. When a template node is encountered for evaluation, the appropriate regime

implementation, as indicated by the regime parameter, is selected and evaluated.

Optimizations.

Several techniques were used to improve performance of the prototype. These

optimizations are not specific to the approach discussed in this paper and may have been taken

from existing methodologies where noted. The techniques here are just a small portion of the

possible optimization that can be done for improved performance of a software system such as

this.

Strongly typed GP.

Canonical GP often incorporated the closure principle, which holds that any function

result or terminal value may be used as the input of any program function. While this is

convenient and avoids many implementation challenges, this approach was determined

inappropriate for the various financial functions needed for realistic market data scenarios.

The prototype implements strongly typed genetic programming (Montana, 1995), where

each terminal and function returns a specific type and each function parameter is defined as a

specific type. Boolean and Numeric were the only data types used in the implementation.

74

Garbage collection in AAT.

When an expanded AAT library module is no longer used by any program in the current

population, it can be permanently removed from the library, there being no way for it to be

reincorporated into a future program. A garbage collection process was incorporated to

efficiently implement this feature. Every N (a configurable parameter) generations, the library is

checked for non-referenced programs and these are removed from the library. This technique

was necessary to efficiently manage memory, as libraries were observed to grow quickly and to

contain mostly unused functions.

Maximum predicted values.

In time series prediction, and especially in symbolic regression, the MSE of a bad

prediction can easily approach infinity. This prediction can negatively skew the overall results

and invalidate overall averages. Instead of throwing these predictions out as outliers, a maximum

predicted value was included as a configurable program parameter. This approach, admittedly,

requires some domain knowledge of the series to be predicted and the underlying data generation

process. For this study, a maximum prediction of +/- 10 was used in symbolic regression and

time series prediction. A maximum allowable prediction is not needed for market data

investment experiments as a worst case fitness will approach zero, not infinity.

Trivial prediction protection.

Often, a time series prediction algorithm will converge to a random walk prediction,

where the predicted value simply equals the current value. The resultant program will be

equivalent to 𝑦(𝑥) = 𝑦(𝑥 − 1). This often occurs in early generations of GP where no

regularities are yet found. This situation can only occur if lagged values of the target series are

75

included in the primitive set. Therefore, a feature was implemented to filter out individual

programs where a certain percentage of predictions exactly match the prior value.10

 It can also be argued that a random walk prediction is actually a good prediction,

especially if no better alternative exists. However, implementing trivial prediction protection

discourages solutions converging around a random walk prediction. In the case where a random

walk is truly the best prediction, the results will often achieve a near random walk (i.e. 𝑦(𝑥) =

𝑦(𝑥 − 2) or approximate).

Forbid two root crossover.

Mulloy et al. (1996) developed a genetic operator called FONTX (forbid one tree

crossover). This operator is based on the observation that any crossover of two single node

programs will result in a duplicate of both parents and therefore not improve overall population

fitness. Such crossovers can also promote the type of trivial predictions discussed in the

preceding section. The FONTX approach was modified slightly to prohibit crossover of any two

root nodes even if they are not single node programs. As crossover of root nodes will always

produce two identical offspring, this larger set of forbidden crossovers prohibit a wider variety of

identical offspring.

Omniscient regime detection.

Regime determination is not always obvious, even to an analyst looking at the raw data.

Other times, regime boundaries may be evident, but may still be difficult to programmatically

10 A parameter of 95% was used in the experiments in this dissertation. An “exact” match includes values

within a predefined variance; 0.0001 in these experiments.

76

determine due to noise or alternative possible regimes. A goal of this dissertation was to develop

methodology incorporating regime determination and use that information to improve time series

prediction predictions. To better evaluate the value of that goal, an additional experiment was

included where the regime determining branch is an infallible, fixed implementation. No

evolution of the regime determining branch needs to occur and the results achieved can be seen

as the best case scenario, where perfect regime detection is achieved. Omniscient regime

detection is not included in the market data experiments as actual regime boundaries are open to

interpretation.

Experiments.

Several experiments using synthetic time series were described in (Wagner &

Michalewicz, 2008). These experiments were reproduced and their results compared. An

implementation of DyFor GP was created for this dissertation with the goal of sharing as much

common code as possible so not to skew comparisons due to implementation details. DyFor

specific code amounted to only of 413 out of 11,510 lines of Java source code.

Synthetic series.

Wagner & Michalewicz’s (2008) prediction experiments included two synthetic time

series. Synthetic time series were used to force distinct and observable regime changes. The

series used are show in Figure 34 and Figure 35 and are described in greater detail in Chapter 4

of this document. This synthetic approach may not be consistent with any real world time series,

but is a valuable controlled test of the described methodology and may be applicable to other,

non-financial domains, such as control theory. In addition to the two synthetic series used for

prediction experiments, an additional series was developed for use in a symbolic regression

experiment.

77

Figure 34. LG-OZ-LG synthetic time series used by

Wagner & Michalewicz (2008).

Figure 35. MG-HEN-MG synthetic time series

used by Wagner & Michalewicz (2008).

Synthetic series experiments compared the following approaches:

1. ADT

2. AAT

3. DyFor GP

Symbolic regression experiments compared:

1. ADT

2. AAT

3. Canonical GP

4. ADF

78

Market data series.

For a real world experiment, Wagner & Michalewicz (2008) addressed US Gross

Domestic Product prediction. This dissertation instead chose to consider stock prediction as a

real world example. An experiment presented by Chen et al. (2008) was instead used as a

comparison benchmark.

Looking at prior inconclusive results in market prediction using genetic programming,

Chen et al. (ibid.) attempted a more compete study by looking at eight international stock

markets and eight foreign exchange markets.11 Parameters included those used in earlier

benchmark studies and time frames were updated to include more current data. The approach

used genetic programming to produce an invest/don’t invest decision at any point in time. Fitness

was measured by the investment gain relative to buy and hold approach.

The market data experiment done for this dissertation replicated the S&P 500 index test

reported by Chen et al. (ibid.). Additional factors included in that experiment, such as short

selling and comparison to approaches other than buy and hold, were not considered.

Measuring performance.

Several categories of performance can be measured:

1- GP performance – best measured by how quickly the solution converges to a final

answer before plateauing or even worsening.

11 The Chen et al. (2008) study was based strongly on (Allen & Karjalainen, 1999) and attempted to expand

that study to multiple international equity and currency exchange (FOREX) markets as well as and to compare GP

with trading strategies other than buy and hold. Both studies share many of the same parameters incorporate similar

fitness functions. As the data is slightly more up to date, this study uses Chen et al. as a benchmark.

79

2- GP accuracy – domain specific measurements determining how close the solution

comes to a known answer, or a measure of relative accuracy between two

competing solutions.

3- System performance – best measured by CPU load, memory usage, and

processing time.

Koza (1994) evaluated GP performance of alternative approaches in terms of solution

size and computational effort. The latter measure was defined as the number of fitness

evaluations required during program execution. Chen, Kuo, & Shieh (2002) define “search

intensity” as a function of both population size and total generations, the product of which

approximately equals the number of fitness evaluations. However, while increasing either of

these parameters will generally increase GP performance, each achieves a different incremental

improvement. In addition, a diminishing return may be reached when increasing either

parameter. While Chen et al. give advice on determining optimal population size and number of

generations, a simpler count of fitness comparisons is an appropriate measure of computational

effort and was used to measure computational performance in the dissertation experiments.

Specific to regime dependent study presented here, measurements will be made to

determine the proportion of regime dependent code versus shared code. A metric describing this

proportion is defined in Equation (15).

𝑅𝑉 =
𝑅𝐷𝑁

𝑇𝑁

Where: RDN = regime dependent nodes

TN = total nodes

(15)

A solution with no regime dependent code is obviously no better, and likely less efficient,

than a non-regime aware solution. Ideally a balance of regime and non-regime dependent code

80

will be realized. This measure is only applicable to the proposed approach but helps explain the

results achieved and is noted where measurable.

 Many measures of GP accuracy exist in the literature. For symbolic regression prediction

problems, where a single deterministic solution is known, mean squared error (MSE) is often

used. However, for a more stochastic system, MSE could yield unduly high errors even if the

general trend of the prediction is correct. This is also a problem with approaches that attempt to

predict point in time values of a stock series. A stock prediction off by one day would likely still

be profitable, but could have a high MSE when measured against the actual value. By

incorporating a maximum predicted value, MSE can be used even when unboundedly large

prediction may occur.

Prediction problems typically use the prediction itself as the sole measure of accuracy,

such be investment percentage gain (Canelas et al., 2012) or prediction accuracy (Wagner et al.,

2007). Li & Tsang (1999) used GP to determine whether a stock series would gain 2.2% or more

within 21 trading days. The GP output positive or negative. The fitness measure used was to use

Rate of Correctness, defined as:

𝑅𝐶 =

𝑃 + 𝑁

𝑇

where: P = number of correct positive predictions

N = number of correct negative predictions

T = total number of predictions made

(Jin Li & Tsang, 1999).

(16)

Such as measure is only applicable to binary outcomes. A system that looks for general

profitable investments would not likely use such as narrow fitness measure. Any gain over a

81

fixed safe return, or other risk-free alternatives, would be a desirable result. Li & Tsang (ibid.)

also proposed other measures such as Rate of Missing changes and Rate of Failure and attempted

to combine these three measures into a weighted fitness function tailored to the investors risk

tolerance. In this dissertation, such a measure would not be appropriate and it is geared towards a

determination of effectiveness between several approaches and not necessarily to maximize

profit in a day to day trading environment. For stock market prediction, simple profit is used as

the fitness measure and will be used to compare prediction accuracy. Transaction costs will only

be considered when comparing against other studies that included such costs. Volatility and

investment risk, often considered in market prediction studies, were not incorporated as these

were not included in the benchmark experiments replicated in this dissertation.

GP performance was measured by total fitness and node evaluations. CPU and memory

execution were not considered as these are dependent on the actual hardware used and on

available primitives and their implementation.

Resource Requirements

The system implemented in this dissertation was developed on a Windows 10, I5 dual

core CPU laptop with 8 GB of Memory. JetBrains IntelliJ 15 was used as the Java development

environment. The Java system was built on top of the spring boot framework (Pivotal Software,

2016). The parameter files, included in Appendix D, are based on the Spring Boot command line

format. Market data was retrieved from Quandl (Quandl, 2016) and loaded into a SQL Server

Express database running on an Amazon Relational Database Services (RDS) db.t2.micro

instance. Results were compiled using Microsoft Access 2016 and Microsoft Excel 2016. This

document was produced using Microsoft Word 2016.

82

Experiments were run on as Amazon EC2 (Amazon Web Services, 2014) on Ubuntu

Linux 14.04 m4.large and m4.xlarge instances or on the development laptop. Runs were

generally limited to one concurrent run per CPU.

Summary

This section described the methodology and implementation developed to incorporate

software design patterns into genetic programming for better prediction of financial and other

nonlinear time series. It was shown that regime change is a critical and overlooked area in time

series prediction using evolutionary methods. Genetic programming, along with the template

method pattern, should allow custom regime specific implementation to evolve in the context of

an overall prediction methodology. Incorporating design patterns will result in generated code

more similar to what would be produced by human programmers. The next chapter describes the

results of experiments using the methodology described in this chapter.

83

Chapter 4

Results

This section presents the results of experiments performed for this dissertation. The tests

are divided into two categories:

1. Synthetic Test

2. Market Data Tests

The synthetic data series were used to provide targets with known data generation

processes so that accurate fitness can be measured. These series are also used to simulate regime

change, as such a scenario is often not evident actual real world data sets.

The market data sets enable testing the proposed methodologies on real world data, in

situations similar to what would be used in practice. Such series often contain a random

component and therefore exact prediction of these series cannot be made. Alternative prediction

methods can, however, be compared on a relative basis.

The exact methodology used is described with each experiment. Variations on the

methodology described in Chapter 3 were necessary to replicate certain benchmark studies that

may have used different approaches to handling out of sample data.

Synthetic Series

Three synthetic series were analyzed. Two of these are chaotic series, reproduced from

prior studies on time series prediction. The third series is developed for this study as a simpler,

non-chaotic series, also containing abrupt regime changes. Several approaches were evaluated

for each synthetic series. Not all approaches were considered for each experiment. These GP

approaches include:

84

1. Canonical Genetic Programming (GP)

2. Automatic Defined Functions (ADF)

3. Automatically Defined Template (ADT)

4. Automatically Acquired Templates (AAT)

5. DyFor GP

Both market series and synthetic series have been used in past studies on prediction using

evolutionary algorithms. Where applicable, the results achieved in this study are compared with

those presented in earlier works.

Data analysis.

Three synthetic series were evaluated. Two of these series were used in (Wagner &

Michalewicz, 2008). These series, called LGOZLG and MGHEMMG, are built by splicing

together two different series in order to simulate a change to the underlying data generation

process. These two series can be considered chaotic, as their shape is highly dependent on initial

conditions. An additional series developed for this research, called SINCOS, is included as a

simpler example of regime change, not dependent on initial conditions or lagged values.

SINCOS.

The first synthetic series, SINCOS, is a non-chaotic series that is not dependent on initial

conditions nor prior series values for its data generation. A hurdle often encountered in

automated prediction is the convergence on trivial, though approximate solutions, such as

predicting 𝑦(𝑡 + 1) = 𝑦(𝑡). (Mulloy et al., 1996). In many cases, such as stock market series,

this is a reasonable prediction. For the synthetic series described above, this may be a reasonable

approximation, but it is not indicative of the underlying data generation process. A synthetic

series was therefore created that avoids this problem by not relying on lagged values.

85

A SINCOS series is created by sequencing the following individual series:

 0<=x<70: 𝑌𝑡 = 𝑠𝑖𝑛(𝑥) + √𝑥

70<=x<130: 𝑌𝑡 = 𝑐𝑜𝑠(𝑥) − √𝑥

130<=x<200: 𝑌𝑡 = 𝑠𝑖𝑛(𝑥 − 130) + √𝑥 − 130

(17)

The resultant series is show in Figure 36.

Figure 36. SINCOS synthetic time series.

This series is used to test symbolic regression, where an equation for a time series is

discovered based on empirical data points. The entire series was used for training and no out of

process prediction stage was incorporated. DyFor GP is not included in this experiment as it is

only applicable to prediction problems. Canonical GP and ADF are applicable and were both

included in the experiment.

-15

-10

-5

0

5

10

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

Y

X

86

Experimental approach.

Each evolutionary algorithm is run on the entire time series for a fixed number of training

generations. Each generation will produce a best fit regression expression. Elitism is used to

preserve high performing individuals across generations. No out of sample testing is

incorporated and no prediction is done. The best result achieved after the final training

generations are used as the overall regression.

LGOZLG.

This series, taken from (Wagner & Michalewicz, 2008), is created by combining a

logistic map (LG) with an Ozaki simple linear function (OZ).12 The formulas for each

component of the LOGOZLG series are:

 LG: 𝑌(𝑡+1) = 4𝑌𝑡(1 − 𝑌𝑡)

OZ: 𝑌(𝑡+1) = 1.8708𝑌𝑡 − 𝑌𝑡−1

(18)

As per Wagner & Michalewicz (ibid.), the combined 400 length series is taken by using

LG for t values 1-200, OZ for t values 201-296, and LG for t values 297-400. As the initial LG

component depends on a prior series value, 0.9 is used for Y(t=0) as in the benchmark

experiment. The final series is illustrated in Figure 37.

12 This series is referred to as LG-OZ-LG in (Wagner & Michalewicz, 2008). This document uses the slight

abbreviation LGOZLG.

87

Figure 37. LGOZLG synthetic time series.

The experiments described by Wagner & Michalewicz (2008) perform training on points

1 through 100 and prediction on points 101 through 400. Training occurs within the confines of a

single regime. Therefore, regime dependent methods such as ADT should hold no initial

advantage. In addition, as regime change occurs around point 200, ADT will continue to hold no

advantage as it has not yet been trained on this new regime. DyFor GP should perform well, as it

simply reacts to decreasing prediction accuracy by adjusting its two dynamic windows. In order

to better gauge the performance of ADT, training was done on points 150-250 with prediction

done on points 251-400. This training window includes two regimes. The original 1-100 training

window used in the benchmark experiment is also evaluated.

Experimental approach.

In both this series and the following synthetic series, initial training is done for a fixed

number of generations on a static training window. Following training, a prediction is made,

using the best individual from the training phase. After each prediction, another training

generations is run and a new best individual selected. Training is done using a fixed size window

-3

-2

-1

0

1

2

3

0

1
3

2
6

3
9

5
2

6
5

7
8

9
1

1
0

4

1
1

7

1
3

0

1
4

3

1
5

6

1
6

9

1
8

2

1
9

5

2
0

8

2
2

1

2
3

4

2
4

7

2
6

0

2
7

3

2
8

6

2
9

9

3
1

2

3
2

5

3
3

8

3
5

1

3
6

4

3
7

7

3
9

0

Y

X

88

that slides forward with the prediction target. Following training, the prediction target is moved

forward and the predication/training cycle continues until the end of the target time series

reached.

MGHENMG

This series, also taken from (Wagner & Michalewicz, 2008), is created by combining a

by combining a Mackey-Glass series (MG) with a Henon Map (HEN).13 The formulas for each

component are:

 MG: 𝑌(𝑡+1) = 𝑌𝑡 +
0.2𝑌𝑡−30

1+𝑌𝑡−30
 10 − 0.1𝑌𝑡

HEN: 𝑌(𝑡+1) = 0.3𝑌𝑡−1 + 1 − 1.4𝑌𝑡
2

(19)

As per Wagner & Michalewicz (ibid.), the combined series is created by using MG for t values

0-200, HEN for t values 201-300, and MG for t values 301-400. Training begins at data point

t=31 to allow for the necessary number of lagged data values. As any point in the series depends

on the prior 30 values, a data generation process is followed as outlined in (Wagner &

Michalewicz, 2008) that first calculates 30 random values to serve as offsets. An MG series of

length 1200 is then generated. The last 200 data points of this 1200 length series are used as the

first MG section. This data generation algorithm will add a degree of randomness to each run.

However, for consistency between test runs, a set of 30 random values were generated and

reused in all subsequent runs. These random values are listed in Appendix F. An example of a

13 This series is referred to as MG-HEN-MG in (Wagner & Michalewicz, 2008)

89

generated MGHENMG series is shown in Figure 38. As with LGOZLG, training will occur at

period 150-250 to include two regimes.

Figure 38. MGHENMG synthetic time series. Initial conditions are provided in Appendix F.

Experiment parameters.

Where possible, the same parameters used in (Wagner & Michalewicz, 2008) were

replicated. A primary difference is that in this experiment, a fixed population size is used while

the benchmark study maintains a total population node size limit. A total node limit, allowing

individual to grow as needed, is not appropriate without implementing additional population

control features. A more common approach of incorporating maximum tree depth was used in

this experiment to control program growth. This value was lowered from more traditional value

of 17 to a value of 10. A lower value should force more creative and interpretable solutions and

limit overfitting. In addition, as these series are synthetically generated, the optimal solutions to

these series are known to be achievable within those limits.

Table 3 through Table 6 show the GP parameters used for these experiments.

Differences among experiments are described immediately below the common parameters. Full

experiment parameters are provided in Appendix D.

-1.5

-1

-0.5

0

0.5

1

1.5
0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1

2
1

2
6

1
4

0
1

5
4

1
6

8
1

8
2

1
9

6
2

1
0

2
2

4
2

3
8

2
5

2
2

6
6

2
8

0
2

9
4

3
0

8
3

2
2

3
3

6
3

5
0

3
6

4
3

7
8

3
9

2

Y

X

90

Table 3. Common Parameters Used in Experiments

Parameter Value

Population Size 3000 (prediction)

5000 (regression)

Initialization method Ramped Half-and-Half

Tournament Size 4

Crossover rate 0.9

Reproduction rate 0.0

Mutation rate 0.1

Training Generations 41 (prediction)

100 (regression)

Termination Max. generations reached

Training Window Full series for symbolic

regression

See below for prediction

experiments

Initial Depth 5

Max Depth 10

Table 4. ADT Parameters

Parameter Value

Number of regimes 2

ADF arities 1,2

Training Window 110

Table 5. AAT Parameters

Parameter Value

Number of regimes 2

Crossover rate 0.8

91

Parameter Value

Reproduction rate 0.0

Mutation rate 0.1

Compression rate 0.05

Expansion rate 0.05

Minimum compression Size 5

Training Window 100

Table 6. DyFor GP Parameters

Parameter Value

Max Window Size 200

Min window size 20

Start window size 80

Window difference 20

N 3

Save Off 10

 Synthetic series prediction experiments were run using two different training windows.

Training window size remained 100 but the starting point was moved. Version 1 begins at point

0 while version 2 beings at point 130. The first version keeps all training in the same regime.

This would appear to be advantageous for DyFor GP. The second version performs initial

training across regime boundaries, seemingly advantageous for ADT/AAT, as that approach can

consider multiple regimes simultaneously.

The primitives chosen were the same as those used in (Wagner & Michalewicz, 2008).

However, additional ephemeral real numbers were included, as they were deemed necessary for

sufficiency and were likely used in the benchmark experiment though not discussed. Protected

92

operations are implemented where appropriate, as is typically described in the literature. The

following primitives were used:

Functions:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Sin

6. Cos

7. Square Root

8. Exponentiation of Euler’s number (e).

9. Natural Logarithm

Terminals:

1. Random Integer [-1...110]

2. LGOZLG: OffsetValue (1), OffsetValue (2)

MGHENMG: OffsetValue (1) ... OffsetValue (31)

To enable sufficiency in regime determination, additional functions were made available to the

regime determining branches in ADT and AAT:

Regime Functions:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Logical And

6. Logical Not

93

7. Greater than

8. Arbitrary series offset value.

9. Period Minimum

10. Period Maximum

11. Period Standard Deviation

12. Period Average

As these additional functions should add no value to DyFor GP and perhaps detract from its

performance, they were not included in the DyFor GP set of available primitives. These

primitives are described in Appendix C.

Findings.

The results recorded in the synthetic series experiments are provided in the following

sections.

SINCOS.

Table 7 summarizes the results obtained from the SINCOS experiment. 20 runs of

population size 5000 were performed. The average and best fitness, standard devitalization, and

average number of evaluations required are listed. Both coupled and decoupled ADT and AAT

are tested. Samples of actual parameter input is provided in Appendix D. The full set of

experimental parameters is available on the data distribution website mentioned in Appendix I.

ADT and AAT were the best and worst performers, respectively. Regime analysis

showed that ADT essentially discovered the true regime while AAT did not. Both these methods

required approximately double the fitness evaluations of the canonical methods when using the

decoupled approach.

The improvement when using the coupled approach is significant. Coupled ADT

consistently provided the best overall results in this experiment. As shown in the charts in

94

Appendix G, ADT correctly determined the actual regime and approximately correct regression

on the actual series. Of equal import, the coupled approach requires approximately the same

number of fitness evaluations as the canonical approaches, while, in the case of ADT, providing

much better results.

Table 7. SINCOS Symbolic Regression Results

Series Runs

Avg. Final

Fitness

Std.

Dev.

95% CI Best Final

Fitness

Avg.

evaluations

Decoupled

ADT 20 1.016 0.795 [0.667 - 1.365] 0.323 11,427

ADF 20 1.708 0.228 [1.608 - 1.808] 1.269 5,902

GP 20 1.729 0.159 [1.659 - 1.798] 1.361 6,504

AAT 20 1.905 0.433 [1.715 - 2.094] 1.289 11,362

Coupled

ADT 20 0.742 0.134 [0.683 - 0.817] 0.398 5808

ADF 20 1.715 0.250 [1.606 - 1.856] 1.093 5907

GP 20 1.806 0.209 [1.714 - 1.923] 1.448 6497

AAT 20 2.030 0.553 [1.787 - 2.340] 1.497 5767

Note. CI=Confidence Interval, calculated using the CONFIDENCE.NORM function in Microsoft Excel.

ADF and GP are not impacted by coupling approach. Any observed differences are due solely to expected

random variations.

95

Coupled Decoupled

Figure 39. Average fitness for SINCOS symbolic regression experiment.

LGOZLG

In the LGOZLG experiments, ADT also outperformed AAT and a coupled approach also

outperformed a decoupled approach. ADT also outperformed the benchmark DyFor GP in this

test at a 95% confidence level. Contrary to expectations, Omni runs did not generally produce

better results. An explanation of this fact is that evolution tended to use the additional available

modularity for purposed other than the expected regime demarcation. AAT continued to perform

poorly, being the only method that did not beat a random walk prediction on average.

Table 8. LGOZLG Prediction Results

0

1

2

3

4

5

6
1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Fi
tn

es
s

Generation

AAT.avg fitness ADF.avg fitness

ADT.avg fitness GP.avg fitness

0

1

2

3

4

5

6

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Fi
tn

es
s

Generation

AAT.avg fitness ADF.avg fitness

ADT.avg fitness GP.avg fitness

96

Series Mean MSE Std. Dev. 95% CI Min. MSE

Random

walk

predictiona

DyFor GP 0.204 0.104 [0.158 - 0.250] 0.052 0.313

GP 0.305 0.187 [0.223 - 0.387] 0.100 0.313

Decoupled

ADT 0.118 0.066 [0.089 - 0.147] 0.047 0.313

ADT OMNI 0.143 0.139 [0.082 - 0.204] 0.002 0.313

AAT 0.430 0.286 [0.305 - 0.555] 0.108 0.313

AAT Omni 0.559 0.327 [0.416 - 0.702] 0.103 0.313

Coupled

ADT 0.100 0.066 [0.071 - 0.129] 0.056 0.313

ADT OMNI 0.128 0.066 [0.099 - 0.157] 0.014 0.313

AAT Omni 0.377 0.213 [0.284 - 0.470] 0.106 0.313

AAT 0.491 0.444 [0.297 - 0.686] 0.101 0.313

Note. CI=Confidence Interval; Training done on points 150-250. Predictions done on points 251-400.

Coupling approach is not relevant to DyFor GP and GP.

 a Assumes predicted next value equals current value.

Figure 40 illustrates the relative prediction accuracy of all approaches versus the DyFor

GP benchmark. While ADT achieves a much better overall score, DyFor does better in the initial

prediction rounds. ADT and ADT Omni perform better during the regime switch that occurs

around generation 200. These results are in line with expectations, as ADT has already seen that

regime in earlier training, while DyFor GP is simply reacting to worsening predictions. Further

confirming expectations, DyFor performs somewhat better than canonical GP, indicating that its

regime handling capabilities do have a positive effect

97

Decoupled Coupled

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1

1
1

1
2

1
1

3
1

1
4

1A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

AAT

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

A
ve

 E
rr

o
r

Generation

AAT

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1A

d
va

n
ta

ge
 o

ve
r

b
en

ch
m

ar
k

Generation

AAT Omni

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

A
ve

 E
rr

o
r

Generation

AAT Omni

98

Figure 40. Relative performance of ADT vs. DyFor GP in LGOZLG experiment. Values below

0 indicate the approach performed worse that the DyFor GP benchmark.

 Total fitness evaluations, shown in Table 9, are similar to what was seen in the prior

experiment. As was already shown, ADT and AAT using the coupled approach perform

approximately the same number of fitness calculations as the canonical approach, while using the

decoupled approach almost doubles this number. While not as high as the decoupled approach,

node evaluations in AAT and ADT are much higher than the canonical, due to the additional

genetic material, and therefore larger average program size, available in multiple regime specific

implementation branches.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1
1

3
1

1
4

1A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

A
ve

 E
rr

o
r

Generation

ADT

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT Omni

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

A
ve

 E
rr

o
r

Generation

ADT Omni

99

Table 9. LGOZLG Total Evaluations

Series Fitness Evaluations Fitness Calculations Node Evaluations

GP 3819 414,209 24,111,099

DyFor GP 3720 336,454 17,472,354

Decoupled

AAT Omni 3609 390,830 26,032,503

AAT 6670 723,470 43,689,199

ADT OMNI 3647 395,994 26,320,581

ADT 6921 751,886 49,671,275

Coupled

AAT Omni 3332 361,315 13,981,495

AAT 3363 364,968 17,857,202

ADT OMNI 3317 360,156 21,613,898

ADT 3558 386,384 35,425,943

Note. Each run includes 191 training generations. In addition to fitness evaluations, this table also

includes the actual number of nodes evaluated, a function of population size and program size. Omni

approaches show a lower number of node evaluations compared to their non-Omni counterparts since

regime evaluation can be accomplished in a single, indivisible function.

MGHENMG.

In the MGHENMG experiment, as was seen in the LGOZLG experiment, ADT

outperformed AAT and the coupled approach outperformed the decoupled approach. The

coupled version of ADT also outperformed DyFor GP to a 95% level of confidence, while the

decoupled version did not. Omniscient regime detection runs did not generally produce the best

results. Fitness calculations and node evaluations, shown in Table 11, are consistent with the

results reported for LGOZLG.

100

Table 10. MGHENMG Prediction Results

Series Ave. MSE Std. Dev. 95% CI Min. MSE

Random

Walk

Predictiona

DyFor GP 0.096 0.042 [0.078 - 0.114] 0.049 0.442

GP 0.145 0.046 [0.125 - 0.165] 0.072 0.442

Decoupled

ADT Omni 0.103 0.068 [0.073 - 0.133] 0.008 0.442

ADT 0.140 0.073 [0.108 - 0.172] 0.027 0.442

AAT Omni 0.184 0.053 [0.161 - 0.207] 0.079 0.442

AAT 0.196 0.128 [0.140 - 0.252] 0.076 0.442

Coupled

ADT 0.056 0.020 [0.048 - 0.065] 0.031 0.442

ADT Omni 0.096 0.049 [0.074 - 0.117] 0.027 0.442

AAT Omni 0.182 0.056 [0.157 - 0.206] 0.050 0.442

AAT 0.186 0.070 [0.155 - 0.216] 0.087 0.442

Note. CI=Confidence Interval; Training done on points 150-250. Predictions done on points 251-400.
aAssumes predicted next value equals current value. bCoupling approach does not impact DyFor GP or

GP.

101

Decoupled Coupled

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT Omni

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT Omni

102

Figure 41. Relative performance of ADT vs. DyFor GP in MGHENMG experiment. Values

below 0 indicate the approach performed worse that the DyFor GP benchmark.

Table 11. MGHENMG Total Evaluations

Series Fitness Evaluations Fitness Calculations Node Evaluations

GP 3974 432,272 15,723,564

DyFor GP 3868 436,644 13,702,717

Decoupled

AAT 6747 733,229 36,446,727

AAT Omni 3739 406,475 14,691,832

-0.6
-0.5

-0.4
-0.3

-0.2

-0.1
0

0.1
0.2

0.3

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

AAT

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

AAT

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

AAT Omni

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

AAT Omni

103

Series Fitness Evaluations Fitness Calculations Node Evaluations

ADT 6921 751,637 34,826,588

ADT Omni 3607 391,585 24,071,967

Coupled

AAT 3463 376,371 17,843,166

AAT Omni 3421 371,795 12,747,006

ADT 3543 384,301 39,598,888

ADT Omni 3311 359,648 17,977,841

AAT 3463 376,371 17,843,166

Note. Each run includes 191 training generations.

Experiment validation.

The LGOZLG and MGHENMG tests just described were trained on periods spanning

two regimes, a change from the benchmark tests described in (Wagner & Michalewicz, 2008).

The benchmark tests incorporated initial training using data points 1-100, a window including

only one regime. To better validate these results, additional tests were run using data points 1-

100 as training periods.14 The coupled approach is used exclusively. Variations are run using

training windows sizes of 80 and 110. These window sizes are chosen as they are the starting

DyFor GP window size and the average of minimum and maximum DyFor GP window size,

respectively.

As AAT proved to be inferior to ADT, that approach was not included in this round of

validation testing. Instead, a new proposed technique using exponential moving average as part

14 LGOZLG tests were run using values 1-100 for training. MGHENMG tests were run using values 31-130

as the training period as the values depend on up to 30 lagged values. It is not clear if the benchmark also adjusted

the training range. It is unlikely the difference significantly affects the results either way.

104

of the fitness calculation is included. The Omni approaches are also not included, as they did not

provide consistently better performance than evolutionary regime discovery. The results of this

additional round of testing are shown in Table 12.

As expected, ADT performed worse, relative to DyFor GP, than in the prior set of

experiments. However, incorporating the exponential moving average technique posted the best

overall accuracy, though not for all EMA runs and not to a 95% confidence level. These results

confirm the observation by Chen et al. (2008) that GP performance is highly dependent on the

chosen parameters and data profile. Nevertheless, the overall performance of ADT compares

favorably to DyFor GP.

Table 12. Results for LGOZLG and MGHENMG Validation Tests

Series Mean MSE Std. Dev. 95% CI Min. MSE

Random

walk

prediction

LGOZLG

ADT EMA 110 0.492 0.138 [0.431 - 0.552] 0.229 0.308

DyFor GP 0.500 0.127 [0.444 - 0.555] 0.309 0.308

ADT EMA 80 0.520 0.218 [0.424 - 0.615] 0.203 0.308

GP 0.553 0.138]0.493 - 0.613] 0.297 0.308

ADT 80 0.570 0.156 [0.501 - 0.638] 0.257 0.308

ADT 110 0.668 0.272 [0.549 - 0.787] 0.380 0.308

MGHENMG

ADT EMA 80 0.232 0.086 [0.194 - 0.269] 0.099 0.503

DyFor GP 0.276 0.110 [0.227 - 0.324] 0.155 0.503

ADT EMA 110 0.290 0.072 [0.258 - 0.321] 0.183 0.503

ADT 80 0.294 0.089 [0.255 - 0.333] 0.143 0.503

105

Series Mean MSE Std. Dev. 95% CI Min. MSE

Random

walk

prediction

GP 0.337 0.209 [0.245 - 0.428] 0.130 0.503

ADT 110 0.348 0.113 [0.298 - 0.397] 0.220 0.503

Note. EMA=Exponential Moving average fitness method; 80/100=training window size; 20 runs

were performed for each series. An EMA multiplier of (2 / (Time periods+1)) is used which

reduces the current weighing by 50% each time the period doubles.

Figure 42. Relative performance of ADT vs DyFor GP in LGOZLG validation tests. Values

above 0 indicate ADT advantage.

-1.5

-1

-0.5

0

0.5

1

1.5

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 110

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1
2

1
4

1
6

1
8

1
1

0
1

1
2

1
1

4
1

1
6

1
1

8
1

2
0

1
2

2
1

2
4

1
2

6
1

2
8

1

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 80

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT EMA 110

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT EMA 80

106

Figure 43. Relative performance of ADT vs. DyFor GP in MGHENMG validation experiment.

Training was performed on data points 31-130. Values above 0 indicate ADT advantage.

The results achieved using DyFor GP where generally inferior to those reported in the

benchmark study (Wagner & Michalewicz, 2008) and reproduced in Table 13. However, that

study used a slightly different approach of including multiple dynamic generations for each

window slide. The experiments done for this dissertation only included one training generation

after each prediction. Additional training likely contributed to the superior results reported the

benchmark study.

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1
3

1

1
4

8

1
6

5

1
8

2

1
9

9

2
1

6

2
3

3

2
5

0

2
6

7

2
8

4

3
0

1

3
1

8

3
3

5

3
5

2

3
6

9

3
8

6A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 110

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1
3

1

1
4

8

1
6

5

1
8

2

1
9

9

2
1

6

2
3

3

2
5

0

2
6

7

2
8

4

3
0

1

3
1

8

3
3

5

3
5

2

3
6

9

3
8

6A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 110 EMA

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1A
d

va
n

ta
ge

 o
ve

r
b

en
ch

m
ar

k

Generation

ADT 80 EMA

107

Multiple dynamic generations were not used in this study for several reasons. Firstly, the

time needed to run such an experiment is great. The bloat control and diversity enhancement

approaches in DyFor GP incorporate 50% new individuals every dynamic generation. The

training phase serves a purpose similar to an initial training period. This period has been shown

to consistently yield excellent results during initial training over the initial training window.

These approaches are valuable and will be considered for future enhancements, as these combine

the best features of both DyFor GP and ADT.

Table 13. Results Reported in Wagner & Michalewicz Benchmark Experiment

Series Runs

Mean

MSE

Std.

Dev. 95% CI

Random

walk

prediction

LG-OZ-LG

Standard GP (without update) 20 0.9979 6.5540 N/A 0.308

Standard GP (with update) 20 0.3047 0.0334 [0.290- 0.319] 0.308

DyFor GP 20 0.2344 0.0567 [0.210 - 0.259] 0.308

MG-HEN-MG

Standard GP (without update) 20 0.6039 0.4216 [0.419 - 0.789] 0.503

Standard GP (with update) 20 0.1960 0.0830 [0.160 - 0.232] 0.503

DyFor GP 20 0.1880 0.0278 [0.176 - 0.200] 0.503

Note. Taken from (Wagner & Michalewicz, 2008). CI and random walk values added to original

data. A 70000 node global limit was used in this test. Update refers to additional training

occurring in prediction phase. It is not clear if any bloat control methods were applied to

standard GP approaches.

Table 14 shows the average program sizes recorded. The average result producing

program size of DyFor and canonical GP are larger due to the lack ADFs. ADT generally divides

nodes equally among the result producing and regime specific ADF branches. There being two

108

regime specific branches per ADT program, the overall node counts are proportionally higher in

that approach.

Table 14. Average Population Node Counts

Method

Avg. Nodes per

Program

Avg. ADF Nodes per

Program Avg. Total Nodes

LGOZLG

ADT 80 19.26 46.51 197,301

ADT 110 19.15 48.32 202,407

ADT 80 EMA 21.98 46.43 205,222

ADT EMA 110 22.03 50.46 217,481

GP 43.22 N/A 129,647

DyFor GP 44.53 N/A 133,600

MGHENMG

ADT 80 18.88 40.34 177,666

ADT 110 21.46 42.83 192,879

ADT 80 EMA 18.38 44.33 188,150

ADT EMA 110 18.99 43.75 188,197

DyFor GP 32.55 N/A 97,663

GP 41.55 N/A 124,662

Note. 80/100 in method titles indicate training window sizes; EMA indicates an exponential moving

average approach was used in fitness calculations.

Summary.

Three sets of experiments using synthetic time series were performed. Two of these

experiments tested chaotic series prediction and the third experiment tested symbolic regression

on a nonlinear series. Two approaches to coordinating regime determining programs and result

producing programs—coupled and decoupled—were also tested. ADT was the best performing

method in all three sets of experiments when using a coupled approach. Decoupled ADT bested

109

all other methods in two of three tests, while DyFor GP performed better than decoupled ADT in

one of three tests. AAT was the worst performing method using both a coupled and non-coupled

approach. In two of three tests, ADT identified the known regime, while AAT did not identify

the known regime in any test.15

A second set of experiments was performed to better simulate the exact parameters used

in the benchmark experiment. A new technique for optimizing fitness calculation using an

exponential moving average (EMA) was also introduced in this experiment. ADT with EMA

posted the best results in this set of test, but the margin was less than in the prior test. This result

was expected due to the differences in training periods in both tests. In the first test, ADT was

trained across two regimes, while in the second test, ADT was trained in a period containing only

one regime. EMA was shown to increase performance over non-EMA ADT.

Market Data Series

Data analysis.

This set of experiments looked exclusively at the S&P 500 index (S&P Dow Jones

Indices LLC, 2016). The S&P 500 index series is inarguably the most popular benchmark

comparison used in the financial industry. The experiments were modeled after the experiments

presented in (Chen et al., 2008). That study examined the period from 1988 through 2004.

Figure 44, Figure 45, and Figure 46 show the full index history, period of this study, and period

of prediction, respectively.

15 The determined regime was analyzed only in the best performing runs of ADT and AAT. There is no

way to average out regime determination over all sets of runs.

110

 AAT is not included in this set of experiments. Though it showed good results in some

test, its performance was not consistent. AAT performed extremely poor in many of the synthetic

tests, while ADT consistently performed well. As coupled ADT was the best performing out of

all proposed methods, that variation was used exclusively in further experiments. Exponential

moving average fitness calculation is not used as that technique is only relevant in prediction

tasks when a known correct value can be determined at each point in the training window.

Figure 44. S&P 500 index.

Figure 45. S&P 500 index during study period.

0

500

1000

1500

2000

2500

1
9

5
0

-0
1

-0
3

1
9

5
2

-0
1

-2
9

1
9

5
4

-0
2

-2
3

1
9

5
6

-0
3

-1
2

1
9

5
8

-0
3

-3
1

1
9

6
0

-0
4

-1
9

1
9

6
2

-0
5

-0
9

1
9

6
4

-0
5

-2
8

1
9

6
6

-0
6

-1
6

1
9

6
8

-0
7

-1
6

1
9

7
0

-0
9

-0
2

1
9

7
2

-0
9

-1
8

1
9

7
4

-1
0

-0
8

1
9

7
6

-1
0

-2
2

1
9

7
8

-1
1

-0
9

1
9

8
0

-1
1

-2
6

1
9

8
2

-1
2

-1
4

1
9

8
4

-1
2

-2
8

1
9

8
7

-0
1

-1
6

1
9

8
9

-0
2

-0
1

1
9

9
1

-0
2

-1
9

1
9

9
3

-0
3

-0
5

1
9

9
5

-0
3

-2
2

1
9

9
7

-0
4

-0
8

1
9

9
9

-0
4

-2
7

2
0

0
1

-0
5

-1
4

2
0

0
3

-0
6

-0
9

2
0

0
5

-0
6

-2
7

2
0

0
7

-0
7

-1
8

2
0

0
9

-0
8

-0
5

2
0

1
1

-0
8

-2
3

2
0

1
3

-0
9

-1
3

0

200

400

600

800

1000

1200

1400

1600

1
9

8
8

-0
1

-0
4

1
9

8
8

-0
8

-1
6

1
9

8
9

-0
3

-3
1

1
9

8
9

-1
1

-1
0

1
9

9
0

-0
6

-2
7

1
9

9
1

-0
2

-0
8

1
9

9
1

-0
9

-2
4

1
9

9
2

-0
5

-0
7

1
9

9
2

-1
2

-1
8

1
9

9
3

-0
8

-0
4

1
9

9
4

-0
3

-1
7

1
9

9
4

-1
0

-3
1

1
9

9
5

-0
6

-1
5

1
9

9
6

-0
1

-2
9

1
9

9
6

-0
9

-1
1

1
9

9
7

-0
4

-2
5

1
9

9
7

-1
2

-0
8

1
9

9
8

-0
7

-2
4

1
9

9
9

-0
3

-1
0

1
9

9
9

-1
0

-2
1

2
0

0
0

-0
6

-0
6

2
0

0
1

-0
1

-1
9

2
0

0
1

-0
9

-0
4

2
0

0
2

-0
4

-2
5

2
0

0
2

-1
2

-0
6

2
0

0
3

-0
7

-2
4

2
0

0
4

-0
3

-0
9

2
0

0
4

-1
0

-2
1

2
0

0
5

-0
6

-0
7

111

Figure 46. S&P 500 index during prediction period.

The benchmark experiment considers only the price history of the target S&P 500 series

in its prediction. Volume, a data point often used in technical analysis, was not incorporated.

Other possible influencing factors, such as unemployment, interest rates, commodity prices, etc.,

were not considered. Absolute prediction performance was not the ultimate aim of this

experiment, but only a relative comparison between various prediction approaches using the

same input parameters. Better predictions could likely be achieved by considering more input

data, though optimal choice of input is not always obvious and is left as a future research

question.

Predicting financial time series often requires the series be normalized to appear

stationary. While this is a requirement in linear statistical methods, such as ARIMA, studies

show that this can also provide better prediction results in genetic programming (Chen et al.,

2008, pp. 140-141). In the benchmark study, Chen et al. normalized the series by dividing each

value by its 250 day moving average. While other normalizations are often used, such as daily

return or log-return, the market data experiments replicated the 250 day moving average

normalization. The resultant normalized series is shown in Figure 47. This transformation will

600

800

1000

1200

1400

1600

1
9

9
9

-0
1

-0
4

1
9

9
9

-0
3

-1
9

1
9

9
9

-0
6

-0
3

1
9

9
9

-0
8

-1
7

1
9

9
9

-1
0

-2
9

2
0

0
0

-0
1

-1
3

2
0

0
0

-0
3

-2
9

2
0

0
0

-0
6

-1
3

2
0

0
0

-0
8

-2
5

2
0

0
0

-1
1

-0
8

2
0

0
1

-0
1

-2
5

2
0

0
1

-0
4

-1
0

2
0

0
1

-0
6

-2
5

2
0

0
1

-0
9

-0
7

2
0

0
1

-1
1

-2
7

2
0

0
2

-0
2

-1
2

2
0

0
2

-0
4

-2
9

2
0

0
2

-0
7

-1
2

2
0

0
2

-0
9

-2
5

2
0

0
2

-1
2

-0
9

2
0

0
3

-0
2

-2
5

2
0

0
3

-0
5

-0
9

2
0

0
3

-0
7

-2
4

2
0

0
3

-1
0

-0
7

2
0

0
3

-1
2

-1
9

2
0

0
4

-0
3

-0
8

2
0

0
4

-0
5

-2
0

2
0

0
4

-0
8

-0
5

2
0

0
4

-1
0

-1
9

112

center the resultant series around a value of 1. This normalization is also helpful in limiting the

set of terminals that must be available, as most data points are of a similar magnitude.

Figure 47. S&P 500 normalized series. Each value is divided by its 250 day moving

average. The resulting series centers itself around the value 1.

Experimental approach.

In the prior experiments, evolution occurred for a fixed number of training generations.

After training, predictions were made until the end of the time series was reached, with

additional training occurring after each prediction. This set of experiments matches the approach

taken by Chen et al. which differs from the prior experiment by the inclusion of a validation

period. Immediately after each training generation, the best individual from that generation is

selected and used to predict values in an out of sample period. The best performing individual

over all validation generations is saved. That individual is then used to predict values in the

prediction period. Evolution occurs only during training periods.

0.7

0.8

0.9

1

1.1

1.2

1.3
1

9
8

8
-1

2
-2

7
1

9
8

9
-0

8
-1

0
1

9
9

0
-0

3
-2

6
1

9
9

0
-1

1
-0

6
1

9
9

1
-0

6
-2

1
1

9
9

2
-0

2
-0

4
1

9
9

2
-0

9
-1

7
1

9
9

3
-0

5
-0

3
1

9
9

3
-1

2
-1

4
1

9
9

4
-0

7
-2

9
1

9
9

5
-0

3
-1

4
1

9
9

5
-1

0
-2

5
1

9
9

6
-0

6
-1

0
1

9
9

7
-0

1
-2

2
1

9
9

7
-0

9
-0

5
1

9
9

8
-0

4
-2

2
1

9
9

8
-1

2
-0

3
1

9
9

9
-0

7
-2

1
2

0
0

0
-0

3
-0

3
2

0
0

0
-1

0
-1

6
2

0
0

1
-0

6
-0

1
2

0
0

2
-0

1
-2

2
2

0
0

2
-0

9
-0

5
2

0
0

3
-0

4
-2

2
2

0
0

3
-1

2
-0

3
2

0
0

4
-0

7
-2

1
2

0
0

5
-0

3
-0

4
2

0
0

5
-1

0
-1

7
2

0
0

6
-0

6
-0

2

113

To facilitate and validate the new approach described above, the series is broken up into

three overlapping segments. Prediction and training is performed on each segment

independently. The segment ranges are shown in Figure 48.

Figure 48. Overlapping training, validation, and testing periods used by Chen, Kuo & Hoi.

The testing period corresponds to the prediction period discussed elsewhere in this

dissertation. Taken from (Chen et al., 2008, p. 110).

As DyFor GP favors a dynamic sliding window approach with periodic retraining, this

methodology was not tested with overlapping training periods. Instead, additional testing was

done in a single run over the full series from 1989 through 2004. As ADT supports both dynamic

and fixed prediction, that approach is included in the full series test. In this experiment, training

was performed for years 1989 through 1998. Prediction occurred from 1999 through 2004, as

was done by Chen et al. As this encompasses a much larger series, weekly training and

predictions were done instead of daily. Also, similar to the synthetic studies, no validation period

was incorporate but training was performed after each prediction step. This approach is the only

possibility for DyFor GP due to it requirements for dynamic feedback.

Fitness calculation.

The fitness measurement in the market data experiment was the total percentage return

achieved during the applicable time period. Returns are calculated by maintaining a running

account and shares balance. At each investment decision point, the relevant program is run which

114

returns a Boolean value indicated the investment decision. When out of the market, the algorithm

earns the prevailing T-bill rate for that period. The T-bill historical rate of return is shown in

Figure 49.

Figure 49. 3-month Treasury bill historical yield. Values are not limited to the study

period. A larger period is shown for historical context.

-2

0

2

4

6

8

10

12

14

16

18

1
9

5
4

-0
1

-0
4

1
9

5
5

-1
2

-3
0

1
9

5
7

-1
2

-2
0

1
9

5
9

-1
2

-2
2

1
9

6
1

-1
2

-2
2

1
9

6
3

-1
2

-2
7

1
9

6
5

-1
2

-2
9

1
9

6
7

-1
2

-2
8

1
9

7
0

-0
1

-0
2

1
9

7
2

-0
1

-0
4

1
9

7
4

-0
1

-0
7

1
9

7
6

-0
1

-0
9

1
9

7
8

-0
1

-1
1

1
9

8
0

-0
1

-1
6

1
9

8
2

-0
1

-1
9

1
9

8
4

-0
1

-1
9

1
9

8
6

-0
1

-2
4

1
9

8
8

-0
1

-2
6

1
9

9
0

-0
1

-2
4

1
9

9
2

-0
1

-2
4

1
9

9
4

-0
1

-2
4

1
9

9
6

-0
1

-2
4

1
9

9
8

-0
1

-2
2

2
0

0
0

-0
1

-2
0

2
0

0
2

-0
1

-2
2

2
0

0
4

-0
1

-2
2

2
0

0
6

-0
1

-2
3

2
0

0
8

-0
1

-1
8

2
0

1
0

-0
1

-2
0

2
0

1
2

-0
1

-1
8

2
0

1
4

-0
1

-1
6

115

Start Prediction

Account = index value,
Shares = 0

Done? End PredictionYes

Invest
?

In Market? In Market?

Increment Prediction Pointer

Yes No

Yes

Shares = (index values / account) –
transaction cost
Account = 0

No

No

Account = index value * shares – transaction cost
Shares = 0

1.

2.

3.

4.

5.

6.

Figure 50. Total return calculation algorithm used in market data experiments.

This market prediction algorithm is show in and in Figure 50. The primary steps in the

algorithm are as follows:

1. Initialize account balance to the index value at the period starting point. Initialize

shares start to 0.

2. If the prediction window reaches the end of the prediction period, stop the process

and return the final total return.

3. Run the investment program at the current prediction point. This will yield an

invest/don’t invest decision.

116

4. If invest and already in market, do nothing. If invest and not currently in market,

purchase shares at the current market (index) price using the full available account

balance. Transactions cost, based on the current account balance, are applied prior

to purchase of shares

5. If don’t invest and not in the market, do nothing. If don’t invest and in the market,

sell all shares at the current market (index) price. Deduct a transaction cost and

save the remainder as the current account balance.

6. Slide the prediction target forward and repeat the prediction phase.

Experimental parameters.

The parameters used in the market data experiment is shown in Table 15. This study

attempted to reproduce the results of Chen et al. Several parameters used in that study are

questionable. While mutation has become more popular in GP since Koza discounted it, a 40%

mutation rate is unusually high. Also, the inclusion of a 0.5% transaction cost is probably

unrealistically high, even in the study time period. Chen et al. noted this and they also ran

experiments with transactions cost of 0% (ibid., p. 136). They noted that the results were

marginally better and the complexity of the evolved program increased from an average node

size of 19.9 to an average node size of 24.4 (ibid., p. 138). As this study is not an attempt to beat

buy and hold, but to compare new modularity approaches, the study was done with the 0.5%

transaction cost.

117

Table 15. Experimental Parameters Used in Market Prediction Tests

Parameter Value

Arity (ADF/ADT Only) 2,2

Crossover 50%

Elitist Single best individual

Function Set add, subtract, multiply, divide, gt, lt, and, or, not, offsetValue,

Boolean if-Else, Moving Average, Period Maximum, Period

Minimum, norm

Initialization Ramp-half-and-half

Max Depth 10

Max initial Depth 5

Max Node Size 100

Mutation 40%

Population Size 500

Regimes (ADT Only) 2

Reproduction 10%a

Risk Free Return 3-month T-Bill rate

Stagnation tolerance 50

Terminal set Random Integer (0 - 250), Random Double (0 -2), true, false,

current series valueb

Tournament size 2

Training Generations 100

Transaction Cost 0.5%

Note. Detailed descriptions of functions and terminals are provided in Appendix C.
aThe referenced study shows a 9.8% reproduction rate. This is due to a slightly different approach to

elitism. That study choses a percentage of elite instead of a single elite. As it turns out, .02% elite section

equals exactly one individual out of a population size of 500. bThe current value is achievable through the

offset value function and an offset of 0. However, an additional discrete terminal representing the current

price is added to favor this important value.

118

Table 16. DyFor GP Parameters Used in Market Data Experiments

Parameter Value

Max Window Size 375

Min Window Size 125

N 3

Save Off 10

Start Window Size 250

Findings.

The results recorded in the market data experiment are displayed below. Data is separated

by prediction period and transaction cost inclusion approach. Table 17 provides the performance

for each of the three prediction periods with transaction costs and out of market interest taken

into account. ADT was the best performing approach in three out of three tests. ADT also beat

DyFor GP in the full period test. Only in the 2003-2004 prediction does ADT achieve a 95%

confidence level in beating GP. All other comparisons have overlapping confidence intervals.

Similar to results reported by other researchers, for example (Allen & Karjalainen, 1999)

and (Chen et al., 2008), no tested approach beat a buy and hold strategy on average when taking

transaction costs into account.

When transaction costs are ignored, the results change significantly. Most interesting, all

evolutionary approaches beat buy and hold on average when not considering transaction costs.

All evolutionary approaches beat buy and hold on average in all but one period; only ADF

performed better than buy and hold in 2003-2004.

119

Table 17. Market Data Experiment Results Including Transaction Costs

Method Mean Std. Dev. Min Max 95% CI

beating

benchmark

1999-2000

Buy & Hold 0.0751

GP 0.0434 0.0664 -0.1917 0.1197 [0.0250 ... 0.0618] 5/50

ADF 0.0309 0.0798 -0.3054 0.0845 [0.0088 ... 0.0530] 3/50

ADT 0.0510 0.0519 -0.1974 0.1042 [0.0366 ... 0.0654] 5/50

2001-2002

Buy & Hold -0.3144

GP -0.3693 0.1306 -0.8087 -0.2885 [-0.4055 ... -0.3331] 1/50

ADF -0.3347 0.0887 -0.7290 -0.1777 [-0.3593 ... -0.3102] 2/50

ADT -0.3697 0.1390 -0.7450 -0.0134 [-0.4082 ... -0.3312] 1/50

2003-2004

Buy & Hold 0.3332

GP 0.2945 0.0497 0.1432 0.3291 [0.2807 ... 0.3083] 0/50

ADF 0.3139 0.0390 0.1170 0.3539 [0.3031 ... 0.3247] 1/50

ADT 0.3247 0.0150 0.2349 0.3522 [0.3205 ... 0.3289] 2/50

Note. Transaction costs and out of market risk free return are included in this set of experiments.

120

Figure 51. 95% confidence intervals for market data experiments.

Table 18. Sliding Window Market Data Experiment Results With Transaction Costs

Method

Mean

Std.

Dev. Min Max 95% CI

beating

benchmark

 1999-2000

Buy & Hold 0.0634

ADT 0.0018 0.1372 -0.4290 0.2388 [-0.0362 ... 0.1010] 17/50

DyFor GP -0.0157 0.1101 -0.2690 0.1426 [-0.0463 ... 0.0639] 15/50

 2001-2002

Buy & Hold -0.3339

ADT -0.1364 0.1014 -0.2964 0.1601 [-0.1645 ... -0.0631] 50/50

DyFor GP -0.1018 0.0819 -0.2810 0.0817 [-0.1245 ... -0.0426] 50/50

 2003-2004

Buy & Hold 0.2970

ADT 0.1035 0.0653 -0.0603 0.2529 [0.0854 ... 0.1507] 0/50

DyFor GP 0.0489 0.0723 -0.1780 0.2156 [0.0289 ... 0.1012] 0/50

-0.5000 -0.4000 -0.3000 -0.2000 -0.1000 0.0000 0.1000 0.2000 0.3000 0.4000

B&H 1999-2000

GP 1999-2000

ADF 1999-2000

ADT 1999-2000

B&H 2001-2002

GP 2001-2002

ADF 2001-2002

ADT 2001-2002

B&H 2003-2004

GP 2003-2004

ADF 2003-2004

ADT 2003-2004

High Return Low Return

121

Method

Mean

Std.

Dev. Min Max 95% CI

beating

benchmark

 1999-2004

Buy & Hold -0.0189

ADT -0.0349 0.1933 -0.5395 0.4592 [-0.0884 ... 0.0187] 24/50

DyFor GP -0.0698 0.1413 -0.3597 0.2136 [-0.1089 ... -0.0306] 15/50

Note. A single run was done over the period 1989-2004. Training was performed from 1989 through

1998. Prediction occurred from 1999-2004. Retraining occurred after each prediction. Mean returns

shown in bold beat the buy and hold benchmark. Transaction costs and out of market risk free returns are

incorporated.

Figure 52. 95% confidence intervals for sliding window market data experiments.

The results of the benchmark study from (Chen et al., 2008) is shown in Table 19 for

comparison. These results appear slightly better than those reported in Table 17 for the 1999-

2000 and 2001-2002, and are comparable in the 2003-2004 period. This discrepancy may be due

to minor differences in period boundaries, return calculation, or unpublished parameter

differences.

Table 19. Findings Reported by Chen, Kuo, & Hoi

Period Mean Std. Dev. Max Min B&H

1999-2000 0.0655 0.0342 0.1171 -0.1294 0.0644

2001-2002 -0.3171 0.0498 -0.0461 -0.3486 -0.3228

2003-2004 0.3065 0.0334 0.3199 0.1173 0.3199

Note. Taken from (Chen et al., 2008, p. 112) . The referenced study included 7 additional foreign market

indexes. The B&H return is slightly different from that calculated in this study which may be due to

differences in exact start and end dates used for each overlapping period.

-0.1200 -0.1000 -0.0800 -0.0600 -0.0400 -0.0200 0.0000 0.0200 0.0400

B&H

ADT

DyFor GP

High Return Low Return

122

Table 20 and Table 21 show the results when transaction costs are not considered. As

may be expected, results are considerable better, with evolutionary algorithms besting buy and

hold on average in nine of eleven tests.

Table 20. Market Data Experiment Results Not Including Transaction Costs

Method Mean Std. Dev. Min Max 95% CI

beating

benchmark

1999-2000

Buy & Hold 0.0751

GP 0.1494 0.1088 -0.0438 0.4525 [0.1192 ... 0.1795] 35/50

ADF 0.1418 0.1238 -0.0399 0.5112 [0.1075 ... 0.1761] 35/50

ADT 0.1567 0.1099 -0.0068 0.4796 [0.1262 ... 0.1871] 37/50

2001-2002

Buy & Hold -0.3144

GP -0.3121 0.0573 -0.4081 -0.0348 [-0.3280 ... -0.2962] 17/50

ADF -0.3023 0.0848 -0.5153 0.0196 [-0.3258 ... -0.2788] 18/50

ADT -0.2843 0.0635 -0.3924 -0.1245 [-0.3020 ... -0.2667] 32/50

2003-2004

Buy & Hold 0.3332

GP 0.3045 0.0929 0.0463 0.5045 [0.2788 ... 0.3303] 15/50

ADF 0.3395 0.1171 -0.0016 0.5597 [0.3070 ... 0.3719] 22/50

ADT 0.3329 0.1202 0.0775 0.6443 [0.2996 ... 0.3663] 29/50

Note. Mean returns shown in bold beat the buy and hold benchmark.

123

Figure 53. 95% confidence intervals for market data experiments not including transaction costs.

-0.4000 -0.3000 -0.2000 -0.1000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000

B&H 1999-2000

GP 1999-2000

ADF 1999-2000

ADT 1999-2000

B&H 2001-2002

GP 2001-2002

ADF 2001-2002

ADT 2001-2002

B&H 2003-2004

GP 2003-2004

ADF 2003-2004

ADT 2003-2004

High Return Low Return

124

Table 21. Sliding Window Market Data Experiment Results Not Including Transaction Costs

Method Mean Std. Dev. Min Max 95% CI

beating

benchmark

1999-2000

Buy & Hold 0.0634

ADT 0.0788 0.1071 -0.1106 0.3576 [0.0491 ... 0.1562] 27/50

DyFor GP 0.0807 0.1323 -0.1904 0.3408 [0.0440 ... 0.1763] 26/50

2001-2002

Buy & Hold -0.3339

ADT -0.0524 0.1026 -0.2674 0.1521 [-0.0808 ... 0.0218] 50/50

DyFor GP -0.0594 0.0862 -0.2314 0.1020 [-0.0833 ... 0.0029] 50/50

2003-2004

Buy & Hold 0.2970

ADT 0.1246 0.0782 -0.0132 0.3739 [0.1029 ... 0.1811] 2/50

DyFor GP 0.1233 0.0702 -0.0297 0.2783 [0.1038 ... 0.1740] 0/50

1999-2004

Buy & Hold -0.0189

ADT 0.1683 0.2005 -0.1946 0.6959 [0.1128 ... 0.2239] 39/50

DyFor GP 0.1568 0.1887 -0.2618 0.5762 [0.1045 ... 0.2091] 41/50

Figure 54. 95% confidence intervals for sliding window market data experiments not including

transaction costs.

-0.0500 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

B&H

ADT

DyFor GP

High Return Low Return

125

Summary.

Three tests were performed on three overlapping training and investment periods using

the S&P 500 index as a target. Transaction costs and out of market risk free return were

incorporated. ADT was the best performing approach in two of three tests. Neither ADT nor any

other approach beat a buy and hold strategy in any of the testing periods.

 An additional test was run over the entire analysis period utilizing a sliding window

approach with additional training after each prediction. DyFor GP was only included in this test.

ADT performed better than DyFor GP in this experiment, but did not beat a buy and hold

strategy.

An additional set of tests were run that ignored transaction costs and out of market

returns. In these tests, ADT performed best in two of three periods and beat buy and hold in two

of three periods. In a full period, sliding window test, ADT performed better than DyFor GP and

both approaches beat a buy and hold strategy. ADT and DyFor GP returned 16.8% and 15.7%

respectively, for the periods 1999-2004 compared to a return of -1.89% achieved using a buy and

hold strategy. The full window tests with retraining yielded better results than approaches

without retraining, indicating that periodic retraining is necessary for dynamically changing data

such as real world financial time series.

While identification of regimes in the S&P 500 index history over the examined time

period is subject to interpretation, ADT did not appear to indicate any distinct regime. This,

however, did not affect its performance as it still achieved the best results overall.

126

Summary of Results

The experimental results reported in the prior section show that coupled ADT was the

overall best approach tested. AAT and, to a lesser extent, decoupled ADT were poor performers

by comparison. Regime discovery showed mixed benefits, only occasionally uncovering the

known regime in several synthetic tests, while providing no interpretable regime indication in the

market data tests.

Coupled ADT was generally the best performer in the market data tests. Regime

indicators did not appear to pick out potential regimes. Instead, extra available genetic material

was used to further model the underlying data generation process in ways perhaps superior to

simple regime determination and template implementation. This observation is further supported

by the comparable performance achieved when omniscient regime detection was incorporated as

when regimes were determined through evolutionary means.

127

Chapter 5

 Conclusions, Implications, Recommendations, and Summary

 This chapter reviews the work presented in this dissertation and further evaluates and

summarized the results obtained. Several promising areas for future research also mentioned.

Conclusions

The goal of this dissertation was to improve the performance of time series prediction

using genetic programming, especially in the presence of regime change. This goal was achieved

by the introduction of new modularity techniques that enabled the evolution of regime specific

functionality. A regime indictor branch was incorporated into the GP algorithm to control the

selection of regime specific implementations incorporated into the function definition branch.

Two techniques were proposed and illustrated: Automatically defined templates (ADT)

and automatically acquired templates (AAT). These two approaches were compared against

other common genetic programming paradigms, as well as against DyFor GP, the only other

genetic programming approach found to consider regime change. Variations on how these two

approaches couple program branches were also tested. Both approaches to ADT tightly couple

the function and result producing branches, similar to coupling in ADF. Decoupled ADT allows

the regime determining branch to evolve separately from the result producing branch. AAT only

allows for the coupling between regime determining and result producing branches, as functions

are shared across the entire program population and therefore remain independent from any

individual result producing program.

ADT was the best performing approach in the majority of experiments performed and

generally achieved superior performance to DyFor GP. Compared to DyFor GP, ADT was

shown to be a more flexible approach, applicable to many prediction and regression scenarios,

128

while DyFor GP was found applicable only to sliding window prediction problems. ADT and

AAT were more dependent on training conditions and performed best when initial training

occurred across regime boundaries.

 Decoupled ADT generally performed well, but not as good as coupled ADT. One

potential problem with a decoupled regime determining branch is that evolved programs may

number regimes differently. Result producing programs may therefore see the same actual

regime numbered differently and therefore use a different implementation when a template

method is called. While the overall fitness function is common to the entire population, each

individual evolves separately along different paths. Tight coupling between program branches

allows evolution to proceed in tandem towards a common implementation optimizing the

governing fitness function.

ADT was shown to be superior to AAT due to ADT’s permanent coupling between

functions and result producing programs. AAT does not implement such coupling, limiting its

performance. Kinnear (1994) discussed the inferior performance of module acquisition (the basis

for AAT) relative to automatically defined functions (the basis for ADT). He proposed that this

deficiency was due to ADFs relatively high structural regularity, described as the frequency of

ADF calls and multiple uses of the same parameters. Structural regularity was seen to be lower

in MA, due to the extracted modules immunity from any further modification such as crossover.

Restricting evolution essentially decouples modules from the programs using them, as the former

can no longer evolve based on the performance of the latter. A similar situation was encountered

in the decoupled approaches tested in this dissertation.

129

 The market data experiments confirmed what has been reported in prior studies ([Allen &

Karjalainen, 1999], [Chen et al., 2008]16)—evolutionary approaches to market prediction have

difficulty beating buy and hold when transaction costs are factored in. Taking transaction cost

into account, no approach beat buy and hold on average in the tests performed. However, when

transaction costs were ignored, evolutionary approaches beat buy and hold in the majority of

cases.

Financial time series are largely stochastic. Even though GP may do well at modeling the

underlying data generating process, those results may only be a close approximation to reality

and may stop working abruptly at any time. GP prediction is also highly dependent on the

parameter selection and data profile. Financial time series are also impacted by random events as

well as investor psychology, as market participants continually adjust their evaluation regarding

market conditions and directions. Luckily, genetic programming has an advantage in this respect

due to its ability for automatic retraining over time.

Implications

This research contributed to the body of work on genetic programming by introducing

and demonstrating several new modularity techniques that were shown to improve genetic

programming performance compared to other approaches. This study was perhaps the first

attempt at implementing software engineering techniques in genetic programming beyond the

incorporation of language constructs seen in prior research.

16 Chen et al. did find that GP performed consistently better in predicting the Taiwan market during the

period of study, but was not consistently better for the other six markets analyzed, including the S&P 500 index.

130

This dissertation also has implications for market data prediction and financial

investment. Many previous studies have shown that various technical indicators fail to beat buy

and hold, when transaction cost are taken into account (Allen & Karjalainen, 1999); A result was

confirmed in this dissertation. However, when transaction costs were not considered, the

automatic approaches tested performed significantly better than a buy and hold approach. With

the ever decreasing transaction costs, effectively zero in some cases, automated market

prediction algorithms are now a more justifiable alternative to buy and hold or other manual

trading approaches—if investors can achieve such low costs.

Recommendations for Future Work

This section includes several promising areas for future research and extension of the

methodology presented and implemented in this dissertation.

Adaptive training and dynamic training generations.

As the underlying data generation process changes over time, existing or saved solutions

may no longer correctly model the time series under analysis. Population fitness may degrade

drastically immediately following a regime change. DyFor GP attempts to handle this scenario

through a dynamically sizing analysis window based on prediction differentials. Another

alternative approach simply to allocate additional training generations if prediction accuracy

worsens. Currently, the number of training generations is a configurable ADT parameter. A

simple extension would dynamically choose this parameter based on prediction performance and

any defined lower and upper bounds.

A variation on adaptive training, dynamic training generations was proposed by Wagner

& Michalewicz (2008) for use in DyFor GP. This feature was not considered for use in ADT or

DyFor GP in the experiments performed in this dissertation, as it does not specifically concern

131

regime handling. In the dynamic generations approach, half of the population introduced and

propagated to the next generation after each prediction are newly initialized individuals, while

half are selected from the best performing individuals of the prior generations. Additional

training, similar to though more extensive than what was proposed for adaptive training, is

therefore needed on the newly introduced individuals. While increasing computation cost, this

approach was shown to improve performance (ibid.) and should be considered for incorporation

into ADT.

Optimization of parameters.

Many researchers have noted the susceptibility of evolutionary algorithms to the choice

of initial parameters and the susceptibility of prediction algorithms to the choice of analysis

periods. This research generally chose parameters to best replicate prior benchmark experiments.

Further modification (ex. lower program size limits) might lead to more interpretable results,

especially in the market data tests. However, care must be taken so that results do not converge

to trivial solutions too early, as better models of the underlying data generation process might

take longer to uncover with a smaller program size. A balance must be found between overfitting

of data and generality of solutions.

Computational optimization.

The approach presented used native Java to simulate an s-expression tree evaluation after

a native Clojure implementation was found to perform poorly. The Java approach is still

computationally expensive, as each program tree is fully evaluating at every evaluation point in a

training window. Limiting tree size helps, but computational overhead still limited the amount of

evaluation runs that could easily be achieved.

132

It has been noted that evolutionary representations, similar to what is seen in their genetic

inspiration, DNA, develop introns (Angeline, 1993, p. 10)—sections of code that do not directly

contribute to the fitness of an individual. For example, Figure 55 shows a tree representation of

the equation 𝑦 + 2𝑥 − 2𝑥 which always equals 𝑦. The second two terms, represented by the

subtraction node in the figure, can be effectively ignored during fitness evaluation, potentially

saving computational resources at each step.

-

+

X X

+

X X

+

Y

Figure 55. Program tree containing an intron. The expression represents the equation 𝑦 + 2𝑥 −
2𝑥. The outlined subtree has no impact on the expression result, which is always 𝑦.

It is probably not optimal, to search for introns prior to fitness evaluation; potential

introns could, however, be noted during initial fitness evaluation and ignored during later stages.

Even if intron detection is occasionally wrong, this technique could still contribute to improved

performance as evolutionary algorithms are largely stochastic and approximate, and benefit from

even minor improvements.

GP is highly parallel by nature. Incorporating parallelism into the GP framework, through

concurrent fitness evaluation and genetic operations, would further improve performance. This

enhancement requires suitable multicore, large memory systems to take advantage of parallel

processing. More recent commodity distributed MapReduce/Hadoop frameworks, such as

133

Hadoop, make porting application code to a distributed computational network an obvious next

step where performance is needed. A GP system running on Hadoop is described in is described

in (Verma, Llorà, Goldberg, & Campbell, 2009).

Improving market data prediction.

While this dissertation did not have the primary goal of demonstrating market beating

investment performance, the approach was shown to be valuable in task and further development

could be tailored towards this objective. Two potential improvements are described below.

Additional predictor series.

This study limited predictor series to the target series itself. There is no reason why the

vast volume of available financial data cannot also be used in prediction. The main problem

when considering additional data is deciding which predictors are relevant. A secondary concern

is any required cleansing and formatting of new data sources. The methodology developed in this

dissertation can effectively handle any number of predictor series defined as input parameter.

However, it is likely that simply making tens, hundreds, of even thousands of additional series

available will negatively impact solution convergence and overwhelm the computation resources

available. Clearly, an intelligent way to choose predictor series is required.

Investment allocation.

The methodology developed provided a long-flat indicator, fully invested or full out of

the market. Other variations are possible, such as percentage allocations in and out of the market

as well as allocations between various asset classes, such as bonds and commodities. In addition,

the experiments didn’t consider short selling, a way to profit from an expected market downturn.

134

Summary

This dissertation aimed to improve the prediction accuracy of non-linear and non-

stationary time series in genetic programming. Artificial intelligence approaches are often used

for such prediction problems where no deterministic solution is known to exist or where the

series to be predicted is characterized by excess noise and the appearance of random behavior.

These time series, especially in certain domains such as finance, are also thought to undergo

abrupt changes to the underlying data generating process, known as regime change. Most

methods of time series prediction, and almost all prior approaches that use genetic programming,

do not consider regime change. Regime change was a primary consideration of this dissertation.

The dissertation goal was achieved by the introduction of new features specifically

designed to enhance genetic programming modularity to enable regime specific processing and

behavior. Prior research has demonstrated the benefits of incorporating programming language

modularity features such as functions, recursion, and lambda expressions into the evolutionary

process. Modularity can be further enhanced by incorporating software design patterns into the

GP process. Such features will also yield evolved programs more similar to what a human

programmer would produce, as software design patterns are based on observed human behavior

and best practices.

Using the abstract template software design pattern as inspiration, two approaches to

regime handling were introduced. The first approach, automatically defined templates (ADT), is

an extension of automatically defined functions with the addition of regime specific

implementations of each function. The second approach, automatically acquired templates

(AAT), is an extension of module acquisition allowing regime specific implementations of each

module in a shared library. Both approaches add a regime indicator branch to the canonical GP

135

algorithm. Regime indicator programs determine which regime specific template

implementations are chosen during program fitness evaluation.

A Java based genetic programming was developed that incorporated the new approaches

presented in this dissertation. The custom system also enabled detailed collection of

experimental data. Other commonly seen GP alternatives, such as ADF, were also implemented

to enable a better comparison of the proposed approach to existing methods.

Experiments were performed using both synthetically generated and real work time series

including the S&P 500, a commonly benchmarked financial series index. By piecing together

different time series, the synthetic series tests allowed the simulation and analysis of abrupt

regime changes. The financial series tests exercised the new methodology on real world data

without clear cut regime boundaries and characterized by randomness and noise on top of

underlying and changing trends. The new methodologies were compared to commonly seen GP

approaches, such as automatically defined functions. DyFor GP, the only evolutionary method

found to consider regime change, was also included in the comparison and was used as a

benchmark for measuring the regime handling performance of the new approaches. Several prior

experimental studies concerning synthetic and financial series prediction were reproduced. The

exact parameters used in these studies were replicated where and to the extent possible.

Experimental results showed that ADT consistently outperformed other genetic

programming approaches, including DyFor GP, in most tests. ADT also significantly

outperformed AAT in almost all experiments. Two versions of ADT, coupled and non-coupled,

were implemented and tested. The coupled approach permanently joins together an individual

regime detection program with a result producing program. The decoupled approach brings these

two programs together at fitness calculation time. The coupled ADT approach also

136

outperformed decoupled ADT, due to more consistent indication of regimes and regime specific

code. Therefore, only coupled ADT is recommended for future use and development.

Market data experiments looking at the S&P 500 index showed all evolutionary methods

tested had difficulty beating a buy and hold approach when transaction costs were considered.

However, when transaction costs were ignored, the majority of evolutionary methods beat the

buy and hold benchmark, with coupled ADT performing best in the majority of tests. ADT and

DyFor GP returned 16.8% and 15.7% respectively, for the periods 1999-2004 compared to a

return of -1.89% achieved using a buy and hold strategy. The continual reduction in transaction

costs as well as new trading platforms promising zero transaction cost make an automated

approach more feasible for market investors.

Even though this research may uncover better methods than are currently available to

predict financial markets, such an undertaking must be attempted with humility. If a single

proven method was found and made public, it would likely be widely implemented rather

quickly. Therefore, new methods can only gain temporary advantage over other established

practices.

Luckily, or not, the market is influenced by the individual psychologies of countless

participants whose beliefs continually change. Therefore, an algorithm must continually change

and adapt through constant improvement and shorter and shorter time horizons. Such is the

perilous task of attempting to beat the stock market.

137

Appendix A

Design Pattern Example

This section further explains the use and implementation of the template method and

strategy patterns through an admittedly contrived, but simple to understand, example. Appendix

B provides an additional, less introductory, example more relevant to the domain of this

dissertation.

Navigation problems have been a applied with GP since early research, such as the

artificial ant problem in (Koza, 1992, p. 147-162). This example considers the search for the

fastest route through a simple Autocross course, shown in Figure A1. The goal of this problem is

to navigate a vehicle through the course in the shortest time without crashing (hitting the wall or

losing control). Fitness is evaluated based on the total time to complete the race. A crash

evaluates to an appropriately high (lower is better) fitness score.

Figure A1. Sample racing domain.

Both vehicles may perform the following operations: accelerate (magnitude), brake

(magnitude), left (magnitude), right (magnitude). A possible solution is simply:

Accelerate->left->right>brake

138

This solution fails when realistic physics are considered as the vehicle would likely lose

control while trying to perform a 90 degree turn at full speed without first braking. In addition,

the mechanics of controlling a motorcycle differ from an automobile.

A more plausible solution to the above navigation problem is the following.17 A distinct

Java class is created for each vehicle type and a “race” method is defined in each. The mechanics

of controlling a motorcycle are more involved than controlling an automobile as individuated by

large number of operations. The details of this difference are less important of the need to

various detailed implementation for each motor vehicle type.

public class Automobile {

 public void race() {

 accelerate(100); //0-100%

 brake(100); //0-100%

 turnWheel(-90); //Turn angle

 accelerate(100); //0-100%

 brake(100); //0-100%

 turnWheel(90); //Turn angle

 accelerate(100); //0-100%

 brake(100); //0-100%

 }

 public void accelerate(double percent) {…}

 public void brake(double percent) {…}

 private void turnWheel(double direction) {…}

}

Figure A2. Initial implementation of Automobile class in autocross simulator example.

17 More realistic physics are not considered this example scenario. It would also appear that the automobile

would obviously win this race as it requires less cautious operations. The motorcycle’s acceleration advantage can,

however, overcome this. It is necessary to find the correct optimal parameters without crashing. This search problem

is a type commonly applied to GP.

139

public class Motorcycle {

 public void race() {

 safeAccelerate(50); //0-100%, additional checks

 safeAccelerate(100); //0-100%, additional checks

 safeBrake(80); //0-100%, additional checks

 pressHandlebars(-90); //Turn angle

 lean(-45); //lean angle

 safeAccelerate(50); //0-100%, additional checks

 safeAccelerate(100); //0-100%, additional checks

 safeBrake(80); //0-100%, additional checks

 pressHandlebars(90); //Turn angle

 lean(45); //lean angle

 safeAccelerate(50); //0-100%, additional checks

 safeAccelerate(100); //0-100%, additional checks

 safeBrake(80); //0-100%, additional checks

 }

 private void safeAccelerate(double percent {…}

 private void safeBrake(double percent) {…}

 private void lean(double percent {…}

 private void pressHandlebars(double degree {…}

}

Figure A3. Initial implementation of Motorcycle class in autocross simulator example.

The class model shown in Figure A3 can be simplified by incorporating reusable

functions. Functional expressions are language constructs and have been incorporate into genetic

programming using various approaches such as automatically defined functions (Koza, 1994). A

functional approach to the problem might notice that the “turn” operation involves the same three

repeated steps. A new function can be defined for the Automobile and Motorcycle classes and

the main programs modified to incorporate this function.

private void turn(double direction){

 brake(100);

 turnWheel(direction);

 accelerate(100);

}

Figure A4. Turn method for Automobile class in autocross simulator example.

140

public void turn(double degree) {

 safeBrake(80);

 pressHandlebars(degree);

 lean(degree/2);

 safeAccelerate(50);

 safeAccelerate(100);

}

Figure A5. Turn method for Motorcycle class in autocross simulator example.

This change reduces the complexity of the race method in the main program branch.

public void race(){

 accelerate(100);

 turn(-90);

 turn(90);

 brake(100);

}

Figure A6. Race method for Automobile class in autocross simulator example.

public void race() {

 safeAccelerate(50);

 safeAccelerate(100);

 turn(90);

 turn(-90);

 safeBrake(80);

}

Figure A7. Race method for Motorcycle class in autocross simulator example.

A problem with the implementation at this point is that both vehicle classes use separate

controller code. Both programs appear to contain some similarities but the actual steps and

implementations differ.

Object-oriented (OO) design and design patterns can improve this design. An OO

analysis may show that both the automobile and the motorcycle are actually types of motor

vehicles, indicating an inheritance relationship. Furthermore, all motor vehicles have certain

operations in common.

141

Figure A8. Object model showing one

parent and two subclasses.

Figure A9. Methods in abstract parent class.

In Figure A8, MotorVehicle is defined as an abstract class. It doesn’t exist in the real

world but is instead an abstraction of similarly attributed items. Car and Motorcycles are

concrete classes. These objects model real world entities. In OO design, abstract classes may

contain methods and operations but may not be directly instantiated. Just as individual operations

may be abstracted, compound operations, such as race(), can also abstracted.

Figure A10. Additional methods in abstract parent class. The

race methods in both subclasses are moved up into the parent.

public void race() {

 accelerate(100);

 turn(-90);

 turn(90);

 brake(100);

}

Figure A11. Race method in abstract class. Each step in this method is defined as abstract.

142

The race method in Figure A11 may be applied to any of the two MotorVehicle

subclasses. Each will have a distinct implementation of the steps. The implementation details are

defined for each concrete class.

The final class diagram, in Figure A12, shows the abstract methods and the

implementations of each. Private, class specific methods are not shown. The final code for the

Abstract and concrete classes are show in Figure A13 through Figure A15.

Figure A12. Full class diagram for abstract and concrete classes.

public abstract class MotorVehicle {

 public abstract void accelerate(double percent);

 public abstract void brake(double percent);

 public abstract void turn(double degree);

 public void race() {

 accelerate(100);

 turn(-90);

 turn(90);

 brake(100);

 }

}

Figure A13. Java code for abstract parent class.

143

public class Automobile extends MotorVehicle {

 @Override

 public void turn(double direction) {

 brake(100);

 turnWheel(direction);

 accelerate(100);

 }

 @Override

 public void accelerate(double percent {…}

 @Override

 public void brake(double percent) {…}

 private void turnWheel(double direction) {…}

}

Figure A14. Java code for Automobile concrete class.

public class Motorcycle extends MotorVehicle {

 @Override

 public void turn(double degree) {

 safeBrake(80);

 pressHandlebars(degree);

 lean(degree / 2);

 safeAccelerate(50);

 safeAccelerate(100);

 }

 @Override

 public void accelerate(double percent) {

 safeAccelerate(percent / 2);

 }

 private void safeAccelerate(double percen) {…}

 @Override

 public void brake(double percent) {

 safeBrake(percent * 0.8);

 }

 private void safeBrake(double percent {…}

 private void lean(double percent) {…}

 private void pressHandlebars(double degree {…}

}

Figure A15. Java code for Motorcycle concrete class.

The template method pattern defines an overall algorithm and invariant operations in an

abstract class (the race function in MotorVehicle) and defers certain implementation steps to

144

concrete subclasses (accelerate, brake, and turn, as defined in Automobile and Motorcycle).

Comparing the original program code to the code with added functions to the code with abstract

methods shows the simplicity achieved through greater levels of abstraction, modularity, and

composition.

Another design pattern, the strategy pattern, is similar in many ways to the template

method pattern and also applicable to regime specific implementations. The strategy pattern

allows alternative algorithm implementations to be selected and applied to a given task. This

pattern accomplishes specific behavior not through inheritance but through composition, where

varying behaviors, or strategies, are injected into a concrete class. In the racetrack example

above, various approaches to performing the same task may be applied and used by each of the

motor vehicle implementation. For example, vehicle braking could be either conservative or

aggressive. An abstract class with an abstract brake method and two implementation approaches

are defined.

Instead of controlling the algorithm from an abstract method as in the template pattern,

the algorithm is controlled by a concrete class (the Automobile object). The automobile

references an abstract braking strategy to perform the operation. The actual algorithm to perform

braking is determined at runtime (either at instantiation, as indicated by the new class

constructor, or modified at a later time prior to use).

Figure A16. Object model for strategy pattern implementation.

145

public class Automobile {

 private BrakingStrategy brakingStrategy;

 public Automobile(BrakingStrategy brakingStrategy) {

 this.brakingStrategy = brakingStrategy;

 }

 public void race() {

 accelerate(100);

 turn(-90);

 turn(90);

 brakingStrategy.brake(100);

 }

 public void accelerate(double percent) {

 //Implementation detail left out

 }

 private void turnWheel(double direction) {

 //Implementation detail left out

 }

 private void turn(double direction) {

 brakingStrategy.brake(100);

 turnWheel(direction);

 accelerate(100);

 }

}

Figure A17. Java code for applying strategy pattern in concrete Automobile class.

146

Appendix B

Stock Prediction Example

The following hypothetical example describes a financial model to guide investment

decisions. The example doesn’t presuppose genetic programming or other methodology, but is

intended to illustrate the improvements possible by incorporate more modular, pattern oriented

code into a program.

Suppose it is determined that moving average crossover is a good indication for buy/sell

decisions. A moving average crossover occurs when two moving averages of different period on

the same time series cross. A lower period moving average crossing above a higher moving

period average is widely seen as a bullish signal (Sincere, 2011). However, it is discovered that a

simple moving average is preferred in non-volatile market while an exponential moving average

is preferred in a volatile one. Additional analysis has also shown that negative sentiment is a

bullish signal (ibid.). A model to encompass this logic is created. If the model evaluates to true at

any point in time, the model will invest or remain in the market. If the model evaluates to false,

the model will stay out or exit the market. The market in this example is taken to be the S&P

500 index (S&P Dow Jones Indices LLC, 2016).

The model uses the following indicators:

1. [ma/ema]: S&P 500 moving average or exponential moving average. All moving

average calculations below based on the S&P 500 index.

2. [VIX]: CBOE VIX volatility index (Chicago Board Options Exchange, 2014)

3. [AII Sentiment]: AAII Sentiment Survey (American Association of Individual

Investors, 2014)

The complete model logic shown in Figure B1.

147

If: [AII Sentiment] <=40

And one of the following two conditions are true:

1. [VIX] <= 30 and [SP500 50 day moving average] crosses above [SP500 200

day moving average]

2. [VIX] > 30 and [SP500 20 day exponential moving average] crosses above

[SP500 50 day exponential moving average]

Then: Invest or remain invested

Else: Exit or remain out of the investment

Figure B1. Example investment model logic.

Java implementation.

A Java program implementing the model described in above is shown in Figure B2. The

program can be improved by applying the template method pattern. An analysis of the program

shows that the sentiment condition is an invariant that must always be satisfied. A moving

average calculation is always applied, but different moving averages are used as determined by

the value of the VIX index. Therefore, two regimes can be determined by a single indicator

encompassing the VIX related condition. Two regime specific implementations of an abstract

algorithm are also needed.

The class diagram for the new version of the Java program is shown in the Figure B3. An

abstract class, AbstractInvestor, is created to contain the invariant logic. Two regime specific

implementations are created to provide the appropriate moving average calculation. A regime

determination function is also incorporated to choose among the two possible regimes. The

modified code is shown in Figure B4 through Figure B8.

148

public boolean evaluate() {

 if (sentiment(today) <= 40 &&

 vix(today) <= 30 &&

 ma(200, yesterday) <= ma(50, yesterday) &&

 ma(200, today) > ma(50, today)) {

 return true;

 } else if (sentiment(today) <= 40 &&

 vix(today) > 30 &&

 ema(20, yesterday) <= ema(50, yesterday) &&

 ema(20, today) > ema(50, today)) {

 return true;

 } else {

 return false;

 }

}

Figure B2. Java method for example investment decision

Figure B3. Class diagram for template method pattern

implementation of investment decision example.

A regime determining program is shown in Figure B4. This program returns a binary

string, 0 or 1 in this case, based on the single indicator base on the VIX index value.

public class Regime {

 public static int regime() {

//create binary result from single indicator

 String binaryString = indicator1() ? "1" : "0";

 return Integer.parseInt(binaryString, 2);

 }

 //Single indicator

 public static boolean indicator1() {

 return FinancialUtilities.vix(today) > 30;

 }

}

Figure B4. Regime indicator implementation.

149

Figure B5 defines an interface, which is simply the Boolean target expression. Figure B6

implements the interface in an abstract class. This class implements a template method pattern,

incorporating invariant and regime specific logic. The regime specific logic must be defined as

abstract in the Java class. Figure B7 defines two concrete classes implementing the regime

specific logic. The actual algorithm is evaluated and regime selection is done in the following

application program, shown in Figure B8.

public interface Investor {

 boolean invest();

}

Figure B5. Investment decision Java interface.

public abstract class AbstractInvestor implements Investor {

 @Override

 public boolean invest() {

 return FinancialUtilities.sentiment(today) <= 40 //invariant

 && investRegime(); //abstract - regime specific

 }

 public abstract boolean investRegime(); //Must be overridden

}

Figure B6. Template method Java implementation.

public class Regime0Investor extends AbstractInvestor {

 @Override

 public boolean investRegime() {

 return (

 ma(200, yesterday) <= ma(50, yesterday) &&

 ma(200, today) > ma(50, today));

 }

}

public class Regime1Investor extends AbstractInvestor {

 @Override

 public boolean investRegime() {

 return (ema(20, yesterday) <= ema(50, yesterday) &&

 ema(20, today) > ema(50, today));

 }

}

Figure B7. Regime specific logic implementing abstract template methods.

The modular version, while providing the same ultimate result as the prior version, is

easier to understand and better highlights the actual underlying model logic. Such understanding

150

is even more important for automated programming techniques such as genetic program, where

the underlying pattern or logic may not easily be determined.

public class evaluator {

 public static void main(String[] args) {

 Investor template;//placeholder for concrete template

 int regimeNumber = Regime.regime(); //determine regime

 //inject appropriate template implementation

 if (regimeNumber == 0) {

 template = new Regime0Investor();

 } else {

 template = new Regime1Investor();

 }

 Boolean result = template.invest()); //run calculation

 }

}

Figure B8. Final program using template method pattern.

Clojure implementation.

The algorithm can also be implemented in Clojure18, a JVM language similar to LISP. A

LISP/S-expression representation is typical for representing GP trees. The initial, non-modular

approach is shown in Figure B9.

(defn invest? []

 (or

 (and

 (<= (sentiment today) 40)

 (<= (vix today) 30)

 (<= (ma 200 yesterday) (ma 50 yesterday))

 (> (ma 200 today) (ma 50 today)))

 (and

 (<= (sentiment today 40))

 (> (vix today) 30)

 (<= (ema 20 yesterday) (ema 50 yesterday))

 (> (ema 20 today) (ema 50 today)))

)

)

Figure B9. Clojure implementation of investment decision example using a single function.

18 Even through Clojure is not used as an evaluation language in this dissertation, the underlying Java

implementation and program tree model a LISP/Clojure S-expression.

151

; concrete regime specific implementation 1

(defn adt00 []

 (and

 (<= (ma 200 yesterday) (ma 50 yesterday))

 (> (ma 200 today) (ma 50 today)))

)

; concrete regime specific implementation 2

(defn adt01 []

 (and

 (<= (ema 20 yesterday) (ema 50 yesterday))

 (> (ema 20 today) (ema 50 today)))

)

;choose concrete implementation based on regime selection logic

(defn regime [date]

 (if (> 30 (vix date))

 adt00

 adt01

)

)

;main expression

(defn investRegime? []

 (let [adt (regime today)] ;set concrete regime handler

 (and

 (<= (sentiment today) 40) ; invariant logic

 (adt) ;regime specific logic

)

)

)

Figure B10. Clojure implementation of investment decision example incorporating modularity

features.

This function can be expressed with more modular approaches is shown in Figure B10.

The overall algorithm can be evaluated in Clojure with the expression: (investRegime?).

152

Appendix C

 Primitives

The following section describes the terminal and function primitives used in the genetic

programming system and experiments created for this dissertation.

Functions.

Figure C1. Primitive functions class diagram.

153

Table C1. Function Primitives

Function Data Type Arity Description

Add N 2 Numeric Addition

And B 2 Logical AND

BinaryNumbera N Variable See regime determination

Cos N 1 Cosine

Divide N 2 Numeric division

EqInteger
B 2 Equality of integer representation of a

numeric

Exp N 1 Euler’s number raised to a power

Gt B 2 Numeric comparison

IfElseBoolean B 3 Returns a Boolean based on logical condition

IfElseNumeric
B 3 Returns a Numeric based on logical

condition

Largest
N 2 Returns largest value in a numeric

comparison

Ln N 1 Natural Logarithm

Lt B 2 Logical less than

MovingAverageb N 1 Parameterized moving average.

Multiply N 2 Numeric multiplication

Not B 1 Logical negation

OffsetValue
N 1 Returns the series value offset by a given

numeric value

Or B 2 Logical OR

PeriodMaximum
N 1 Returns the maximum value of a series

within a given period

PeriodMinimum
N 1 Returns the minimum value of a series

within a given period

Pow N 2 Exponentiation

154

Function Data Type Arity Description

Sin N 1 Sine

Smallest N 2 Returns smallest of two numeric values

Sqrt N 1 Square Root

StdDev

N 1 Standard Deviation of values within a given

numeric period

Subtract N 2 Numeric subtraction

XOr 2 Logical XOR

Note. B=Boolean; N=Numeric.
aBinary string are used only in regime determination. Therefore, the length is dependent on the fixed

number of regimes. bInteger component of parameter is used in case of a non-integer parameter.

Terminals.

Figure C2. Primitive terminals class diagram.

155

Table C2. Terminal Primitives

Terminal Description

Filtera Technical indicator taken from (Jin Li & Tsang, 1999) defined as

current price minus the minimum price over a prior period. Period is

function input value

MVa Technical indicator taken from (Jin Li & Tsang, 1999) defined as

current price minus the average price over a prior period. Period is

function input value

OffsetValueFixed Fixed offset on a named series. Period is program input value

RandomDouble An immutable random value between 0 and 1

RandomInteger An immutable random value within a fixed range. Range is program

input value.

TerminalFalseb Immutable Boolean false value

TerminalOne b Immutable numeric one value

TerminalTrueb Immutable Boolean true value

TerminalZerob Immutable numeric 0 value

TRBa Technical indicator taken from (Jin Li & Tsang, 1999) defined as

current price minus the maximum price over a prior period. Period is

function input value

Variable Represents the X value in a repression or prediction. X can be numeric

or Date data type

 aThese terminals were not used in this research, but are implemented and available in the

developed system. These terminals are an example of compound functionality packaged as a

non-reducible terminal. Alternatively, this could be evolved from lower level functions and

terminals. bThese terminals are often only used internally when no other primitive is available

and a certain strong type is needed.

156

Appendix D

Program Parameters

This appendix provides a detailed description of the program parameters used for each

experiment and a description of each parameter.

Parameter descriptions.

Table D1. Common Parameters Used in Experiments

Parameter Default Valuea Description

allowTrivialPredictionsb true Detect if a prediction program

appears to converge on the prior

actual value. Setting this value

to false will result in a low

fitness score for such a

program.

 applicationName [linearRegressionApp,

linearRegressionAppDyforGp,

MarketPredictionApp,

MarketProfitApp,

MarketProfitAppDyforGp]

Type of program to run

 crossoverPct 0 Crossover probability

percentage

 description Informational only

 direction [asc, desc] Indicates direction of

decreasing fitness values

 elitist false Fittest individuals are

automatically promoted (via

reproduction) to next

generationc

 endTest Series start +90% Testing end window. Can be

indicated in numeric or percent.

 endTrain Series start + 66.66 % Training end window. Can be

indicated in numeric or percent.

157

Parameter Default Valuea Description

 functions Available functions for result

producing programs. Also used

for regime determining

programs if regimeFunctions

parameter is not specified

 logMetrics false Record metrics to database

 maxDepth unlimited Maximum program depth

 maxInitDepth Maximum depth for initial

random population generation.

This limit is also used for

during mutation.

 maxValidFitnessd unlimited Set an upper limit on fitness

scores. Any score over this

value will be set to the fitness

limit.

maxPredictionGenerations 1 Used with adaptive training.

Determines the maximum

number of training generations

that can be run prior to each

prediction step

maxSize unlimited Maximum nodes for an

individual.

maxTotalNodes unlimited Maximum total number of

nodes. If this parameter is used,

population size may fluctuate.

meanSquaredError true Use mean square (true) or mean

error (false) when calculating

fitness in numeric prediction

runs.

mutationPct 0 Mutation probability

percentage

predictionGenerationse 1 Number of training runs

executed at each prediction

iteration.

158

Parameter Default Valuea Description

predictionWindow 1 Predictions are made at this

offset past the current window

end point.

printTrainingProgram false Log the best training program

after each generation to

standard output.

 populationSize Initial and maximum population

size. If maximumTotalNodes

parameter is used, this will be

used as the initial population

size

predictorsf Set of target series to use as

predictors

 predictionStep 1 Number of steps to move

sliding window after each

prediction generation

 programType [prediction, regression] Type of program run.

 returnType [number, boolean] Data type returned by generated

programs

riskFreeReturnf Use this series to calculate

investment returns when not

invested in the market

 selectionStrategyg [tournamentSelectionStrategy] Selection strategy used to

choose individuals for next

generation

seriesEnd 0 Used to limit data in target

series. Can be input as actual

data point or percentage.

seriesStart 100% Used to limit data in target

series. Can be input as actual

data point or percentage.

signalsf 1 Number of consecutive signals

needed to act on an investment

decision.

159

Parameter Default Valuea Description

stagnationLimit Abort further training if a more

fit individual is not found in this

many generations

 startTest 0 Testing start window. Can be

input as actual data point or

percentage.

 startTrain 33.33% Training start window. Can be

input as actual data point or

percentage.

 target Target series to predict.

 terminals Terminal set available to

evolved programs

testingGenerations 1 Incorporate multiple training/

testing cycles. The best tested

individual over all cycles will

be used for the subsequent

prediction phase.

 tournamentSize 2 Number of programs included

in a tournament

 trainingGenerations 1 Number of training generations.

 trainingWindow Training window size. If not

entered, the entire target series

is used.

transactionCostf 0 Ply a fixed or percentage cost to

each investment bought or sold

trainingSteph 1 Number of data points to move

forward after each fitness

evaluation over the training

window.

useAverageError false Use average error (true) or total

error (false) in fitness

evaluations involving multiple

comparisons.

160

Parameter Default Valuea Description

useAverageFitnessSelector false For four way tournaments only,

use average (true) or best (false)

of two fitness calculations.

useAdaptiveTraining false Increase the training

generations during prediction

phase as prediction decreases in

accuracy.

 visualize false display real time graphics

 a Allowable range or values are shown in brackets. Default values within allowable ranges are

marked with an asterisk. Parameters with default values specified are not required. bTrivial

predictions describe the case where the predicted value 𝑦(𝑥) = 𝑦(𝑥 − 1), where equality is

defined as values within a given tolerance. In the current implementation, trivial predictions are

taken to be cases where 95% of predicted values are within 0.0001. cThe fittest individual from

both the result producing branch and, if applicable, the regime determining branch are copied to

the next generation via reproduction. The latter case is only applicable where the regime

population is completely decoupled from the result producing population. d Maximum allowable

fitness is generally only needed where fitness decreases with higher fitness values, as in

symbolic regression, where the fitness of the worst performing individuals can approach infinity.

This situation can skew population statistics or cause program aborts. eA value of 0 for this

parameter will execute all predictions with no additional training after the initial training period.
fRelevant to market prediction only. g Tournament selection is the only currently implemented

selection strategy. Fitness proportional selection is another selection strategy that could be

included. Random selection can be implemented by setting a tournament size of 1. hLarger

training steps can be used to sample values from the target series in order to optimize fitness

evaluation.

Table D2. ADT/AAT Parameters

Parameter Default Valuea Description

 regimes Preset number of regimes

regimeFunctions

Result producing

branch functions

Functions available to regime

determining programs.

regimePopulationSize

result producing

branch populationsize

Steady state regime population size.

Only applicable for decoupled

regime generation. If

maximumTotalNodes parameter is

used, this is the initial regime

population size.

 a Parameters with default values specified are not required.

161

Table D3. ADT Parameters

Parameter Default Valuea Description

adfArity The arities used for each defined ADF and

ADT template.

 a Parameters with default values specified are not required.

Table D4. AAT Parameters

Parameter Default Valuea Description

compressionPct 0b Compression Percentage

expansionPct 0 Expansion Percentage

minimumCompressionSize 0 Disallow compressions that would result in

program size less than a minimum.

Compression is performed again in such a

case.

a Parameters with default values specified are not required. bWhile technically allowable, a value

of 0 for compression would result in no library functions created.

Table D5. DyFor GP Parameters

Parameter Default Valuea Description

 maxWindowSize Maximum sliding window size

 minWindowSize Minimum sliding window size

 N Number of consecutive increases or decreases

in prediction accuracy before adjusting

sliding windowsb

 predictionSize 1 Predict this many points ahead of end of

sliding window

resetOnNoTrend false Reset N if small and large window fitness

scores are equal.

 saveoff 1 number of programs to save off

 startWindowSize Start sliding window size

 windowDifference Difference between small and large windows

 windowSlide Number of points to slide windows.

Note. Typical DyFor GP Parameters as described in (Wagner & Michalewicz, 2008).
a Parameters with default values specified are not required. bIndicates a regime change.

162

Parameter files.

This section provides sample parameter files used in the described experiments. Windows

batch and Unix shell script formats are both used. Information on downloading the full set of

parameter files is given in Appendix I.

LGOZLG.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="LGOZLG ADT Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--visualize=false \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--printTrainingProgram=false \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--adfArity="1,2" \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=LGOZLG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=3000 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--fourWayPct=25 \

--mutationPct=10 \

--crossoverPct=90 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="add,subtract,multiply,divide,and,not,gt,offsetValue,periodMinimum,p

eriodMaximum,stdDev,movingAverage" \

--terminals="randomInteger(-1 110),offsetValueFixed(LGOZLG

1),offsetValueFixed(LGOZLG 2)"

Figure D1. ADT LGOZLG parameters

163

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="LGOZLG ADT OMNI Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--visualize=false \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--printTrainingProgram=false \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--adfArity="1,2" \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=LGOZLG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=1 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--fourWayPct=25 \

--mutationPct=10 \

--crossoverPct=90 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--regimeFunctions="regimeLGOZLG" \

--terminals="randomInteger(-1 110),offsetValueFixed(LGOZLG

1),offsetValueFixed(LGOZLG 2)"

Figure D2. ADT Omni LGOZLG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="LGOZLG AAT Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--gcFrequency=20 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

164

--programType=Prediction \

--target=LGOZLG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=3000 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=80 \

--compressionPct=5 \

--minimumCompressionSize=5 \

--expansionPct=5 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="add,subtract,multiply,divide,and,not,gt,offsetValue,periodMinimum,p

eriodMaximum,stdDev,movingAverage" \

--terminals="randomInteger(-1 110),offsetValueFixed(LGOZLG

1),offsetValueFixed(LGOZLG 2)"

Figure D3. AAT LGOZLG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="LGOZLG AAT Omni Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--gcFrequency=20 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=LGOZLG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=1 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=80 \

--compressionPct=5 \

--minimumCompressionSize=5 \

--expansionPct=5 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

165

--regimeFunctions="regimeLGOZLG" \

--terminals="randomInteger(-1 110),offsetValueFixed(LGOZLG

1),offsetValueFixed(LGOZLG 2)"

Figure D4. AAT Omni LGOZLG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="LGOZLG Dyfor" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPrediction=10 \

--minPrediction=-10 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=Number \

--applicationName=linearRegressionDyforGp \

--programType=Prediction \

--populationSize=3000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--target=LGOZLG \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--direction=asc \

--N=3 \

--saveoff=10 \

--maxWindowSize=200 \

--predictionSize=1 \

--minWindowSize=20 \

--windowSlide=1 \

--windowDifference=20 \

--startWindowSize=80 \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--terminals="randomInteger(-1 110),offsetValueFixed(LGOZLG

1),offsetValueFixed(LGOZLG 2)"

Figure D5. DyFor GP LGOZLG parameters.

MGHENMG.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="MGHENMG ADT Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

166

--minPrediction=-10 \

--regimes=2 \

--adfArity="1,2" \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=MGHENMG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=3000 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--fourWayPct=25 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="add,subtract,multiply,divide,and,not,gt,offsetValue,periodMinimum,p

eriodMaximum,stdDev,movingAverage" \

--terminals="randomInteger(-1 110),offsetValueFixed(MGHENMG

1),offsetValueFixed(MGHENMG 2),offsetValueFixed(MGHENMG 3),offsetValueFixed(MGHENMG

4),offsetValueFixed(MGHENMG 5),offsetValueFixed(MGHENMG 6),offsetValueFixed(MGHENMG

7),offsetValueFixed(MGHENMG 8),offsetValueFixed(MGHENMG 9),offsetValueFixed(MGHENMG

10),offsetValueFixed(MGHENMG 11),offsetValueFixed(MGHENMG

12),offsetValueFixed(MGHENMG 13),offsetValueFixed(MGHENMG

14),offsetValueFixed(MGHENMG 15),offsetValueFixed(MGHENMG

16),offsetValueFixed(MGHENMG 17),offsetValueFixed(MGHENMG

18),offsetValueFixed(MGHENMG 19),offsetValueFixed(MGHENMG

20),offsetValueFixed(MGHENMG 21),offsetValueFixed(MGHENMG

22),offsetValueFixed(MGHENMG 23),offsetValueFixed(MGHENMG

24),offsetValueFixed(MGHENMG 25),offsetValueFixed(MGHENMG

26),offsetValueFixed(MGHENMG 27),offsetValueFixed(MGHENMG

28),offsetValueFixed(MGHENMG 29),offsetValueFixed(MGHENMG

30),offsetValueFixed(MGHENMG 31)"

Figure D6. ADT MGHENMG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="MGHENMG ADT Prediction Omni" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--adfArity="1,2" \

--startTrain=150 \

--endTrain=250 \

167

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=MGHENMG \

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=1 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--fourWayPct=25 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--regimeFunctions="regimeMGHENMG" \

--terminals="randomInteger(-1 110),offsetValueFixed(MGHENMG

1),offsetValueFixed(MGHENMG 2),offsetValueFixed(MGHENMG 3),offsetValueFixed(MGHENMG

4),offsetValueFixed(MGHENMG 5),offsetValueFixed(MGHENMG 6),offsetValueFixed(MGHENMG

7),offsetValueFixed(MGHENMG 8),offsetValueFixed(MGHENMG 9),offsetValueFixed(MGHENMG

10),offsetValueFixed(MGHENMG 11),offsetValueFixed(MGHENMG

12),offsetValueFixed(MGHENMG 13),offsetValueFixed(MGHENMG

14),offsetValueFixed(MGHENMG 15),offsetValueFixed(MGHENMG

16),offsetValueFixed(MGHENMG 17),offsetValueFixed(MGHENMG

18),offsetValueFixed(MGHENMG 19),offsetValueFixed(MGHENMG

20),offsetValueFixed(MGHENMG 21),offsetValueFixed(MGHENMG

22),offsetValueFixed(MGHENMG 23),offsetValueFixed(MGHENMG

24),offsetValueFixed(MGHENMG 25),offsetValueFixed(MGHENMG

26),offsetValueFixed(MGHENMG 27),offsetValueFixed(MGHENMG

28),offsetValueFixed(MGHENMG 29),offsetValueFixed(MGHENMG

30),offsetValueFixed(MGHENMG 31)"

Figure D7. ADT Omni MGHENMG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="MGHENMG AAT Prediction" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--gcFrequency=20 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=MGHENMG \

168

--direction=asc \

--populationSize=3000 \

--regimePopulationSize=3000 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=80 \

--compressionPct=5 \

--fourWayPct=25 \

--minimumCompressionSize=5 \

--expansionPct=5 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="add,subtract,and,not,gt,offsetValue,periodMinimum,periodMaximum,std

Dev,movingAverage" \

--terminals="randomInteger(-1 110),offsetValueFixed(MGHENMG

1),offsetValueFixed(MGHENMG 2),offsetValueFixed(MGHENMG 3),offsetValueFixed(MGHENMG

4),offsetValueFixed(MGHENMG 5),offsetValueFixed(MGHENMG 6),offsetValueFixed(MGHENMG

7),offsetValueFixed(MGHENMG 8),offsetValueFixed(MGHENMG 9),offsetValueFixed(MGHENMG

10),offsetValueFixed(MGHENMG 11),offsetValueFixed(MGHENMG

12),offsetValueFixed(MGHENMG 13),offsetValueFixed(MGHENMG

14),offsetValueFixed(MGHENMG 15),offsetValueFixed(MGHENMG

16),offsetValueFixed(MGHENMG 17),offsetValueFixed(MGHENMG

18),offsetValueFixed(MGHENMG 19),offsetValueFixed(MGHENMG

20),offsetValueFixed(MGHENMG 21),offsetValueFixed(MGHENMG

22),offsetValueFixed(MGHENMG 23),offsetValueFixed(MGHENMG

24),offsetValueFixed(MGHENMG 25),offsetValueFixed(MGHENMG

26),offsetValueFixed(MGHENMG 27),offsetValueFixed(MGHENMG

28),offsetValueFixed(MGHENMG 29),offsetValueFixed(MGHENMG

30),offsetValueFixed(MGHENMG 31)"

Figure D8. AAT MGHENMG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="MGHENMG AAT Prediction Omni" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--useAdaptiveTraining=false \

--maxPredictionGenerations=5 \

--maxPrediction=10 \

--minPrediction=-10 \

--regimes=2 \

--gcFrequency=20 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=number \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=Prediction \

--target=MGHENMG \

--direction=asc \

--populationSize=3000 \

169

--regimePopulationSize=1 \

--trainingWindow=110 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=80 \

--compressionPct=5 \

--fourWayPct=25 \

--minimumCompressionSize=5 \

--expansionPct=5 \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--regimeFunctions="regimeMGHENMG" \

--terminals="randomInteger(-1 110),offsetValueFixed(MGHENMG

1),offsetValueFixed(MGHENMG 2),offsetValueFixed(MGHENMG 3),offsetValueFixed(MGHENMG

4),offsetValueFixed(MGHENMG 5),offsetValueFixed(MGHENMG 6),offsetValueFixed(MGHENMG

7),offsetValueFixed(MGHENMG 8),offsetValueFixed(MGHENMG 9),offsetValueFixed(MGHENMG

10),offsetValueFixed(MGHENMG 11),offsetValueFixed(MGHENMG

12),offsetValueFixed(MGHENMG 13),offsetValueFixed(MGHENMG

14),offsetValueFixed(MGHENMG 15),offsetValueFixed(MGHENMG

16),offsetValueFixed(MGHENMG 17),offsetValueFixed(MGHENMG

18),offsetValueFixed(MGHENMG 19),offsetValueFixed(MGHENMG

20),offsetValueFixed(MGHENMG 21),offsetValueFixed(MGHENMG

22),offsetValueFixed(MGHENMG 23),offsetValueFixed(MGHENMG

24),offsetValueFixed(MGHENMG 25),offsetValueFixed(MGHENMG

26),offsetValueFixed(MGHENMG 27),offsetValueFixed(MGHENMG

28),offsetValueFixed(MGHENMG 29),offsetValueFixed(MGHENMG

30),offsetValueFixed(MGHENMG 31)"

Figure D9. AAT Omni MGHENMG parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="MGHENMG Dyfor" \

--tournamentSize=4 \

--logMetrics=true \

--allowTrivialPredictions=false \

--maxPrediction=10 \

--minPrediction=-10 \

--startTrain=150 \

--endTrain=250 \

--startTest=150 \

--endTest=250 \

--returnType=Number \

--applicationName=linearRegressionDyforGp \

--programType=Prediction \

--populationSize=3000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--target=MGHENMG \

--trainingGenerations=41 \

--selectionStrategy=tournamentSelectionStrategy \

--direction=asc \

--N=3 \

--saveoff=10 \

--maxWindowSize=200 \

170

--predictionSize=1 \

--minWindowSize=20 \

--windowSlide=1 \

--windowDifference=20 \

--startWindowSize=80 \

--

functions="sin,cos,sqrt,exp,ln,add,subtract,multiply,divide,and,not,gt,offsetValue,p

eriodMinimum,periodMaximum,stdDev,movingAverage" \

--terminals="randomInteger(-1 110),offsetValueFixed(MGHENMG

1),offsetValueFixed(MGHENMG 2),offsetValueFixed(MGHENMG 3),offsetValueFixed(MGHENMG

4),offsetValueFixed(MGHENMG 5),offsetValueFixed(MGHENMG 6),offsetValueFixed(MGHENMG

7),offsetValueFixed(MGHENMG 8),offsetValueFixed(MGHENMG 9),offsetValueFixed(MGHENMG

10),offsetValueFixed(MGHENMG 11),offsetValueFixed(MGHENMG

12),offsetValueFixed(MGHENMG 13),offsetValueFixed(MGHENMG

14),offsetValueFixed(MGHENMG 15),offsetValueFixed(MGHENMG

16),offsetValueFixed(MGHENMG 17),offsetValueFixed(MGHENMG

18),offsetValueFixed(MGHENMG 19),offsetValueFixed(MGHENMG

20),offsetValueFixed(MGHENMG 21),offsetValueFixed(MGHENMG

22),offsetValueFixed(MGHENMG 23),offsetValueFixed(MGHENMG

24),offsetValueFixed(MGHENMG 25),offsetValueFixed(MGHENMG

26),offsetValueFixed(MGHENMG 27),offsetValueFixed(MGHENMG

28),offsetValueFixed(MGHENMG 29),offsetValueFixed(MGHENMG

30),offsetValueFixed(MGHENMG 31)"

Figure D10. DyFor GP MGHENMG parameters.

SINCOS.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="SINCOS GP" \

--maxValidFitness=10000000000 \

--tournamentSize=4 \

--logMetrics=true \

--visualize=false \

--startTrain=0 \

--endTrain=100% \

--startTest=0 \

--endTest=100% \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=LinearRegression \

--returnType=Number \

--target=SINE \

--direction=asc \

--populationSize=5000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--trainingGenerations=100 \

--testingGenerations=1 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--terminals="randomInteger(-1 100),variable(x)"

Figure D11. GP SINCOS parameters.

171

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="SINCOS ADF" \

--maxValidFitness=10000000000 \

--tournamentSize=4 \

--adfArity="1,2" \

--logMetrics=true \

--visualize=false \

--startTrain=0 \

--endTrain=100% \

--startTest=0 \

--endTest=100% \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=LinearRegression \

--returnType=Number \

--target=SINE \

--direction=asc \

--populationSize=5000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--trainingGenerations=100 \

--testingGenerations=1 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--terminals="randomInteger(-1 100),variable(x)"

Figure D12. ADF SINCOS Parameters

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="SINCOS ADT" \

--maxValidFitness=10000000000 \

--tournamentSize=4 \

--adfArity="1,2" \

--regimes=2 \

--logMetrics=true \

--visualize=false \

--startTrain=0 \

--endTrain=100% \

--startTest=0 \

--endTest=100% \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=LinearRegression \

--returnType=Number \

--target=SINE \

--direction=asc \

--populationSize=5000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=90 \

--fourWayPct=25 \

172

--trainingGenerations=100 \

--testingGenerations=1 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="and,not,gt,offsetValue,periodMinimum,periodMaximum,stdDev,movingAve

rage" \

--terminals="randomInteger(-1 100),variable(x)"

Figure D13. ADT SINCOS parameters.

java -Xmx7G -Djava.awt.headless=true -cp /home/ubuntu/target/nova-1.2-SNAPSHOT.jar

com.infoblazer.gp.Application \

--description="SINCOS AAT" \

--maxValidFitness=10000000000 \

--tournamentSize=4 \

--regimes=2 \

--gcFrequency=10 \

--logMetrics=true \

--visualize=false \

--startTrain=0 \

--endTrain=100% \

--startTest=0 \

--endTest=100% \

--applicationName=linearRegressionApp \

--elitist=true \

--programType=LinearRegression \

--returnType=Number \

--target=SINE \

--direction=asc \

--populationSize=5000 \

--maxInitDepth=5 \

--maxDepth=10 \

--mutationPct=10 \

--crossoverPct=80 \

--compressionPct=5 \

--minimumCompressionSize=5 \

--expansionPct=5 \

--fourWayPct=25 \

--trainingGenerations=100 \

--testingGenerations=1 \

--selectionStrategy=tournamentSelectionStrategy \

--functions="add,subtract,multiply,divide,sin,cos,sqrt,exp,ln" \

--

regimeFunctions="and,not,gt,offsetValue,periodMinimum,periodMaximum,stdDev,movingAve

rage" \

--terminals="randomInteger(-1 100),variable(x)"

Figure D14. AAT SINCOS parameters.

173

S&P 500 market data prediction.

This section provides sample parameters used in the S&P 500 prediction experiments

described in this dissertation. The samples include parameter files for the prediction period 1999-

2000 including transaction costs. 1999-2004 ADT and DyFor GP input files are also provided.

java -Xmx7G -Djava.awt.headless=true -cp /nova/automatically-defined-

templates/target/nova-1.3-SNAPSHOT.jar com.infoblazer.gp.Application ^

--description="SP500 ADF" ^

--printTrainingProgram=false ^

--logMetrics=true ^

--visualize=false ^

--adfArity="2,2" ^

--applicationName=marketProfitApp ^

--programType=Profit ^

--seriesStart=1/1/1989 ^

--seriesEnd=12/31/2000 ^

--startTrain=1/1/1989 ^

--endTrain=12/31/1993 ^

--startTest=1/1/1994 ^

--endTest=12/31/1998 ^

--target=SP500 ^

--predictors=SP500.m250.1 ^

--direction=desc ^

--populationSize=500 ^

--trainingGenerations=100 ^

--stagnationLimit=50 ^

--testingGenerations=1 ^

--predictionStep=1 ^

--predictionGenerations=0 ^

--maxInitDepth=5 ^

--maxDepth=10 ^

--maxSize=100 ^

--mutationPct=40 ^

--crossoverPct=50 ^

--tournamentSize=2 ^

--selectionStrategy=tournamentSelectionStrategy ^

--

functions="add,subtract,multiply,divide,gt,lt,and,or,not,offsetValue,ifElseBoolean,m

ovingAverage,periodMaximum,periodMinimum,norm" ^

--terminals="randomInteger(0 250),randomDouble(0

2),terminalTrue,terminalFalse,offsetValueFixed(SP500.m250.1 0)" ^

--returnType=Boolean ^

--trainingStep=1 ^

--signals=1 ^

--elitist=true ^

--riskFreeReturn=TREAS3M ^

--transactionCost=0.5PCT

Figure D15. ADF S&P 500 prediction sample parameter file

174

java -Xmx7G -Djava.awt.headless=true -cp /nova/automatically-defined-

templates/target/nova-1.3-SNAPSHOT.jar com.infoblazer.gp.Application ^

--description="SP500 ADT" ^

--printTrainingProgram=false ^

--logMetrics=true ^

--visualize=false ^

--adfArity="2,2" ^

--regimes=2 ^

--applicationName=marketProfitApp ^

--programType=Profit ^

--seriesStart=1/1/1989 ^

--seriesEnd=12/31/2000 ^

--startTrain=1/1/1989 ^

--endTrain=12/31/1993 ^

--startTest=1/1/1994 ^

--endTest=12/31/1998 ^

--target=SP500 ^

--predictors=SP500.m250.1 ^

--direction=desc ^

--populationSize=500 ^

--trainingGenerations=100 ^

--stagnationLimit=50 ^

--testingGenerations=1 ^

--predictionStep=1 ^

--predictionGenerations=0 ^

--maxInitDepth=5 ^

--maxDepth=10 ^

--maxSize=100 ^

--mutationPct=40 ^

--crossoverPct=50 ^

--tournamentSize=2 ^

--selectionStrategy=tournamentSelectionStrategy ^

--

functions="add,subtract,multiply,divide,gt,lt,and,or,not,offsetValue,ifElseBoolean,m

ovingAverage,periodMaximum,periodMinimum,norm" ^

--terminals="randomInteger(0 250),randomDouble(0

2),terminalTrue,terminalFalse,offsetValueFixed(SP500.m250.1 0)" ^

--returnType=Boolean ^

--trainingStep=1 ^

--signals=1 ^

--elitist=true ^

--riskFreeReturn=TREAS3M ^

--transactionCost=0.5PCT

Figure D16. ADT S&P 500 prediction sample parameter file

java -Xmx7G -Djava.awt.headless=true -cp /nova/automatically-defined-

templates/target/nova-1.3-SNAPSHOT.jar com.infoblazer.gp.Application ^

--description="SP500 GP" ^

--printTrainingProgram=false ^

--logMetrics=true ^

--visualize=false ^

--applicationName=marketProfitApp ^

--programType=Profit ^

--seriesStart=1/1/1989 ^

--seriesEnd=12/31/2000 ^

--startTrain=1/1/1989 ^

175

--endTrain=12/31/1993 ^

--startTest=1/1/1994 ^

--endTest=12/31/1998 ^

--target=SP500 ^

--predictors=SP500.m250.1 ^

--direction=desc ^

--populationSize=500 ^

--trainingGenerations=100 ^

--stagnationLimit=50 ^

--testingGenerations=1 ^

--predictionStep=1 ^

--predictionGenerations=0 ^

--maxInitDepth=5 ^

--maxDepth=10 ^

--maxSize=100 ^

--mutationPct=40 ^

--crossoverPct=50 ^

--tournamentSize=2 ^

--selectionStrategy=tournamentSelectionStrategy ^

--

functions="add,subtract,multiply,divide,gt,lt,and,or,not,offsetValue,ifElseBoolean,m

ovingAverage,periodMaximum,periodMinimum,norm" ^

--terminals="randomInteger(0 250),randomDouble(0

2),terminalTrue,terminalFalse,offsetValueFixed(SP500.m250.1 0)" ^

--returnType=Boolean ^

--trainingStep=1 ^

--signals=1 ^

--elitist=true ^

--riskFreeReturn=TREAS3M ^

--transactionCost=0.5PCT

Figure D17. GP S&P 500 prediction sample parameter file

java -Xmx7G -Djava.awt.headless=true -cp /nova/automatically-defined-

templates/target/nova-1.3-SNAPSHOT.jar com.infoblazer.gp.Application ^

--description="SP500 ADT Sliding" ^

--printTrainingProgram=false ^

--logMetrics=true ^

--visualize=false ^

--regimes=2 ^

--adfArity="2,2" ^

--applicationName=marketProfitApp ^

--programType=Profit ^

--seriesStart=1/1/1989 ^

--seriesEnd=12/31/2004 ^

--startTrain=1/1/1989 ^

--endTrain=12/31/1998 ^

--target=SP500 ^

--predictors=SP500.m250.1 ^

--direction=desc ^

--populationSize=500 ^

--trainingGenerations=50 ^

--testingGenerations=1 ^

--predictionStep=5 ^

--predictionGenerations=1 ^

--maxInitDepth=5 ^

--maxDepth=10 ^

176

--maxSize=100 ^

--mutationPct=40 ^

--crossoverPct=50 ^

--tournamentSize=2 ^

--trainingWindow=250 ^

--selectionStrategy=tournamentSelectionStrategy ^

--

functions="add,subtract,multiply,divide,gt,lt,and,or,not,offsetValue,ifElseBoolean,m

ovingAverage,periodMaximum,periodMinimum,norm" ^

--terminals="randomInteger(0 250),randomDouble(0

2),terminalTrue,terminalFalse,offsetValueFixed(SP500.m250.1 0)"

^

--returnType=Boolean ^

--trainingStep=5 ^

--signals=1 ^

--elitist=true ^

--riskFreeReturn=TREAS3M ^

--transactionCost=0.5PCT

Figure D18. ADT sliding window S&P 500 prediction sample parameter file

java -Xmx7G -Djava.awt.headless=true -cp /nova/automatically-defined-

templates/target/nova-1.3-SNAPSHOT.jar com.infoblazer.gp.Application ^

--description="SP500 Dyfor" ^

--printTrainingProgram=false ^

--logMetrics=true ^

--visualize=false ^

--applicationName=marketProfitAppDyforGp ^

--programType=Profit ^

--seriesStart=1/1/1989 ^

--seriesEnd=12/31/2004 ^

--startTrain=1/1/1989 ^

--endTrain=12/31/1998 ^

--target=SP500 ^

--predictors=SP500.m250.1 ^

--direction=desc ^

--populationSize=500 ^

--trainingGenerations=50 ^

--testingGenerations=1 ^

--predictionStep=5 ^

--predictionGenerations=1 ^

--maxInitDepth=5 ^

--maxDepth=10 ^

--maxSize=100 ^

--mutationPct=40 ^

--crossoverPct=50 ^

--tournamentSize=2 ^

--trainingWindow=250 ^

--selectionStrategy=tournamentSelectionStrategy ^

--

functions="add,subtract,multiply,divide,gt,lt,and,or,not,offsetValue,ifElseBoolean,m

ovingAverage,periodMaximum,periodMinimum,norm" ^

--terminals="randomInteger(0 250),randomDouble(0

2),terminalTrue,terminalFalse,offsetValueFixed(SP500.m250.1 0)"

^

--N=3 ^

--saveoff=10 ^

177

--maxWindowSize=375 ^

--predictionSize=1 ^

--minWindowSize=125 ^

--windowDifference=40 ^

--startWindowSize=250 ^

--returnType=Boolean ^

--trainingStep=5 ^

--signals=1 ^

--elitist=true ^

--riskFreeReturn=TREAS3M ^

--transactionCost=0.5PCT

Figure D19. DyFor GP S&P 500 prediction sample parameter file

178

Appendix E

Best Symbolic Regression Programs

The following are samples of the best programs found in the symbolic regression

SINCOS tests.

(-

 (*

 (SIN

 (SIN

 (SIN

 (COS

 (sqrt

 (-

 (sqrt x) x))))))

 (sqrt

 (-

 (sqrt x)

 (- x 39))))

 (LOG

 (LOG

 (+

 (*

 (EXP

 (*

 (- x 68)

 (sqrt x)))

 (EXP

 (*

 (-

 (+ 6 x) 76) x)))

 (SIN

 (+

 (SIN

 (% x x))

 (COS 76)))))))

Figure E1. Best Regression Program recorded by GP approach.

main->

(*

 (sqrt x)

 (COS

 (*

 (sqrt

 (EXP

 (%

 (COS

 (LOG x))

 (EXP

 (*

 (- x 71)

 (sqrt x))))))

179

 (LOG

 (+

 (% 71

 (EXP

 (* 5 x)))

 (-

 (*

 (sqrt x)

 (COS

 (sqrt x)))

 (sqrt x)))))))

adf0->

(LOG

 (EXP

 (LOG

 (LOG arg0))))

adf1->

(*

 (LOG

 (EXP

 (*

 (+

 (COS arg0)

 (sqrt

 (LOG arg0)))

 (LOG

 (SIN arg0)))))

 (SIN arg0))

Figure E2. Best symbolic regression program recorded by ADF approach.

main->

(-

 (-

 (-

 (adf0

 (*

 (LOG

 (LOG

 (% 7 x)))

 (LOG x)))

 (*

 (sqrt

 (-

 (- x

 (sqrt 8))

 (SIN

 (- x

 (sqrt 8)))))

 (adf0

 (LOG

 (EXP

 (- x

 (sqrt x)))))))

 (SIN

 (+

 (LOG x) x)))

 (adf0

 (*

 (*

180

 (+

 (* x x)

 (+

 (-

 (* 16

 (- 85 43))

 (sqrt x))

 (SIN

 (sqrt x))))

 (SIN

 (sqrt 8)))

 (sqrt x))))

adf0->

(sqrt

 (LOG

 (LOG 0)))

adf1->

(-

 (EXP

 (+

 (-

 (EXP

 (+ 1

 (SIN

 (+ arg0 arg0))))

 (EXP arg1))

 (*

 (EXP

 (EXP 0)) 1)))

 (EXP

 (EXP arg1)))

main->

(BinaryNumber

 (>

 (adf0 0)

 (adf0 x)))

adf0->

(SIN

 (SIN

 (COS

 (stdev

 (movingAverage

 (periodMinimum SINE

 (stdev

 (periodMinimum SINE

 (PeriodMaximum SINE arg0)))))))))

adf1->

(% 0

 (- 0

 (periodMinimum SINE

 (offsetValue SINE

 (PeriodMaximum SINE

 (PeriodMaximum SINE arg0))))))

Figure E3. Best symbolic regression program recorded by ADT approach.

181

main->

(*

 (AAT13480

 [1 :

 (SIN

 (+

 (*

 (SIN 59)

 (+

 (COS 11) x))

 (*

 (SIN 59)

 (%

 (- x

 (sqrt

 (+ x 13))) 13))))]

)

 (LOG

 (*

 (-

 (-

 (%

 (+

 (COS 11) x)

 (SIN

 (*

 (SIN 59)

 (% x 13)))) 74)

 (sqrt 59))

 (%

 (+

 (COS

 (SIN

 (EXP

 (+ x 31))))

 (- 80

 (- x 74)))

 (SIN

 (SIN

 (COS

 (LOG x))))))))

main->

(BinaryNumber true)

Figure E4. Best symbolic regression program recorded by AAT approach.

main->

(adf1 x

 (+

 (%

 (%

 (COS 2)

 (adf1

 (COS

182

 (-

 (sqrt x)

 (- x

 (adf1 x 46)))) x))

 (adf1

 (-

 (EXP

 (+

 (sqrt 25)

 (EXP 47)))

 (COS

 (-

 (sqrt x)

 (- x

 (adf1 x x))))) 46))

 (sqrt

 (adf1 x

 (+

 (%

 (COS

 (COS

 (sqrt x)))

 (adf1 x x))

 (sqrt

 (LOG x)))))))

adf0->

(COS

 (+

 (+

 (LOG 1)

 (LOG

 (+ 1 arg0)))

 (+

 (+

 (LOG

 (+

 (LOG 1)

 (LOG

 (+ 0 1))))

 (LOG

 (+ 0

 (+ 0 1)))) 0)))

adf1->

(+

 (LOG

 (+

 (* arg1 arg1)

 (SIN arg0)))

 (-

 (+

 (* arg1 arg1)

 (SIN

 (sqrt arg0)))

 (LOG

 (+ arg1

 (-

 (+

 (+

 (* arg1 arg1)

183

 (SIN

 (sqrt arg0)))

 (SIN

 (LOG

 (* arg1 arg1))))

 (sqrt arg0))))))

main->

(BinaryNumber

 (>

 (stdev

 (stdev

 (PeriodMaximum SINE

 (stdev

 (stdev

 (PeriodMaximum SINE

 (periodMinimum SINE x)))))))

 (movingAverage

 (periodMinimum SINE

 (PeriodMaximum SINE

 (PeriodMaximum SINE x))))))

adf0->

(EXP 1)

adf1->

(%

 (offsetValue SINE

 (movingAverage

 (offsetValue SINE 1)))

 (offsetValue SINE 0))

Figure E5. Best symbolic regression program recorded by coupled ADT approach.

main->

(*

 (SIN

 (COS

 (+

 (COS

 (sqrt

 (+

 (+

 (LOG 89) x) 54)))

 (+

 (COS

 (sqrt

 (+ x 54)))

 (LOG

 (LOG 37))))))

 (+

 (+

 (AAT6424

 [1 :

 (LOG 89)]

 [2 :

 (LOG x)]

)

 (+

184

 (COS

 (sqrt

 (+ x

 (+ 75

 (sqrt x)))))

 (+

 (COS

 (sqrt

 (+ x 75)))

 (LOG

 (LOG

 (+

 (SIN 54) x))))))

 (SIN

 (+

 (LOG

 (*

 (*

 (- 90 x)

 (COS

 (% x 54)))

 (LOG

 (SIN

 (% 13 75)))))

 (COS

 (+

 (SIN

 (% 13 37))

 (+

 (+

 (SIN 54)

 (sqrt x))

 (COS

 (% x 54)))))))))

main->

(BinaryNumber

 (>

 (offsetValue SINE

 (offsetValue SINE

 (PeriodMaximum SINE 16)))

 (periodMinimum SINE

 (stdev

 (offsetValue SINE

 (periodMinimum SINE 23))))))

Figure E6. Best symbolic regression program recorded by coupled AAT approach.

185

Appendix F

MGHENMG Initial Random Parameters

The MGHENMG series requires 31 offset values in order to determine y(x). Following

the procedure described in (Wagner & Michalewicz, 2008), an array of length 1200 was

initialized. The first 31 values were randomly generated and are shown in Table F1. The

remainder of the series was generated using the formula shown in (19. The final 200 points of

this series was used as the initial 200-point segment of the MGHENMG series. The remaining

two sections were calculated directly from the formulas and prior series values.

Table F1. MGHENMG Initialization Parameters

X Y X Y

1 0.8440964138066118 24 0.47020747316392664

2 0.9532661055224593 25 0.5455742442961969

3 0.06636753866027945 26 0.859267154912505

4 0.8620971393379627 27 0.5342809689449174

5 0.2100850778694464 28 0.3258840447272048

6 0.4894196903422636 29 0.5628455094036957

7 0.11588139131258257 30 0.46854285555526787

8 0.47264417635200906 31 0.6234535818110518

9 0.08408151444136325

10 0.5657337444733351

11 0.695537452821834

12 0.6371301993098292

13 0.11797947216718663

14 0.6643411155833825

15 0.35853611038911015

16 0.8617986087216263

17 0.028791106927193777

18 0.8136196388158929

19 0.01620324342793167

20 0.6569433423303102

21 0.2871394142441621

22 0.10838147285823774

23 0.43001491262576674

186

Appendix G

Full Results

This section provides charted results from the experiments described in Chapter 4.

Information on downloading the raw data in Microsoft Access format is given in Appendix I.

SINCOS.

Average fitness is provided in Figure 39 as is not reproduced in this section.

Decoupled Coupled

Figure G1. Best fitness in symbolic regression SINCOS experiments.

0

1

2

3

4

5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Fi
tn

es
s

Generation

AAT.best fitness ADF.best fitness

ADT.best fitness GP.best fitness

0

1

2

3

4

5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Fi
tn

es
s

Generation

AAT.best fitness ADF.best fitness

ADT.best fitness GP.best fitness

187

-15

-10

-5

0

5

10
1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6Y

X

AAT Decoupled

y_actual AAT.y_predicted

-15

-10

-5

0

5

10

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6Y

X

AAT Coupled

y_actual AAT.y_predicted

-15

-10

-5

0

5

10

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6Y

X

ADF

y_actual ADF.y_predicted

-15

-10

-5

0

5

10

15
1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

Y

X

GP

y_actual GP.y_predicted

188

Figure G2. Best regressions in SINCOS experiments. Coupling does not affect GP and ADF.

-15

-10

-5

0

5

10
1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3Y

X

ADT Decoupled

y_actual ADT.y_predicted

-15

-10

-5

0

5

10

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6Y

X

ADT Coupled

y_actual ADT.y_predicted

189

Decoupled Coupled

Figure G3. Best regime regressions in SINCOS experiments. ADT successfully determined the

likely regime in both cases. The difference in numeric regime value is not relevant.

-15

-10

-5

0

5

10
1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

Y

X

y_actual AAT.regime

-15

-10

-5

0

5

10

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

Y

X

y_actual AAT.regime

-15

-10

-5

0

5

10

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

Y

X

y_actual ADT.regime

-15

-10

-5

0

5

10
1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

Y

X

y_actual ADT.regime

190

LGOZLG.

Decoupled Coupled

Figure G4. Average training fitness in LGOZLG experiments.

Figure G5. Average training fitness in LGOZLG 1-100 experiments.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Fi
tn

es
s

Generation

AAT.avg fitness

ADT.avg fitness

DYFOR.avg fitness

AAT Omni.avg fitness

ADT Omni.avg fitness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Fi
tn

es
s

Generation

AAT.avg fitness ADT.avg fitness

AAT Omni.avg fitness ADT Omni.avg fitness

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Fi
tn

es
s

Generation

DYFOR.avg fitness ADT 110.avg fitness ADT 80.avg fitness

ADT EMA 110.avg fitness ADT EMA 80.avg fitness

191

Decoupled Coupled

0

0.2

0.4

0.6

0.8

1

1.2
2

5
1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

Er
ro

r

X

AAT.avg_error

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Er
ro

r

X

AAT.avg_error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2
5

1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

Er
ro

r

X

ADT.avg_error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Er
ro

r

X

ADT.avg_error

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2
5

1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

Er
ro

r

X

AAT Omni.avg_error

0

0.2

0.4

0.6

0.8

1

1.2

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Er
ro

r

X

AAT Omni.avg_error

192

Decoupled Coupled

Coupling not relevant

Figure G6. Average error in LGOZLG experiments. Coupling is not relevant for DyFor GP and

GP results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
2

5
1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

Er
ro

r

X

ADT Omni.avg_error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Er
ro

r

X

ADT Omni.avg_error

0

0.2

0.4

0.6

0.8

1

1.2

2
5

1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

Er
ro

r

X

Dyfor.avg_error

0

0.2

0.4

0.6

0.8

1

1.2

2
5

1

2
6

2

2
7

3

2
8

4

2
9

5

3
0

6

3
1

7

3
2

8

3
3

9

3
5

0

3
6

1

3
7

2

3
8

3

3
9

4

A
xi

s
Ti

tl
e

X

GP.avg_error

193

Figure G7. Average error in LGOZLG 1-100 experiments.

Decoupled Coupled

0

0.5

1

1.5

2

2.5

3

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

Er
ro

r

Generation

ADT 110.avg_error

0

0.5

1

1.5

2

2.5

3

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

Er
ro

r

Generation

ADT 80.avg_error

0

0.5

1

1.5

2

2.5

3

1
2

1
4

1
6

1
8

1
1

0
1

1
2

1
1

4
1

1
6

1
1

8
1

2
0

1
2

2
1

2
4

1
2

6
1

2
8

1

Er
ro

r

Generation

ADT EMA 110.avg_error

0

0.5

1

1.5

2

2.5

3

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

Er
ro

r

Generation

ADT EMA 80.avg_error

0

0.5

1

1.5

2

2.5

3

3.5

4

1
2

1
4

1
6

1
8

1
1

0
1

1
2

1
1

4
1

1
6

1
1

8
1

2
0

1
2

2
1

2
4

1
2

6
1

2
8

1

Er
ro

r

Generation

Dyfor.avg_error

0

0.5

1

1.5

2

2.5

3

1
0

1

1
2

3

1
4

5

1
6

7

1
8

9

2
1

1

2
3

3

2
5

5

2
7

7

2
9

9

3
2

1

3
4

3

3
6

5

3
8

7

Er
ro

r

X

GP 1-100.avg_error

194

Figure G8. LGOZLG regime determination by best performing individuals.

-3

-2

-1

0

1

2

3

2
5

1

2
6

2

2
7

3

2
8

4

2
9

5

3
0

6

3
1

7

3
2

8

3
3

9

3
5

0

3
6

1

3
7

2

3
8

3

3
9

4

Y

X

y_actual AAT_regime

-3

-2

-1

0

1

2

3

2
5

1

2
6

2

2
7

3

2
8

4

2
9

5

3
0

6

3
1

7

3
2

8

3
3

9

3
5

0

3
6

1

3
7

2

3
8

3

3
9

4

Y

X

y_actual AAT_regime

-3

-2

-1

0

1

2

3

2
5

1

2
6

2

2
7

3

2
8

4

2
9

5

3
0

6

3
1

7

3
2

8

3
3

9

3
5

0

3
6

1

3
7

2

3
8

3

3
9

4

Y

X

y_actual ADT_regime

-3

-2

-1

0

1

2

3

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

y_actual ADT_regime

195

Figure G9. LGOZLG 1-100 regime determination by best performing individuals.

-3

-2

-1

0

1

2

3

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

Y/
R

eg
im

e

Prediction Generation

y_actual ADT 110_regime

-3

-2

-1

0

1

2

3

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

y/
R

eg
im

e

Prediction Generation

y_actual ADT 80_regime

-3

-2

-1

0

1

2

3

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

Y/
R

eg
im

e

Prediction Generation

y_actual ADT 110 EMA_regime

-3

-2

-1

0

1

2

3

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

Y/
R

eg
im

e

Prediction Generation

y_actual ADT 80 EMA_regime

196

Decoupled Coupled

-3

-2

-1

0

1

2

3
2

5
1

2
6

1
2

7
1

2
8

1
2

9
1

3
0

1
3

1
1

3
2

1
3

3
1

3
4

1
3

5
1

3
6

1
3

7
1

3
8

1
3

9
1

Y

X

y_actual AAT_y_predicted

-3

-2

-1

0

1

2

3

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

y_actual AAT_y_predicted

-3

-2

-1

0

1

2

3

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual AAT Omni_y_predicted

-3

-2

-1

0

1

2

3

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual AAT Omni_y_predicted

197

Decoupled Coupled

-3

-2

-1

0

1

2

3
2

5
1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual ADT_y_predicted

-4

-3

-2

-1

0

1

2

3

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

y_actual ADT_y_predicted

-3

-2

-1

0

1

2

3

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual ADT Omni_y_predicted

-3

-2

-1

0

1

2

3

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

y_actual ADT Omni_y_predicted

198

Decoupled Coupled

Figure G10. LGOZLG best prediction.

-4

-3

-2

-1

0

1

2

3
2

5
1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual Dyfor_y_predicted

-3

-2

-1

0

1

2

3

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

Y_actual GP_y_predicted

-4

-2

0

2

4

6

8

10

1
2

0
3

9
5

8
7

7
9

6
1

1
5

1
3

4
1

5
3

1
7

2
1

9
1

2
1

0
2

2
9

2
4

8
2

6
7

2
8

6

Y

X

y_actual ADT 110_y_predicted

-8

-6

-4

-2

0

2

4

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

Y

X

y_actual ADT 80_y_predicted

199

Figure G11. LGOZLG 1-100 best prediction.

-4

-3

-2

-1

0

1

2

3

1
2

1
4

1
6

1
8

1
1

0
1

1
2

1
1

4
1

1
6

1
1

8
1

2
0

1
2

2
1

2
4

1
2

6
1

2
8

1

Y

Axis Title

y_actual ADT 110 EMA_y_predicted

-8

-6

-4

-2

0

2

4

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

Y

Axis Title

y_actual ADT 80_y_predicted

200

MGHENMG.

Decoupled Coupled

Figure G12. MGHENMG average training fitness.

Figure G13. MGHENMG 30-130 average training fitness.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Fi
tn

es
s

Generation

AAT.avg fitness

ADT.avg fitness

DYFOR.avg fitness

AAT Omni.avg fitness

ADT Omni.avg fitness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Fi

tn
es

s
Generation

AAT.avg fitness

ADT.avg fitness

AAT Omni.avg fitness

ADT Omni.avg fitness

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Fi
tn

es
s

Generation

DYFOR.avg fitness ADT 110.avg fitness ADT 110 EMA.avg fitness

ADT 80.avg fitness ADT 80 EMA.avg fitness

201

Decoupled Coupled

Figure G14. MGHENMG regime determination by best performing individuals.

-1.5

-1

-0.5

0

0.5

1

1.5
2

5
1

2
6

4

2
7

7

2
9

0

3
0

3

3
1

6

3
2

9

3
4

2

3
5

5

3
6

8

3
8

1

3
9

4R
eg

im
e

X

y_actual AAT_regime

-1.5

-1

-0.5

0

0.5

1

1.5

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1R
eg

im
e

X

y_actual AAT_regime

-1.5

-1

-0.5

0

0.5

1

1.5

2
5

1

2
6

3

2
7

5

2
8

7

2
9

9

3
1

1

3
2

3

3
3

5

3
4

7

3
5

9

3
7

1

3
8

3

3
9

5

R
eg

im
e

X

y_actual ADT_regime

-1.5

-1

-0.5

0

0.5

1

1.5
2

5
1

2
6

0
2

6
9

2
7

8
2

8
7

2
9

6
3

0
5

3
1

4
3

2
3

3
3

2
3

4
1

3
5

0
3

5
9

3
6

8
3

7
7

3
8

6
3

9
5

R
eg

im
e

X

y_actual ADT_regime

202

Figure G15. MGHEMMG 1-100 regime determination by best performing individuals.

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

R
eg

im
e

X

y_actual ADT 110_regime

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

R
eg

im
e

X

y_actual ADT 80_regime

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

R
eg

im
e

X

y_actual ADT 110 EMA_regime

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

R
eg

im
e

X

y_actual ADT 80 EMA_regime

203

Decoupled Coupled

Figure G16. MGHENMG best prediction.

-1.5

-1

-0.5

0

0.5

1

1.5
2

5
1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

Y

X

y_actual AAT_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

Y

X

y_actual AAT_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

6
0

2
7

0
2

8
0

2
9

0
3

0
0

3
1

0
3

2
0

3
3

0
3

4
0

3
5

0
3

6
0

3
7

0
3

8
0

3
9

0

Y

X

y_actual AAT Omni_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

x

2
6

2

2
7

4

2
8

6

2
9

8

3
1

0

3
2

2

3
3

4

3
4

6

3
5

8

3
7

0

3
8

2

3
9

4

Y

X

y_actual AAT Omni_y_predicted

-1.5
-1

-0.5

0

0.5

1
1.5

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Y

X

y_actual ADT_y_predicted

-2

-1

0

1

2

x

2
6

1

2
7

2

2
8

3

2
9

4

3
0

5

3
1

6

3
2

7

3
3

8

3
4

9

3
6

0

3
7

1

3
8

2

3
9

3

Y

X

y_actual ADT_y_predicted

204

Figure G17. MGHENMG 1-100 best prediction.

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1
1

4
9

1
6

7
1

8
5

2
0

3
2

2
1

2
3

9
2

5
7

2
7

5
2

9
3

3
1

1
3

2
9

3
4

7
3

6
5

3
8

3

Y

X

y_actual ADT 110_y_predicted

-3

-2

-1

0

1

2

1
3

1

1
4

9

1
6

7

1
8

5

2
0

3

2
2

1

2
3

9

2
5

7

2
7

5

2
9

3

3
1

1

3
2

9

3
4

7

3
6

5

3
8

3

Y

X

y_actual ADT 80_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1
1

4
9

1
6

7
1

8
5

2
0

3
2

2
1

2
3

9
2

5
7

2
7

5
2

9
3

3
1

1
3

2
9

3
4

7
3

6
5

3
8

3

Y

X

y_actual ADT 110 EMA_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1
1

4
9

1
6

7
1

8
5

2
0

3
2

2
1

2
3

9
2

5
7

2
7

5
2

9
3

3
1

1
3

2
9

3
4

7
3

6
5

3
8

3

Y

X

y_actual ADT 80 EMA_y_predicted

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

Y

X

y_actual Dyfor_y_predicted

-1.5

-1

-0.5

0

0.5

1

1.5

1
3

1

1
5

1

1
7

1

1
9

1

2
1

1

2
3

1

2
5

1

2
7

1

2
9

1

3
1

1

3
3

1

3
5

1

3
7

1

3
9

1

Y

X

y_actual GP 1-100_y_predicted

205

S&P 500 market data prediction.

The following section includes the full results of all market data tests performed.

Analysis periods correspond to the one of the three periods shown in Figure 48. Chart legend

series titles without years indicate period 1, series with a suffix 91 correspond to period 2, and

series with a suffix 93 indicate to period 3. Sliding window series test encompass the full

analysis period. For example, in Figure G18 below, the series GP 91.y_predicted refers to

predictions made using GP method for the second training period shown in Figure 48.

1150

1200

1250

1300

1350

1400

1450

1500

1550

1/4/1999 1/4/2000

GP 1999-2000

index value GP.y_predicted

650

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

GP 2001-2002

index value GP 91.y_predicted

206

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1/1/2003 1/1/2004 1/1/2005

GP 2003-2004

index value GP 93.y_predicted

1150

1200

1250

1300

1350

1400

1450

1500

1550

1/4/1999 1/4/2000

ADF 1999-2000

index value ADF.y_predicted

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

ADF 2001-2002

index value ADF 91.y_predicted

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1/1/2003 1/1/2004

ADF 2003-2004

index value ADF 93.y_predicted

207

Figure G18. S&P 500 investment performance.

1150

1200

1250

1300

1350

1400

1450

1500

1550

1/4/1999 1/4/2000

ADT 1999-2000

index value ADT.y_predicted

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

ADT 2001-2002

index value ADT 91.y_predicted

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1/1/2003 1/1/2004

ADT 2003-2004

index value ADT 93.y_predicted

208

Figure G19. Investment performance in S&P 500 sliding window experiments.

750

850

950

1050

1150

1250

1350

1450

1550

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

index value Dyfor.y_predicted ADT Sliding.y_predicted

209

Table G1. Number of Trades Executed, Including Transaction Costs

Method Mean Std. Dev. Min. Max

1999-2000

GP 7.14 8.55 1 38

ADF 8.22 13.57 1 81

ADT 5.28 6.47 1 21

2001-2002

GP 20.6 53.21 1 223

ADF 10.48 35.13 1 179

ADT 25.42 57.51 1 217

2003-2004

GP 4.44 6.21 1 33

ADF 2.72 4.57 1 25

ADT 1.56 2.10 1 11

1999-2004

ADT 45.38 14.13 16 86

DyFor GP 50.12 9.75 36 77

Note. Each two-year period has approximately 500 trading day opportunities. ADT and DyFor GP 1999-

2004 evaluated approximately 100 weekly trading opportunities.

210

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1/4/1999 1/4/2000

GP 1999-2000

index value GP.y_predicted

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

GP 2001-2002

index value GP 91.y_predicted

750

850

950

1050

1150

1250

1350

1/1/2003 1/1/2004

GP 2003-2004

index value GP 93.y_predicted

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1/4/1999 1/4/2000

ADF 1999-2000

index value ADF.y_predicted

211

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

ADF 2001-2002

index value ADF 91.y_predicted

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1/1/2003 1/1/2004

ADF 2003-2004

index value ADF 93.y_predicted

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1/4/1999 1/4/2000

ADT 1999-2000

index value ADT.y_predicted

750

850

950

1050

1150

1250

1350

1/1/2001 1/1/2002 1/1/2003

ADT 2001-2002

index value ADT 91.y_predicted

212

Figure G20. S&P 500 investment performance with transaction costs ignored.

750

850

950

1050

1150

1250

1/1/2003 1/1/2004

ADT 2003-2004

index value ADT 93.y_predicted

213

Figure G21. Investment performance in S&P 500 sliding window experiments with

transaction costs ignored. Both ADT and DyFor GP achieve statistically significant higher

returns than buy and hold.

750

850

950

1050

1150

1250

1350

1450

1550

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

index value Dyfor.y_predicted ADT Sliding.y_predicted

214

Table G2. Number of Trades Executed, Not Including Transaction Costs

Method Mean Std. Dev. Min Max

 1999-2000

GP 67.80 49.84 8 181

ADF 68.08 56.68 2 225

ADT 70.90 67.79 2 251

 2001-2002

GP 45.19 54.59 4 231

ADF 53.56 58.39 6 258

ADT 54.44 58.80 6 229

 2003-2004

GP 33.56 36.68 1 206

ADF 41.52 51.96 4 279

ADT 53.38 60.79 4 281

 1999-2004

ADT 58.50 16.84 32 111

DyFor GP 60.28 12.45 36 87

Note. Each two-year period has approximately 500 trading day opportunities. ADT and DyFor GP 1999-

2004 evaluated approximately 100 weekly trading opportunities.

215

Appendix H

Best S&P 500 Prediction Programs

This section will examine the best runs out of 50 trials for the best performing methods

attempted in the market prediction experiment. The performance of ADT will also be included in

case this was not the winning strategy. The best results achieved for each method and approach

are listed in Table 17 through Table 20. These results should not be seen as realistically

achievable; they were selected with full prior knowledge. Instead, the results illustrate the

relative performance of the results generated by different evolutionary algorithms.

Transaction costs considered.

This section highlights the best series out of 50 trials using a 0.5% transaction cost and

summarized in Table 17.

1999-2000 with transaction costs.

Table H1. Best Return, 1999-2000, With Transaction Costs

Best Approach GP

Best Return 0.1197

ADT Return 0.1042

Buy and Hold Return 0.0751

216

Figure H1. Best performing approach for 1999-2000 period with transaction costs. ADT

is included for comparison.

Figure H2. Regime predicted by best performing ADT individual for 1999-2000 period

with transaction costs. The S&P 500 index is plotted on the primary axis.

1150.00

1200.00

1250.00

1300.00

1350.00

1400.00

1450.00

1500.00

1550.00

1600.00

1
/4

/1
9

9
9

2
/4

/1
9

9
9

3
/4

/1
9

9
9

4
/4

/1
9

9
9

5
/4

/1
9

9
9

6
/4

/1
9

9
9

7
/4

/1
9

9
9

8
/4

/1
9

9
9

9
/4

/1
9

9
9

1
0

/4
/1

9
9

9

1
1

/4
/1

9
9

9

1
2

/4
/1

9
9

9

1
/4

/2
0

0
0

2
/4

/2
0

0
0

3
/4

/2
0

0
0

4
/4

/2
0

0
0

5
/4

/2
0

0
0

6
/4

/2
0

0
0

7
/4

/2
0

0
0

8
/4

/2
0

0
0

9
/4

/2
0

0
0

1
0

/4
/2

0
0

0

1
1

/4
/2

0
0

0

1
2

/4
/2

0
0

0

S&P 500 ADT GP

-1

0

1

2

1150

1200

1250

1300

1350

1400

1450

1500

1550

1
/4

/1
9

9
9

2
/4

/1
9

9
9

3
/4

/1
9

9
9

4
/4

/1
9

9
9

5
/4

/1
9

9
9

6
/4

/1
9

9
9

7
/4

/1
9

9
9

8
/4

/1
9

9
9

9
/4

/1
9

9
9

1
0

/4
/1

9
9

9

1
1

/4
/1

9
9

9

1
2

/4
/1

9
9

9

1
/4

/2
0

0
0

2
/4

/2
0

0
0

3
/4

/2
0

0
0

4
/4

/2
0

0
0

5
/4

/2
0

0
0

6
/4

/2
0

0
0

7
/4

/2
0

0
0

8
/4

/2
0

0
0

9
/4

/2
0

0
0

1
0

/4
/2

0
0

0

1
1

/4
/2

0
0

0

1
2

/4
/2

0
0

0

S&P 500 ADT.regime

217

Figure H3. Predicted regime of best performing ADT individual for 1999-2000 period

with transaction costs. The normalized S&P 500 index is plotted on the primary axis.

main->

(> 1.1602981190800095

 (movingAverage

 (+

 (movingAverage 125)

 (periodMinimum SP500.m250.1 0.3831607872563503))))

Figure H4. Best Performing GP Program for 1999-2000 period with transaction costs.

main->

(if

 (if

 (>

 (adf0

 (not

 (not false)) 1.1570045433187506)

 (movingAverage

 (+

 (+

 (adf0 false 14)

 (PeriodMaximum SP500.m250.1 233))

 (movingAverage

 (Norm

 (adf1 true Offsetvalue 0)

 (Norm 14 1.1570045433187506))))))

 (>

 (adf0 false 1.1570045433187506)

 (PeriodMaximum SP500.m250.1 Offsetvalue 0))

 (not

 (> 79 1.1570045433187506)))

-1

0

1

2

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1
/1

/1
9

9
9

2
/1

/1
9

9
9

3
/1

/1
9

9
9

4
/1

/1
9

9
9

5
/1

/1
9

9
9

6
/1

/1
9

9
9

7
/1

/1
9

9
9

8
/1

/1
9

9
9

9
/1

/1
9

9
9

1
0

/1
/1

9
9

9

1
1

/1
/1

9
9

9

1
2

/1
/1

9
9

9

1
/1

/2
0

0
0

2
/1

/2
0

0
0

3
/1

/2
0

0
0

4
/1

/2
0

0
0

5
/1

/2
0

0
0

6
/1

/2
0

0
0

7
/1

/2
0

0
0

8
/1

/2
0

0
0

9
/1

/2
0

0
0

1
0

/1
/2

0
0

0

1
1

/1
/2

0
0

0

1
2

/1
/2

0
0

0

1
/1

/2
0

0
1

data_value ADT.regime

218

 (if

 (not

 (if false false false))

 (not

 (and true false))

 (<

 (offsetValue SP500.m250.1 1.7847441320462223)

 (periodMinimum SP500.m250.1 1.7864632063244332)))

 (<

 (Norm

 (adf1 true Offsetvalue 0)

 (Norm 14 129))

 (adf1

 (if true true false)

 (- Offsetvalue 0 66))))

adf0->

(Norm

 (movingAverage

 (+

 (* arg1

 (+ arg1

 (+ arg1 arg1)))

 (movingAverage arg1)))

 (Norm

 (+

 (PeriodMaximum SP500.m250.1 arg1)

 (+ arg1

 (movingAverage arg1)))

 (periodMinimum SP500.m250.1

 (movingAverage arg1))))

adf1->

(+

 (periodMinimum SP500.m250.1

 (movingAverage

 (offsetValue SP500.m250.1

 (Norm

 (%

 (+ arg1 arg1) 1)

 (movingAverage 0)))))

 (Norm

 (offsetValue SP500.m250.1

 (movingAverage 1))

 (%

 (movingAverage

 (movingAverage arg1))

 (Norm

 (*

 (+ arg1 1)

 (offsetValue SP500.m250.1 arg1))

 (offsetValue SP500.m250.1 arg1)))))

Figure H5. Best performing ADT program for 1999-2000 period with transaction costs.

219

main->

(BinaryNumber

 (>

 (*

 (Norm

 (%

 (offsetValue SP500.m250.1

 (movingAverage 1.2937969012317059)) Offsetvalue 0)

 (offsetValue SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1

 (offsetValue SP500.m250.1

 (+ 0.43683082957359565 0.9780983999359141))))))

 (periodMinimum SP500.m250.1

 (+

 (-

 (%

 (periodMinimum SP500.m250.1 30)

 (periodMinimum SP500.m250.1 238))

 (*

 (movingAverage

 (adf0 false Offsetvalue 0))

 (PeriodMaximum SP500.m250.1 168)))

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (Norm 0.8429000760570815 83))))))

 (movingAverage

 (+

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1

 (movingAverage

 (+

 (offsetValue SP500.m250.1 Offsetvalue 0)

 (* 0.5160408045881169 202)))))

 (* 212 0.52816557399602)))))

adf0->

(and

 (>

 (PeriodMaximum SP500.m250.1

 (* arg1 arg1))

 (-

 (+ arg1 arg1)

 (periodMinimum SP500.m250.1 arg1)))

 (and

 (<

 (Norm

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1 arg1)) arg1)

 (movingAverage arg1))

 (and

 (<

 (Norm arg1

 (movingAverage arg1))

 (movingAverage

 (periodMinimum SP500.m250.1 arg1)))

 (> arg1 0))))

adf1->

(or

 (or

 (if

220

 (>

 (Norm arg1

 (offsetValue SP500.m250.1

 (PeriodMaximum SP500.m250.1 arg1)))

 (Norm

 (movingAverage

 (periodMinimum SP500.m250.1

 (offsetValue SP500.m250.1 arg1)))

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1

 (movingAverage arg1))))))

 (if arg0 arg0 arg0)

 (> 0 arg1))

 (if

 (if arg0 false arg0)

 (or arg0 arg0)

 (< arg1 arg1)))

 (if

 (if

 (not

 (not

 (if

 (if arg0 arg0 arg0)

 (or arg0 arg0)

 (or arg0 arg0))))

 (and arg0 true)

 (> arg1 arg1))

 (if

 (if arg0 arg0 false)

 (and arg0 arg0)

 (and arg0 arg0))

 (<

 (movingAverage arg1)

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1

 (-

 (movingAverage arg1)

 (% arg1 arg1))))))))

Figure H6. Best performing ADT regime program for 1999-2000 period with transaction costs.

2001-2002 with transaction costs.

Table H2. Best Return, 2001-2002, With Transaction Costs

Best Approach ADT

Best Return -0.0134

Buy and Hold Return 0.0751

221

Figure H7. Best performing approach for 2001-2002 period including transaction

costs.

Figure H8. Regime predicted by best performing approach for 2001-2002

period including transaction costs.

750.00

850.00

950.00

1050.00

1150.00

1250.00

1350.00

1450.00

S&P 500 ADT 91.y_predicted

-1

0

1

2

750

850

950

1050

1150

1250

1350

1450

S&P 500 ADT 91.regime

222

Figure H9. Regime predicted by best performing approach for 2001-2002

period including transaction costs, plotted against normalized target series.

main->

(adf1 false

 (+

 (+ Offsetvalue 0 0.7111180884746806)

 (+ 150 0.9819508139975657)))

adf0->

(or

 (if

 (or

 (< arg1 arg1)

 (if false true

 (if false true arg0)))

 (<

 (Norm arg1 arg1) arg1)

 (>

 (- arg1 arg1)

 (* arg1 arg1)))

 (and

 (if

 (and arg0 arg0)

 (or arg0 arg0)

 (if arg0 arg0 arg0))

 (>

 (% arg1 arg1)

 (PeriodMaximum SP500.m250.1 arg1))))

adf1->

(<

 (%

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1 arg1))

 (*

 (offsetValue SP500.m250.1 arg1)

 (PeriodMaximum SP500.m250.1 arg1)))

-1

0

1

2

0.75

0.8

0.85

0.9

0.95

1

1.05

S&P 500 normalized ADT 91.regime

223

 (movingAverage

 (PeriodMaximum SP500.m250.1

 (movingAverage arg1))))

Figure H10. Best performing ADT program for 2001-2002 period including transaction costs.

main->

(BinaryNumber

 (adf0

 (or

 (or

 (< 190 1.880980657798631)

 (if true false false))

 (if

 (>

 (offsetValue SP500.m250.1 247)

 (* 1.880980657798631 46))

 (adf0 false 108)

 (if true true true)))

 (PeriodMaximum SP500.m250.1

 (Norm

 (+ 0.7814113713749771 245)

 (% Offsetvalue 0 67)))))

adf0->

(and

 (and

 (not

 (> arg1

 (Norm

 (offsetValue SP500.m250.1 arg1) arg1)))

 (if

 (if arg0 arg0 arg0)

 (or arg0 arg0)

 (not true)))

 (not

 (if

 (not arg0)

 (<

 (offsetValue SP500.m250.1

 (Norm

 (offsetValue SP500.m250.1 arg1)

 (- arg1 arg1)))

 (offsetValue SP500.m250.1 arg1))

 (> arg1 arg1))))

adf1->

(-

 (+

 (+

 (movingAverage arg1)

 (- 1 arg1))

 (Norm

 (*

 (offsetValue SP500.m250.1

 (offsetValue SP500.m250.1 arg1))

 (movingAverage

 (offsetValue SP500.m250.1 arg1)))

 (%

 (-

224

 (% arg1 arg1)

 (offsetValue SP500.m250.1 arg1))

 (Norm

 (periodMinimum SP500.m250.1 0)

 (% arg1 arg1)))))

 (%

 (movingAverage

 (% arg1 arg1))

 (%

 (periodMinimum SP500.m250.1 arg1)

 (* arg1 arg1))))

Figure H11. Regime predicted by best performing ADT program for 2001-2002 period

including transaction costs.

2003-2004 with transaction costs.

Table H3. Best Return, 2003-2004, With Transaction Costs

Best Approach: ADF

Best Return: 0.3539

ADT Return: 0.3522

Buy and Hold Return: 0.3332

225

Figure H12. Best performing approach for 2003-2004 period with transaction costs.

Figure H13. Regime predicted by best performing approach for 2003-2004 period with

transaction costs.

750.00

800.00

850.00

900.00

950.00

1000.00

1050.00

1100.00

1150.00

1200.00

1250.00

1
/1

/2
0

0
3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 ADF 93 ADT 93

0

0.2

0.4

0.6

0.8

1

1.2

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1
/1

/2
0

0
3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 ADT 93.regime

226

Figure H14. Regime predicted by best performing approach for 2003-2004 period with

transaction costs, plotted against normalized target series.

main->

(or

 (or

 (if

 (> 1.023557394642299 Offsetvalue 0)

 (> 1.5812329159226999 38)

 (< Offsetvalue 0 8))

 (and

 (or false false)

 (not false)))

 (not

 (>

 (periodMinimum SP500.m250.1 5)

 (movingAverage 204))))

adf0->

(and

 (not

 (>

 (- arg1 arg1) 0))

 (if

 (if arg0

 (> arg1 arg1)

 (< arg1 arg1))

 (>

 (% arg1 arg1)

 (PeriodMaximum SP500.m250.1 arg1))

 (>

 (* arg1 arg1)

 (PeriodMaximum SP500.m250.1 arg1))))

adf1->

(*

 (%

 (Norm arg1

-1

0

1

2

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
1

/1
/2

0
0

3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 normalized ADT 93.regime

227

 (offsetValue SP500.m250.1 arg1)) arg1)

 (-

 (PeriodMaximum SP500.m250.1

 (movingAverage arg1))

 (* arg1 arg1)))

Figure H15. Best performing ADF program for 2003-2004 period with transaction costs.

main->

(<

 (offsetValue SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1 113)))

 (%

 (-

 (Norm 0.4620173131659049 1.8681790215436784)

 (movingAverage 1.9695191046103773))

 (Norm

 (offsetValue SP500.m250.1 91)

 (PeriodMaximum SP500.m250.1 Offsetvalue 0))))

adf0->

(>

 (movingAverage

 (offsetValue SP500.m250.1

 (movingAverage arg1)))

 (offsetValue SP500.m250.1

 (movingAverage

 (*

 (% arg1 arg1) arg1))))

adf1->

(%

 (%

 (+

 (+ arg1 arg1)

 (Norm arg1 arg1)) arg1)

 (-

 (PeriodMaximum SP500.m250.1 arg1)

 (+

 (PeriodMaximum SP500.m250.1 arg1)

 (PeriodMaximum SP500.m250.1 arg1))))

Figure H16. Best performing ADT program for 2003-2004 period with transaction costs.

main->

(BinaryNumber

 (if

 (and

 (and

 (<

 (+ 69 Offsetvalue 0)

 (PeriodMaximum SP500.m250.1 Offsetvalue 0))

 (not

 (< Offsetvalue 0 Offsetvalue 0)))

 (or

 (if

 (and true false)

 (if true true true)

 (< Offsetvalue 0 121))

228

 (and

 (or false false)

 (and false true)))) false true))

adf0->

(<

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1 arg1))) arg1)

adf1->

(*

 (% arg1 arg1)

 (%

 (+

 (movingAverage arg1)

 (- 0 arg1))

 (periodMinimum SP500.m250.1

 (-

 (periodMinimum SP500.m250.1

 (*

 (% arg1 arg1)

 (periodMinimum SP500.m250.1 arg1)))

 (periodMinimum SP500.m250.1

 (movingAverage

 (- arg1 arg1)))))))

Figure H17. Regime program for best performing ADT individual for 2003-2004 period with

transaction costs.

1999-2004 with transaction costs.

Only DyFor GP and ADT were run on the full series range in a single test. As these both

dynamically evolve prediction programs over time, the evolved code is not included in this

appendix. The full data details are available in the online data repository.

Table H4. Best Return, 1999-2004, With Transaction Costs

Best Approach ADT

Best Return 0.4592

Buy and Hold Return -0.0189

229

Figure H18. Best returns for 1999-2014 period with transaction costs.

Figure H19. Regime predicted by best performing ADT individual for 1999-2004

period with transaction costs.

750

950

1150

1350

1550

1750

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT Sliding DyFor GP

-1

0

1

2

750

850

950

1050

1150

1250

1350

1450

1550

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT Regime

230

Figure H20. Regime predicted by best performing ADT individual for 1999-2004

period with transaction costs, plotted against normalized series.

No transaction costs.

1999-2000 without transaction costs.

Table H5. Best Return, 1999-2000, Without Transaction Costs

Best Approach ADF

Best Return 0.5112

ADT Return 0.4796

Buy and Hold Return 0.0751

-1

0

1

2

0.95

1

1.05

1.1

1.15

1.2

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT Regime

231

Figure H21. Best performing approach for 1999-2000 period without transaction costs. ADT is

included for comparison.

Figure H22. Regime predicted by best performing ADT individual for 1999-2000 period

without transaction costs. The S&P 500 index is plotted on the primary axis.

1150

1250

1350

1450

1550

1650

1750

1850

1950

2050
1

/4
/1

9
9

9

2
/4

/1
9

9
9

3
/4

/1
9

9
9

4
/4

/1
9

9
9

5
/4

/1
9

9
9

6
/4

/1
9

9
9

7
/4

/1
9

9
9

8
/4

/1
9

9
9

9
/4

/1
9

9
9

1
0

/4
/1

9
9

9

1
1

/4
/1

9
9

9

1
2

/4
/1

9
9

9

1
/4

/2
0

0
0

2
/4

/2
0

0
0

3
/4

/2
0

0
0

4
/4

/2
0

0
0

5
/4

/2
0

0
0

6
/4

/2
0

0
0

7
/4

/2
0

0
0

8
/4

/2
0

0
0

9
/4

/2
0

0
0

1
0

/4
/2

0
0

0

1
1

/4
/2

0
0

0

1
2

/4
/2

0
0

0

S&P 500 ADF ADT

-1

0

1

2

1150

1200

1250

1300

1350

1400

1450

1500

1550

1
/4

/1
9

9
9

2
/4

/1
9

9
9

3
/4

/1
9

9
9

4
/4

/1
9

9
9

5
/4

/1
9

9
9

6
/4

/1
9

9
9

7
/4

/1
9

9
9

8
/4

/1
9

9
9

9
/4

/1
9

9
9

1
0

/4
/1

9
9

9

1
1

/4
/1

9
9

9

1
2

/4
/1

9
9

9

1
/4

/2
0

0
0

2
/4

/2
0

0
0

3
/4

/2
0

0
0

4
/4

/2
0

0
0

5
/4

/2
0

0
0

6
/4

/2
0

0
0

7
/4

/2
0

0
0

8
/4

/2
0

0
0

9
/4

/2
0

0
0

1
0

/4
/2

0
0

0

1
1

/4
/2

0
0

0

1
2

/4
/2

0
0

0

S&P 500 ADT.regime

232

Figure H23. Predicted regime of best performing ADT individual for 1999-2000 period

without transaction costs. The normalized S&P 500 index is plotted on the primary axis.

main->

(or

 (not

 (if

 (if true false false) true

 (<

 (movingAverage

 (+

 (* Offsetvalue 0 17)

 (% Offsetvalue 0 205)))

 (Norm

 (+

 (periodMinimum SP500.m250.1 Offsetvalue 0)

 (offsetValue SP500.m250.1 Offsetvalue 0))

 (movingAverage

 (* Offsetvalue 0 Offsetvalue 0))))))

 (if

 (<

 (movingAverage

 (offsetValue SP500.m250.1 Offsetvalue 0)) Offsetvalue 0)

 (>

 (adf1

 (or

 (not

 (if

 (not false)

 (< 0.9887563673051396 0.9368307229011728)

 (> 0.4099380718399315 148)))

 (not

 (not

 (not false)))) Offsetvalue 0)

 (movingAverage

 (-

-1

0

1

2

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1
/4

/1
9

9
9

2
/4

/1
9

9
9

3
/4

/1
9

9
9

4
/4

/1
9

9
9

5
/4

/1
9

9
9

6
/4

/1
9

9
9

7
/4

/1
9

9
9

8
/4

/1
9

9
9

9
/4

/1
9

9
9

1
0

/4
/1

9
9

9

1
1

/4
/1

9
9

9

1
2

/4
/1

9
9

9

1
/4

/2
0

0
0

2
/4

/2
0

0
0

3
/4

/2
0

0
0

4
/4

/2
0

0
0

5
/4

/2
0

0
0

6
/4

/2
0

0
0

7
/4

/2
0

0
0

8
/4

/2
0

0
0

9
/4

/2
0

0
0

1
0

/4
/2

0
0

0

1
1

/4
/2

0
0

0

1
2

/4
/2

0
0

0

S&P 500 Normalized ADT.regime

233

 (-

 (movingAverage 94)

 (+ 187 0.8382032016270007))

 (periodMinimum SP500.m250.1

 (offsetValue SP500.m250.1

 (Norm

 (movingAverage Offsetvalue 0)

 (* 212 0.7017350783758893))))))) false))

adf0->

(%

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1 arg1))

 (-

 (- arg1

 (+ arg1 arg1)) arg1))

adf1->

(Norm

 (%

 (+

 (*

 (offsetValue SP500.m250.1

 (+ arg1 arg1))

 (movingAverage

 (+ arg1 arg1)))

 (%

 (Norm

 (offsetValue SP500.m250.1 arg1)

 (* arg1 arg1))

 (-

 (% arg1 arg1)

 (movingAverage arg1))))

 (-

 (% arg1 arg1)

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (%

 (*

 (periodMinimum SP500.m250.1

 (offsetValue SP500.m250.1 arg1))

 (-

 (% arg1 arg1)

 (periodMinimum SP500.m250.1 arg1))) arg1)))))

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1

 (Norm

 (offsetValue SP500.m250.1 arg1) arg1))))

Figure H24. Best Performing ADF Program for 1999-2000 period without transaction costs.

main->

(not

 (if

 (if

 (if

 (if

 (if

 (and

 (and

 (not true)

 (and true false))

234

 (not

 (not false)))

 (<

 (periodMinimum SP500.m250.1

 (+ 0.04534347367068148 0.6752217626562438)) 1.6581434065095961)

 (not

 (<

 (offsetValue SP500.m250.1 Offsetvalue 0)

 (periodMinimum SP500.m250.1 0.7496229268283094)))) true false)

 (if true true true)

 (< 0.6476672445548195 0.5586636132707414))

 (if

 (not

 (>

 (movingAverage

 (Norm

 (movingAverage Offsetvalue 0)

 (Norm 211 193)))

 (+

 (offsetValue SP500.m250.1

 (offsetValue SP500.m250.1 0.6736792933277249))

 (Norm

 (periodMinimum SP500.m250.1 1.4428131113809106)

 (PeriodMaximum SP500.m250.1 0.4054839088970026)))))

 (if false false false)

 (and true true))

 (not

 (if false true false)))

 (<

 (+

 (+

 (+ 116 56)

 (periodMinimum SP500.m250.1 Offsetvalue 0))

 (offsetValue SP500.m250.1

 (movingAverage 117)))

 (periodMinimum SP500.m250.1

 (periodMinimum SP500.m250.1

 (Norm Offsetvalue 0 1.9788305923688534))))

 (>

 (offsetValue SP500.m250.1

 (+ Offsetvalue 0 1.7509562996891792))

 (+

 (movingAverage 30)

 (Norm

 (periodMinimum SP500.m250.1

 (offsetValue SP500.m250.1 0.5586636132707414)) Offsetvalue 0)))))

adf0->

(*

 (PeriodMaximum SP500.m250.1

 (+ arg1

 (movingAverage arg1)))

 (*

 (offsetValue SP500.m250.1 arg1)

 (- arg1 arg1)))

adf1->

(or

 (<

 (offsetValue SP500.m250.1

 (offsetValue SP500.m250.1

 (periodMinimum SP500.m250.1 arg1)))

 (+

235

 (*

 (periodMinimum SP500.m250.1 arg1)

 (+ arg1 arg1))

 (PeriodMaximum SP500.m250.1

 (* arg1 arg1))))

 (if

 (or

 (< arg1 arg1)

 (or false arg0))

 (not

 (or

 (or

 (or arg0 arg0)

 (and true arg0))

 (>

 (PeriodMaximum SP500.m250.1 arg1)

 (periodMinimum SP500.m250.1 arg1))))

 (>

 (* arg1 arg1)

 (Norm arg1 arg1))))

Figure H25. Best performing ADT program for 1999-2000 period without transaction costs.

main->

(BinaryNumber

 (<

 (movingAverage Offsetvalue 0)

 (movingAverage

 (PeriodMaximum SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (-

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1 Offsetvalue 0))

 (Norm

 (% 1.9155758128983693 1.6830512465738168)

 (+ 238 145))))))))

adf0->

(*

 (Norm

 (movingAverage

 (Norm arg1 arg1)) arg1)

 (+ arg1

 (* arg1

 (PeriodMaximum SP500.m250.1 arg1))))

adf1->

(%

 (movingAverage arg1)

 (-

 (+

 (+ arg1 arg1)

 (* arg1

 (PeriodMaximum SP500.m250.1

 (Norm

 (- arg1 arg1)

 (+ arg1 arg1))))) arg1))

Figure H26. Best performing ADT regime program for 1999-2000 period without transaction

costs.

236

2001-2002 without transaction costs.

Table H6. Best Return, 2001-2002, Without Transaction Costs

Best Approach ADF

Best Return 0.0196

ADT Return -0.1245

Buy and Hold Return -0.3144

237

Figure H27. Best performing approach for 2001-2002 period without transaction costs.

Figure H28. Regime predicted by best performing approach for 2001-2002 period without

transaction costs.

750

850

950

1050

1150

1250

1350
1

/1
/2

0
0

1

2
/1

/2
0

0
1

3
/1

/2
0

0
1

4
/1

/2
0

0
1

5
/1

/2
0

0
1

6
/1

/2
0

0
1

7
/1

/2
0

0
1

8
/1

/2
0

0
1

9
/1

/2
0

0
1

1
0

/1
/2

0
0

1

1
1

/1
/2

0
0

1

1
2

/1
/2

0
0

1

1
/1

/2
0

0
2

2
/1

/2
0

0
2

3
/1

/2
0

0
2

4
/1

/2
0

0
2

5
/1

/2
0

0
2

6
/1

/2
0

0
2

7
/1

/2
0

0
2

8
/1

/2
0

0
2

9
/1

/2
0

0
2

1
0

/1
/2

0
0

2

1
1

/1
/2

0
0

2

1
2

/1
/2

0
0

2

1
/1

/2
0

0
3

S&P 500 ADF 91 ADT 91

-1

0

1

2

750

850

950

1050

1150

1250

1350

1
/1

/2
0

0
1

2
/1

/2
0

0
1

3
/1

/2
0

0
1

4
/1

/2
0

0
1

5
/1

/2
0

0
1

6
/1

/2
0

0
1

7
/1

/2
0

0
1

8
/1

/2
0

0
1

9
/1

/2
0

0
1

1
0

/1
/2

0
0

1

1
1

/1
/2

0
0

1

1
2

/1
/2

0
0

1

1
/1

/2
0

0
2

2
/1

/2
0

0
2

3
/1

/2
0

0
2

4
/1

/2
0

0
2

5
/1

/2
0

0
2

6
/1

/2
0

0
2

7
/1

/2
0

0
2

8
/1

/2
0

0
2

9
/1

/2
0

0
2

1
0

/1
/2

0
0

2

1
1

/1
/2

0
0

2

1
2

/1
/2

0
0

2

1
/1

/2
0

0
3

S&P 500 ADT 91.regime

238

Figure H29. Regime predicted by best performing approach for 2001-2002 period without

transaction costs, plotted against normalized target series.

main->

(>

 (movingAverage

 (%

 (%

 (PeriodMaximum SP500.m250.1 246)

 (% 0.06175235801685308 0.5120859217289804))

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1 1.1435868729905192))))

 (offsetValue SP500.m250.1 1.1435868729905192))

adf0->

(-

 (periodMinimum SP500.m250.1

 (-

 (% arg1 arg1)

 (offsetValue SP500.m250.1 arg1))) arg1)

adf1->

(+

 (periodMinimum SP500.m250.1

 (- arg1

 (offsetValue SP500.m250.1 arg1)))

 (Norm arg1

 (-

 (PeriodMaximum SP500.m250.1

 (- arg1 arg1)) arg1)))

Figure H30. Best performing ADF program for 2001-2002 period without transaction costs.

main->

(and

 (<

 (*

 (- 59 233)

 (*

-1

0

1

2

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1
/1

/2
0

0
1

2
/1

/2
0

0
1

3
/1

/2
0

0
1

4
/1

/2
0

0
1

5
/1

/2
0

0
1

6
/1

/2
0

0
1

7
/1

/2
0

0
1

8
/1

/2
0

0
1

9
/1

/2
0

0
1

1
0

/1
/2

0
0

1

1
1

/1
/2

0
0

1

1
2

/1
/2

0
0

1

1
/1

/2
0

0
2

2
/1

/2
0

0
2

3
/1

/2
0

0
2

4
/1

/2
0

0
2

5
/1

/2
0

0
2

6
/1

/2
0

0
2

7
/1

/2
0

0
2

8
/1

/2
0

0
2

9
/1

/2
0

0
2

1
0

/1
/2

0
0

2

1
1

/1
/2

0
0

2

1
2

/1
/2

0
0

2

1
/1

/2
0

0
3

S&P 500 Normalized ADT 91.regime

239

 (%

 (-

 (periodMinimum SP500.m250.1

 (- 0.56246175785108 178))

 (%

 (- 66 18)

 (movingAverage Offsetvalue 0)))

 (-

 (periodMinimum SP500.m250.1

 (* Offsetvalue 0 192))

 (periodMinimum SP500.m250.1 Offsetvalue 0))) 53))

 (PeriodMaximum SP500.m250.1

 (PeriodMaximum SP500.m250.1 239)))

 (or

 (and false

 (if true false true))

 (adf0

 (< 72 1.0370796085258633)

 (-

 (Norm

 (offsetValue SP500.m250.1

 (-

 (- 59 Offsetvalue 0)

 (- 0.56246175785108

 (- 59 Offsetvalue 0))))

 (Norm 0.6167750572429982

 (offsetValue SP500.m250.1

 (-

 (offsetValue SP500.m250.1 Offsetvalue 0) 25))))

 (Norm

 (offsetValue SP500.m250.1

 (-

 (- 59 Offsetvalue 0)

 (offsetValue SP500.m250.1 0.1137333582369704)))

 (Norm

 (*

 (periodMinimum SP500.m250.1 139)

 (PeriodMaximum SP500.m250.1 247))

 (offsetValue SP500.m250.1 Offsetvalue 0)))))))

adf0->

(and

 (or

 (or

 (< arg1 arg1)

 (or arg0 arg0))

 (>

 (* arg1 arg1)

 (Norm arg1 arg1)))

 (or

 (not

 (and arg0 arg0))

 (if

 (and

 (not

 (>

 (+ arg1 arg1)

 (+ arg1 1))) arg0)

 (or arg0 false)

 (not

 (and arg0 arg0)))))

adf1->

240

(+

 (+

 (offsetValue SP500.m250.1

 (*

 (movingAverage

 (* arg1 arg1))

 (+

 (movingAverage arg1)

 (% arg1 arg1))))

 (%

 (- 1 arg1)

 (Norm arg1 arg1)))

 (%

 (offsetValue SP500.m250.1

 (PeriodMaximum SP500.m250.1 arg1))

 (Norm

 (PeriodMaximum SP500.m250.1

 (%

 (offsetValue SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (periodMinimum SP500.m250.1 arg1)))

 (offsetValue SP500.m250.1

 (*

 (movingAverage arg1)

 (+ arg1 arg1)))))

 (movingAverage arg1))))

Figure H31. Best performing ADT program for 2001-2002 period without transaction costs.

241

main->

(BinaryNumber

 (<

 (movingAverage

 (%

 (Norm 62

 (PeriodMaximum SP500.m250.1 1.9695511304638724))

 (offsetValue SP500.m250.1

 (periodMinimum SP500.m250.1 0.9792433541927676))))

 (periodMinimum SP500.m250.1

 (Norm

 (Norm

 (PeriodMaximum SP500.m250.1 1.9695511304638724)

 (movingAverage

 (periodMinimum SP500.m250.1 Offsetvalue 0)))

 (offsetValue SP500.m250.1

 (Norm 31

 (offsetValue SP500.m250.1

 (periodMinimum SP500.m250.1 0.9792433541927676))))))))

adf0->

(and

 (not

 (or arg0

 (> arg1 arg1)))

 (and

 (and

 (< arg1 arg1)

 (not arg0)) arg0))

adf1->

(Norm

 (Norm

 (Norm

 (Norm

 (% arg1 arg1)

 (* arg1 arg1)) arg1)

 (- arg1

 (offsetValue SP500.m250.1 arg1)))

 (-

 (Norm

 (- arg1 arg1)

 (movingAverage arg1))

 (PeriodMaximum SP500.m250.1

 (%

 (%

 (offsetValue SP500.m250.1

 (+ arg1 arg1))

 (+

 (+ arg1 arg1)

 (periodMinimum SP500.m250.1 arg1)))

 (movingAverage

 (+

 (% arg1 arg1)

 (periodMinimum SP500.m250.1 arg1)))))))

Figure H32. Regime predicted by best performing ADT program for 2001-2002 period without

transaction costs.

242

2003-2004 without transaction costs.

Table H7. Best Return, 2003-2004, Without Transaction Costs

Best Approach ADT

Best Return 0.6443

Buy and Hold Return 0.3332

243

Figure H33. Best performing approach for 2003-2004 period without transaction costs.

Figure H34. Regime predicted by best performing approach for 2003-2004 period without

transaction costs.

750

850

950

1050

1150

1250

1350

1450

1550

1
/1

/2
0

0
3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 ADT 93

-1

0

1

2

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1
/1

/2
0

0
3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 ADT 93.regime

244

Figure H35. Regime predicted by best performing approach for 2003-2004 period without

transaction costs, plotted against normalized target series.

main->

(and

 (and

 (or

 (> 1.0650254196845876 3)

 (> 199 Offsetvalue 0))

 (>

 (PeriodMaximum SP500.m250.1 42)

 (PeriodMaximum SP500.m250.1 Offsetvalue 0)))

 (or

 (adf0 true

 (movingAverage Offsetvalue 0))

 (not true)))

adf0->

(<

 (offsetValue SP500.m250.1

 (-

 (PeriodMaximum SP500.m250.1 arg1)

 (offsetValue SP500.m250.1

 (+ arg1 1))))

 (offsetValue SP500.m250.1

 (% arg1 arg1)))

adf1->

(%

 (%

 (+

 (Norm arg1 arg1)

 (Norm 0 arg1))

 (offsetValue SP500.m250.1

 (+ arg1 arg1)))

 (PeriodMaximum SP500.m250.1

 (PeriodMaximum SP500.m250.1

 (offsetValue SP500.m250.1

 (-

 (PeriodMaximum SP500.m250.1 arg1)

 (offsetValue SP500.m250.1 arg1))))))

-1

0

1

2

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
1

/1
/2

0
0

3

2
/1

/2
0

0
3

3
/1

/2
0

0
3

4
/1

/2
0

0
3

5
/1

/2
0

0
3

6
/1

/2
0

0
3

7
/1

/2
0

0
3

8
/1

/2
0

0
3

9
/1

/2
0

0
3

1
0

/1
/2

0
0

3

1
1

/1
/2

0
0

3

1
2

/1
/2

0
0

3

1
/1

/2
0

0
4

2
/1

/2
0

0
4

3
/1

/2
0

0
4

4
/1

/2
0

0
4

5
/1

/2
0

0
4

6
/1

/2
0

0
4

7
/1

/2
0

0
4

8
/1

/2
0

0
4

9
/1

/2
0

0
4

1
0

/1
/2

0
0

4

1
1

/1
/2

0
0

4

1
2

/1
/2

0
0

4

S&P 500 Normalized ADT 93.regime

245

Figure H36. . Best performing ADT program for 2003-2004 period without transaction costs.

main->

(BinaryNumber

 (if

 (if

 (if

 (< 0.5752406769227789

 (-

 (PeriodMaximum SP500.m250.1

 (offsetValue SP500.m250.1

 (offsetValue SP500.m250.1 0.6578518733450041)))

 (*

 (*

 (* Offsetvalue 0 147)

 (periodMinimum SP500.m250.1 Offsetvalue 0))

 (PeriodMaximum SP500.m250.1

 (PeriodMaximum SP500.m250.1 1.768925267784819)))))

 (or true false)

 (> 0.23028702202513518 Offsetvalue 0))

 (>

 (offsetValue SP500.m250.1 Offsetvalue 0)

 (PeriodMaximum SP500.m250.1 15))

 (not

 (or true false)))

 (or

 (<

 (adf1 false 208)

 (offsetValue SP500.m250.1 221))

 (not

 (or false

 (>

 (movingAverage

 (periodMinimum SP500.m250.1

 (% 1.973853119591221 0)))

 (Norm

 (periodMinimum SP500.m250.1

 (PeriodMaximum SP500.m250.1 51))

 (Norm

 (periodMinimum SP500.m250.1 0.8657650017727785)

 (Norm Offsetvalue 0 104)))))))

 (>

 (+

 (adf0 false 165)

 (periodMinimum SP500.m250.1 1.349232507728061))

 (movingAverage

 (periodMinimum SP500.m250.1 99)))))

adf0->

(%

 (movingAverage

 (%

 (- 0 arg1)

 (* arg1 arg1)))

 (+

 (*

 (offsetValue SP500.m250.1 0)

 (movingAverage arg1))

 (Norm arg1

 (- arg1 arg1))))

246

adf1->

(-

 (offsetValue SP500.m250.1

 (*

 (+ arg1

 (%

 (offsetValue SP500.m250.1 arg1)

 (+ arg1 arg1)))

 (movingAverage arg1)))

 (offsetValue SP500.m250.1

 (%

 (offsetValue SP500.m250.1 arg1)

 (+ arg1 arg1))))

Figure H37. Regime program for best performing ADT individual for 2003-2004 period

without transaction costs.

1999-2004 without transaction costs.

Table H8. Best Return, 1999-2004, Without Transaction Costs

Best Approach ADT

Best Return 0.6959

Buy and Hold Return -0.0189

Figure H38. Best returns for 1999-2014 period without transaction costs.

750

950

1150

1350

1550

1750

1950

2150

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT DyFor GP

247

Figure H39. Regime predicted by best performing ADT individual for 1999-2004 period

without transaction costs.

Figure H40. Regime predicted by best performing ADT individual for 1999-2004 period

without transaction costs, plotted against normalized series.

-1

0

1

2

750

850

950

1050

1150

1250

1350

1450

1550

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT Regime

-1

0

1

2

0.95

1

1.05

1.1

1.15

1.2

1/4/1999 1/4/2000 1/4/2001 1/4/2002 1/4/2003 1/4/2004

S&P 500 ADT Regime

248

Appendix I

Raw Data Files

Full data sets and parameter files from the experiments described in this report are

available at http://www.infoblazer.com/geneticprogramming.

249

References

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules.

Journal of Financial Economics, 51(2), 245–271.

Amazon Web Services, I. (2014). Amazon EC2. Retrieved from http://aws.amazon.com/ec2/

American Association of Individual Investors. (2014). Sentiment Survey. Retrieved December

10, 2014, from http://www.aaii.com/sentimentsurvey

Angeline, P. (1993). Evolutionary algorithms and emergent intelligence. The Ohio State

University.

Angeline, P. (1994). Genetic Programming and Emergent Intelligence. Advances in Genetic

Programming, 1, 75–98.

Angeline, P. J., & Pollack, J. (1993). Evolutionary module acquisition. In The Second Annual

Conference on Evolutionary Programming. La Jolla, California.

Angeline, P., & Pollack, J. (1992). The Evolutionary Induction of Subroutines. In Proceedings of

the fourteenth annual conference of the cognitive science society (pp. 236–241).

Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques –

Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941.

doi:10.1016/j.eswa.2008.07.006

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming: an

introduction. San Francisco: Morgan Kaufmann.

Bleuler, S., Brack, M., Thiele, L., & Zitzler, E. (2001). Multiobjective Genetic Programming :

Reducing Bloat Using SPEA2. In Evolutionary Computation, 2001. (Vol. 1, pp. 536–543).

Seoul: Ieee. doi:10.1109/CEC.2001.934438

Brooks, C. (2014). Introductory econometrics for finance [Kindle version] (Third Edit.).

Cambridge: Cambridge University Press.

Canelas, A., Neves, R., & Horta, N. (2012). A new SAX-GA methodology applied to investment

strategies optimization. In Proceedings of the fourteenth international conference on

Genetic and evolutionary computation conference - GECCO ’12 (pp. 1055–1062). New

York, New York, USA: ACM Press. doi:10.1145/2330163.2330310

Chen, S. H., Kuo, T. W., & Hoi, K. M. (2008). Genetic Programming and Financial

Trading:How Much About “What We Know.” In Handbook of financial engineering (pp.

99–154). Springer US. doi:10.1007/978-0-387-76682-9

Chen, S., & Yeh, C. (1997). Toward a computable approach to the efficient market hypothesis:

an application of genetic programming. Journal of Economic Dynamics and Control, 21,

1043–1063.

Chicago Board Options Exchange. (2014). CBOE - CBOE Volatility Index (VIX) Options and

250

Futures Micro Site. Retrieved December 10, 2014, from

http://www.cboe.com/micro/VIX/vixintro.aspx

Dacco, R., & Satchell, S. (1999). Why do Regime-switching Models Forecast so Badly? Journal

of Forecasting, 18(1), 1–16.

Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 38(1), 34–105.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Reading: Addison-Wesley.

Genetic Programming: A tutorial with the software simple GP. (2002).

Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time series and

the business cycle. Econometrica: Journal of the Econometric Society, 57(2), 357–384.

Hamilton, J. (2008). Regime-switching models. The New Palgrave Dictionary of Economics, 1–

15.

Hellstrom, T., & Holmstrom, K. (1999). Parameter tuning in trading algorithms using ASTA.

Computational Finance, 1–15.

Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Communications in

Mathematical Physics, 77, 69–77.

Hickey, R. (2014). Clojure Web Site. Retrieved from http://clojure.org

Johnson, R. (1997). Frameworks=(components+ patterns). Communications of the ACM, 40(10),

39–42.

Jones, C. M. (2002). A century of stock market liquidity and trading costs. Columbia University

working paper. doi:10.2139/ssrn.313681

Jong, E. de, Watson, R., & Pollack, J. (2001). Reducing bloat and promoting diversity using

multi-objective methods. In Genetic and Evolutionary Computation Conference (GECCO-

2001) (pp. 11 –18). San Francisco.

Kaboudan, M. (2000). Genetic programming prediction of stock prices. Computational

Economics, 16(1988), 207–236. doi:10.1023/A:1008768404046

Kaboudan, M. A. (1998). A GP Approach to Distinguish Chaotic from Noisy Signals. In Genetic

Programming 1998: Proceedings of the Third Annual Conference (pp. 187–191).

Kampouridis, M., & Tsang, E. (2010). EDDIE for Investment Opportunities Forecasting:

Extending the Search Space of the GP. In 2010 IEEE Conference on Evolutionary

Computation (CEC) (pp. 1–8). IEEE.

Kampouridis, M., & Tsang, E. (2012). Investment Opportunities Forecasting: Extending the

Grammar of a GP-based Tool. International Journal of Computational Intelligence Systems,

5, 530–541. doi:10.1080/18756891.2012.696918

Keane, M. A., Streeter, M. J., Mydlowec, W., Lanza, G., & Yu, J. (2006). Genetic programming

IV: Routine human-competitive machine intelligence (Vol. 5). Springer.

251

Kinnear Jr, K. E. (1994). Alternatives in Automatic Function Definition: A Comparison of

Performance. In Advances in genetic programming (pp. 119–141).

Koza, J. ., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanza, G. (2006). Genetic

programming IV: Routine human-competitive machine intelligence (Vol. 5). Springer.

Koza, J. R. (1990). Genetic Programming : A Paradigm for Genetically Breeding Populations of

Computer Programs to Solve Problems. Stanford University, Department of Computer

Science.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of

natural selection (Vol. 1). MIT press.

Koza, J. R. (1994). Genetic programming II: automatic discovery of reusable programs. MIT

press.

Koza, J., Streeter, M., & Keane, M. (2008). Routine high-return human-competitive automated

problem-solving by means of genetic programming. Information Sciences, 178(23), 4434–

4452. doi:10.1016/j.ins.2008.07.028

Li, J. (2000). FGP: A genetic programming based financial forecasting tool. University of

Essex.

Li, J., & Tsang, E. (1999). Investment decision making using FGP: A case study. In Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 2) (Vol. 5). IEEE.

Mackey, M. C., & Glass, L. (1977). Oscillation and Chaos in Physiological Control Systems.

Science, 197(4300), 287–289.

Mahfoud, S., & Mani, G. (1996). Financial forecasting using genetic algorithms. Applied

Artificial Intelligence, 10(6), 543–566. doi:10.1080/088395196118425

Montana, D. J. (1995). Strongly Typed Genetic Programming. Evolutionary Computation, 3(2),

199–230. doi:10.1162/evco.1995.3.2.199

Mulloy, B., Riolo, R., & Savit, R. (1996). Dynamics of genetic programming and chaotic time

series prediction. In Proceedings of the first annual conference on genetic programming

(pp. 166–174). MIT Press.

O’Neill, M., Vanneschi, L., Gustafson, S., & Banzhaf, W. (2010). Open issues in genetic

programming. Genetic Programming and Evolvable Machines, 11(3-4), 339–363.

doi:10.1007/s10710-010-9113-2

Pivotal Software. (2016). Spring Boot. Retrieved from http://projects.spring.io/spring-boot/

Poli, R., Vanneschi, L., Langdon, W. B., & McPhee, N. F. (2010). Theoretical results in genetic

programming: the next ten years? Genetic Programming and Evolvable Machines, 11(3-4),

285–320. doi:10.1007/s10710-010-9110-5

Quandl. (2016). Quandl. Retrieved from https://www.quandl.com

Robinhood Financial, L. (2016). Robinhood - Free Stock Trading. Retrieved January 1, 2016,

from https://www.robinhood.com/

252

S&P Dow Jones Indices LLC. (2016). S&P 500® - S&P Dow Jones Indices. Retrieved from

http://us.spindices.com/indices/equity/sp-500

Schmidt, D. C., Fayad, M., & Johnson, R. E. (1996). Software patterns. Communications of the

ACM, 39(10), 37–39. doi:10.1145/236156.236164

Securities and Exchange Commission. (2001). Order Directing the Exchanges and NASD to

Submit a Decimalization Implementation Plan. Release No. 34-42360/January 28, 2000.

Sincere, M. (2011). All About Market Indicators. McGraw-Hill.

Spector, L. (1995). Evolving Control Structures with Automatically De ned Macros, 99–105.

Srinivas, M., & Patnaik, L. M. (1994). Genetic algorithms: a survey. Computer, 27(6), 17–26.

doi:10.1109/2.294849

Tsang, E. P. K., & Butler, J. M. (1998). EDDIE Beats the Bookies, (April).

Turing, a. M. (1950). Computing Machinery and Intelligence. Mind, LIX(236), 433–460.

doi:10.1093/mind/LIX.236.433

Verma, A., Llorà, X., Goldberg, D. E., & Campbell, R. H. (2009). Scaling Genetic Algorithms

Using MapReduce. In Ninth International Conference on Intelligent Systems Design and

Applications, 2009. ISDA’09. (pp. 13–18). IEEE. doi:10.1109/ISDA.2009.181

Wagner, N. (2005). Time Series Forecasting for Non-static Environments: the DyFor Genetic

Program Model. the University of North Carolina at Charlotte.

Wagner, N., Khouja, M., Michalewicz, Z., & McGregor, R. R. (2008). Forecasting economic

time series with the DyFor genetic program model. Applied Financial Economics, 18(5),

357–378. doi:10.1080/09603100600949200

Wagner, N., & Michalewicz, Z. (2008). An Analysis of Adaptive Windowing for Time Series

Forecasting in Dynamic Environments: Further Tests of The DyFor GP Model. In

Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp.

1657–1664). Atlanta: ACM.

Wagner, N., Michalewicz, Z., Khouja, M., & McGregor, R. R. (2007). Time Series Forecasting

for Dynamic Environments: The DyFor Genetic Program Model. IEEE Transactions on

Evolutionary Computation, 11(4), 433–452. doi:10.1109/TEVC.2006.882430

Weizenbaum, J. (1966). ELIZA---a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1), 36–45.

doi:10.1145/365153.365168

Woodward, J. R. (2003). Modularity in Genetic Programming. In C. Ryan, T. Soule, M. Keijzer,

E. Tsang, R. Poli, & E. Costa (Eds.), Genetic Programming (pp. 254–263). Berlin

Heidelberg: Springer. doi:http://dx.doi.org/10.1007/3-540-36599-0_23

Yu, T., Chen, S.-H., & Kuo, T.-W. (2005). Discovering financial technical trading rules using

genetic programming with lambda abstraction. In Genetic programming theory and practice

II (pp. 11–30). Springer US.

253

Yu, T., & Clack, C. (1998). Recursion, lambda-abstractions and genetic programming. Cognitive

Science Research Papers-University Of Birmingham, 26–30.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing, 50, 159–175. doi:10.1016/S0925-2312(01)00702-0

Zhang, G., Patuwo, B. E., & Hu, M. (1998). Forecasting with artificial neural networks:: The

state of the art. International Journal of Forecasting, 14, 35–62.

	Nova Southeastern University
	NSUWorks
	2016

	Automatically Defined Templates for Improved Prediction of Non-stationary, Nonlinear Time Series in Genetic Programming
	David Moskowitz
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1460394150.pdf.ObHb4

