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In legacy software, non-functional concerns tend to cut across the system and manifest 

themselves as tangled or scattered code. If these crosscutting concerns could be 

modularized and the system refactored, then the system would become easier to 

understand, modify, and maintain. Modularized crosscutting concerns are known as 

aspects and the process of identifying aspect candidates in legacy software is called 

aspect mining.  

One of the techniques used in aspect mining is clustering and there are many clustering 

algorithms. Current aspect mining clustering algorithms attempt to form clusters by 

optimizing one objective function. However, the objective function to be optimized tends 

to bias the formation of clusters towards the data model implicitly defined by that 

function. One solution is to use algorithms that try to optimize more than one objective 

function. These multiobjective algorithms have been used successfully in data mining 

but, as far as this author knows, have not been applied to aspect mining.  

This study investigated the feasibility of using multiobjective evolutionary algorithms, in 

particular, multiobjective genetic algorithms, in aspect mining. The study utilized an 

existing multiobjective genetic algorithm, MOCK, which had already been tested against 

several popular single objective clustering algorithms. MOCK has been shown to be, on 

average, as good as, and sometimes better than, those algorithms. Since some of those 

data mining algorithms have counterparts in aspect mining, it was reasonable to assume 

that MOCK would perform at least as good in an aspect mining context. 

Since MOCK's objective functions were not directly trying to optimize aspect mining 

metrics, the study also implemented another multiobjective genetic algorithm, AMMOC, 

based on MOCK but tailored to optimize those metrics. The reasoning hinged on the fact 

that, since the goal was to determine if a clustering method resulted in optimizing these 

quality metrics, it made sense to attempt to optimize these functions directly instead of a 

posteriori.  

This study determined that these multiobjective algorithms performed at least as good as 

two popular aspect mining algorithms, k-means and hierarchical agglomerative. As a 

result, this study has contributed to both the theoretical body of knowledge in the field of 

aspect mining as well as provide a practical tool for the field. 
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Chapter 1 

Introduction 

 

Background 

Aspect oriented programming (AOP), introduced by Kiczales et al. (1997), refers 

to the process of designing software so that the designer focuses on the functional 

concerns of a software system as opposed to non-functional concerns such as logging and 

authentication. Non-functional concerns, although important to the system under 

development, tend to cut across the system rendering the system difficult to understand, 

maintain, and modify (Kiczales et al., 1997). Current paradigms, such as object oriented 

programming, are unable to modularize these crosscutting concerns (Kiczales et al., 

1997). 

AOP allows a developer to modularize crosscutting concerns into entities called 

aspects (Kiczales et al., 1997). These aspects can then be woven into the code by an 

aspect weaver either at compile time or run time. AOP techniques, however, are applied 

at the design and implementation stages of software development. Legacy software, on 

the other hand, already contains these crosscutting concerns. To be able to maintain and 

modify legacy code it is desirable that crosscutting concerns be identified and the 

software put through a process termed aspect refactoring (Van Deursen, Marin, & 

Moonen, 2003). Since crosscutting concerns tend to manifest themselves in tangled1 and 

                     
1 Tangled code refers to code that implements crosscutting concerns which are intertwined with functional 

concerns as well as other crosscutting concerns. 
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scattered2 code (Kiczales et al., 1997) it is possible to mine legacy code for aspect 

candidates by looking for these symptoms. The process of identifying crosscutting 

candidates in legacy software is called aspect mining (Kellens & Mens, 2005; Kellens, 

Mens, & Tonella, 2007). 

Researchers have developed several aspect mining techniques, many of which 

have been borrowed from data mining. In their 2007 survey, Kellens, Mens, and Tonella 

provided an exhaustive list of aspect mining approaches including formal concept 

analysis, cluster analysis, dynamic analysis, program slicing, software metrics and 

heuristics, clone detection, and pattern matching. The survey did not list all of the 

algorithms that implemented these approaches. It merely provided a framework for 

comparing techniques used in aspect mining. The goal was to help practitioners in the 

aspect mining field select the right tool(s) for the job. No one technique was proffered as 

being the best and it was even suggested that a combination of techniques may be more 

successful than simply using one. This author's research focused on the clustering 

approach. 

Clustering methods look for patterns in the data based on some similarity metric 

(Han, Kamber, & Pei, 2011; Jain, 2010). Similar objects are grouped into clusters with 

the final objective being that the objects in a cluster are more similar to each other than to 

those in other clusters. The degree of similarity is determined by optimizing an objective 

function, for example, intra-cluster variance. Clustering can be applied to aspect mining 

if a software system is viewed as being a set, S, of elements (statements, classes, 

                     
2 Scattered code is code that implements one concern across many modules and classes. 
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modules, etc.) and a crosscutting concern as being a subset of those elements that 

implement that concern (Moldovan & Serban, 2006a). The goal is to partition S into n (n 

> 1) clusters where each of n-1 clusters contains elements relating to a crosscutting 

concern with the one remaining cluster containing all the elements related to functional 

concerns.  

Several clustering algorithms have been ported from data mining to aspect 

mining. Examples of the more popular algorithms ported to aspect mining are the k-

means, k-medoids, and hierarchical agglomerative clustering (HAC) algorithms. These 

algorithms have had some success at isolating crosscutting concerns but have not 

achieved the ideal hence the need for further research into developing more algorithms. A 

big part of the reason why these algorithms have failed to achieve the ideal is that there is 

no one-size-fits-all clustering algorithm (Jain, Murty, & Flynn, 1999; Kleinberg, 2002). 

This is a direct consequence of the difficulty in determining the precise data distribution 

in any given data set especially if different parts of the data space have different sizes and 

densities (Law, Topchy, & Jain, 2004). Also, there will always be a need for better-

performing algorithms or algorithms that target specific domains. 

One class of algorithms that has been used successfully in data mining, but has 

not gained much of a foothold in the aspect mining domain, is the class of evolutionary 

algorithms. Evolutionary algorithms work on the solution space and not on the individual 

objects in the data space. Heuristic algorithms like k-means and HAC can get stuck at 

local optima whereas evolutionary algorithms can, theoretically, arrive at global optima 

(Jain et al., 1999). Evolutionary algorithms are able to achieve this because they 
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manipulate a population of solutions as opposed to the actual data, resulting in a better 

global view of the solution space. 

One popular type of evolutionary algorithm is a genetic algorithm (GA). GAs 

mimic evolution in order to arrive at an optimal solution. They do so through the use of 

selection, crossover, and mutation operators. Selection guides the algorithm towards an 

optimal solution. Crossover provides diversity. And mutation allows a better view of the 

global landscape. Even with the ability to home in on global optima, GAs have not had 

success in aspect mining. Actually, this researcher is only aware of one attempt at using a 

GA for aspect mining. 

Serban and Moldovan (2006c) developed a genetic algorithm for aspect mining 

(GAM) and tested it against an aspect mining version of the k-means algorithm. 

Unfortunately, GAM performed poorly in that test as well as in a subsequent test by the 

same authors in Cojocar and Czibula (2008). Serban and Moldovan made suggestions for 

modifications that could potentially enhance the performance of GAM. Two of those 

modifications involved the use of multiple objective functions and a better vector space 

model3. 

As mentioned earlier, data mining researchers have been using GAs for some time 

now. In general, GAs (and other heuristic algorithms) attempt to find global solutions by 

optimizing one objective function. The problem with this is that the objective function 

being optimized makes some assumptions about the underlying data distribution. This 

biases the results towards data sets that conform to that distribution. Therefore, other data 

                     
3 Each item in the data set is assigned a vector representing its attributes. The structure of the vector defines 

the vector space model.  
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distributions provide challenges to the algorithms optimizing those objective functions 

and the structure of the data under analysis may be missed altogether. Since there are 

different objective functions that target different data distributions, some data mining 

researchers for example, Handl and Knowles (2007a), have experimented with algorithms 

that attempt to simultaneously optimize different objective functions. These researchers 

have shown that their multiobjective algorithms can compete successfully against single 

objective ones. 

As far as this researcher was aware of, no multiobjective algorithm has been used 

in the aspect mining domain. Since multiobjectective algorithms have performed well in 

data mining, especially when compared to popular data mining algorithms that have 

counterparts in aspect mining, it was reasonable to assume that those algorithms would 

have a very good chance of outperforming some of the current aspect mining algorithms.  

Problem Statement 

Mens, Kellens, and Krinke (2008), discussing the ability of aspect mining 

techniques to actually find valid candidates, stated that one problem is that most of the 

techniques will look for only certain symptoms of the presence of crosscutting concerns. 

This means that only some of the crosscutting concerns are targeted and many will be 

missed. This is especially true of current clustering methods which attempt to optimize 

one objective function. In almost all of the cases, this objective function looks for 

scattering symptoms. Since being able to specify one objective function that tackles more 

than one symptom is hard, having an algorithm that will simultaneously optimize 

multiple objective functions will allow each symptom to be addressed by a different 
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function. Furthermore, the popular algorithms, like k-means and hierarchical 

agglomerative, tend to gravitate towards local optima. Therefore, this dissertation 

attempted to solve the problem of how not to be constrained by the underlying data 

distribution while getting a better view of the global solution space. 

Goal 

The goal of this research was to show that multiobjective genetic clustering 

algorithms can perform as good as, if not better than, the aspect mining versions of the k-

means and hierarchical agglomerative algorithms. This study looked at two such 

algorithms, MOCK (MultiObjective Clustering with automatic K determination), created 

by Handl and Knowles (2004, 2007a), and AMMOC (Aspect Mining using 

MultiObjective Clustering), a modification of MOCK created specifically for this study. 

MOCK was chosen because its creators showed that, when used in data mining, MOCK 

performed better overall than the k-means and hierarchical agglomerative algorithms. 

Therefore, it seemed reasonable to assume that it would exhibit similar performance 

against those algorithms which had counterparts in the aspect mining domain. However, 

since MOCK's objective functions did not directly optimize aspect mining metrics, 

AMMOC was developed with objective functions that did optimize those metrics. 

Research Question 

Since multiobjective genetic algorithms have been shown to outperform their 

single objective counterparts and MOCK, in particular, performed better than popular 

data mining algorithms like the k-means and hierarchical agglomerative algorithms 

overall, the question was whether multiobjective genetic algorithms would perform as 
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good as or better than the aspect mining versions of the k-means and hierarchical 

agglomerative algorithms. 

Relevance and Significance 

As mentioned previously, mining legacy systems for aspect candidates provides 

the opportunity to modularize crosscutting concerns within the software and refactor the 

system so that it is easier to understand, modify, and maintain. A lot of research has been 

done in developing aspect mining techniques (Kellens & Mens, 2005; Kellens et al., 

2007). However, no one technique has emerged as the best technique. Researchers in the 

aspect mining community continue to search for better methods. Their fellow researchers 

in data mining, who also continue the search for better methods, have found that 

multiobjective algorithms are a promising avenue of research (Law et al., 2004; Zhou et 

al., 2011). MOCK is an example of one such algorithm (Handl & Knowles, 2004, 2007a). 

MOCK also addresses a deficiency with most clustering algorithms and that is the 

need to supply them with the number of clusters as a parameter. MOCK can 

automatically determine the number of clusters in one run. Model-based algorithms can 

also arrive at the number of clusters (Fraley & Raftery, 1998; McNicholas, 2011). 

However, these algorithms assume that each cluster conforms to a certain probability 

distribution and select among several models made up of a finite mixture of probability 

distributions. The model that best fits the data is then selected using a selection criterion 

such as the Bayesian Information Criterion (Fraley & Raftery, 1998; McNicholas, 2011). 

MOCK arrives at the number of clusters without making any assumption about the 

underlying data distribution. 
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Handl and Knowles (2004, 2007a) tested MOCK against the k-means algorithm 

as well as an average linkage algorithm, a single linkage algorithm, and an ensemble 

algorithm and showed that, overall, MOCK outperformed those algorithms. Since those 

algorithms are widely used in the aspect mining community, having an algorithm that 

outperforms them will be a definite contribution to aspect mining research. 

 By experimenting with MOCK and AMMOC in the aspect mining domain, this 

study contributed to the overall knowledge in that domain by showing that these types of 

algorithms could be effectively used to detect aspect candidates. To the best of this 

researcher's knowledge, this has not been done before. 

Barriers and Issues 

To be successful, evolutionary algorithms must have a good encoding for 

individuals in their data space, objective functions that make sense, and well-designed 

evolutionary operators - selection, mutation, and crossover. Furthermore, they must all be 

designed to work together (Handl & Knowles, 2007a) in order to reduce the search space 

and control the search. Also, the objective functions used in an MOEA (MultiObjective 

Evolutionary Algorithm) must be complementary. That is, they must target different 

aspects of the objective space (Handl & Knowles, 2007a) otherwise the MOEA will be as 

biased (maybe even more so) as a single objective algorithm. Another issue is that an 

MOEA can potentially produce a very large set of possible solutions. Although MOCK 

can be configured to select one of the solutions from its solution set, the result is the best 

solution from the clustering point of view. This does not mean that the solution is the best 

from the aspect mining point of view. Finally, genetic algorithms tend to be slower and 
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require more resources than their non-evolutionary counterparts. For example, Handl and 

Knowles (2007a) reported that MOCK took approximately 20 minutes on a 10-

dimensional data set which had 3565 data elements and 10 clusters and approximately 44 

minutes on a 100-dimensional data set which had 2892 elements and 10 clusters. 

 A couple of these barriers and issues manifested themselves in this study. MOCK 

and AMMOC took much longer than the non-evolutionary algorithms, especially MOCK 

which had run times that could last a very long time on high-dimensional data sets. This 

was because MOCK attempted to determine the best solutions from the set of solutions 

already obtained. Since AMMOC was not designed to look for such solutions, it ran 

much faster than MOCK but still took longer on some data sets than the non-evolutionary 

algorithms. 

 MOCK produced over 100 solutions per run and they all had to be analyzed since 

the suggested best solutions were not always the best from an aspect mining point of 

view. AMMOC produced many solutions as well but not as many as MOCK. AMMOC 

did not suffer from the latter problem since it optimized aspect mining functions directly. 

 Even with these concerns it is the opinion of this researcher that the superior 

performance of those algorithms justified the longer times. However, these algorithms 

cannot be used in a real time environment. 

Limitations 

This research was limited by the lack of benchmarks with a well-defined list of 

aspects (Rand McFadden & Mitropoulos, 2013b). JHotDraw (Gamma & Eggenschwiler, 

n.d.) is currently the only benchmark that has a well-defined list and is the de facto 
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benchmark used in aspect mining research. However, as mentioned by Rand McFadden 

and Mitropoulos (2013b), JHotDraw is a relatively small program that is not reflective of 

non-aspect oriented software due to its well-structured nature. Therefore, this research 

could only compare the performance of MOCK against other results based on the 

analysis of JHotDraw. 

MOCK came with its own limitations. Due to its heuristic nature, MOCK can 

only approximate the true Pareto front and so cannot guarantee the overall best solution. 

Related to this is the determination of a best solution from the generated set of solutions 

since that depends on how good the solution and control sets are and hence there were 

fluctuations from run to run.  

Definition of Terms 

AMMOC: A multiobjective genetic algorithm designed to optimize two or more aspect 

mining functions. 

Aspect: A modularized non-functional concern. 

Aspect mining: The search for aspect candidates in legacy code. 

Aspect refactoring: Re-engineering legacy code so that crosscutting concerns are 

modularized as aspects. 

Clustering: The collecting of like entities into groups with unlike entities being in 

separate groups. 

Code scattering: The dispersal of non-functional code across modules and/or classes. 
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Code tangling: The intermingling of non-functional with functional and/or other non-

functional code. 

Crosscutting concern: A non-functional concern that is spread across modules and/or 

classes in the software system. 

Genetic algorithm: An algorithm modeled after the process of natural selection. A genetic 

algorithm represents solutions to an optimization problem as genomes and 

modifies the population of genes by selecting new individuals based on gene 

recombination and mutation. 

MOCK: A genetic multiobjective clustering algorithm with automatic determination of 

the number of clusters. 

Multiobjective optimization: The process of attempting to simultaneously optimize two or 

more objective functions. 

Non-dominated solution: A feasible solution to a multiobjective optimization problem 

that has no other solution that is "better" at simultaneously optimizing the 

individual objective functions. 

Pareto front: The image of the Pareto optimal set in objective space. 

Pareto optimal set: In multiobjective optimization, feasible solutions represent trade-offs 

with respect to the optimization of the individual objective functions. Those 

solutions that are not dominated by any other feasible solution belong to the 

Pareto optimal set. 
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Summary 

Aspect mining looks for crosscutting concerns in legacy systems so that these 

concerns can be modularized into aspects and the systems refactored to reflect this 

modularity. Clustering is one approach to aspect mining. Many clustering algorithms 

have been used in aspect mining (Cojocar, Czibula, & Czibula, 2009; Kellens & Mens, 

2005; Kellens et al., 2007) but currently, all of them attempt to optimize one objective. 

Kleinberg (2002) proved that it was impossible to have one objective function work on 

all data distributions because each function had a bias towards one particular distribution. 

Multiobjective algorithms, which try to optimize several objective functions 

simultaneously, have been used successfully in the data mining domain (Zhou et al., 

2011). In particular, Handl & Knowles (2004) have shown that their multiobjective 

algorithm, MOCK, can outperform several of the popular singleobjective algorithms like 

the k-means and hierarchical agglomerative algorithms. Since multiobjective algorithms 

have not been used in aspect mining but algorithms like k-means and hierarchical 

agglomerative algorithms have, it was reasonable to assume that multiobjective 

algorithms, like MOCK and AMMOC, would perform at least as good as these 

algorithms. This research showed that MOCK and AMMOC generally performed better 

than k-means and hierarchical agglomerative algorithms in the aspect mining domain. 
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Chapter 2 

Review of the Literature 

 

Kiczales et al. (1997) introduced aspect oriented programming to address the 

problem of crosscutting concerns in software design. Placing all crosscutting concerns 

into aspects is the aim of aspect oriented programming (Elrad, Aksit, Kiczales, 

Lieberherr, & Ossher, 2001; Kiczales et al., 1997). However, aspect oriented 

programming techniques can only be applied when developing new software. Legacy 

software still retains crosscutting traits. Aspectizing such code is desirable because it will 

make the code more understandable, modifiable, and maintainable (Kellens et al., 2007). 

But in order to aspectize the code, the code's crosscutting concerns need to be identified. 

The process of identifying crosscutting concerns in non-aspect-oriented code is referred 

to as aspect mining (Kellens & Mens, 2005; Kellens et al., 2007) and the conversion of 

these concerns into aspects is called aspect refactoring (Van Deursen et al., 2003). 

 According to Kellens et al. (2007), it is difficult to manually identify crosscutting 

concerns and it is also prone to error. Therefore, the trend is towards more automated 

aspect mining systems (Kellens et al., 2007). Several semi-automated systems exist 

which require some human interaction. Kellens et al. (2007) carried out a survey of 

automated aspect mining techniques in which they defined a set of criteria for comparing 

these techniques as well as a taxonomy of the different techniques. The survey only listed 

a few algorithms that fell into those categories and did not specify a standard set of 

algorithms to be used by an aspect mining practitioner. Interestingly, Kellens et al. stated 
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that combinations of techniques may be more successful than any single technique. To 

the best of this researcher's knowledge, no current survey on aspect mining techniques 

has been done. And, although other techniques, like model-based clustering (Rand 

McFadden, 2011), have been applied to aspect mining since the survey by Kellens et al., 

there still does not seem to be any standard set of techniques as far as this researcher has 

been able to determine. It is therefore necessary to design algorithms that can become 

part of a standard set. But to be included in this set they would have to be validated by 

exercising them on a standard set of benchmarks and measuring their validity through 

standard metrics that measure their precision as well as their recall at different levels of 

granularity (Kellens et al., 2007; Mens et al., 2008; Rand McFadden & Mitropoulos, 

2013a; Rand McFadden & Mitropoulos, 2013b).  

Kellens et al. (2007) placed aspect mining techniques into two broad categories: 

those techniques that work with some feature of the source code and those that work with 

data from the execution of the code. The authors arrived at the conclusion that all the 

aspect mining techniques work either by using data mining and data analysis techniques 

like formal concept analysis and cluster analysis or by using techniques like dynamic 

analysis, program slicing, software metrics and heuristics, clone detection, and pattern 

matching, to name a few. Nora, Said, and Fadila (2005) also categorized aspect mining 

techniques but their categories depended on the types of concern symptoms looked for 

and the type of analysis that is performed on the system to be mined. This led the authors 

to have two main categories, one for techniques that use code duplication as a symptom 

and one for those that look for scattering. The researchers assigned techniques like clone 
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detection and formal concept analysis to the first category and placed fan-in analysis and 

analysis of recurring patterns in execution traces into the second. 

Aspect mining 

There is a lot of research that compares the performance of the various aspect 

mining techniques. For example, Roy, Uddin, Roy, and Dean (2007) applied fan-in 

analysis, dynamic analysis, and identifier analysis to the four applications: JHotDraw, 

JDraw, JsokoApplet, and SquareRootDisk. Fan-in analysis and identifier analysis look 

for symptoms of scattering within the code base. Dynamic analysis can look for both 

scattering and tangling but by scanning execution traces. The researchers found that, on 

average, dynamic analysis found a larger percentage of concerns. This was followed by 

identifier analysis and then fan-in analysis. They noted that the techniques did not match 

on all concerns. However, they suggested that some combination of the techniques should 

be able to recover all concerns. Interestingly, they stated that the lack of a solid definition 

of what a crosscutting concern is could threaten the results of their experiments. It is hard 

to compare Roy et al.'s findings against a prior similar experiment by Marin, van 

Deursen, and Moonen (2004) as the latter group did not perform any quantitative 

analysis. Also, the only application that the two sets of researchers had in common was 

JHotDraw.  

Ceccato et al. (2005) had also done a similar experiment prior to Roy et al.'s 

(2007) except that they only applied the techniques to JHotDraw. Ceccato et al.'s 

experiment was a qualitative one so no quantitative comparison could be made with Roy 

et al.'s experiment. However, both sets of researchers concluded that a combination of the 
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techniques would be the most effective. They arrived at this because the dynamic analysis 

technique and the fan-in technique worked in a complementary manner with the identifier 

analysis technique basically covering some of the concerns that the other two missed. 

This hypothesis has particular relevance to the research proposed by this paper since the 

point of multi-objectivity is to optimize objective functions that target different concerns 

which have complementary effects on the clustering process. 

Cluster Analysis 

Cluster analysis is a popular technique used in data mining. This technique 

attempts to take a set of data and organize the data into groups or clusters based on some 

similarity between data members (Jain et al., 1999). Similarity is determined based on an 

objective function. The goal of clustering algorithms is to form clusters from the data by 

optimizing the associated objective functions (Jain et al., 1999). Jain et al. (1999) noted 

that there was no clustering technique that could be universally applied to 

multidimensional data sets with the hope of uncovering all structures within those sets. 

They stated that this had a lot to do with the fact that such techniques come with implicit 

assumptions about the structure of the data and the fact that objective functions usually 

target one aspect of the structure. This implies that those functions may miss other facets 

of the data. Jain et al. attributed the thousands of clustering algorithms described in the 

literature to this difficulty in designing a general-purpose clustering algorithm.  

Clustering algorithms fall into two broad categories: partitional and hierarchical 

(Jain et al., 1999). Hierarchical algorithms recursively detect clusters either in a top-down 

manner (divisive algorithms) or a bottom-up (agglomerative algorithms) (Jain et al., 
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1999). Either way, the algorithms form a hierarchy of partitions usually represented by 

dendrograms (Bandyopadhyay, & Saha, 2012). Some examples of hierarchical algorithms 

are single-link and complete-link. Partitional algorithms determine all the clusters, as a 

partition of the data, at one time and don't impose a hierarchical structure on the data 

(Jain et al., 1999). An example of a partitional algorithm is k-means.  

Clustering algorithms have been applied to aspect mining with varied success. 

Ideally, each cluster should be associated with one crosscutting concern and exactly one 

crosscutting concern should be in a cluster with a cluster for every crosscutting concern. 

Furthermore, all functional concerns should belong to their own single cluster. Current 

aspect mining clustering algorithms have not been able to achieve the ideal. (This is 

another reason why there is continued research into developing algorithms for aspect 

mining.) Moldovan and Serban (2006a) gave a formal definition for the ideal partition 

containing aspects. The authors also defined quality metrics (DISP, DIV, PANE, and 

PREC) for determining how close to the ideal a given partition is.  

Many of the current aspect mining clustering algorithms are derived from data 

mining algorithms. For example, Serban and Moldovan (2006a) modified k-means to 

create kAM by using their own heuristic for choosing the initial centroids (means) which 

define a cluster for that algorithm. They modified k-means so that it is relevant to aspect 

mining. They defined two vector-space models (of dimension L) for encoding the data 

elements (in this case the methods of a program) that will make up the data space. The 

first model, M1, used the vector {FIV, CC} as method attributes where FIV is Marin et 

al.'s (2004) fan-in value and CC is the number of calling classes. The second model, M2, 

used the vector {FIV, B1, B2, ..., BL-1} where each Bi is 1 if the method is called from an 
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application class Ci and 0 otherwise.  They defined similarity based on the Euclidean 

distance metric. They also defined quality metrics InterD and IntraD to measure the 

degree of clustering and used two of their old metrics (PREC and PAM) for measuring 

aspect mining performance. They ran their algorithm on Laffra's implementation of 

Dijkstra’s Shortest Path Algorithm as well as the JHotDraw application. For Laffra, they 

found that, from the clustering perspective, they could not tell which model was better 

but from the aspect mining point of view M2 was better. They stated, categorically, that 

the inability to decide in the clustering case was due to the vector space model. For 

JHotDraw, M1 was better from the aspect mining point of view but M2 was better from 

the clustering viewpoint. Here they postulated that the lack of correlation between the 

two viewpoints could be due to the vector space model. They did not compare the 

performance of kAM with any other algorithm. 

In another experiment, Serban and Moldovan (2006b) compared the KM4 (kAM), 

FCM, and HAC algorithms. (They used the KM algorithm to determine the number of 

clusters before running FCM and HAC.) They used the squared sum error (SSE) function 

to partition the data and used ACC and PAM quality metrics to evaluate the partition 

from the aspect mining perspective. (ACC was newly created by them.) They ran their 

algorithms on Laffra's implementation of Dijkstra’s Shortest Path Algorithm as well as 

the JHotDraw application. For Laffra, M1 proved to be better for all algorithms with FCM 

showing the best results and for JHotDraw, M1 worked better for KM and HAC with M2 

                     
4 It is this researcher's belief that KM and kAM are the same algorithm. This is based on the observation 

that Cojocar and Czibula (2008) referred to the same original paper for a description of both algorithms. 

And although there were discrepancies in the results for the DISP and DIV metrics in those papers, the 

discrepancies could have been the result of k-means' finicky behavior even under different runs using the 

same data. 



19 

 

being better for FCM. The authors' overall conclusion was that the vector space models 

needed to be improved. The authors conducted a similar experiment using kAM and 

HAC on the Theatre, JHotBox, and Laffra applications looking for symptoms of 

scattering (Moldovan & Serban, 2006b). They manually analyzed the resulting clusters 

and found that the first set of clusters obtained had basically the same methods 

implementing crosscutting concerns regardless of the clustering algorithm. 

Cojocar and Czibula (2008) investigated the performance of the KM, kAM, FCM, 

HAC, HAM, and GAM algorithms using the vector models of Serban and Moldovan 

(2006a). The researchers ran their algorithms on the JHotDraw application. They used the 

DISP, DIV, PREC, and ACTE quality measures. In general, they found that:  

 GAM, a genetic algorithm developed by Serban and Moldovan (2006c), 

consistently performed the worst for model M1 and ran for too long under M2 to 

be able to get any results. They concluded that the algorithm wasn't appropriate 

for aspect mining. Interestingly, when Serban and Moldovan (2006c) had tested 

GAM using vector space model M2 and compared it to kAM, kAM outperformed 

it but not by much and only in one quality metric. However, Serban and 

Moldovan claimed that the vector space model had a lot to do with GAM's 

performance. It should be noted that kAM and GAM were only tested on Laffra's 

application (which has much less lines of code and much less methods than 

JHotDraw) and there were only two quality measures used, ACC and PAME. 
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 None of the algorithms were able to identify all of the concerns and for almost all 

of the crosscutting concerns there were elements that did not belong to the 

clusters upon analysis. 

 They were unable to determine which combination of algorithm and vector space 

model was right for aspect mining. 

Zhang, Guo, and Chen (2008) developed a technique called clustering-based fan-

in analysis (CBFA) in which they assigned a fan-in value (FIV) to an entire cluster and 

then used the cluster fan-in to rank the clusters. The ranking was used to recommend the 

clusters most likely to have crosscutting concerns. The cluster FIV was simply the sum of 

the individual method FIVs. The authors used a simple binary vector model and the 

Jaccard coefficient as the similarity measure. They ran their algorithm on JHotDraw and 

a subset of the Linux system. They used two quality metrics called concern coverage and 

true positives. They compared their technique against the fan-in analysis, the dynamic 

analysis, and the identifier analysis techniques. Their results showed that CBFA 

performed better than or as good as the other techniques on both JHotDraw and the Linux 

subsystem. 

Cojocar, Czibula, and Czibula (2009) did a solid comparison of the kAM, HAM, 

PACO, and HACO techniques. Here the authors compared two algorithms, kAM and 

HAM, that used vector space models against two algorithms, HACO and PACO, that 

didn't. The first two algorithms used the M2 model and measured distance between 

objects with the Euclidean metric. PACO was based on the k-medoids algorithm that was 

modified so that it initialized the first set of medoids like kAM. PACO used three 
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distance semi-metrics: one that targeted scattering concerns, one that targeted tangling 

concerns, and one that targeted both. HACO was based on the hierarchical agglomerative 

algorithm but it used a heuristic to determine the initial number of cluster centers.  The 

authors used the DIV and DISP quality measures, as defined by Moldovan and Serban 

(2006b), to evaluate the clustering techniques. Some of the authors' main findings were: 

 The algorithm that performed best was HACO which was able to group 

crosscutting concerns better.  

 All algorithms spread crosscutting concerns over two or more clusters. 

 HACO appeared to be the best algorithm for use in aspect mining. 

 No optimal partitions were obtained. 

The authors concluded that they would see an improvement in HACO's results for the 

DISP measure by improving the distance semi-metric that looked for scattering and 

tangling symptoms. 

Czibula, Cojocar, and Czibula (2011) defined two new quality metrics, CORE and 

CODI, and showed where they would be applicable in aspect mining. However, they did 

not test their metrics so the performance of those metrics is unknown. CORE was 

designed to measure the degree of grouping of crosscutting concerns which the authors 

referred to as partitioning. CODI was designed to determine how important the ordering 

of the clusters was when analyzing them. The authors stated that, in their opinion, as far 

as what to look for in aspect mining, partitioning was the most important and ordering the 

least. 
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 Rand McFadden and Mitropoulos (2012) evaluated six clustering methods three 

of which were model-based and three were heuristic-based. They applied these methods 

to six vector-space models, three previously-defined models (fanIn_numCallers, 

fanIn_hasMethod, sigTokens) and three models that they developed (fanIn_sigTokens, 

fanIn_numCallers_sigTokens, fanIn_numCallers_hasMethod_sigTokens). They used 

PREC, DISP, DIV2, and MTA as their quality metrics. (PREC and DISP were defined by 

Moldovan and Serban (2006a) whereas DIV2 and MTA were defined by Rand McFadden 

(2011).) Their findings indicated that, overall, the model-based methods outperformed 

the heuristic-based ones and that their new vector-space models were a contributing 

factor in many of the cases. 

Tribbey and Mitropoulos (2012) designed three vector space models based on 

FIV. FIV is an aggregate measure and does not retain any information about the data that 

was used to compute it. The researchers kept a binary N x N matrix of method call 

relationships instead of just keeping the FIV aggregate which was calculated by summing 

the rows of the matrix. The model that used that matrix was referred to as MFIV. The 

transpose of the matrix allowed the calculation of fan-out values (FOV) and the related 

model was labeled MFOV. The product of the two matrices with the subsequent division of 

each of its rows by that row's diagonal value (as long as that diagonal value was non-

zero) yielded a third matrix and its model was referred to as MCOM. Since the authors 

were going to test their models on JHotDraw and JHotDraw (after filtering) contained 

2248 methods, they decided to use principal component analysis (PCA) to reduce the 

dimensionality of the models. They analyzed JHotDraw using the k-means algorithm 

which had its original cluster configuration initialized using the k-means++ seeding 
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algorithm (Arthur & Vassilvitskii, 2007). The authors measured aspect mining quality 

using the DIV, DISP, and KPREC metrics with the latter measuring recall. They also 

measured cluster quality configuration with a validity index, RS, obtained from the 

literature. They concluded that, overall, their models gave results that, although not 

stellar, made their approach viable. However, they admitted that there was no one model 

that they could identify as the best. 

Fillus and Vergilio (2012) introduced a clustering based approach, named 

CAAMPI (Clustering Based Approach for Aspect Mining and Pointcut Identification), 

that included an integrated process to discover aspect candidates and to identify pointcuts 

for the purpose of refactoring. The integrated process was achieved by aggregating three 

distance measures. One measure addressed scattering. Another measure took care of 

operation cloning. And a third handled naming conventions. The resulting measure was a 

linear combination of the three with the sum of the weights being equal to 1. Once groups 

were identified they were ranked using four ranking measures that the authors defined. 

Groups with higher ranking scores were those most likely to be crosscutting concerns. 

The authors did not define an aggregate ranking score so it is unclear how the four scores 

were used to rank the groups. The authors used quality measures for clustering (DISP, 

DIV2), for ranking (RANK), and for pointcut identification (COV and USE). The authors 

performed experiments using k-medoids, hierarchical, and CHAMELEON clustering 

algorithms using distance measures reported in the literature as well as their own 

aggregate distance measure. They tested their method on JHotDraw, Apache Tomcat, and 

HSQLDB. The authors' results showed that the hierarchical method using their distance 

measure performed the best followed by CHAMELEON which also used their measure. 
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The idea behind the research is a good one but some of the formulas don't seem to be 

correct so it is difficult to agree with the results. 

Genetic Clustering Algorithms 

Genetic algorithms belong to a class of algorithms called evolutionary algorithms 

(Freitas, 2008; Jain et al., 1999; Srinivas & Patnaik, 1994). Evolutionary algorithms are 

modeled after life's evolutionary process where populations are made up of individuals 

comprised of genetic material. Future populations are made by selecting the "fittest" 

individuals from the current populations, combining their genetic material in some way to 

produce new individuals with the chance that some of that genetic material may be 

modified by some mutation agent. The genetic material is represented by chromosomes 

which contain genes where each gene has a value that affects some feature of the 

particular individual to whom that chromosome belongs. The genetic materials 

manipulated by an evolutionary algorithm represent solutions to some optimization 

problem (Freitas, 2008; Jain et al., 1999; Srinivas & Patnaik, 1994). It should be noted 

that evolutionary algorithms must start with solutions, not necessarily good ones, to a 

problem under investigation. The role of the evolutionary algorithm is to find the globally 

optimal solution starting with an initial population of solutions (Jain et al., 1999). 

Genetic algorithms (GAs) have been around since the 1970's (Srinivas & Patnaik, 

1994). They have been used in data mining (Freitas, 2008; Naldi, de Carvalho & 

Campell, 2008), clustering (Hruschka, Campello, Freitas & De Carvalho, 2009), and in 

aspect mining (Serban & Moldovan, 2006c). They differ from other evolutionary 

algorithms mainly in the use of a crossover operator (Srinivas & Patnaik, 1994). Such an 
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operator combines two chromosomes by exchanging genetic material between them. The 

evolutionary operators (selection, crossover, and mutation) are the key to having the GAs 

cover a global space and converge on a global optimum. Choosing the right mixture of 

chromosome encoding, operators, and objective function is crucial to the success of a GA 

(Handl & Knowles, 2007a). Since selection depends on the "fitness" of an individual, the 

fitness function must also be carefully selected (Hruschka et al., 2009).  

As far as clustering goes, k-means tends to be the benchmark against which GAs 

are measured. There is good reason for this; k-means is simple to implement, it runs 

roughly in O(n) time, and it is popular (Jain et al., 1999). GAs tend to be more complex 

and are computationally expensive because of either their fitness functions and/or their 

crossover strategies (Krishna & Narasimha Murty, 1999). GAs, however, can search a 

global solution space looking for a global optimum. K-means tends to find local optima 

and is affected by its initial cluster configuration including the number of clusters (k) 

(Jain, 2010).  

Maulik and Bandyopadhyay (2000) developed a GA that outperformed k-means 

when tested on four artificial data sets and three real-life data sets. The data set 

dimensions ranged from two to ten and the number of clusters from two to nine. They 

measured performance strictly on the value of their clustering metric which had to be 

minimized. No data on time or space complexity was given. 

Many researchers try to take advantage of k-means' efficiency by hybridizing k-

means with a GA. Krishna and Narasimha Murty (1999) developed a hybrid they called 

GKA (genetic k-means algorithm) that used a one-step k-means algorithm to replace 
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crossover in their GA. They also defined a distance-based mutation operator instead of 

just a random one. The mutation operator basically considered whether the change made 

sense cluster-wise before making the change. Although their results indicated that GKA 

was better than k-means, the experiments were done on small data sets with low-

dimensional data and a small number of clusters. This is important since the researchers 

noted that the search for a global optimum would become harder, hence take more time, 

for larger numbers of clusters as the search space would increase combinatorially. 

Genetic Aspect Mining Clustering Algorithms 

To the best of this researcher's knowledge the only genetic algorithm adapted for 

aspect mining is one by Serban and Moldovan (2006c). Their algorithm used the M2 

vector space model (defined earlier) to represent each data element. The actual 

chromosomes were an n-dimensional integer vector with n being the number of items in 

the data set. Each entry in the vector represented which cluster the associated data item 

belonged to. The authors used their own heuristic for determining the number of clusters. 

Their objective function was the sum of squared Euclidean distances from each data item 

to its respective cluster center. The fitness function was the difference between the 

maximum sum of squared distances over the entire data set and their objective function. 

So maximizing the fitness meant minimizing the objective function. The authors 

compared GAM with their own kAM (Serban & Moldovan, 2006a) because k-means 

minimized a similar objective function. They used their own aspect mining quality 

measures, ACC and PAME, to determine how good their algorithm was at identifying 

candidates for aspectizing. The results of their experiment indicated that GAM performed 

slightly worse than kAM. They attributed the poor performance mainly to the vector 
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space model that was used to define the attributes of their data items. The researchers 

gave several suggestions that they claimed would improve GAM's performance, two of 

which were the use of a different vector space model and the use of multiple objective 

functions.  

As mentioned earlier in this paper, later research by Cojocar and Czibula (2008) 

compared GAM with several other non-genetic algorithms and concluded that GAM was 

not appropriate for aspect mining. However, that version of GAM was the original 

version and Cojocar and Czibula used the same vector space model. It is therefore 

unclear how a modified version of GAM would perform. 

Multiobjective Clustering Algorithms 

Objective functions used in clustering have biases as to what the underlying 

properties of the data set are and tend to look for clusters that match those biases. For 

example, k-means will find compact, (hyper-) spherical clusters because of its objective 

function but it will miss other features of the data space, for example, a spiral set of data 

elements (Law et al., 2004). Therefore, unless the data space has a homogeneous 

distribution, a clustering algorithm with a single objective function won't be able to find 

all the correct clusters (Law et al., 2004). Kleinberg (2002) actually proved that it was 

impossible for any clustering algorithm that used one objective to be effective at 

clustering all data distributions. Multiobjective algorithms address this issue by 

attempting to find partitions by simultaneously using the objective functions that target 

the different parts of the data space (Law et al., 2004). 
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Multiobjective Evolutionary Clustering Algorithms. 

In a 2011 paper, Zhou et al. observed that even though evolutionary 

multiobjective optimization was still in its early stages, there were very many 

publications. The authors referred to data that showed that by January 2011, there were 

more than 5600 publications on evolutionary multiobjective optimization. In a more 

recent survey on multiobjective evolutionary clustering, Mukhopadhyay, Maulik, and 

Bandyopadhyay (2015) mentioned that there was a great deal of literature on 

multiobjective evolutionary clustering algorithms. Their survey gives a modern, 

comprehensive introduction to research in multiobjective evolutionary clustering. 

Many multiobjective evolutionary algorithms (MOEAs) take a different approach 

at attempting to find an optimal solution. The theory behind this approach is based on the 

concept of Pareto optimality. Informally, the set of Pareto optimal solutions is the set of 

feasible solutions that are not dominated by any other feasible solution (Coello, 1999; 

Maulik, Bandyopadhyay, & Mukhopadhyay, 2011; Mukhopadhyay, Maulik, & 

Bandyopadhyay, 2015). Basically, a solution is Pareto optimal if there is no other feasible 

solution that is as good at optimizing all objective functions and is better at optimizing at 

least one of the functions. Note that there may be feasible solutions that do not dominate 

each other. The collection of these non-dominated solutions forms the Pareto optimal set. 

The image of the Pareto optimal set in objective space is known as the Pareto front. For 

example, in Figure 1, x1 through x6 represent the image in objective space of the set of 

Pareto optimal solutions for the images of feasible solutions shown in the shaded region. 

The "best" solution, which is a subjective one based on the application, will be retrieved 
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from the Pareto optimal set. (See Appendix A for a more formal definition of Pareto 

optimality.) 

Figure 1 - Image of a Pareto Front (Maulik, Bandyopadhyay, & Mukhopadhyay, 2011) 

 

 It is important to note that, given any set of feasible solutions, there will always 

be a set of non-dominated solutions since it will either be the case that, given any two 

solutions in the space, one dominates the other or neither dominates the other. The 

resulting set of non-dominated solutions may or may not belong to the Pareto optimal set. 

A good MOEA will strive to find a set of non-dominated solutions which are as diverse 

as possible and which are as close as possible to the Pareto optimal front (Deb, 1999, 

2001). Deb (1999, 2001) pointed out that these are not easy goals. He listed multi-

modality, deception, isolated optima, and collateral noise as some key features that would 

prevent a MOEA from generating solutions that are very close to the Pareto optimal 

front. He also stated that convexity or non-convexity in the Pareto optimal front, 

discontinuity or discreteness in the Pareto optimal front, and non-uniform distribution of 

solutions in the search space and in the Pareto optimal front would prevent a MOEA from 
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maintaining a diverse set of Pareto optimal solutions (Deb, 1999, 2001). Deb's text, 

Multi-Objective Optimization Using Evolutionary Algorithms (2001), provides a 

thorough coverage of MOEAs. 

MOCK – MultiObjective Clustering with Automatic K-determination 

Handl and Knowles (2004, 2007a) developed a MOEA, called MOCK, that is 

designed to work on numerical data5. Handl and Knowles showed that this algorithm 

could find clusters that are closer to the optimal solutions than those obtained from 

single-objective clustering techniques. Furthermore, when using MOCK, there is no need 

to specify the number of clusters a priori. The authors showed that MOCK performed 

consistently across a wide range of data although when the data was skewed towards one 

of the objectives MOCK performed a little worse than the corresponding single-objective 

algorithm. The authors did state that the use of MOCK depended on knowledge of the 

structure of the data and that if the data has well-defined properties that are aligned with a 

particular objective, then MOCK should not be used. 

The authors used two objective functions in their algorithm although MOCK is 

capable of handling more than two. One objective function measured overall deviation 

and the other measured connectedness. To represent a chromosome the authors used a 

locus-based adjacency vector which is a graph-based representation such that connected 

segments of the graph represent clusters. The authors stated that they could not use an 

encoding based on cluster centers because such an encoding would not allow the 

evolution of solutions in conflict with the underlying spherical cluster model imposed on 

                     
5 Later on they developed a version of MOCK referred to as MOCK-around-medoids (Handl & Knowles, 

2005b) designed to cluster similarity data. 
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the data by their overall deviation objective. This would give more weight to that 

objective. The authors' experimental data showed that, overall, the performance of 

MOCK was better than k-means, average linkage, single linkage, and Strehl’s ensemble 

method. The researchers demonstrated that it had to be the simultaneous application of 

the two objective functions that resulted in MOCK's superior performance (Handl & 

Knowles, 2005c). More recently, Handl and Knowles (2012) compared the use of 

MOCK's two objective functions against three other pairs in order to determine if the 

choice of objective functions mattered. They showed that the quality of the clustering 

solutions does depend on the choice of the objective functions and the results of their 

experiments seemed to indicate that the ones used by MOCK produced higher quality 

clusters in general. 

One of the problems with the original version of MOCK was scalability. The 

authors stated that this was addressed in a second version of MOCK (Handl & Knowles, 

2005a, 2007a). However, the largest data set tested had approximately 5000 items, the 

highest dimensionality was 100, and the most amount of clusters was 40. Furthermore, 

these did not occur in the same test suite. 

Phases of MOCK. 

MOCK's algorithm (Handl & Knowles, 2004, 2007a) consists of two phases: a 

clustering phase and a model selection phase. The clustering phase is responsible for 

generating a set of mutually non-dominated clustering solutions. The algorithm that 

implements this phase is heavily based on one of their earlier algorithms, a MOEA called 

PESA-II (Corne, Jerram, Knowles, & Oates, 2001). After the set of non-dominated 
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solutions is generated, the model selection algorithm examines those solutions and 

provides a subset of solutions that it considers to be more promising from a clustering 

point of view. This phase of MOCK can even produce what it considers to be a "best" 

solution. 

Clustering phase. PESA-II is a MOEA that uses elitism to help converge 

solutions towards the Pareto optimal front and niching to help spread the solutions 

uniformly across the front. The algorithm keeps track of two populations, an internal 

population (IP) and an external population (EP). The IP is of fixed size and the EP is of 

variable but limited size. The IP is used to generate new solutions and it is the population 

that undergoes the evolutionary operations of selection, recombination, and mutation. 

The EP holds non-dominated solutions in niches which are implemented as a hypergrid 

of equally sized cells in objective space.  

First, the EP is initialized with non-dominated solutions. Then, for each 

generation, the following occurs: 

1. Solutions from the EP are selected at random from randomly selected populated 

niches and placed in the IP. The number of solutions placed in the IP is limited by 

the fixed size of the IP. 

2. Solutions in the IP now undergo recombination and mutation based on 

probabilities of such operations occurring. 

3. Once the population in the IP has evolved an attempt is made to place each of its 

non-dominated elements into the EP. A solution from the IP can only get into the 

EP if it is non-dominated by the solutions in the EP. Any solutions in the EP that 
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are dominated by the new solution are removed from the EP. If no solutions are 

dominated by the new solution and the size of the EP is not at its maximum, then 

the new solution is placed in its niche. If the EP is full, then the new solution can 

only get into its niche if that niche has less members than some other niche. If that 

is the case, the new solution is placed in its niche and another solution is removed, 

at random, from the most populated niche. 

After the algorithm iterates through all generations, the solutions stored in the EP are 

returned as the final solutions. 

Handl and Knowles (2004, 2007a) pointed out that the implementation of the 

PESA-II algorithm in MOCK had to be adapted for the purpose of clustering by 

specifying two or more appropriate objective functions, a suitable genetic encoding that 

defined a cluster partition, one or more genetic operators such as mutation and crossover, 

and a method for initializing the EP. They stressed the importance of making the right 

choices for each of these requirements as the performance and scalability of the 

algorithms heavily depended on those choices. They also stated that, in order to design an 

effective evolutionary algorithm for clustering, the genetic encoding, the genetic 

operators, and the objective functions must work together harmoniously in order to 

reduce the search space while effectively guiding the search. 

As stated earlier, the authors chose a graph-based encoding for representing a 

chromosome (cluster partition). In such an encoding, there are as many genes as there are 

data items and the value of each gene ranges from 1 up to the number of data items. A 

value of j for the ith gene indicates that data item i is connected to data item j implying 
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that both data items are in the same cluster. This makes cluster reassignment easy since 

all that needs to be done is to change the value of the gene in question. Identifying 

clusters now becomes a matter of identifying the connected components in the graph. 

MOCK's two objective functions, overall deviation and connectivity, were chosen 

in order to measure cluster compactness and connectedness, respectfully. The first 

objective function, overall deviation, is simply the overall summed distances between 

data items and their cluster centers. This measure is similar to intracluster variance used 

by many clustering algorithms. The actual definition given by Handl and Knowles 

(2007a) is 

𝐷𝑒𝑣(𝐶) =  ∑ ∑ 𝛿(𝑖, 𝜇𝑘)

𝑖∈𝐶𝑘

 

𝐶𝑘∈𝐶

 

where C is the set of all clusters, µk is the centroid of cluster Ck, and δ is the chosen 

distance function. For the latter, the Euclidean distance function is used (Handl & 

Knowles, 2007a). The second, connectivity, measures the degree to which data points are 

placed in the same clusters as their neighbors. The computation therefore requires a user-

defined parameter indicating how many neighbors contribute to connectivity. The 

formula for connectivity given by the authors is 

𝐶𝑜𝑛𝑛(𝐶) =  ∑ (∑ 𝑥𝑖,𝑛𝑛𝑖𝑗

𝐿

𝑗=1

)

𝑁

𝑖=1

 

where  𝑥𝑟,𝑠 =  {
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1

𝑗
   𝑖𝑓 ∄𝐶𝑘 ∶𝑟 ∈ 𝐶𝑘  ⋀ 𝑠 ∈ 𝐶𝑘 

 , nnij is the jth nearest neighbor of data item i, 

N is the size of the data set, and L is the parameter that determines how many neighbors 
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play a part in the calculation of connectivity. However, it is the belief of this researcher 

that the previous 'where' clause was incorrectly written and should have been: 

where 𝑥𝑖,𝑛𝑛𝑖𝑗
=  {

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1

𝑗
   𝑖𝑓 ∄𝐶𝑘 ∶𝑖 ∈ 𝐶𝑘  ⋀ 𝑛𝑛𝑖𝑗 ∈ 𝐶𝑘 

 

It should be noted that the parameter L is also used to determine what a solution 

can mutate to. Since a solution in MOCK is represented as a set of connected components 

of a graph, mutation means breaking a connection and making another by changing the 

value of a particular gene. If the new value for the gene could be any of the values from 1 

to the number of data items, N, this would mean that the clustering algorithm was always 

looking at the entire search space which is of size NN. Handl and Knowles therefore used 

what they call a nearest-neighbor mutation that allows a chromosome to mutate only if 

the new value represented one of its L nearest neighbors. This reduces the size of the 

space that mutation sees to just LN with L being much smaller than N. Furthermore, this 

neighborhood-biased mutation strategy extends to the probability that a gene will mutate 

by adding a bias that leans more towards breaking a link to a neighbor that is further 

away and creating a link to a closer neighbor.  

MOCK's initial population is created from the data in two ways. Half of the initial 

population is created from a minimum spanning tree (MST) derived from the entire data 

set. This results in a single cluster. The algorithm then removes what are considered to be 

"interesting" links. These "interesting" links are those that lead to the creation of a true 

cluster as opposed to outliers. L is used to determine "interesting" links. The other half of 

the initial population is generated by running the k-means algorithm for different 

numbers of clusters. Handl and Knowles (2007a) justified this initialization strategy 
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based on the fact that the MST part targets solutions that perform well under connectivity 

whereas the k-means part targets solutions that perform well under overall deviation. 

(The version of PESA-II in the 2004 paper does not use kmeans to generate any part of 

the initial population.) 

Model selection phase. In this phase MOCK selects solutions that it considers as 

promising from its resulting Pareto optimal approximation set and even proffers what it 

considers to be the "best" of those solutions. MOCK does this by adapting a statistical 

method called the Gap statistic (Tibshirani, Walther, & Hastie, 2001). The Gap statistic 

determines the number of clusters in a data set based on a plot of the performance of the 

clustering method, as measured by an internal evaluation metric, as a function of the 

number of clusters. This statistic expects a "knee" (a bump) to occur in the plot at the 

place where the most suitable number of clusters occurs. However, Handl and Knowles 

(2007a) pointed out that the Gap statistic is basically a single objective approach to model 

selection since it only considers a single clustering objective. Therefore, the authors 

adapted the statistic to take into account multiple objectives. Knees are now points in 

objective space that correspond to solutions where a small improvement in the value of 

one objective would result in a large decline in the value of another objective (Branke, 

Deb, Dierolf, & Osswald, 2004). To help identify these knees Handl and Knowles 

defined what they termed an attainment score for each point in the solution front.6 This 

score is the minimum Euclidean distance between a given point in the solution front and 

sets of Pareto optimal control fronts obtained from running MOCK on randomly 

generated data from the same data space. When these attainment scores are plotted as a 

                     
6 It should be noted that Branke et al. (2004) used different methods for determining the knees. 
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function of the number of clusters those solutions with scores that are local maxima are 

considered as promising solutions while the global maximum is taken as the "best" 

solution. Figure 2 shows the results obtained by running MOCK once. The solutions are 

represented by the red dots with the recommended solutions (knees) in yellow. The green 

lines are the control fronts. In the figure the number of clusters increases from left to right 

with the recommendations having clusters 4, 24, 26, 28, and 33 respectively. The "best" 

solution has 4 clusters with an attainment score of 0.0906423, 0 connectivity, and 

0.696032 overall deviation. 

Figure 2 - Image of a solution front from one run of MOCK using five control fronts 

 

MIE-MOCK 

Tsai, Chen, and Chiang (2012) transformed MOCK into MIE-MOCK (Multiple 

Information Exchange - MultiObjective Clustering with automatic K determination). The 



38 

 

researchers made two changes to MOCK. The first was that they used pools of crossover 

and mutation operators to choose from as opposed to MOCK's use of only one crossover 

and one mutation operator. They claimed that the use of multiple recombination operators 

increased the search diversity. The second change involved the use of a different method 

of obtaining the one "best" solution from the Pareto optimal set. Instead of the GAP 

statistic they used the PBM index as well as the Davies-Bouldin (DB) index. However, 

they didn't give any reason for using these indices.  

Tsai et al. compared the performance of MOCK with that of MIE-MOCK using 

five measures: overall deviation, connectivity, accuracy, PBM, and DB. Of the five, 

accuracy was the only measure that the algorithm did not attempt to optimize and PBM 

and DB were not used by MOCK for model selection. The researchers never used 

MOCK's modified GAP statistic as a measure of performance so it is questionable 

whether the choice of the metric had anything to do with the better performance of MIE-

MOCK. Regardless, the use of a choice of recombination operators seems to be a 

reasonable modification to make since it shouldn't make the clustering quality worse than 

using single operators. 
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Chapter 3 

Methodology 

 

Research Methodology 

The proposed research adopted the methodology of several researchers in aspect 

mining (Moldovan & Serban, 2006a; Rand McFadden & Mitropoulos, 2012; Zhang et al., 

2008) by defining a software system to be made up of a set of methods, assigning 

attributes to each method, applying a clustering algorithm on the set of attribute vectors 

(in this case, MOCK and AMMOC), analyzing the data using quality metrics, and 

presenting tabular reports based on the findings. The software under investigation was 

JHotDraw 5.4b1 (Gamma & Eggenschwiler, n.d.). This is the de facto standard in aspect 

mining because its crosscutting concerns are well documented. Although other software, 

such as Laffra's version of Dijkstra's algorithm and Tomcat, have been analyzed, 

JHotDraw is the one most analyzed by researchers (Rand McFadden & Mitropoulos, 

2013b). This means that results are readily available from a wide range of sources.  

Vector Space Model Data Generation 

This research used the data set generated by the FINT tool (Marin, Moonen, & 

van Deursen, 2006) run on JHotDraw 5.4b1. The data created by FINT consisted of 

method signatures, their fan-in values (FIVs), and a list of their calling methods for 

JHotDraw.  FINT required a filtering threshold to be set and this researcher chose to use a 

threshold of 0 since it was the threshold value used by other researchers.  
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A Java program was written and given the aforementioned data set as input. The 

program transformed the data into vector representations as defined by the vector space 

models described in Rand McFadden and Mitropoulos (2012) and defined in the next 

section. 

Vector Space Models 

Moldovan and Serban (2006a) defined a formal model for clustering-based aspect 

mining. In this model, a software system is a set S = {s1, s2, ..., sn} of n elements where 

each element can be a statement, a method, a class, etc. In this research each one of the n 

elements was a method and each method was described as an x-dimensional vector. The 

following vector space models were used to describe methods in the system: 

Model 1. fanIn_NumCallers (Moldovan & Serban, 2006b): Each method is 

described by a vector (FIV, CC) where FIV is the fan-in value or number of 

methods that call this method and CC is the number of calling classes. Here x 

= 2. 

Model 2. fanIn_hasMethod (Moldovan & Serban, 2006b): Each method is 

described by a vector (FIV, B1, B2, ..., Bm) where FIV is the fan-in value and 

each Bi (i = 1, ..., m) is a 1 if the method is called by at least one method 

from an application class, Ci (i = 1, ..., m), in the system and 0 otherwise. 

Here x = m+1. 

Model 3. sigTokens (Zhang et al., 2008): Each method is described by a vector 

(O1, O2, ..., Op) where each Oi is a binary value that depends on whether the 

method has attribute Ai (i = 1, ..., p) or not. Each attribute is a token obtained 
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from splitting the signatures of all methods in the system, consolidating the 

tokens, and eliminating redundancies and trivial tokens like "in". Here x = p. 

Model 4. fanIn_sigTokens (Rand McFadden, 2011): Each method is described 

by a vector (FIV, O1, O2, ..., Op) where FIV is the same as that used in 

models 1 and 2 and the Oi's are from model 3. Here x = p+1. 

Model 5. fanIn_numCallers_sigTokens (Rand McFadden, 2011): A 

combination of models 1 and 3. 

Model 6. fanIn_numCallers_hasMethod_sigTokens (Rand McFadden, 2011): 

A combination of models 1, 2, and 3. 

Experimental Procedure 

The R implementations of the k-means (kmeans) and agglomerative hierarchical 

clustering (agnes) algorithms were executed on the data sets generated from the vector 

space models. These algorithms required that k be specified. A Java program was written 

to generate a set of centroids based on a heuristic defined in Serban and Moldovan 

(2006a). The number of centroids provided the values of k that were used for kmeans and 

agnes. 

MOCK (Version 1.1) was executed in Ubuntu 12.04 LTS and also given the data 

sets generated from the vector space models. MOCK has a Java user interface that 

allowed this researcher to select the data file to be clustered and set some of the 

parameters required by that part of the code that actually does the clustering. The Java 

interface allowed the selection of the distance function to be used in overall deviation, the 
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maximum number of clusters, whether there was normalization or not, the value of L (the 

number of nearest neighbors under consideration), and the number of control surfaces. 

All other parameters required by the clustering stage were either the default values or 

required that the code be modified slightly. (See Appendix B for a list of parameters and 

their default values.) Several runs were made with different parameter settings before a 

suitable set was found. The actual set of values are shown in a later section of this paper. 

One benefit of using the Java interface was that it displayed the solution and 

control fronts graphically. It also gave a graphical representation of the clustering for a 

particular solution. However, the latter was not as helpful, especially for large data sets, 

since the display was crowded and hard to read. 

 An adaptation of MOCK called AMMOC (Aspect Mining using MultiObjective 

Clustering) was written in Java and designed to optimize the aspect mining functions 

DISP and DIV. (AMMOC implements a version of MOCK's PESA-II engine that does 

the clustering.) The reasoning behind the decision to optimize DISP and DIV instead of 

overall deviation and connectivity was based on the observation that DISP and DIV 

behaved similarly to MOCK's objective functions from a clustering point of view and, 

instead of retroactively determining whether MOCK's solutions resulted in optimal 

clusters as far as those aspect mining functions were concerned, it made more sense to 

create a program that attempted to optimize them directly. AMMOC consists of 13 

classes and roughly 2000 lines of code in all.  

 The current version of the AMMOC was not designed to suggest a "best" solution 

since, after initial testing, it was determined that the number of solutions generated by the 
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program on each run was small enough to allow analysis of all of them and that 

implementing that facet of MOCK would only slow down the program needlessly. (The 

determination of the "best" cluster size is one of the most computationally expensive 

parts of MOCK.) 

Aspect Mining Quality Metrics 

The clustering results produced by all of the methods were analyzed using Java 

programs, written by this researcher, designed to calculate the aspect mining metrics 

PREC (precision), DISP (dispersion), and DIV (diversity) (Moldovan & Serban, 2006a) 

as well as DIV2 (a modified diversity), and MTA (methods to analyze) (Rand McFadden 

& Mitropoulos, 2012). The programs also produced results of the distribution of 

crosscutting concerns across clusters. The aspect mining metrics used determine the 

quality of the cluster partitions from an aspect mining viewpoint. To be able to define 

these metrics it is necessary to have a formal definition of what it means to cluster a set of 

crosscutting concerns. The definition used will be the one proffered by Moldovan and 

Serban (2006a). 

Let S = {s1, s2, ..., sn} be a set of n elements representing a software system where 

each element is a method. Let a crosscutting concern C be a subset of S. Let CCC = {C1, 

C2, ..., Cq}, be the set of all crosscutting concerns where q is the number of elements in 

the set. And let NCCC = 𝑆 −  ⋃ 𝐶𝑖
𝑞
𝑖=1  be the set of all elements that do not represent a 

crosscutting concern. The goal of a hard clustering algorithm is to partition S into a set, K 

= {K1, K2, ..., Kp}, of p clusters (p ≥ q) where 𝑆 =  ⋃ 𝐾𝑖
𝑝
𝑖=1  such that 𝐾𝑖 ∩ 𝐾𝑗 =  ∅, 1 ≤

𝑖, 𝑗 ≤ 𝑝, 𝑖 ≠ 𝑗, and, ideally, there is a 1-to-1 map, m, from the set CCC to the set K. The 
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map m relates an element of CCC with one of K based on set equality. That is, m(Ci) = Kj 

if and only if Ci = Kj, i ϵ {1, ..., q}, j ϵ {1, ..., p}. Note that in the ideal case, if NCCC is 

not empty, p should be equal to q+1 and NCCC should be equal to K - {C1, C2, ..., Cq}. In 

other words, in the ideal case, each crosscutting concern is equal to one and only one 

cluster in the partition K and all non-crosscutting concerns belong to the one remaining 

cluster in the partition. Based on this formal definition the following quality metrics are 

defined: 

PREC (PRECision). This measures the percentage of found crosscutting 

concerns (Moldovan & Serban, 2006a). 

Let T be an aspect mining clustering technique. Then the precision with which T 

can find crosscutting concerns CCC in a partition K is defined as: 

𝑃𝑅𝐸𝐶(𝐶𝐶𝐶, 𝐾, 𝑇)  =  
1

|𝐶𝐶𝐶|
∑ 𝑝𝑟𝑒𝑐(𝐶𝑖, 𝐾, 𝑇)

|𝐶𝐶𝐶|

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑒𝑐(𝐶𝑖, 𝐾, 𝑇) = { 
1 𝑖𝑓 𝐶𝑖 𝑤𝑎𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑇
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

0 ≤ 𝑃𝑅𝐸𝐶 ≤ 1 𝑎𝑛𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑.  

Note that a concern is considered found if at least one method that implements the 

concern is found. 

DISP (DISPersion). This measures the degree to which crosscutting concerns are 

spread across clusters (Moldovan & Serban, 2006a). Ideally, each crosscutting concern 

should be in its own cluster and nothing else should be in that cluster. 



45 

 

The dispersion of the set CCC in the partition K is defined as: 

𝐷𝐼𝑆𝑃(𝐶𝐶𝐶, 𝐾) =  
1

|𝐶𝐶𝐶|
∑ 𝑑𝑖𝑠𝑝(𝐶𝑖, 𝐾)

|𝐶𝐶𝐶|

𝑖=1

 

where disp(C, K) is the dispersion of a crosscutting concern C across the partition 

K and is defined as: 

𝑑𝑖𝑠𝑝(𝐶, 𝐾) =  
1

|𝐷𝐶|
 𝑤ℎ𝑒𝑟𝑒 𝐷𝐶 = {𝑘 | 𝑘 ∈ 𝐾 𝑎𝑛𝑑 𝑘 ∩ 𝐶 ≠  ∅} 

0 < 𝐷𝐼𝑆𝑃 ≤ 1 𝑎𝑛𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑.  

DIV (DIVersity). This measures the degree to which each cluster has crosscutting 

concerns that are different from other concerns (Moldovan & Serban, 2006a). Ideally, 

each cluster should be equal to one crosscutting concern. 

The diversity of a partition K with respect to a set CCC is defined as: 

𝐷𝐼𝑉(𝐶𝐶𝐶, 𝐾) =  
1

|𝐾|
∑ 𝑑𝑖𝑣(𝐶𝐶𝐶, 𝐾𝑖)

|𝐾|

𝑖=1

 

where div(CCC, k) is the diversity of a cluster k and is defined as: 

𝑑𝑖𝑣(𝐶𝐶𝐶, 𝑘) =  
1

|𝑉𝑘| +  𝜏(𝑘)
 

where 𝑉𝑘 =  {𝐶 | 𝐶 ∈ 𝐶𝐶𝐶 𝑎𝑛𝑑 𝐶 ∩  𝑘 ≠  ∅} and 𝜏(𝑘) = {
1 𝑖𝑓 𝑘 ∩ 𝑁𝐶𝐶𝐶 ≠  ∅
0 𝑖𝑓 𝑘 ∩ 𝑁𝐶𝐶𝐶 =  ∅

 

0 < 𝐷𝐼𝑉 ≤ 1 𝑎𝑛𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑. 
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DIV2 (DIVersity). Similar to DIV but only considers one of the clusters with no 

crosscutting concerns (Rand McFadden & Mitropoulos, 2012; Rand McFadden & 

Mitropoulos, 2013a). DIV2 also needs to be maximized. 

MTA (Methods To Analyze). This measures the number of methods that need to 

be analyzed in a given ordering of the clusters in the partition before all methods that 

implement all crosscutting concerns can be found. The lower this value is the better the 

clustering (Rand McFadden & Mitropoulos, 2012; Rand McFadden & Mitropoulos, 

2013a). 

Based on the theory of Cojocar and Czibula (2008) and Moldovan and Serban 

(2006c, as cited by Rand McFadden, 2011, p. 40) the following hold with respect to a 

clustering technique T: 

A clustering partition K is considered optimal if DIV(CCC, K) = 1 and 

DISP(CCC, K) = 1 (Cojocar & Czibula, 2008). 

Given two clsutering partitions, K1 and K2, K1 is considered "better" than K2 

relative to aspect mining if DIV(CCC, K1) > DIV(CCC, K2) and DISP(CCC, K1) 

> DISP(CCC, K2) (Moldovan & Serban, 2006c). 

If the previous inequalities do not hold, then K1 is considered "better" than K2 

relative to aspect mining if DISP(CCC, K1) + DIV(CCC, K1) > DISP(CCC, K2) + 

DIV(CCC, K2) (Moldovan & Serban, 2006c). 
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Analysis and Presentation of Results 

The results of the experiments are presented and interpreted in the following 

chapter. The analysis includes a comparison of the results with those from previous 

results obtained from the literature. Some of the data are presented in tables. 

Resources 

The FINT (Software Engineering Research Group, 2008) and JHotDraw 5.4b1 

(Gamma & Eggenschwiler, n.d.) software were obtained from the Web. The k-means and 

hierarchical agglomerative clustering algorithms (kmeans and agnes packages) from R 

were used to generate the respective data for comparison. The current version of MOCK 

(1.1) was downloaded from the Web (Handl & Knowles, 2007b). AMMOC and programs 

to generate the vector models and analyze the clustering results were implemented in 

Java by this researcher. Microsoft Excel 2013 was used to clean up some of the data and 

facilitate interpretation of the aspect mining results. 

The research was done on a laptop with an AMD A8 Quad Core processor 

running at 1.70 GHz. The system was a 64-bit system with 8 GB of RAM and a 1 TB 

hard drive. The system was set up so that it was able to dual boot into Windows 10 Home 

Edition or Ubuntu 14.04 LTS.  
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Chapter 4 

Results 

 

 The purpose of this research was to show that multiobjective genetic clustering 

algorithms were at least as good at clustering aspect mining data as the singleobjective k-

means and hierarchical agglomerative algorithms and it is the opinion of this researcher 

that the goal was achieved. The multiobjective algorithms used were MOCK, created by 

Handl and Knowles (2004, 2007b) and AMMOC, created specifically for this research. 

MOCK optimized two generic functions, connectivity and connectedness, whereas 

AMMOC targeted the two aspect mining metrics, DISP and DIV. The data that these 

algorithms clustered were obtained from running a FINT analysis on JHotdraw 5.4b1. 

JHotDraw 5.4b1 was chosen because it is the de facto benchmark in aspect mining and its 

crosscutting concerns are well documented. 

 Although Moldovan and Serban (2006b) analyzed JHotDraw 5.2, the FINT 

analysis for this research was done on JHotDraw 5.4b1 because the available list of 

concerns and fan-in values came from the Web site of the Software Engineering Research 

Group (2008) and Moldovan and Serban did not list the concerns used in their 

experiment. 

Data Generation 

 The FINT threshold for filtering was set to 0 with the following being filtered 

based on information from research results found on the Software Engineering Research 
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Group Web site (http://swerl.tudelft.nl/bin/view/AMR/FanInAnalysisResults) as well as 

results from Rand McFadden (2011): 

Setters and getters as identified by Java naming conventions. (At first setters and 

getters by function were also filtered but that resulted in at least one concern not 

being found.) 

All libraries. 

CH.ifa.draw.test.* (also filtered from the set of callers)  

CH.ifa.draw.util.collections.* (this includes CH.ifa.draw.util.collections.jdk11.* 

and CH.ifa.draw.util.collections.jdk12.*)  

CH.ifa.draw.util.CollectionsFactory  

CH.ifa.draw.util.ReverseListEnumerator  

CH.ifa.draw.standard.ReverseFigureEnumerator  

CH.ifa.draw.standard.HandleAndEnumerator  

CH.ifa.draw.standard.SingleFigureEnumerator  

CH.ifa.draw.standard.FigureAndEnumerator  

CH.ifa.draw.standard.HandleEnumerator  

CH.ifa.draw.standard.FigureEnumerator  

CH.ifa.draw.framework.FigureEnumeration  

CH.ifa.draw.framework.HandleEnumeration  

At first, it did not seem to make sense to include the samples package 

(CH.ifa.draw.samples) that was in both callees and callers but that resulted in one of the 

concerns being missed indicating that previous analyses included that package. 

Therefore, the FINT analysis was rerun with the samples package included. This filtering 

resulted in 2381 callees for threshold 0. Once the FINT files were generated, Java code 

was written to do the following: 

 Generate a file with method names and another file with class names.  

 Generate vector files for each of the 6 vector models in formats required by R and 

MOCK. 
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 Generate centroids (and hence cluster numbers) for k-means for each of the 6 

vector models. For each vector model, centroids were generated using a set of 

minimum distance thresholds as required by the version of k-means used by 

Serban and Moldovan (2006a). 

 After generating the vector data and centroids, the kmeans and agnes algorithms 

were run in R. First, the kmeans algorithm was run using the centroids created from the 

heuristic that used a threshold of 2. (The reason for choosing this threshold will be 

addressed later on in this paper.) Then it was run using the cluster numbers based on the 

centroids from the heuristic but with random centroid generation. The agnes algorithm 

was then run and the dendrograms for each vector model were cut at the places specified 

by the cluster numbers used for kmeans. 

 MOCK was run on the raw data for each vector model. For each run, MOCK 

generated at least 100 clustering files in addition to other supporting files. One of the 

supporting files contained recommendations that MOCK considered the most promising 

clustering solutions. MOCK also generated a solutions file which had information on 

each solution giving the values of the objective functions that each solution was 

attempting to optimize. At first, whenever the recommendations file had inadequate 

information, this solutions file was visually analyzed to determine what this researcher 

considered to be the most likely candidates for analysis. The choices were based on the 

values for the two objective functions that a clustering solution was to simultaneously 

minimize. Likely candidates were determined first by those values that were small but 

close to each other. The number of clusters was also a factor in determining the choices. 

It was reasoned that cluster values which were closer to the optimal (10 clusters each 
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with methods from one concern plus 1 cluster with all other non-concern methods) would 

produce better aspect mining results but that did not always turn out to be the case. Later 

on, all MOCK's solutions for all 6 vector models were analyzed. 

 When the clustering files were created by all three methods, Java programs were 

written to clean up the data and get it in a form for analyzing. Java code was also written 

to analyze the clustering results using the aspect mining metrics, DIV, DISP, DIV2, 

PREC, and MTA. Once the aspect mining results were created Microsoft Excel 2013 was 

used to help interpret those results. From those results (which will be discussed in more 

detail later) a decision was made to create an adaptation of MOCK that would attempt to 

optimize the aspect mining metrics DISP and DIV directly. This program, Aspect Mining 

using MultiObjective Clustering (AMMOC), was written in Java and was used to cluster 

all vector model data. Since the program was written to optimize DISP and DIV, aspect 

mining analysis of the resulting clusters gave corresponding values for those metrics and 

that analysis was run primarily to gain information concerning the other metrics as well 

as the distribution of concerns across clusters. 

 After getting aspect mining analysis results from MOCK and AMMOC, kmeans 

and agnes were rerun using the clustering values from MOCK and AMMOC's top ten 

clustering solutions based on their DISP+DIV values. The resulting clustering partitions 

from all runs were then analyzed using the aspect mining metrics. 

Data Analysis 

 From the FINT files, 96 caller methods and 2381 callee methods were generated. 

From those methods, 296 classes were distilled. From their analysis of JHotDraw 5.2 
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Moldovan and Serban (2006b) stated that it had 190 classes. A quick comparison 

between JHotDraw 5.4b1 and 5.2 revealed that there are 234 files in the CH source folder 

for JHotDraw 5.2 and 555 files and 39 folders for JHotDraw 5.4b1. This would explain 

the increase in methods and classes. (It is interesting to note that those researchers 

referenced a paper by Marin, van Deursen, and Moonen (2004) who analyzed JHotDraw 

5.4b1 instead of version 5.2.) 

 The methods and classes were used to create vector files for each of the 6 vector 

models. The following were the vector dimensions for each model: 

Vector Model 1 (FIV_CC): 2 

Vector Model 2 (FIV_HasMethod): 297 

Vector Model 3 (sigTokens): 681 

Vector Model 4 (FIV_sigTokens): 682 

Vector Model 5 (FIV_CC_sigTokens): 683 

Vector Model 6 (FIV_CC_hasMethod_sigTokens): 979 

 Vector model 1 had a large range of values in the first two dimensions and, as a 

result, those dimensions carried the weight when model 1 was merged to form models 2, 

4, 5, and 6. In the first dimension, model 1 had a maximum of 90 and a minimum of 0 

and the second dimension had a maximum of 58 and a minimum of 0. All the other 

dimensions in models 1, 2, 4, 5, and 6 were binary. Model 3 was completely binary.  

 This research mainly used raw data values in the runs following the research 

method used by Rand McFadden (2011). However, just for comparison purposes, MOCK 

was set to normalize data in some of the runs. The results did not turn out to be 

significantly different from the runs that used non-normalized data and hence are not 
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presented here. The results of the aspect mining analysis were synthesized in Microsoft 

Excel 2013. For each vector model the data was sorted in descending order based on the 

sum of the aspect mining metrics DISP and DIV and appropriately filtered in order to 

interpret the results for different methods and vector models. 

Individual Clustering Method Analysis 

Method 1: kmeans with heuristic 

 First, centroids were generated using the heuristic of Serban and Moldovan 

(2006a). Centroids were generated because k-means (as well as agglomerative 

hierarchical clustering algorithms) requires that the number of clusters be specified. 

Serban and Moldovan developed this heuristic to determine the optimal number of 

centroids, and hence clusters, with respect to aspect mining. In their paper that described 

this heuristic, the authors used a minimum distance of 1. (Setting a distance threshold is 

required by the algorithm that generates the centroids.) When the minimum distance of 1 

was used by this researcher, 649 centroids were generated just for vector model 2. This 

implied that higher-dimensional vectors would yield higher cluster numbers. But, for a 

vector space of 2381 vectors, that would result in many singletons. Minimum distances of 

2, 3, and 4 were evaluated but when threshold 4 was used in this study only one centroid 

was generated for vector model 3. After researching the reason for this it was found that 

the most tokens for any method was 6. This meant that the highest number of positions 

that two vectors could differ in was 12. For a pure binary vector this would give a 

distance of √12 which is less than 4 resulting in only the initial centroid being generated 

by the algorithm. Serban and Moldovan stated that they used a threshold of 1 but did not 

state what optimal numbers of clusters were obtained. In another paper by the same 
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authors (Moldovan and Serban, 2006b) they stated that the number of clusters generated 

by their heuristic when run on vectors obtained from JHotDraw 5.2 was 20 for vector 

model 1 and 34 for vector model 2. However, they did not state what threshold they used. 

This study only used centroids generated from thresholds 2 and 3 because of the reasons 

stated earlier. The number of centroids obtained in this study from using the threshold 

values of 2 and 3 is shown in Table 1.  

 
Table 1 - Cluster Numbers from the Heuristic Algorithm for Thresholds 2 and 3 

 

From this table it is evident that the optimal cluster numbers for models 1 and 2 did not 

come close to those recorded by Moldovan and Serban (2006b) but without knowing 

what their threshold was it is not conclusive that this study's results are incorrect. 

 After the centroids were generated, the kmeans function from the statistical 

program R used those centroids to cluster the data sets for the various models. The aspect 

mining analysis of the clustering results are shown in Table 2. 

Vector Model
Threshold 

of 2

Threshold 

of 3

1 42 31

2 189 84

3 87 4

4 182 19

5 240 39

6 622 189
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Table 2 - Aspect Mining Results for kmeans (Predetermined Centroids) Based on DISP+DIV 

 

 As Table 2 shows, kmeans performed the best on vector model 3 (87 clusters) 

based on its DISP+DIV (1.613) value with the DIV (0.921) value dominating the DISP 

(0.692) value. The DIV2 value dropped drastically which indicates that there were many 

clusters that only contained non-crosscutting concerns. These results are supported by the 

following cluster distribution among crosscutting concerns. (The number in parentheses 

refers to the number of methods that make up the concern. The clusters where the 

concern was found follow the parenthetical value.) 

Consistent behavior (21) 12 26 31 36 63 72  

Decorator (6) 15 29 50 63  

Composite (12) 63 64  

Observer (10) 38 63  

Adapter (1) 63  

Command (2) 63  

Contract enforcement (3) 63  

Persistence (6) 6 63  

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

3 87 0.692 0.921 1.613 0.507

3 4 0.950 0.648 1.598 0.530

4 182 0.548 0.942 1.490 0.523

5 240 0.485 0.963 1.448 0.712

6 622 0.413 0.989 1.402 0.829

6 189 0.419 0.961 1.380 0.796

2 189 0.418 0.961 1.379 0.807

2 84 0.439 0.896 1.335 0.743

1 42 0.503 0.770 1.273 0.613

5 39 0.513 0.754 1.267 0.544

4 19 0.631 0.628 1.259 0.411

1 31 0.508 0.692 1.200 0.566
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Undo (3) 63  

Exception handling (1) 58 

The distribution also shows why the DISP was relatively low; five of the concerns were 

spread out among different clusters, especially the consistent behavior concern. 

Method 2: kmeans with random centroids 

Table 3 - Aspect Mining Results for kmeans (Random Centroids) Based on DISP+DIV 

 

 The kmeans function was again run in R using the number of clusters equivalent 

to the number of centroids but with random centroid generation. As shown in Table 3, it 

performed the best on vector model 6 (622 clusters) with a DISP value of 0.626 and a 

DIV value of 0.987. Its DIV2 value was 0.675. The high DIV value was due to the fact 

that only a few clusters had more than one crosscutting concern. Again, the large drop 

from DIV to DIV2 can be understood by looking at its clustering distribution. 

Consistent behavior (21) 20 164 180 323 368 379 386 573 612  

Decorator (6) 152 162 175 275 484  

Composite (12) 162 329 354 556 575  

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

6 622 0.626 0.987 1.613 0.675

5 240 0.631 0.962 1.593 0.497

6 189 0.634 0.957 1.591 0.421

3 87 0.679 0.904 1.583 0.507

4 182 0.611 0.957 1.568 0.441

2 84 0.639 0.913 1.552 0.439

4 19 0.717 0.83 1.547 0.461

5 39 0.640 0.859 1.499 0.390

2 189 0.530 0.953 1.483 0.553

3 4 0.900 0.523 1.423 0.523

1 31 0.631 0.678 1.309 0.475

1 42 0.499 0.746 1.245 0.573
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Observer (10) 16 527 556 587  

Adapter (1) 527  

Command (2) 573  

Contract enforcement (3) 573  

Persistence (6) 422 515  

Undo (3) 573 

Exception handling (1) 303 

Here, an extremely large number of clusters had only non-crosscutting concerns. 

Method 3: agnes 

 The agnes function from the R clustering library is a hierarchical agglomerative 

algorithm that starts with n (number of elements) one-element clusters and builds a 

dendrogram of clustering solutions where the clustering partition at level i (counting from 

the bottom of the dendrogram) has less clusters than the solution at level i-1. The highest 

level contains all of the elements in one cluster. To obtain a clustering solution the 

dendrogram is cut at the level containing the number of required clusters, k. In this 

experiment the values for k were the same as prescribed by the heuristic used for kmeans. 



58 

 

Table 4 - Aspect Mining Results for agnes Based on DISP+DIV 

 

 Table 4 shows that this function performed the best on vector model 3 with a 4-

cluster result. The high DISP (0.950) and relatively low DIV (0.648) indicate that agnes 

was successful at not spreading out the concerns but was unable to keep each concern in a 

separate cluster. This is not that surprising given the low number of clusters. The fact that 

the DIV and DIV2 values were so close supports this conclusion as does the following 

distribution. 

Consistent behavior (21) 2  

Decorator (6) 2  

Composite (12) 1 2  

Observer (10) 2  

Adapter (1) 2  

Command (2) 2  

Contract enforcement (3) 2  

Persistence (6) 2  

Undo (3) 2  

Exception handling (1) 2 

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

3 4 0.950 0.648 1.598 0.530

3 87 0.675 0.915 1.590 0.507

4 182 0.553 0.944 1.497 0.465

5 240 0.503 0.965 1.468 0.696

6 622 0.418 0.989 1.407 0.825

6 189 0.435 0.963 1.398 0.802

2 189 0.419 0.961 1.380 0.796

2 84 0.444 0.900 1.344 0.752

1 31 0.605 0.708 1.313 0.569

5 39 0.513 0.756 1.269 0.587

1 42 0.503 0.748 1.251 0.577

4 19 0.579 0.618 1.197 0.395
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As the distribution shows, all the concerns were found in cluster 2 with only the 

Composite concern being spread across 2 clusters. The other two clusters have no 

crosscutting concerns. This again supports the close DIV and DIV2 values. 

Method 4: MOCK 

 As mentioned earlier in this paper MOCK attempts to simultaneously optimize 

two objective functions, one measuring compactness and the other measuring 

connectedness. Its performance was, in general, competitive with the other algorithms. 

MOCK generated several hundred clustering solutions for all of the vector models 

combined only some of which are reported in this paper. 

 MOCK required that certain parameters be configured prior to execution. Handl 

and Knowles (2007a) suggested a set of parameter configurations that worked for them. 

(See Appendix B.) However, this set did not have very good results for this research so 

the following configuration set, shown in Table 5, was used: 

Table 5 - Parameter Values Used in MOCK 

 

The main difference between the sets is that the maximum number of clusters was set to 

150 and the number of control fronts was set to 5. Actually, the authors did suggest that 

Parameter Value

Maximum clusters 150

Control fronts 5

Distance metric Euclidean

L (connectivity) 10

Number of 

generations
1000

Recombination rate 0.7
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researchers might wish to increase those two parameters from the values used by them. 

The decision to increase the number of clusters was based on cluster values returned by 

the heuristic for k-means. Those numbers tended to be larger than 50 which was the 

default. The number was first raised to 100 but some of the clustering solutions gave 

numbers of clusters close enough to warrant increasing the limit. Therefore, it was 

increased to 150. The number was not changed any more since analysis of clustering 

solutions showed that lower numbers of clusters tended to give very good aspect mining 

results. MOCK uses the control fronts to determine the cluster values it suggests as the 

most promising ones but, using the original setting of 3, MOCK's suggested values did 

not always give better aspect mining results than MOCK's other partitions so it made 

sense to increase the number of control fronts. This resulted, as indicated by Handl and 

Knowles, in increasing MOCK's run time considerably and only gave clustering 

configurations that resulted in slightly better aspect mining values. It was therefore 

decided that no further increase in the control fronts would be made. Obviously, it was 

possible to tweak parameters further but there are infinitely many combinations even 

when reasoning is based on potential outcome. This researcher did not feel that it was 

necessary to continue tweaking when current settings were producing good results. 
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Table 6 - MOCK's Top 10 Aspect Mining Results Based on DISP+DIV 

 

 As shown in Table 6, vector model 2 dominated with a DISP of 1 and DIV of 

0.848 for both solutions with 6 clusters. (Many of the solutions shown in the table differ 

only in their MTA values. Also, the table contains only the top 10 results as there are too 

many results to list.) Interestingly, the DISP values were perfect for all but the 8-cluster 

solutions for vector model 2. MOCK was doing an excellent job of not spreading 

concerns across clusters but this came at a price for diversity. It turned out that all of the 

crosscutting concerns ended up in one cluster along with some non-crosscutting concerns. 

This was supported by the associated distribution of concerns. (The fact that the one 

cluster with crosscutting concerns also had non-crosscutting concerns is not evident from 

the distribution but was confirmed by other analyses.) 

Consistent behavior (21) 1  

Decorator (6) 1  

Composite (12) 1  

Observer (10) 1  

Adapter (1) 1  

Command (2) 1  

Contract enforcement (3) 1  

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2 MTA

2 6 1.000 0.848 1.848 0.545 1.545 2249

2 6 1.000 0.848 1.848 0.545 1.545 2254

2 5 1.000 0.818 1.818 0.545 1.545 2274

4 5 1.000 0.818 1.818 0.545 1.545 2288

2 5 1.000 0.818 1.818 0.545 1.545 2297

2 5 1.000 0.818 1.818 0.545 1.545 2302

2 8 0.950 0.824 1.774 0.530 1.480 2215

2 8 0.950 0.824 1.774 0.530 1.480 2221

4 4 1.000 0.773 1.773 0.545 1.545 2302

5 4 1.000 0.773 1.773 0.545 1.545 2307
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Persistence (6) 1  

Undo (3) 1  

Exception handling (1) 1 

Method 5: AMMOC 

Table 7 - AMMOC's Top 10 Aspect Mining Results Based on DISP+DIV 

 

 AMMOC is based on MOCK's clustering engine PESA-II but designed to directly 

optimize the aspect mining metrics DISP and DIV. It was run with the same set of 

configurations as the one used by MOCK in this research. Table 7 shows that the results 

from AMMOC were extremely good. Vector model 3 gave the best results with a perfect 

DISP (1.0) and almost perfect DIV (0.978). Again, the drastic drop in the DIV2 score 

(0.545) indicates that there were many clusters with only non-crosscutting concerns 

contributing to the calculation for DIV and masking the true diversity. (Again, the table 

contains only the top 10 results as there are too many results to list.) 

The distribution of concerns for the solution with 42 clusters follows. 

Consistent behavior (21) 1  

Decorator (6) 1  

Composite (12) 1  

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2 MTA

3 42 1.000 0.978 1.978 0.545 1.545 2277

3 44 1.000 0.968 1.968 0.533 1.533 2310

3 119 0.900 0.980 1.880 0.520 1.420 2169

4 10 0.950 0.859 1.809 0.530 1.480 2344

4 32 0.833 0.920 1.753 0.572 1.406 2335

4 22 0.850 0.902 1.752 0.463 1.313 2316

5 9 0.900 0.843 1.743 0.648 1.548 2376

2 6 0.950 0.765 1.715 0.530 1.480 2329

5 6 0.950 0.765 1.715 0.530 1.480 2373

6 6 0.950 0.765 1.715 0.530 1.480 2373
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Observer (10) 1  

Adapter (1) 1  

Command (2) 1  

Contract enforcement (3) 1  

Persistence (6) 1  

Undo (3) 1  

Exception handling (1) 1 

As can be seen, all concerns end up in cluster 1, a fact that is corroborated by the very 

high DIV but mediocre DIV2. 

Vector Model Analysis 

Vector Model 1: fanIn_NumCallers  

Table 8 - Top 10 Methods for Vector Model 1 Based on DISP+DIV 

 

 This vector model had only 2 dimensions with relatively large values per 

dimension when compared to the other dimensions of the other vector models, especially 

vector model 3. Table 8 shows that with this vector model AMMOC and MOCK had the 

best results among all the methods as determined by the DISP+DIV values. Not only did 

they have the best results, they exceeded the DISP+DIV values for the heuristic method 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

AMMOC 1 6 0.950 0.765 1.715 0.530

MOCK 1 8 0.900 0.700 1.600 0.520

AMMOC 1 2 1.000 0.545 1.545 0.545

MOCK 1 18 0.717 0.820 1.537 0.461

MOCK 1 16 0.717 0.798 1.515 0.461

MOCK 1 20 0.700 0.807 1.507 0.448

MOCK 1 15 0.717 0.784 1.501 0.461

AMMOC 1 20 0.692 0.809 1.500 0.706

MOCK 1 6 0.900 0.600 1.500 0.520

MOCK 1 19 0.700 0.796 1.496 0.448
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closest to them by a large amount. As shown in the figure, AMMOC had the highest 

DISP+DIV value of 1.715 with a DISP of 0.95 and a DIV of 0.765. This is followed by 

MOCK with a DISP+DIV of 1.6, a DISP of 0.9, and a DIV of 0.7. The nearest method to 

MOCK and AMMOC based on DISP+DIV was the kmeans with heuristic with a 

DISP+DIV of 1.273, a DISP of 0.503, and a DIV of 0.77 for 42 clusters. Following that 

was agnes with a DISP+DIV of 1.251, a DISP of 0.503, and a DIV of 0.718 for the same 

number of clusters. Much lower in the table was kmeans with random centroids with a 

DISP+DIV of 1.245, a DISP of 0.499, and a DIV of 0.746 again with the same number of 

clusters. 

Vector Model 2: fanIn_hasMethod 

Table 9 - Top 11 Methods for Vector Model 2 Based on DISP+DIV 

 

 This vector model had 297 dimensions with all but the first dimension being 

binary. Again, the genetic methods had some results for DISP+DIV that far exceeded 

those of the heuristic methods. Table 9 shows the top 11 values which are all from the 

genetic methods. (A few of the rows in the table have the same DISP, DIV, and DIV2 

values but they differ for MTA.) The kmeans with random centroids, occurring 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

MOCK 2 6 1.000 0.848 1.848 0.545

MOCK 2 6 1.000 0.848 1.848 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 2 8 0.950 0.824 1.774 0.530

MOCK 2 8 0.950 0.824 1.774 0.530

MOCK 2 4 1.000 0.773 1.773 0.545

MOCK 2 7 0.950 0.799 1.749 0.530

MOCK 2 7 0.950 0.799 1.749 0.530

AMMOC 2 6 0.950 0.765 1.715 0.530
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considerably lower down, was the first of the heuristic methods to appear with a DISP of 

0.530 and a DIV of 0.953 giving a DISP+DIV of 1.483 which was significantly lower 

than both the top MOCK value of 1.848 and AMMOC's 1.715. Next was the agnes 

algorithm with a DISP+DIV of 1.38, a DISP of 0.419, and a DIV of 0.960. Following 

agnes closely was the kmeans with heuristic which only differed by having a DISP of 

0.418. All three heuristic methods worked on 189 clusters. MOCK was obviously the 

clear winner for this vector model. It even had 10 values that were better than AMMOC's. 

It is unclear why MOCK outperformed AMMOC to that extent since AMMOC was 

targeting the aspect mining metrics while MOCK was targeting arbitrary clustering 

objectives. 

Vector Model 3: sigTokens 

Table 10 - Top 10 Methods for Vector Model 3 Based on DISP+DIV 

 

 This vector model had only binary values in each of its 681 dimensions. As 

shown in Table 10, the genetic methods had 6 values for DISP+DIV that were better than 

those of the first occurrence of a heuristic method which was kmeans with predetermined 

centroids. AMMOC was the clear winner here with two of its results having perfect 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

AMMOC 3 42 1.000 0.978 1.978 0.545

AMMOC 3 44 1.000 0.968 1.968 0.533

AMMOC 3 119 0.900 0.980 1.880 0.520

MOCK 3 14 0.800 0.846 1.646 0.460

MOCK 3 8 0.850 0.793 1.643 0.447

MOCK 3 13 0.800 0.834 1.634 0.460

kmeansCentroids 3 87 0.692 0.921 1.613 0.507

MOCK 3 15 0.783 0.823 1.606 0.468

agnes 3 4 0.950 0.648 1.598 0.530

kmeansCentroids 3 4 0.950 0.648 1.598 0.530
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scores for DISP (1, 1) and nearly perfect scores for DIV (0.978, 0.968). As previously 

noted, the values for DIV2 (0.545, 0.533) for those rows in the table put things in a better 

perspective by showing that the high DIV values were due to a large number of clusters 

with only non-crosscutting concerns in them. The distribution of crosscutting concerns 

for the first row of the table showed that all crosscutting concerns ended up in one cluster 

leaving 41 clusters with only non-crosscutting concerns. There was a similar result for the 

second row which had 9 of the concerns together in one cluster and the 10th in another 

cluster leaving 42 of the 44 clusters with only non-crosscutting concerns. The DIV2 

values for the top two rows with AMMOC were higher than all other DIV2 values. Even 

though AMMOC and MOCK had the best results among all of the methods, it is 

interesting that two of the heuristic methods, kmeans with heuristic and agnes, placed 

within the top 10 for this vector model. 

Vector Model 4: fanIn_sigTokens  

Table 11 - Top 10 Methods for Vector Model 4 Based on DISP+DIV 

 

 This vector model had 682 dimensions of which 681 were binary. Although both 

genetic algorithms still dominated the others, MOCK edged out AMMOC for top spot 

with a perfect DISP that contributed to a DISP+DIV of 1.818 versus AMMOC's 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

MOCK 4 5 1.000 0.818 1.818 0.545

AMMOC 4 10 0.950 0.859 1.809 0.530

MOCK 4 4 1.000 0.773 1.773 0.545

MOCK 4 4 1.000 0.773 1.773 0.545

AMMOC 4 32 0.833 0.920 1.753 0.572

AMMOC 4 22 0.850 0.902 1.752 0.463

MOCK 4 3 1.000 0.697 1.697 0.545

AMMOC 4 18 0.833 0.857 1.691 0.572

AMMOC 4 5 0.950 0.718 1.668 0.530

AMMOC 4 25 0.758 0.867 1.626 0.526
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DISP+DIV of 1.809. (See Table 11.) Even so AMMOC had a better DIV value (0.859) 

than MOCK's (0.818). Again, however, the DIV2 values for both indicate that there were 

many clusters with only non-crosscutting concerns. The distribution of concerns supports 

this as it showed that all of the crosscutting concerns were in one cluster. MOCK left 4 

out of 5 clusters without any crosscutting concerns while AMMOC had 8 out of 10 

clusters without any concerns. All 10 concerns were in cluster 1 and one concern was 

spread across clusters 1 and 2. 

 None of the heuristic methods made it into the top 10. The first heuristic method, 

kmeans with random centroids, showed up very far down in the ranking. It had 182 

clusters, a DISP of 0.611, and a DIV of 0.957 giving a DISP+DIV of 1.568. Its DIV2, 

however, was 0.441 which again indicates that many of the 182 clusters had no 

crosscutting concerns in them. This is supported by its cluster distribution shown below. 

Consistent behavior (21) 5 9 13 53 78 103 112 159 175  

Decorator (6) 5 78 103 162  

Composite (12) 5 13 53 103  

Observer (10) 13 53 131 159  

Adapter (1) 131  

Command (2) 53  

Contract enforcement (3) 53  

Persistence (6) 13 78 128 159  

Undo (3) 53  

Exception handling (1) 142 
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Vector Model 5: fanIn_numCallers_sigTokens 

Table 12 - Top 10 Methods for Vector Model 5 Based on DISP+DIV 

 

 This vector model had 683 dimensions of which 681 were binary. Again, MOCK 

and AMMOC had better results than any of the other methods. The top 10 results are 

shown in Table 12. As seen in the table, MOCK had three DISP+DIV results that were 

better than the best result for AMMOC. However, MOCK's top results were primarily 

due to a higher DISP value. AMMOC had the highest DIV value (0.843) of the set. DIV2 

values continued to be low because most of the concern methods ended up in one or two 

clusters.  

 The cluster distribution for AMMOC's 9-cluster result (shown below) had one 

cluster (3) that only had the methods from one crosscutting concern (Consistent 

Behavior) and no methods from non-crosscutting concerns. This fact is not evident from 

the concern distribution and was obtained from other analyses. All other clusters had at 

least some non-crosscutting concerns in them. 

Consistent behavior (21) 1 3  

Decorator (6) 1 2  

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

MOCK 5 4 1.000 0.773 1.773 0.545

MOCK 5 7 0.950 0.799 1.749 0.530

MOCK 5 7 0.950 0.799 1.749 0.530

AMMOC 5 9 0.900 0.843 1.743 0.648

AMMOC 5 6 0.950 0.765 1.715 0.530

MOCK 5 6 0.950 0.765 1.715 0.530

MOCK 5 6 0.950 0.765 1.715 0.530

MOCK 5 6 0.950 0.765 1.715 0.530

MOCK 5 5 0.950 0.718 1.668 0.530

MOCK 5 8 0.900 0.742 1.642 0.483
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Composite (12) 1  

Observer (10) 1  

Adapter (1) 1  

Command (2) 1  

Contract enforcement (3) 1  

Persistence (6) 1  

Undo (3) 1  

Exception handling (1) 1 

Vector Model 6: fanIn_numCallers_hasMethods_sigTokens 

Table 13 - Top 10 Methods for Vector Model 6 Based on DISP+DIV 

 

 This vector model had 979 dimensions of which 977 were binary. Table 13 shows 

that AMMOC and MOCK occupy four of the five top spots with AMMOC having the 

two highest DISP+DIV values (1.715, 1.64). The table also shows that the kmeans 

algorithm with random centroids did much better on this vector model placing just below 

AMMOC with the third best DISP+DIV (1.613). It did extremely well at not mixing 

concerns within clusters but was not that well at not spreading concern methods across 

clusters. This would seem to imply that, with 622 clusters, a researcher would have to go 

through a large number of clusters especially since the DIV value (0.987) was so high 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

AMMOC 6 6 0.950 0.765 1.715 0.530

AMMOC 6 18 0.783 0.857 1.640 0.571

kmeansRandom 6 622 0.626 0.987 1.613 0.675

MOCK 6 4 0.950 0.648 1.598 0.530

MOCK 6 4 0.950 0.648 1.598 0.530

kmeansRandom 6 189 0.634 0.957 1.591 0.421

MOCK 6 122 0.642 0.942 1.584 0.451

MOCK 6 123 0.642 0.942 1.584 0.451

MOCK 6 118 0.642 0.940 1.582 0.451

MOCK 6 118 0.642 0.940 1.582 0.451
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and the DISP (0.626) so low. However, the algorithm's DIV2 value was much lower 

indicating that a large percentage of clusters had only non-crosscutting concerns. This 

conclusion was supported when the cluster distribution was analyzed. 

Consistent behavior (21) 20 164 180 323 368 379 386 573 612  

Decorator (6) 152 162 175 275 484  

Composite (12) 162 329 354 556 575  

Observer (10) 16 527 556 587  

Adapter (1) 527  

Command (2) 573  

Contract enforcement (3) 573  

Persistence (6) 422 515  

Undo (3) 573  

Exception handling (1) 303 

Overall Vector Model Analysis 

 Vector model 3 had the best results overall and that was with AMMOC. The 

DISP+DIV for this model and method was 1.978 with a perfect DISP of 1 and a very 

high DIV of 0.978. AMMOC created 42 clusters with the data for this model but all 

crosscutting concerns ended up in cluster 1 along with some non-crosscutting concerns. 

This resulted in DIV2 having a much lower of 0.545. Table 14 shows the top 10 results 

which, as can be seen, only included models 2, 3, and 4. Vector model 5 occurred in 

position 16 of the table. Models 1 and 6 appeared much further down. 

Interestingly, when the data were sorted by DISP+DIV2, AMMOC held the top 

ten spots covering all vector models as shown in Table 15. Another interesting fact seen 

in the table is that vector model 5 edged out vector model 3 for top spot. Then again, 
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since vector model 3 had many more clusters than vector model 5, that result is 

understandable when one considers that vector model 3 had a higher number of clusters 

containing only non-crosscutting concerns. 

Table 14 - Top 10 Vector Model Results Based on DISP+DIV 

 

Table 15- Top 10 Vector Model Results Based on DISP+DIV2 

 

Overall Clustering Analysis 

 Table 14 also shows that AMMOC and MOCK significantly outperformed the 

other methods based on DISP+DIV with AMMOC being the clear winner on the data 

from vector model 3. The aspect mining analysis for this cluster configuration had a 

DISP of 1, a DIV of 0.978, and a DISP+DIV of 1.978. The first occurrence of one of the 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

AMMOC 3 42 1.000 0.978 1.978 0.545

AMMOC 3 44 1.000 0.968 1.968 0.533

AMMOC 3 119 0.900 0.980 1.880 0.520

MOCK 2 6 1.000 0.848 1.848 0.545

MOCK 2 6 1.000 0.848 1.848 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 2 5 1.000 0.818 1.818 0.545

MOCK 4 5 1.000 0.818 1.818 0.545

AMMOC 4 10 0.950 0.859 1.809 0.530

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2

AMMOC 5 9 0.900 0.843 1.743 0.648 1.548

AMMOC 3 42 1.000 0.978 1.978 0.545 1.545

AMMOC 2 3 1.000 0.697 1.697 0.545 1.545

AMMOC 5 2 1.000 0.545 1.545 0.545 1.545

AMMOC 5 2 1.000 0.545 1.545 0.545 1.545

AMMOC 2 2 1.000 0.545 1.545 0.545 1.545

AMMOC 1 2 1.000 0.545 1.545 0.545 1.545

AMMOC 6 2 1.000 0.545 1.545 0.545 1.545

AMMOC 6 2 1.000 0.545 1.545 0.545 1.545

AMMOC 4 2 1.000 0.545 1.545 0.545 1.545



72 

 

heuristic methods was the kmeans method with random centroids which was much 

further down in the table. This method created 622 clusters from the data for vector 

model 6 with a DISP of 0.626, a DIV of 0.987, and a DISP+DIV of 1.613. The kmeans 

that used centroids from the heuristic followed it in the table. It had a DISP of 0.692, a 

DIV of 0.921, and a DISP+DIV of 1.613 for vector model 3 with 87 clusters. The agnes 

clustering method turned up even further down with a DISP of 0.675, a DIV of 0.915, 

and a DISP+DIV of 1.59 for vector model 3 with 87 clusters. 

 This researcher decided to see if MOCK and AMMOC could be used to suggest 

cluster numbers for the heuristic algorithms in order to determine if that would lead to 

better results for those algorithms7. It turned out that the strategy worked for the most 

part. Table 16 shows that the results of running kmeans and agnes using cluster numbers 

obtained from running MOCK and AMMOC dominated the results from those algorithms 

that didn't use those cluster numbers. As the table shows, MOCK's suggested cluster 

numbers proved to be better, in general, at providing kmeans and agnes with "optimal" 

cluster numbers. Even so, MOCK and AMMOC gave better results than those algorithms 

for all but vector model 6. When the data for model 6 were compared AMMOC took the 

top two positions but MOCK was pushed down to about eleventh place in the table by 

various runs of kmeans with and without suggested cluster numbers from MOCK and 

AMMOC. (Note that for all of the heuristic methods to have been run with suggested 

cluster numbers meant that the centroids would have had to be randomly generated.) 

                     
7 This strategy is not novel to data mining as other researchers have used genetic algorithms to find cluster 

centroids with which to start k-means (Jain, A. K., Murty, M. N., & Flynn, P. J., 1999). 
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Table 16 - Results of using AMMOC and MOCK to Suggest Cluster Numbers for the Heuristic Algorithms  

(AMMOC and MOCK results are not included in this comparison.) 

 

Comparison of MOCK against AMMOC 

 AMMOC outperformed MOCK on vector models 1, 3, and 6 based on DISP+DIV 

scores. For model 1, AMMOC lead MOCK by 0.115. For model 3, the difference was 

0.332. For model 6, the difference was 0.117. For models 2, 4, and 5 MOCK led 

AMMOC by 0.133, 0.009, and 0.030, respectively. One would have thought that 

AMMOC would always be better considering the fact that it was directly optimizing 

aspect mining metrics. However, these are genetic algorithms that depend on various 

probabilities for recombination and mutation so there is no guarantee that AMMOC, or 

MOCK for that matter, converged completely. This is compounded by the fact that there 

is also no guarantee that multiobjective algorithms will see the entire Pareto front. 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2

KmeansMOCK 3 10 0.950 0.859 1.809 0.530

AgnesMOCK 3 8 0.950 0.824 1.774 0.530

KmeansMOCK 3 12 0.900 0.841 1.741 0.523

KmeansMOCK 3 13 0.883 0.815 1.698 0.518

KmeansMOCK 3 15 0.850 0.807 1.657 0.517

AgnesMOCK 3 13 0.800 0.831 1.631 0.450

KmeansAMMOC 5 96 0.675 0.947 1.622 0.433

KmeansMOCK 6 111 0.667 0.953 1.620 0.423

KmeansMOCK 4 108 0.662 0.956 1.617 0.403

AgnesMOCK 3 12 0.800 0.817 1.617 0.450

KmeansAMMOC 6 67 0.683 0.932 1.616 0.435

KmeansAMMOC 6 77 0.675 0.939 1.614 0.417

kmeansCentroids 3 87 0.692 0.921 1.613 0.507

kmeansRandom 6 622 0.626 0.987 1.613 0.675

AgnesMOCK 3 14 0.800 0.811 1.611 0.470

KmeansMOCK 6 117 0.662 0.946 1.607 0.422

KmeansAMMOC 6 46 0.692 0.913 1.604 0.425

KmeansMOCK 5 116 0.658 0.944 1.603 0.415

KmeansMOCK 6 123 0.645 0.956 1.601 0.399

AgnesAMMOC 3 119 0.667 0.934 1.600 0.506

KmeansAMMOC 6 44 0.692 0.909 1.600 0.425

agnes 3 4 0.950 0.648 1.598 0.530
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 Over all models, AMMOC had the edge for model 3 with a DISP+DIV of 1.978 

which was obtained from a DISP of 1, and a DIV of 0.978. The nearest MOCK score was 

a DISP+DIV of 1.848 obtained for a DISP of 1 and a DIV of 0.878. Even so, both had a 

DIV2 of 0.545 which meant that they were handling diversity equally. AMMOC obtained 

the highest DIV2 of 0.838 but that was accompanied by a very low DISP of 0.456. 

MOCK's highest DIV2 was 0.545 with a corresponding DISP of 1 and DIV of 0.848. 

When DISP+DIV2 values were compared, AMMOC again bested MOCK with a value of 

1.548 obtained from a DISP of 0.9 and a DIV2 of 0.648. MOCK's highest DISP+DIV2 

was 1.545. 

Analysis using Other Aspect Mining Metrics 

 Although most of the discussion has hinged around the metrics, DISP, DIV, and 

DIV2, this study did investigate the performance of the methods and models based on 

precision (PREC) and methods to analyze (MTA). PREC measures the ability of the 

methods to find all crosscutting concerns. The maximum value and goal of this metric is 

1. That turned out to be the value for every method working on every model. MTA 

measured the number of vectors (data representations for each method in the software 

under investigation) that each clustering algorithm would have to see before finding all 

crosscutting concerns once the vectors were organized in some particular order. In this 

case, the clusters were sorted in descending order based on the total fan-in values (FIV) 

of each method that the vector represented. Table 17 shows the top ten results with the 

lowest MTAs over all clustering methods and vector models. 
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Table 17 - Top 10 MTA Values for all Clustering Methods and all Models 

 

 As the table shows, the lowest ten MTAs were all obtained by MOCK with the 

lowest being 1518 from MOCK's clustering of model 5 data. (The total number of vectors 

was 2381.) This clustering resulted in a DISP of 0.642, a DIV of 0.894, a DISP+DIV of 

1.536, and a DIV2 of 0.415. This MTA value did not belong to the clustering with the 

highest DISP+DIV. That MTA value of 2277 belonged to a clustering with a DISP+DIV 

of 1.978 that occurred with AMMOC working on model 3 data. The DISP, DIV, and 

DIV2 for that clustering were 1, 0.978, and 0.545, respectively. 

 What the table does not show is how the other clustering methods fared. When 

MTA alone was considered when sorting values, AMMOC appeared much lower down 

in the table with an MTA of 2158. This value was obtained from AMMOC clustering 

model 4 data which resulted in a DISP of 0.598, DIV of 0.953, a DISP+DIV of 1.551, 

and a DIV2 of 0.554. As a matter of fact, many of the clustering partitions made by the 

heuristic algorithms did much better than AMMOC at keeping MTA low. The heuristic 

method, agnes, had the lowest MTA (1971) of all of the heuristic methods and that 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2 PREC MTA

MOCK 5 66 0.642 0.894 1.536 0.415 1.057 1 1518

MOCK 5 69 0.631 0.889 1.520 0.408 1.039 1 1595

MOCK 5 92 0.633 0.918 1.551 0.421 1.054 1 1644

MOCK 4 118 0.638 0.939 1.577 0.449 1.087 1 1676

MOCK 4 118 0.638 0.939 1.577 0.449 1.087 1 1679

MOCK 4 112 0.648 0.942 1.590 0.459 1.107 1 1683

MOCK 4 117 0.638 0.939 1.577 0.449 1.087 1 1683

MOCK 5 48 0.662 0.868 1.530 0.422 1.084 1 1685

MOCK 4 112 0.648 0.942 1.590 0.459 1.107 1 1687

MOCK 4 113 0.648 0.943 1.591 0.459 1.107 1 1688
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occurred working on model 6 data. The DISP, DIV, DISP+DIV, and DIV2 for that 

clustering were 0.435, 0.963, 1.398, and 0.802, respectively. 

 As one can see, it is hard to make decisions based on MTA alone as the DISP 

tends to be relatively low. This researcher considers DISP, DIV, and DIV2 to be more 

important than MTA since they directly relate to the goal of aspect mining. Therefore, 

MTA should be used to select clustering results where those metrics have values that are 

close to each other. 

Comparison with Other Studies 

 Any comparison of this researcher's findings with those of Cojocar and Czibula 

(2008) must be put in perspective since they conducted their experiments on version 5.2 

of JHotDraw which has less classes and methods than version 5.4b1. Even so, the 

discrepancy between the DISP+DIV values for their two k-means algorithms8 and this 

research's DISP+DIV values for MOCK and AMMOC is significant enough to imply that 

MOCK and AMMOC are the better algorithms. A similar conclusion is arrived at when 

MOCK and AMMOC are compared against HAC and HAM. Note that the researchers 

did not use a DIV2 metric so it is impossible to determine, from their results, how 

clusters with only non-crosscutting concerns contributed to the high DIV values. Those 

researchers also worked only with vector models 1 and 2. Another thing to consider is 

that the researchers used a value of 1 for the threshold required by the program that 

generated centroids to be used by k-means. However, when this researcher used 1 as the 

threshold, 649 centroids were generated just for vector model 2. This implied that the 

                     
8 Based on the reference by Cojocar and Czibula (2008) to the paper by Serban and Moldovan (2006a) when discussing their KM 
algorithm, this researcher is convinced that their KM and kAM algorithms are the same. 
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higher-dimensional vector models would result in much higher numbers of centroids 

resulting in a lot of 1-element clusters. As stated earlier, this research used centroid data 

from thresholds 2 and 3. 

 For vector model 1 Cojocar and Czibula's experimental results (Table 18) showed 

a DISP of 0.42 for KM, 0.441 for kAM, 0.435 for HAC, 0.441 for HAM, and 0.424 for 

GAM. Among the DISP+DIV values for MOCK and AMMOC that surpass DISP+DIV 

values for Cojocar and Czibula, MOCK had its highest DISP of 0.9 and AMMOC had its 

highest DISP of 1.0 for vector model 1. For vector model 2 Cojocar and Czibula's 

experimental results showed a DISP of 0.424 for KM, 0.422 for kAM, 0.422 for HAC, 

0.422 for HAM, and no result for GAM since that algorithm ran so slowly that the 

researchers couldn't get a result within a reasonable time. Again, among the higher 

DISP+DIV values for vector model 2, MOCK and AMMOC had their highest DISP of 

1.0. 

Table 18 - Values of the Quality Measures for JHotDraw 5.2 (Cojocar & Czibula, 2008) 

 

 For vector model 1 Cojocar and Czibula's experimental results showed a DIV of 

0.919 for KM, 0.842 for kAM, 0.896 for HAC, 0.89 for HAM, and 0.797 for GAM. For 

Method Vector Model DISP DIV DISP+DIV

HAM 2 0.422 0.994 1.416

HAC 2 0.422 0.993 1.415

kAM 2 0.422 0.993 1.415

KM 1 0.420 0.919 1.399

KM 2 0.424 0.950 1.374

HAC 1 0.435 0.896 1.331

HAM 1 0.441 0.890 1.331

kAM 1 0.441 0.842 1.283

GAM 1 0.424 0.797 1.221
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that same vector model, and focusing only on higher DISP+DIV values for both MOCK 

and AMMOC, MOCK had its highest DIV value of 0.82 and AMMOC had its highest 

DIV of 0.82. For vector model 2 Cojocar and Czibula's experimental results showed a 

DIV of 0.95 for KM, 0.993 for kAM, 0.993 for HAC, 0.994 for HAM, and no result for 

GAM. For vector model 2, MOCK had its highest DIV of 0.93 and AMMOC had its 

highest DIV of 0.947. Although the DIV values for AMMOC and MOCK were not as 

good as the corresponding values for every algorithm except GAM, their highest 

DISP+DIV values exceeded the DISP+DIV values of those algorithms. MOCK's highest 

DISP+DIV value of 1.6 for vector model 1 was better than the highest DISP+DIV value 

of 1.399 among KM, kAM, HAC, HAM, and GAM. Likewise, AMMOC's DISP+DIV 

value of 1.715 was much better. For vector model 2, MOCK's DISP+DIV value of 1.848 

was much better than the highest value of 1.416 from among KM, kAM, HAC, and 

HAM. As before, AMMOC's DISP+DIV value of 1.715 was also better. Once again, the 

lack of DIV2 values from Cojocar and Czibula makes it difficult to say just how good 

their algorithms were at really handling diversity. The results from the algorithms studied 

by those researchers occurred so far down in the table that displaying the table is not 

practical. 

 When MOCK and AMMOC's results for all six of the vector models were 

compared with Cojocar and Czibula's results for vector models 1 and 2 AMMOC and 

MOCK's DISP+DIV values of 1.978 and 1.848, respectively, far surpassed those 

algorithms' DISP+DIV values. The highest DISP+DIV value from the set of algorithms 

studied by Cojocar and Czibula was 1.416 and that was obtained by HAM from model 2 

data. However, the DIV values for HAM (0.994), HAC (0.993), and kAM (0.993) were 
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all higher than AMMOC and MOCK's although AMMOC's value (0.980) was third in the 

list. Again, without knowing what the DIV2 values were, it is difficult to really assess the 

ability of those algorithms to handle diversity. 

 Interestingly, Cojocar and Czibula discounted the genetic algorithm (GAM) as 

being a viable algorithm for aspect mining as its results were inferior to the others. That 

algorithm attempted to optimize one objective function. Its performance was the worst 

among all of the algorithms and it took so long to execute that there was no recorded 

value when it was run on the model 2 data. The fact that MOCK and AMMOC, also 

genetic algorithms, performed so well implies that the multiobjective nature of those 

algorithms is the primary factor affecting the performance. This implication is also 

supported by comparison with the kmeans and agnes algorithms each of which target a 

different one of MOCK's individual objective functions. 

 Although this study did not set out to compare multiobjective genetic algorithms 

against the model-based ones used in Rand McFadden's (2011) study, that researcher's 

results for the heuristic algorithms provided another benchmark against which to compare 

the performance of MOCK and AMMOC. The results obtained by that researcher for 

vector models 1 and 2 with the heuristic algorithms are shown in Table 19 and the results 

over all models are shown in Table 20.  
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Table 19 - Values of the Quality Measures for JHotDraw 5.4 Over Models 1 and 2 

(Rand McFadden, 2011) 

 

Table 20 - Values of the Quality Measures for JHotDraw 5.4 Over All Models 

(Rand McFadden, 2011) 

 

 When MOCK and AMMOC's results were compared against the results of Rand 

McFadden the comparison yielded an outcome that was similar to the comparison against 

the results of Cojocar and Czibula. Just like the comparison with Cojocar and Czibula 

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2

kMeansRandomMcFadden 2 30 0.662 0.821 1.483 0.403 1.065

kMeansCentroidsMcFadden 1 21 0.667 0.676 1.343 0.477 1.144

agnesMcFadden 1 21 0.643 0.658 1.301 0.401 1.044

kMeansRandomMcFadden 1 21 0.639 0.589 1.228 0.424 1.063

kMeansCentroidsMcFadden 2 30 0.526 0.683 1.209 0.524 1.050

agnesMcFadden 2 30 0.517 0.689 1.206 0.508 1.025

Method

Vector 

Model

Number of 

Clusters DISP DIV DISP+DIV DIV2 DISP+DIV2

kMeansRandomMcFadden 5 475 0.639 0.981 1.620 0.560 1.199

kMeansRandomMcFadden 4 433 0.628 0.981 1.609 0.508 1.136

kMeansRandomMcFadden 6 529 0.544 0.984 1.528 0.563 1.107

agnesMcFadden 3 310 0.546 0.968 1.514 0.484 1.030

kMeansRandomMcFadden 2 30 0.662 0.821 1.483 0.403 1.065

kMeansCentroidsMcFadden 3 310 0.496 0.967 1.463 0.484 0.980

agnesMcFadden 4 433 0.458 0.980 1.438 0.668 1.126

kMeansCentroidsMcFadden 5 475 0.452 0.982 1.434 0.731 1.183

kMeansCentroidsMcFadden 4 433 0.453 0.979 1.432 0.662 1.115

agnesMcFadden 5 475 0.444 0.982 1.426 0.715 1.159

kMeansCentroidsMcFadden 6 530 0.435 0.986 1.421 0.773 1.208

agnesMcFadden 6 530 0.432 0.986 1.418 0.778 1.210

kMeansRandomMcFadden 3 310 0.444 0.958 1.402 0.444 0.888

kMeansCentroidsMcFadden 1 21 0.667 0.676 1.343 0.477 1.144

agnesMcFadden 1 21 0.643 0.658 1.301 0.401 1.044

kMeansRandomMcFadden 1 21 0.639 0.589 1.228 0.424 1.063

kMeansCentroidsMcFadden 2 30 0.526 0.683 1.209 0.524 1.050

agnesMcFadden 2 30 0.517 0.689 1.206 0.508 1.025
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this comparison with Rand McFadden's data must be put in perspective. The heuristic 

that Rand McFadden used to generate centroids, and hence cluster numbers, had 5 as its 

threshold. As explained earlier neither a threshold of 4 nor 5 could have been used by this 

study if vector model 3 was to be included. 

 For all vector models, MOCK and AMMOC dominated and, with the exception of 

the results from vector models 4 and 5, they did so by a considerable amount. Even when 

DIV2 was used as a deciding factor, the genetic algorithms gave much better results than 

those recorded by Rand McFadden for the heuristic methods for all models except model 

4. For model 4, the DIV2 result from agnes as recorded by Rand McFadden was 0.668. 

This was accompanied by a DISP of 0.458, a DIV of 0.98, and a DISP+DIV of 1.438. For 

the same model, Rand McFadden's results for kmeans with predetermined centroids were 

a DISP of 0.453, a DIV of 0.979, a DISP+DIV of 1.432, and a DIV2 of 0.662. The DIV2 

values for these two methods were the top two values. The third DIV2 value of 0.61 was 

obtained from AMMOC which also had a DISP of 0.628, a DIV of 0.924, and a 

DISP+DIV of 1.552. Considering that AMMOC gave a much better DISP and 

DISP+DIV than the other two methods and had a very good DIV even if it wasn't as high 

as the other two, the difference between 0.61 and 0.668 is not sufficient to discount 

AMMOC from being the best of the three. Unfortunately, although the top ten spots for 

this model, based on DISP+DIV, were only held by genetic algorithms, the highest DIV2 

value among them was 0.572. Even so, the heuristic with the highest DISP+DIV value of 

1.609 only had a DIV2 of 0.508. 
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Summary of Results 

 This study compared the clustering results from two heuristic clustering 

algorithms with the results from two multiobjective genetic clustering algorithms. It also 

compared the results from the two genetic algorithms with results obtained from previous 

studies. The study ran the algorithms on vectors created from six vector models and 

measured the quality of the clustering solutions with five aspect mining metrics. The 

objective was to show that the multiobjective genetic algorithms were a viable alternative 

to those heuristic algorithms commonly used in aspect mining. 

 The clustering results for all the algorithms were analyzed using the metrics 

PREC, DISP, DIV, DIV2, and MTA, as described in the aspect mining literature 

(Moldovan & Serban, 2006a, Rand McFadden & Mitropoulos, 2012; Rand McFadden & 

Mitropoulos, 2013a). Success was measured based on the ability of the clustering 

solutions to maximize DISP+DIV values. Judging from these values, the two 

multiobjective genetic algorithms, MOCK and AMMOC, yielded extremely good results 

from an aspect mining point of view and succeeded in dominating all of the heuristic 

algorithms used in this study. Several perfect DISP values of 1 were attained which all 

came from the multiobjective genetic algorithms. When all vector models and all 

algorithms were compared, AMMOC had the best results. When the comparison was 

made for individual models, at least one of the multiobjective genetic algorithms had 

better aspect mining results than their heuristic counterparts.  

 When the multiobjective genetic algorithms were compared against each other, 

AMMOC showed better performance on data from models 1, 3, and 6 while MOCK 
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performed better on data from the other three models. Over all models, AMMOC gave 

the best three results based on DISP+DIV and those all occurred with model 3 data. 

 Comparisons with results for methods obtained from previous studies in the 

literature had the same outcome. It should be noted that the comparisons between the two 

genetic algorithms and the algorithms studied by Cojocar and Czibula could only be done 

with vector models 1 and 2 since those researchers did not use the other vector models. 

Even so, none of the DISP+DIV results from the algorithms used in those researchers' 

experiments got anywhere close to the top DISP+DIV values achieved by MOCK and 

AMMOC even though the DIV values for those researchers' algorithms were the highest.  

Cojocar and Czibula did not use the DIV2 quality metric so it was impossible to judge 

how good their algorithms were at really optimizing diversity. 

 A few patterns emerged from analyzing the clustering results. First, for those 

results that contained DIV2 values, the top results had very high DISP and DIV values 

but the DIV values were found to be misleading when their corresponding DIV2 values 

were taken into consideration. For a large number of results a very high DIV2 was 

usually accompanied by a relatively low DISP. This applied to all the clustering methods. 

This meant that whenever the algorithms were good at keeping the number of concerns 

per cluster low, they were not that good at not dispersing concern methods across 

clusters. The DIV2 values did get as high as 0.838 (AMMOC on vector model 2 data) but 

the values higher than 0.65 were usually associated with average to low DISP values. A 

similar pattern occurred with MTA values. The lowest MTA recorded was 1518 (out of 

2381 vectors) but that was associated with a DISP of 0.642, a DIV of 0.894, and a DIV2 
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of 0.415 for a 66-cluster solution. The lowest MTA value was obtained from MOCK on 

model 5 data. 

 Cluster numbers fluctuated wildly from as low as 2 to as high as 622. (No cluster 

numbers were reported by Cojocor and Czibula.) Although all algorithms produced 

clustering results with very low cluster numbers over all vector models, the highest 

number of clusters for the multiobjective algorithms was 143. However, a lower number 

of clusters did not necessarily mean a lower number of methods to analyze. For example, 

the three results that had 622 clusters had MTAs of 2008, 2010, and 2128 whereas results 

with 2 to 4 clusters had MTAs over 2300. 

 Overall, the results are very promising and it is fair to say that the multiobjective 

genetic algorithms are a viable alternative to the singleobjective heuristic algorithms. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

 This study investigated the viability of applying multiobjective genetic clustering 

algorithms to the problem of finding crosscutting concerns in legacy software. It did so 

by using two multiobjective genetic clustering algorithms, MOCK and AMMOC, to 

cluster sets of vectors attained from six vector models and then by comparing the 

clustering results against similar results derived from running two heuristic clustering 

algorithms on the same data. The heuristic algorithms were a version of the k-means 

algorithm and a version of a hierarchical agglomerative algorithm commonly used in 

aspect mining. One of the multiobjective algorithms, MOCK, was not adapted in any way 

for aspect mining but was used as is because the generic objective functions it attempted 

to optimize were similar to those used in aspect mining. The other algorithm, AMMOC, 

was a redesign of MOCK in particular, MOCK's clustering engine PESA-II. The 

redesigned algorithm specifically targeted aspect mining quality metrics as its objective 

functions since the goal of clustering in aspect mining is to generate cluster partitions that 

would optimize such metrics. 

 The multiobjective genetic clustering algorithms had the highest individual DISP 

(1), DISP+DIV (1.978), and DIV2 (0.838) values and the lowest MTA value (1518). 

(Note that these did not occur together.) Even though they did not have the highest DIV 

value, that DIV value of 0.994, belonging to the HAM algorithm from Cojocar and 

Czibula (2008), was accompanied by a DISP of 0.422 giving a DISP+DIV of 1.416. 



86 

 

Contrast that with the highest DISP+DIV value of 1.978, belonging to AMMOC, which 

had a DISP of 1 and a very good DIV of 0.978. 

 Handling diversity seems to have been the biggest problem for all of the 

algorithms run in this study based on their DIV2 values. (Again it should be remembered 

that there were no DIV2 values from Cojocar and Czibula so this comment does not 

apply to their results.) The best DIV2 value of 0.838 went along with a poor DISP of 

0.456. So when diversity seemed to be contained, dispersion seemed to suffer. When one 

looks at the DISP+DIV2 scores, the multiobjective algorithms again dominated with 48 

of the top values held by them. AMMOC came out ahead with a DISP of 0.9 and a DIV2 

of 0.648 giving the highest DISP+DIV2 of 1.548. The nearest heuristic algorithm was a 

kmeans algorithm run with predetermined centroids. It had a DISP of 0.95, a DIV2 of 

0.53, and a DISP+DIV2 of 1.48. 

 Although the multiobjective algorithms produced better results they did not solve 

the problem of finding a method that would create an ideal cluster partition from an 

aspect mining viewpoint. The results from analyzing MOCK and AMMOC's cluster data 

still had to be visually scanned in order to select the result considered to be the best for 

this researcher. MOCK did have the ability to suggest a "best" clustering result but the 

suggestions proved not to be ideal from the aspect mining point of view. That feature was 

not built into AMMOC because the number of clustering results that AMMOC produced 

was low enough to allow visual scanning of the accompanying aspect mining quality 

values and adding that feature meant that AMMOC would take much longer to execute 

than it did. (MOCK's run times for very high-dimensional vector data were very long.) 
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Implications 

 This dissertation exposed aspect mining researchers to an area of research that has 

been shown to be viable in data mining in general. Multiobjective genetic clustering 

algorithms have been used successfully in the data mining arena and this dissertation has 

shown that they can also be very successful in the aspect mining arena. It has also shown 

that designing multiobjective genetic clustering algorithms that attempt to optimize 

specific aspect mining metrics can lead to even better results. 

Recommendations 

 Although AMMOC was the clear winner over all methods with all vector models, 

it is unclear why it was not the winner over MOCK for every vector model since its job 

was to optimize the aspect mining metrics directly. It could have been that MOCK had a 

better initial population to work with. (MOCK's initial population was generated by two 

algorithms, Prim's minimum spanning tree algorithm and a k-means algorithm. 

AMMOC's initial population was generated by Prim's algorithm alone.) But if that was 

the case, then one might have expected MOCK to win all of the time. It could also have 

been that AMMOC's objective functions were not as complementary as they should have 

been. That would have led AMMOC to favor particular population distributions. More 

than likely, the reason was that the probabilistic nature of genetic algorithms, 

compounded by the fact that multiobjective genetic algorithms may only approximate the 

true Pareto front, caused the algorithms to see different parts of the global solution space. 

What would also have contributed were the many parameters that had to be set with some 

of MOCK's parameters being inherent in the code and hence very hard to track down and 
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change. Regardless, the performance of both algorithms justifies their use in aspect 

mining. 

 Based on the overall better performance of AMMOC, this study recommends that 

more research be done in enhancing AMMOC's behavior. With respect to this, the 

challenges would be to do the following: 

1. Find an ideal set of parameters. 

2. Find a set of aspect mining objective functions that would allow a more thorough 

search of the solution space. 

3. Consider increasing the number of objective functions being optimized 

simultaneously. 

 Since there are many more types of multiobjective algorithms used in data mining 

(Coello, 1999; Deb, 1999, 2001; Law et al., 2004; Maulik et al., 2011; Zhou et al., 2011), 

it would make sense to look at how they can be used in aspect mining. The latter is 

especially pertinent since genetic algorithms tend to take much longer to execute than 

non-genetic ones. 

Summary 

 The purpose of this study was to determine whether multiobjective genetic 

clustering algorithms could perform satisfactorily in the aspect mining domain, one in 

which they have not been applied to the best of this researcher's knowledge. The reason 

for attempting this study was the need to find more ways of identifying aspect candidates 

in legacy code. Identifying such candidates would allow the modularization of such code, 
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via refactoring, to remove the scattering and tangling of crosscutting concerns. This in 

turn would lead to more understandable, manageable, and updateable code.  

 Unfortunately, there is no one algorithm that solves the problem of finding aspect 

candidates for all data distributions especially when using clustering techniques. One of 

the reasons for this is that all of the standard algorithms attempt to optimize a function 

that tends to target a particular underlying population distribution. This biases the 

clustering process and hence misses patterns that don't conform to the one targeted by the 

objective function. Also, many of the standard algorithms, like k-means and the 

hierarchical agglomerative algorithms, require that the number of clusters be known 

beforehand. This too adds bias to the process. Another problem that surfaces in some of 

these algorithms is that they tend to home in on local optima and don't see the entire 

solution space. There is therefore a need for algorithms that don't suffer from these 

drawbacks. 

 Genetic clustering algorithms solve two of these problems. For one thing, some 

genetic algorithms do not need to be supplied with the number of clusters since this is an 

automatic result of such algorithms. For another, genetic algorithms get a better view of 

the global solution space because of their ability to recombine and mutate solutions in 

their current population when generating potential solutions for their future populations. 

Note that, although they have a better chance of viewing the global solution space, they 

may still converge to local optima. 

 Unfortunately, many of these genetic algorithms try to optimize a single objective 

function as well. Therefore, they still suffer from being biased towards certain population 
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distributions. Multiobjective genetic clustering algorithms try to remove this bias by 

attempting to optimize multiple objective functions simultaneously. Since some of these 

multiobjective genetic functions have been shown to be successful in finding (near) 

optimal solutions in the data mining domain when they were compared against 

algorithms that are also used in aspect mining, there was reason to believe that they 

would be equally successful in the aspect mining domain. Therefore, this study conducted 

experiments that showed that two multiobjective algorithms performed better overall 

(based on DISP+DIV values) than a partitional algorithm and a hierarchical 

agglomerative algorithm. 

 The study used the k-means partitional algorithm, implemented as the kmeans 

function in the statistical program R. The agnes function in R was the hierarchical 

agglomerative algorithm. One set of runs involved giving kmeans a set of centroids as a 

parameter. This set of centroids was generated by a heuristic developed by Serban and 

Moldovan (2006a). Another set of runs used the number of centroids from the heuristic as 

a parameter but allowed kmeans to create its own centroids randomly. The same number 

of centroids was also used to determine where to cut the dendrogram created by agnes. 

The heuristic was one that was designed from an aspect mining viewpoint. 

 The multiobjective genetic clustering algorithms used were MOCK, obtained 

from its authors Handl and Knowles (2007b), and AMMOC, designed specifically for 

this study. These genetic algorithms attempted to optimize two objective functions 

simultaneously. While MOCK's objective functions (overall deviation and connectivity) 

were generic ones that behaved similarly to those found in the aspect mining literature, 
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AMMOC's two functions were the DISP and DIV clustering quality metrics from aspect 

mining. 

 The data to be clustered were first produced by the FINT tool working on the 

JHotDraw 5.4b1 program. FINT produced a set of methods along with their method 

callers and the number of those callers. Java programs, created by this researcher, 

processed that data in order to extract the different methods that were called, their method 

callers, and all of the classes that each method belonged to. More Java programs were 

written designed to make sets of vectors based on the following vector models already 

described in this study: fanIn_NumCallers, fanIn_hasMethod, sigTokens, 

fanIn_sigTokens, fanIn_hasMethod_sigTokens, 

fanIn_numCallers_hasMethod_sigTokens. The first two models came from Moldovan 

and Serban (2006b). The third model was introduced by Zhang et al. (2008) and the 

following three models were created by Rand McFadden (2011). The actual clustering 

was then done by running the kmeans and agnes functions in R and by running MOCK 

and AMMOC on the vector model data. The quality of the clusterings was determined 

using the previously defined aspect mining metrics DISP, DIV, PREC, DIV2, and MTA. 

The metrics DISP, DIV, and PREC were taken from research by Moldovan and Serban 

(2006a) whereas DIV2 and MTA were obtained from Rand McFadden (2011) and Rand 

McFadden and Mitropoulos (2012, 2013a). 

 Data from the clustering quality analysis of the various runs were compared 

against each other and against other data from sources in the literature, notably from 

Cojocar and Czibula (2008) and Rand McFadden (2011). The data from Cojocar and 

Czibula were results of running their versions of k-means (KM and kAM), their versions 
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of hierarchical agglomerative algorithms (HAC and HAM), and their genetic algorithm 

GAM. The data from Rand McFadden were based on that researcher's runs of the R 

functions kmeans and agnes on data similar to the data from this study. Although the 

main goal of Rand McFadden's experiments was to show that model-based algorithms 

were as good as, if not better than, their heuristic counterparts when used in aspect 

mining, the data recorded from that study's analysis of the kmeans and agnes results were 

used as another benchmark for comparison. 

 The results of this study showed that the multiobjective clustering algorithms 

produced superior results based on their DISP+DIV values. AMMOC was the best 

performer over all vector models giving its best result for vector model 3. However, when 

each vector model was considered separately, AMMOC was not always the best but 

MOCK was. The multiobjective algorithms did not have the highest DIV values although 

many of those values were extremely high. (The highest DIV values were recorded by the 

HAC, HAM, and kAM methods of Cojocar and Czibula.) However, high DIV values did 

not necessarily imply good diversity since the corresponding DIV2 values were 

significantly lower. The DIV2 values indicated that the high DIVs were as a result of the 

contribution of many clusters with non-crosscutting concerns. Unfortunately, the methods 

of Cojocar and Czibula had no DIV2 values so it was impossible to determine how good 

their methods were at achieving optimal diversity. 

 The multiobjective algorithms used in this study did not solve the problem of 

mining legacy data for aspect candidates but this study did introduce aspect mining 

researchers to a promising area of research. There are many directions that future 

research could take such as, looking at different types of multiobjective algorithms, or 
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finding better combinations of objective functions suitable for aspect mining, or 

increasing the number of objective functions to be optimized. Regardless of which 

direction the research takes, this researcher is certain that such research will move aspect 

mining closer to its goal. 
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Appendices 

 

Appendix A 

Multiobjective Optimization and Pareto Optimality 

 

The following was obtained from Coello (1999) and from Maulik, Bandyopadhyay, and 

Mukhopadhyay (2011). 

Multiobjective Optimization 

Find the vector �̅�∗ =  [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ ]𝑇 of decision variables that satisfies the m 

inequality constraints 

𝑔𝑖(�̅�)  ≥ 0,    𝑖 = 1, 2, … , 𝑚 

and the p equality constraints 

ℎ𝑖(�̅�) = 0,    𝑖 = 1, 2, … , 𝑝 

and optimizes the vector function 

𝑓(̅�̅�) =  [𝑓1(�̅�),  𝑓2(�̅�), … , 𝑓𝑘(�̅�)]𝑇 

where each𝑓𝑖(�̅�), 𝑖 = 1, … , 𝑘, is an objective function. 

The constraints define the set of feasible solutions from which the optimal 

solution will be chosen. The problem is that there is no clear definition of optimality in 

multiobjective optimization. There may be many solutions that optimize one or more of 
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the objective functions but it is rare that one solution optimizes all of them. Most 

solutions represent some tradeoff as far as the optimization of the objective functions. 

One of the theoretical tools for determining optimality in the multiobjective 

context is Pareto optimality. Without loss of generality, Pareto optimality will be defined 

for the problem of minimizing some given vector of objective functions. 

A decision vector, �̅�∗, is said to be Pareto optimal if there does not exist another 

decision variable, �̅�, that dominates it. That is, there is no �̅� such that  

𝑓𝑖(�̅�)  ≤  𝑓𝑖(�̅�∗)  ∀𝑖 ∈ {1, 2, … , 𝑘} 

and 

𝑓𝑖(�̅�)  <  𝑓𝑖(�̅�∗)  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ {1, 2, … , 𝑘}. 

Note that Pareto optimality partially orders the set of feasible solutions as there may be 

pairs of solutions that do not dominate each other. The global set of non-dominated 

solutions forms the Pareto optimal set and its image in objective space is referred to as 

the Pareto front. (See Figure 1 for an example of a Pareto front.) 

A multiobjective optimization algorithm strives to achieve the following: 

1. The set of Pareto optimal solutions is a subset of the true Pareto optimal set. 

2. The set of Pareto optimal solutions represents a uniform and diverse distribution 

of solutions across the Pareto front. 

3. The set of Pareto optimal solutions is spread across the entire spectrum of the 

Pareto front. 
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Appendix B 

Default Settings for MOCK 

 

The following are the parameter settings for MOCK recommended by Handl and 

Knowles (2007a). In the table, N refers to the number of data items to be clustered. 

Table 21 - Default Settings for MOCK 

Parameter Setting 

Number of generations 1000 

External population size 1000 

Internal population size 10 

Resolution of hypergrid per 

dimension 

10 

Maximum number of clusters, kuser 25 or 50 

# of initial solutions, fsize 2 x kuser 

Initialization Minimum spanning tree (L = 10) and k-

means 

Mutation type L nearest neighbors (L = 10) 

Mutation rate, pm 
𝑝𝑚 =  

1

𝑁
+  (

𝑙

𝑁
)

2

 𝑤ℎ𝑒𝑟𝑒 𝑙 ∈ {1, … , 𝐿}   

Recombination Uniform crossover 

Recombination rate, pc 0.7 

Objective functions Overall deviation and connectivity (L = 10) 
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# of reference distributions 3 

 

Handl and Knowles pointed out that most of those parameters were required by MOCK's 

PESA-II clustering engine and that those settings were the ones commonly used in the 

literature. They did state that increasing the IP and the number of iterations may improve 

the algorithm's accuracy. They also stated that changing the number of control 

distributions (fronts) required a consideration of the tradeoff between accuracy and 

computational cost, the latter increasing significantly with a higher number of control 

fronts. They remarked that kuser could be interpreted as an upper bound on the number of 

clusters expected in the data set and that its setting was not crucial. Hence, very large 

values could be used. They also mentioned that the choice for L affected the sensitivity of 

the algorithm towards small clusters. They advocated a relativity large L to prevent 

outliers from ending up in their own clusters but warned that too large a value for L could 

result in clusters being overlooked. Therefore, they suggested values in the range 5 to 20. 
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Appendix C 

Aspect Mining using Multiobjective Clustering (AMMOC) 

 

 AMMOC is a modified version of MOCK's PESA-II engine developed by David 

Corne (Corne, Jerram, Knowles, & Oates, 2001). (The code was not directly attributed to 

Corne in the literature but was obtained from comments in the source code for MOCK, in 

particular, the program pesa2Clust.c.) AMMOC was implemented in Java based on the 

algorithms found in the paper "Multiobjective clustering with automatic determination of 

the number of clusters" (Handl & Knowles, 2004) as well as from the source code 

available on the Web (Handl & Knowles, 2007b). Like MOCK, AMMOC is a genetic 

algorithm designed to optimize multiple objectives simultaneously and produce a set of 

(near) optimal solutions. Unlike MOCK, AMMOC does not implement the part that 

automatically determines the number of clusters. It also does not provide a graphical user 

interface. The decision to exclude the automatic determination of the number of clusters 

was based on the fact that finding the optimal number of clusters required comparing 

every member of the solution against every member of a set of reference fronts. From 

experience running MOCK with different numbers of reference fronts it was determined 

that, since AMMOC was already producing a relatively small number of solutions, the 

addition of that component was not worth the large increase in computation time. 

 AMMOC uses the same elitist strategy as PESA-II by keeping track of an internal 

and external population. The internal population is of fixed size. The external 

population's size can fluctuate but is bounded. The individuals in the internal population 
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undergo mutation and recombination and consist of clustering solutions that explore the 

global solution space. The individuals in the external population are selected from the 

internal population and are chosen if no other individual in the internal population 

dominates them. (See Appendix A for the definition of 'dominate' in multiobjective 

optimization.) The external population consists of 'niches' (Handl & Knowles, 2004) that 

are implemented as a hypergrid in objective space. Niching is used to help spread 

solutions across the entire objective space by only allowing a solution to enter a full 

external population if it occupies a less crowded niche. The internal population is 

replenished by randomly selecting individuals uniformly from occupied niches in the 

external population. However, AMMOC, unlike MOCK's PESA-II algorithm, 

recombines and mutates individuals as they are selected from the external population as 

opposed to putting them into the internal population first and then applying the operators 

on them. It also uses a simplified calculation for the probability of mutation; the 

probability of mutation is simply equal to the reciprocal of the number of elements in the 

data set. The latter is actually derived from settings given in Table 1 of the 2004 paper by 

Handl & Knowles which apparently applied to an older version of MOCK. 

 AMMOC also uses the same locus-based adjacency representation for each 

clustering solution. This is a graph-based solution where each individual clustering 

solution, g, is made up of N genes, N being the number of vectors in the data set. Each 

gene can take an allele value, j, also from 1 to N. Therefore, if genei has an allele value of 

j, this indicates that genei is connected to genej so they will end up in the same cluster. As 

in MOCK, the initial internal population is generated by first executing Prim's Minimum 

Spanning Tree algorithm on the set of vectors. This produces the first individual to be 
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added to the internal population. Each subsequent member, k, is generated from the first 

individual by removing the (k-1) longest links. 

 It should be noted that the algorithm for the PESA-II engine came from an earlier 

version of MOCK since it was the only one available and the actual updated code was a 

bit difficult to decipher. The earlier version only used Prim's algorithm to generate all the 

initial individuals for the internal population. The newer version used Prim's for half of 

the population and k-means for the other half. Since AMMOC was developed 

incrementally to make testing easier and it gave good results when Prim's was used for 

the entire initial population, this researcher felt that the extra time taken to include k-

means and carry out more tests was not worth it at that time. 

 Hence, the main differences between the implementation of the PESA-II engine in 

the current version of MOCK and the same engine in AMMOC are: 

 MOCK optimizes two objective functions, overall deviation and connectivity (see 

chapter 2 of this document) whereas AMMOC optimizes the aspect mining 

functions DISP and DIV. 

 MOCK uses Prim's algorithm and k-means to initialize the internal population 

whereas AMMOC only uses Prim's algorithm. 

 AMMOC does not implement automatic K determination. 

 AMMOC, unlike MOCK's PESA-II algorithm, recombines and mutates 

individuals as they are selected from the external population as opposed to putting 

them into the internal population first and then applying the operators on them. 
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 In AMMOC, the probability of mutation is simply 1/N where N = number of 

elements in the data set. 

It should also be noted that AMMOC does not provide a graphical user interface as 

MOCK does. 
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Appendix D 

AMMOC's Adaptation of the PESA-II Engine 

 

public void pesa2AMMOC(double probMutation, double probCrossover,  

int numberOfGenerations) 

{ 

  initializePopulations();  //put individuals into internal population  

// and configure external population 

  generateInitialChromosomesFromMST(); 

  externalPopulation.setOptimization(optimization);  //false is maximization 

   

  for(int i = 0; i < internalPopulationSize; i++) 

  { 

   Chromosome chromosome = internalPopulation.get(i); 

   int[] clusterAssignments = chromosome.getClusterAssignment(); 

   functions.setClusterAssignments(clusterAssignments); 

   chromosome.setObjectiveValue(0, functions.function1()); 

   chromosome.setObjectiveValue(1, functions.function2()); 

   externalPopulation.updateExternalPopulation(chromosome); 

  } 

   

  for(int gen = 1; gen <= numberOfGenerations; gen++) 

  { 

  //Clear out internal population so that you can fill it from  

external population 

   internalPopulation.clear();  

   //Pull them all out first and work on them 

   for(int i = 0; i < internalPopulationSize; i++) 

   { 

Chromosome chromosome1 =  

externalPopulation.getRandomChromosomeFromPopulation(); 

    if(rand.nextDouble() < probCrossover) 

    { 

Chromosome chromosome2 =  

externalPopulation.getRandomChromosomeFromPopulation(); 

chromosome1 =  

crossover(chromosome1, chromosome2, probCrossover); 

    } 
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    chromosome1 = mutate(chromosome1, probMutation); 

    internalPopulation.add(chromosome1); 

   } 

    

   //Now put them back in 

   for(int i = 0; i < internalPopulationSize; i++) 

   { 

    Chromosome chromosome = internalPopulation.get(i); 

    int[] clusterAssignments =  

     chromosome.getClusterAssignment(); 

    functions.setClusterAssignments(clusterAssignments); 

    chromosome.setObjectiveValue(0, functions.function1()); 

    chromosome.setObjectiveValue(1, functions.function2()); 

    externalPopulation.updateExternalPopulation(chromosome); 

   } 

    

  }//end generations 

}  //end pesa2AMMOC 
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Appendix E 

Non-AMMOC Programs 

  

Java classes were written to do the following: 

1. Generate methods and classes from the results of the FINT analysis. 

2. Generate vectors for each vector model. 

3. Generate centroids, and hence cluster numbers, to be used by the k-means and 

hierarchical agglomerative algorithms. 

4. Prepare MOCK clustering results for aspect mining analysis. 

5. Prepare AMMOC clustering results for aspect mining analysis. 

6. Generate individual aspect mining quality results along with cluster 

distributions. 

7. Generate collective aspect mining quality results in table form. 
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