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Multi-Objective Evolutionary Algorithms (MOEAs) are not easy to use because they 
require parameter tunings of three main parameters - population size, crossover 
probability, and mutation probability - in order to achieve desirable solutions and 
performance for an arbitrary complex problem. Moreover, the use of fixed parameter 
settings may lead to slow convergence and sub-optimal solutions. This dissertation 
develops a MOEA with self-adaptive crossover, self-adaptive mutation, and adaptive 
population size parameters for automating the process of adjusting appropriate parameter 
values in order to make the MOEA more efficient, simple to use and available to more 
users. The MOEA with adaptable parameters is built on the NSGA-II (Non-dominated 
Sorting Genetic Algorithm II) and named as ANSGA-II (Adaptable NSGA-II). The 
NSGA-II is chosen because it is one of the best-known MOEAs. In the ANSGA-II, the 
crossover and mutation parameters are attached to each solution in the population and 
allowed to co-evolve with each solution. This enables the algorithm to carry prior 
successful crossover and mutation for creating children solutions and for adaptation of 
the parameters. Since good parameter values are associated with good candidate 
solutions, better parameter values will survive because they produce better solutions. The 
ANSGA-II selects the right population size by running several populations with different 
population sizes simultaneously and allows the smaller populations more time to run. 
Smaller populations may find diverse non-dominated solution sets close to the Pareto-
optimal front faster than the larger populations. If a subsequent larger population 
identifies a better non-dominated solution set then the algorithm stops running the smaller 
population since it is unlikely to identify better solutions than the larger one due to 
genetic drift. Two performance metrics are investigated for their effective use in 
comparing non-dominated solution sets among different populations during the execution 
of the ANSGA-II. The dissertation evaluates and discusses the performance of the 
ANSGA-II, in terms of finding a diverse non-dominated solution set and converging to 
the true Pareto-optimal front, by comparing the results obtained on a suite of thirteen 
benchmark multi-objective problems with those obtained by the original NSGA-II. The 
results demonstrate that the ANSGA-II out-performs the NSGA-II. The improvement 
comes with the cost of longer execution time due to overheads of finding good non-
dominated solutions and learning good parameter values at the same time. However, the 
execution time appears to be acceptable on all thirteen benchmark multi-objective 
problems. 
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Chapter 1 
 

Introduction 

 

This chapter presents an introduction to this dissertation. It is organized as follows: 

First, it describes the problem to be investigated and goal to be achieved. Second, it 

provides the relevance and significance for the research. Third, it describes barriers and 

issues that have prevented the goal to be achieved. Fourth, it continues by presenting 

research questions that the dissertation investigates and provides the answers. Fifth, it 

describes the limitations and delimitations of this study. Sixth, it provides definitions of 

key terms used throughout this study. Finally, it presents a summary of this chapter. 

 

Problem Statement and Goal 

This section provides a brief background of Multi-Objective Evolutionary 

Algorithms (MOEAs). Thereafter, it presents the problem statement and goal of the 

dissertation. 

Background 

Real-world optimization problems often involve simultaneous optimization of 

multiple and conflicting objectives. In a multi-objective optimization problem (MOP), it 

is not always possible to find a solution that is best with respect to all objectives. A 

solution may be optimal regarding one objective, but at the same time be inferior 

regarding another objective. Typically, the goal is to find a set of optimal trade-off 

solutions known as Pareto-optimal set. These solutions are optimal in a broader sense that 

no other solutions in the search space are better to them when all objectives are 
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considered. Since none of the solution in the set is absolutely better than any other 

solution with respect to all objectives, any one of them is an acceptable solution.  The 

choice of one solution over the other requires problem knowledge and a number of 

problem-related factors, often taken by a decision maker (human) (Osyczka, 1985; Deb, 

2001; Dias & Vasconcelos, 2002). Some basic concepts used in multi-objective 

optimization are presented in the following. 

Definition of a Multi-Objective Problem (MOP): Formally, a MOP can be defined 

as follows: 

Find the vector * * * *
1 2, ,..., nx x x =  x , which minimize (or maximize, since min[f(x)] 

= -max[-f(x)]) the vector function: 

 [ ]1 2( ) ( ), ( ),..., ( )mf f f f Z= ∈x x x x  (1) 

and will satisfy the p inequality constraints: 

 ( ) 0   1,2,...,ig i p≥ =x (2) 

and the q equality constraints: 

 ( ) 0   1,2,...,ih i q= =x (3) 

where m is the number of objective functions, [ ]1 2, ,..., nx x x X= ∈x is the vector of 

decision variables, nX R∈ is the n-dimensional decision space, and mZ R∈ is the m-

dimensional objective space. The function f: X → Z evaluates the quality of a specific 

solution by assigning it an objective vector [z1, z2,..., zm] ∈ Z. Thus, for each solution x in 

the decision space, there exists a corresponding solution in the objective space, denoted 

by [ ]1 2( ) , ,..., mf z z z Z= ∈x = z . Fonseca and Fleming (1995) pointed out that when there 

is no priori preference defined among the objectives, dominance is the only way to 
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determine if one solution is better than the other solution. Figure 1 illustrates a general 

MOP. 

Dominance Relation: A solution xa ∈ X is said to dominate a solution xb ∈ X

(denoted as a bx xp ) if it is better than or equal to xb in all objectives (i.e. 

( ) ( )a i bf x f x≤i for all i = 1,…,m) and at least better than xb in one objective (i.e. 

( ) ( )a j bf x f x<j for at least one j = 1,…,m).  

Non-dominated: A solution is referred as non-dominated if it is not dominated by 

any other solutions. 

Decision space Objective space

Pareto-optimal front
Pareto-optimal front approximation

Pareto-optimal set
Non-dominated set

[x1, x2,…, xn] [z1, z2,…, zm]

x1

x2 z2

z1

f

evaluationsearch

Figure 1: Illustration of a general multi-objective optimization problem 

Goal of Multi-Objective Optimization: The goal of multi-objective optimization is 

to find among the set X of all vectors, which satisfy (2) and (3), the particular set 

* * *
1 2, ,..., nx x x which yields the optimal values of all objective functions.  
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Pareto optimal: A vector of decision variables X∈*x is Pareto optimal if *x is 

non-dominated with respect to the set of all possible vectors in X (i.e., if there does not 

exist another X∈x such that *( ) ( )if f≤i x x for all i = 1,…, m and *( ) ( )jf f<j x x for at 

least one j = 1,…,m). Pareto-optimal vectors or Pareto-optimal solutions are characterized 

by the fact that improvement in any one objective means worsening at least one other 

objective.  

Pareto-optimal Set: The Pareto-optimal set  (denoted as P*) is the set of all possible 

Pareto-optimal solutions (i.e., { }* | and  ( ) ( )P X X f f= ∈ ¬∃ ∈ p* *x x x x ). A Pareto-

optimal set is always a non-dominated set. However, a non-dominated set may contains 

some Pareto-optimal solutions and some non-Pareto-optimal solutions. 

Pareto-optimal Front: The plot of the objective functions whose non-dominated 

solutions are in the Pareto-optimal set is called the Pareto-optimal front (denoted as PF*)

(i.e. { }* *
1 2( ) ( ), ( ),..., ( )  | mPF f f f f P = = ∈ 

* * * * *x x x x x ). Figure 1 above and Figure 2 

below illustrate Pareto-optimal solutions and Pareto-optimal front. 

 

Premium

Lo
ss

A

D

B

C

Pareto-optimal solution
Dominated solution

Pareto-optimal front

E

Feasible search space

 
Figure 2: Illustration of Pareto-optimal solutions and Pareto-optimal front 
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Figure 2 provides a hypothetical example of purchasing a car insurance policy. The 

purchaser wishes to reduce monetary loss in case of a car accident but at the same time he 

wishes to pay low premium on the policy. Thus, there are two conflicting objectives, loss 

and premium, both of which are to be minimized. The purchaser also wishes the policy to 

have the following coverages or conditions: collision and comprehensive coverages. In 

mathematical terminology, the available limits and deductibles are the problem’s decision 

variables, the conditions to be met are the constraints, and the process of minimizing and 

maximizing the objectives is called optimization. In Figure 2, the point A represents a 

solution, which has a near minimum premium but high loss. On the other hand, the point 

B represents a solution, which has a high premium but near least loss. If both objectives 

are considered, one cannot conclude if solution A is better than solution B, or vice versa. 

One solution is better than other in one objective, but is worse in the other. In Figure 2, 

the Pareto-optimal front is marked by the dashed line. All the trade-off solutions along 

the Pareto-optimal front are known as Pareto-optimal solutions. The area behind the 

Pareto-optimal front is known as feasible search space or feasible objective space. In 

front of Pareto-optimal front is infeasible search space, in which solutions are un-

attainable corresponding to the optimality of both objectives. There exist non-Pareto-

optimal solutions such as the point C. When the solution C is compared with the solution 

A, again one cannot conclude whether one is better than the other in both objectives. 

However, the solution C is not a member of the Pareto-optimal set because there exists 

another solution D in the search space, which is better than the solution C in both 

objectives. The solutions such as C are known as dominated solutions or inferior 

solutions.  
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Goals of a Multi-Objective Optimization Algorithm: The goal of a multi-objective 

optimization algorithm is to (i) guide the search towards the global Pareto-optimal front 

and to (ii) maintain solution diversity in the Pareto-optimal front (Deb, 2001). These two 

goals are distinct and in some sense orthogonal to each other as illustrated in Figure 3. 

The non-dominated solutions found by a multi-objective optimization algorithm might 

not represent the true Pareto-optimal set but approximate the true Pareto-optimal set. 

f1

f 2

Pareto-optimal
front

Fir
st

go
al

-

co
nv

erg
en

t

Second goal - diversity

Figure 3: Two goals of a multi-objective optimization algorithm 

A Multi-Objective Evolutionary Algorithm (MOEA) is a modified version of the 

traditional Genetic Algorithm (GA) - also known as the simple GA, designed to solve 

multi-objective optimization problems (MOPs). MOEAs have been recognized to be 

suitable for solving multi-objective optimization problems because of their ability to find 

good solutions for competing objective functions simultaneously and to search for 

multiple non-dominated solutions simultaneously in the population of candidate 

solutions. This capability enables them to find several trade-off solutions for all 

objectives in a single run of the algorithm, instead of having to perform a series of 

separate runs as in the case of the traditional techniques such as weighted sum, goal 

programming and weighted min-max methods (Khare, Yao, & Deb, 2002; Büche, Müller, 
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& Koumoutsakos, 2003). Ideally, a MOEA returns a Pareto-optimal set, the solutions not 

dominated by any other solution in the search space. In addition, MOEAs are less 

susceptible to the shape or continuity of the Pareto-optimal front, whereas these two 

issues pose a problem for the mentioned traditional techniques. 

Problem Statement  

As with the simple GAs, MOEAs are not easy to use because they require 

parameter tunings of population size, crossover probability, and mutation probability in 

order to achieve the desirable solutions and performance for an arbitrary complex 

problem. The task of tuning GA parameters is not trivial due to the complex and 

nonlinear interactions among the parameters and their dependency on many aspects of the 

particular problem being solved such as the search space size and the shape of the fitness 

surface (Deb & Agrawal, 1998; Eiben, Hinterding, & Michalewicz, 1999; Mitchell, 

2002). As a result, these GA parameters cannot be optimized one at a time; and trying all 

different combinations systematically is practically impossible (Eiben et al., 1999). 

Another problem is that the proper parameter values are not fixed but varied during a run 

because a GA is dynamic and adaptive process (Fogarty, 1989; Davis, 1991; Hesser & 

Männer, 1991; Bäck, 1992; Mühlenbein, 1992; Laumanns, Rudolph, & Schwefel, 2001). 

Therefore, the use of fixed parameter settings may lead to slow convergence and sub-

optimal obtained solutions (i.e. solutions are not close to the Pareto-optimal front), 

especially when large search spaces are to be explored in solving complex optimization 

problems. A possible solution to these problems is to monitor a GA’s progress in order to 

adjust its parameter values during its execution. This technique is known as parameter 

control. Eiben et al. (1999) classified parameter control into three different categories: 
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deterministic control, adaptive control, and self-adaptive control. In deterministic control, 

the parameter values are changed during a run according to some deterministic rule, 

which usually depends on time such as number of generations. In adaptive control, 

information fed back from the GA, during its run, is used to adjust the parameter values 

and all individuals in the population have the same parameter values. In self-adaptive 

control, information fed back from the GA, during its execution, is used to adjust the 

values of parameters attached to each individual in the population. Thus, the parameters 

are co-evolved with each individual in the population and each individual in the 

population can have different parameter values in the self-adaptive control technique. 

Although previous studies have applied parameter control techniques to MOEAs 

(Laumanns et al., 2001; Sbalzarini, Müller, & Koumoutsakos, 2001; H.A. Abbass, 2002; 

Büche et al., 2003; Devireddy & Reed, 2004), most of these studies focus on one or two 

parameters in isolation and ignore other parameters. This dissertation aims to investigate 

simultaneous parameter control techniques in MOEA for all three parameters - 

population size, crossover, and mutation. 

Dissertation Goal  

The objective of this dissertation is to develop a MOEA with self-adaptive 

crossover, self-adaptive mutation, and adaptive population size parameters for 

automating the process of selecting appropriate parameter values. This MOEA is built on 

the NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb, Pratap, Agarwal, & 

Meyarivan, 2002) and named as ANSGA-II (Adaptable NSGA-II). The NSGA-II, which 

supports static parameters, is selected in this study because it has been recognized to 

perform as well or better than other MOEAs with the same goal of finding a diverse 
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Pareto-optimal solution set such as the Pareto-Archived Evolution Strategy (PAES) and 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler, Laumanns, & Thiele, 2002; 

Devireddy & Reed, 2004).  

In the ANSGA-II, the crossover and mutation parameters are attached to each 

solution in the population and allowed to co-evolve with each solution. This enables the 

algorithm to carry prior successful crossover and mutation for creating children solutions 

and for adaptation of these two parameters since good crossover and mutation 

probabilities are associated with good candidate solutions. The ANSGA-II, adopting the 

multiple population approach of Harik and Lobo (1999), runs several populations with 

different population sizes simultaneously. Two running performance metrics are 

integrated into the ANSGA-II and investigated for their effective use in comparing non-

dominated solution sets among different populations during the execution of the 

ANSGA-II – one for measuring the convergence to a reference set suggested by Deb & 

Jain (2002) and other for measuring the diversity of solutions suggested by Deb (2002). 

The convergent metric of Deb and Jain, which measures the closeness of solutions to the 

Pareto-optimal front is evaluated in this study because it can work with an unknown set 

of Pareto-optimal solutions by using a population-agglomeration technique and it is 

computational fast (Deb & Jain, 2002). The diversity metric, which measures the spread 

of the obtained solutions, is adopted in this study because it was used in the original study 

of NSGA-II (Deb, Pratap et al., 2002) for measuring the diversity of the obtained 

solutions. These two metrics can provide a comparative evaluation of two or more 

MOEAs, or compare two or more non-dominated solution sets. They can also enable the 

ANSGA-II to determine when the Pareto-optimal solutions have been sufficiently 
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obtained by calculating the change in the metric results. If the differences of these two 

metric results fall within a certain threshold (e.g. 0.01) respectively for two successive 

runs then the obtained non-dominated solutions can be considered identical and the 

algorithm can terminate with a proper population size. The dissertation then evaluates 

and discusses the performance of the ANSGA-II, in term of finding a diverse Pareto-

optimal solution set, by comparing the results obtained on the benchmark multi-objective 

test problems with those obtained by the original NSGA-II. These test problems, which 

have been used to evaluate the NSGA-II (Deb, Pratap et al., 2002), consist of nine un-

constrained test problems with two objective functions, three constrained test problems 

with two objective functions, and one real-world problem with five objective functions 

and seven constraints (see Appendix A).  

 

Relevance and Significance 

MOEAs have been used increasingly in a wide range of real-world multi-objective 

optimization applications including but not limited to: telecommunication network design 

(Flores, Cegla, & Cáceres, 2003; Maple, Guo, & Zhang, 2004), software quality 

enhancement (Khoshgoftar, 2004), risk-based corrective action design (Gopalakrishnan, 

Minsker, & Padera, 2001), optimization of corrugated bulkhead forms (Yang & Hwang, 

2002), digital filter design (Schnier, Yao, & Liu, 2001). Today, the MOEA repository 

(http://www.lania.mx/~ccoello/EMOO/) contains over 2178 papers, from which a vast 

majority are applications (Coello, 2005). 

According to Eiben et al. (1999) and Laumanns et al. (2001), the issue of 

controlling values of various parameters of a GA is one of the most important and 
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promising areas of research in evolutionary computation. It has a potential of adjusting 

the algorithm to the problem while solving the problem and the user does not have to 

specify or tune the values of the parameters. Several parameter control methods have 

been proposed and applied successfully for single objective optimization problems using 

simple GAs. Both theoretical and empirical studies have suggested that the proper 

mutation probability (a proper mutation probability enables diversity in the population 

without destroying already found good solutions) varies with evolutionary time according 

to the state of the search and the nature of the search problem (Fogarty, 1989; Hesser & 

Männer, 1991; Bäck, 1992; Mühlenbein, 1992).  Davis (1991) applied a time-varying 

schedule of parameter settings and found that performance was improved. Spears (1991) 

applied self-adaptation for selecting optimal crossover operator (uniform crossover or 

two-point crossover) and showed that this adaptive crossover operator out-performs non-

adaptive crossover operator, especially with large population sizes. Smith & Fogarty 

(1996) used self-adaptation for mutation rate and  showed that the self-adaptive mutation 

significantly improves the GA’s performance as well as making it possible to remove the 

mutation parameter from the set of decisions faced by the user. However, research 

focusing on the role of parameter control in MOEAs remains rare. Most MOEAs such as 

NSGA-II, PAES, and SPEA2 support static parameters, where the parameter settings are 

initialized at the beginning of a MOEA’s execution and fixed during the course of its 

execution.  The use of fixed parameter settings may lead to slow convergence and sub-

optimal obtained solutions (i.e. solutions are not well spread and not close to the Pareto-

optimal front), especially when large search spaces are to be explored in solving complex 

optimization problems because the proper parameter values are not fixed but varied 
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during a run and a MOEA is dynamic and adaptive process. Although some previous 

studies have applied parameter control techniques to MOEAs (Laumanns et al., 2001; 

H.A. Abbass, 2002; Büche et al., 2003; Devireddy & Reed, 2004), these studies focus on 

one or two parameters in isolation and ignore other parameters. Therefore, more research 

needs to be done on parameter control techniques for MOEAs. 

This dissertation aims to investigate simultaneous parameter control techniques in 

MOEA for all three parameters – population size, crossover, and mutation. Hence, it 

significantly advance knowledge in the research area of parameter control techniques for 

MOEAs and improve MOEAs by making them more efficient, simple to use and 

available to more users. 

 

Barriers and Issues 

A MOEA with simultaneous parameter control technique for all three parameters 

population size, crossover, and mutation has not been developed for a number of reasons. 

One reason is that applying self-adaptive crossover and mutation to individuals reveals an 

additional difficulty compared to single objective optimization. Self-adaptive parameters 

benefit from the recombination of many parent solutions. However, the result of the 

multi-objective optimization process is usually not a single solutions but a set of trade-off 

solutions. These trade-off solutions converge towards different areas of the Pareto-

optimal front and proper parameter values differ between these solutions (Büche et al., 

2003). Büche et al. also pointed out that the dominance criterion based MOEAs work 

well for approximation of the Pareto front, but fail in the final convergence since the 
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archive size of this class of algorithms is usually limited. Deb (2001) also agreed with 

this point as described in the next paragraph. 

Deb (2001) pointed out two disadvantages of the NSGA-II. The first disadvantage 

is that Pareto-optimal solutions may be replaced by other inferior non-dominated 

solutions due to the way the algorithm preserve elitism. Elitism in NSGA-II is ensured by 

comparing the current population with previously found best non-dominated solutions 

and by combining the parent and child populations to form a combined population with 

size 2N (Figure 8 below illustrates this process). The combined population is then sorted 

according to non-domination. Solutions belonging to the first non-dominated front are of 

the best solutions in the combined population. As long as the size of the first non-

dominated set is not larger than the population size, the algorithm preserves all of them in 

the new population of size N. However, in later generation, when the first non-dominated 

set has nearly converged to the Pareto-optimal set, there might be more than N solutions 

in the first non-dominated set of the combined parent-offspring population, only those 

solutions with greater crowding distance (less crowded area) are chosen. In doing so, the 

algorithm has no way to know which solutions are already Pareto-optimal and which are 

not Pareto-optimal (but non-dominated). As a result, already found Pareto-optimal 

solutions may be replaced by other inferior non-dominated solutions and convergence 

cannot be guaranteed. Although, in a later generation these replacing non-dominated 

solutions may get dominated by other Pareto-optimal solutions, the algorithm can go into 

the cycle of generating Pareto-optimal and non-Pareto-optimal solutions before finally 

converging to a wide spread set of Pareto-optimal solutions. Thus, the algorithm wastes 
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computational resources. The second disadvantage is that the elitism requires a 

population of size 2N, instead of size N required in most other MOEAs. 

Tran (2005) integrated the parameter-less GA approach (Harik & Lobo, 1999) into 

the NSGA-II and named the modified version as parameter-less NSGA-II (Chapter  2 – 

Review of Literature provides descriptions of the parameter-less GA and NSGA-II). As 

in the parameter-less GA and the NSGA-II, the parameter-less NSGA-II has the 

following parameter settings internally within the algorithm:  

• Ignores mutation by setting pm = 0; 

• Crossover probability pc = 0.5; 

• Distribution indices for real-coded crossover operator ηc = 20; 

• Adaptive population size: By establishing a race among multiple populations 

with different population sizes. Each population is allowed to run up to a 

maximum number of generations equals to 500. 

The result of this study shows that this adaptive population size with multiple 

population approach does not work well for a Pareto-based MOEA like the parameter-

less NSGA-II. In the parameter-less GA (single-objective case), each solution in the 

population is evaluated by using a fitness function (often the same as the objective 

function) and assigned an absolute fitness value. In order to determine the proper 

population size, solutions in two populations are compared for better fitness. For 

example, if a smaller population has not converged but it has the average fitness better 

than that of the larger population then there is no need to continue running the larger 

population because the smaller population size is the proper one. In contrast to single-

objective optimization, in multi-objective optimization, both fitness assignment and 
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selection must support several objectives. In a MOEA, each solution is assigned a fitness 

value equal to its non-dominated rank in the population (1 is the best rank, 2 is the next 

best rank and so on), which is determined by using a non-dominated sorting procedure 

(as described in Chapter 2 – Review of Literature below). Solutions that have the best 

rank values (rank 1) constitute the first non-dominated front. In order to determine the 

proper population size, solutions in two populations are compared for better non-

dominated solutions, which means that the solutions in the first non-dominated front of a 

smaller population are compared with the solutions in the first non-dominated front of a 

larger population. However, all of these solutions have the same rank values. As a result, 

there is no simple way to determine the better non-dominated solution set between two 

non-dominated solution sets in different populations and the parameter-less NSGA-II 

fails to determine a proper population size. Performance metrics can be integrated into a 

MOEA to measure the quality of the obtained solutions during its run in order to monitor 

and provide progress information for adjusting the values of parameters. However, most 

of the existing performance metrics available in published literature are applied to the 

final non-dominated set obtained by a MOEA to evaluate its performance and may not be 

computationally efficient to be used as running performance metrics (Deb & Jain, 2002). 

Until recently, studies have introduced some performance metrics that are suitable to be 

used as running performance metrics (H.A. Abbass, 2002; Deb & Jain, 2002; Farhang-

Mehr & Azarm, 2002; Lu & Yen, 2002). 

Mitchell (2002) pointed out that a big issue for any adaptive parameter approach is 

that how to match the rate of adaptation for parameter settings with the adaptation rate of 

solutions in the GA population. This issue is also applicable for a MOEA. The feedback 
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from the running MOEA (i.e. obtained from the running metrics) is used to adjust the 

values of the parameters, but it might be difficult and computationally expensive to keep 

this feedback information current enough for the parameter settings to catch up with the 

population’s current state. According to Mitchell, very little research has been done on 

measuring these different rates of adaptation and how well they match in different 

adaptive parameter approaches.  

Despite the fact that many new and improved MOEAs have been introduced, there 

severely lack for studies related to theoretical convergence analysis with guaranteed 

spread of solutions in MOEAs (Deb, 2001; Laumanns, Thiele, Deb, & Zitzler, 2002). In 

this regard, several studies have proposed a number of MOEAs, which ensure 

convergence to the true Pareto-optimal set (Rudolph, 1998; Veldhuizen & Lamont, 1998; 

Hanne, 2000b, 2000a; Rudolph & Agapie, 2000; Rudolph, 2001). However, these 

MOEAs do not guarantee the diversity of the obtained non-dominated set. In the ideal 

approach to multi-objective optimization, there are two tasks: minimize the distance of 

the obtained solutions to the Pareto-optimal set and maximize the diversity of the 

obtained non-dominated set. Since achievement of one task does not automatically 

guarantee achievement of the other task. Thus, in addition to a proof for convergence to 

the true Pareto-optimal set, it is also necessary to have a proof of diversity of the obtained 

non-dominated set. Until recently, Laumanns et al. (2002) proposed a new class of 

MOEAs based on the ε-dominance concept (see ε-Dominance Relation in section 

Definition of Terms) which have both properties of convergence to the true Pareto-

optimal set and diversity of the obtained non-dominated set together. They also provided 
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a proof of convergence to the true Pareto-optimal set while preserving diversity of the 

obtained solutions at the same time. 

 

Research Questions 

Accomplishment of this dissertation answers the following research questions: 

• Do adaptable parameters (population size, crossover, mutation) improve the 

performance of the ANSGA-II in term of finding a diverse set of Pareto-

optimal solutions? 

• Are the convergent and diversity metrics reliable for measuring the quality of 

the obtained solution set in term of approximating to the true Pareto-optimal set 

and diversity of solutions?  

• Can the running convergent and diversity metrics be used effectively for 

comparing two or more non-dominated solution sets during the execution of the 

ANSGA-II? 

• Can the running convergent and diversity metrics used in this study be applied 

for solving problems with more than two objectives? 

• Does the ANSGA-II increase or decrease the number of function evaluations 

compared to the original NSGA-II for solving the same test problems? 

• Is the overhead for learning good parameter values acceptable in the ANSGA-

II? 

• Which adaptable parameter among three adaptable parameters affects the 

performance of the ANSGA-II the most? 
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• Which adaptable parameter among three adaptable parameters affects the 

performance of the ANSGA-II the least? 

• Does the combination of all three adaptable parameters work better? 

• What is the effect of using each adaptable parameter separately (i.e. ANSGA-II 

with self-adaptive mutation only, ANSGA-II with self-adaptive crossover only, 

and ANSGA-II with adaptive population size only)? 

• What is the effect of using the combination of two adaptable parameters (i.e. 

ANSGA-II with adaptive population size and self-adaptive crossover, ANSGA-

II with adaptive population size and self-adaptive mutation, and ANSGA-II 

with self-adaptive crossover and self-adaptive mutation)? 

 

Limitations and Delimitations 

The ANSGA-II relies on the convergent and diversity metrics to monitor the 

progress of the algorithm during its run in order to adjust the values of its parameter 

accordingly. Several performance metrics have been introduced in the MOEA literature. 

However, most of these metrics are applicable to two-objective problems (Deb & Jain, 

2002). The convergent metric and diversity metric investigated in this study also have not 

been applied to measure the quality of solutions on problems with more than three 

objectives. For example, in the original study of NSGA-II, Deb et al. (2002) did not 

provide convergent and diversity metric results on the five-objective WATER problem 

(Appendix A provides the listing of this problem). Instead, they provided the lower and 

upper bounds of each objective function values on the obtained non-dominated solutions 

for this problem. Since, development of better performance metrics is beyond the scope 
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of this dissertation, existing performance metrics are investigated for their effective use in 

comparing non-dominated solution sets among different populations during the execution 

of the ANSGA-II in order to support adaptable population size.  

This dissertation narrows its focus on the Pareto-based MOEAs (see Definition of 

Terms in this chapter) mainly because until today most of the successful MOEAs are 

Pareto-based approaches derived from the non-dominated sorting procedure (Deb, 2003; 

Coello, 2005). 

This dissertation evaluates the performance of the ANSGA-II, in term of finding a 

diverse Pareto-optimal solution set, by comparing the results obtained on thirteen multi-

objective test problems with those obtained by the original NSGA-II. The NSGA-II 

serves as a benchmark the ANSGA-II. However, this dissertation does not provide a 

proof of convergence to the true Pareto-optimal set and diversity of the obtained solutions 

because there severely lack for studies related to theoretical convergence analysis with 

guaranteed spread of solutions in MOEAs (Deb, 2001; Laumanns et al., 2002) and 

development of theoretical proofs is beyond the scope of this dissertation. 

 

Definition of Terms 

The following are definitions of key terms used throughout this study. 

Adaptive Parameter Control: is a parameter control technique that adjusts the 

parameter values according to information fed back from the GA during its run. All 

individuals in the population have the same parameter values. 

Aggregating Functions: are traditional approaches for solving multi-objective 

problems by combining multiple objectives into a single-objective. 
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Algorithm: an algorithm is a finite set of well-defined instructions for 

accomplishing some task. 

Best-First Search: is a search algorithm, which optimizes depth-first search by 

expanding the most promising node chosen according to some rule. 

Binary-Coded GA: a GA that is based on binary-coded representation. 

Binary-Coded Representation: Each gene represents a decision variable of the 

problem and coded as a binary string (strings of ones and zeros, or bits).  The binary 

coding of all the problem’s decision variables can be concatenated to form a fixed-length 

binary string (chromosome).  For example, the following binary string represents a 

chromosome of four variables: 

10011 01010111 101 1010 
 x1 x2 x3 x4

Breadth-First Search: is an algorithm for traversing or searching a tree or graph. It 

is an uninformed search that progresses by traversing the tree or graph in a level-by-level 

fashion. The algorithm starts at the root node and explores all the neighboring nodes. 

Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so 

on, until it finds the goal. 

Building Blocks (BBs): are schemas (see Definition of Terms) that have short 

defining lengths and above-average fitness. For example, the schema 01*** has only two 

defined bits and they are close to each other. If the string 01000 represents the optimal 

solution for a problem then the schema 01*** has above-average fitness.  Hence the 

schema 01*** is a building block.  Schemas with short defining lengths are preferred 

because crossover is disruptive, the longer the defining length of a schema, the higher 
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chance that the crossover point will fall between its fixed positions and an instance will 

be destroyed. 

Chromosome: or individual refers to a candidate solution to a problem (in binary-

coded representation a chromosome is encoded as a fixed-length binary string). 

Convergent Metric: In MOEA, a convergent metric is used to measure the 

closeness of a solution set to the Pareto-optimal front or the true Pareto-optimal set. 

Crossover or Recombination: takes two parental individuals, swapping components 

to produce two offspring that are likely to be better individuals. There exist various 

crossover operators such as multi-point crossover (Spears & De Jong, 1991), order 

crossover (Davis, 1985; Oliver, Smith, & Holland, 1987), and others (Booker, Fogel, 

Whitley, & Angeline, 1997; Spears, 1997). Figure 4 illustrates three commonly used 

crossover operators: one-point crossover, two-point crossover, and uniform crossover.  

These crossover operators are also classified as fixed crossover operators because their 

crossover sites are fixed. 
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0 0 1 0 0

0 0 1 0 0

1 0 1 1 1

0 0 1 0 0

1 0 1 1 1

Crossover site

Crossover sites

One point crossover

Two point crossover

Uniform crossover

Parent strings Offspring strings

0 0

1 0 0

1 1 1

1 0

0 0 0

1 0

1 1

11 0

0 1

00

01 1

110

1 0 1 1 1

Figure 4: Illustration of one-point, two-point, and uniform crossover operators 

Crossover-based GA: when the mutation operator is ignored in a GA by setting 

mutation probability to zero (pm = 0), the GA is referred as a crossover-based GA. 

Crossover Distribution Index: is any non-negative real number set by the user. This 

parameter affects the probability distribution of the Simulated Binary Crossover (SBX) 

operator. A large value of crossover distribution index gives a higher probability for 

creating near-parent solutions and small value allows distant solutions to be created as 

offspring. 

Crossover Probability or Crossover Rate: (0 ≤ pc ≤ 1) determines the amount of 

crossover. 

Deterministic Parameter Control: is a parameter control technique that changes the 

parameter values during a GA’s run according to some deterministic rule, which usually 

depends on time such as number of generations. 
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Depth-First Search: is an algorithm for traversing or searching a tree or graph. It is 

an uninformed search that progresses by expanding the root node of the search tree and 

going deep as quickly as possible to the leaf nodes (nodes that have no children) of the 

tree until a goal state is found, or until it hits a leaf node then the search backtracks and 

starts off on the next node. 

Diversity Metric: In MOEA, a diversity metric is used to measure the uniform 

spread of the obtained solutions. 

Dominance Relation: A solution xa in X is said to dominate a solution xb in X

(denoted as a bx xp ) if it is better than or equal to xb in all objectives and at least better 

than xb in one objective. 

ε-Dominance Relation: A solution xa in X is said to ε-dominate a solution xb in X

(denoted as a bx xεp ) for some ε > 0 if (1 ) ( ) ( )a i bf x f xε+ ≤i for all i = 1,…,k. The ε

value represents a “tolerance” allowed for the objective values. The choice of ε is 

problem specific and a decision maker should choose a value that suits the meaning of 

the objective values best. 

Evolutionary Algorithm (EA): is a generic term used to indicate any population-

based stochastic search algorithm that uses mechanisms inspired by biological evolution 

and genetic operators, such as reproduction, mutation, crossover, natural selection and 

survival of the fittest. Candidate solutions to the optimization problem play the role of 

individuals in a population, and the fitness function determines the fitness of each 

individual in the population. The solutions with higher fitness value will have better 

chances of survival and reproduction according to the evolutionary process. Evolution of 

the population then takes place after the repeated application of the above genetic 
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operators. Through evolution process, better solutions are generated out of the current 

population of candidate solutions and this process continues until the terminated 

condition is satisfied such as having one or more individuals whose fitness exceeds some 

threshold.  

Evolutionary Programming (EP): is mutation-based EA applied to discrete search 

spaces.   

Evolutionary Strategy (ES): is an EA that uses real-coded values. Early ESs do not 

use any crossover-like operator.  Later, crossover-like operators have been introduced 

into ESs. Therefore, an ES’s framework is similar to that of a real-coded GA. ESs focus 

on optimizing continuous functions. 

Genetic Algorithm (GA): is a general-purpose EA. The algorithm is well suited for 

optimizing combinatorial problems (though they have occasionally been applied to 

continuous problems) using crossover and mutation. 

Genetic Drift: the condition when there is no diversity in the population to 

discriminate between two or more distinct individuals.  

Genotype: coding or representation of individuals (chromosomes). 

Goal Programming Method: In this method, decision maker have to assign goals 

that they wish to achieve for each objective. These values are incorporated into the 

problem as additional constraints. This method will then try to minimize the absolute 

deviations from the goals to the objectives. 

Hamming Cliffs: are formed when two numerically adjacent values have bit 

representations that are far apart. For example, the corresponding 8-bit binary 

representations for two decimal numbers 127 and 128 are 01111111 and 10000000. 
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Hamming Distance: is the number of corresponding bits that differ in binary 

representations. 

Hill-Climbing: is a graph search algorithm. The algorithm expands the current state 

in the search and evaluates its children. The best child is selected for further expansion 

and neither its siblings nor its parent is retained. The search stops when it reaches a state 

that is better than any of its children. The algorithm does not keep any history; therefore, 

it cannot recover from failures. 

Heuristic Search: employs some rules for choosing search regions in the search 

space that are most likely leading to an acceptable problem solution (Luger, 2002).  

Indifferent: The solution xa is said to be indifferent to a solution xb, if neither 

solution is dominating the other one. 

Mating Pool: In GA, fitness selection is performed separately before genetic 

operations. Individuals of higher fitness in a population are placed in an area referred as 

the mating pool. Children are created from parents chosen only from the mating pool. 

Monte Carlo: is a statistical simulation method for approximating solutions to 

quantitative problems. It uses a pure random search where any selected solution is fully 

independent of any previous solution and its outcomes. The current optimal solution and 

its associated decision variables are saved as a comparator. In the subsequent simulation 

replications, the current optimal solution may be replaced with even better one. 

Multi-Objective Optimization (MOO): can be defined as the problem of finding "a 

vector of decision variables which satisfies constraints and optimizes a vector function 

whose elements represents the objective functions. These functions form a mathematical 

description of performance criteria, which are usually in conflict with each other. Hence, 
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the term "optimize" means finding such a solution which could give the values of all the 

objective functions acceptable to the designer (Osyczka, 1985).” 

Multi-Objective Evolutionary Algorithm (MOEA): is a variant of the traditional 

Genetic Algorithm (GA) - also known as the simple GA, designed to solve multi-

objective optimization problems. 

Mutation: takes a single individual and randomly changes some of its 

characteristics. The most commonly used are the bitwise mutations.  In bitwise mutation, 

a bit in a binary string is changed (a 0 is converted to 1, and vise versa) with mutation 

probability as illustrated in Figure 5. 

1 0 1 1 1

Mutation

01 110

Figure 5: Illustration of bitwise mutation operator 

 
Mutation-Based GA: when the crossover operator is ignored in a GA by setting 

crossover probability to zero (pc = 0), the GA is referred as a mutation-based GA. 

Mutation Distribution Index: is any non-negative real number set by the user. This 

parameter affects the probability distribution of the polynomial mutation operator (a real-

coded mutation operator).  

Mutation Probability or Mutation Rate: (0 ≤ pm ≤ 1) determines the amount of 

mutation. 

Non-Dominated: A solution is referred as non-dominated if it is not dominated by 

any other solutions. 

Parameter Control: is a technique that monitors an EA’s progress in order to adjust 

its parameter values during its execution. 
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Parameter Settings: three main parameters of a GA or MOEA are population size, 

crossover and mutation probabilities. The values of these three parameters need to be set 

properly in order to achieve desirable solutions because the performance of an EA is 

affected by these parameter settings. 

Pareto Optimal: A vector of decision variables X∈*x is Pareto optimal if *x is 

non-dominated with respect to the set of all possible vectors in X. Pareto-optimal vectors 

are characterized by the fact that improvement in any one objective means worsening at 

least one other objective. 

Pareto-based MOEAs: are MOEAs in which each solution is assigned a fitness 

value equal to its non-dominated rank in the population and ranking selection method 

based on the concept of Pareto optimality.  

Pareto-Optimal Front: The plot of the objective functions whose non-dominated 

solutions are in the Pareto-optimal set is called the Pareto-optimal front. 

Pareto-Optimal Set: is the set of all possible Pareto-optimal solutions. 

Particle Swarm Optimization (PSO): simulates a bird flock’s behavior where social 

sharing of information takes place and individuals can profit from the discoveries and 

previous experience of all other companions during the search for food. A population 

(swarm) of particles is assumed to fly over the search space in order to find promising 

regions of the landscape. For example, in the minimization case, such regions have lower 

functional values than other previously visited regions. In this context, each particle is 

treated as a point in an n-dimensional space, which adjusts its own flying behavior 

according to its flying experience as well as the flying experience of other particles. PSO, 

to some extent, resembles GAs. In PSO, instead of using genetic operators, each particle 
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updates its own position based on its own search experience and other particles’ 

experience and discoveries (Magoulas, Eldabi, & Paul, 2002).  

Phenotype: the meaning of a particular chromosome as interpreted by the user 

(solutions in its search space).  

Polynomial Mutation Operator: a real-coded mutation operator developed by Deb 

& Goyal (1996). This operator mutates a real-valued variable vector that simulates the 

way mutation work in binary-coded GAs.  

Population Size: is the number of individuals or candidate solutions in the 

population. This parameter is a major factor in determining the quality of the solutions. 

Setting the population size not large enough will cause a GA to converge to sub-optimal 

solutions.  On the other hand setting the population size above optimum will cause a GA 

to waste unnecessary computational resources.   

Random Search: is the simplest stochastic search method. It simply evaluates a 

given number of randomly selected solutions. 

Random Walk: is similar to random search except that the search moves iteratively 

from a current solution to the next randomly selected solution in the neighborhood of the 

current solution. 

Real-Coded GA: a GA that is based on real-valued representation.  

Real-Coded Representation or Real-Valued Representation: decision variables are 

used as it without coding. Each gene represents a decision variable of the problem. A 

chromosome is represented as a vector of decision variables in real-valued numbers. 

Recombination: same as crossover. 

Recombination Probability or Recombination Rate: same as crossover probability. 
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Running Performance Metric: refers to a performance metric executed during a 

MOEA’s run on the obtained solutions instead of at the end of its run on the final 

obtained solutions. 

SBX: is an acronym of Simulated Binary Crossover. 

Schema: A schema is a similarity template describing a subset of strings with 

similarities at certain positions (Holland, 1975; Goldberg, 1989). A schema for binary 

strings can be defined over the triplet (0, 1, *).  The symbol '*' represents a don’t- care 

symbol. For example, a schema 01*** represents eight binary strings with a '0' in the first 

position and a '1' in the second position. A string that matches a schema’s pattern is called 

an instance of that schema.  For example, 01011 and 01000 are both instances of the 

schema 01***. In a schema, 0’s and 1’s are referred to as defined bits or alleles.  The 

fixed positions of a schema are the positions that contain a '0' or a '1'. The number of 

defined bits or fixed positions in a schema is the order of that schema.  A schema’s 

defining length is the distance between the leftmost and rightmost defined bits.  For 

example, the defining length of *10*1 is three, the defining length of 01*** is one, and 

the defining length of ***1* is zero.  Since a schema represents a subset of strings, it can 

also be viewed as representing certain region in the search space. The average fitness of a 

schema is determined by the average fitness of instances of the schema. 

Search Algorithm: broadly speaking, is an algorithm that takes a problem as input 

and returns a solution to the problem, usually after evaluating a number of possible 

solutions. 

Search Space: is the set of all possible solutions to a problem.  
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Self-Adaptive Parameter Control: is a parameter control technique that adjusts the 

values of parameters attached to each individual in the population according to 

information fed back from the GA during its run. The parameters are co-evolved with 

each individual in the population and each individual in the population can have different 

parameter values. 

Selection: In GA, selection is a process of identifying individuals of higher fitness 

in a population and placing them in the mating pool for reproduction. 

Selection Pressure or Selection Rate: determines the number of best individuals to 

be placed in the mating pool after the selection operation. 

Simulated Binary Crossover (SBX): is a real-coded crossover operator developed 

by Deb & Agrawal (1995). The SBX operator creates a new pair of offspring vectors 

from a pair of real-valued parent vectors. It simulates the working principle of the single-

point crossover operator on binary strings. 

Simulated Annealing (SA): The name comes from the analogy to the behavior of 

physical systems by melting a substance and lowering its temperature slowly until it 

reaches freezing point (physical annealing). SA avoids getting stuck in local optima as in 

hill climbing) by accepting all downhill moves (assume here a minimization problem) but 

sometimes accepting uphill moves, where the acceptance probability decreases to 0 at a 

certain rate (Carson & Maria, 1997; Fu, 2001). 

Single Point Crossover or One Point Crossover: is the simplest form of crossover. 

A single crossover site is chosen at random and the components of two parents after the 

crossover site are swapped to produce two offspring (see Figure 4). 
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Standard Parameter Settings: A good set of parameter settings for simple GAs 

introduced by De Jong (1975) that have been adopted widely: population size of 50-100, 

crossover probability of 0.6, and mutation probability of 0.001.  However, these standard 

settings have been proven problematic. 

Stochastic Search: search process that involves some type of randomness.  

Tabu Search: is a variation of local search that maintains a fixed-length of explored 

moves. This list contains the forbidden (tabu) moves that are not allowed at the present 

iteration in order to exclude back tracking moves (Carson & Maria, 1997).  

Tournament Selection: In n-wise tournament selection, n individuals are selected at 

random for a tournament and the best individual is selected.  The tournament selection is 

repeated until the mating pool is full.   

Trade-Off Solution: The term "trade-off" in the MOEA context refers to the fact 

that a value of one objective function is traded for a value of another function or 

functions. 

Weighted Min-Max Method: In this method, the decision maker defines the min-

max optimum (the set of points that give the smallest values of the relative deviations 

from the individual objective function) and applying it to a MOP. 

Weighting Sum: This method consists of adding all the objective functions of a 

MOP together using different weighting coefficients for each one. Thus, the MOP is 

transformed into a scalar optimization problem of the form: 
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where, wi ≥ 0 are the weighting coefficients representing the relative importance of the 

objectives. It is usually assumed that  
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Summary 

This chapter presented an overview of the problem, goal, and domain focused on 

by the dissertation. It started by providing a brief overview of a Multi-Objective Problem 

(MOP) and Multi-Objective Evolutionary Algorithms (MOEAs). It then described the 

problem that the dissertation investigates and the goal that the dissertation accomplishes. 

MOEAs are not easy to use because they require parameter tunings of population size, 

crossover probability, and mutation probability in order to achieve the desirable solutions 

and performance for an arbitrary complex problem. The task of tuning these parameters is 

not trivial due to due to the complex and nonlinear interactions among the parameters and 

their dependency on many aspects of the particular problem being solved such as the 

search space size and the shape of the fitness surface. Moreover, the proper parameter 

values are not fixed but varied during a run because a MOEA is dynamic and adaptive 

process. This dissertation aims to investigate simultaneous parameter control techniques 

in MOEA for all three parameters - population size, crossover, and mutation. The goal of 

this dissertation is to develop a MOEA with adaptable population size crossover, and 

mutation, parameters for automating the process of selecting appropriate parameter 

values in order to make the MOEA more efficient, easier to use and available to more 

users. 

The chapter then describes why research in parameter control techniques for 

MOEAs is relevance and significant. Previous research indicated that the issue of 

controlling values of various parameters of a GA is one of the most important and 
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promising areas of research in evolutionary computation. It has a potential of adjusting 

the algorithm to the problem while solving the problem and the user does not have to 

specify or tune the values of the parameters. Thus, it makes GAs more efficient, easier to 

use and available to more users. Next, this chapter presents the known barriers and issues 

of MOEAs including: individuals of the population converges towards different areas of 

the Pareto front and efficient parameters differ between the individuals; MOEAs work 

well for approximation of the Pareto front, but fail in the final convergence since the 

archive size of this class of algorithms is usually limited; the adaptive population size 

with multiple population approach, which is applied successfully in the simple GA, does 

not work well for a Pareto-based MOEA like the NSGA-II; Pareto-optimal solutions may 

be replaced by other inferior non-dominated solutions due to the way the algorithm 

preserve elitism in the NSGA-II; the elitism of NSGA-II requires a population of size 2N,

instead of size N required in most other MOEAs; lack of reliable and efficient running 

metrics, and lack of theoretical proofs. The chapter then lists research questions that the 

dissertation provides the answers followed by limitations and delimitations. Finally, this 

chapter provides definition of terms that are used throughout the dissertation. 
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Chapter 2 
 

Review of the Literature 

 

This chapter provides a review of research literature. It is organized as follows: 

First, it presents an historical overview of MOEAs. Second, it reviews research literature 

specific to the dissertation topic. Third, it provides a summary of known an unknown 

about the research topic. Finally, the chapter describes the contributions that this 

dissertation makes to the field MOEA. 

 

Historical Overview 

This section presents an historical overview of multi-objective evolutionary 

algorithms (MOEAs). First, traditional methods used for optimizing multi-objective 

problems and the weaknesses associated with these methods are described. Second, 

evolutionary algorithms with focus on genetic algorithms are presented. Third, multi-

objective evolutionary algorithms, which are variants of evolutionary algorithms used for 

optimizing multi-objective problems, are introduced. The next three sections describe 

three popular approaches for MOEAs: aggregation-based approaches, population-based 

approaches, and Pareto-based approaches. The section then continues by describing the 

non-dominated sorting procedure and niche strategy with fitness sharing that most 

popular and successful Pareto-based MOEAs are based on. Finally, the section provides a 

brief review of the current state-of-the-art MOEAs. 
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Traditional Methods 

Figure 6 below illustrates a schematic of an ideal multi-objective optimization 

procedure where there is no priori preference defined among the objectives (Deb, 2001). 

In Step 1 (vertically downwards), a MOP is fed into an ideal multi-objective optimization 

algorithm and a set of wide spread Pareto-optimal solutions is found. Thereafter, in Step 

2 (horizontally, towards the right), a decision maker or a decision support system uses 

higher-level information to choose one of the trade-off solutions. 

Multi-objective
optimization problem

Minimize  f1
Minimize  f2

…
Minimize  fn

subject to constraints

Multi-objective Optimization
Algorithm

Multiple trade-off solutions
(Pareto-optimal solutions)

found
Choose one solution

Higher-level
Information

(Decision Maker)

Step 2

St
ep

1

Figure 6: Schematic of an ideal multi-objective optimization procedure 

Looking back at Figure 2 (in Chapter 1 - Introduction), one can observe that each 

Pareto-optimal solution corresponds to a specific order of importance of the objectives. 

For example, solution A assigns more importance to premium than to loss. On the other 

hand, solution B assigns more importance to loss than to premium. If such a relative 

preference factor among the objectives is known for a specific problem, it is not 

necessary to follow the step 2 in Figure 6 for solving a MOP. In this case, the 

straightforward approach to handle multi-objectives with any multi-objective 
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optimization algorithm is to combine all objectives of a problem into a single-objective 

with a relative preference factor among the objectives then use the algorithm to solve the 

problem. There are several approaches of combining multiple objectives into a single-

objective and these approaches are known as aggregating functions. The aggregating 

functions are traditional approaches, which have been used successfully in the field of 

operation research to solve MOPs when the behavior of the objective functions is known 

(Coello, 2000; Deb, 2001). The most popular aggregating approaches include weighted 

sum, є-constraint, goal programming, and goal attainment (Coello, 2000). Typically, a 

relative preference vector of weighted objective values is used to convert the MOP into a 

composite single-objective problem as the weighted sum of the objectives, where a 

weight for an objective is proportional to the preference factor assigned to that particular 

objective. When such a composite objective function is optimized, it is possible to obtain 

one particular trade-off solution. A change in the preference vector will result (hopefully) 

in a different trade-off solution. One obvious weakness of these aggregating approaches 

is that it may be difficult to supply a relative preference vector that properly scales the 

objectives when little is known about the problem. Unless an accurate preference vector 

is available, the trade-off solution obtained by this approach is highly subjective to a 

particular user. However, the most serious weakness of these approaches is that they 

cannot find a good trade-off solution to all problems, especially when the Pareto front is 

concave, regardless of the preference vectors used (Coello, 2001; Deb, 2001). This 

dissertation concerns with the ideal multi-objective optimization approach as illustrated 

in Figure 6, which is less subjective, more methodical, and a user does not need to know 

about any priori preference information. 
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Using exact search methods, such as hill-climbing, depth-first, breadth-first, best-

first (Section “Definition of Terms” in Chapter 1 provides definitions of these search 

methods) as multi-objective optimization algorithms for solving MOPs, can be 

computationally expensive and is often infeasible in finding the Pareto-optimal set 

because the complexity of the multi-objective problem being optimized prevents these 

methods from being applicable. For this reason, a number of stochastic search methods, 

which use some type of randomness in the search process, such as random search, tabu 

search, simulated annealing, Monte Carlo, particle swarm optimization, evolutionary 

algorithms, and others have been developed and used for solving MOPs (Section 

“Definition of Terms” in Chapter 1 provides definitions of these stochastic search 

methods). These stochastic methods usually do not guarantee to find the true Pareto-

optimal set but try to find a good set of solutions, which are hopefully close to the true 

Pareto-optimal set. Of these stochastic search methods, random search, tabu search, 

simulated annealing, Monte Carlo are single-solution based methods (i.e. they operate on 

a single solution and can find only one solution at a time). Whereas, particle swarm 

optimization and evolutionary algorithms operate on a population of candidate solutions, 

which are more suitable for finding a set of good trade-off solutions in the ideal multi-

objective optimization approach described in Figure 6 above. Which method is the best 

depends upon the problem being solved. In general, there is no universal best algorithm, 

which can achieve performance advantage for all problems (Corne & Knowles, 2003). 

This dissertation chooses to focus its discussion on using evolutionary algorithms to solve 

MOPs, namely Multi-Objective Evolutionary Algorithms (MOEAs). The EAs are 

described next. 
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Evolutionary Algorithms 

Evolutionary Algorithm (EA) is a generic term used to indicate any population-

based stochastic search algorithm that uses mechanisms inspired by biological evolution 

and genetic operators such as reproduction, mutation, crossover, natural selection and 

survival of the fittest. Candidate solutions to the optimization problem play the role of 

individuals in a population, and the fitness function determines the fitness of each 

individual in the population. The solutions with higher fitness value will have better 

chances to survive and reproduce better solutions according to the evolutionary process. 

There are three main types of Evolutionary Algorithms (EAs): Genetic Algorithm (GA) 

(Holland, 1975), Evolutionary Strategy (ES) (Rechenberg, 1965), and Evolutionary 

Programming (EP) (Fogel, Owens, & Walsh, 1966). These algorithms were developed 

independently but their general framework is essentially the same. They evolve a 

population of candidate solutions to a given problem in order to find optimal solutions, 

using operators inspired by natural genetic variation (creating new individuals by means 

of crossover and mutation), natural selection and survival of the fittest (competition for 

reproduction and resources among individuals) in the biological world. However, each 

type has some variants due to different origins and their targets towards specific domains. 

GAs use crossover and mutation, and they are well suited for optimizing combinatorial 

problems (though they have occasionally been applied to continuous problems). ESs use 

real parameter values and early ESs do not use any crossover-like operator.  Later, 

crossover-like operators have been introduced into ESs. Therefore, an ES’s framework is 

similar to that of a real-parameter GA. ESs focus on optimizing continuous functions. 

EPs are mutation-based evolutionary algorithms applied to discrete search spaces. Since 
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most existing MOEAs are based on the GA due to its flexibility in solving complex 

optimization problems, this dissertation narrows its discussion on the GA. Therefore, the 

GA is described in more detail in the following. 

Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) are general-purpose stochastic and heuristic search 

algorithms that mimic the evolutionary process in order to find the fittest solutions. The 

algorithms were invented by John Holland in the 1960s and presented in his pioneering 

book (Holland, 1975). Over the years, the Holland’s original GA (also known as simple 

GA or traditional GA) has evolved into many forms such as distributed GA, parallel GA, 

multi-modal GA, and others.  However, the general framework remains the same as in 

the simple GA. Pseudo-code for the simple GA is presented in Table 1. 

Table 1: Pseudo-code for the simple GA 

Generate a population of random solutions 
Repeat 

Evaluate of the fitness of each solution in the population 
Select solutions with high fitness for reproduction 
Apply genetic operators crossover and mutation to generate new solutions 

Until the terminate conditions are satisfied 

A simple GA attempts to find a good solution to some problem (e.g., finding the 

minimum of a function) by generating a population of candidate solutions to the problem 

and then manipulating these solutions using genetic operators. The initial population of 

candidate solutions can be generated randomly or by using prior knowledge of possibly 

good solutions.  Without any knowledge of the problem domain, the GA begins to 

process population of solutions.  The function to be optimized can be used as the fitness 

function to evaluate each solution.  Each individual in the population is evaluated and 

ranked based on its fitness. The solutions with higher fitness value will have better 
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chances of survival and reproduction according to the evolutionary process.  Hence, these 

individuals will be selected to produce the subsequence generation of candidate solutions.  

There exist a number of different selection operators such as proportionate selection, 

ranking selection, and tournament selection. The tournament selection operator is 

commonly used due to its simplicity and controlled takeover property (Goldberg & Deb, 

1991). In n-wise tournament selection, n individuals are selected at random for a 

tournament and the best individual is selected into the mating pool.  The tournament 

selection is repeated until the mating pool is full. Two candidate solutions with high 

fitness are selected randomly from the mating pool. Crossover operator is then used to 

swap genes of the selected parent solutions in order to produce new pair of offspring that 

are likely to be better solutions. Mutation operator is used to change some characteristic 

of an individual. Mutation operator is often used to maintain diversity in the population in 

order to prevent the GA from being trapped in local sub-optima. Through these genetic 

operations, better solutions are generated out of the current population of candidate 

solutions and this process continues until the terminated condition is satisfied such as 

having one or more individuals whose fitness exceeds some threshold. 

GAs have received growing interest due to their simplicity as algorithms and their 

ability to discover good solutions quickly for complex searching and optimization 

problems involving features such as discontinuities, multi-modality, disjoint feasible 

spaces, and noisy function evaluations. The algorithms work with a population of 

potential solutions so they can offer a number of possible solutions. Their potential 

applications are numerous.  They have been used in a wide range of applications 

including but not limited to: optimization of functions with linear and nonlinear 
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constraints, classification, machine learning, parallel semantic networks, simulation of 

gas pipeline systems, problems of scheduling, web search, software testing, financial 

forecasting, ecology, and social systems.  

Parameter Settings in Genetic Algorithms 

GAs are not easy to use because they require parameter tunings in order to achieve 

the desirable solutions and performance. Three common GA parameters that a GA user 

often has to tune are population size, crossover probability, and mutation probability. The 

population size parameter is a major factor in determining the quality of the solutions. 

Setting the population size not large enough will cause the GA to converge to sub-

optimal solutions.  On the other hand setting the population size too large will cause the 

GA to waste unnecessary computational resources. The crossover probability parameter 

(0 ≤ pc ≤ 1) determines the amount of gene swapping between the parent solutions.  Cross 

operator is important because it ensures good mixing of candidate solutions.  The higher 

crossover probability, the more promising solutions are mixed.  This also increases the 

disruption of good solutions.  The mutation probability parameter (0 ≤ pm ≤ 1) determines 

the amount of mutation on a solution. Mutation operator is important because it enables 

diversity in the population. With a high mutation probability, mutation represents a 

random search, similar to an intelligent hill-climbing strategy, in the neighborhood of a 

particular solution, but it may also destroy already found good solutions. The task of 

tuning these GA parameters has been proven to be far from trivial due to the complex 

interactions among the parameters and their proper settings cannot be independently 

determined. Many researchers have been trying to understand the interdependencies of 

GA parameters.  One of the first empirical studies to understand the complex interactions 
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and interdependencies of GA parameters was investigated by De Jong (1975).  Based on 

his studies, De Jong introduced a good set of parameter settings that have been adopted 

widely and sometimes referred to as “standard” settings: population size of 50 to 100, 

crossover probability of 0.6, and mutation probability of 0.001.  However, these 

“standard” settings have been proven problematic by later studies, which suggest that the 

optimal settings of GAs’ parameters are critically dependent on the nature of the function 

being evaluated (Goldberg, 1985; Hart & Belew, 1991; Deb, 1999a) and the encoding of 

decision variables (Battle & Vose, 1990; Radcliffe, 1991; Karguta, Deb, & Goldberg, 

1992; Tate & Smith, 1993). Hence, the choice of GA parameter settings itself can be a 

complex nonlinear optimization problem (Srinivas & Patnaik, 1994).  As a result, it takes 

trial and error experiments to obtain the proper GA parameter settings for an arbitrary 

real-world problem. Moreover, proper parameter values are not fixed but varied during a 

run because a GA is dynamic and adaptive process (Fogarty, 1989; Davis, 1991; Hesser 

& Männer, 1991; Bäck, 1992; Mühlenbein, 1992). Therefore, the use of fixed parameter 

settings may lead to slow convergence and sub-optimal obtained solutions, especially 

when large search spaces are to be explored in solving complex optimization problems. 

Multi-Objective Evolutionary Algorithms (MOEAs) 

A Multi-Objective Evolutionary Algorithm (MOEA) is a modified version of the 

simple GA, designed to solve MOPs. The potential of using EAs to solve MOPs was 

originally hinted by Rosenberg in his dissertation (Ronsenberg, 1967). He suggested 

using a GA for finding the chemistry of a population of single-celled organisms with 

multiple properties or objectives. Since a GA works with a population of candidate 

solutions, the dominance criteria can be used to gear the search process toward the 
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Pareto-optimal front and multiple Pareto-optimal solutions can be obtained in a single 

run. This is the main reason that makes GAs ideally suitable for multi-objective 

optimization.  

In contrast to single-objective optimization, where objective function and fitness 

function are often the same, in multi-objective optimization, both fitness assignment and 

selection must support several objectives. Therefore, MOEAs varies from the simple GA 

only in the way fitness assignment and selection works. Several different versions of 

MOEAs have been introduced with different fitness assignment and selection strategies. 

Based on their fitness assignment and selection strategies, MOEAs can be categorized as 

aggregation-based approaches, population-based approaches, and Pareto-based 

approaches (Coello, 2000; Zitzler, Laumanns, & Bleuler, 2004). These approaches are 

described briefly in the following. 

Aggregation-based Approaches for MOEAs 

Since the simple GA relies on a scalar fitness function to guide the search, the most 

intuitive approach for using a GA to solve a MOP is to combine all objectives of a 

problem into a single-objective problem using one of the traditional aggregating-

functions methods described previously. Then the GA is used to solve the problem. An 

example of this approach is a linear sum of weights (known as weighting sum), which 

consists of adding all the objective functions together using different weighting 

coefficients for each one. Thus, the multi-objective optimization problem is transformed 

into a scalar optimization problem of the form: 
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where, wi ≥ 0 are the weighting coefficients representing the relative importance of the 

objectives. It is usually assumed that 
1

1
k

i
i

w
=

=∑ .

Aggregating functions can be linear (as in the weighting sum example above) or 

non-linear such as aggregating functions adopted by game theory (Rao, 1987), goal 

programming (Wienke, Lucasius, & Kateman, 1992; Deb, 1999c), goal attainment 

(Wilson & Macleod, 1993; Zebulum, Pacheco, & Vellasco, 1998), and min-max 

algorithm (Hajela & Lin, 1992; Coello & Christiansen, 1998). Aggregation-based 

approaches do not require any changes to the basic mechanism of a simple GA. 

Therefore, they are efficient, simple, and easy to implement. They can be used to solve 

simple multi-objective optimization problems with few objective functions and convex 

search spaces. However, the aggregation-based MOEA approaches suffer from the 

following difficulties (Deb, 2001): 

• A Pareto-optimal solution is specific to the preference parameters used in 

converting a MOP into a single-objective optimization problem. In order to find 

a different Pareto-optimal solution, the preference parameters must be changed 

and the new single-objective optimization problem has to be solved again. 

Thus, in order to find n different Pareto-optimal solutions, at least n different 

single-objective optimization problems need to be formed and solved. 

• They are sensitive towards the preference vector of weighted objective values. 

• They require the user to have some knowledge about the problem being solved 

in order to generate the preference parameters. 
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• Some aggregating-functions methods are sensitive to the shape of the Pareto-

optimal front (e.g. the weighted sum method cannot find a good trade-off 

solution to all problems when the Pareto front is concave). 

Population-based Approaches for MOEAs 

This class of MOEAs switches between the objectives during the selection phase. 

Each time an individual is selected for reproduction, potentially a different objective will 

decide which member of the population will be copied into the mating pool. The Vector 

Evaluated Genetic Algorithm (VEGA) is one of the examples of these approaches. The 

VEGA, which is also the first actual implementation of what it is now called a multi-

objective evolutionary algorithm (MOEA), was introduced by David Schaffer in 1984 

(Schaffer, 1985), mainly intended for solving machine learning problems. It is a simple 

GA with a modified selection strategy. A loop is added around the traditional selection 

procedure so that the selection method is repeated for each objective to fill up a portion of 

the mating pool. With this proportional selection, at each generation a number of sub-

population is generated. For a problem with k objectives and a population size N, k sub-

populations of size N/k each would be generated. These sub-populations would be 

shuffled together to obtain a new population of size N. The GA then applies the crossover 

and mutation operators on the new population in the usual way. Since only the selection 

mechanism of the GA needs to be modified, the VEGA is easy to implement and quite 

efficient. However, the solutions generated by the VEGA are often locally non-

dominated because the non-dominance is limited to the current population at each 

generation. VEGA also tends to bias toward some particular objectives. These problems 

occur because the algorithm selects solutions with high fitness in one objective, without 



46

looking at the others (Coello, Pulido, & Montes, 2005). As a result, the VEGA is able to 

find a Pareto-optimal set but fails to obtain a good spread of solutions.  

Regardless of the limitations of the population-based approaches, the simplicity of 

these approaches has attracted several researchers (Coello, 2005). Researchers have 

introduced variations of VEGA or other similar population-based approaches (see 

(Venugopal & Narendran, 1992; Sridhar & Rajendran, 1996; Norris & Crossley, 1998; 

Rogers, 2000)). 

Pareto-based Approaches for MOEAs 

The idea of assigning an individual’s fitness based on Pareto dominance in order to 

overcome the problems associated with VEGA was initially proposed by David Goldberg 

in his 10-line sketch of a non-dominated sorting procedure (Goldberg, 1989). In the non-

dominated sorting procedure, a ranking selection method based on the concept of Pareto 

optimality is used to assign non-dominated solutions in a population and a niche strategy 

with fitness sharing is used to maintain good spread of solutions among a non-dominated 

ranking class. The non-dominated sorting procedure and the niche strategy are described 

in the following. 

Non-dominated Sorting Procedure and Niche Strategy with Fitness Sharing 

Non-Dominated Sorting Procedure: This procedure assigns each solution a fitness 

value equal to its non-dominated rank in the population instead of its absolute fitness 

value. The procedure starts to find the set of solutions that is Pareto-optimal in the current 

population. These solutions are assumed to constitute the first Pareto-optimal front; 

therefore, the highest rank is assigned to the solutions (the same rank is assigned to all of 

them). In order to maintain diversity in the solutions, niche strategy (described in the next 
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paragraph) is applied. Afterward, the solutions of the first front are temporarily 

discounted. The Pareto-optimal solutions from the remaining population are assigned the 

next highest rank. The process continues until all the solutions in the population are 

ranked. After the ranking process, a ranking selection scheme is applied. Solutions 

selected for reproduction are based on their non-dominated rank rather on their absolute 

fitness values. The non-dominated sorting procedure have been criticized for O(mN3)

computational complexity (where m is the number of objectives and N is the population 

size), which makes the procedure inefficient for large population sizes (Deb, Pratap et al., 

2002; Coello, 2003). This large complexity occurs because of the complexity involved in 

the non-dominated sorting in every generation. In order to sort a population of size N

according to the rank of non-domination, each solution must be compared with every 

other solution in the population to find if it is dominated. This requires O(mN) 

comparison for each solution. When this procedure continues to find the set of solutions 

in the first Pareto-optimal front for all solutions in the current population, the total 

complexity is O(mN2). Then, the solutions of the first front are temporarily discounted 

and the process is repeated to find subsequent fronts. In the worst case, where there exists 

only one solution in each front, the complexity of the non-dominated sorting procedure is 

O(mN3).

Niche Strategy with Fitness Sharing: The GA tends to converge to a single solution 

when used with a finite population due to stochastic errors associated with genetic 

operators (Deb & Goldberg, 1989). This behavior is known as genetic drift occurred 

when the algorithm cannot discriminate between two or more distinct solutions because 

there is no diversity in the population. The behavior is acceptable if the goal is to find a 
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single good approximation of the global optimal solution. However, in a multi-objective 

optimization problem, the goal is generally to find several trade-off solutions. Therefore, 

niche strategies are introduced to maintain wide spread of solutions. One of the niche 

strategies which has proven effective is the fitness sharing proposed by Goldberg (1989). 

Fitness sharing reduces the fitness of each solution by the presence of other solutions in 

the same neighborhood (a niche), so that the population is balanced among multiple 

niches. The fitness value reduction of near individuals can be calculated using the 

following equations (Dias & Vasconcelos, 2002): 
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In the above equation, the parameter dij is the Euclidean distance between two 

solutions i and j; shareσ is the maximum distance allowed between any two solutions to 

become members of a same niche; dfi is the dummy fitness value assigned to the solution 

i in the current front and '
idf is its corresponding shared fitness value; and N is the 

population size. The fitness sharing technique introduces an additional parameter σshare.

This parameter is usually set by the user and the performance of the sharing function 

method in maintaining good spread of solutions largely depends on the chosen σshare 

value (Deb, Pratap et al., 2002). 

Many researchers have developed different versions of MOEAs based on the 

concept of Pareto optimality such as Multi-Objective GA (MOGA) (Fonseca & Fleming, 



49

1993), Strength Pareto EAs (SPEAs) (Zitzler & Thiele, 1998; Zitzler et al., 2002), and 

Non-dominated Sorting GAs (NSGAs) (N. Srinivas & Kalyanmoy Deb, 1994; Deb, 

Pratap et al., 2002). MOGA uses the dominance rank, i.e., the number of individuals by 

which an individual is dominated, to determine the fitness values. SPEA and SPEA2 

calculate fitness values based on both dominance rank and dominance count, i.e. the 

number of individuals dominated by a certain individual. NSGA and NSGA-II use the 

dominance depth to assign the fitness values (i.e. the population is divided into several 

fronts and the depth reflects to which front an individual belongs to). Regardless of the 

fitness strategy used, a fitness value is related to the whole population in contrast to other 

approaches, which assign an individual’s fitness value independently of other individuals 

(aggregation-based approaches) or calculate an individual’s fitness value is limited to the 

current population at each generation (population-based approaches). The main problem 

with Pareto-based approaches is that there exists no efficient and reliable metric to 

evaluate the convergence of obtained solutions towards the true Pareto-optimal set. In 

addition, there lack theoretical proof for convergence to the true Pareto-optimal set and 

diversity of the obtained non-dominated set. Deb (1999b) has shown that solutions 

obtained by Pareto-based MOEAs are not always the true Pareto-optimal solutions but 

non-dominated solutions. However, in most complex test problems and real-world 

applications tried so far most of the Pareto-based MOEAs have found the true Pareto-

optimal set or near the true Pareto-optimal set (Deb, 2003). Although Pareto-based 

MOEAs are different from each other, they have the same general framework. The Pareto 

dominance ranking and the niche strategy processes are executed before the ranking 

selection operation as explained previously. Thereafter, selection, crossover, and 
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mutation operators are carried out as usual. Pseudo-code for a Pareto-based MOEA is 

presented in Table 2 below. 

Table 2: Pseudo-code for a Pareto-based MOEA 
Generate a population of random solutions 
Repeat 

Evaluate of the fitness of each solution in the population 
Front = 1 
Repeat  
 Find non-dominated solutions in the current population and 
 Rank Pareto-optimal front to the found non-dominated solutions 
 Apply niche strategy to maintain diversity in the solutions 
 Remove non-dominated solutions in the current front from further contention 
 Front = Front + 1 
Until all the solutions in the population are ranked 
Select solutions based on non-dominated rank for reproduction 
Apply genetic operators crossover and mutation to generate new solutions 

Until the terminate conditions are satisfied 

Current State-Of-The-Art MOEAs 

Until to date, most of the successful MOEAs are Pareto-based approaches derived 

from the non-dominated sorting procedure (Deb, 2003; Coello, 2005). There have been 

two generations of MOEAs as described in the following:  

First Generation MOEAs: The first generation of MOEAs is typically characterized 

by the use of selection mechanism based on Pareto ranking and fitness sharing to 

maintain diversity. The most representative MOEAs from the first generation include 

Non-dominated Sorting Genetic Algorithm (NSGA) (N. Srinivas & Kalyanmoy Deb, 

1994), Niched-Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis, & Goldberg, 1994), 

and Multi-Objective Genetic Algorithm (MOGA) (Fonseca & Fleming, 1993). The first 

generation MOEAs have the following main issues (Coello et al., 2005): 

• Are there another ways to maintain diversity in the population without using 

fitness sharing, which requires O(N2) where N refers to the population size? 
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• Is there another way to design a more efficient MOEA that reduces the O(mN3)

process required to perform non-dominated ranking (m is the number of 

objectives and N is the population size)? 

• Are there appropriate test problems and metrics to evaluate quantitatively an 

MOEA? During the first generation, most comparisons were practically done 

visually by plotting the Pareto-optimal fronts produced by different MOEAs. 

• Will there be some theoretical foundations for MOEAs? 

Second Generation MOEAs: The second generation of MOEAs, which is still 

progressing nowadays, can be characterized by an emphasis on efficiency and by the use 

of elitism. In the context of multi-objective optimization, elitism usually (although not 

necessarily) refers to the use of a secondary population (also known as external 

population) to retain non-dominated solutions. Elitism can also be implemented by using 

(µ+λ)-selection in which parent solutions compete with their children and those solutions 

that are non-dominated and possibly meet some additional criterion such as having better 

diversity of solutions are selected for the next generation. During the second generation, 

some important theoretical studies have also been carried out, mainly related to 

convergence to the true Pareto-optimal set (Rudolph, 1998; Veldhuizen & Lamont, 1998; 

Hanne, 2000b, 2000a; Rudolph & Agapie, 2000; Rudolph, 2001). In addition, metrics and 

standard test sets have been introduced to evaluate new MOEAs (Veldhuizen, 1999; 

Zitzler, Deb, & Thiele, 2000). The most representative MOEAs from the second 

generation include Strength Pareto Evolution Algorithm (SPEA) (Zitzler & Thiele, 1999), 

Strength Pareto Evolution Algorithm 2 (SPEA2) (Zitzler et al., 2002), Pareto Archived 

Evolution Strategy (PAES) (Knowles & Corne, 2000), Non-dominated Sorting Genetic 
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Algorithm II (NSGA-II) (Deb, Pratap et al., 2002), Niched Pareto Genetic Algorithm 2 

(NPGA 2) (Horn et al., 1994), Pareto Envelope-based Selection Algorithm (PESA) 

(Corne, Knowles, & Oates, 2000), and Micro Genetic Algorithm (Coello & Pulido, 

2001). The second generation MOEAs have of the following main issues (Coello et al., 

2005):  

• How does the secondary population interact with the main population? 

• How do MOEAs handle the case when the secondary population is full? 

• Should additional criteria be imposed on retaining solutions in the secondary 

population instead of just using Pareto dominance? 

• Are the performance metrics reliable? Are the test problems reliable?  

• Can the current state-of-the-art MOEAs tackle problems with more than two 

objectives functions efficiently? Will Pareto dominance fail when dealing with 

too many objectives? If so, then what is the maximum limit which Pareto 

ranking can be used to select non-dominated solutions reliably?  

• What are the most relevant theoretical aspects of MOEA that are worth 

exploring? 

MOEAs have been used increasingly in a wide range of real-world multi-objective 

optimization applications including but not limited to: telecommunication network design 

(Flores et al., 2003; Maple et al., 2004), software quality enhancement (Khoshgoftar, 

2004), risk-based corrective action design (Gopalakrishnan et al., 2001), optimization of 

corrugated bulkhead forms (Yang & Hwang, 2002), digital filter design (Schnier et al., 

2001). Today, the MOEA repository (http://www.lania.mx/~ccoello/EMOO) contains 

over 2178 papers, from which a vast majority are applications (Coello, 2005). 
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Research Literature Specific to the Topic 

This section reviews research literature specific to the topic of this dissertation. It is 

organized as follows: First, it presents research efforts in parameter control methods for 

simple GAs. Second, it describes the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), which the ANSGA-II is built upon. Third, this section presents some recent 

research efforts in parameter control methods for MOEAs. Finally, the section reviews 

research literature on running performance metrics. 

Parameter Control Techniques in Simple GAs 

Several parameter control methods have been proposed and applied successfully for 

single objective optimization problems using simple GAs. Both theoretical and empirical 

studies have suggested that the good mutation probability, which enables diversity in the 

population without destroying already found good solutions, varies with evolutionary 

time according to the state of the search and the nature of the search problem (Fogarty, 

1989; Hesser & Männer, 1991; Bäck, 1992; Mühlenbein, 1992).  Davis (1991) applied a 

time-varying schedule of parameter settings and found that performance was improved. 

Spears (1991) applied self-adaptation for selecting optimal crossover operator (uniform 

crossover or two-point crossover) and showed that this adaptive crossover operator out-

performs non-adaptive crossover operator, especially with large population sizes. Smith 

& Fogarty (1996) used self-adaptation for mutation rate and  showed that the self-

adaptive mutation significantly improves the GA’s performance as well as making it 

possible to remove the mutation parameter from the set of decisions faced by the user. 
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Harik and Lobo (1999) proposed a parameter-less GA to make simple GAs easier 

to use and available to more users. The main contribution of this work is the adaptive 

population size technique, which is used in the ANSGA-II. Harik and Lobo focused their 

study on the adaptive population size technique; therefore, they chose to ignore the 

mutation (pm = 0) and set the crossover probability to a fixed value (pc = 0.5). The 

parameter-less GA selects the right population size by establishing a race among multiple 

populations of various sizes. It allows the smaller populations more generations to run. 

The coordination of the array of populations is implemented with a counter base 4 as 

illustrated in Table 3 (Harik & Lobo, 1999).  

Table 3: The coordination of the array of populations in the parameter-less GA 
Counter base 4 Action 

0
1
2
3
10 
11 
12 
13 
20 
21 
22 
23 
30 
31 
32 
33 
100 
101 
…

Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 2 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 2 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 2 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 1 
Run 1 generation of population 3 
Run 1 generation of population 1 

…
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Overall, the nth population is allowed to run 4 times more generations than the 

n+1th population. Each time a population yields its execution if the next population has 

yet not been created the algorithm creates a new population twice as large as the previous 

one. Since the smaller populations have more time to run, they expect to converge faster 

than the larger one and the algorithm would terminate with a proper population size. On 

the other hand, if at any point in time, a larger population has an average fitness better 

than that of a smaller population then the algorithm would reset the counter and stop 

running the smaller population because it is very unlikely that the smaller population 

would produce better solutions than the larger one. This process continues and the 

algorithm would eventually terminate with a proper population size. The parameter-less 

GA has been tested on three test problems (the one-max problem, the noisy one-max 

problem, and the bounded deceptive problem) (Harik & Lobo, 1999) and applied to a 

real-world problem successfully (Lobo & Goldberg, 2001). A worst-case analysis of the 

parameter-less GA has also been studied and it demonstrates that the parameter-less GA 

does not increase significantly the computational requirements of the GA with optimal 

parameter settings (Pelikan & Lobo, 1999). The experimental studies suggested that the 

parameter-less GA indeed offers an efficient method to eliminate the population size 

parameter. The parameter-less GA is a bit slower than a GA that starts with proper 

parameter settings.  However, it takes trial and error experiments to obtain the proper 

parameter settings for an arbitrary real-world problem. 

Bäck, Eiben, & van der Vaart (2000) implemented simple GAs that have one or all 

three parameters (pm, pc, and N) adjusted during the run. This was the first empirical 

study that investigates simultaneous parameter control techniques in simple GAs for all 
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three parameters - mutation, crossover, and population size. The self-adaptive mutation 

probability is encoded as extra bits at the end of every individual and initialized to 

random values between 0.001 and 0.25. Mutation is performed in two steps. First, only 

the encoded bits for the mutation probability are mutated and immediately decoded to 

establish the new mutation probability. This new mutation probability is then applied to 

the main bits (those encoding a solution) of the individual. The self-adaptive crossover 

probability is also encoded as extra bits at the end of every individual and initialized to 

random values between 0.0 and 1.0. When an individual in the population is selected for 

reproduction by the tournament selection, a random number r between 0.0 and 1.0 is 

compared with the individual’s pc. If r is less than pc, the individual is ready to mate. If 

both selected individuals are ready to mate, two children are created by uniform 

crossover, mutated and inserted into the population. If r is greater than pc, the individual 

will only be subject to mutation to create one offspring, which is inserted in the 

population immediately. If one individual is willing to mate and the other one is not, the 

willing parent is on hold and the next selection round only selects one other parent. The 

adaptive population size is implemented as described in the following. Every new 

individual is allocated a remaining lifetime (RLT) according to its fitness by the 

following bi-linear formula: 

( ) if fitness(i)  AvgFit
( )

1 ( )( )  if fitness(i) < AvgFit
2

1 ( )  
2

WorstFit fitness iMinLT
WorstFit AvgFit

RLT i
AvgFit fitness iMinLT MaxLT
AvgFit BestFit

MaxLT MinLT

η

η

η

− + ≤ −=  − + +
 −

= −

(9) 
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In the above formula, MinLT and MaxLT stand for the allowable minimum and 

maximum lifetime of an individual; fitness(i) stands for the fitness of individual i; AvgFit 

stands for average fitness; BestFit stands for best fit; and WorstFit stands for worst 

fitness. The values for MinLT and MaxLT are set to 1 and 11 in this study because initial 

runs with different values indicated that these values deliver good performance. Thus, 

instead of selecting a population size N, the user has to select a maximum lifetime 

MaxLT. Each generation, the RLT of all the individuals in the population is decremented 

by one except for the fittest individual, whose RLT is unchanged. If the RLT of an 

individual reaches zero it is removed from the population. The initial population consists 

of 60 individuals. It is likely that eventually every individual will die of old age. 

Five variants of the algorithm are tested using a carefully designed test suite of five 

functions: the original GA, the GA with self-adaptive mutation probability only 

(SAMGA), the GA with self-adaptive crossover probability only (SAXGA), the GA with 

adaptive population size only (APGA), and the GA with self-adaptive mutation 

probability, self-adaptive crossover probability, adaptive population size (SAMXPGA). 

Each test function is run 30 times for every one of the five variant GAs. The best fitness 

and the average fitness of the population are monitored until the algorithm terminates. 

The speed of optimization is measured by the average number of evaluation on success 

(i.e. how many evaluation does it take on average for the successful runs to find the 

optimal solution). The success rate shows how many of the runs are successful in finding 

the solutions. The results show that the performance of the self-adaptive parameters pm

and pc alone is disappointing (in SAMGA and SAXGA). The most likely reason is that 

the algorithms take time away from finding the optimal solution to search for good 
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parameter values. The adaptive population size alone in the APGA, on the other hand, 

improves the performance of the algorithm. The overall winner is the SAMXPGA with 

all three adaptable parameters. The authors emphasize that using adaptive population 

sizes prove to be the key feature to improve the algorithm and more studies on control 

mechanism for variable population sizes should be done. 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

The NSGA (N. Srinivas & Kalyanmoy Deb, 1994), which is based on the non-

dominated sorting procedure and niche strategy with fitness sharing suggested by 

Goldberg (1989) as described in the section “Historical Overview” above, has the 

following weaknesses:  

• O(mN3) computational complexity of non-dominated sorting procedure (where 

m is the number of objectives and N is the population size); 

• An additional sharing parameter (σshare) that the user must set to ensure getting 

good spread of solutions – a parameter-less diversity preservation approach is 

more desirable; 

• Non-elitism approach: Elitism preserves good solutions at each generation. It 

can improve the performance of GAs significantly and prevent the loss of good 

solutions found so far during the evolution process (if good solutions are not 

selected for reproduction or if they are destroyed by crossover or mutation). 

Deb et al. (2002) proposed a fast and elitist MOEA, named NSGA-II (Non-

dominated Sorting Genetic Algorithm II) to remove the above three weaknesses. It is one 

of the best-known MOEAs and it has been extensively used in many studies (Zitzler et 

al., 2002; Büche et al., 2003; Devireddy & Reed, 2004). The algorithm has been 
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recognized to perform as well or better than other MOEAs with the same goal of finding 

a diverse Pareto-optimal solution set such as the Pareto-Archived Evolution Strategy 

(PAES) (Knowles & Corne, 1999) and Strength Pareto Evolutionary Algorithm 2 

(SPEA2) (Zitzler et al., 2002). For these reasons, the NSGA-II is selected in this study 

and the ANSGA-II is built upon it. The major features of NSGA-II, which include low 

computational complexity, parameter-less diversity preservation, elitism, and real-valued 

representation, are reviewed in detail in the following. 

Low Computational Complexity: The NSGA-II requires at most O(mN2)

computational complexity, which is lower compared to O(mN3) of NSGA. The procedure 

for finding non-dominated front used in NSGA-II is similar to the non-dominated sorting 

procedure suggested by Goldberg (1989) except that a better bookkeeping strategy is 

used to make it more efficient. In this bookkeeping strategy, every solution from the 

population is compared with a partially filled population for domination instead of with 

every other solution in the population as in the NSGA. Initially, the first solution from the 

population is kept in a set P’. Thereafter, each solution p (the second solution onwards) is 

compared with all solutions in P’ one by one. If the solution p dominates any solution q in 

P’ then solution q is removed from P’. Otherwise, if solution p is dominated by any 

solution q in P’, the solution p is ignored. If solution p is not dominated by any solution in 

P’ then it is saved in P’. Therefore the set P’ grows with non-dominated solutions. When 

all solutions of the population is checked, the solutions in P’ constitute the non-dominated 

set. To find the other fronts, the non-dominated solutions in P’ will be discounted from P

and the above procedure is repeated until all solutions in P are ranked. Therefore, the 

domination checks requires a maximum of O(N2) because the second solution is 



60

compared with only one solution of P’, the third solution with at most two solutions of P’,

and so on. Since each domination check requires m function value comparisons, the 

maximum complexity of this approach to find the first Pareto-optimal front is O(mN2).

Parameter-less Diversity Preservation: To maintain diversity among solutions, the 

NSGA-II replaces the fitness sharing approach in the NSGA with a crowded comparison 

approach, which does not require any user-defined parameter. As a result, the sharing 

parameter σshare used in the NSGA is eliminated. In the crowded comparison approach, 

every solution i in the population has two attributes: a non-domination rank (irank) and a 

crowding distance (idistance). The crowding distance idistance of a solution i is a measure of 

the perimeter of the largest cuboid enclosing the solutions i, without including any other 

solution in the population, formed by using the nearest neighbor solutions as the vertices. 

Figure 7 illustrates the crowding distance calculation for the solution i in its non-

dominated front, which is the average side-length of the cuboid enclosing the solutions i

(shown with a dash box). The crowded tournament selection operator, which is used to 

guide the search towards a spread-out Pareto-optimal front, is defined as follows (Deb, 

2001): A solution i wins a tournament with another solution j (denoted as i cp j) if 

solution i has a better rank (irank < jrank) or i and j has the same rank but solution i has a 

better crowding distance than solution j (irank = jrank and idistance > jdistance). If i and j has the 

same rank and the same crowding distance then one of them is randomly chosen as a 

winner. cp is the crowded comparison operator and is formally defined as i cp j if (irank < 

jrank) or (irank = jrank and idistance > jdistance). 
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Figure 7: Illustration of the crowding distance calculation 
 

Elitism: Elitism in NSGA-II is ensured by comparing the current population with 

previously found best non-dominated solutions (i.e. kept in a set P’ as described above) 

and by combining the parent and child populations to form a combined population with 

size 2N. The combined population is then sorted according to non-domination. Solutions 

belonging to the best non-dominated front F1 are of the best solutions in the combined 

population. If the size of F1 is smaller than N, then all solutions in F1 are selected for the 

new population. The remaining solutions of the new population are selected from 

subsequence non-dominated fronts in the order of their ranking F2, F3, and so on. This 

procedure is continued until N solutions are selected for the new population. To choose 

exactly N solutions, the solutions in the last front Fl are sorted using the crowded 

comparison operator ( cp ) in descending order (crowding distance sorting), and the best 

solutions needed to fill N populations are chosen. The disadvantage of this elitism 

technique is that the non-dominated sorting is performed on a combined population of 

size 2N (parent and child populations), instead of size N like in most other MOEAs. 

Figure 8 illustrates the elitist mechanism of the NSGA-II. 
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Figure 8: The elitist mechanism of NSGA-II 
 

Real valued Representation: The NSGA-II supports real-valued representation, in 

which a chromosome is represented as a vector of decision variables in real-valued 

numbers, to remove weaknesses in binary representation. The binary representation 

traditionally used in simple GAs has some weaknesses as described in the following 

(Michalewicz, 1996; Deb, 2001). One of the weaknesses is that the so-called Hamming 

cliffs are formed when two numerically adjacent values have bit representations that are 

far apart. For example, the corresponding 8-bit binary representations for two decimal 

numbers 127 and 128 are 01111111 and 10000000. Despite being close in real values, 

these two binary strings have a Hamming distance of eight bits (the Hamming distance is 

the number of corresponding bits that differ). This presents a problem to a gradual search 

in the continuous search space. If, for example, the optimal solution is 127 and the 

current candidate solution is 128, 8 bits need to be changed to cause a small change in 

function evaluation. Another weakness is the inability to achieve any arbitrary precision 

in the obtained solutions when applied to high-precision numerical problems because the 

string length must be chosen a priori to enable the GAs to achieve a certain precision in 

the solutions. The higher the required precision, the longer is the string length. Goldberg, 
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Deb, and Clark (1992) suggested a population size N, which is derived from the string 

length ℓ as N = 1.65*20.21ℓ. Hence, the computational complexity of the algorithm is also 

increased. Since a fixed coding is used to code the decision variables, variable bounds 

must be such that they bracket the largest variable values. In many problems, this 

information is not usually a known priori. As a result, this may cause difficulty in using 

binary-coded representation for such problems.  

Using real-valued representation, the NSGA-II can achieve arbitrary precision in 

the obtained solutions (the precision would depend on the underlying machine) and it can 

handle problems having a continuous search space easily (because there is no Hamming 

cliffs issue) when compared to binary-coded GAs. Moreover, the real-valued 

representation of the solutions is close to the natural formulation of many optimization 

problems. There are no differences between the genotype (coding) and the phenotype 

(search space). Hence, the coding and decoding processes that are needed in the binary-

coded GAs are avoided, thus increasing the algorithm's speed. However, in real-coded 

GAs (GAs that are based on real-valued representation), the main challenge is how to 

create a new pair of offspring vectors from a pair of real-valued parent vectors 

(crossover) or how to mutate a real-valued variable vector that simulates the way 

mutation work in binary-coded GAs. Regarding this challenge, the NSGA-II uses the 

simulated binary crossover (SBX) operator (Deb & Agrawal, 1995) and the polynomial 

mutation operator (Deb & Goyal, 1996) to apply crossover and mutation directly to real-

valued decision variables respectively.  
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The following equations illustrate the working mechanism of a SBX operator for 

creating two offspring ( (1, 1)t
ix + and (2, 1)t

ix + ) from two parent solutions ( (1, )t
ix and (2, )t

ix )

at generation t (Deb, 2001): 
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t t
i i
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In the above equation, 
iqβ is a spread factor, ri is a random number 0 [0,1], and the 

distribution index cη is any non-negative real number that a user can set. Thus, the SBX 

operator introduces an additional user-defined parameter cη . This parameter affects the 

probability distribution of the SBX operator. 

The following equations describe how the polynomial mutation operator is used to 

apply mutation directly to real-valued decision variables (Deb & Goyal, 1996). Let xi be 

the value of the i-th variable. The result of the mutation on xi is the new value yi obtained 

by the following equations (Deb, 2001): 

 ( ) ( ) ( ) ( )1, 1 1, 1 ( )U L
i i i i i

t ty x x x δ+ += + − (13) 
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In the above equation, t is the generation counter, ( )U
ix and ( )L

ix are lower and upper 

bound of xi respectively, ri is a random number 0 [0,1], the distribution index mη is any 

non-negative real number that a user can set and it directly controls the shape of the 

probability distribution. The polynomial mutation operator, however, introduces an 

additional user-defined parameter mη .

Parameter Control Techniques in MOEAs 

Self-adaptive mutation parameter: Laumanns et al. (2001) investigated whether 

parameter control techniques for mutation rate used in single-objective GAs can be used 

on MOEAs and what modifications are required to make these techniques work for multi-

objective cases. This investigation has a significant contribution to the parameter control 

research in MOEAs by showing that self-adaptive mutating step size techniques used in 

single-objective ESs works differently in the multi-objective cases. Their study focused 

on the problem of convergence to the Pareto-optimal set. Laumanns et al. pointed out that 

research focusing on the role of parameter control in MOEAs remains rare. Most MOEAs 

such as NSGA-II, PAES, and SPEA2 support static parameters, where the parameter 

settings are initialized at the beginning of a MOEA’s execution and fixed during the 

course of its execution. They emphasized that when large search spaces are to be 

explored in solving complex optimization problems, adaptive variation parameters are 

mandatory to achieve both a satisfactory rate of progress towards the Pareto-optimal front 

and a Pareto-optimal solution set because the proper parameter settings in the earlier 

stages of a GA’s run usually become less efficient during the later stages. One of these 

parameters is the mutation rate: With too strong variation, the evolution becomes a pure 

random search; with too weak variation, no real progress can be achieved. The small 
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region of appropriate mutation rate (known as the ‘evolution window’) depends on the 

landscape of the objective function, which is usually is unknown a priori. Hence, 

adaptation mechanisms for the mutation rate are a necessity for many optimization 

problems. Two types of functions whose components are well studied in the context of 

mutation control in single objective optimization are used: the sphere model and a multi-

modal (with more than one solutions) function. The sphere model is a uni-modal 

function, which has been used as a reference in many theoretical studies of EAs and 

especially in the context of self-adaptive Evolution Strategies (ES). These two functions 

are listed below: 
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In the multi-sphere model F function, the authors restricted to m = 2 (for 2 

objectives) with c1 = (1,0,0,…,0) and c2 = (0,1,0,…,0). This function is a simple multi-

objective test function for infinite search spaces because it is continuous, non multi-

frontal, and the Pareto set can be determined analytically. However, since the search 

space is infinite, convergence depends crucially on the starting point and the mutation 

rate. The G function is part of van Veldhuizen’s test function suite (1999) for MOEAs 

and features a disconnected Pareto sets. Floating point representation is used for the 

decision variables. An individual consists of n decision variables and one mutation step 

size. Thus, a single mutation step size is used for all variables. Mutation is carried out by 

first multiplying the step size with an instantiation of a log-normally distributed random 

variable: ( 1) ( )
0(0, )t t expΝσ σ τ+ = , where 0 1 nτ = and t is a generation counter. 
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Thereafter, a normal-distributed random vector with zero mean and variance ( 1) 2( )tσ + is 

added to the individual: ( 1) ( ) ( 1) 2(0,( ) )t t tx x N σ+ += + .

The self-adaptive mutation step size is applied to the standard (µ,κ,λ,ρ) ES where µ

denotes the number of possible parents, κ the maximum lifespan of individuals 

(measured in generation), λ the number of offspring individuals, and ρ the number of 

crossover partners. A solution is assigned a fitness value equal to its non-dominated level 

within the correspondence population. For the single-objective case of the sphere model 

(first component of F), it has been known that self-adaptive ESs exhibit linear order 

convergence. However, the result shows that for the multi-objective case (the multi-

sphere model), this behavior is valid only for the solutions, which are far away from the 

Pareto-optimal set. After a period of exponential decreasing the distance of the solutions 

to the Pareto-optimal set, the solutions suddenly start to oscillate around a small but fixed 

final distance to the Pareto-optimal set. It has been observed that when the solutions 

converge near the Pareto-optimal set, not only the success rate decreases but also the 

normalized average progress for successful mutations. As a result, it is increasingly 

difficult for the solutions to converge closer to the Pareto-optimal set. The same behavior 

exhibits on the multi-modal function G. Based on the experiments, Laumanns et al. 

concluded that self-adaptive Pareto-based ESs have difficulties to converge to the Pareto-

optimal set due to the slow selection pressure of the ranking selection method based on 

the concept of Pareto optimality. They suggested a possible way to improve the 

convergence properties of self-adaptive MOEAs is to incorporate elitism to prevent 

possible divergence caused by increasing mutation step sizes and low selection pressure.  
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Self-adaptive crossover and mutation parameters: Abbass (2002) implemented 

self-adaptive crossover and mutation rates into the Pareto Differential Evolution (PDE) 

algorithm (Hussein A. Abbass, Sarkar, & Newton, 2001) and named the modified version 

as SPDE (Self-adaptive Pareto Differential Evolution). PDE is a multi-objective 

adaptation of the original Differential Evolution (DE) algorithm introduced by Rainer 

Storn and Kenneth Price (1996) for optimization problems over continuous domains. The 

DE algorithm is a population-based algorithm like GAs using the similar operators: 

crossover, mutation and selection. The main difference is that all solutions in the 

population have the same chance of being selected as parents without dependence of their 

fitness value. Another different is that in reproduction GAs rely on crossover while DE 

relies on mutation operation. However, the techniques for self-adaptive crossover and 

mutation rates used in SPDE are worth studying because Abbass’s goal for the SPDE is 

also to make the algorithm easy to use and more attractive for decision makers in real life 

applications with regard to the parameter tuning. In the SPDE, both crossover and 

mutation rates are inherited from parents in the same way crossover is carried out for the 

decision variables. The SPDE works as follows.  An initial population is generated 

randomly from a Gaussian distribution with mean 0.5 and standard deviation 0.15 (G(0.5, 

0, 1.5)). Crossover and mutation rates are initialized in the initial population from a 

uniform distribution between [0, 1]. The main loop is listed in the following steps: 

Step 1: Evaluate every solution in the population for non-dominance.  

Step 2: Remove all dominated solutions the population. 

Step 3: If the number of non-dominated solutions in the population > the user’s 

specified maximum, do the following two steps to maintain diversity in the solutions: 
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• Apply the neighborhood distance function, which is the average Euclidean 

distance between the closest two points, to the non-dominated solutions:  

( ) (min || || min || ||) 2i jD x x x x x= − + − where x ≠ xi ≠ xj

• Remove non-dominated solution with the smallest distance from the population 

until number of non-dominated solutions ≤ allowed maximum. 

Step 4: Perform reproduction on the remaining non-dominated solutions as follows: 

• Select three solutions at random – one as a main parent ( 1α ) and two as 

supporting parents ( 2α , 3α ). Select a variable j at random. 

• Self-adaptive crossover rate is 31 2(0,1) ( )child
c c c cx x G x xαα α← + × −

• Self-adaptive mutation rate is 31 2(0,1) ( )child
m m m mx x G x xαα α← + × −

• Apply crossover: Each variable i in the main parent ( 1
ixα ) is perturbed by 

adding to it a ratio, F ∈ Gaussian(0,1), of the difference between the two values 

of this variable in the two supporting parents as follows: 

Table 4: Pseudo-code for a crossover operation in SPDE 
For each variable 1

1ixα α∈ Do  
 If uniform-probability(0,1) > child

cx or i = j 
 31 2(0,1) ( )child

i i i ix x G x xαα α← + × −
Else  

 1child
i ix xα←

End For 

• Apply mutation: if the child solution dominates the main parent then apply 

mutation and place the child solution into the population as follow: 

Table 5: Pseudo-code for a mutation operation in SPDE 
If child solution dominates the main parent ( 1

childx αp )
If uniform-probability(0,1) > child

mx
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For each variable 1
1ixα α∈ Do 

 (0,0.1)child child
i ix x G range← + ×  

;range is the difference between the maximum and 
 ;the minimum value that the variable can take 
 End For 
 End If 
 Place the child solution into the population 
End If 

• The reproduction process continues until the population is filled with N non-

dominated solutions.  

Step 5: The process continues until the terminate conditions are satisfied. 

The SPDE was tested on four benchmark problems used in (Zitzler & Thiele, 

1999).  The solutions obtained by the SPDE were compared with the solutions of thirteen 

other MOEAs including the following popular MOEAs: Vector Evaluated GA (VEGA) 

(Schaffer, 1985), Non-dominated Sorting GA (NSGA) (N. Srinivas & Kalyanmoy Deb, 

1994), Niched Pareto GA (NPGA) (Horn et al., 1994), Strength Pareto Evolutionary 

Algorithm (SPEA) (Zitzler & Thiele, 1998), Pareto-Archived Evolution Strategy (PAES) 

(Knowles & Corne, 1999). The results showed that the SPDE outperformed some of the 

MOEAs. 

Adaptive population size: Devireddy and Reed (2004) incorporated the adaptive 

population size technique (similar to the multiple population approach used in the 

parameter-less GA (Harik & Lobo, 1999)) and the ε-dominance archiving technique 

(described in Step 2 below) used in the ε-MOEA (Deb, Mohan, & Mishra, 2003) into the 

NSGA-II. They named the modified version as ε-NSGA-II. The parameter-less GA has 

been described in the sub-section “Parameter Control Methods in Simple GAs” above. 

The ε-MOEA was developed by Deb, Mohan, & Mishra based on the ε-dominance 
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concept (a solution xa in X is said to ε-dominate a solution xb in X (denoted as a bx xεp )

for some ε > 0 if (1 ) ( ) ( )a i bf x f xε+ ≤i for all i = 1,…,k.) (Laumanns et al., 2002). The ε-

dominance concept requires the user to define the precision with which they want to 

evaluate each objective by specifying an appropriate ε value for each objective. The ε-

NSGA-II uses the ε values to find an approximation of Pareto-optimal set or ε-

approximate Pareto-optimal set that meets the user-defined precisions. There are three 

main steps in the ε-NSGA-II: 

Step 1: A MOP is solved using the original NSGA-II with fixed crossover and 

mutation probabilities (pc = 0.9, pm = 0.5) as suggested by Deb (Deb, 2001). The initial 

population size is set arbitrarily small (i.e. N = 5) so the NSGA-II can search for non-

dominated solutions with a low computational cost. Coello and Pulido (2001) have 

shown that for some problems, a MOEA can find approximate Pareto-optimal solutions 

effectively using small population sizes.  

Step 2: Similar to the ε-MOEA, the ε-NSGA-II maintains two co-evolving 

populations: an EA population P(t) and an archive population A(t) (where t is the iteration 

counter). Initially, the archive population A(0) is initialized with the non-dominated 

solutions of P(0) generated by the NSGA-II. Thereafter, the archive population A(t) is 

updated as described in the following (Deb et al., 2003). Every solution in the archive is 

assigned an identification array (B = (B1, B2, … , Bm)T, where m is the number of 

objectives) as follows: 

 
min

min
i

( ) ,    for minimizing  
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 − 

(16) 



72

In the above equation, min
if is the minimum possible value of the i-th objective and 

iε is the allowable precision in the i-th objective below which two values are 

unacceptable to the user. The identification array divides the entire objective space into 

hyper-boxes, each have iε in the i-th objective. A solution p is selected at random from 

P(t), which contains non-dominated solutions generated in generation t of the NSGA-II 

run. An identification array is calculated for the solution p. The solution p is then 

compared with each solution in A(t) for ε-dominance. If the solution p is ε-dominated by 

any archive solution, p is not accepted. On the other hand, if the solution p ε-dominates 

any archive solution, p replaces the dominated archive solution. If neither of these two 

cases occurs, then it means that p is ε-non-dominated with the archive solutions. This 

case is separated into two. If the ε-non-dominated solution p shares the same hyper-box 

(the same B vector) with an archive solution, then two solutions are checked for the usual 

non-domination. Whichever solution dominates other solutions or is closer to the B

vector (in term of the Euclidean distance) is retained. If the ε-non-dominated solution p

does not share the hyper-box with any archive solution, p is accepted. Thus, the algorithm 

maintains the diversity in the archive by allowing only one solution to occupy each pre-

assigned hyper-box on the Pareto-optimal front. Moreover, with this ε-dominance 

archiving technique, no specific upper limit on the archive size needs to be set. The 

archive size can be calculated from the chosen ε-vector as shown in (Laumanns et al., 

2002). For example, the archive size can be calculated for a multiplicative ε as: 

 ( ) 1log log(1 ) mF Kε ε −≤ + (17) 
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where Fε is ε-approximate Pareto-optimal set; 1 ≤ fi ≤ K, K ≥ εi for all i ∈ {1, …, m}; and 

m is the number of objectives. 

Step 3: This step checks if the user-specified performance and termination criteria 

are satisfied and the Pareto optimal set has been sufficiently quantified (as defined in 

equation (17)). The user-specified performance is checked by determining the distance of 

the obtained non-dominated set to a known Pareto-optimal set for the test problem given 

the specified tolerance values (ε values for each objective). The termination criteria 

include the maximum acceptable run time or the minimum percentage change in the 

number of non-dominated solutions for two successive runs to be considered identical. If 

the criteria are not satisfied, the population size is doubled and the search is continued. 

When doubling the population, the initial population of the new run has solutions injected 

from the archive at the end of the previous run.  

The ε-NSGA-II was tested using a suite of two-objective test problems that are 

popular in literature including the test problems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 

listed in Table 32 of Appendix A. The performance of the ε-NSGA-II is measured using 

the same convergence metric used to measure the performance of ε-MOEA (Deb et al., 

2003). The results show that the ε-NSGA-II requires at least 60% fewer function 

evaluations than the original ε-MOEA. The ε-NSGA-II removes the population size 

parameter by making it adaptable, but users have to define the precision with which they 

want to evaluate each objective by specifying an appropriate ε value for each objective. 

Therefore, the ε-NSGA-II introduces a new parameter: the ε-vector. 
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Running Performance Metrics 

In order to adjust values of the parameters of a MOEA during its run, the progress 

of a MOEA run must be monitored and evaluated, which involves comparing non-

dominated solution sets among generations to see how the obtained solutions vary with 

generations. Performance metrics can be integrated into a MOEA to measure the quality 

of the obtained solutions during its run in order to provide progress information for 

adjusting values of the parameters. Unlike in single-objective optimization, where the 

performance metric is directly related to the objective function being optimized (for both 

being scalar quantities), in multi-objective optimization, two primary functionalities must 

be achieved: (i) approximating the Pareto-optimal front and (ii) maintaining a diverse set 

of solutions. Based on these two functionalities, two performance metrics can be devised 

(Deb & Jain, 2002): (i) a convergent metric for measuring the convergence of solutions to 

the Pareto-optimal front and (ii) a diversity metric for measuring the diversity of 

solutions. Such a set of two metrics enables two or more non-dominated solution sets to 

be compared among each other in terms of their functional performances.  

There are interests in measuring different things in MOEAs. One may be interested 

in having a robust MOEA that approximates the global Pareto-optimal front of a problem 

consistently, rather than a MOEA that converges to the global Pareto-optimal front but 

only occasionally. This performance measure is usually applied to the final non-

dominated set obtained by a MOEA. One may also be interested in generation wise 

performance measure for analyzing the behavior of an MOEA during the run in order to 

measure its capabilities to approximate progressively a non-dominated solution set to the 

global Pareto-optimal front of the problem being solved (assuming the true Pareto-
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optimal front is known) and to maintain diversity. This generation wise performance 

measure requires running metrics, which have the following properties (Deb & Jain, 

2002): 

• The metric should take a value between zero and one in an absolute sense. 

Since the metric is to be compared generation wise, an absolute scaling of a 

running metric between zero and one will allow to assess the change of the 

metric value from one generation to another. 

• The target (or desired) metric value (computed for an ideally converged and 

diversified set of solutions) must be known. 

• The metric should provide a monotonic increase or decrease in its value, as the 

population is improved or deteriorated slightly. This will also help in evaluating 

the extent of superiority of one approximation set with another. 

• The metric should be scalable to any number of objectives. Although this is not 

a necessary property, but if followed, it will certainly be convenient for 

evaluating scalability issues of MOEAs in terms of number of objectives. 

• The metric should be computationally efficient.  

Several performance metrics have been suggested in the MOEA literature. Most of 

them are applied to the final non-dominated set obtained by a MOEA to evaluate its 

performance and may not be efficient to be used as running performance metrics (Deb & 

Jain, 2002). For example, the D1R metric (average distance of reference points from the 

approximate set) suggested by Czyzak and Jaszkiewicz (1998) for convergence measure, 

or the S-measure (used in (Zitzler, 1999)) for diversity measure cannot be adequately 

used due to computational expenses of the R-metrics calculation. The running convergent 
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metric and diversity metric, which are to be investigated in this dissertation, are described 

in the following. 

Running Metric for Convergence: The dissertation investigates the running 

convergence metric suggested by Deb & Jain (2002) because the metric can work with an 

unknown set of Pareto-optimal solutions (the Pareto-optimal set is usually unknown in 

advance for real-world problems) and it is efficient. In this metric, a reference set P* can 

be either a set of Pareto-optimal solutions (if known) or an agglomeration of populations. 

An agglomeration of populations may be obtained in the following way. First, a MOEA 

is run for T generations and the generation wise populations (Pt, t = 0, 1, …, T) are stored. 

Thereafter, the non-dominated solutions Ft of each population are combined together and 

the reference set is defined as the non-dominated set of the combined populations: P*=

non-dominated of ( 0
T
t tF=U ). The convergence metric for a population P at generation t

(denoted as Pt) is calculated in the following steps (Deb & Jain, 2002): 

Step 1: Identify the non-dominated set Ft of Pt.

Step 2: From each point i in Ft, calculate the smallest normalized Euclidean 

distance to P* as follows: 

 
* 2

max min1 1

( ) ( )min
P m

k k
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f f=

=

 −
=  − 

∑ (18) 

Here, m is the number of objective functions; max
kf and min

kf are the maximum and 

the minimum function values of k-th objective function in P*.

Step 3: Calculate the convergence metric by averaging the normalized distance for 

all points in Ft:
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In order to keep the convergence metric within [0,1], once the above metric values 

are calculated for all generations, the values of ( )tC P is normalized by its maximum 

value (usually 0( )C P ): 
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A small convergent metric value indicates the obtained solution set is close to the 

Pareto-optimal front.  

The convergent metric above has been applied on solutions obtained using NSGA-

II on four two-objective test problems suggested in literature: ZDT1, ZDT2, ZDT3, and 

ZDT6 (see Table 32 in Appendix A) and one real-world two-objective gearbox design 

problem. The published results demonstrate that non-dominated sets progressively 

approach the reference set (using known Pareto-optimal front) for all test problems (Deb 

& Jain, 2002). Using the population-agglomeration technique, the convergent metric 

above has also been applied on solutions obtained using NSGA-II on two three-objective 

test problems DTLZ2 and DTLZ5 borrowed from Deb, Thiele, Laumanns, & Zitzler 

(2002). For the test problem DTLZ2, which has a spherical Pareto-optimal surface, the 

convergent metric values suggest that several non-dominated solutions even at the final 

generation have not approximated to the true Pareto-optimal set. For the test problem 

DTLZ5, which has a two-dimensional Pareto-optimal curve, the convergent metric values 

show that non-dominated solutions approximate to the true Pareto-optimal set.  
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Deb and Jain (2002) did not evaluate the population-agglomeration technique on 

the same test problems (ZDT1, ZDT2, ZDT3, and ZDT6) that were used to evaluate the 

running convergent metric using known Pareto-optimal front. Therefore, the 

effectiveness of the population-agglomeration technique is not validated. 

Running Metric for Diversity:  The dissertation investigates the running metric for 

measuring the diversity of the obtained solutions suggested by Deb et al. (2002). This 

metric is defined as follows: 

 
1

1

( 1)

N
f l ii
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−

=
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∆ =
+ + −

∑ (21) 

Here, the parameter df and dl are the Euclidean distances between the known 

extreme solutions and the boundary solutions of the obtained non-dominated set. The 

parameter di is the Euclidean distance between two consecutive solutions of the obtained 

non-dominated set. The parameter d is the average of all Euclidean distance di, where i =

1, 2,…, (N – 1), assuming that there are N solutions on the first non-dominated front. For 

the most uniformly and widely spread out set of non-dominated solutions, the value of ∆

is zero. For any other distribution, the value of the metric would be greater than zero.  

The diversity metric above was used to measure the diversity of the non-dominated 

solution sets obtained by the NSGA-II (Deb, Pratap et al., 2002) on nine two-objective 

test problems suggested in literature (see Table 32 in Appendix A).  

 

Summary of Known and Unknown 

Several parameter control methods have been proposed and applied successfully for 

single objective optimization problems using simple GAs. One of the most significant 
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empirical studies was performed by Bäck, Eiben, and van der Vaart (2000) in which 

simple GAs have one or all three parameters (pm, pc, and N) adjusted during the run. The 

results of this study show the superiority of the GA with adaptable parameters and 

suggest more studies on control techniques for adaptive population sizes. Research 

focusing on the role of parameter control in MOEAs remains rare. Most MOEAs such as 

NSGA-II, PAES, and SPEA2 support static parameters, where the parameter settings are 

initialized at the beginning of a MOEA’s run and fixed during the course of its run. The 

use of fixed parameter settings may lead to slow convergence and sub-optimal obtained 

solutions, especially when large search spaces are to be explored in solving complex 

optimization problems because the proper parameter values are not fixed but varied 

during a run. Some previous studies have applied parameter control techniques to 

MOEAs. However, these studies focus on one or two parameters in isolation and ignore 

other parameters. These studies have shown that parameter control techniques used in 

single-objective GA work differently in the multi-objective cases (Laumanns et al., 2001; 

Tran, 2005). In contrast to single-objective optimization, where objective function and 

fitness function are often the same, in multi-objective optimization, both fitness 

assignment and selection must support several objectives. The result of the multi-

objective optimization process is usually not a single solutions but a set of trade-off 

solutions. These trade-off solutions converge towards different areas of the Pareto-

optimal front and proper parameter values differ between these solutions. Therefore, self-

adaptation of parameter values reveals an additional difficulty compared to single 

objective optimization. Moreover, in a MOEA, each solution is assigned a fitness value 

equal to its non-dominated rank in the population (1 is the best rank, 2 is the next best 
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rank and so on), which is determined by using a non-dominated sorting procedure. Thus, 

solutions that have the best rank values (rank 1) constitute the first non-dominated front. 

This fitness assignment imposes a barrier in comparing two different non-dominated 

solutions set. In order to adjust the values of parameters, the progress of a MOEA run 

must be monitored and evaluated, which involves comparing solution sets among 

generations to see how the obtained solutions vary with generations. However, all of 

these solutions are in the first non-dominated front and have the same rank value. As a 

result, it is difficult to determine the better non-dominated solution set between two sets 

of non-dominated solutions.  Performance metrics can be integrated into a MOEA to 

measure the convergence and diversity of the obtained solutions during its run in order to 

monitor and provide the MOEA’s progress for adjusting the values of parameters. These 

running performance metrics should be reliable and efficient in order to provide correct 

progress information without spending too much time on metric calculations and taking 

away time for finding the solutions. Several performance metrics have been introduced in 

the MOEA literature. However, most of these metrics are applicable to two-objective 

problems (Deb & Jain, 2002). The convergent metric and diversity metric investigated in 

this study also have not been applied to measure the quality of solutions on problems 

with more than three objectives. Thus, many works remain to be done on parameter 

control techniques for MOEAs. 

 

Contributions 

This dissertation advances knowledge and makes a significant contribution to the 

MOEA field by automating the process of selecting appropriate MOEA parameter values, 
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and making MOEAs easier to use and available to more users. In addition, this 

dissertation improves efficiency of a MOEA because when large search spaces are to be 

explored, adaptive variation parameters are necessary in order to achieve both a 

satisfactory rate of progress towards the Pareto-optimal front and a Pareto-optimal 

solution set. 
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Chapter 3 
 

Methodology 

 

This chapter is organized as follows: First, it describes the research method used in 

carrying out this study. Second, it presents the specific procedures that are used to 

develop the algorithm ANSGA-II. Third, it continues with a discussion of how the results 

of this study are presented along with an explanation of the resource requirements to 

complete this dissertation. Finally, a discussion of the reliability and validity of results 

are provided along with a summary of the chapter. 

 

Research Methods Employed 

The evaluation research method is used as an approach in this dissertation. In 

evaluation research, researchers perform formative studies while a new product is being 

developed, then summative studies when the product has been completed (Glatthorn, 

1998). This research consists of the following major steps: 

• Perform formative studies of existing parameter control techniques in simple 

GAs and MOEAs. The results of these studies identify the available techniques 

that can be used, issues and barriers that are needed to be resolved. These 

studies have been described in Chapter 2 above. 

• Perform formative study of the NSGA-II. The result of this study ensures the 

successful development of the ANSGA-II. 

• Develop the new algorithm ANSGA-II based on the NSGA-II. 
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• Evaluate the ANSGA-II against the original NSGA-II using the same 

benchmark test problems that were used in the study of the original NSGA-II. 

Since the same test problems are used, the results generated by the ANSGA-II 

can be easily compared to those of the NSGA-II for validation.  

• Perform summative studies, which include validating and presenting the results. 

 

Specific Procedures to be employed 

This research involves building on NSGA-II to develop the proposed algorithm 

ANSGA-II and to evaluate the ANSGA-II using benchmark test problems. In this section, 

the NSGA-II is described then the steps to develop the ANSGA-II are outlined. 

Description of the NSGA-II 

The NSGA-II consists of three new techniques: a fast non-dominated sorting 

procedure, a crowded distance assignment procedure, and a crowded comparison 

operator. The pseudo codes for these three techniques are presented next. Thereafter, the 

NSGA-II is outlined. 

Fast Non-Dominated Sorting Procedure: As described in the literature review for 

the NSGA-II above, the procedure for finding non-dominated front used in NSGA-II is 

similar to the non-dominated sorting procedure suggested by Goldberg (1989) except that 

a better bookkeeping strategy is used to make it more efficient. Pseudo-code for the find 

non-dominated front procedure is presented in Table 6 (Deb, Pratap et al., 2002). 

Table 6: Pseudo-code for the procedure FindNonDominatedFront 
Procedure FindNonDominatedFront(P) 
P’ = P[0]   ;include first solution in P 
For each p ∈ P and p ∉ P’ Do ;process one solution at a time 
 P’ = P’ ∪ {p} ;include p in P’ temporarily 
 For each q ∈ P’ and q ≠ p Do ;compare p with other solutions in P’
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If p p q then P’ = P’ \ {q} ;if p dominates a member of P’, delete it 
 Else If q p p then P’ = P’ \ {p} ;if p is dominated by other member of P’,

End For   ;remove it from P’

End For 

To find other fronts, the non-dominated solutions found in P’ will be discounted 

from P and the above procedure is repeated. Pseudo-code for the fast non-dominated 

sorting procedure is presented in Table 7 (Deb, Pratap et al., 2002). 

Table 7: Pseudo-code for the procedure FastNonDominatedSorting 
Procedure FastNonDominatedSorting(P) 
i = 1 ;i is the front counter 
Repeat 
 Fi = FindNonDominatedFront(P) ; find the non-dominated front i 
 P = P \ Fi ;remove non-dominated solutions from P 
 i = i + 1 ;increment the front counter 
Until all the solutions in the population P are ranked 

Crowded Distance Assignment Procedure: As described in the literature review for 

the NSGA-II above, to maximize the diversity of the obtained solutions, the NSGA-II 

uses the crowded comparison approach. This approach requires every solution i in the 

population has two attributes: a non-domination rank (irank) and a crowding distance 

(idistance). The value of irank is obtained through the fast non-dominated sort as described 

above. The crowding distance idistance of a solution i is a measure of the perimeter of the 

largest cuboid enclosing the solutions i, without including any other solution in the 

population, formed by using the nearest neighbor solutions as the vertices as illustrated in 

Figure 7 above. The process of assigning crowding distance (idistance) values to all 

solutions in the population requires the population sorted according to each objective 

function value in their ascending order of magnitude. Thereafter, for each objective 

function, the boundary solutions (solutions with smallest and largest function values) are 

assigned an infinite distance value (e.g. 1e14). All other intermediate solutions are 
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assigned a distance value equal to the absolute difference in the function values of two 

adjacent solutions. This calculation is repeated with other objective functions. The overall 

crowding distance value is calculated as the sum of individual distance values 

corresponding to each objective. Pseudo-code for the crowding distance assignment 

procedure is presented in Table 8 (Deb, Pratap et al., 2002). In the code, I[i+1].m refers 

to the m-th objective function value of the i-th individual in the set I. After all solutions in 

the set I are assigned a crowding distance values, solutions can be compared for their 

extent of proximity with other solutions. A solution with a smaller crowding distance 

value is more crowded by other solutions. 

Table 8: Pseudo-code for the procedure CrowdingDistanceAssignment  
Procedure CrowdingDistanceAssignment(I) 
l = |I|               ;number of solutions in I 
For each solution i ∈ I

set I[i]distance = 0            ; initialize distance 
End For 
For each objective m  
 I = sort(I, m)            ;sort using each objective value in ascending order 
 I[1]distance = I[ l ]distance = 1e14 ;so that boundary solutions are always selected 
 For i = 2 to ( l -1) Do          ;for all other solutions 
 I[i]distance = I[i]distance + (I[i+1].m – I[i-1].m) 
 End For 
End For 

Crowded Comparison Operator: Every solution i in the population has two 

attributes: a non-domination rank (irank) and a crowding distance (idistance). The values of 

irank and idistance are obtained through the fast non-dominated sort procedure and the 

crowding distance assignment procedures respectively as described above. The crowded 

comparison operator ( cp ) is formally defined as: 

 ( )  (   )c rank rank rank rank distance distancei j if i j or i j and i j< = >p (22) 
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The crowded comparison operator guides the selection process in NSGA-II (known 

as crowded tournament selection) towards a uniformly spread-out Pareto-optimal front. 

The crowded tournament selection is defined as follows (Deb, 2001): a solution i wins a 

tournament with another solution j if i cp j. If i and j has the same rank and the same 

crowding distance then one of them is randomly chosen as a winner. Pseudo-code for the 

NSGA-II selection procedure is presented in Table 9. 

Table 9: Pseudo-code for the procedure Selection 
global N = 100                   ;population size 
Procedure Selection(Pt, Mt)
n = 0 and Mt = 0 ;empty 
Repeat 
 p1 = select first solution from Pt at random 
 p2 = select second solution from Pt at random 
 If p1 cp p2

1nt
M p= ;n-th solution in Mt = p1

Else If p2 cp p1

2nt
M p= ;n-th solution in Mt = p2

Else 
 1 2nt

M pick p or p randomly=
End If  

 n = n + 1
Until n = population size N 
Return Mt

Outline of the NSGA-II: The pseudo-code for the NSGA-II is listed in Table 10, 

Table 11, and Table 12. Thereafter, the algorithm is described in the form of outline. 

Table 10: Pseudo-code for the main procedure NSGA-II 
global N = 100                                 ;population size 
Procedure NSGA-II() 
t = 0;               ;initialize generation counter 
Pt = random solutions for parent population P0
Pt = FastNonDominatedSorting(Pt) ;F=(F1,F2,…), all non-dominated fronts of Pt
CrowdingDistanceAssignment(Pt) ;calculate crowding distance in Pt
Repeat 
 ;apply crowded tournament selection on Pt to create mating population Mt

Mt = Selection(Pt, Mt);                 ;see pseudo-code in Table 9 above 
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;apply SBX, and polynomial mutation to create new child population Qt
Qt = SBX(Mt, Qt);                        ;see pseudo-code in Table 11 below 

 Qt = PolynomialMutation(Qt) ;see pseudo-code in Table 12 below 
 ;the following code preserves elitism and diversity of solutions 
 Rt = Pt ∪ Qt ;combine parent and child population 
 F = FastNonDominatedSorting(Rt) ;F=(F1,F2,…), all non-dominated fronts of Rt

Pt+1 = 0                                        ;empty  
 i = 1 ;first front 
 Repeat 
 CrowdingDistanceAssignment(Fi) ;calculate crowding distance in Fi

Pt+1 = Pt+1 ∪ Fi ;include i-th non-dominated front in the  parent population   
i = i + 1 ;check the next front for inclusion 

 Until |Pt+1| + |Fi| > N Or No More Fi ;until parent population is filled 
 If |Pt+1| < N ;not fill up to N 
 Sort(Fi, cp) ;sort the last front in descending order using cp

Pt+1 = Pt+1 ∪ Fi[1 : (N - |Pt+1|)]  ;choose the first (N - |Pt+1|) solutions in Fi
End If 

 t = t + 1 ;increment generation counter 
Until the terminate conditions are satisfied 

Table 11: Pseudo-code for the procedure SBX 
global N = 100      ;population size 
global pc = 0.9      ;crossover probability 
global cη = 20      ;distribution index for real-coded crossover 
Procedure SBX (Mt, Qt)
n = 0
Repeat 
 random = random number∈ [0,1]  
 If random ≤ pc ;decide to do crossover or not     
 For each variable 

nt
i M∈ Do 

 ;select two parents from mating pool Mt
(1, )

n

t i
i tx M= ;i-th variable of the n-th parent from Mt

1

(2, )
n

t i
i tx M

+
= ;i-th variable of the (n+1)-th parent from Mt

ri = random number∈ [0,1] 
 If ri ≤ 0.5 

 ( )
1

12
i

ciq r ηβ +=
Else 

 

1
11

2(1 )i

c

i
q r

η
β

+ 
 − 

=

End If 
 ;perform crossover on two parents ( (1, )t

ix and (2, )t
ix ) then store  
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;two offspring solutions in new population Qt

;
n

i
tQ is i-th variable of the n-th solution in Qt

;
1n

i
tQ
+

is i-th variable of the (n+1)-th solution in Qt

( ) ( )(1, ) (2, )0.5 1 1
i in q q

i
t

t t
i iQ x xβ β+ + − =  

( ) ( )
1

(1, ) (2, )0.5 1 1
i in q q

i
t

t t
i iQ x xβ β

+
− + + =  

End For 
 Else 
 ;do not do crossover 
 For each variable 

ni tx P∈ Do 
 ;copy solutions from mating pool to new population 
 

n n

i i
t tQ M= ;

n

i
tQ is i-th variable of the n-th solution in Qt

1 1n n

i i
t tQ M
+ +
= ;

1n

i
tQ
+

is i-th variable of the (n+1)-th solution in Qt

End For  
 End If 
 n = n + 2
Until n = (population size N)/2 
Return Qt

Table 12: Pseudo-code for the procedure PolynomialMutation 
global N = 100       ;population size 
global pm = 0.5      ;mutation probability 
global mη = 100    ;distribution index for real-coded mutation 
Procedure PolynomialMutation (Qt)
n = 0
Repeat 
 For each variable 

ni tx Q∈ Do 
 ri = random number∈ [0,1] 
 If ri ≤ pm ;decide to do mutation or not 
 If ( )

i
L

ix x> ; ( )L
ix is lower bound of  xi

ri = random number∈ [0,1] 
 If ri ≤ 0.5 

 
1

( 1)(2 ) 1m
ii r ηδ += −

Else 

 
1

( 1)1 [2(1 )] m
ii r ηδ += − −  

End If 
 ;

n

i
tQ is i-th variable of the n-th solution in Qt

( ) ( )( )
n

i U L
t i i i iQ x x x δ= + − × ;mutate i-th variable of x 

 Else              ; ( )
i

L
ix x=
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ri = random number∈ [0,1]    
 ;

n

i
tQ is i-th variable of the n-th solution in Qt

( ) ( ) ( )( )
n

i U L L
t i i i iQ r x x x= × − + ;mutate i-th variable of x 

 End If 
 End If 
 End For 
 n = n + 1
Until n = population size N 
Return Qt

The NSGA-II procedure is described in the following steps: 

Step 1: Five parameter settings: population size (N = 100), crossover probability 

(pc = 0.9), distribution index for real-coded crossover ( cη = 20), mutation probability (pm

= 0.5), and distribution index for real-coded mutation ( mη = 100) are set by a user as 

suggested by Deb et al. (2002). These parameter values are fixed during the execution of 

the NSGA-II. 

Step 2: Create a parent population P0 of size N with random solutions.  

Step 3: Sort population P0 based on non-dominance, using the above procedure 

FastNonDominatedSorting.

Step 4: Calculate crowding distance in the initial population P0.

Step 5: Apply crowded tournament selection to create a mating population Mt.

Pseudo-code for the selection procedure is listed in Table 9. In this selection procedure, 

two solutions (p1, p2) from the parent population Pt are selected at random for a 

tournament using the crowded comparison operator as described previously (see equation 

(22)). The winner will be inserted in the mating pool for reproduction. This selection 

process is repeated until the mating pool is filled with N solutions. 

Step 6: Apply crossover SBX on the solutions in the mating pool Mt to create a new 

population Qt. Pseudo-code for the SBX procedure is listed in Table 11. For each solution 
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in the mating pool the following steps are performed. The crossover probability (pc) is 

compared with a random number in [0, 1] to determine if the crossover operation should 

be carried out or not on each solution. If the random number is less than or equal to the 

crossover probability then the SBX operator is applied on each variable of two parent 

solutions selected from the mating pool to produce two offspring solutions using 

equations (10), (11) and (12) as described in the literature review section for the NSGA-II 

above. These two offspring solutions are then stored in the new population. If the random 

number is greater than the crossover probability then the crossover operation is not 

carried out and the solution in the mating pool is simply copied over to the new 

population. 

Step 7: Apply polynomial mutation on the solutions in the new population Qt.

Pseudo-code for the Polynomial Mutation procedure is listed in Table 12. For each 

variable in each solution of the new population the following steps are performed. The 

mutation probability (pm) is compared with a random number in [0, 1] to determine if the 

mutation operation should be carried out or not on the current variable. If the random 

number is less than or equal to the mutation probability then the polynomial mutation 

operator is applied on the variable using equations (13) and (14) as described in the 

literature review section for the NSGA-II above. 

Step 8: Combine parent and child populations to create a combined population (Rt

= Pt ∪ Qt) of size 2N.

Step 9: Sort Rt based on the non-domination (using the procedure 

FastNonDominatedSorting described above) and identify different fronts: Fi, i = 1, 2,…, 

etc. 
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Step 10: Initialize new population Pt+1 to empty (Pt+1 = 0) and  a counter i = 1. 

Step 11:  Repeat this step until up to N solutions are selected for the new population 

Pt+1. For each non-dominated front Fi, i = 1, 2,…, etc. in Rt calculate crowding distances 

for solutions in Fi (using the procedure CrowdingDistanceAssignment described above) 

and select all solutions in Fi to fill Pt+1. Solutions belonging to the best non-dominated 

front F1 are of the best solutions in the combined population Rt. If the size of F1 is smaller 

than N, then all solutions in F1 are selected for Pt+1. The remaining solutions of the new 

population Pt+1 is selected from subsequence non-dominated fronts in the order of their 

ranking F2, F3, and so on.  

Step 12: To select exactly N solutions for Pt+1, the solutions in the last front, which 

cannot fit into the new population Pt+1, are sorted using the crowded comparison operator 

( cp ) in descending order (crowding distance sorting), and the best solutions needed to fill 

N populations are chosen. Figure 8 in the literature review section for the NSGA-II 

illustrates the working mechanism of Step 8 to Step 12. 

Step 13: Increment the generation-counter. If the terminate conditions are not 

satisfied go back to Step 5. 

Development of the ANSGA-II 

The specific steps to develop the ANSGA-II include: 

• Implement the test problems: Nine un-constrained test problems with two 

objective functions, three constrained test problems with two objective functions, and one 

real-world problem with five objective functions and seven constraints are implemented 

in both the original NSGA-II and the ANSGA-II. These problems, which were used in 

the study of the original NSGA-II (Deb, Pratap et al., 2002) and for which Pareto-optimal 
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solutions are known (except for the five-objective problem WATER),  are listed in 

Appendix A. Each test problem is implemented as a procedure so it can be called and 

reused. For example, the test problem TNK listed in Table 33 of Appendix A is 

implemented as follows: 

Table 13: Pseudo-code for the procedure TNK 
Procedure TNK(f[], x[],cstr[])  
;all functions are implemented as of minimization type 
;negate maximization functions as necessary 
;first fitness function 
f[0] = x[0]; 
;second fitness Function 
f[1] = x[1]; 
;constraints 
cstr[0] = (float)(x[0]*x[0]+x[1]*x[1]-1.0-0.1*cos(16.0*atan(x[0]/x[1]))); 
cstr[1] = (float)((-square(x[0]-0.5) - square(x[1]-0.5) + 0.5)/0.5); 

• Run the NSGA-II to solve each test problem one at a time: The obtained non-

dominated solution sets are saved and used later to compare with those obtained by the 

improved ANSGA-II in order to evaluate the performance of the ANSGA-II.  The 

obtained non-dominated solutions in objective space on two-objective test problems are 

plotted with two axes (X and Y) represent two objective functions. It is difficult to 

visualize a graph with more than 3-axes; therefore, the obtained non-dominated solutions 

on the five-objective WATER problem are plotted with the scatter-plot matrix method as 

suggested by Meisel (1993) and Cleveland (1994). The plotting graphs of the obtained 

non-dominated solutions on the test problems are compared visually with those published 

in the paper by Deb et al. (2002) to make sure that the test problems are implemented 

correctly. 

• Incorporate the adaptable population size technique of into the ANSGA-II: This 

step ports already tested code from the parameter-less NSGA-II (Tran, 2005), which runs 
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multiple populations simultaneously with various population sizes, into the ANSGA-II. 

In the parameter-less NSGA-II, the algorithm runs until it finishes with the last 

population with the maximum population size, or the user is happy with the obtained 

solutions and stops the program. In the ANSGA-II, the performance metrics are 

investigated for their effective use to determine the better non-dominated solution sets 

among two or more solution sets in order to stop running populations with inferior 

solution sets. Pseudo-code for the main procedure of the ANSGA-II is listed in Table 14. 

Table 14: Pseudo-code for the main procedure ANSGA-II  
;Main global constants and variables 
INIT_POP_SIZE = 20 
MAX_POP_SIZE = INIT_POP_SIZE * 40 
CONVERGED_COUNT_THRESHOLD = 3 
 
Individual : Record of 
 rank                                            ;rank of the individual 
 real[MAX_VARIABLE]             ;list of real variables 
 fitness[MAX_FUNCTIONS]      ;individual’s fitness values of objective functions 
 constr[MAX_CONSTRAINTS]  ;constraints values 
 crowding_distance                     ;crowding distance of the individual 
 ;the following four parameters are attached to each individual for co-evolution 
 crossover_rate                         ;pc

crossover_dix                            ;ηc
mutation_rate                            ;pm,
mutation_dix              ;ηm

End Record 
 
P : Record of 
 Size                                       ;population size for this pop. 
 MarkForDeletion                 ;when set to true, this pop. will be stopped running 
 Converged                            ;true if this pop. has converged; o/w false 
 ConvergedCnt                      ;count number of times this pop. has converged 
 NoImprovementCnt              ;count no improvement in performance metric value 
 ConvergentMetricValue       ;convergent metric value on the obtained solutions 
 DiversityMetricValue           ;diversity metric value on the obtained solutions 
 NumGenRunEachTime        ;specify number of gen. to run when its turn to run  
 RunCount                             ;count number of runs  
 MaxGeneration                    ;maximum number of generations for this population 
 Solutions : individual[Size] ;array of individuals as defined above 
 Rank : Integer[Size]            ;number of individuals in each rank 
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End Record 
 
Procedure ANSGA-II () 
Pop : P[100]  ;array of 100 P 
ix = 0             ;population index 
current_pop_ix = 0 
;1) the counter below enables a smaller population to run 4 
;more generations than a larger one 
counter : base 4 on 100     
found_best_ever_solutions = FALSE 
Repeat 
 ;2) which population to run? 
 If Not (PopConverged Or found_best_ever_solutions) 
 ix = counter.IsCounterChange(ix)      ;change every 4 count     
 End If   

If Pop[ix] does not exist.  
 If Pop[current_pop_ix].Size < MAX_POP_SIZE    ;create new population? 
 ;3) create new population with population size  
 ;N =2 * current population size  and filled it with initialize its 
 ;solutions, random crossover and mutation parameter values 
 CreateNewPopulation(ix)     ;see Table 15 for pseudo-code of this proc.  
 Else 
 ;4) do not create new population  
 counter.Reset () 
 ;continue running existing populations until convergence, or 
 ;maximum number of function evaluations reached, or 
 ;maximum number of generations reached 
 Continue 
 End If 
 End If 
 

;5) calculate metrics before yielding execution to another population 
 If ix != current_pop_ix  
 ;pseudo-code for proc. CalculatePerformanceMetric is listed in Table 16 
 CalculatePerformanceMetric(current_pop_ix) 
 current_pop_ix = ix     ;set current population 
 End If   
 

;6) run the NSGA-II that has been modified to support adaptable crossover and  
 ;mutation parameters for number of generation specified in NumGenRunEachTime 
 If Pop[ix] exists 
 Pop[ix].NSGA-II ()        
 End If 
 

;7) has the population been converged?  
 ;if there is enough non-dominated solutions in the first rank and the population 



95

;has converged for at least number of converged count 
 PopConverged = Pop[ix].Rank[0] ≥ MinNumOfSolutions And 
 Pop[ix].ConvergedCnt ≥ CONVERGED_COUNT_THRESHOLD 
 If PopConverged 
 found_best_ever_solutions = TRUE 
 ;8) kill all other populations 
 For all ii != ix do 
 Kill Pop[ii] 
 End For 
 ;9) is the current population is close to convergence? 
 ; see Table 19 for pseudo-code for IsPopulationCloseToConvergence 
 Else If IsPopulationCloseToConvergence(ix)   
 ;10) if the current population waiting on further improvement  
 ;stop running larger populations that are not close to convergence  
 ;because it has worse solutions compared to the current population 
 If Pop[ix].NoImprovementCnt ≥ 1 And Pop[ix].ConvergedCnt ≥ 1

CountKillLargePop = 0 
 For ii = ix+1 to Size of Pop 
 If Pop[ii].ConvergedCnt = 0 
 ;mark to stop running this larger population 
 Pop[ii]. MarkForDeletion = true      
 CountKillLargePop = CountKillLargePop + 1 
 End If 
 End For 
 ;11) if  all larger populations are marked for deletion set 
 ; found_best_ever_solutions = true to prevent creating new population 
 If CountKillLargePop = Size of Pop – ix + 1 
 found_best_ever_solutions = true 
 End If 
 End If 
 ;12) if the current population has better solutions than smaller 
 ;populations, stop running smaller populations  
 For ii = 0 to ix-1  
 If CompareTwoSolutionSets (ii, ix) = ix 
 ;mark to stop running this smaller population 
 Pop[ii]. MarkForDeletion = true  
 End If 
 End For  
 End If 
 ;13) reach maximum number of generations allowed to run? 
 If Not PopConverged And Pop[ix].RunCount ≥ Pop[ix].MaxGeneration 
 Pop[ix]. MarkForDeletion = true   ;stop running this population 
 If Size of Pop = 1  ;is this the only population remained running 
 ;14) something wrong, terminate the program 
 break the loop       
 End If 
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End If 
 ;15) now kill all the populations that have been marked for deletion 
 For ii = 0 to Size of Pop – 1 
 If Pop[ii]. MarkForDeletion = true 
 Kill Pop[ii] 
 ;NOTE: need to adjust indexes accordingly 
 End If 
 End For 
 ;16) increase counter only solutions are not satisfied 
 If NOT found_best_ever_solutions  
 counter.Increase()      
 End If 
Until PopConverged  or  max. number of function evaluations reached 
;17) calculate performance metric on the final non-dominated set 
CalculatePerformanceMetric(current_pop_ix) 

Similarly, to the simple parameter-less GA (Harik & Lobo, 1999), the ANSGA-II 

allows smaller populations more generations to run. The coordination of the array of 

populations is implemented with a counter base 4 (step 1). Overall, the nth population is 

allowed to run 4 times more generations than the n+1th population. If the next population 

to be ran has not yet been created, the algorithm creates a new population twice as large 

as the previous one (step 3) until the maximum population size (i.e. MAX_POP_SIZE = 

800) is reached (step 4). Each time a population yields its execution (step 5), performance 

metric is calculated for the current population as described in pseudo-code for the 

procedure CalculatePerformanceMetric (see Table 16). The algorithm then calls the 

NSGA-II code to run the population for number of generations as specified in 

NumGenRunEachTime. When the ANSGA-II obtains enough diverse non-dominated 

solutions with good convergence, the algorithm continues running the population until its 

converged count reaches the threshold (step 7). Since the smaller populations have more 

generations (more time) to run, they expect to approximate to a diverse Pareto-optimal 

front faster than the larger one and the algorithm would stop running larger populations 
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(step 8 and 10). On the other hand, if at any point in time, a larger population has a non-

dominated solution set better than that of a smaller population then the algorithm would 

stop running the smaller population because the smaller population size is not large 

enough to commensurate the difficulty of the problem being solved (step 12). If a 

population is executed up to its allowed maximum number of generations but its non-

dominated solution set is still not good, the algorithm would stop running it (step 13). If 

the solutions are not satisfied, the counter is increased and the algorithm continues (step 

16).  The algorithm continues until the diversity in the obtained non-dominated solutions 

is achieved or when the maximum number of function evaluations is reached.  It then 

calculates the diversity metric on the final non-dominated solution sets before terminating 

the program (step 17). 

• Implement the procedure CreateNewPopulation: Pseudo-code for the procedure 

CreateNewPopulation is listed in Table 15. The initial population is set to a small size 

(INIT_POP_SIZE = 20) because a MOEA can find approximate Pareto-optimal solutions 

for a small problem effectively with a small population size (Coello & Pulido, 2001). For 

problems with number of objectives greater than two, the initial population size is 

proportional with number of objectives (step 3) to commensurate the difficulty of the 

problem. The ANSGA-II supports a population with maximum size equals to 800 

(INIT_POP_SIZE * 40). The value for MinNumOfSolutions is set to the initial population 

size. This value represents the minimum number of non-dominated solutions required in 

the first rank. For an initial population, the number of generations allowed to run when its 

turn to run is set to one (NumGenRunEachTime = 1). For a later population, it is created 

with a population size twice as large as the previous population size (step 6) and 
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NumGenRunEachTime is also set to double the value that of the previous population (step 

7). This allows larger populations a little bit more generations to run instead of strictly 

adopting the counter base method (a smaller population is allowed to run four more 

generations than a larger one). The new population is then initialized with values for 

solutions, crossover parameters, and mutation parameters. If the population is a first one 

or it is a later but the previous population does not have good solutions, the population is 

initialized with random values (step 8 and 10). If it is a later population, the first half of 

the population is initialized with good solutions, crossover, and mutation values from the 

previous population (step 8 and 9). The second half is filled with random values (step 

10). Step 11 in the procedure set the maximum number of generations that the population 

allowed to run (MaxGeneration = NewPopSize * 10). 

Table 15: Pseudo-code for the procedure CreateNewPopulation 
;Global constants and variables 
INIT_POP_SIZE = 20 
MAX_POP_SIZE = INIT_POP_SIZE * 40 
MinNumOfSolutions = 0 
 
Procedure CreateNewPopulation(NewPopIndex)  
;1) first population 
If  NewPopIndex = 0   
 ;2) population size is proportional with number of objectives 
 If number of objective functions <= 2 
 NewPopSize = INIT_POP_SIZE 
 Else 
 ;3) bigger population size for number of objective function > 2 
 NewPopSize = INIT_POP_SIZE * number of objective functions 
 End If 
 ;4) this is the required minimum number of non-dominated  
 ; solutions in the first rank 
 MinNumOfSolutions = NewPopSize; 
 ;5) number of generation to run when its turn to run 
 NumGenRunEachTime = 1 
Else ;not first population 
 ;6) new population size is twice the previous population size 
 NewPopSize = 2 * Pop[NewPopIndex-1].Size 
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;7) number of generation to run when its turn to run twice that of the prev. pop. 
 NumGenRunEachTime = Pop[NewPopIndex-1].NumGenRunEachTime * 2 
End If 
;allocate memory for new population 
Pop[NewPopIndex] = new population[NewPopSize] 
Pop[NewPopIndex].NumGenRunEachTime = NumGenRunEachTime 
 
RandomIx = 0 
;8) initialize new population check if previous population has good solutions 
If NewPopIndex > 0 And Pop[NewPopIndex-1].ConvergentMetric < 1 
 ;9) inject solutions, crossover, and mutation values from previous population 
 For ix = 0 to Pop[NewPopIndex-1].Size 
 Pop[NewPopIndex].Solutions[ix] = Pop[NewPopIndex-1].Solutions[ix] 
 End For 
 RandomIx = Pop[NewPopIndex-1].Size 
End If 
;10) fill new population with random solutions, crossover, and mutation values  
For ix = RandomIx to Pop[NewPopIndex].Size  
 Pop[NewPopIndex].Solutions[ix] = random solutions 
End For 
11)  set maximum number of generations = 10 * population size 
Pop[NewPopIndex].MaxGeneration = NewPopSize * 10 

• Investigate the convergent metric: The running convergence metric suggested 

by Deb & Jain (2002) is investigated in this study because the metric can work with an 

unknown set of Pareto-optimal solutions and it is computed efficiently. The convergence 

metric for a population P at generation t (denoted as Pt) is calculated in the following 

steps (Deb & Jain, 2002): 

Step 1: Identify the non-dominated set Ft of Pt.

Step 2: From each point i in Ft, compute the smallest normalized Euclidean 

distance to reference set P* (P*= non-dominated( 0
T
t tF=U ), where T is the number of 

generations the algorithm has ran) as follows: 
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Here, m is the number of objective functions; max
kf and min

kf are the 

maximum and the minimum function values of k-th objective function in P*.

Step 3: Calculate the convergence metric by averaging the normalized distance for 

all points in Ft:

1( )
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t

t

d
C P

F
== ∑ (24) 

The conclusion of this investigation is that the running convergent metric using a 

population-agglomeration technique suggested by Deb & Jain is unreliable and inefficient 

for the ANSGA-II. In the population-agglomeration technique, a reference set is defined 

as the non-dominated set of all combined non-dominated sets from previous generations 

up to the current generation. The convergent metric for a population is the calculated by 

finding the smallest normalized Euclidean distance among all distances from each non-

dominated solution in the population to each solution in the reference set. In the ANSGA-

II, this technique requires extensive memory and computational resources. Multiple 

reference sets (with their sizes increasing with population sizes and number of 

generations) must be maintained for multiple populations. As the population size is 

getting bigger, the calculation of this technique is unacceptable slow. Moreover, the 

population-agglomeration technique relies merely on the fact that the algorithm being 

used is able to approximate to the true Pareto-optimal front eventually; otherwise, the 

reference set becomes useless. This is the reason the convergent metric using the 

population-agglomeration technique was applied successfully on two three-objective test 

problems DTLZ2 and DTLZ5 using NSGA-II with good parameter settings (Deb & Jain, 

2002). When this technique was applied in the ANSGA-II, it caused the algorithm failing 
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to converge to the true Pareto-optimal fronts on several complex problems such as POL, 

KUR, ZDT2, ZDT4, and ZDT6. For example, on a problem with several local Pareto-

optimal fronts such as ZDT4 and ZDT6, the reference set was wrongly determined 

because the search was trapped in a local Pareto-optimal front. Hence, the algorithm 

terminated prematurely as soon as it obtains good distribution in the non-dominated 

solutions set. 

Therefore, the running convergent metric is not used in the ANSGA-II but a simple 

work around technique is used instead. This technique relies merely on the fact that the 

underlying NSGA-II used in ANSGA-II is able to approximate to the true Pareto-optimal 

front eventually. It simply allows the ANSGA-II to run for a while until the number of 

non-dominated solutions in the first rank at least equal to the required minimum number 

of solutions (initial population size), and then the algorithm starts to calculate the 

diversity metric. This work-around technique appears to work effectively. Pseudo-code 

for the procedure CalculatePerformanceMetric, which describes this work-around 

technique, is listed in Table 16 below. It should also be emphasized that the parameter 

control techniques used in this study should be applied to MOEAs, which have been 

verified that they can find diverse non-dominated solution sets with good convergence on 

benchmark test problems borrowed from the MOEA literature.  

Table 16: Pseudo-code for the procedure CalculatePerformanceMetric 
;Global constants 
ACCEPTABLE_DIVERISTY_VAL = 0.80 
ACCEPTABLE CONVERGENT_VAL = 0.0055 
DIFF_METRIC_VALUE_THRESHOLD = 0.01 
NO_IMPROVEMENT_CNT_MAX = 20 
 
Procedure CalculatePerformanceMetric(PopIndex)  
ConvergentMetricValue = 1.0 
DiversityMetricValue = 1.0 
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;1) calculate diversity metric only if enough solutions 
If Pop[PopIndex].Rank[0] ≥ MinNumOfSolutions  
 ConvergentMetricValue = ACCEPTABLE _CONVERGENT_VAL; 
 If Pop[PopIndex].RunCount ≥ 100 * number of objective functions And   
 Pop[PopIndex].DiversityMetricValue ≤ ACCEPTABLE _DIVERSITY_VAL) 
 ;2) assume that acceptable convergent metric value is achieved 
 Pop[PopIndex].ConvergentMetricValue = ACCEPTABLE _CONVERGENT_VAL 
 End If 
 ;3) calculate diversity metric 
 DiversityMetricValue = CalculateDiversityMetric(PopIndex) 
 CombinedMetricValues = ConvergentMetricValue + DiversityMetricValue 
 ;4) calculate the difference between current metric and previous metric values 
 Diff =(Pop[PopIndex].ConvergentMetricValue +  
 Pop[PopIndex]. DiversityMetricValue) - CombinedMetricValues 
 ;5) is the population close to acceptable convergence and  distribution 
 ;see Table 19 for pseudo-code of IsPopulationCloseToConvergence 
 If IsPopulationCloseToConvergence(PopIndex))  
 ;6) if the difference falls within the threshold or there is no improvement 
 ;then increase ConvergedCnt.  
 If (Diff ≤ DIFF_METRIC_VALUE_THRESHOLD Or 
 Pop[PopIndex].NoImprovementCnt ≥ NO_IMPROVEMENT_CNT_MAX 
 ;Increase convergent count 
 Pop[PopIndex].ConvergedCnt = Pop[PopIndex].ConvergedCnt + 1 
 If Pop[PopIndex].NoImprovementCnt ≥ NO_IMPROVEMENT_CNT_MAX 
 ;7) reset NoImprovementCnt  
 Pop[PopIndex].NoImprovementCnt = 0; 
 End If 
 Else If Pop[PopIndex].ConvergentMetricValue ≤ ConvergentMetricValue And 
 (Pop[PopIndex].DiversityMetricValue ≤ DiversityMetricValue Or 
 DiversityMetricValue < 0.0) 
 ;8) handle the case where the best metric values have been found but 
 ;the later metric values somehow cannot be improved 
 Increase = Pop[PopIndex].Size/100*2  ;just an arbitrary formula 
 If Increase ≤ 1

; for population size ≤ 100 
 Increase = 1 
 End If 
 ;9) the increment is proportional with the population size 
 Pop[PopIndex].NoImprovementCnt =  
 Pop[PopIndex].NoImprovementCnt + Increase; 
 End If 
 End If 
End If 
;10) ensure that the metric values are monotonically decreased 
If ConvergentMetricValue < Pop[PopIndex].ConvergentMetricValue  
 Pop[PopIndex].ConvergentMetricValue = ConvergentMetricValue 
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End If 
If DiversityMetricValue < Pop[PopIndex].DiversityMetricValue 
 Pop[PopIndex].DiversityMetricValue = DiversityMetricValue 
End If 

The performance metric values obtained on the final non-dominated solutions using 

either NSGA-II or ANSGA-II vary with different problems. On easy problems (such as 

SCH and FON), the algorithms are able to obtain good metric values (i.e. small values). 

The obtained metric values are larger on difficult problems such as POL and KUR. In the 

procedure CalculatePerformanceMetric, the acceptable diversity value and the 

acceptable convergent metric value are defined conservatively as 0.8 and 0.005 

respectively. It is expected that at the beginning the diversity metric values will be large. 

The value of diversity metric is zero for the most uniformly and widely spread of non-

dominated solution sets. For any other distribution, the value of the diversity metric 

would be greater than zero. With successive generations, these values will gradually 

become smaller because increasingly wide spread non-dominated solutions are obtained. 

It is also expected that near to the end of the run, the change in the calculated metric 

values will be small because the population has already converged to Pareto-optimal front 

with diversity of non-dominated solutions. If the difference of the combined metric value 

falls within a certain threshold (e.g. DIFF_METRIC_VALUE_THRESHOLD = 0.01) 

respectively for successive runs of the population then the obtained non-dominated 

solutions can be considered identical. When this condition occurs or when there is no 

improvement in the obtained metric values (the value of NoImprovementCnt reaches its 

maximum value), the value of ConvergedCnt is increased by one (step 6). When the 

value of ConvergedCnt reaches its threshold (i.e. CONVERGED_COUNT_THRESHOLD 

= 3), the algorithm can terminate to prevent wasting unnecessary computational resources 
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(see pseudo-code for the main procedure ANSGA-II in Table 14). The increment of 

NoImprovementCnt is handled in step 8 and 9 when the best metric values has been 

obtained, but in the later runs the metric values cannot be improved. The value of 

NoImprovementCnt is increased proportionally with the population size to ensure that the 

algorithm does not waste computational resource on a large population that does not have 

any improvement on later runs of the algorithm. Step 10 in the procedure above ensures 

that the metric values are monotonically decreased. 

• Investigate and implement the diversity metric: The diversity metric that was 

used in the study of the NSGA-II (Deb, Pratap et al., 2002) to measure the diversity of the 

final obtained solutions is investigated in this study. The diversity metric value is 

calculated as follows: 
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In the original study of NSGA-II, the parameters df and dl are the Euclidean 

distance between the known Pareto-optimal extreme solutions and the boundary solutions 

of the obtained non-dominated set. The ANSGA-II is only useful if it can solve problems 

without knowing their Pareto-optimal solutions in advance; therefore, the parameters df

and dl are modified as the Euclidean distance between the extreme boundary solutions 

(solutions with smallest and largest function values) and the boundary solutions of the 

obtained non-dominated set because extreme lower bound and extreme upper bound 

solutions can be easily calculated using variable bounds (see Table 32 and Table 33 in 

Appendix A). The parameter di in equation (25) above is the Euclidean distance between 

two consecutive solutions of the obtained non-dominated set. The parameter d is the 
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average of all Euclidean distance di, where i = 1, 2,…, (N – 1), assuming that there are N

solutions on the first non-dominated front. For the most uniformly and widely 

distribution of a non-dominated solution set, the value of ∆ is zero. For any other 

distribution, the value of the metric would be greater than zero.  

The diversity metric in equation (25) above can only handle two-objective 

problems. In the ANSGA-II, the diversity metric for problems with more than two 

objectives is calculated as the average diversity metric value of all diversity metric values 

calculated on combinations of objective function pairs. For example, the five-objective 

problem WATER has ten different pairs of objective functions and the diversity metric 

value ∆ is calculated as: ∆ = [∆ (f1, f2) + ∆ (f1, f3) + ∆ (f1, f4) + ∆ (f1, f5) + ∆ (f2, f3) + ∆ (f2,

f4) + ∆ (f2, f5) + ∆ (f3, f4) + ∆ (f3, f5) + ∆ (f4, f5)] / 10). Pseudo-code for the procedure 

CalculateDiversityMetric is presented in Table 17. 

Table 17: Pseudo-code for the procedure CalculateDiversityMetric 
Procedure CalculateDiversityMetric(PopIndex)  
;initialize variables 
DiversityMetricValue = 0  
CountPairs = 0 
For f1= 1 to (number of objective functions –1) 
 N = 0 ;initialize N to zero for each pair of objective functions 
 For  ix=0 to Pop[PopIndex].Size 
 ; take only solutions in the first non-dominated front and have no constraint errors 
 f1_fitness[N] = Pop[PopIndex].Solutions[ix].fitness[f1]; 
 sortedIndexes[N] = ix; 
 N = N + 1 ;keep track number of valid solutions  
 End For 
 

;sort fitness values of the first function in ascending order 
 ;the sorted indexes are stored in sortedIndexes in descending order  
 ;for retrieving fitness values of the second function  
 quickSort (f1_fitness, sortedIndexes, 0, N-1); 
 

For f2 = f1+1 to number of objective functions 
 For ix=0 to Pop[PopIndex].Size 
 sortedIx = sortedIndexes[ix]; 
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f2_fitness[ix] = Pop[PopIndex].Solutions[sortedIx].fitness[f2]; 
 End For 

;calculate diversity metric value on two array of fitnesses: f1_fitness and f2_fitness
LastIx = Pop[PopIndex].Size - 1 

 ;1) calculate df assuming fExtreme was calculated at the start of the program 
 df = sqrt(pow((fExtreme[f1].min - f1_fitness[0])/ fExtreme[f1].min, 2) +  
 pow((fExtreme[f2].max - f2_fitness[0])/ fExtreme[f2].max, 2)); 
 ;2) calculate dl

dl = sqrt(pow((fExtreme[f1].max - f1_fitness[LastIx])/ fExtreme[f1].max, 2) +  
 pow((fExtreme[f2].min - f2_fitness[LastIx])/ fExtreme[f2].min, 2)); 
 ;3) calculate all Euclidean distances 
 Skip = 0    ;keep track of number of zero distances (duplicate solutions) or gaps 
 For ix=0 to  N - 1 
 Dist = sqrt(pow((f1_fitness[ix] - f1_fitness[ix+1]), 2) +  
 pow((f2_fitness[ix] - f2_fitness[ix+1]), 2)); 
 ;4) with duplicate non-dominated solutions Dist = 0 and 
 ;for the problems with discontinuous Pareto-optimal fronts (e.g. POL, KUR,  
 ;ZDT3, skip the gap on the Pareto-optimal front in order to calculate the  
 ;diversity metric value correctly 
 If  Dist = 0 Or (TotalDistance > 0 And 
 Dist ≥ 1000*distances[ix-Skip-1])) ;expect a big gap.     
 Skip = Skip + 1    ;keep track of skip count 
 Else 
 distances[ix-Skip] = Dist 

TotalDistance = TotalDistance + distances[ix-Skip] 
 End If 
 N = N - Skip ;actual number of valid and non-duplicate solutions 

;5) calculate average of all distancesd
d = TotalDistance / (N-1); 

 ;calculate 1

1

N

ii
d d−

=
−∑

sum = 0; 
 For ix=0 to N-1 
 sum = sum+ |distances[ix] – d |

End For 
 ;6) calculate diversity metric value for each objective function pair as in eq. (25) 
 MetricValuePerPair = (df + dl + sum) / (df + dl + ((N-1)* d )); 
 DiversityMetricValue = DiversityMetricValue + MetricValuePerPair 
 End For     ;loop for f2

CountPairs = CountPairs + 1 
End For        ;loop for f1
;7) if number of objectives > 2, calculate diversity metric value as average of 
;diversity metric values for all objective function pairs 
If number of objective functions > 2 
 DiversityMetricValue = DiversityMetricValue / (CountPairs) 
End If 
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In the step 4 of the procedure CalculateDiversityMetric, duplicated solutions and 

gaps between discontinuous Pareto-optimal fronts are removed from the diversity metric 

calculation in order to achieve accurate calculations. Duplicated solutions are recognized 

when the Euclidean distance between two consecutive solutions is zero. A big gap 

between two discontinuous Pareto-optimal fronts is recognized when the Euclidean 

distance between two consecutive solutions is 1000 times greater than the previous 

distance. The value of 1000 is chosen because after several experiments it is found to be a 

good value for determining a gap. However, the author of this dissertation feel that a 

better way should be investigated to distinguish between valid gaps in problems with 

discontinuous Pareto-optimal fronts and invalid gaps between two non-dominated 

solutions in problems with continuous Pareto-optimal fronts. The modified diversity 

metric appears to work effectively in comparing two or more non-dominated solution sets 

during the execution of the ANSGA-II and it enables the ANSGA-II to select proper 

population sizes for the problems being solved. 

• Implement the better solutions condition: A solution set A is better than a 

solution set B if the following condition is satisfied: 

 ( ) ( ) +A t A B t BC P C P+ ∆ < ∆ (26) 

In the above equation, ( )A tC P and ( )B tC P are convergence metrics for two solution 

sets A and B respectively; A∆ and B∆ are diversity metrics for solution set A and B

respectively. Note that the values for A∆ and B∆ are not actually calculated but they are 

assigned good convergent metric values after the ANSGA-II has run for a while and 

when the number of non-dominated solutions in the first rank at least equal to the 
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required minimum number of solutions (see the procedure CalculatePerformanceMetric 

in Table 16). Pseudo-code for the procedure CompareTwoSolutionSets is presented in 

Table 18. This procedure simply returns the index of the population, which has a better 

non-dominated solution set. 

Table 18: Pseudo-code for the procedure CompareTwoSolutionSets 
Procedure CompareTwoSolutionSets (PopIndex1, PopIndex2)  
Pop1CombinedMetricValue = Pop[PopIndex1].ConvergentMetricValue +  
 Pop[PopIndex1].DiversityMetricValue 
Pop2CombinedMetricValue = Pop[PopIndex2].ConvergentMetricValue +  
 Pop[PopIndex2].DiversityMetricValue 
If Pop1CombinedMetricValue ≤ Pop2CombinedMetricValue And 
 Pop[PopIndex1].Rank[0] ≥ MinNumOfSolutions 
 return PopIndex1          ;population 1 has better solutions 
Else If Pop2CombinedMetricValue ≤ Pop1CombinedMetricValue And 
 Pop[PopIndex2].Rank[0] ≥ MinNumOfSolutions 
 return PopIndex2          ;population 2 has better solutions 
End If 

• Implement the close to convergence condition: In the ANSGA-II context, the 

close to convergence condition implies that the population has number of non-dominated 

solutions in the first non-dominated rank equal or greater than the required minimum 

number of solutions (initial population size) and its convergent count is greater than zero 

(the population is converged when its convergent count reached maximum value = 3), or 

both the convergent and diversity metric values are less than or equal to the acceptable 

values. Pseudo-code for the procedure IsPopulationCloseToConvergence is presented in 

Table 19. 

Table 19: Pseudo-code for the procedure IsPopulationCloseToConvergence 
Procedure IsPopulationCloseToConvergence(PopIndex)  
 GoodEnough = Pop[PopIndex].ConvergedCnt > 0) Or 
 (Pop[PopIndex].DiversityMetricValue ≤

ACCEPTABLE_DIVERSITY_METRIC_VALUE And 
 Pop[PopIndex].ConvergentMetricValue ≤

ACCEPTABLE CONVERGENTMETRIC_VALUE 
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Return GoodEnough 

• Incorporate the self-adaptive crossover parameter into the ANSGA-II: The 

procedure SBX listed in Table 11 is modified. The crossover probability (pc) and 

distribution index ( cη ) for the SBX operator are attached to each solution in the 

population and allowed to co-evolve with each solution. The crossover parameter values 

and performance metric values are observed to make sure that the adaptive crossover 

parameter values improve the algorithm performance instead of destroying good non-

dominated solutions. The diversity metric values are expected to decrease monotonically 

because the smaller diversity metric value is the better distribution in the obtained 

solutions. Pseudo-code for the modified procedure SBX is listed in Table 20. 

Table 20: Pseudo-code for the modified procedure SBX 
Procedure SBX (Mt, Qt)
pc = 0.0         ;crossover probability 

cη = 0.0 ;distribution index for real-coded crossover 
n = 0
Repeat 
 c

n n

p
c tp M= ;retrieve crossover probability attached to n-th parent from Mt

c

n nc tM ηη = ;crossover distribution index attached to n-th parent from Mt

1 1

c

n n

p
c tp M

+ +
= ;crossover probability attached to (n+1)-th parent from Mt

1 1

c

n nc tM ηη
+ +
= ;crossover distribution index attached to (n+1)-th parent from Mt

;use crossover values from the n-th parent in Mt by default 
 

nc cp p=

nc cη η=
random = random number∈ [0,1]  

 ;should crossover values from the (n+1)-th parent in Mt be used instead? 
 If (random ≤

1ncp
+

and random > 
ncp ) or  

 (random ≤
ncp and random ≤

1ncp
+

and 
1ncp
+

>
ncp )

1nc cp p
+

=

1nc cη η
+

=
End If 
If random ≤ pc ;decide to do crossover or not   
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;four more variables pc, cη , pm, and mη are attached to the end of each 
 ;solution 

nt
M and subject to crossover with decision variables 

 For each decision variable and parameter variable 
nt

i M∈ Do 
 ;select two parents from mating pool 
 (1, )

n

t i
i tx M= ;i-th variable of the n-th parent from Mt

1

(2, )
n

t i
i tx M

+
= ;i-th variable of the (n+1)-th parent from Mt

ri = random number∈ [0,1] 
 If ri ≤ 0.5 

 ( )
1

12
i

ciq r ηβ +=
Else 

 

1
11

2(1 )i

c

i
q r

η
β

+ 
 − 

=

End If 
 ;perform crossover on two parents ( (1, )t

ix and (2, )t
ix ) then store  

 ;two offspring solutions in new population Qt

;
n

i
tQ is i-th variable of the n-th solution in Qt

;
1n

i
tQ
+

is i-th variable of the (n+1)-th solution in Qt

( ) ( )(1, ) (2, )0.5 1 1
i in q q

i
t

t t
i iQ x xβ β+ + − =  

( ) ( )
1

(1, ) (2, )0.5 1 1
i in q q

i
t

t t
i iQ x xβ β

+
− + + =  

End For 
 Else    ;do not do crossover 
 For each decision variable and parameter variable 

nt
i M∈ Do 

 ;copy solutions from mating pool to new population 
 

n n

i i
t tQ M= ;

n

i
tQ is i-th variable of the n-th solution in Qt

1 1n n

i i
t tQ M
+ +
= ;

1n

i
tQ
+

is i-th variable of the (n+1)-th solution in Qt

End For  
 End If 
 n = n + 2
Until n ≥ (population size N)/2 
Return Qt

• Incorporate the self-adaptive mutation parameter into the ANSGA-II: The 

Polynomial Mutation procedure listed in Table 12 is modified. The mutation probability 

(pm) and distribution index ( mη ) for the polynomial mutation operator are attached to 

each solution in the population and allowed to co-evolve with each solution. The 
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mutation parameter values and diversity metric values are observed to make sure that the 

adaptive values improve the algorithm performance instead of destroying good non-

dominated solutions. The diversity metric values are expected to decrease monotonically 

because the smaller diversity metric value is the better distribution in the obtained 

solutions. Pseudo-code for the modified PolynomialMutation procedure is listed in Table 

21. 

Table 21: Pseudo-code for the modified procedure PolynomialMutation 
Procedure PolynomialMutation (Qt)
pm = 0.0      ;mutation probability 

mη = 0.0     ;distribution index for real-coded mutation 
n = 0
Repeat 
 m

n

p
m tp M= ;mutation probability is attached to each solution 

 m

nm tM ηη = ;distribution index for mutation is attached to each solution 
 ;four more variables pc, cη , pm, and mη are attached to the end of each 
 ;solution 

nt
Q and subject to mutation with decision variables 

 For each decision variable and parameter variable 
ni tx Q∈ Do 

 ri = random number∈ [0,1] 
 If ri ≤ pm ;decide to do mutation or not 
 If ( )

i
L

ix x> ; ( )L
ix is lower bound of  xi

ri = random number∈ [0,1] 
 If ri ≤ 0.5 

 
1

( 1)(2 ) 1m
ii r ηδ += −

Else 

 
1

( 1)1 [2(1 )] m
ii r ηδ += − −  

End If 
 ;

n

i
tQ is i-th variable of the n-th solution in Qt

( ) ( )( )
n

i U L
t i i i iQ x x x δ= + − × ;mutate i-th variable of x 

 Else  ; ( )
i

L
ix x≤

ri = random number∈ [0,1]    
 ;

n

i
tQ is i-th variable of the n-th solution in Qt

( ) ( ) ( )( )
n

i U L L
t i i i iQ r x x x= × − + ;mutate i-th variable of x 

 End If 
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End If 
 End For 
 n = n + 1
Until n ≥ population size N 
Return Qt

• Evaluate the ANSGA-II: The ANSGA-II is executed to solve each test problem 

one at a time. Plotting graphs of the obtained non-dominated solutions on each test 

problem together with number of generation taken, diversity metric values for the 

obtained solutions on each test problem are used to evaluate the ANSGA-II against the 

NSGA-II based on their ability to converge to the Pareto-optimal front and diversity of 

the obtained non-dominated solutions. The format for presenting the results is described 

in the next section. 

 

Format for Presenting Results 

Results are presented in the forms of graphs and tables to show the performance of 

the ANSGA-II against the original NSGA-II. This section presents performance results of 

the ANSGA-II against the NSGA-II in the table format. It then describes the plotting 

presentations of the obtained non-dominated solutions for two-objective test problems 

and for the five-objective real-world problem named WATER.  

Presentation of Performance Results 

Table 22 below provides a sample of how the performance results of the ANSGA-

II and NSGA-II are presented and compared on thirteen benchmark multi-objective 

problems used in this study. 
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Table 22: Sample of performance results of ANSGA-II (adaptable N, pc, pm, ηc, ηm)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 80 300 0.5503 591 17 24 100 250 0.5711 251 4 25 

FON 80 232 0.7203 663 16 18.56 100 250 0.7219 251 4 25 

POL 160 456 0.9518 1215 76 72.96 100 250 0.9538 251 3 25 

KUR 320 352 0.8005 1200 162 112.64 100 250 0.8121 251 4 25 

ZDT1 40 280 0.6760 608 19 11.2 100 250 0.7431 251 4 25 

ZDT2 40 346 0.7010 678 12 13.84 100 250 0.7390 251 6 25 

ZDT3 40 286 0.7118 578 12 11.44 100 250 0.8731 251 5 25 

ZDT4 160 352 0.7426 899 71 56.32 100 250 0.6766 251 5 25 

ZDT6 40 364 0.6751 748 20 14.56 100 250 0.7046 251 8 25 

DEB 80 344 0.7065 886 37 27.52 100 500 0.7772 501 15 50 

SRN 40 248 0.7380 488 9 9.92 100 500 0.8011 501 16 50 

TNK 160 552 0.8095 1391 80 88.32 100 500 0.8072 501 8 50 

WATER 400 540 0.6597 825 340 216 100 500 0.6274 501 10 50 

Plots for Two-Objective Problems 

The obtained non-dominated solutions in objective space on two-objective test 

problems are plotted with two axes represent two objective-functions f1 and f2

respectively. Figure 9(a) and Figure 9(b) provide a sample that shows the obtained non-

dominated solutions in objective space on the two-objective constrained test problem 

TNK (see Appendix A) obtained by the ANSGA-II with adaptable parameters (N, pc, pm,

ηc, ηm) and NSGA-II with fixed parameter settings (N = 100, G = 500, pc = 0.9, pm = 0.5, 

ηc = 20, ηm = 100) respectively. The figures visually present each MOEA’s overall 

qualitative performance and their results can be compared visually. 
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Figure 9: Sample of plotting of obtained non-dominated solutions on the two-objective 
test problem TNK with (a) ANSGA-II (adaptable N, pc, pm, ηc, ηm) and (b) NSGA-II with 

fixed parameter settings 
 

For the problem TNK, both ANSGA-II with adaptable parameters and NSGA-II 

with fixed parameter settings are able to converge to the true Pareto-optimal front; 

therefore, the true Pareto-optimal front is not explicitly shown in Figure 9(a) and Figure 

9(b). If neither algorithm fails to converge to the true Pareto-optimal front as in the case 

for the test problem ZDT6, the true Pareto-optimal front is explicitly plotted as shown in 

Figure 10 below. 
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Figure 10: Sample of plotting of non-dominated solutions on the test problem ZDT6 
with (a) ANSGA-II (adaptable N, pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter 

settings 
 
Plots for the Five-Objective Problem WATER 

It is difficult to visualize a graph with more than 3-axes. Therefore, for the five-

objective real-world problem WATER (see Appendix A), the scatter-plot matrix method 

as suggested by Meisel (1993) and Cleveland (1994) is used to plot the obtained non-

dominated solutions. This method plots all 
2
m 

 
 

pairs of plots among m objective 

functions. In order to compare the obtained solutions among the five-objective functions 

in the test problem WATER, there are total of 5 * 2 or 10 plots for both algorithms 

ANSGA-II and NSGA-II as shown in Figure 11. In Figure 11, the label and ranges used 

for each axis are shown in the diagonal boxes. Upper diagonal plots are for ANSGA-II 

and lower diagonal plots are for NSGA-II. Thus, a (i, j) plot for ANSGA-II with i < j can 

be compared with a (j, i) plot for NSGA-II. For example, the sub-plot in position (3, 4) 

for ANSGA-II has its vertical axis marked as f3 with range 0.0 to 1.0 and the horizontal 

axis marked as f4 with range 0.0 to 1.6 can be compared with the sub-plot in position (4, 
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3) for NSGA-II, which has its horizontal axis marked as f3 with range 0.0 to 1.0 and the 

vertical axis marked as f4 with range 0.0 to 1.6. 

f_1
0.75 - 0.95

f_2
0.0 - 0.9

f_3
0.0 - 1.0

f_4
0.0 - 1.6

f_5
0.0 - 3.2

Figure 11: Sample of plotting of non-dominated solutions on the five-objective real-
world problem WATER with upper diagonal plots for ANSGA-II (adaptable N, pc, pm,

ηc, ηm) and lower diagonal plots for NSGA-II with fixed parameter settings 
 

Resource Requirements 

The following is a list of resources required to complete this dissertation: 

• A Pentium class PC with at least 1.59 GHz and 512 MB of RAM. 
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• Microsoft Visual C++ 6.0 or Microsoft Visual C++ .NET is used to develop the 

algorithms in this dissertation. 

• Microsoft Visual SourceSafe 6.0 is used to control source code and back up 

documents. 

• Microsoft Word 2000 is used to prepare the documents. 

• Microsoft Excel 2000 is used to plot the graphs. 

• Microsoft Visio Professional 2000 is used to prepare figures in the documents. 

• EndNote 6.0 is used to manage references and format citations. 

• MathType 5.2c or above is used to prepare equations in the documents. 

 

Reliability and Validity 

The ANSGA-II is evaluated using the same suite of benchmark multi-objective test 

problems that were used in the study of the original NSGA-II. Since these test problems 

are selected from a number of significant past studies in MOEA (Deb, Pratap et al., 2002) 

and most of Pareto-optimal solutions are known for these test problem (except for the 

problem WATER), the non-dominated solutions obtained by the ANSGA-II on these test 

problems can be validated reliably. The diversity metric used in the study of the NSGA-II 

is modified to handle un-known Pareto-optimal sets and problems with more than two 

objectives. For compatible evaluation of the ANSGA-II against the NSGA-II, this 

modified diversity metric is also used to calculate diversity metric values of the final non-

dominated solution sets obtained by the NSGA-II on the test problems used in this study. 

Therefore, the diversity metric values for the NSGA-II presented in this dissertation 

cannot be validated reliably with those published in the study of the NSGA-II (Deb, 
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Pratap et al., 2002). The implementation of the diversity metric used in this study, 

however, may have some unavoidable defects. Since the source code for this metric is not 

available, the implemented code for this metric is based on its descriptions from the 

literature (Deb & Jain, 2002; Deb, Pratap et al., 2002). Variations from the original 

source code due to misinterpretation of the authors' original intent, unintentional 

omissions, and gaps in the descriptions of the metric are possible. Every effort has been 

attempted to provide the most valid and reliable results possible. 

Summary 

To summarize this chapter, it should be emphasized that the study uses evaluation 

research method, which consists of the following main steps. Formative studies of 

existing parameter control techniques and the NSGA-II are performed to identify the 

available techniques that can be used, issues and barriers that are needed to be resolved. 

The new algorithm ANSGA-II is then developed based on the NSGA-II. The ANSGA-II 

is evaluated against the original NSGA-II using the same benchmark multi-objective test 

problems that were used in the study of the NSGA-II. Since the same test problems are 

used, the results generated by the ANSGA-II can be easily compared to that of the 

NSGA-II for validation. This chapter continues by presenting the specific procedures that 

are used to conduct the study. First, the original NSGA-II is presented in details. Then, 

the changes to the NSGA-II to make the ANSGA-II are explained. Results are presented 

in the forms of graphs and tables to show the performance of the ANSGA-II against the 

original NSGA-II. The plotting presentations of the obtained non-dominated solutions for 

two-objective test problems and for the five-objective real-world problem named 
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WATER are discussed. Samples of the plots and table presentations of performance 

results are also presented. This chapter then lists the resource requirements for the study. 

Finally, a discussion of reliability and validity of the results is provided. 
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Chapter 4 
 

Results 

 

This chapter presents the comparison of performance results of the ANSGA-II with 

three adaptable parameters (population size, crossover probability, and mutation 

probability) against the original NSGA-II on thirteen benchmark multi-objective 

problems in terms of diversity metric, number of function evaluations, execution time, 

number of solutions evaluated, and quality of the Pareto-optimal front. The performance 

measures are described in the following. 

• Diversity metric: The diversity metric values that are calculated on the final 

non-dominated solutions obtained by the ANSGA-II and the NSGA-II 

respectively. A small diversity metric value indicates better distribution of non-

dominated solution set.  

• Number of function evaluations: For the ANSGA-II, this value represents the 

total number of function evaluations that the ANSGA-II executed to find the 

non-dominated solutions and proper values for adaptable parameters. For the 

NSGA-II, this value represents the total number of function evaluations that the 

NSGA-II executed to find the non-dominated solutions. The number of function 

evaluations for the ANSGA-II is always equal or greater than that of the 

NSGA-II due to overheads of executing multiple populations to find a proper 

population size for the problem being solved. 

• Execution time: For the ANSGA-II, this value is the total time in seconds that 

the ANSGA-II executed to find the non-dominated solutions and proper values 
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for adaptable parameters. For the NSGA-II, this value is the total time in 

seconds that the NSGA-II executed to find the non-dominated solutions. In 

most problems, the ANSGA-II has longer execution time than the NSGA-II due 

to overheads of solving the problem and learning good parameter values at the 

same time. In a small number of problems (e.g. SRN and DEB as presented 

later), the ANSGA-II has shorter execution time than the NSGA-II indicating 

that the overhead for learning good parameter values for these problems is 

minimum. 

• Number of solutions evaluated (N*G): N is the population size and G is the 

number of generations executed on the population. This value represents a 

measure of the actual number of solutions evaluated by the algorithm to find the 

non-dominated solutions (excluding number of solutions evaluated for finding a 

proper population size). Hence, a small value is better. In most problems, when 

the ANSGA-II has a smaller population size, its associated number of solutions 

evaluated is also smaller than that of the NSGA-II. In a few problems, the 

ANSGA-II has a smaller population size but the number of generations is 

higher. Consequently, the ANSGA-II has its number of solutions evaluated 

higher than that of the NSGA-II. 

• Quality of the Pareto-optimal front: is determined by using a combination of 

visual observation of plots and diversity metric values. Based on the 

observations on several runs of the ANSGA-II in this study, the following terms 

are defined for the sake of discussion: 
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Adequate spread or adequate distribution or adequate diversity metric value: 

when the diversity metric value ≤ 0.8 (as implemented in the ANSGA-II). 

Better spread or better distribution or better diversity metric value: A diversity 

metric value dm1 is better than dm2 if dm1 ≤ dm2 – 0.001. 

Equivalent spread or equivalent distribution or equivalent diversity metric 

value: A diversity metric value dm1 is equivalent to a diversity metric value dm2

if (dm1 > dm2 and dm1 ≤ dm2 + 0.005) or (dm1 ≤ dm2 and dm1 > dm2 – 0.001). 

Equivalent convergence: The equivalent convergence is compared visually 

between two plots of non-dominated solutions in objective space: one is 

obtained by the ANSGA-II and another one is obtained by the NSGA-II for the 

problem being solved. 

Satisfactory convergence or adequate convergence: is the case when one or two 

non-dominated solutions do not line up on the Pareto-optimal front. 

Inferior convergence: Convergence is not close to the true Pareto-optimal front 

or several non-dominated solutions do not line up on the Pareto-optimal front.

In addition to running the ANSGA-II with three adaptable parameters (population 

size, crossover probability, and mutation probability), this dissertation ran experiments 

where only subsets of these three parameters are adaptable for studying which adaptable 

parameter affects the performance of the ANSGA-II the most or the least (i.e. whether the 

execution time is reduced if fewer parameters are adaptable or which adaptable parameter 

affects the quality of the Pareto-optimal front). Table 23 presents seven variations of the 

ANSGA-II. Since, real-coded crossover operator (SBX) and real-coded mutation operator 

(polynomial mutation operator) are used in the ANSGA-II, adaptable pc implies that its 
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associated distribution index ηc is adaptable as well. Likewise, adaptable pm implies that 

its associated distribution index ηm is also adaptable.  

Table 23: Seven variations of ANSGA-II  
Variation Population  

Size 
Crossover 
Probability 

Mutation 
Probability 

0 Adaptable Adaptable Adaptable 
1 Adaptable Adaptable 

2 Adaptable  Adaptable 
3 Adaptable Adaptable 
4 Adaptable  

5 Adaptable 

6 Adaptable 

The performance results of these variants are presented next. The chapter ends with 

a summary of results. 

 

Findings 

First, this section provides a summary of performance comparisons of the ANSGA-

II and its six variants against the NSGA-II with fixed parameter settings as shown in 

Table 24. It then provides detail presentations of the performance results. 

Table 24: Summary of performance comparison of ANSGA-II and six variants of 
ANSGA-II against the NSGA-II using the original parameter settings 

ANSGA-II with adaptable 
Problems 

N, pc, pm N, pc N, pm pc, pm N pc pm

SCH better adequate better better adequate better better 
FON better adequate adequate adequate better better better 
POL better worse better better better same same 

KUR better better worse worse better worse worse 

ZDT1 better adequate better better adequate better better 
ZDT2 better better worse better better adequate same 

ZDT3 better adequate better better worse same better 
ZDT4 better worse worse worse worse better better 
ZDT6 better same worse worse worse same worse 
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DEB better worse adequate better adequate adequate better 
SRN adequate adequate better better better better better 
TNK better better worse adequate worse better adequate 

WATER better worse better worse worse worse adequate 

A combination of visual observation of plots (presented later) and performance 

measures (described above) is used for performance comparisons. The entries in the table 

are described in the following. 

• better: (i) better convergence and better or equivalent diversity with reasonable 

execution time; or (ii) equivalent convergence, better diversity, and better or 

reasonable execution time compared to that of required by the NSGA-II. 

• same: equivalent convergence and equivalent diversity with a smaller 

population size or the same population size.  

• adequate: satisfactory convergence (one or two non-dominated solutions may 

not line up on the Pareto-optimal front)  and better or equivalent diversity with 

a smaller population size.  

• worse: (i) inferior convergence and/or inferior diversity of non-dominated 

solutions; or (ii) better convergence and/or better diversity but it takes 

unacceptable long time to finish. 

Table 24 shows that the ANSGA-II with adaptable N, pc, and pm is the winner. It 

out-performs the original NSGA-II with fixed parameter settings and six other variants. 

The other six variants of the ANSGA-II perform worse than the original NSGA-II. Based 

on the comparison in Table 24, the following ranks (1 for being the best) can be classified 

on the algorithms in terms of finding diverse non-dominated solution set and converging 

to Pareto-optimal front: (1) ANSGA-II with all three adaptable parameters N, pc, pm; (2) 

NSGA-II using original parameter settings; (3) ANSGA-II with adaptable mutation 
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probability alone; (4) ANSGA-II with adaptable crossover probability alone; (5) 

ANSGA-II with adaptable crossover probability and mutation probability; (6) ANSGA-II 

with adaptable population size and crossover probability; (7) ANSGA-II with adaptable 

population size and mutation probability; (8) and ANSGA-II with adaptable population 

size only. Regarding the overhead for adapting parameters and solving the problem at the 

same time (presented later), the variants with adaptable population size N (i.e. variants 0, 

1, 2, and 4) take longer time than other variants (i.e. variants 3, 5, and 6) due to overhead 

of executing multiple populations simultaneously for learning a proper population size. 

Other variants without adaptable population size (i.e. variants 3, 5, and 6) have execution 

time comparable to that of required by the NSGA-II. This implies that the ANSGA-II is 

able to learn good values for crossover probability and mutation probability quickly. 

In the following detail presentations, the fixed parameter settings for the NSGA-II 

are set to the same values that were used in the study of the original NSGA-II (Deb, 

Pratap et al., 2002): N = 100; pc = 0.9; pm = 0.5; ηc = 20; ηm = 100; G = 250 for problems 

SCH, FON, POL, KUR, ZDT1, ZDT2, ZDT3, ZDT4; G = 500 for problems ZDT6 DEB, 

SRN, TNK, WATER. For each variant of the ANSGA-II, performance results on thirteen 

multi-objective problems used in this study (see Table 32 and Table 33 in Appendix A) 

and plots of the obtained non-dominated solutions are presented and compared against 

those of the original NSGA-II. A brief description of each problem is provided in the first 

sub-section “Results of ANSGA-II with Adaptable N, pc, pm, ηc, ηm.” 

Results of ANSGA-II with Adaptable N, pc, pm, ηc, ηm

This is a full version of ANSGA-II, which supports adaptive population size (N), 

self-adaptive crossover probability (pc), and self-adaptive mutation probability (pm). The 
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crossover distribution index (ηc) and mutation distribution index (ηm), which support 

real-coded crossover operator (SBX) and real-coded mutation operator (polynomial 

mutation), are also self-adaptive. Table 25 presents performance results of the ANSGA-II 

with adaptable N, pc, pm, ηc, ηm against the original NSGA-II with fixed parameter 

settings on thirteen benchmark problems. 

Table 25: Performance results of ANSGA-II (adaptable N, pc, pm, ηc, ηm) against the 
original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 80 300 0.5503 591 17 24 100 250 0.5711 251 4 25 

FON 80 232 0.7203 663 16 18.56 100 250 0.7219 251 4 25 

POL 160 456 0.9518 1215 76 72.96 100 250 0.9538 251 3 25 

KUR 320 352 0.8005 1200 162 112.64 100 250 0.8121 251 4 25 

ZDT1 40 280 0.6760 608 19 11.2 100 250 0.7431 251 4 25 

ZDT2 40 346 0.7010 678 12 13.84 100 250 0.7390 251 6 25 

ZDT3 40 286 0.7118 578 12 11.44 100 250 0.8731 251 5 25 

ZDT4 160 352 0.7426 899 71 56.32 100 250 0.6766 251 5 25 

ZDT6 40 364 0.6751 748 20 14.56 100 250 0.7046 251 8 25 

DEB 80 344 0.7065 886 37 27.52 100 500 0.7772 501 15 50 

SRN 40 248 0.7380 488 9 9.92 100 500 0.8011 501 16 50 

TNK 160 552 0.8095 1391 80 88.32 100 500 0.8072 501 8 50 

WATER 400 540 0.6597 825 340 216 100 500 0.6274 501 10 50 

On all thirteen benchmark multi-objective problems, the ANSGA-II with adaptable 

N, pc, pm, ηc, ηm out-performs the original NSGA-II with fixed parameter settings in term 

of finding a diverse set of non-dominated solutions. In term of converging to the true 

Pareto-optimal front, the ANSGA-II with adaptable N, pc, pm, ηc, ηm performs better or as 

well as the original NSGA-II. For the problem ZDT4, the ANSGA-II is able to converge 

to the global Pareto-optimal front while the NSGA-II converges to a local Pareto-optimal 

front. Both ANSGA-II and NSGA-II fail to converge to the global Pareto-optimal front in 

solving the problem ZDT6. For all other problems, both ANSGA-II and NSGA-II are 
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able to converge to the true Pareto-optimal front except for the problem WATER, which 

the true Pareto-optimal front is unknown. The ANSGA-II is able to find proper parameter 

values for N, pc, pm, ηc, ηm and adjust these values during its run in solving the problems 

effectively. For examples, the ANSGA-II requires smaller population sizes (less number 

of solutions evaluated) than the NSGA-II to solve the simple problems (i.e. SCH, FON, 

ZDT1, ZDT2, ZDT3, DEB, and SRN) and larger population sizes (more number of 

solutions evaluated) to solve complex problems (i.e. POL, KUR, ZDT4, TNK, WATER). 

The ANSGA-II requires less time to solve the problem SRN than the NSGA-II. For other 

problems, the ANSGA-II is slower than the NSGA-II due to overheads, which appear to 

be acceptable, of solving the problem and learning good parameter values at the same 

time. However, it takes trial and error experiments to obtain the proper parameter settings 

for the NSGA-II in solving an arbitrary problem. The plots of non-dominated solutions 

on thirteen benchmark problems obtained by the ANSGA-II and the NSGA-II are 

presented and compared in the following. 

Results for the Two-Objective Test Problem SCH 

Although simple, the two-objective test problem SCH (see Table 32 in Appendix 

A) has a historical significant: almost all proposed MOEAs have been tested using this 

test problem (Veldhuizen, 1999; Deb, 2001).  The test problem SCH has a convex Pareto-

optimal front. 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.7469, average ηc = 915.73, average pm = 0.9697, and 

average ηm = 1940.73. Figure 12 and diversity metric values for SCH in Table 25 show 

that the ANSGA-II finds a better spread of Pareto-optimal solutions (distribution of 
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solutions is less crowded in Figure 12(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

smaller population size in solving the problem SCH than the NSGA-II with fixed 

parameter settings. 
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Figure 12: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable N, pc, pm,

ηc, ηm) and (b) NSGA-II with fixed parameter settings 
 

Results for the Two-Objective Test Problem FON 

The two-objective test problem FON (see Table 32 in Appendix A) has an 

interesting aspect of arbitrary adding decision variables (scalability) without changing the 

shape of the Pareto-optimal front and its location in objective space (Veldhuizen, 1999; 

Deb, 2001). In this study and in the original study of NSGA-II (Deb, Pratap et al., 2002), 

three decision variables are used (n = 3) in this problem. The test problem FON has a 

non-convex Pareto-optimal front. 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.7678, average ηc = 764.17, average pm = 0.9056, and 

average ηm = 576.92. Figure 13 and diversity metric values for FON in Table 25 show 
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that the ANSGA-II finds a little bit better spread of Pareto-optimal solutions (distribution 

of solutions is less crowded in Figure 13(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

smaller population size in solving the problem FON than the NSGA-II with fixed 

parameter settings.  
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Figure 13: Non-dominated solutions on FON with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem POL 

The two-objective test problem POL (see Table 32 in Appendix A) has a non-

convex and two disconnected Pareto-optimal fronts. Its solution mapping into objective 

space appears more complicated than other MOPs from the literature (Veldhuizen, 1999; 

Deb, 2001).  Like other problems having disconnected Pareto-optimal sets, this test 

problem may cause difficulty to many MOEAs (Deb, 2001).  

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 160, average pc = 0.4740, average ηc = 574.96, average pm = 0.9255, 

and average ηm = 143.53. Figure 14 and diversity metric values for POL in Table 25 
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show that the ANSGA finds a better distribution of Pareto-optimal solutions (distribution 

of solutions is more continuous on the bottom Pareto-optimal front of Figure 14(a) and 

dmANSGA-II ≤ dmNSGA-II – 0.001) for the problem POL than the NSGA-II with fixed 

parameter settings. The ANSGA-II increases the population size to find better solutions 

(N = 160 instead of 100). 
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Figure 14: Non-dominated solutions on POL with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem KUR 

The two-objective test problem KUR (see Table 32 in Appendix A) has a non-

convex and three disconnected Pareto-optimal fronts. Like the problem POL, its solution 

mapping into objective space is quite complicated. The number of decision variables in 

this problem can be arbitrary. However, changing the number of decision variables 

appears to slightly change the shape of its Pareto-optimal front and its location in 

objective space (Veldhuizen, 1999; Deb, 2001). Like other problems having disconnected 

Pareto-optimal sets, this test problem may cause difficulty to many MOEAs (Deb, 2001). 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 320, average pc = 0.8256, average ηc = 482.97, average pm = 0.5068, 

and average ηm = 1196.23. Similar to the problem POL, Figure 15 and diversity metric 

values for KUR in Table 25 show that the ANSGA-II finds a better distribution of Pareto-

optimal solutions (distribution of solutions is more continuous on the bottom Pareto-

optimal front of Figure 15(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) for the problem KUR 

using a larger population size than the NSGA-II with fixed parameter settings. 
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Figure 15: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT1 

The two-objective test problem ZDT1 (see Table 32 in Appendix A) has 30 

decision variables and a continuous convex Pareto-optimal front. This problem is quite 

easy. The only difficulty a MOEA may encounter in solving this problem is dealing with 

a large number of decision variables (Deb, 2001). 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.6510, average ηc = 16.43, average pm = 0.8709, and 

average ηm = 19.31. Figure 16 and diversity metric values for ZDT1 in Table 25 show 

that the ANSGA-II finds a better distribution of Pareto-optimal solutions (distribution of 

solutions is less crowded and more uniform in Figure 16(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) using a much smaller population size when compared to the NSGA-II with fixed 

parameter settings. 
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Figure 16: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT2 

The two-objective test problem ZDT2 (see Table 32 in Appendix A) has 30 

decision variables and a continuous non-convex Pareto-optimal front. A MOEA may 

encounter difficulties in solving this problem because it has to deal with a large number 

of decision variables and non-convex Pareto-optimal front (Deb, 2001). 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.0928, average ηc = 12.29, average pm = 0.6247, and 

average ηm = 115.66. Figure 17 and diversity metric values for ZDT2 in Table 25 show 

that the ANSGA-II finds a better distribution of Pareto-optimal solutions (distribution of 

solutions is less crowded and more uniform in Figure 17(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) using a much smaller population size when compared to the NSGA-II with fixed 

parameter settings. 
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Figure 17: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT3 

The two-objective test problem ZDT3 (see Table 32 in Appendix A) has 30 

decision variables and several disconnected Pareto-optimal fronts. The difficulties a 

MOEA may encounter in solving this problem include dealing with a large number of 

decision variables and discontinuous Pareto-optimal fronts. The real test for a MOEA 
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would be to find all discontinuous Pareto-optimal fronts with a uniform spread of non-

dominated solutions (Deb, 2001). 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.0703, average ηc = 12.68, average pm = 0.7275, and 

average ηm = 97.61. Figure 18 and diversity metric values for ZDT3 in Table 25 show 

that the ANSGA-II finds a better distribution of Pareto-optimal solutions (distribution of 

solutions is less crowded and more uniform in Figure 18(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) in solving the problem ZDT3 than the NSGA-II with fixed parameter settings. It is 

surprised that the ANSGA-II can solve this difficult problem with a very small 

population size.  
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Figure 18: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT4 

The two-objective test problem ZDT4 (see Table 32 in Appendix A) has 10 

decision variables and a convex Pareto-optimal front. This problem has 219 distinct 
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Pareto-optimal fronts in the objective space, of which only one is global (Deb, 2001). 

Hence, it may be difficult for a MOEA to converge to the global Pareto-optimal front in 

solving this problem (Deb, 2001). 
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Figure 19: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 160, average pc = 0.1070, average ηc = 213.88, average pm = 0.8270, 

and average ηm = 88.76. Figure 19 shows that the ANSGA-II with adaptable parameters 

N, pc, pm, ηc, ηm is able to find the global Pareto-optimal solutions for the problem ZDT4 

while the NSGA-II with fixed parameter settings fails to converge to the global Pareto-

optimal front. The ANSGA-II with adaptable parameters N, pc, pm, ηc, ηm requires a 

larger population size in order to find better solutions for the problem ZDT4. The 

diversity value of ANSGA-II is larger than that of the NSGA-II for this problem due to 

more non-dominated solutions found and higher density of solutions in the Pareto-

optimal front. 
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Results for the Two-Objective Test Problem ZDT6 

The two-objective test problem ZDT6 (see Table 32 in Appendix A) has 10 

decision variables and a non-convex Pareto-optimal front. The density of solutions across 

the Pareto-optimal front is non-uniform and the density towards the Pareto-optimal front 

is thin. The non-uniform density of solutions across the Pareto-optimal front combined 

with the non-convex nature of the front, cause difficulties for many MOEAs to converge 

to the true Pareto-optimal front in solving this problem (Deb, 2001). 
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Figure 20: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.0636, average ηc = 99.94, average pm = 0.3431, and 

average ηm = 53.27. Figure 20 shows that both the ANSGA-II with adaptable parameters 

N, pc, pm, ηc, ηm and the NSGA-II with fixed parameter settings fail to converge to the 

global Pareto-optimal front for the problem ZDT6. In the original study of NSGA-II, 

Deb, Pratap et al. (2002) recommended using different parameter settings with the 

NSGA-II to solve the problem ZDT6. The author of this dissertation carried out the 
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experiment. The NSGA-II was executed with several different parameter settings (such as 

N = 200 to 500, G = 300 to 1000, pc = 0.5 to 0.95, ηc = 50 to 100, pm = 0.6 to 0.9, ηm = 10 

to 2000) in solving ZDT6. However, the NSGA-II still fails to converge to the true 

Pareto-optimal front for this problem. It is obvious that the issue is rooted in the NSGA-II 

and it may have to do with the way the NSGA-II handling elitism (as described in Section 

“Barriers and Issues” in Chapter 1). The author of this dissertation recommends a further 

investigation on this issue. Figure 20 and diversity metric values in Table 25 show that 

the ANSGA-II produces a better spread of non-dominated solutions (distribution of 

solutions is less crowded and more uniform in Figure 20(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) than the NSGA-II. The ANSGA-II requires much smaller population size in 

solving this problem. 

Results for the Two-Objective Test Problem DEB 

The two-objective constraint test problem DEB (see Table 33 in Appendix A) has a 

convex Pareto-optimal front. Constraints divide the search space into two regions – 

feasible and infeasible regions. However, the entire Pareto-optimal front of this problem 

is still convex. Constraints may cause difficulty for MOEAs to converge to the true 

Pareto-optimal front and to maintain a diverse set of non-dominated solutions (Deb, 

2001).  

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.9187, average ηc = 696.30, average pm = 0.8756, and 

average ηm = 367.75. Figure 21 and diversity metric values for DEB in Table 25 show 

that the ANSGA-II finds a better distribution of Pareto-optimal solutions (distribution of 
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solutions is less crowded in Figure 21(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

smaller population size when compared to the NSGA-II with fixed parameter settings. 
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Figure 21: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem SRN 

The two-objective constraint test problem SRN (see Table 33 in Appendix A) has a 

convex Pareto-optimal front. Constraints divide the search space into two regions – 

feasible and infeasible regions. The constraints of this problem eliminate some regions of 

the unconstrained Pareto-optimal set, which may cause difficulty for MOEAs to converge 

to the true Pareto-optimal front and to maintain a diverse set of non-dominated solutions 

(Deb, 2001). 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.0971, average ηc = 661.05, average pm = 0.8829, and 

average ηm = 136.66. Figure 22(a) shows that convergence is adequate with the ANSGA-

II with adaptable parameters N, pc, pm, ηc, ηm because one non-dominated solution does 
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not line up on the true Pareto-optimal front. However, diversity metric values for SRN in 

Table 25 shows that the ANSGA-II achieves a better distribution of solutions (dmANSGA-II 

≤ dmNSGA-II – 0.001) on the problem SRN using a much smaller population size than the 

NSGA-II. Therefore, it can be said that the performance of two algorithms is equivalent. 

The ANSGA-II requires less time to find the Pareto-optimal solutions for this problem 

than the NSGA-II. This implies that the overhead for learning good parameter values for 

the problem SRN is minimum. 
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Figure 22: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem TNK 

The two-objective constraint test problem TNK (see Table 33 in Appendix A) has a 

non-convex and three disconnected Pareto-optimal fronts. Constraints divide the search 

space into two regions – feasible and infeasible regions. The Pareto-optimal solutions of 

this problem lie on a non-linear surface (see Figure 23), which may cause difficulty for 

MOEAs to converge to the true Pareto-optimal fronts and to maintain a diverse set of 
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non-dominated solutions across all three discontinuous Pareto-optimal fronts (Deb, 

2001). 
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Figure 23: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable N, pc, pm,
ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 160, average pc = 0.4614, average ηc = 361.16, average pm = 0.8059, 

and average ηm = 1371.04. Figure 23 shows that the ANSGA-II with adaptable 

parameters N, pc, pm, ηc, ηm finds a more continuous Pareto-optimal front in the middle 

than the NSGA-II with fixed parameter settings. Table 25 also shows that the ANSGA-II 

requires a larger population size to find better solutions for the problem TNK. The 

diversity value of ANSGA-II is little bit larger than that of the NSGA-II for this problem 

due to more non-dominated solutions found and higher density of solutions on the Pareto-

optimal front. 
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Results for the Five-Objective Real-World Problem WATER 

The constraint real-world problem WATER (see Table 33 in Appendix A) has five 

objectives and seven constraints. For a large number of objectives, the Pareto-optimal set 

has multi-dimensional in the objective space. Hence, MOEAs need better strategies for 

finding a diverse set of non-dominated solutions and approximating to the true Pareto-

optimal front with a reasonable computational effort.  
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Figure 24: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable N, pc, pm, ηc, ηm) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 400, average pc = 0.3029, average ηc = 128.56, average pm = 0.9694, 

and average ηm = 78.72. Figure 24 and Table 25 show that the ANSGA-II with adaptable 

parameters N, pc, pm, ηc, ηm finds more non-dominated solutions for the problem 

WATER than the NSGA-II with fixed parameter settings. The plots for ANSGA-II have 

better formed patterns than the plots for NSGA-II, implying that the ANSGA-II achieves 

better convergence than NSGA-II (i.e. plots for f1-f2, f1-f5, f2-f3, f2-f4, f3-f5, f4-f5). Table 25 

also shows that the ANSGA-II requires a larger population size in order to find better 

solutions for the problem WATER. The diversity value of ANSGA-II is a little bit larger 

than that of the NSGA-II for this problem due to more solutions found, higher density of 

solutions in the Pareto-optimal front, and some generated solutions are not in the Pareto-

optimal front. 

Results of ANSGA-II with Adaptable N, pc, ηc, and Fixed pm, ηm

This variant of ANSGA-II supports adaptive population size (N), self-adaptive 

crossover probability (pc), and self-adaptive crossover distribution index (ηc). The 

mutation probability (pm) and mutation distribution index (ηm) are set to the same 

parameter values used in the NSGA-II: pm = 0.5 and ηm = 100. Table 26 presents 

performance results of the ANSGA-II with adaptable N, pc, ηc against the original 

NSGA-II with fixed parameter settings on thirteen benchmark problems. 

Table 26: Performance results of ANSGA-II adaptable (N, pc, ηc, and fixed pm, ηm)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 40  288 0.7199 709 12 11.52 100 250 0.5711 251 4 25 

FON 40  256 0.7270 515 11 10.24 100 250 0.7219 251 4 25 
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POL 80  340 1.1829 767 26 27.2 100 250 0.9538 251 3 25 

KUR 160 352 0.7901 927 63 56.32 100 250 0.8121 251 4 25 

ZDT1 40 320 0.7235 809 21 12.8 100 250 0.7431 251 4 25 

ZDT2 320 384 0.7026 1080 167 122.88 100 250 0.7390 251 6 25 

ZDT3 40 240 0.6972 499 36 9.6 100 250 0.8731 251 5 25 

ZDT4 80 376 0.5302 966 66 30.08 100 250 0.6766 251 5 25 

ZDT6 40 612 0.7592 612 15 24.48 100 250 0.7046 251 8 25 

DEB 40 284 0.7989 543 9 11.36 100 500 0.7772 501 15 50 

SRN 40 284 0.7765 798 27 11.36 100 500 0.8011 501 16 50 

TNK 80 444 0.7806 1015 39 35.52 100 500 0.8072 501 8 50 

WATER 200 526 0.7301 1169 393 105.2 100 500 0.6274 501 10 50 

For the problems KUR, ZDT2, and TNK, the ANSGA-II with adaptable N, pc, ηc

out-performs the original NSGA-II with fixed parameter settings in terms of finding 

better distribution of non-dominated solutions and approximating to the true Pareto-

optimal front. For problems with many local Pareto-optimal fronts (e.g. ZDT4), the 

ANSGA-II with adaptable N, pc, ηc fails to achieve good convergence. This variant of 

ANSGA-II also performs poorly on problems POL, DEB, and WATER. Both ANSGA-II 

and NSGA-II fail to converge to the true Pareto-optimal front on the problem ZDT6. For 

other problems in the suite of thirteen benchmark multi-objective test problems used in 

this study (SCH, FON, ZDT1, ZDT3, SRN), the ANSGA-II with adaptable N, pc, ηc

achieves satisfactory convergence and the distribution of non-dominated solutions is 

nearly the same to that of the NSGA-II with fixed parameter settings. This variant of the 

ANSGA-II requires less time to solve the problem DEB than the NSGA-II. For other 

problems, this variant is slower than the NSGA-II due to overheads, which appear to be 

acceptable, of solving the problem and learning good parameter values at the same time. 

The plots of non-dominated solutions on thirteen benchmark problems obtained by the 

ANSGA-II and the NSGA-II are presented and compared in the following. 
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Results for the Two-Objective Test Problem SCH 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.4445, and average ηc = 292.8. Figure 25 and 

diversity metric values for SCH in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a less spread of Pareto-optimal solutions (less solutions on the Pareto-optimal 

front of Figure 25(a) and dmANSGA-II > dmNSGA-II) using a much smaller population size in 

solving the problem SCH than the NSGA-II with fixed parameter settings. However, the 

distribution of Pareto-optimal solutions with ANSGA-II is adequate (dmANSGA-II ≤ 0.80). 
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Figure 25: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem FON 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.7692, and average ηc = 646.84. Figure 26 and 

diversity metric values for FON in Table 26 show that this variant finds a less spread of 

Pareto-optimal solutions (less solutions on the Pareto-optimal front of Figure 26(a) and 
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dmANSGA-II > dmNSGA-II) using much smaller population size in solving the problem FON 

compared to the NSGA-II with fixed parameter settings. However, the distribution of 

Pareto-optimal solutions with ANSGA-II is adequate (dmANSGA-II ≤ 0.80). 
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Figure 26: Non-dominated solutions on FON with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem POL 

(a) (b)

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

f_1

f_
2

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

f_1

f_
2

Figure 27: Non-dominated solutions on POL with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.1017, and average ηc = 683.29. Figure 27(a) shows 

the ANSGA-II with adaptable N, pc, ηc performs worse than the NSGA-II because it 

generates one non-dominated solution that is not in the true Pareto-optimal front. Its 

diversity metric value in Table 26, which is greater than one, also reflects this issue 

(dmANSGA-II = 1.1829).  

Results for the Two-Objective Test Problem KUR 
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Figure 28: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 160, average pc = 0.5880, and average ηc = 389.32. Figure 28 and 

diversity metric values for KUR in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a better spread of Pareto-optimal solutions (distribution of solutions is more 

continuous on the bottom Pareto-optimal front of Figure 28(a) and dmANSGA-II ≤ dmNSGA-II 

– 0.001) in solving the problem KUR than the NSGA-II with fixed parameter settings. 



147

The algorithm requires a much larger population size in order to find better solutions for 

this problem. However, the required population size is smaller than that of the ANSGA-II 

with adaptable parameters N, pc, pm, ηc, ηm for this problem (N = 320). 

Results for the Two-Objective Test Problem ZDT1 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.2077, and average ηc = 83.32. Figure 29 and 

diversity metric values for ZDT1 in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a better spread of non-dominated solutions (distribution of solutions is less 

crowded and more uniform in Figure 29(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) with 

adequate convergence (two non-dominated solutions do not line up on the true Pareto-

optimal front) in solving the problem ZDT1 compared to the NSGA-II with fixed 

parameter settings. 
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Figure 29: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem ZDT2 
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Figure 30: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 320, average pc = 0.0947, and average ηc = 310.33. Figure 30 and 

diversity metric values for ZDT2 in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a better spread of Pareto-optimal solutions (distribution of solutions is more 

continuous on the Pareto-optimal front of Figure 30(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) in solving the problem ZDT2 compared to the NSGA-II with fixed parameter 

settings. The ANSGA-II requires a much larger population size in order to find better 

solutions for this problem than that of both the NSGA-II and the ANSGA-II with 

adaptable parameters N, pc, pm, ηc, ηm. This implies that the fixed settings (pm = 0.5, ηm =

100) do not provide enough diversity of candidate solutions in the population for this 

problem (the average pm = 0.6247 and the average ηm = 115.66 as found by the ANSGA-

II with adaptable parameters N, pc, pm, ηc, ηm on this problem). Therefore, this variant of 

ANSGA-II takes more time to find proper values for these parameters. 
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Results for the Two-Objective Test Problem ZDT3 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.1286, and average ηc = 132.96. Figure 31 and 

diversity metric values for ZDT3 in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a better spread of non-dominated solutions (distribution of solutions is less 

crowded and more uniform in Figure 31(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) with 

adequate convergence (one non-dominated solution does not line up on the true Pareto-

optimal front) in solving the problem ZDT3 compared to the NSGA-II with fixed 

parameter settings. The algorithm requires a much smaller population size to solve this 

problem. 
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Figure 31: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT4 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.6045, and average ηc = 788.43. Figure 32 shows that 
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both the ANSGA-II with adaptable N, pc, ηc and the NSGA-II with fixed parameter 

settings fail to converge to the global Pareto-optimal front for the problem ZDT4. 

However, the NSGA-II approximates closer to the global Pareto-optimal front. The most 

likely reason for the ANSGA-II to fail converging to the true Pareto-optimal front is that 

there is not enough diversity in the population but the distribution of solutions is good 

(dmANSGA-II ≤ 0.80 as shown in Table 26); therefore, the algorithm terminates prematurely 

with a population size N = 80. 
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Figure 32: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT6 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.94, and average ηc = 67.67. Similar to the ANSGA-II 

with adaptable parameters N, pc, pm, ηc, ηm, Figure 33 shows that both the ANSGA-II 

with adaptable parameters N, pc, ηc and the NSGA-II with fixed parameter settings fail to 

converge to the global Pareto-optimal front for the problem ZDT6. 
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Figure 33: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem DEB 
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Figure 34: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.623, and average ηc = 583.47. Figure 34 and 

diversity metric values for DEB in Table 26 show that the ANSGA-II with adaptable 
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parameters N, pc, ηc finds a less converged and less spread set of non-dominated 

solutions (distribution of solutions is less uniform in Figure 34(a) and dmANSGA-II > 

dmNSGA-II) for problem DEB than the NSGA-II with fixed parameter settings. However, 

the diversity value of ANSGA-II is good enough (dmANSGA-II ≤ 0.80); therefore, the 

algorithm terminates prematurely with a population size N = 40. It can be said this variant 

performs adequately on this problem. 

Results for the Two-Objective Test Problem SRN 
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Figure 35: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pc = 0.5497, and average ηc = 631.85. Figure 35 shows that 

the ANSGA-II with adaptable N, pc, ηc finds a less uniform spread of Pareto-optimal 

solutions in solving the problem SRN compared to the NSGA-II with fixed parameter 

settings. However, Table 26 shows that the diversity metric value of the ANSGA-II is 

better than that of the NSGA-II because the NSGA-II generates more condensed 
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solutions in the Pareto-optimal front on this problem. This variant of ANSGA-II requires 

a much smaller population size and less time to solve this problem than the NSGA-II. 

Results for the Two-Objective Test Problem TNK 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pc = 0.6065, and average ηc = 378.47. Figure 36 and 

diversity metric values for TNK in Table 26 show that the ANSGA-II with adaptable N,

pc, ηc finds a better spread of Pareto-optimal solutions (distribution of solutions is less 

crowded and more continuous in the middle Pareto-optimal front of Figure 36(a) and 

dmANSGA-II ≤ dmNSGA-II – 0.001) using a smaller population size to solve this problem than 

the NSGA-II with fixed parameter settings. 
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Figure 36: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable N, pc, ηc,
and fixed pm, ηm) and (b) NSGA-II with fixed parameter settings 
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Results for the Five-Objective Real-World Problem WATER 
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Figure 37: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable N, pc, ηc, and fixed pm, ηm) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 200, average pc = 0.3694, and average ηc = 108.56. Figure 37 and 

diversity values for WATER in Table 26 show that the ANSGA-II with adaptable 

parameters N, pc, ηc finds a less uniform spread of non-dominated solutions (less 

distribution of solutions on the Pareto-optimal fronts in upper diagonal plots of Figure 37 
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and dmANSGA-II > dmNSGA-II) for the problem WATER than the NSGA-II with fixed 

parameter settings. The plots for ANSGA-II have less formed-patterns than the plots for 

NSGA-II, implying that this variant of ANSGA-II achieves less convergence than 

NSGA-II on this complex problem. This variant of ANSGA-II also requires a larger 

population size in order to solve this problem. 

Results of ANSGA-II with Adaptable N, pm, ηm, and Fixed pc, ηc

This variant of ANSGA-II supports adaptive population size (N), self-adaptive 

mutation probability (pm), and self-adaptive mutation distribution index (ηm). The 

crossover probability (pc) and crossover distribution index (ηc) are set to the same 

parameter values used in the NSGA-II: pc = 0.9 and ηc = 20. Table 27 presents 

performance results of the ANSGA-II with adaptable N, pm, ηm against the original 

NSGA-II with fixed parameter settings on thirteen benchmark problems. 

Table 27: Performance results of ANSGA-II (adaptable N, pm, ηm, and fixed pc, ηc)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 40 246 0.5285 525 8 9.84 100 250 0.5711 251 4 25 

FON 40 280 0.7079 595 12 11.2 100 250 0.7219 251 4 25 

POL 80 352 0.5904 710 34 28.16 100 250 0.9538 251 3 25 

KUR 160 368 0.8392 867 57 58.88 100 250 0.8121 251 4 25 

ZDT1 40 308 0.7227 741 15 12.32 100 250 0.7431 251 4 25 

ZDT2 40  322 0.6573 634 17 12.88 100 250 0.7390 251 6 25 

ZDT3 40 304 0.7650 733 15 12.16 100 250 0.8731 251 5 25 

ZDT4 40 320 0.5715 732 16 12.8 100 250 0.6766 251 5 25 

ZDT6 80 372 0.7283 855 45 29.76 100 250 0.7046 251 8 25 

DEB 80 416 0.7867 899 29 33.28 100 500 0.7772 501 15 50 

SRN 40 256 0.7870 487 9 10.24 100 500 0.8011 501 16 50 

TNK 800 1728 0.7415 6224 1978 1382.4 100 500 0.8072 501 8 50 

WATER 800 560 0.6639 1043 519 448 100 500 0.6274 501 10 50 
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For the problems SCH, POL, ZDT1, ZDT3, and SRN, the ANSGA-II with 

adaptable N, pm, ηm out-performs the original NSGA-II with fixed parameter settings in 

terms of finding better distribution of non-dominated solutions and approximating to the 

true Pareto-optimal front. For the problem WATER, it achieves better convergence but a 

little bit less distribution of solutions than the NSGA-II. This variant of ANSGA-II 

achieves satisfactory convergence and the distribution of non-dominated solutions is 

nearly the same to that of the NSGA-II on two problems FON and DEB. This variant of 

ANSGA-II also achieves good convergence and better distribution of non-dominated 

solutions on the problem TNK than the NSGA-II; however, it takes unsatisfactory long 

execution time on this problem (1978 seconds). For other problems (KUR, ZDT2, ZDT4, 

ZDT6), the NSGA-II with fixed parameter settings performs better. This variant of the 

ANSGA-II requires less time to solve the problem SRN than the NSGA-II. For other 

problems, this variant is slower than the NSGA-II due to overheads, which appear to be 

acceptable (except for problem TNK), of solving the problem and learning good 

parameter values at the same time. The plots of non-dominated solutions on thirteen 

benchmark problems obtained by the ANSGA-II and the NSGA-II are presented and 

compared in the following. 

Results for the Two-Objective Test Problem SCH 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.9445, and average ηm = 474.94. Figure 38 and 

diversity metric values for SCH in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a better spread of Pareto-optimal solutions (distribution of solutions is less 

crowded and more uniform in Figure 38(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 
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much smaller population size in solving the problem SCH than the NSGA-II with fixed 

parameter settings. 
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Figure 38: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem FON 
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Figure 39: Non-dominated solutions on FON with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.8390, and average ηm = 220.12. Figure 39 and 

diversity metric values for FON in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a better spread of non-dominated solutions (distribution of solutions is less 

crowded and more uniform in Figure 39(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) with 

adequate convergence (one non-dominated solution does not line up on the true Pareto-

optimal front) compared to the NSGA-II with fixed parameter settings. The ANSGA-II 

uses a much smaller population size to solve this easy problem than the NSGA-II.  

Results for the Two-Objective Test Problem POL 
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Figure 40: Non-dominated solutions on POL with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pm = 0.7831, and average ηm = 328.23. Figure 40 and 

diversity metric values for POL in Table 27 show that this variant finds a better spread of 

Pareto-optimal solutions (distribution of solutions is less crowded and more continuous in 
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Figure 40(a), and dmANSGA-II ≤ dmNSGA-II – 0.001). The ANSGA-II requires a smaller 

population size but a larger number of generations to solve this problem than the NSGA-

II. As a result, the number of solutions evaluated to find the non-dominated set is higher 

than that of required by the NSGA-II. 

Results for the Two-Objective Test Problem KUR 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 160, average pm = 0.5684, and average ηm = 1280.11. Figure 41(a) 

shows that the ANSGA-II with adaptable N, pm, ηm performs worse than the NSGA-II 

with fixed parameter settings because it fails to obtain non-dominated solutions that cover 

the entire shape of the Pareto-optimal front (bottom right region). 
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Figure 41: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem ZDT1 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.0192, and average ηm = 66.96. Figure 42 and 

diversity metric values for ZDT1 in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a better spread of Pareto-optimal solutions (distribution of solutions is less 

crowded and more uniform in Figure 42(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

smaller population size in solving the problem ZDT1 than the NSGA-II with fixed 

parameter settings. 
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Figure 42: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT2 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.0837, and average ηm = 724.96. Figure 43 shows 

that the ANSGA-II with adaptable N, pm, ηm performs worse than the NSGA-II because it 

fails to converge to the global Pareto-optimal front in solving the problem ZDT2. The 
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most likely reason for the ANSGA-II to fail converging to the true Pareto-optimal front is 

that there is not enough diversity of candidate solutions in the population but the 

distribution of solutions is good (dmANSGA-II = 0.6573) as shown in Table 27. Therefore, 

the algorithm terminates prematurely with a population size N = 40. 
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Figure 43: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT3 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.0369, and average ηm = 38.59. Figure 44 and 

diversity metric values for ZDT3 in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a better spread of Pareto-optimal solutions (distribution of solutions is less 

crowded and more uniform in Figure 44(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

much smaller population size in solving the problem ZDT3 than the NSGA-II with fixed 

parameter settings. 
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Figure 44: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT4 
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Figure 45: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.1170, and average ηm = 220.85. Figure 45 shows 

that both the ANSGA-II with adaptable N, pm, ηm and the NSGA-II with fixed parameter 
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settings fail to converge to the global Pareto-optimal front for the problem ZDT4. 

However, the NSGA-II approximates closer to the global Pareto-optimal front than the 

ANSGA-II. 

Results for the Two-Objective Test Problem ZDT6 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pm = 0.0158, and average ηm = 13.82. Similar to the 

ANSGA-II with adaptable parameters N, pc, pm, ηc, ηm, Figure 46 shows that both the 

ANSGA-II with adaptable parameters N, pm, ηm and the NSGA-II with fixed parameter 

settings fail to converge to the global Pareto-optimal front for the problem ZDT6. 

However, the NSGA-II approximates closer to the global Pareto-optimal front. Figure 

46(a) also shows that this variant of ANSGA-II generates one non-dominated solution 

that does not line up on the local Pareto-optimal front. 
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Figure 46: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem DEB 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 80, average pm = 0.8724, and average ηm = 543.64. Figure 47 and 

diversity metric values for DEB in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a less spread of Pareto-optimal solutions (less uniform distribution of 

solutions on the Pareto-optimal front in Figure 47(a) and dmANSGA-II > dmNSGA-II) using a 

much smaller population size in solving the problem DEB than the NSGA-II with fixed 

parameter settings. However, the distribution of Pareto-optimal solutions with ANSGA-II 

is adequate (dmANSGA-II ≤ 0.80). 
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Figure 47: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem SRN 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 40, average pm = 0.8907, and average ηm = 342.89. Figure 48 and 

diversity metric values for SRN in Table 27 show that the ANSGA-II with adaptable N,
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pm, ηm finds a better spread of Pareto-optimal solutions (distribution of solutions is less 

crowded and more uniform in Figure 48(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a 

smaller population size in solving the problem SRN than the NSGA-II with fixed 

parameter settings. 
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Figure 48: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem TNK 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 800, average pm = 0.2281, and average ηm = 1713.22. Figure 49 and 

diversity metric values for TNK in Table 27 show that the ANSGA-II with adaptable N,

pm, ηm finds a better spread of Pareto-optimal solutions (distribution of solutions is more 

continuous on the middle Pareto-optimal front of Figure 49(a) and dmANSGA-II ≤ dmNSGA-II 

– 0.001) in solving the problem TNK than the NSGA-II with fixed parameter settings. 

However, this variant of ANSGA-II requires a much bigger population size and it takes 

an unacceptable long time to solve this problem (1078 seconds). 
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Figure 49: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable N, pm, ηm,
and fixed pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Five-Objective Real-World Problem WATER 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: N = 800, average pm = 0.8826, and average ηm = 280.81. Figure 50 and 

diversity metric values for WATER in Table 27 show that the ANSGA-II with adaptable 

parameters N, pm, ηm finds an a less spread of non-dominated solutions (less distribution 

of solutions on the Pareto-optimal fronts in upper diagonal plots of Figure 50 and 

dmANSGA-II > dmNSGA-II) for the problem WATER compared to that of the NSGA-II with 

fixed parameter settings. However, the distribution of Pareto-optimal solutions with 

ANSGA-II is adequate (dmANSGA-II ≤ 0.80). The plots for ANSGA-II have better formed 

patterns than the plots for NSGA-II, implying that the ANSGA-II achieves better 

convergence than NSGA-II (e.g. plots for f1-f2, f1-f5, f2-f3, f2-f4, f3-f5, f4-f5). Table 27 also 

shows that the ANSGA-II requires larger population size in order to find more non-

dominated solutions for this problem. 
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Figure 50: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable N, pm, ηm, and fixed pc, ηc) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
 

Results of ANSGA-II with Adaptable pc, pm, ηc, ηm, and Fixed N 

This variant of ANSGA-II supports self-adaptive crossover probability (pc), self-

adaptive crossover distribution index (ηc), self-adaptive mutation probability (pm), and 

self-adaptive mutation distribution index (ηm). The population size is set to the same 

fixed parameter value used in the NSGA-II: N = 100. In addition, the number of 
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generations is set to the same values used in the NSGA-II: G = 250 for SCH, FON, POL, 

KUR, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6; and G = 500 for DEB, SRN TNK, WATER. 

Table 28 presents performance results of the ANSGA-II with adaptable pc, pm, ηc, ηm

against the original NSGA-II with fixed parameter settings on thirteen benchmark 

problems. 

Table 28: Performance results of ANSGA-II (adaptable pc, pm, ηc, ηm, and fixed N)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 100 250 0.5560 251 4 25 100 250 0.5711 251 4 25 

FON 100 250 0.7370 251 5 25 100 250 0.7219 251 4 25 

POL 100 250 0.9430 251 5 25 100 250 0.9538 251 3 25 

KUR 100 250 0.8202 251 5 25 100 250 0.8121 251 4 25 

ZDT1 100 250 0.7014 251 5 25 100 250 0.7431 251 4 25 

ZDT2 100 250 0.7091 251 6 25 100 250 0.7390 251 6 25 

ZDT3 100 250 0.7777 251 6 25 100 250 0.8731 251 5 25 

ZDT4 100 250 0.7275 251 4 25 100 250 0.6766 251 5 25 

ZDT6 100 250 0.7202 251 6 25 100 250 0.7046 251 8 25 

DEB 100 500 0.7373 501 11 50 100 500 0.7772 501 15 50 

SRN 100 500 0.7854 501 9 50 100 500 0.8011 501 16 50 

TNK 100 500 0.8317 501 8 50 100 500 0.8072 501 8 50 

WATER 100 500 0.7167 501 10 50 100 500 0.6274 501 10 50 

For problems SCH, POL, ZDT1, ZDT2, ZDT3, DEB, and SRN the ANSGA-II 

with adaptable pc, pm, ηc, ηm out-performs the original NSGA-II with fixed parameter 

settings in terms of finding better spread of non-dominated solutions and approximating 

to the true Pareto-optimal front. This demonstrates that the ANSGA-II is able to learn 

good parameter values for pc, pm, ηc, ηm and the fixed settings (N = 100, G = 250) are 

good for the above problems. For two problems FON and TNK, the ANSGA-II with 

adaptable pc, pm, ηc, ηm performs very close to the NSGA-II with fixed parameter 

settings. For other problems (KUR, ZDT4, ZDT6, and WATER), this variant of the 
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ANSGA-II performs worse than the NSGA-II with fixed parameter settings. The most 

likely reason is that time spent on finding good parameter values for pc, pm, ηc, ηm is time 

taken away from finding diverse sets of non-dominated solutions. This variant has 

execution time comparable to that of required by the NSGA-II. This implies that the 

ANSGA-II is able to learn good values for crossover and mutation parameters quickly. 

This variant has shorter execution time than the variants with adaptable population size. 

This implies that the overhead for adapting population size is expensive. The plots of 

non-dominated solutions on thirteen benchmark problems obtained by the ANSGA-II and 

the NSGA-II are presented and compared in the following. 

Results for the Two-Objective Test Problem SCH 
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Figure 51: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.6968, average ηc = 768.65, average pm = 0.9452, and average 

ηm = 1862.68. Figure 51 and diversity metric values for SCH in Table 28 show that the 
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ANSGA-II with adaptable pc, pm, ηc, ηm finds a better distribution of Pareto-optimal 

solutions (distribution of solutions is a little bit more uniform in Figure 51(a) and 

dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem SCH than the NSGA-II with fixed 

parameter settings. 

Results for the Two-Objective Test Problem FON 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.8421, average ηc = 768.72, average pm = 0.6827, and average 

ηm = 324.52. Figure 52 and diversity metric values for FON in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a little bit less spread of Pareto-optimal 

solutions (more small gaps on the Pareto-optimal front of Figure 52(a) and dmANSGA-II > 

dmNSGA-II) in solving the problem FON than the NSGA-II with fixed parameter settings. 

However, the distribution of Pareto-optimal solutions with ANSGA-II is adequate 

(dmANSGA-II ≤ 0.80). 
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Figure 52: Non-dominated solutions on FON with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem POL 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.6549, average ηc = 188.04, average pm = 0.9543, and average 

ηm = 253.15. Figure 53 and diversity metric values for POL in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a better distribution of Pareto-optimal 

solutions (distribution of solutions is more continuous on the bottom Pareto-optimal front 

of Figure 53(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem POL than the 

NSGA-II with fixed parameter settings. 
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Figure 53: Non-dominated solutions on POL with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem KUR 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.6325, average ηc = 698.68, average pm = 0.7934, and average 

ηm = 484.96. Figure 54(a) shows that the ANSGA-II with adaptable pc, pm, ηc, ηm
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performs worse than the NSGA-II because it fails to obtain non-dominated solutions that 

cover the entire shape of the Pareto-optimal front (bottom right region). 
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Figure 54: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT1 
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Figure 55: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.0478, average ηc = 49.85, average pm = 0.8651, and average 

ηm = 53.63. Figure 55 and diversity metric values for ZDT1 in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a better distribution of Pareto-optimal 

solutions (less gaps on the Pareto-optimal front of Figure 55(a) and dmANSGA-II ≤ dmNSGA-

II – 0.001) in solving the problem ZDT1 than the NSGA-II with fixed parameter settings. 

Results for the Two-Objective Test Problem ZDT2 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.3757, average ηc = 25.61, average pm = 0.8744, and average 

ηm = 32.22. Figure 56 and diversity metric values for ZDT2 in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a better distribution of Pareto-optimal 

solutions (less gaps on the Pareto-optimal front of Figure 56(a) and dmANSGA-II ≤ dmNSGA-

II – 0.001) in solving the problem ZDT2 than the NSGA-II with fixed parameter settings.  
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Figure 56: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem ZDT3 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2836, average ηc = 275.43, average pm = 0.1725, and average 

ηm = 301.43. Figure 57 and diversity metric values for ZDT3 in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a better distribution of Pareto-optimal 

solutions (distribution of solutions is about the same visually in Figure 57(a) and Figure 

57(b) but dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem ZDT3 than the NSGA-II 

with fixed parameter settings. 
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Figure 57: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT4 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.8428, average ηc = 125.19, average pm = 0.1103, and average 

ηm = 132.54. Figure 58 shows that both the ANSGA-II with adaptable pc, pm, ηc, ηm and 

the NSGA-II with fixed parameter settings fail to converge to the global Pareto-optimal 
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front for the problem ZDT4. However, the NSGA-II approximates closer to the global 

Pareto-optimal front. This implies that given the fixed population size N = 100 and 

number of generations G = 250, the ANSGA-II does not have enough time to learn good 

parameter values for pc, pm, ηc, ηm for the problem ZDT4. 
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Figure 58: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT6 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.0612, average ηc = 40.30, average pm = 0.3142, and average 

ηm = 264.83. Similar to the ANSGA-II with adaptable parameters N, pc, pm, ηc, ηm,

Figure 59 shows that both ANSGA-II with adaptable pc, pm, ηc, ηm and the NSGA-II with 

fixed parameter settings fail to converge to the global Pareto-optimal front for the 

problem ZDT6. However, this variant generates one non-dominated solution that does 

not line up on the non-dominated front and dmANSGA-II > dmNSGA-II.
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Figure 59: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem DEB 
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Figure 60: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2136, average ηc = 590.48, average pm = 0.9490, and average 

ηm = 184.91. Figure 60 and diversity metric values for DEB in Table 28 show that the 
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ANSGA-II with adaptable pc, pm, ηc, ηm finds a little bit better spread of Pareto-optimal 

solutions (distribution of solutions is about the same visually in Figure 60(a) and Figure 

60(b) but dmANSGA-II ≤ dmNSGA-II – 0.001) with less time in solving the problem DEB than 

the NSGA-II with fixed parameter settings. 

Results for the Two-Objective Test Problem SRN 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.9511, average ηc = 175.08, average pm = 0.7373, and average 

ηm = 150.12. Figure 61 and diversity metric values for SRN in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a better spread of Pareto-optimal solutions 

(less small gaps on the Pareto-optimal front of Figure 61(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) with less time in solving the problem SRN than the NSGA-II with fixed parameter 

settings. 
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Figure 61: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem TNK 
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Figure 62: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable pc, pm, ηc,
ηm, and fixed N) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2823, average ηc = 586.14, average pm = 0.6118, and average 

ηm = 433.32. Figure 62 and diversity metric values for TNK in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds a little bit less spread of Pareto-optimal 

solutions (gaps are little bit wider on the middle Pareto-optimal front of Figure 62(a) and 

dmANSGA-II > dmNSGA-II) in solving the problem TNK than the NSGA-II with fixed 

parameter settings. The diversity metric values (0.8317 for ANSGA-II and 0.8272 for 

NSGA-II) are little bit higher than the adequate diversity metric value (0.80) because the 

way the diversity metric calculation handling discontinuous Pareto-optimal fronts. 

However, observing visually the plots in Figure 62(a), it can be determined that the 

distribution of Pareto-optimal solutions with ANSGA-II is adequate. 
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Results for the Five-Objective Real-World Problem WATER 
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Figure 63: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable pc, pm, ηc, ηm, and fixed N) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2639, average ηc = 514.22, average pm = 0.8207, and average 

ηm = 193.28. Figure 63 and diversity metric values for WATER in Table 28 show that the 

ANSGA-II with adaptable pc, pm, ηc, ηm finds much less spread of non-dominated 

solutions (less distribution of solutions on the Pareto-optimal fronts in upper diagonal 
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plots of Figure 63(a) and dmANSGA-II > dmNSGA-II) in solving the problem WATER than 

the NSGA-II with fixed parameter settings. The plots for ANSGA-II have less formed 

patterns than the plots for NSGA-II, implying that this variant of ANSGA-II achieves less 

convergence than NSGA-II on this complex problem. 

 
Results of ANSGA-II with Adaptable N, and Fixed pc, pm, ηc, ηm

This variant of ANSGA-II supports adaptive population size (N). The crossover 

probability (pc), crossover distribution index (ηc), mutation probability (pm), and mutation 

distribution index (ηm) are set to the same parameter values used in the NSGA-II: pc =

0.9, ηc = 20, pm = 0.5, and ηm = 100. Table 29 presents performance results of the 

ANSGA-II with adaptable N against the original NSGA-II with fixed parameter settings 

on thirteen benchmark problems. 

Table 29: Performance results of ANSGA-II (adaptable N, and fixed pc, pm, ηc, ηm)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 40 286 0.6321 554 12 11.44 100 250 0.5711 251 4 25 

FON 40 252 0.7173 689 15 10.08 100 250 0.7219 251 4 25 

POL 80 564 0.9462 1183 63 45.12 100 250 0.9538 251 3 25 

KUR 160 352 0.7942 899 64 56.32 100 250 0.8121 251 4 25 

ZDT1 40 292 0.7524 620 17 11.68 100 250 0.7431 251 4 25 

ZDT2 80 368 0.7338 926 38 29.44 100 250 0.7390 251 6 25 

ZDT3 40 288 0.7402 709 15 11.52 100 250 0.8731 251 5 25 

ZDT4 40 314 0.4736 675 14 12.56 100 250 0.6766 251 5 25 

ZDT6 40 328 0.7532 777 16 13.12 100 250 0.7046 251 8 25 

DEB 80 368 0.7840 812 28 29.44 100 500 0.7772 501 15 50 

SRN 40 270 0.7787 494 13 10.8 100 500 0.8011 501 16 50 

TNK 640 2592 0.8057 5904 1468 1658.
88 

100 500 0.8072 501 8 50 

WATER 200 526 0.6771 1145 346 105.2 100 500 0.6274 501 10 50 
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For problems FON, POL, KUR, ZDT2, and SRN, the ANSGA-II with adaptable N

out-performs the original NSGA-II with fixed parameter settings in terms of finding 

better distribution of non-dominated solutions and approximating to the true Pareto-

optimal front. This demonstrates that this variant of the ANSGA-II is able to learn good 

parameter value for N and the fixed settings (pc = 0.9, pm = 0.5, ηc = 20, ηm = 100) are 

good for these problems. For problems SCH, ZDT1, and DEB, the ANSGA-II with 

adaptable N performs very close to the NSGA-II with fixed parameter settings. The 

results on the problem DEB are almost the same in both algorithms. Both this variant of 

ANSGA-II and NSGA-II fail to converge to the global Pareto-optimal front on the 

problem ZDT6. For other problems (ZDT3, ZDT4, TNK and WATER), ANSGA-II with 

adaptable N performs worse than the NSGA-II with fixed parameter settings. The most 

likely reason is that there is not enough diversity of solutions in the population but the 

distribution of obtained solutions is good; therefore, the ANSGA-II terminates 

prematurely. This variant of the ANSGA-II requires less time to solve the problem SRN 

than the NSGA-II. For other problems, this variant is slower than the NSGA-II due to 

overheads, which appear to be acceptable (except for problem TNK), of solving the 

problem and learning good parameter value at the same time. The plots of non-dominated 

solutions on thirteen benchmark problems obtained by the ANSGA-II and the NSGA-II 

are presented and compared in the following. 

Results for the Two-Objective Test Problem SCH 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 64 and diversity metric values for SCH in Table 29 show that the 

ANSGA-II with adaptable N finds a little bit less distribution of Pareto-optimal solutions 
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(distribution of solutions is less uniform in Figure 64(a) and dmANSGA-II > dmNSGA-II) using 

a much smaller population size in solving the problem SCH than the NSGA-II with fixed 

parameter settings. However, the distribution of Pareto-optimal solutions with ANSGA-II 

is adequate (dmANSGA-II ≤ 0.80). 
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Figure 64: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable N, and fixed 
pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem FON 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 65 and diversity metric values for FON in Table 29 show that the 

ANSGA-II with adaptable N finds a wide and uniformly spread of Pareto-optimal 

solutions (less crowded solutions on the Pareto-optimal front of Figure 65(a) and 

dmANSGA-II ≤ dmNSGA-II – 0.001) using a much smaller population size in solving the 

problem FON than the NSGA-II with fixed parameter settings. 
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Figure 65: Non-dominated solutions on FON with (a) ANSGA-II (adaptable N, and fixed 
pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem POL 
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Figure 66: Non-dominated solutions on POL with (a) ANSGA-II (adaptable N, and fixed 
pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 
The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 80. Figure 66 and diversity metric values for POL in Table 29 show that the 

ANSGA-II with adaptable N finds a better spread of Pareto-optimal solutions 
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(distribution of solutions is less crowded and more uniform in Figure 66(a) and dmANSGA-

II ≤ dmNSGA-II – 0.001) in solving the problem POL than the NSGA-II with fixed 

parameter settings. The algorithm requires a smaller population size but a larger number 

of generations to solve this problem than the NSGA-II. As a result, the number of 

solutions evaluated to find the non-dominated set is higher than that of required by the 

NSGA-II. 

Results for the Two-Objective Test Problem KUR 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 160. Figure 67 and diversity metric values for KUR in Table 29 show that the 

ANSGA-II with adaptable N requires a larger population size to find a better spread of 

Pareto-optimal solutions (distribution of solutions is more continuous on the bottom 

Pareto-optimal front of Figure 67(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the 

problem KUR than the NSGA-II with fixed parameter settings. 
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Figure 67: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 



185

Results for the Two-Objective Test Problem ZDT1 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 68 and diversity metric values for ZDT1 in Table 29 show that the 

ANSGA-II with adaptable N finds a little bit less spread of Pareto-optimal solutions 

(distribution of solutions is less uniform in Figure 68(a) and dmANSGA-II > dmNSGA-II) using 

a much smaller population size in solving the problem ZDT1 than the NSGA-II with 

fixed parameter settings. 
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Figure 68: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT2 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 80. Figure 69 and diversity metric values for ZDT2 in Table 29 show that the 

ANSGA-II with adaptable N finds a little bit better spread of Pareto-optimal solutions 

(distribution of solutions is less crowded and little bit more uniform in Figure 69(a) and 
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dmANSGA-II ≤ dmNSGA-II – 0.001) using a smaller population size in solving the problem 

ZDT2 than the NSGA-II with fixed parameter settings. 
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Figure 69: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT3 
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Figure 70: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 
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The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 70 shows that the ANSGA-II with adaptable N fails to find all 

discontinuous Pareto-optimal fronts for the problem ZDT3. It also fails to approximate 

the bottom non-dominated solution set to the true Pareto-optimal front. 

Results for the Two-Objective Test Problem ZDT4 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 71 shows that both the ANSGA-II with adaptable N and the NSGA-II 

with fixed parameter settings fail to converge to the global Pareto-optimal front for the 

problem ZDT4. However, the NSGA-II approximates closer to the global Pareto-optimal 

front. 
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Figure 71: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT6 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Similar to the ANSGA-II with adaptable parameters N, pc, pm, ηc, ηm, Figure 
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72 shows that both ANSGA-II with adaptable N and the NSGA-II with fixed parameter 

settings fail to converge to the global Pareto-optimal front for the problem ZDT6. 
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Figure 72: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem DEB 

(a) (b)

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 73: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable N, and fixed 
pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 
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The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 80. Figure 73 and diversity metric values for DEB in Table 29 show that the 

ANSGA-II with adaptable N finds a less spread of non-dominated solutions (distribution 

of solutions is a little bit less uniform in Figure 73(a) and dmANSGA-II > dmNSGA-II) using a 

smaller population size in solving the problem DEB compared to the NSGA-II with fixed 

parameter settings. However, the distribution of Pareto-optimal solutions with ANSGA-II 

is adequate (dmANSGA-II ≤ 0.80). 

Results for the Two-Objective Test Problem SRN 
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Figure 74: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable N, and fixed 
pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 

 
The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 40. Figure 74 and diversity metric values in Table 29 show that the ANSGA-II 

with adaptable N finds a little bit better spread of non-dominated solutions with good 

convergence (one solution does not line up on the front but distribution of solutions is 

less crowded in Figure 74(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) using a smaller 
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population size in solving the problem SRN compared to the NSGA-II with fixed 

parameter settings. This variant takes less execution time to solve the problem SRN than 

the NSGA-II implying that the ANSGA-II can find a proper population size for this 

problem quickly. 

Results for the Two-Objective Test Problem TNK 

The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 640. Figure 75 and diversity metric values for TNK in Table 29 show that the 

ANSGA-II with adaptable N, pm, ηm finds a better spread of Pareto-optimal solutions 

(distribution of solutions is more continuous in the middle Pareto-optimal front of Figure 

75(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem TNK than the NSGA-II 

with fixed parameter settings. However, the ANSGA-II requires a much bigger 

population size and it takes an unreasonable long time to solve this problem. 
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Figure 75: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable N, and 
fixed pc, pm, ηc, ηm) and (b) NSGA-II with fixed parameter settings 
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Results for the Five-Objective Real-World Problem WATER 
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Figure 76: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable N, and fixed pc, pm, ηc, ηm) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
 
The value of the adaptable parameter identified by the ANSGA-II for this problem 

is: N = 200. Figure 76 and diversity metric values for WATER in Table 29 show that the 

ANSGA-II with adaptable N finds a less spread of non-dominated solutions (less 

distribution of solutions on the Pareto-optimal fronts in upper diagonal plots of Figure 

76(a) and dmANSGA-II > dmNSGA-II) in solving the problem WATER than the NSGA-II with 
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fixed parameter settings. The plots for ANSGA-II have less formed patterns than the 

plots for NSGA-II, implying that the ANSGA-II obtains less convergence than NSGA-II. 

 
Results of ANSGA-II with Adaptable pc, ηc, and Fixed N, pm, ηm

This variant of ANSGA-II supports self-adaptive crossover probability (pc) and 

self-adaptive crossover distribution index (ηc). The population size (N), mutation 

probability (pm), and mutation distribution index (ηm) are set to the same parameter 

values used in the NSGA-II: N = 100, pm = 0.5, and ηm = 100. In addition, the number of 

generations is set to the same values used in the NSGA-II: G = 250 for SCH, FON, POL, 

KUR, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6; and G = 500 for DEB, SRN TNK, WATER. 

Table 30 presents performance results of the ANSGA-II with adaptable pc, ηc against the 

original NSGA-II with fixed parameter settings on thirteen benchmark problems. 

Table 30: Performance results of ANSGA-II (adaptable pc, ηc, and fixed N, pm, ηm)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 100 250 0.5418 251 5 25 100 250 0.5711 251 4 25 

FON 100 250 0.7097 251 5 25 100 250 0.7219 251 4 25 

POL 100 250 0.9583 251 5 25 100 250 0.9538 251 3 25 

KUR 100 250 0.8254 251 6 25 100 250 0.8121 251 4 25 

ZDT1 100 250 0.7183 251 8 25 100 250 0.7431 251 4 25 

ZDT2 100 250 0.7448 251 5 25 100 250 0.7390 251 6 25 

ZDT3 100 250 0.8723 251 9 25 100 250 0.8731 251 5 25 

ZDT4 100 250 0.7558 251 5 25 100 250 0.6766 251 5 25 

ZDT6 100 250 0.7204 251 5 25 100 250 0.7046 251 8 25 

DEB 100 500 0.8318 501 8 50 100 500 0.7772 501 15 50 

SRN 100 500 0.7889 501 9 50 100 500 0.8011 501 16 50 

TNK 100 500 0.8019 501 7 50 100 500 0.8072 501 8 50 

WATER 100 500 0.7551 501 10 50 100 500 0.6274 501 10 50 
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For problems SCH, FON, ZDT1, ZDT4, SRN, and TNK, the ANSGA-II with 

adaptable pc, ηc out-performs the original NSGA-II with fixed parameter settings in terms 

of finding better spread of non-dominated solutions and approximating to the true Pareto-

optimal front. The ANSGA-II with adaptable pc, ηc is able to find the global Pareto-

optimal solutions for the problem ZDT4 while the NSGA-II with fixed parameter settings 

converges to a local Pareto-optimal front. This implies that adaptable crossover 

probability helps to improve performance on the problems that have many local Pareto-

optimal fronts. For problems POL, ZDT2, ZDT3, and DEB, this variant of ANSGA-II 

performs very close to the NSGA-II with fixed parameter settings. Both this variant of 

ANSGA-II and the NSGA-II fail to converge to the global Pareto-optimal front on the 

problem ZDT6. For problems KUR and WATER, the NSGA-II with fixed parameter 

settings performs better. This variant has execution time comparable to that of required 

by the NSGA-II. This implies that the ANSGA-II is able to learn good values for the 

crossover parameters quickly. It also has execution time less than the variants with 

adaptable population size. This implies that the overhead for adapting population size is 

expensive. The plots of non-dominated solutions on thirteen benchmark problems 

obtained by the ANSGA-II and the NSGA-II are presented and compared in the 

following. 

Results for the Two-Objective Test Problem SCH 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.8711 and average ηc = 89.72. Figure 77 and diversity metric 

values for SCH in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a better 

distribution of Pareto-optimal solutions (distribution of solutions is a little bit more 
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uniform in Figure 77(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem SCH 

than the NSGA-II with fixed parameter settings. 
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Figure 77: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem FON 
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Figure 78: Non-dominated solutions on FON with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.9685 and average ηc = 463.93. Figure 78 and diversity metric 

values for FON in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a better 

distribution of Pareto-optimal solutions (distribution of solutions is a little bit more 

uniform in Figure 78(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem FON 

than the NSGA-II with fixed parameter settings.  

Results for the Two-Objective Test Problem POL 
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Figure 79: Non-dominated solutions on POL with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.6286 and average ηc = 334.08. Figure 79 and diversity metric 

values for POL in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a 

compatible spread of Pareto-optimal solutions (distribution of solutions is about the same 

in Figure 79(a) and Figure 79(b), and dmANSGA-II > dmNSGA-II and dmANSGA-II ≤ dmNSGA-II + 
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0.005) in solving the problem POL compared to the NSGA-II with fixed parameter 

settings. 

Results for the Two-Objective Test Problem KUR 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.5072 and average ηc = 422.2. Figure 80(a) shows that the 

ANSGA-II with adaptable pc, ηc performs worse than the NSGA-II because it is little bit 

short to obtain non-dominated solutions that cover the entire shape of the Pareto-optimal 

front (bottom right region). This implies that given the fixed population size and 

maximum number of generation (N = 100, G = 250), the ANSGA-II does not have 

enough time to learn good parameter values for pc, ηc for the problem KUR.  
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Figure 80: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem ZDT1 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.1982 and average ηc = 40.27. Figure 81 and diversity metric 

values for ZDT1 in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a better 

distribution of Pareto-optimal solutions (less small gaps on the Pareto-optimal front of 

Figure 81(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem ZDT1 than the 

NSGA-II with fixed parameter settings. 
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Figure 81: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT2 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.1477 and average ηc = 200.27. Figure 82 and diversity metric 

values for ZDT2 in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a less 

spread of Pareto-optimal solutions (more small gaps on the Pareto-optimal front in Figure 

82(a) and dmANSGA-II > dmNSGA-II) in solving the problem ZDT2. However, the 
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distribution of Pareto-optimal solutions with ANSGA-II is adequate (dmANSGA-II ≤ 0.80). 

This variant also requires a little bit less time than the NSGA-II to solve the problem 

ZDT2. 
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Figure 82: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT3 
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Figure 83: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2987 and average ηc = 102.35. Figure 83 and diversity metric 

values for ZDT3 in Table 30 show that the ANSGA-II with adaptable pc, ηc finds the 

same spread of Pareto-optimal solutions (distribution of solutions is about the same in 

Figure 83(a) and Figure 83(b), and dmANSGA-II < dmNSGA-II and dmANSGA-II > dmNSGA-II – 

0.001) in solving the problem ZDT3 than the NSGA-II with fixed parameter settings. 

Results for the Two-Objective Test Problem ZDT4 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.3072 and average ηc = 36.62. Figure 84 shows that the 

ANSGA-II with adaptable pc, ηc is able to find the global Pareto-optimal solutions for the 

problem ZDT4 while the NSGA-II with fixed parameter settings fails to converge to the 

global Pareto-optimal front. 
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Figure 84: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 
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Results for the Two-Objective Test Problem ZDT6 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2381 and average ηc = 81.07. Figure 85 shows that both 

algorithms fail to converge to the global Pareto-optimal front. 
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Figure 85: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem DEB 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.5814 and average ηc = 463.55. Diversity metric values for 

DEB in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a less spread of 

Pareto-optimal solutions (dmANSGA-II > dmNSGA-II) in solving the problem DEB compared 

to that of the NSGA-II with fixed parameter settings. However, Figure 86 shows that two 

plots are very compatible. This is the only case in the results in which the diversity metric 

values appear to contradict with the plots. This implies that the diversity metric 

calculation is not very reliable. The ANSGA-II also takes less time to solve this problem 



201

compared to the NSGA-II. Therefore, it can be said that the non-dominated solution set 

obtained with this variant of the ANSGA-II is adequate. 
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Figure 86: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem SRN 
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Figure 87: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 



202

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.5590 and average ηc = 451.28. Figure 87 and diversity metric 

values for SRN in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a better 

spread of Pareto-optimal solutions (less gaps on the Pareto-optimal front of Figure 87(a) 

dmANSGA-II ≤ dmNSGA-II – 0.001). The ANSGA-II also takes less time to solve this problem 

compared to the NSGA-II. 

Results for the Two-Objective Test Problem TNK 
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Figure 88: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable pc, ηc, and 
fixed N, pm, ηm) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.6958 and average ηc = 692.62. Figure 88 and diversity metric 

values for TNK in Table 30 show that the ANSGA-II with adaptable pc, ηc finds a better 

spread of Pareto-optimal solutions (distribution of solutions is more continuous on the 

middle Pareto-optimal front of Figure 88(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in 
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solving the problem TNK than the NSGA-II with fixed parameter settings. The ANSGA-

II also takes a little bit less time to solve this problem compared to the NSGA-II. 

Results for the Five-Objective Real-World Problem WATER 

f_1
0.75 - 0.95

f_2
0.0 - 0.9

f_3
0.0 - 1.0

f_4
0.0 - 1.6

f_5
0.0 - 3.2

Figure 89: Non-dominated solutions on WATER with upper diagonal plots for ANSGA-
II (adaptable pc, ηc, and fixed N, pm, ηm) and lower diagonal plots for NSGA-II with fixed 

parameter settings 
 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pc = 0.2940 and average ηc = 497.63. Figure 89 and diversity metric 
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values for WATER in Table 30 show that the ANSGA-II with adaptable pc, ηc finds less 

spread of non-dominated solutions (less distribution of solutions on the Pareto-optimal 

fronts in upper diagonal plots of Figure 89(a) and dmANSGA-II > dmNSGA-II) in solving the 

problem WATER than the NSGA-II with fixed parameter settings. The plots for 

ANSGA-II have less formed patterns than the plots for NSGA-II, implying that this 

variant obtains less convergence than NSGA-II. 

Results of ANSGA-II with Adaptable pm, ηm, and Fixed N, pc, ηc

This variant of ANSGA-II supports self-adaptive mutation probability (pm) and 

self-adaptive mutation distribution index (ηm). The population size (N), crossover 

probability (pc), and self-adaptive crossover distribution index (ηc) are set to the same 

parameter values used in the NSGA-II: N = 100, pc = 0.9, and ηc = 20. In addition, the 

number of generations is set to the same values used in the NSGA-II: G = 250 for SCH, 

FON, POL, KUR, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6; and G = 500 for DEB, SRN TNK, 

WATER. Table 31 presents performance results of the ANSGA-II with adaptable pm, ηm

against the original NSGA-II with fixed parameter settings on thirteen benchmark 

problems. 

Table 31: Performance results of ANSGA-II (adaptable pm, ηm, and fixed N, pc, ηc)
against the original NSGA-II with fixed parameter settings 

ANSGA-II NSGA-II 
Problems 

N G
Diversity 

Metric 
Func. 
Eval. 

Time 
(sec) 

N*G
(1000) N G

Diversity 
Metric 

Func. 
Eval. 

Time 
(sec) 

N*G
(1000) 

SCH 100 250 0.5258 251 4 25 100 250 0.5711 251 4 25 

FON 100 250 0.7051 251 5 25 100 250 0.7219 251 4 25 

POL 100 250 0.9503 251 6 25 100 250 0.9538 251 3 25 

KUR 100 250 0.8553 251 5 25 100 250 0.8121 251 4 25 

ZDT1 100 250 0.7351 251 6 25 100 250 0.7431 251 4 25 

ZDT2 100 250 0.7414 251 6 25 100 250 0.7390 251 6 25 

ZDT3 100 250 0.7892 251 9 25 100 250 0.8731 251 5 25 

ZDT4 100 250 0.7774 251 7 25 100 250 0.6766 251 5 25 
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ZDT6 100 250 0.6996 251 5 25 100 250 0.7046 251 8 25 

DEB 100 500 0.7289 501 8 50 100 500 0.7772 501 15 50 

SRN 100 500 0.7887 501 9 50 100 500 0.8011 501 16 50 

TNK 100 500 0.8213 501 9 50 100 500 0.8072 501 8 50 

WATER 100 500 0.5619 501 10 50 100 500 0.6274 501 10 50 

For problems SCH, FON, ZDT1, ZDT3, ZDT4, DEB, and SRN, the ANSGA-II 

with adaptable pm, ηm out-performs the original NSGA-II with fixed parameter settings in 

terms of finding better spread of non-dominated solutions and approximating to the true 

Pareto-optimal front. The ANSGA-II with adaptable pm, ηm is able to find the global 

Pareto-optimal solutions for the problem ZDT4 while the NSGA-II with fixed parameter 

settings converges to a local Pareto-optimal front. This implies that adaptable mutation 

probability alone helps to improve performance on the problems that have many local 

Pareto-optimal fronts. For problems POL, ZDT2 and TNK, the ANSGA-II with adaptable 

pm, ηm performs very close to the NSGA-II with fixed parameter settings. For problems 

KUR, ZDT6, and WATER, this variant of the ANSGA-II performs worse than the 

NSGA-II with fixed parameter settings. The most likely reason is that time spent on 

finding good parameter values for pm, ηm is time taken away from finding diverse sets of 

non-dominated solutions. This variant has execution time comparable to that of required 

by the NSGA-II. This implies that the ANSGA-II is able to learn good values for the 

mutation parameters quickly. This variant has execution time less than the variants with 

adaptable population size. This implies that the overhead for adapting population size is 

expensive. The plots of non-dominated solutions on thirteen benchmark problems 

obtained by the ANSGA-II and the NSGA-II are presented and compared in the 

following. 
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Results for the Two-Objective Test Problem SCH 
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Figure 90: Non-dominated solutions on SCH with (a) ANSGA-II (adaptable pm, ηm, and 
fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.9173 and average ηm = 1541.05. Figure 90 and diversity 

metric values for SCH in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (gaps are smaller in Figure 90(a) and 

dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem SCH than the NSGA-II with fixed 

parameter settings. 

Results for the Two-Objective Test Problem FON 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.9067 and average ηm = 572.77. Figure 91 and diversity 

metric values for FON in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (distribution of solutions is more 

continuous on the bottom area of the Pareto-optimal front of Figure 91(a) and dmANSGA-II 
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≤ dmNSGA-II – 0.001) in solving the problem FON than the NSGA-II with fixed parameter 

settings. 
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Figure 91: Non-dominated solutions on FON with (a) ANSGA-II (adaptable pm, ηm, and 
fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem POL 
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Figure 92: Non-dominated solutions on POL with (a) ANSGA-II (adaptable pm, ηm, and 
fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.8779 and average ηm = 404.22. Figure 92 and diversity 

metric values for POL in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (distribution of solutions is more 

continuous on the bottom Pareto-optimal front of Figure 92(a) and dmANSGA-II ≤ dmNSGA-II 

– 0.001) in solving the problem FON than the NSGA-II with fixed parameter settings.  

Results for the Two-Objective Test Problem KUR 
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Figure 93: Non-dominated solutions on KUR with (a) ANSGA-II (adaptable pm, ηm, and 
fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.4169 and average ηm = 684.25. Figure 93 shows that the 

ANSGA-II with adaptable pm, ηm performs worse than the NSGA-II because it fails to 

obtain non-dominated solutions that cover the entire shape of the Pareto-optimal front 

(bottom right region). This implies that given the fixed population size and number of 
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generations (N = 100, G = 250), the ANSGA-II does not have enough time to learn good 

parameter values for pm, ηm for the problem KUR. 

Results for the Two-Objective Test Problem ZDT1 

(a) (b)

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

f_1

f_
2

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

f_1

f_
2

Figure 94: Non-dominated solutions on ZDT1 with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.0374 and average ηm = 43.91. Figure 94 and diversity metric 

values for ZDT1 in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (gaps are smaller on the Pareto-optimal 

front of Figure 94(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem ZDT1 

than the NSGA-II with fixed parameter settings. 

Results for the Two-Objective Test Problem ZDT2 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.8030 and average ηm = 41.48. Figure 95 and diversity metric 
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values for ZDT2 in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

compatible spread of Pareto-optimal solutions (the Pareto-optimal front of Figure 95(a) 

has a big gap at the top and the Pareto-optimal front of Figure 95(b) also has a big gap 

near the middle; dmANSGA-II > dmNSGA-II and dmANSGA-II ≤ dmNSGA-II + 0.005) in solving the 

problem ZDT2 compared to the NSGA-II with fixed parameter settings. 
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Figure 95: Non-dominated solutions on ZDT2 with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT3 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.0451 and average ηm = 165.89. Figure 96 and diversity 

metric values for ZDT3 in Table 31 show that the ANSGA-II with adaptable pm, ηm finds 

a better distribution of Pareto-optimal solutions (distribution of solutions is about the 

same in Figure 96(a) and Figure 96(b) but dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the 

problem ZDT3 than the NSGA-II with fixed parameter settings. 
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Figure 96: Non-dominated solutions on ZDT3 with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem ZDT4 
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Figure 97: Non-dominated solutions on ZDT4 with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.4130 and average ηm = 168.37. Figure 97 shows that the 

ANSGA-II with adaptable pm, ηm is able to converge to the global Pareto-optimal front 
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for the problem ZDT4 while the NSGA-II with fixed parameter settings converges to a 

local Pareto-optimal front. 

Results for the Two-Objective Test Problem ZDT6 
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Figure 98: Non-dominated solutions on ZDT6 with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 
The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.0357 and average ηm = 54.03. Similar to the ANSGA-II with 

adaptable parameters N, pc, pm, ηc, ηm, Figure 98 shows that both the ANSGA-II with 

adaptable pm, ηm and the NSGA-II with fixed parameter settings fail to converge to the 

global Pareto-optimal front for the problem ZDT6. Figure 98(a) also shows that this 

variant of ANSGA-II generates number non-dominated solutions that do not line up 

evenly on the local Pareto-optimal front. 
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Results for the Two-Objective Test Problem DEB 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.8346 and average ηm = 619.79. Figure 99 and diversity 

metric values for DEB in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (distribution of solutions is more 

continuous on the Pareto-optimal front of Figure 99(a) and dmANSGA-II ≤ dmNSGA-II – 

0.001) in solving the problem DEB than the NSGA-II with fixed parameter settings. This 

variant also requires less time to solve the problem DEB compared to the NSGA-II. 
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Figure 99: Non-dominated solutions on DEB with (a) ANSGA-II (adaptable pm, ηm, and 
fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem SRN 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.8150 and average ηm = 407.77. Figure 100 and diversity 

metric values for SRN in Table 31 show that the ANSGA-II with adaptable pm, ηm finds a 

better distribution of Pareto-optimal solutions (less small gaps on the Pareto-optimal front 
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of Figure 100(a) and dmANSGA-II ≤ dmNSGA-II – 0.001) in solving the problem SRN than the 

NSGA-II with fixed parameter settings. This variant also requires less time to solve the 

problem SRN compared to the NSGA-II. 

(a) (b)

-300

-250

-200

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300

f_1
f_

2

-300

-250

-200

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300

f_1

f_
2

Figure 100: Non-dominated solutions on SRN with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 

 

Results for the Two-Objective Test Problem TNK 
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Figure 101: Non-dominated solutions on TNK with (a) ANSGA-II (adaptable pm, ηm,
and fixed N, pc, ηc) and (b) NSGA-II with fixed parameter settings 
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The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.5414 and average ηm = 893.99. Figure 101 and diversity 

metric values for TNK in Table 31 show that the ANSGA-II with adaptable pm, ηm finds 

a less spread of Pareto-optimal solutions (more small gaps at the top and bottom of the 

Pareto-optimal fronts, and dmANSGA-II > dmNSGA-II) in solving the problem TNK than the 

NSGA-II with fixed parameter settings. Since the scale on two axes is very small, it can 

be said that the distribution of non-dominated solution set with this variant of the 

ANSGA-II is adequate. 

Results for the Five-Objective Real-World Problem WATER 

The values of the adaptable parameters identified by the ANSGA-II for this 

problem are: average pm = 0.8953 and average ηm = 322.92. Upper diagonal plots of 

Figure 102 show that the ANSGA-II with adaptable pm, ηm finds less spread of non-

dominated solutions in solving the problem WATER than the NSGA-II with fixed 

parameter settings. However, diversity metric values for WATER in Table 31 show 

dmANSGA-II < dmNSGA-II, which is inaccurate. The reason is that the final metric value is 

calculated as the average of all metric values obtained on pairs of objective functions. 

This implies that the diversity metric calculation is not very reliable and visual 

observation is needed for the comparison of performance results. The plots for ANSGA-

II have equivalent formed patterns than the plots for NSGA-II, implying that the 

ANSGA-II achieves the same convergence as the NSGA-II. 
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Figure 102: Non-dominated solutions on WATER with upper diagonal plots for 
ANSGA-II (adaptable pm, ηm, and fixed N, pc, ηc) and lower diagonal plots for NSGA-II 

with fixed parameter settings 
 

Summary of Results 

This chapter presented the results of the ANSGA-II with all three adaptable 

parameters (population size, crossover, mutation). In additions, the chapter presented the 

results of six variants of the ANSGA-II for studying the effect of using one or two 

adaptable parameters on the performance of the ANSGA-II. The performance of each 
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variant of the ANSGA-II was evaluated and discussed by comparing its results obtained 

on thirteen benchmark multi-objective test problems with those obtained by the original 

NSGA-II. The results demonstrated that the ANSGA-II with adaptable N, pc, and pm is 

able to automate the process of selecting appropriate parameter values. It out-performs 

the original NSGA-II with fixed parameter settings and six other variants. The other six 

variants of the ANSGA-II perform worse than the original NSGA-II. The following ranks 

(1 for being the best) can be classified on the algorithms: (1) ANSGA-II with all three 

adaptable parameters N, pc, pm; (2) NSGA-II using original parameter settings, (3) 

ANSGA-II with adaptable mutation probability alone; (4) ANSGA-II with adaptable 

crossover probability alone; (5) ANSGA-II with adaptable crossover probability and 

mutation probability; (6) ANSGA-II with adaptable population size and crossover 

probability; (7) ANSGA-II with adaptable population size and mutation probability; (8) 

and ANSGA-II with adaptable population size only.  

The conclusions on the results of this research, implications of the study, 

recommendations for further research, and summary of this research are presented in the 

next chapter. 
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Chapter 5 
 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

The ANSGA-II was developed in an effort to apply parameter control techniques to 

a MOEA named NSGA-II. The performances of the ANSGA-II and its six variants were 

evaluated and discussed by comparing the results obtained by each variant on thirteen 

benchmark multi-objective test problems with those obtained by the original NSGA-II. 

This study answers the research questions, which were raised in Chapter 1, as described 

in the following: 

The ANSGA-II with all three adaptable parameters (N, pc, and pm) is able to 

automate the process of selecting appropriate parameter values. It is able to find good 

values for these parameters quickly during its run. It out-performs the original NSGA-II 

with fixed parameter settings and six variants of the ANSGA-II in terms of finding a 

diverse set of non-dominated solutions and converging close to the true Pareto-optimal 

front. The ANSGA-II solves easy problems using smaller population sizes than those of 

required by the NSGA-II and it is able to find better solutions than the NSGA-II. On 

difficult problems, the ANSGA-II is able to find better solutions than the NSGA-II by 

increasing population sizes to accommodate the problem difficulty. On most problems, 

the improvement comes with the cost of longer execution time due to overheads of 

solving the problem and learning good parameter values at the same time. This means 

that the number of generations and the number of function evaluations are higher than 
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those of required by the NSGA-II. However, the execution time appears to be acceptable 

on all thirteen benchmark multi-objective test problems. 

There is no definite conclusion on which adaptable parameter among three 

adaptable parameters (N, pc, pm) affects the performance of the ANSGA-II the most or the 

least. In general, the variants of ANSGA-II with one or two adaptable parameters among 

three parameters N, pc, and pm out-perform the original NSGA-II on easy problems. On 

difficult problems, they have mixed performance results. Either adaptable pc or pm alone 

enables the algorithm to converge to the global Pareto-optimal front on the problem 

ZDT4 while the original NSGA-II is trapped in a local Pareto-optimal front. Other 

variants (adaptable N and pc, adaptable N and pm, adaptable pc and pm, and adaptable N

alone) also fail to converge to the global Pareto-optimal front on the problem ZDT4. The 

reason for these later variants fail to converge to the true Pareto-optimal front is that there 

is not enough diversity in the population but the distribution of the obtained solutions is 

good; therefore, the algorithm terminates prematurely. On complex problems with several 

discontinuous Pareto-optimal fronts such as KUR, adaptable pc alone or pm alone fails to 

obtain non-dominated solutions that cover the entire shape of the Pareto-optimal fronts. 

The most likely reason is that the algorithm does not have enough time to learn good 

parameter values given insufficient population size and number of generations. However, 

the ANSGA-II with adaptable N, pc and the ANSGA-II with adaptable N perform better 

than the original NSGA-II on the problem KUR.  

Regarding the overhead for adapting parameters and solving the problem at the 

same time, the variants with adaptable population size N take longer time than other 

variants without adaptable N due to overheads of executing multiple populations 
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simultaneously for learning a proper population size. Other variants without adaptable 

population size have execution time comparable to that of required by the NSGA-II. This 

implies that the ANSGA-II is able to learn good values for crossover and mutation 

parameters quickly and the cost for adapting population size is expensive. 

The running convergence metric using the population-agglomeration technique 

suggested by Deb & Jain (2002) was integrated into the ANSGA-II and evaluated. This 

metric is inefficient and unreliable for the ANSGA-II. The metric works well when the 

Pareto-optimal solution set for the problem being solved is known in advance. However, 

the Pareto-optimal set is usually unknown in advance for real-world problems and the 

ANSGA-II is only useful if it can solve problems with unknown Pareto-optimal sets. The 

population-agglomeration technique can be used in combination with the running 

convergent metric to handle the case with unknown Pareto-optimal set. When used in the 

ANSGA-II, this technique requires extensive memory and computational resources. 

Multiple reference sets (with their size increasing with population sizes and number of 

generations) must be maintained for multiple populations. As the population size is 

getting bigger, the calculation of this technique is unacceptable slow in later generations 

of a population. Moreover, the technique relies merely on the fact that the algorithm 

being used is able to approximate to the true Pareto-optimal front eventually; otherwise, 

the reference set becomes useless. Therefore, the running convergent metric is not used in 

the ANSGA-II. A simple work-around technique is used instead. This technique simply 

allows the ANSGA-II to run for a while until the number of non-dominated solutions in 

the first rank at least equal to the required minimum number of solutions (i.e. the initial 
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population size), and then the algorithm starts to calculate the diversity metric. This 

work-around technique appears to work effectively. 

The ANSGA-II adopts the running diversity metric for measuring the diversity of 

the obtained solutions suggested by Deb et al. (2002). This diversity was modified to 

handle unknown Pareto-optimal set and problems with more than two objectives. The 

metric has a difficulty in distinguishing between valid gaps in problems with several 

discontinuous Pareto-optimal fronts and invalid gaps in problems with continuous Pareto-

optimal fronts. However, the modified running diversity metric appears to work 

effectively in comparing two or more non-dominated solution sets among different 

populations during the execution of the ANSGA-II and it enables the ANSGA-II to select 

a proper population size for the problem being solved. 

Until there exists an efficient and reliable running convergent metric, the parameter 

control techniques should be applied to MOEAs, which have been verified that they can 

find diverse non-dominated solution sets with good convergence on benchmark test 

problems borrowed from the MOEA literature. The parameter control techniques can be 

applied effectively to any MOEA that has a proof of convergence to the true Pareto-

optimal set while preserving diversity of the obtained solutions at the same time (e.g. ε-

MOEA). 

 

Implications 

MOEAs will continue to be used increasingly in a wide range of real-world multi-

objective optimization applications due to their capability to find several good trade-off 

solutions for all objectives in a single run of the algorithm. Today, the MOEA repository 
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(http://www.lania.mx/~ccoello/EMOO/) contains over 2178 papers, from which a vast 

majority are applications (Coello, 2005). A robust, efficient, and easy to use MOEA such 

as the ANSGA-II encourages more practitioners to use MOEA to solve real-world multi-

objective optimization problems. The outcomes of this dissertation demonstrate that 

parameter control techniques indeed help to improve a MOEA’s performance (NSGA-II 

specifically) in terms of finding a diverse set of non-dominated solutions and converging 

close to the true Pareto-optimal front. Therefore, more research should be done in this 

area. 

 

Recommendations 

The following additional studies and extensions are recommended and discussed 

briefly: 

• Future research will be directed to applying and verifying the ANSGA-II on 

more real-world problems such as telecommunication network design (Flores et 

al., 2003; Maple et al., 2004), software quality enhancement (Khoshgoftar, 

2004), risk-based corrective action design (Gopalakrishnan et al., 2001). 

• Applying parameter control techniques used in ANSGA-II to other MOEAs 

such as ε-MOEA: The ε-MOEA was developed by Deb, Mohan, & Mishra 

(2003) based on the ε-dominance concept (see Definition of Terms). The ε-

dominance concept requires the user to define the precision with which they 

want to evaluate each objective by specifying an appropriate ε value for each 

objective. Therefore, the algorithm introduces a new user-defined parameter: 

the ε-vector. However, the ε values can be implemented as self-adaptive 
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parameter as well (Laumanns et al., 2002). The ε-MOEA uses the ε values to 

find an approximation of Pareto-optimal set that meets the user-defined 

precisions. The ε-MOEA has been proven to find well-converged and well-

distributed solutions with a much less computational effort when compared to 

other popular MOEAs such as NSGA-II, SPEA2, and PESA. Moreover, a ε-

dominance based MOEA has a proof of convergence to the true Pareto-optimal 

set while preserving diversity of the obtained solutions at the same time 

(Laumanns et al., 2002). In addition, the archive size can be calculated based on 

the ε-vector (Laumanns et al., 2002). 

• Develop better performance metrics: The parameter control techniques in 

MOEA rely on the performance metrics to monitor the progress of the MOEA 

during its run in order to adjust the values of its parameters accordingly. 

Therefore, more reliable and efficient performance metrics are needed, 

especially for problems with more than two objectives. 

 

Summary 

MOEAs are not easy to use because they require parameter tunings of three main 

parameters - population size, crossover probability, and mutation probability - in order to 

achieve the desirable solutions and performance for an arbitrary complex problem. The 

task of tuning these parameters is not trivial due to the complex and nonlinear 

interactions among the parameters and their dependency on many aspects of the 

particular problem being solved such as the search space size and the shape of the fitness 

surface. Moreover, the use of fixed parameter settings may lead to slow convergence and 
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sub-optimal obtained solutions (i.e. solutions are not well-spread and not close to the true 

Pareto-optimal front), especially when large search spaces are to be explored in solving 

complex optimization problems because the proper parameter values are not fixed but 

varied during a run of a MOEA. 

This dissertation aims to investigate simultaneous parameter control techniques in 

MOEA for all three parameters - population size, crossover, and mutation. The goal of 

this dissertation is to develop a MOEA with adaptable population size, crossover, and 

mutation, for automating the process of selecting appropriate parameter values in order to 

make the MOEA more efficient, easier to use and available to more users. This MOEA is 

built on the NSGA-II (Non-dominated Sorting Genetic Algorithm II), which supports 

static parameters, and named as ANSGA-II (Adaptable NSGA-II). 

The dissertation uses evaluation research method, which consists of the following 

main steps. Formative studies of existing parameter control techniques and the NSGA-II 

are performed to identify the available techniques that can be used, issues and barriers 

that are needed to be resolved. The new algorithm ANSGA-II is then developed. The 

ANSGA-II is evaluated against the original NSGA-II using the same benchmark multi-

objective problems that were used in the study of the original NSGA-II. Since the same 

benchmark problems are used, the results generated by the ANSGA-II can be easily 

compared to those of the NSGA-II for validation. 

Several parameter control methods have been proposed and applied successfully for 

single objective optimization problems using simple GAs. One of the most significant 

empirical studies was performed by Bäck, Eiben, & van der Vaart (2000) in which simple 
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GAs have one or all three parameters (N, pc, and pm) adjusted during the run. The results 

of this study show the superiority of the GA with adaptable parameters.  

Most MOEAs such as NSGA-II, PAES, and SPEA2 support fixed parameter 

settings. Some previous studies have applied parameter control techniques to MOEAs. 

However, these studies focus on one or two parameters in isolation and ignore other 

parameters. These studies have shown that parameter control techniques used in single-

objective GA work differently in the multi-objective cases (Laumanns et al., 2001; Tran, 

2005). In contrast to single-objective optimization, where objective function and fitness 

function are often the same, in multi-objective optimization, both fitness assignment and 

selection must support several objectives. The result of the multi-objective optimization 

process is usually not a single solutions but a set of trade-off solutions. These trade-off 

solutions converge towards different areas of the Pareto-optimal front and proper 

parameter values differ between these solutions. Moreover, in a MOEA, each solution is 

assigned a fitness value equal to its non-dominated rank in the population. This fitness 

assignment imposes a barrier in comparing two different non-dominated solutions set. In 

order to adjust the values of parameters, the progress of a MOEA run must be monitored 

and evaluated, which involves comparing non-dominated solution sets among generations 

to see how the obtained solutions vary with generations. However, all of these good 

solutions are in the first non-dominated front and have the same rank value. As a result, it 

is difficult to determine the better non-dominated solution set between two sets of non-

dominated solutions.  Performance metrics can be integrated into a MOEA to measure the 

convergence and diversity of the obtained solutions during its run in order to monitor and 

provide the MOEA’s progress for adjusting the values of parameters. These running 
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performance metrics should be reliable and efficient in order to provide correct progress 

information without spending too much time on metric calculations and taking away time 

for finding the solutions. Several performance metrics have been introduced in the 

MOEA literature. But most of these metrics are applicable to two-objective problems and 

inefficient for using as running metrics (Deb & Jain, 2002).  

The NSGA-II, which the ANSGA-II is built upon, is one of the best-known 

MOEAs. The algorithm has been recognized to perform as well or better than other 

MOEAs with the same goal of finding a diverse Pareto-optimal solution set such as the 

PAES (Knowles & Corne, 1999) and SPEA2 (Zitzler et al., 2002). The major features of 

NSGA-II include low computational complexity, parameter-less diversity preservation, 

elitism, and real-valued representation. The NSGA-II uses a real-coded simulated binary 

crossover (SBX) operator and a real-coded polynomial mutation operator to support 

crossover and mutation operations directly to real-valued decision variables. The SBX 

operator introduces an additional user-defined parameter: the crossover distribution index 

cη , which affects the probability distribution of the SBX operator. Likewise, the 

polynomial mutation operator introduces an additional user-defined parameter: the 

mutation distribution index mη , which affects the probability distribution of the 

polynomial mutation operator. Deb (2001) pointed out that convergence cannot be 

guaranteed with NSGA-II because Pareto-optimal solutions may be replaced by other 

inferior non-dominated solutions due to the way the algorithm preserve elitism. Elitism in 

NSGA-II is ensured by comparing the current population with previously found best non-

dominated solutions and by combining the parent and child populations to form a 

combined population with size 2N. The combined population is then sorted according to 
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non-domination. As long as the size of the first non-dominated set is not larger than the 

population size, the algorithm preserves all of them in the new population of size N.

However, in later generation, when the first non-dominated set has nearly converged to 

the Pareto-optimal set, there might be more than N solutions in the first non-dominated 

set of the combined parent-offspring population, and only those solutions with greater 

crowding distance (less crowded area) are chosen. In doing so, the algorithm has no way 

to know which solutions are already Pareto-optimal and which are not Pareto-optimal 

(but non-dominated). As a result, already found Pareto-optimal solutions may be replaced 

by other inferior non-dominated solutions and convergence cannot be guaranteed.  

In the ideal approach to multi-objective optimization, there are two tasks: minimize 

the distance of the obtained solutions to the Pareto-optimal set and maximize the 

diversity of the obtained non-dominated set. Despite the fact that many new and 

improved MOEAs have been introduced, there severely lack for studies related to 

theoretical convergence analysis with guaranteed diversity of solutions in MOEAs (Deb, 

2001; Laumanns et al., 2002). In this regard, several studies have proposed a number of 

MOEAs, which ensure convergence to the true Pareto-optimal set but do not guarantee 

the diversity of the obtained non-dominated set (Rudolph, 1998; Veldhuizen & Lamont, 

1998; Hanne, 2000b, 2000a; Rudolph & Agapie, 2000; Rudolph, 2001). Since 

achievement of convergence does not automatically guarantee achievement of diversity. 

Therefore, it is also necessary to have a proof of diversity of the obtained non-dominated 

set. Until recently, Laumanns et al. (2002) proposed a new class of MOEAs based on the 

ε-dominance concept which have both properties of convergence to the true Pareto-

optimal set and diversity of the obtained non-dominated set together. They also provided 
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a proof of convergence to the true Pareto-optimal set while preserving diversity of the 

obtained solutions at the same time. 

In the ANSGA-II, the crossover and mutation parameters are attached to each 

solution in the population and allowed to co-evolve with each solution. This enables the 

algorithm to carry prior successful crossover and mutation for creating children solutions 

and for adaptation of these two parameters since good crossover and mutation 

probabilities are associated with good candidate solutions. The ANSGA-II determines a 

proper population size by running several populations with different population sizes 

simultaneously (adopting the multiple population approach of Harik & Lobo (1999)). 

Two running metrics for measuring convergence and diversity of non-dominated solution 

sets are integrated into the ANSGA-II and investigated for their effective use in 

comparing non-dominated solution sets among different populations during the execution 

of the ANSGA-II. The idea is that when the ANSGA-II obtains a diverse non-dominated 

solution set with good convergence among different populations, it can terminate with a 

proper population size. 

 This dissertation investigates the convergent metric, which can work with an 

unknown set of Pareto-optimal solutions by using a population-agglomeration technique, 

suggested by Deb & Jain (2002). The conclusion is that the running convergent metric is 

not reliable and efficient for the ANSGA-II. In the population-agglomeration technique, a 

reference set is defined as the non-dominated set of all combined non-dominated sets 

from previous generations up to the current generation. The convergent metric for a 

population is the calculated by finding the smallest normalized Euclidean distance among 

all distances from each non-dominated solution in the population to each solution in the 
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reference set. In the ANSGA-II, this technique requires extensive memory and 

computational resources. Multiple reference sets (with their sizes increasing with 

population sizes and number of generations) must be maintained for multiple populations. 

As the population size is getting bigger, the calculation of this technique is unacceptable 

slow in later generations of a population. Moreover, the technique relies merely on the 

fact that the algorithm being used is able to approximate to the true Pareto-optimal front 

eventually; otherwise, the reference set becomes useless. Therefore, the running 

convergent metric is not used in the ANSGA-II and a simple work-around technique is 

used instead. This technique simply allows the ANSGA-II to run for a while until the 

number of non-dominated solutions in the first rank at least equal to the required 

minimum number of solutions (initial population size), and then the algorithm starts to 

calculate the diversity metric. This work-around technique appears to work effectively. It 

should also be emphasized that the parameter control techniques should be applied to 

good MOEAs, which have been verified that they can find diverse non-dominated 

solution sets with good convergence on benchmark test problems borrowed from the 

MOEA literature.  

In the ANSGA-II, the diversity metric, which was used in the original study of 

NSGA-II (Deb, Pratap et al., 2002),  is modified to handle unknown Pareto-optimal set 

and problems with more than two objectives. The Euclidean distances between the 

known Pareto-optimal extreme solutions and the boundary solutions of the obtained non-

dominated set are replaced with the Euclidean distances between the extreme boundary 

solutions (solutions with smallest and largest function values) and the boundary solutions 

of the obtained non-dominated set. The diversity metric value for problems with more 
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than two objectives is calculated as the average diversity metric value of all diversity 

metric values calculated on combinations of objective function pairs. For example, the 

five-objective problem WATER has ten different pairs of objective functions and the 

diversity metric value ∆ is calculated as: ∆ = [∆ (f1, f2) + ∆ (f1, f3) + ∆ (f1, f4) + ∆ (f1, f5) +

∆ (f2, f3) + ∆ (f2, f4) + ∆ (f2, f5) + ∆ (f3, f4) + ∆ (f3, f5) + ∆ (f4, f5)] / 10). The diversity metric 

has a difficulty in distinguishing between valid gaps in problems with discontinuous 

Pareto-optimal fronts and invalid gaps in problems with continuous Pareto-optimal 

fronts. However, the modified running diversity metric appears to work effectively in 

comparing two or more non-dominated solution sets during the execution of the ANSGA-

II and it enables the ANSGA-II to select proper population sizes for the problems being 

solved. 

The results demonstrates that the goal of this dissertation has been achieved: the 

ANSGA-II with adaptable parameters crossover, mutation, and population size is able to 

automate the process of selecting appropriate parameter values and it is able to find good 

values for these parameters quickly during its run. The ANSGA-II out-performs the 

original NSGA-II with fixed parameter settings and six variants with one or two 

adaptable parameters, in terms of finding a diverse set of non-dominated solutions and 

converging close to the true Pareto-optimal front. The improvement comes with the cost 

of longer execution time due to overheads of solving the problem and learning good 

parameter values at the same time. However, the execution time appears to be acceptable 

on all thirteen benchmark multi-objective problems. There is no definite conclusion on 

which adaptable parameter among three adaptable parameters (N, pc, pm) affects the 

performance of the ANSGA-II the most or the least. In general, the variants of ANSGA-
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II with one or two adaptable parameters among three parameters N, pc, and pm out-

perform the original NSGA-II on easy problems. On difficult problems, they have mixed 

performance results. Either adaptable pc or pm alone enables the algorithm to converge to 

the global Pareto-optimal front on the problem ZDT4 while the original NSGA-II is 

trapped in a local Pareto-optimal front. Other variants (adaptable N and pc, adaptable N

and pm, adaptable pc and pm, and adaptable N alone) also fail to converge to the global 

Pareto-optimal front on the problem ZDT4. The reason for these variants fail to converge 

to the true Pareto-optimal front is that there is not enough diversity in the population but 

the distribution of solutions is good; therefore, the algorithm terminates prematurely. On 

complex problems with several discontinuous Pareto-optimal fronts such as KUR, 

adaptable pc alone or pm alone fails to obtain non-dominated solutions that cover the 

entire shape of the Pareto-optimal fronts. The most likely reason is that the algorithm 

does not have enough time to learn good parameter values given insufficient population 

size and number of generations. However, the ANSGA-II with adaptable N and pc, and 

the ANSGA-II with adaptable N perform better than the original NSGA-II on the 

problem KUR. Regarding the overhead for adapting parameters and solving the problem 

at the same time, the variants with adaptable N take longer time than other variants due to 

overhead of executing multiple populations simultaneously for learning a proper 

population size. Other variants without adaptable N have execution time comparable to 

that of required by the NSGA-II. This implies that the ANSGA-II is able to learn good 

values for crossover and mutation parameters quickly and the cost for adapting 

population size is expensive. 



232

Additional studies and extensions include: (i) applying and verifying the ANSGA-

II on more real-world problems; (ii) applying parameter control techniques used in 

ANSGA-II to the ε-MOEA, which has a proof of convergence to the true Pareto-optimal 

set while preserving diversity of the obtained solutions at the same time (Laumanns et al., 

2002); (iii) developing more reliable and efficient performance metrics to support 

parameter control techniques in MOEA. 
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Appendix A 
 

Test Problems Used in This Study 

A suite of benchmark multi-objective test problems used in this study is listed in 

Table 32 and Table 33. These test problems are selected from a number of significant 

past studies in MOEA (Deb, Pratap et al., 2002). Brief descriptions of these problems are 

presented in Section “Results of ANSGA-II with Adaptable N, pc, pm, ηc, ηm” of Chapter 

4 above. Table 32 lists nine un-constrained test problems that have two objective 

functions. The problem SCH is borrowed from Schaffer’s study (1985); FON from 

Fonseca & Fleming’s study (1998); POL from Poloni’s study (1997); KUR from 

Kursawe’s study (1991); and ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 from Zitzler, Deb, 

and Thiele’s study (2000). The table also shows the number of variables, their bounds, 

the Pareto-optimal solutions, and the shape of the Pareto-optimal front for each problem. 

Table 32: Un-constrained test problems used in this study 
Problem n Variable 

bounds 
Objective functions to be minimized Optimal 

solutions 
Comments 

SCH 1 [-103,
103]

2

1 ( )f x x=
2

2 ( ) ( 2)f x x= −

x ∈ [0, 2] convex 

FON 3 [-4, 4] 2
3

1 1

1
( ) 1 exp

3
ii

f x x
=

= − − −
  

    
∑

2
3

2 1

1
( ) 1 exp

3
ii

f x x
=

= − − −
  

    
∑

1 2 3

1 1
,

3 3

x x x

−
∈

= =

 
  

non-convex 

POL 2 [-π,π] 2 2

1 1 1 2 2( ) 1 ( ) ( )f x A B A B= + − + −  
22

2 1 2( ) [( 3) ( 1) ]f x x x= + + +  

1 0.5sin1 2 cos1 sin 2 1.5cos 2A = − + −

2 1.5sin1 cos1 2sin 2 0.5cos 2A = − + −

non-convex, 
disconnected 
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1 1 1 2 20.5sin 2 cos sin 1.5cosB x x x x= − + −

2 1 1 2 21.5sin cos 2sin 0.5cosB x x x x= − + −

KUR 3 [-5, 5] ( )( )1 2 2

1 11
( ) 10 exp 0.2

n

i ii
f x x x

−

+=
= − − +∑

( )0.8 3

2 1
( ) 5sin

n

i ii
f x x x

=
= +∑

non-convex 

ZDT1 30 [0, 1] 
1 1( )f x x=

2 1( ) ( ) 1 ( )f x g x x g x= −  

( ) ( )
2

( ) 1 9 1
n

ii
g x x n

=
= + −∑

x1 ∈ [0, 1] 
xi = 0, 

i = 2, …n 

convex 

ZDT2 30 [0, 1] 
1 1( )f x x=

( )2

2 1( ) ( ) 1 ( )f x g x x g x= −  

( ) ( )
2

( ) 1 9 1
n

ii
g x x n

=
= + −∑

x1 ∈ [0, 1] 
xi = 0, 

i = 2, …n 

non-convex 

ZDT3 30 [0, 1] 
1 1( )f x x=

1

2

1 1

1 ( )
( ) ( )

( ( )) sin(10 )

x g x
f x g x

x g x xπ

− −
=

 
 
 

( ) ( )
2

( ) 1 9 1
n

ii
g x x n

=
= + −∑

x1 ∈ [0, 1] 
xi = 0, 

i = 2, …n 

convex, 
disconnected 

ZDT4 10 1 [0 :1]x ∈

[0 : ]ix π∈

i = 2, …, 
n

1 1( )f x x=

2 1( ) ( ) 1 ( )f x g x x g x= −  

2

2

( ) 1 10( 1)

[ 10 cos(4 )]
n

i ii

g x n

x xπ
=

= + − +

−∑

x1 ∈ [0, 1] 
xi = 0, 

i = 2, …n 

convex 

ZDT6 10 [0, 1] 6

1 1 1( ) 1 exp( 4 ) sin (6 )f x x xπ= − −  

( )2

2 1( ) ( ) 1 ( ) ( )f x g x f x g x= −  

( ) ( )
0.25

2
( ) 1 9 1

n

ii
g x x n

=
= + −  ∑

x1 ∈ [0, 1] 
xi = 0, 

i = 2, …n 

non-convex, 
non-uniformly 
spaced 

Table 33 lists four constrained test problems. The first three of these problems have 

two objective functions and the last problem has five objective functions. In the first 

problem DEB, a part of the unconstrained Pareto-optimal region is not feasible and the 

resulting constrained Pareto-optimal region is a concatenation of the first constraint 

boundary and some part of the unconstrained Pareto-optimal region.  In the problem 

SRN, the constrained Pareto-optimal set is a subset of the unconstrained Pareto-optimal 

set; this problem was used in the original study of NSGA (N. Srinivas & K. Deb, 1994). 
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The problem TNK, suggested by Tanaka et al., has a discontinuous Pareto-optimal 

region, entirely falling on the first constraint boundary (Tanaka, Watanabe, Furukawa, & 

Tantrio, 1995). The last problem WATER has five objective functions and seven 

constraints (Ray, Kang, & Chye, 2002). The table also shows the number of variables, 

their bounds, and the constraints for each problem. 

Table 33: Constrained test problems used in this study 
Problem n Variable 

bounds 
Objective functions to be 

minimized 
Constraints 

DEB 2 
1

[0.1 : 1.0]x ∈

2
[0 : 5]x ∈

1 1( )f x x=

2 2 1( ) (1 )f x x x= +  
1 2 1( ) 9 6g x x x= + ≥

2 2 1( ) 9 1g x x x= − + ≥

SRN 2 [ 20 : 20]
i

x ∈ −  
i = 1, 2 

2 2

1 1 2( ) ( 2) ( 1) 2f x x x= − + − +
2

2 1 2( ) 9 ( 1)f x x x= − −  

2 2

1 1 2( ) 225g x x x= + ≤

2 1 2( ) 3 10g x x x= − ≤ −

TNK 2 [0 : ]ix π∈
i = 1, 2 

1 1( )f x x=

2 2( )f x x=

2 2

1 1 2( ) 1

0.1cos(16 arctan ) 0

g x x x

x y

= − − + +

≤
2

2 1

2

2

( ) ( 0.5)

( 0.5) 0.5

g x x

x

= − +

− ≤
 

WATER 3 
1

0.01 0.45x≤ ≤  

2
0.01 0.10x≤ ≤

 

3
0.01 0.10x≤ ≤

 

1 2 3( ) 106780.37( )

61704.67

f x x x= +

+

2 1( ) 3000f x x=

0.65

2
3

305700

(0.06 2289)

2289
( )

x
f x

×

×
=

2 3

4 250 2289

exp( 39.75 9.9 2.74)

( )

x x

f x × ×

− + +

=

35
1 2

25
1.39

4940 80( ) xf x
x x

= + −
 
 
 

1

3

1 2

0.00139
( )

4.94 0.08 1

g x

x

x x
= +

− ≤

3

2

1 2

0.000306

1.082 0.0986 1

( )

x

g x
x x

+

− <

=

3

3

1 2

12.307
( )

49408.24 4051.02 50000

g x

x

x x
= +

+ ≤

3

4

1 2

2.098

8046.33 696.71 16000

( )

x

g x
x x

+

− ≤

=

5

3

1 2

2.138
( )

7883.39 705.04 10000

g x

x

x x
= +

− ≤
 



236

3

6

1 2

0.417

1721.26 136.54 2000

( )

x

g x
x x

+

− ≤

=

7

3

1 2

0.164
( )

631.13 54.48 550

g x

x

x x
= +

− ≤
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