










Table 6 FST values and nucleotide distance for all five populations and three Florida transects

FST all SNP Significant FST Outlier FST Next non-significant FST Distance (bp) among
Significant FST SNP

Distance (bp) among
Outlier FST SNP

Distance (bp) between significant
and non-significant SNP

All 5 populations

Counta 4,762 141 17 108 23 0 108

Average 0.040 0.3018 0.4454 0.0989 75,876 N/A 31,576

95 % CIb 0.0383, 0.0424 0.2835, 0.3200 0.3607, 0.5300 0.0780, 0.1198 2,338, 14,9414 N/A 22,578, 40,573

Readc (range) 411 (125:4,142) 377 (198:1,097) 367 (256:679) 405 (251:841)

3 Florida Populations (Broward, Miami-Dade, and Monroe)

Counta 4,753 300 150 207 73 28 207

Average 0.012 0.1163 0.1165 0.0451 88,235 46,304 27,698

95 % CIb 0.0099, 0.014 0.1097, 0.1229 0.1046, 0.1283 0.0363, 0.0539 55,264, 12,1207 4,627, 97,235 20,523, 34,872

Readsc (range) 411 (125:4,142) 370 (125:967) 377 (167:967) 402 (208:947)
aCounts refer to the number of polymorphic SNPs used in the analyses or (for distance) the pair of SNPs that shared the same scaffold.
bCI is the 95 % confidence interval.
cReads are the average number of 64 bp reads for each SNP. “Significant” and “non-siginficant” refers to SNPs with statistically significant FST values
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significant FST values are significant outliers [55]. The di-
vergence between Wild and the Miami-Dade transect
could represent local adaptation or could arise if the Wild
individuals contained A. cervicornis – A. palmata hybrids.
Unlike the other collections, which were identified based
on morphology and microsatellite tags, the Wild collec-
tion was only identified by morphology. Although we have
no reason to believe that the Wild samples were hybrids,
the fine scale genetic divergence we found is similar to the
rare, fine scale structure that was attributed to one-way
introgression of A. palmata into A. cervicornis [15]. Thus
although it is intriguing that natural selection is acting on
a fine geographic scale, this conclusion may be prema-
ture until the species status of the Wild population is
investigated.

Implications for restoration
Data presented here suggest that there is potentially
much adaptive variation due to subtle environmental dif-
ferences influencing coral distribution and growth, in-
cluding temperature, water chemistry, light, nutrients,
and sedimentation. This variation may occur over spatial
scales as small as individual reefs. Due to the potential
for high adaptive variation, introducing a broad range of
genotypes along the FRT (such as those housed within
nurseries) would enhance the frequency of adaptive ge-
notypes and the subsequent rate of offspring survival.
This is especially true if crossings during mass spawning
events produce a larger range of genotypes able to take
advantage of a large breadth of ecological niches. Thus,
the best conservation and restoration strategy may be to

Fig. 4 Discriminant analysis of populations. Discriminant analysis of principal components [34] was used to define the similarity and differences
for (a) all five populations and (b) the four Florida populations. Populations are shown by different colors and inertia ellipses while dots represent
individuals: Broward: Brwd-red, Miami-Dade: MD, dark blue, Monroe: brown and Dominican Republic: DR, green
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increase genetic variation on all spatial scales (within
reefs, among populations) as much as possible to pro-
vide diversity to cope with changing conditions [10].
This study found substantial genetic variation within

existing staghorn populations being raised in coral nurser-
ies. These nursery corals are presently used for coral propa-
gation and outplanted to enhance population recovery of
the threatened staghorn coral reefs. Greater than 90 % of
the variation among all the samples is found within a
nursery’s collection of corals, indicating that these nur-
series have captured significant genetic diversity.
These GBS data indicate both large variation within

populations and adaptive divergence among populations,
and should help form policies that guide conservation
efforts to restore staghorn coral reefs. We suggest that
the caution against moving corals long distances during
restoration [61] should be tempered, because genetic
variation is very high within single reefs and among the
three populations along Florida transects. Previous con-
sideration of the implications of redistribution of corals
during restoration suggests that moving corals beyond
some ecologically relevant threshold may result in de-
creased fitness of a restored population due to founder
effects, genetic swamping and inbreeding/outbreeding
depression [61]. Here, we argue that the very high levels
of diversity found within nursery source materials and
on a single reef alleviate some concern. Very diverse as-
semblages on reefs targeted for restoration and in nur-
sery source corals will likely not undergo fitness declines
due to genetic swamping or outbreeding depression be-
cause there is much genetic variation within populations
and no unique alleles in any of the Florida populations.
Although there may be some reefs with one or few
remaining colonies that have unique adaptive alleles,
introducing genetically diverse corals would increase the
genetic variation of any resulting coral larvae, and this di-
versity is needed for adaptation. Similarly, the potential for
significant inbreeding depression would be decreased by
the introduction of diverse coral assemblages. Outbreed-
ing depression remains a concern. Yet in extant coral
reefs, large genetic variation occurs within and among
reefs. Thus, concerns about outbreeding depression for
sexually produced coral larvae that will disperse long dis-
tances and face changing environments seems misplaced.

Conclusions
The GBS approach produced genotype frequencies for
4,764 SNPs that allowed for the resolution of population
differences unavailable using other techniques [15–17].
Each SNP had an average of 411 reads/SNP with 69
reads/SNP for the minor allele, so genetic differences
likely represent real nucleotide divergence and not se-
quencing error. However, there are imperfections to this
approach, including the differences in heterozygosity

produced by different SNP alignment tools. Despite the
caveats with this method, GBS provides the ability to re-
solve previously undiscovered variation in populations of
A. cervicornis. Here, we show, for the first time, popula-
tion structure across the FRT and high diversity within
populations, including within a single reef evidenced as
the genetic structure between and among FRT popula-
tions. Previous work on A. cervicornis using mtDNA, a
few nuclear genes, and microsatellites found no differ-
ence among the FRT coral populations [15–17, 62].
To further develop effective conservation and manage-

ment plans for this species and other threatened corals
considered as candidates for active propagation and res-
toration, it is essential to understand the extent of gen-
etic variation within and among populations [15, 17].
Using a GBS approach, we highlight population differ-
ences by revealing many SNPs that have distinct allele
frequencies among populations including one hundred
and fifty SNPs, which have outlier FST values indicative
of adaptive difference. There are also significant differ-
ences over small spatial scales, exemplified by differences
between Wild and Miami-Dade individuals that were all
collected within the same area (Fig. 1). The high genetic
variation present in FRT A. cervicornis may allow this
species to endure the interacting threats posed by local
stressors and climate change factors such as temperature
anomalies and acidification Additionally, π pair-wise dif-
ferences) is large (37 %) for all collections and similar to
GBS measures of π in large outbred populations of 3-
spine stickleback or natural populations of yeast [51, 52].
The GBS methodology used here highlights the ability

to discover subtle changes in populations by using thou-
sands of loci and large numbers of individuals. Conser-
vation genetics using these high throughput techniques
provide a new lens for assessing management implications
and population connectivity via important increases in
resolution, but also in varied and specific genetic metrics
such as population structure, nucleotide diversity, and loci
that may be under selection. These data are particularly
important to active restoration projects as they give a bet-
ter understanding of population structure, how and where
to relocate coral, and potential repercussions of active
intervention. Furthermore, the ability to describe genetic
diversity over local to regional distributions enables
conservation practitioners to manage resources over ap-
propriate scales, becoming more efficient and effective.
GBS allows for increased restoration effectiveness through
conservation genetics, while developing a more thorough
understanding of threatened coral communities.

Availability of supporting data
Raw sequences have been submitted to NCBI as a Se-
quence Read Archive (SRA). The Acropora cervicornis
hapmap (DOI: 10.6070/H4FB50XX) and sequence tags
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(DOI: 10.6070/H49K4872) are available at LabArchives.
com. Sequence files are available at NCBI's BioSample
database, accessions SAMN03295587 - SAMN03295662.
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