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The popularity of the Internet and the growing demand for ubiquitous connectivity 
accelerate the need for viable wireless local area network (WLAN) solutions. As a 
consequence, increasing number of manufacturers have adopted the Institute of Electrical 
and Electronic Engineers (IEEE) 802.11a/b/g set of WLAN standards and produced 
inexpensive wireless products to expand capabilities of existing LANs. IEEE 802.11b 
wireless products are widely accepted. Mobile ad hoc networks, a variant of the 802.11 
standards, exist without the requirement for a wired infrastructure or host to provide 
routing, connectivity, and maintenance services. Because of the high variability of 
environments in which ad hoc networks operate, numerous routing protocols are 
proposed. Research indicates that these protocols are unsuited for efficient operation in 
multiple environments. In this investigation, the author examined the effect of multiple 
protocols on throughput and end-to-end delay in simulated ad hoc networks. 
 
The author selected the ad hoc on-demand distance vector (AODV) and dynamic source 
routing (DSR) routing protocols for this research. The outcomes from the simulations 
conducted indicated increased end-to-end delay and reduced packet throughput as a result 
of the mixed populations of the AODV and DSR ad hoc routing protocols. The results 
also indicated that increasing node density and velocity improved packet throughput and 
reduced end-to-end delay.   
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Chapter 1 
 

Introduction 
 

 

The popularity of the Internet and ubiquitous computing contributes to the 

growing demand for wireless local area network (WLAN) solutions. The development of 

the Institute of Electrical and Electronic Engineers (IEEE) 802.11 suite of WLAN 

standards including 802.11a and 802.11b in the 1990s increased interest in mobile ad hoc 

networks or MANETs (Bruno, Conti, & Gregori, 2001). As a result, manufacturers 

including Cisco, Sony, Belkin, D-Link, and Microsoft currently produce inexpensive 

wireless products compliant with these standards to expand capabilities of existing 

wireline LANs by adding wireless connectivity.  

IEEE 802.11b wireless products are widely accepted. Higher speed IEEE 802.11a 

and 802.11g standards-based devices are readily available on store shelves. Hardware 

providing mobility and access through wireless technology is pervasive in business and 

home environments. New products such as Personal Digital or Data Assistants (PDAs) 

and notebook computers feature embedded wireless capability. Yet, most networks still 

cannot support communications within a network without a wireline host (Sudame & 

Badrinath, 2001). Technical advances in mobile computing and ad hoc WLANs offer the 

potential for ubiquitous connectivity without the need for a host (Boukerche, 2004). 

Factors such as mobility, topography, and interference make achieving this goal 
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challenging (Kim, Lee, & Helmy, 2004). The wires are severed, but the fundamental 

nature of the client-server LAN has not yet changed.  

 The primary characteristics of ad hoc networks are their temporary nature, self-

organization, mobility, and capability in operating without an infrastructure-based host or 

server that provides basic communications services (Lee, Han, & Shin, 2002; Marina & 

Das, 2001; Mochocki & Madey, 2005). Instead, each client must contain the necessary 

software to provide basic discovery, routing, and connection maintenance routines for 

establishing and maintaining temporary communications with nearby similarly equipped 

clients (Buttyán & Hubaux, 2003; Lee et al., 2002). These functions are normally the 

domain of the routing protocol. 

The concept of a mobile ad hoc network (MANET) was developed in the 1970s 

with mobile packet radio technology (Hubaux, Gross, Boudec, & Vetterli, 2001; 

Mochocki & Madey, 2005). In the last few years, novel routing protocols have been 

proposed specific to the mobile ad hoc environment (Papapetrou & Pavlidou, 2003; Park 

& Park, 2004; Valera, Seah, & Roa, 2003). Subsequent research has shown that the 

previously suggested protocols were not optimized for data-intensive, Quality of Service 

(QoS) or multi-hop communications as required in military and industrial environments 

(Lundberg, 2004). According to Kargl, Nagler, and Schlott (2002), at present there is no 

single routing protocol that will manage the needs of all conceivable mobile networking 

scenarios. 

According to Hu, Perrig, and Johnson (2002) and Kawaguchia, Toyamaa, and 

Inagakia (2000), the demand for self-organizing wireless or ad hoc networks that can 

exist without a wireline infrastructure is evident in sectors that include business, 
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education, and government. Boukerche (2004) and Buszko, Lee, and Helal (2001) point 

out that a functioning ad hoc network is a viable solution for supporting communications 

capabilities in environments such as battlefields and disaster sites where a wireline 

infrastructure deployment is not possible.  

The difficulties uniquely associated with mobile wireless ad hoc networks 

continue to be active areas of research (Abolhasan, Lipman, & Chicharo, 2004; 

Viswanath, Obraczka, & Tsudik, 2004). The IEEE 802.11 Working Group for Wireless 

Local Area Networks is currently developing the new IEEE 802.11e standard to address 

QoS issues that exist in the IEEE 802 wireless LAN family (Mangold, Choi, May, Klein, 

Hiertz, & Stibor, 2002). Additionally, researchers such as Kargl et al. (2002) are 

designing a framework for developing common WLAN functions provided by most 

mobile ad hoc routing protocols. The literature includes a steady stream of novel 

approaches to solve the routing problems in ad hoc networks (Hu, Perrig, et al., 2002; 

Marina & Das, 2001; Roy & Garcia-Luna-Aceves, 2002). Nonetheless, advances in 

information technology (IT) relating to WLANs fall short of meeting the needs of an ad 

hoc network (Günes, Sorges, & Bouazizi, 2002; Viswanath & Obraczka, 2002). This is 

especially true when devices are highly mobile or when topology is variable 

(Kassabalidis et al., 2001). 

According to Viswanath and Obraczka (2002) and Boleng, Navidi, and Camp 

(2002), there is no single routing protocol solution available for mobile ad hoc wireless 

networks (MANETs) that effectively supports MANET implementations in a wide range 

of environments. Nevertheless, current research efforts focus on creating single protocol 

solutions that require acceptance of tradeoffs in efficiency (Williams & Camp, 2002).  
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A recent example is the Sharp Hybrid Adaptive Routing Protocol (SHARP) 

proposed by Ramasubramanian, Haas, and Sirer (2003). Recognizing the inherent 

tradeoffs between on-demand or reactive and proactive protocols, these authors suggested 

a hybrid protocol that balances the benefits of reactive and proactive protocols. Reactive 

protocols determine paths only when a data packet is ready to transmit as opposed to 

proactive protocols. Proactive protocols actively maintain tables of path information 

whether data packets are ready to be transmitted or not. As a consequence, proactive 

protocols have lower delay and higher overhead compared to reactive protocols (Zhang & 

Jacob, 2003). The SHARP hybrid routing protocol adjusts dynamically to the need for 

route discovery and route table propagation on a per node basis (Ramasubramanian et 

al.). According to the authors, SHARP utilizes both a proactive and reactive protocol. 

While they claim that any reactive protocol may be used, the proactive portion is 

constituted by their SHARP protocol. 

Researchers such as Haas and Pearlman (2001), Roy and Garcia-Luna-Aceves 

(2002), and Navid, Houda, and Bonnet (2000) also developed hybrid approaches that 

balance reactive and proactive approaches to ad hoc routing. In their work, however, only 

a single routing protocol is suggested that contained proactive and reactive elements. The 

use of two separate protocols in each node for ad hoc routing is a relatively new concept 

(Ramasubramanian et al., 2003).  

There continues to be considerable research effort devoted to seeking single 

protocol solutions. However, increasingly researchers acknowledge that a single protocol 

solution is unlikely (Viswanath & Obraczka, 2002; Boleng et al., 2002). Without a single 

protocol standard in ad hoc routing, it is likely that the market will produce a number of 
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products with competing technologies. This pattern has been repeated many times prior 

to the release of firm industry standards. Recent examples where a lack of suitable 

standards results in multiple competing technologies entering the marketplace include 

modem modulation techniques, high-speed serial connections, WLANs, and cellular 

telephone technology. In some cases, the products became obsolete when a standard was 

released. In other cases, multiple de-facto standards are developed.  

 

Problem Statement 

The problem investigated in this research was performance degradation resulting 

from multiple ad hoc wireless protocols operating in the same physical environment. The 

study of ad hoc wireless protocols in multi-protocol or heterogeneous environments is 

emerging as researchers conclude that single protocol solutions fail to meet the 

requirements of demanding ad hoc environments (Boleng, Navidi, & Camp, 2002; 

Samar, Pearlman, & Haas, 2004; Viswanath, Obraczka, & Tsudik, 2004).  

A large body of work is devoted to the development of single routing protocol 

solutions to meet challenges of ad hoc networking (Papapetrou & Pavlidou, 2003). 

Researchers such as Lee et al. (2002), Kannan, Mellor, and Kouvatsos (2003); Lee, Hsu, 

Gerla, and Bagrodia (2000); and Marina and Das (2001) present comparisons of proposed 

new routing protocols against existing protocols. Studies by Bhargava (2003), Boukerche 

(2004), Das, Perkins, and Royer (2000); and Lu, Wang, Zhong, and Bhargava (2003); 

and Williams and Camp (2002) compare the efficiency of different protocols. According 

to Xu and Gerla (2002), most routing protocols in MANETs are designed for 

homogeneous environments that have performance problems related to scale. Recently, 
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authors such as Calafate, Garcia, and Manzoni (2003) and Ge, Lamont, and Villasenor 

(2005) examined the impact of a heterogeneous environment on ad hoc routing protocols. 

Their research suggests that multiple protocols are required to manage dynamic 

heterogeneous environments. Other researchers such as Solis and Obraczka (2004) are 

developing a framework for multi-protocol interconnections in heterogeneous 

environments. 

The challenges in designing practical, efficient, and flexible ad hoc routing 

protocols are formidable (Sinha, Krishnamurthy, & Dao, 2000). After a decade of 

concerted effort, researchers continue developing routing protocols in an attempt to meet 

the challenging demands of ad hoc routing environments (Papapetrou & Pavlidou, 2003). 

Heterogeneous environments contribute to the complexity of identifying protocol 

solutions for functioning in large and highly mobile ad hoc networks (Xu & Gerla, 2002).  

Based on the research of Calafate et al. (2003) and Solis and Obraczka (2004), 

this author determined that the current lack of standards in routing protocols for wireless 

IEEE 802.11b-based ad hoc networks promotes deployment of multiple ad hoc routing 

protocols in the environment. Consequently, situations arise where multiple ad hoc 

routing protocols may be deployed in the same geographic area. Based on the work of 

Abolhasan, Lipman, and Chicharo (2004); Boukerche (2004), and Tseng, Ni, Chen, and 

Sheu (2002), this author determined that multiple routing protocols operating in the same 

geographic area will degrade the efficiency and effectiveness of the protocols in a manner 

similar to the hidden terminal problem (Sheu & Chen, 2002).  

Ad hoc nodes are subject to the hidden terminal problem (Haas, Deng, Liang, 

Papadimitratos, & Sajama, 2002; Kuri & Kasara, 2001; Prakash, 2001). The hidden 
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terminal problem exists when a node attempts to communicate with another node after 

failing to detect the transmission of a third node. The third node is outside the detection 

range of the sending node, but within the range of the intended receiver (Haas et al., 

2002). This interference can create unidirectional links as well as other transmission 

failures significantly degrading the efficiency of the network (Calafate et al., 2003; Tseng 

et al., 2002). The hidden terminal problem is also the result of differences in the power or 

transmission range of nodes in heterogeneous environments (Calafate et al.).  

A search of the literature in print and in the digital libraries of the Institute of 

Electrical and Electronic Engineers (IEEE) and the Association for Computing 

Machinery (ACM) indicated that research involving heterogeneous ad hoc environments 

is a relatively recent development with few quantitative studies involving multiple 

independent ad hoc routing protocols operating within the same environment. Xu and 

Gerla (2002) noted that work prior to their study focused solely on homogeneous 

environments of a single routing protocol. A body of literature covering the hidden 

terminal problem may offer insights into the disruptive effects of a multi-protocol 

environment.  

 

Statement of Goal 

The goal of this research was to examine the effect on efficiency of multiple 

routing protocols coexisting in the same wireless ad hoc network. Stated in the 

affirmative, this researcher proposed the hypothesis that there is a difference in packet 

delivery ratio and latency in environments containing multiple ad hoc routing protocols 

and those containing a single ad hoc routing protocol. The primary goal stated as a null 
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hypothesis was: There is no difference in efficiency as measured by packet delivery ratio 

and latency between environments containing a single ad hoc routing protocol and one 

containing two ad hoc routing protocols. 

The initial study in this investigation simulated two protocols, specifically, 

dynamic source routing (DSR) and ad hoc on-demand distance vector (AODV) 

functioning within the same bounded experimental area. Independent variables were the 

number and mobility of each node containing the protocols under study. Dependent 

variables were (a) the ratio of number of packets sent to the number of packets received 

(delivery ratio) and (b) the end-to-end delivery delay (latency). 

An extensive review of current in-print and online literature covering the past 10 

years from the IEEE and the ACM indicated research into heterogeneous multi-protocol 

ad hoc environments was an emerging area of study. Research also indicated that 

software agent technology applied in solving other problems present in the wireless and 

ad hoc domains was also applicable to heterogeneous environments (Kawaguchi & 

Inagaki, 2000; Marwaha, Tham, & Srinivasan, 2002; Spohn & Garcia-Luna-Aceves, 

2001).  

Agent technology is also applied to monitoring environmental variables and 

making dynamic changes to routing protocol behavior. For example, Viswanath and 

Obraczka (2002) utilized an intelligent software agent to proactively modify the flooding 

mechanism used in a simulated velocity triggered and dynamically switched routing 

environment. The agent used the environmental variable node velocity to dynamically 

select between different flooding mechanisms. 
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Agents are useful in the formation of ad hoc networks (Kawaguchi & Inagaki 

2000). Chacón, Bell, and McCormick (2000) documented how agents improved 

efficiency and robustness in networks. Dunne (2001) showed that mobile agents could 

discover network resources in peer-to-peer networks. Peer-to-peer networks share the key 

characteristics of self-organization, decentralization, route discovery, and route 

maintenance with ad hoc networks (Hu, Das, & Pucha, 2003). Günes et al. (2002) 

developed an ant-colony based routing protocol using ant-like agents first proposed by Di 

Caro and Dorigo (1998).  

 

Relevance and Significance 

 A hallmark of ad hoc networks, self-organization can create significant impacts in 

the education, government, and commercial sectors. Hubaux et al. (2001) state that by 

their very nature ad hoc networks can bring about a paradigm shift in the way networks 

operate. According to Hubaux et al., ad hoc networks can lead to fundamental changes in 

the relationships between information technology (IT) and societal organizations by 

changing the nature of networking and self-organizing structures. Despite the potential 

benefits, ad hoc networks present a number of unique challenges that remain unsolved. 

According to Günes et al. (2002), route determination was the main problem due to node 

mobility. Presently, no single ad hoc routing protocol provides flexible solutions in the 

variable environments in which ad hoc networks operate (Denko, 2003; Kargl et al., 

2002; Günes et al.).  

 Despite efforts of investigators such as Choudhury, Paul, and Bandyopadhyay 

(2004); Haas and Pearlman (2001), Papapetrou and Haas (2003), and Prakash (2001), 
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challenges in the field of MANETs remain largely unsolved. Message routing and 

network path discovery are major challenges that are actively discussed in the literature 

in the field of mobile ad hoc networks (Al-Shurman, Yoo, & Park, 2004; Calafate, 

Garcia, & Manzoni, 2003). Discovery techniques such as flooding or sending messages 

to all nodes (Lundberg, 2004; Obraczka et al., 2001) resulted in other problems such as 

broadcast storms (Li & Cuthbert, 2004; Tseng et al., 2002). With battery operated mobile 

devices, energy efficiency was a major issue (Abolhasan & Wysocki, 2003; Wieselthier, 

Nguyen, & Ephremides, 2001). 

 Numerous routing and communications protocols were proposed for 

implementing wireless ad hoc networks (Kawaguchi & Inagaki, 2000; Günes et al., 

2002). According to Kassabalidis et al. (2001), problems with network throughput and 

delay, diversity of equipment type, and reliability and scaling negatively affected 

development of new protocols to accommodate the complexities in ad hoc networks. 

Kassabalidis et al. concluded that traditional static and dynamic routing protocols are 

unable to manage networks that are large in scale, feature rapidly changing topology, or 

have unstable linkages. 

 Chacón et al. (2000) proposed the use of autonomous software agents for ad hoc 

networks to solve routing problems. As a consequence of its small footprint and mobility, 

agent technology is especially useful in creating solutions in ad hoc routing and 

distributed computing applications (Illmann, Krueger, Kargl, & Weber, 2001). Agents 

have the capability of some autonomous action. Choudhury et al. (2004) presented a 

strong case for utilizing mobile agents to perform complex network management 

functions and encouraged continued development of adaptive agents.  
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 Kassabalidis et al. (2001) identified advanced swarm-based mobile agents as a 

possible solution to the difficult problem of route discovery in highly dynamic 

heterogeneous wireless ad hoc networks. Based on the earlier groundbreaking research of 

Di Caro and Dorigo (1998), Kassabalidis et al. (2001) promoted the use of an antnet-like 

agent set that uses stigmergy, or indirect communications. In a stigmergic system, agents 

communicate indirectly with one another by placing information in predefined areas of 

the environment such as a cache or table that may be used by other agents as necessary. 

This indirect approach is similar to the use of pheromone trails created by foraging ants 

and followed by other ants who do not directly communicate with the original trailblazer. 

 According to Haas and Pearlman (2001), mobile agents represent a technological 

means to provide an adaptive solution for mediating a multi-protocol environmental 

context. White, Pagurek, and Duego (2002) indicate that multiple ad hoc protocols may 

be deployed to accommodate changing topography, node mobility, and node failure. This 

situation arises in field environments. The static routing protocols mentioned previously 

do not adapt well to situations where nodes are highly mobile (Haas & Pearlman). In 

addition, most of the proposed routing protocols do a poor job of managing unidirectional 

links (Li & Rus, 2003; Prakash, 2001). Constantly changing connectivity along with 

location changes create high processing overhead and communications chatter that 

interfere with protocol efficiency. Multiple protocols can address problems created by 

scalability and node mobility and provide the adaptive responses necessary to facilitate 

optimal routing in dynamic environments (Günes et al., 2002; Puliafito & Tomarchio, 

2000).  Along with resolving technical challenges such as self-organization, node 
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diversity management, security, delay control, and quality of service (QoS), there are 

other benefits to developing stable adaptive ad hoc networks (Poon & Li, 2003).  

Utilizing computing technology requires heavy investments in hardware and 

software. Typically, these investments involve expenditures for a traditional 

infrastructure. The proliferation of wireless devices adhering to the Institute for Electrical 

and Electronics Engineers (IEEE) 802.11b specification and other IEEE 802.11 WLAN 

extensions as well as new standards under development by organizations such as the 

IEEE create the opportunity to add standards-based mobility and transient ad hoc 

WLANs to the IT collection of productivity tools, thereby reducing the need for extensive 

infrastructure investments. 

 The ability to form robust and reliable wireless ad hoc networks removes some of 

the necessity of maintaining expensive wireline infrastructure and provides a potential 

operating environment that is less subject to critical failure (Buszko et al., 2001). The 

ability to develop functional networks without the expense of extending in-place services 

has cost savings implications for corporations. Current wireline networks are unsuited for 

short-term additions of workstations. Intermittent use areas such as conference rooms 

often require dedicated infrastructures that waste resources. Integration of wireless ad hoc 

networking into wireline environments can substantially reduce the need for this 

dedicated equipment.  

Protocol performance evaluation and simulation are important tools in developing 

new protocols (Abolhasan & Wysocki, 2003; Boukerche, 2004). Most performance 

comparisons have focused on contrasting single protocols in homogeneous environments 

(Buttyan & Hubaux, 2003; Haas & Pearlman, 2001; Shen & Jaikaeo, 2003). With the 



13
  

emergence of heterogeneous networks and new ad hoc routing protocols such as 

Hierarchical Optimized Link State Routing (HOLSR) additional simulations of 

comparative performance are necessary (Ge, Lamont, & Villasenor, 2005). In addition, 

evaluation of existing protocol performance in multi-protocol environments provides 

essential data for mobile ad hoc protocol developers.  

 

Barriers and Issues 

The author examined a relatively new branch of computing that is still evolving. 

Currently, there are few options providing an adaptive response to highly variable 

wireless ad hoc network environments (Kargl et al., 2002; Boleng et al., 2002). The 

proliferation of wireless-enabled Personal Digital Assistants (PDAs) and notebook 

computers greatly complicates the issue by creating a heterogeneous mix of processing, 

capacity, power, range, and display capabilities (Ge et al., 2005; Xu & Gerla, 2002).  

Work to address the difficult issues of routing and messaging in ad hoc networks 

is ongoing (Mochocki & Madey, 2005; Papadimitratos & Haas, 2003). However, the 

variability of environmental factors such as topography, unidirectional links, mobility, 

and power variances make single protocol solutions improbable (Xu & Gerla, 2002). 

Several efforts are underway exploring the relatively new research area involving 

heterogeneous mobile ad hoc environments (Ge, Lamont, & Villasenor, 2005; Mochocki 

& Madey). Mochocki and Madey explored the difficulty in simulating heterogeneous 

networks that combine MANETs and sensor networks. Ge, Lamont, and Villasenor 

approached the issues of routing and messaging in heterogeneous networks by enhancing 

the performance of the Optimized Link State Routing (OLSR) protocol. Wedde et al. 
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(2005) contributed improvements to energy management in MANETs through a new 

protocol based on the behavior of bees. Despite these efforts, heterogeneous multiple 

protocol environments continue to provide a more versatile alternative than single 

protocol environments. 

Major barriers to this research involved access to detailed data on the design and 

function of the proposed routing protocols and development of a suitable test 

environment. Typically, data on the design and function of the current routing protocols 

were available within the literature at a high level. However, while protocols are in the 

development stage, details are subject to change (Denko, 2003; Lee et al., 2002; Park & 

Park, 2004; Prakash, 2001). In addition, difficulties in gaining permissions from 

developers of auxiliary programs used in this research delayed starting the simulations 

(Jiang & Camp, 2002; Williams & Camp, 2002). Consequently, the author was restricted 

in terms of the number of routing protocols that were available for integration into the 

simulations by this author.  

Access to an appropriate test environment was also a major barrier. Equipment 

and software costs approached several thousand dollars to create a physical network of 

several dozen nodes. Creation of an environment with a sufficient number of physical 

nodes to provide relevant statistical measures was highly impractical (Kargl et al., 2002). 

Therefore, the author relied on simulations. A review of the literature indicated that most 

proposals for routing protocols and other ad hoc network support protocols relied on 

simulations to provide quantitative data (Boleng et al., 2002; Kargl et al.). Simulations in 

this inquiry were necessary because of the large set of variables that existed in the ad hoc 

wireless domain.  
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The simulation environment was complex. As a consequence, extensive training 

was necessary. In order to develop the appropriate skills necessary to effectively use the 

selected simulator and the associated tools and programming languages the author 

participated in several training sessions.  

Computation requirements of simulated environments tax the capabilities of 

personal computers (PCs) since most simulators employ UNIX, Linux, or mainframe 

operating systems. The author used both Linux and Windows environments limited to 

single Intel-based processor machines operating at moderate speeds. As a consequence, 

the author selected network simulator version 2 (ns-2). Versions of ns-2 were available 

that operated in both Linux and Windows environments simulating UNIX. Widespread 

support contributes to the validity of the ns-2 simulation environment. ns-2 operations are 

supported by documentation provided by an active user community.  

 

Research questions to be investigated 

 The primary questions that were investigated included the following:  

• What was the effect on packet delivery ratios and end-to-end delay of message 

packets in multi-protocol environments?  

• What was the relationship between population numbers of each protocol and the 

degradation of packet delivery ratios and end-to-end delay?  

Additional secondary questions considered included the following:  

• Which of the two selected ad hoc protocols were most disruptive when inserted 

into a relatively homogeneous environment?  
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• Were projected gains in efficiency using agents offset by increases in bandwidth 

required to accommodate additional overhead traffic?  

• Were swarm-based agent approaches more efficient than dedicated purpose 

agents? 

Secondary questions were addressed through an extensive review of the literature 

in pursuit of answers to the primary questions. Additional research involving on these 

questions is suggested as part of future research suggestions. Questions without specific 

answers generated as part of this inquiry are part of the future work statement at the 

conclusion of this dissertation. 

 

Limitations and Delimitations 

 The most significant limitation in this research was the lack of funding. Funding 

limited the equipment and software available to conduct the simulations required by the 

inquiry. As a consequence, the author selected the Microsoft Windows based UNIX 

simulator cygwin and the ns-2 network simulator. Both software packages were available 

free of charge to the research and educational community. 

 While the ns-2 simulation package is widely accepted by the research community, 

the simulator program is still evolving. Two significant new releases during this inquiry 

that resolved programming problems and added new functionality became available. The 

author assumed that the version specified for this investigation produced correct data that 

could be duplicated using the same version on another system. As a consequence, the 

author verified results on Linux and Windows platforms. ns-2 also represented a 

significant limitation to this study. This simulator was originally designed to simulate 
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homogeneous environments consisting of a single routing protocol. As a consequence, 

the author created a simulated heterogeneous environment through the development of 

creative control scripts. 

 Another limitation was time. The field of wireless ad hoc routing is rapidly 

evolving. New routing protocols are introduced at a rapid rate in addition to advances in 

agent technology. The author was challenged in keeping current on these changes and 

producing the research proposed. As a consequence, the author conducted this research in 

the most expeditious manner possible. 

 A delimitation of this research was the participation of the user support group for 

ns-2 and the wireless ad hoc research community at large. These individuals were 

required to resolve unforeseen problems with the simulation environment and the 

protocols contained therein. This community of users provided indirect and intermittent 

support. The accuracy of the information they provided was assumed to be correct. 

 

Definition of terms 

This section contains a list of terms that were used throughout this investigation.  

Active message – A message that is contained within an agent wrapper. This 

allows messages to self-propagate or otherwise exhibit autonomous behaviors not 

possible without the added agent intelligence (Li & Rus, 2000). Active messages can also 

remain in an intermediate node until a destination node is available. 

Agent – An encapsulated computer system or program situated in a software 

application or networked environment and capable of flexible, autonomous action based 

on specific environmental events in order to meet its design objectives (Jennings, 2001).  
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ALOHANET – Named for the Palo Alto, California, Research Center Aloha 

Network. ALOHANET was the first wireless packet network used to connect computers 

on the Hawaiian Islands. Developed by Norman Abramson, ALOHANET was also the 

first network to connect to the mainland Advanced Research Projects Agency Network 

(ARPANET) (Microsoft, 2002). 

ALOHA Protocol – A fixed wireless communications random access protocol 

based on a star network topology that used a collision detection and time setback 

mechanism. This technique became widely used in the Ethernet protocol (Naor & Levy, 

2001). 

AODV (Ad Hoc On-demand Distance Vector Routing) – An improved version 

of the Direct Sequenced Distance Vector (DSDV) protocol. AODV reduces overhead and 

bandwidth consumption by reactively maintaining distance vector tables rather than 

doing them proactively as in DSDV. Table updates are done through a flooding process 

(Ye, Krishnamurthy, & Tripathi, 2003) 

ARA (Ant colony based Routing Algorithm) - One of the new class of routing 

protocols based on swarm intelligence. Like other swarm intelligence protocols, this 

algorithm uses ant-like agents to establish paths to destinations. ARA is based on the 

concept of stigmergy or indirect communications (Günes et al., 2002). 

ARPANET (Advanced Research Projects Agency NETwork ) – The 

progenitor of the modern Internet. ARPANET was originally a government funded 

experiment in establishing data networks between computers in military and educational 

environments (Patel et al., 2003) 
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AX.25 – A modified version of the X.25 protocol adopted by amateur radio 

operators to send text messages between radio stations. The protocol operates at the 

Transport Layer or Layer 4 of the Open System Interconnection (OSI) model (Beech, 

Nielsen, & Taylor, 1998). AX.25 provides error correction, and employs datagrams for 

transmission (Newton, 2006). 

BANT (Backward ANT) – An ant-like software agent. Backward ants generally 

travel from a destination discovered by a forward ant (FANT) back to the source. The 

backward ant re-enforces the pheromone trail and contains the path information to the 

destination that was obtained by the forward ant (Günes et al., 2002). 

Bluetooth – Defined by the IEEE 802.15 specification as a short range low-power 

wireless networking system. Bluetooth interlinks voice and data devices in wireless 

Personal Area Networks (WPANs) and operates in the unlicensed Industrial, Scientific, 

and Medical (ISM) band at 2.4 to 2.4835 Gigahertz (GHz) (Hać, 2003).  

Broadband – Defined by Newton (2006) as a transmission facility that has a 

capacity greater than a voice grade line of 3000 Hertz (Hz). Other industry definitions 

vary. In the telecommunications and data industries, broadband refers to data rates of 1.5 

Mbps (megabits per second) or greater. 

Broadcasting – The process of sending a packet to all directly reachable 

neighboring nodes (Kargl et al., 2002). Broadcasting is commonly used to obtain routing 

and other information from within a network. 

BSS (Basic Service Set) – Defined under the 802.11 specifications. BSS is the 

basic building block of a WLAN and consists of member stations that are in 
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communications with each other. The BSS may also form a Distribution System (DS) 

used to interconnect BSSs (Hać, 2003). 

CEDAR (Core Extraction Distributed Ad hoc Routing) – A hierarchical ad 

hoc routing protocol. CEDAR introduces the concept of core nodes that dominate a set of 

non-core nodes. Periodic updates are used to keep a link state table along with lists of 

node identification (ID) numbers current. Route searching is done reactively and returns a 

shortest length core path to the destination (Haas et al., 2001). 

CHAMP (Caching and Multi-path Routing Protocol) – A reactive ad hoc 

protocol. CHAMP adds packet caching to reduce the general problem of non-deliverable 

packets (Valera et al., 2003). 

Complementary Code Keying (CCK) – Radio frequency (RF) modulation 

technique used by IEEE 802.11b and supported by IEEE 802.11g (Sheu & Chen, 2002). 

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) – A 

technique for monitoring the physical interface prior to initiating a transmission to ensure 

the channel is not in use. If a carrier is detected, a delay is enforced before the process is 

repeated (Microsoft, 2002). The physical interface may be a wireline interface or a 

wireless interface as with 802.11. 

DCF (Distributed Coordination Function) – Implements the 802.11 basic 

access methods. DCF uses CSMA/CA to provide asynchronous connectivity (Hać, 2003). 

DDR (Distributed Dynamic Routing Algorithm) – Introduced in 2000 by 

Nikaein, Labiod, and Bonnet (2000). DDR is a hierarchical hybrid protocol that uses a 

tree and forest technique to define non-overlapping zones without the use of the Global 

Positioning System (GPS) or other positioning methods. The function of the protocol is 
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similar to the Zone Routing Protocol (ZRP) and the Zone-based Hierarchical Link State 

(ZHLS) routing protocol (Nikaein et al.). 

DSR (Dynamic Source Routing) – A reactive ad hoc protocol that uses an on-

demand discovery technique to acquire the complete path to the destination. The newly 

acquired path then becomes the addressing portion of the message header so that the 

message can reach the receiver. DSR can generate large numbers of overhead packets 

during the discovery process (Prakash, 2001).  

DSSS (Direct Sequenced Spread Spectrum) – One of two frequency 

distribution techniques that enables operation in the ISM radio frequencies. Originally 

derived from the direct satellite broadcast industry, DSSS distributes the radio signal 

around a central frequency using a distribution algorithm (Hać, 2003). 

FANT (forward ant) – A biologically inspired software agent that seeks a path 

from a source to a specified destination. The FANT usually produces an artificial 

pheromone trail along the path taken. As noted, FANTs are often associated with 

backward ants (BANTs) (Günes et al., 2002). 

Federal Communications Commission (FCC) – A federal organization created 

under the 1934 Communications Act to regulate and manage the radio and 

telecommunications industries (Newton, 2006). 

FHSS (Frequency Hopping Spread Spectrum) – One of two frequency 

distribution techniques that enables operation in the ISM spectral frequencies. The FHSS 

technique transmits on a designated frequency for a short period of time before changing 

to another frequency within the frequency band. The pattern of changes is determined at 

the time communications is established between two or more nodes (Hać, 2003). 
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Flooding – The process of sending a packet of information to all nodes or a 

selected subset of nodes within a wireless network (Kargl et al., 2002). 

FSR (Fisheye State Routing) – A proactive or table-based protocol that retains 

less specific information on routes as they extend farther away from each node FSR 

conserves local storage and bandwidth (Hać, 2003). 

GFSK (Gaussian Frequency Shift Keying) – A modulation scheme which first 

filters data through a Gaussian filter before modulating with a simple frequency 

modulation (Hać, 2003). 

GHz (Gigahertz) – Metric for one billion cycles per second (Newton, 2006). 

Global Positioning System (GPS) – A system of satellites operated by the U.S. 

Department of Defense. A GPS provides location information through triangulation 

(Buszko et al., 2001). 

GSR (Global State Routing) – Classified as a table-driven routing protocol GSR 

differs from other table-based protocols such as distributed Bellman-Ford (DBF) and link 

state (LS) protocols by exchanging link state information when obtaining route 

information. That can lead to rather large tables in larger networks. However, the GSR 

protocol does reduce some overhead packet traffic associated with route maintenance 

compared to DBF and LS protocols (Pei, Gerla, & Chen, 2000).  

 HARP (Hybrid Ad Hoc Routing Protocol) – A hierarchical routing protocol 

similar in function to the zone routing protocol (ZRP) and the zone hierarchical link state 

(ZHLS) protocol (Nikaein et al., 2001). The protocol restricts stored information by 

relying on the distributed dynamic routing protocol (DDR) to maintain topology 

information. 
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HomeRF – A short range network designed to interconnect voice and data 

devices in a home setting. Speed and capability are similar to Bluetooth with the addition 

of a good quality of service (QoS) mechanism (Wheat, Hiser, Tucker, Neely, & 

McCullough, 2001). 

Hop - A transmission between two devices such as routers or nodes. 

Transmissions in ad hoc networks are measured in hops (Draves, Padhye, & Zill, 2004). 

Hertz (Hz) – A designator for the measurement of frequency in cycles per 

second. One Hz is one cycle per second (Newton, 2006). 

HSR (Hierarchical State Routing) – A hierarchical routing protocol that utilizes 

clustering. Networks are partitioned into clusters, each with a cluster head. The cluster 

head serves as a coordinator and gateway to other cluster heads (Pei & Gerla, 2001). 

IEEE (Institute of Electrical and Electronic Engineers) – Largest international 

professional organization. IEEE has a wide number of Working Committees involved in 

the development of standards and technologies in a number of industries including 

telecommunications and computer networks. 

IEEE 802.11 - Specifies network topologies (infrastructure and ad hoc), medium 

access control (MAC) layer protocols, and physical layer interfaces (IEEE, 1999). 

IEEE 802.11a – One of several WLAN specifications defined under the IEEE 

802.11 standards. 802.11a operates in the unlicensed National Information Infrastructure 

(UNII) band at 5.725 to 5.850 GHz and has a relatively short range (Wheat et al., 2001). 

802.11a supports next-generation fixed wireless access (FWA) with optimal speeds of 

100 Mbps (Littman, 2002). 



24
  

IEEE 802.11b –Operates in the unlicensed ISM band at 2.4 to 2.4835 GHz and 

provides an optimum throughput up to 11 Mbps. (Hać, 2003). 

IEEE 802.11g –Operates in the unlicensed ISM band at 2.4 to 2.4835 GHz. 

802.11g provides a packet throughput that is similar to 802.11a. However, in contrast to 

802.11b, 802.11g is backwards compatible with 802.11b (Vines, 2002). 

Infrared (IR) – A band of electromagnetic wavelengths between .75 micrometers 

(µm) and 100 µm just below red in the visible spectrum (Newton, 2006). IR is limited to 

line-of-sight transmissions.  

IrDA (Infrared Data Association) – A non-profit trade association that develops 

and promotes wireless infrared connectivity (Vines, 2002).  

ISM (Industrial, Scientific and Medical) – Band of unlicensed frequencies set 

aside by the FCC for experimental and public use. ISM bands cover three frequency 

ranges, specifically, 902 to 928 MHz, 2.400 to 2.4835 GHz, and 5.725 to 5.85 GHz and 

are described in Part 15.247 of the FCC regulations (Newton, 2006). 

Kilo (k) – One thousand in metric terms. For example, 10 kHz is ten thousand 

cycles per second (Newton, 2006). 

Landmark – A router or switch that is a specific number of hops away from 

other routers designated as landmarks. The distance in hops is defined by the routing 

protocol used. Landmarks are useful in reducing the size of routing tables in large 

hierarchical networks (Haas & Pearlman, 2001).  

LANMAR (Landmark Ad Hoc Routing) – A landmark scheme developed for 

wireline networks. Logical subnets are defined in terms of pre-selected landmark. Routes 

to landmarks are proactively maintained. Messages are forwarded to landmarks for 
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redistribution (Pei, Gerla, & Hong, 2000). A drawback to this protocol is that all nodes in 

a subnet are expected to move as a group (Haas et al., 2002). 

MAC (Medium Access Control) – A media specific protocol described in the 

IEEE 802 LAN standards (Hać, 2003).The MAC layer is a sub-layer of the Open Systems 

Interconnect (OSI) Layer 2 or data link layer (DLL) as defined by the International 

Standards Organization (ISO) (Shurman, Yoo, & Park, 2004). 

MANET (Mobile Ad hoc NETwork) – A common acronym for mobile ad hoc 

networks. While this term is often used interchangeably with WLANs, a MANET is a 

subset of a WLAN which specifically uses wireless ad hoc features.  

MANSI (Multicast for Ad hoc Network with Swarm Intelligence) – An on-

demand protocol based on the ant metaphor. Designed specifically for the multicast 

environment, MANSI uses a core-based approach with agents developing paths and 

tracking link costs (Shen & Jaikaeo, 2003). 

MARP (Multi-Agent Routing Protocol) – A recent addition to the list of ad hoc 

routing protocols. According to the developers of this protocol, agents are used to create a 

framework for managing multi-hop communications over networks with changing 

topologies (Choudhury, Paul, & Bandyopadhyay, 2004). 

Megahertz (MHz) – Metric for one million hertz. For example, 1 MHz is one 

million hertz or cycles per second (Newton, 2006). 

Monarch Initiative – A joint development project between Rice University and 

Carnegie Mellon University to create wireless and mobility simulation extensions for the 

network simulator software (ns-2) program. The extensions have since been incorporated 

into the ns-2 releases (The CMU Monarch Project, 1999). 
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MPR (Multi-point Relay) – A node that is within two hops of neighboring 

nodes. MPR is implemented by the optimized link state routing (OLSR) protocol to 

reduce table size (Haas et al., 2001; Williams & Camp, 2002). 

Multicast – A message sent to multiple recipients from a single source. 

Multicasting technology can be used by routing protocols to obtain route information by 

sending route requests to all nodes within receiving range. A multicast routing protocol 

such as MANSI can also broadcast messages to multiple recipients (Newton, 2006). 

ns-2 (network simulator-2) – A discrete event network simulator that simulates 

ad hoc networks (Hu et al., 2002). The simulator can manage complex wireless scenarios 

and ad hoc environments.  

OFDM (Orthogonal Frequency-Division Multiplexing) – An encoding 

technique used in WLANs and cellular telephony applications. OFDM divides signals 

into a number of smaller channels to enable efficient bandwidth use (Littman, 2002). 

OLSR (Optimized Link State Routing) - A table-driven link state routing 

protocol used in ad hoc networks. OLSR employs multipoint relays (MPRs), a subset of 

neighbors within two hops of the sender, to send packets rather than broadcasting packets 

through the entire neighbor set (Haas et al., 2001). 

On-demand protocols – Also referred to as reactive protocols. On-demand 

protocols generally obtain specific path or route information only when a message is 

ready to be sent (Hu et al., 2002).  

OSI (Open System Interconnection) Reference Model – A seven layer network 

architectural model developed by the International Standards Organization (ISO). The 
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OSI Reference Model defines the Application, Presentation, Session, Transport, Network, 

Data Link and Physical Layers and describes layer functions (Goleniewski, 2002). 

PCF (Point Coordination Function) – An optional basic access method that 

may be implemented in the distributed coordination function of the 802.11 MAC 

protocol. PCF provides synchronous contention-free connectivity by polling individual 

nodes (Hać, 2003). 

PDA (Personal Digital or Data Assistant) – A class of small handheld 

computer-based devices. PDAs support infrared or spread spectrum connections (Wheat 

et al., 2001). 

Piconet – A small network formed by Bluetooth devices that extends to no more 

than 30 feet. A piconet consists of at least one master and one or more slave nodes that 

share a common frequency hopping pattern (Wheat et al., 2001). 

Proactive routing protocols – Also called table-based protocols. These protocols 

actively maintain path or route information in the form of tables. Data in tables are 

acquired through frequent broadcasts that solicit path information (Hu et al., 2002). 

Reactive Protocols – Also called on-demand protocols. Reactive protocols 

generally obtain specific path or route information only when a message is ready to be 

sent (Hu et al., 2002).  

RREP (Route REPly) – A message packet sent in response to the Route Request 

(RREQ) packet. The RREP contains information on the route or path to the destination 

requested through the RREQ (Tian, Hahner, Becker, Stepanov, & Rothermel, 2002). 

Both RREP and RREQ are control packets and part of the overhead in ad hoc networks. 
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RREQ (Route REQuest) - A packet request sent to surrounding nodes to elicit 

routing information. RREQ is broadcast to a wide audience using a process known as 

flooding (Tian et al., 2002). 

Scatternet – A collection of up to 10 piconets. Each piconet must have at least 

one master node. A node may be a master in one piconet and a slave in another piconet 

(Wheat et al., 2001). 

SHARP (Sharp Hybrid Adaptive Routing Protocol) – A hybrid protocol. 

Based on the use of a reactive protocol such as AODV, DSR, or Temporally Ordered 

Routing Algorithm (TORA), the SHARP protocol operates as a proactive manager 

(Ramasubramanian et al., 2003). 

Slotted ALOHA Protocol – An improvement over the original ALOHA 

protocol. Slotted ALOHA uses fixed-time slots for transmission in an approach that is 

similar to Time Division Multiplexing (TDM). As a result, the need for contention 

control necessary in the original ALOHA protocol is eliminated (Naor & Levy, 2001). 

SS (Spread Spectrum) – A modulation technique that distributes a radio signal 

over a range of frequencies. Originally developed for secure military communications, 

this technique is difficult to jam and prevents a single user from dominating the band 

(Hać, 2003). 

SWAP (Shared Wireless Application Protocol) – A specification developed by 

the Home Radio Frequency (HomeRF) Working Group. SWAP allows various electronic 

devices to share voice and data in an in-home environment (Vines, 2001). 

TORA (Temporally Ordered Routing Algorithm) – A distributed on-demand 

protocol that provides a multi-path route to the designated destination. TORA avoids the 
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creation of request–response loops known to generate excessive traffic, thereby 

improving efficiency. TORA provides either reactive or proactive WLAN route 

maintenance (Hać, 2003). 

UHF (Ultra High Frequency) - A part of the radio frequencies that ranges from 

300 MHz through 3 GHz (Newton, 2006). 

Unicast – Sending a message to a single recipient (Norton, 2006).  

UNII (Unlicensed National Information Infrastructure) – A radio frequency 

band in the 5.725 to 5.850 GHz range designated by the FCC and used by IEEE 802.11a 

WLANs (Hać, 2003). 

WHIRL (Wireless Hierarchical Routing Protocol with Group Mobility) – A 

hierarchical protocol introduced by Pei, Gerla, Hong, and Chaing (1999). WHIRL divides 

an ad hoc network into logical subnets and assigns cluster heads called home agents 

(HAs) for management of very large dynamic networks (Pei et al.).  

WPAN (Wireless Personal Area Network) – Defined by the IEEE. A WPAN is 

a very small network extending no more than 30 feet (Golmie, Chevrollier, & Rebala, 

2003).  

WRP (Wireless Routing Protocol) – An early proactive distance vector protocol 

for ad hoc networks. WRP maintains extensive tables of routing information, link costs, 

distance in number of hops, and a message retransmission list in each node. Link cost is 

derived by counting the number of refresh periods required for a successful transmission. 

A maximum value indicates a broken link. WRP does not scale well in large networks 

and can also generate considerable overhead traffic (Hać, 2003). 
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X.25 – A packet-switched data protocol. X.25 is widely used in public and private 

packet switched networks to transfer data and interconnect networks (Newton, 2006). 

ZHLS (Zone-based Hierarchical Link State) – A routing protocol that divides 

an ad hoc network into non-overlapping physical zones. The technique relies on a 

location-based service, such as the Global Positioning Satellite (GPS) system, to develop 

node associations. Intra-zone and inter-zone tables maintain routes within the node’s 

zone, also called the inter-zone, and provide gateways to other zones (Haas et al., 2002). 

ZRP (Zone Routing Protocol) – One of the first hybrid ad hoc routing protocols. 

ZRP was introduced in 1998 by Haas and Pearlman. ZRP integrates reactive and 

proactive route discovery techniques and requires a relatively small number of overhead 

packets to maintain route information. ZRP also has the advantage of discovering 

multiple routes to each destination (Haas, Pearlman, & Samar, 2003). 

 

Summary 

 This chapter began with a general introduction to the field of wireless networks. 

The introduction covered the characteristics of ad hoc networks. In addition, the 

challenges and potential benefits of wireless technology were discussed.  

 The problem statement and goal of the research were stated. The field of wireless 

networking has unique requirements that cannot be accommodated by the existing single 

protocols developed for wireline networks. Prior researchers concluded that wireline 

protocols were unsuited for use in wireless networks, and wireless protocols performed 

well in only some wireless environments, thereby paving the way for this research 

(Boleng et al., 2002; Kargl et al., 2002; Viswanath & Obraczka, 2002).  
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 The next section covered the relevance and significance of the proposed research. 

The research is relevant because of the considerable work that has already been done in 

the field. According to researchers such as Boleng et al. (2002), Marina and Das (2001), 

and Garcia-Luna-Aceves, Mosko, and Perkins (2003), the field of ad hoc routing protocol 

development remains an active area of research. As demonstrated by investigators such 

as Boleng et al. (2002), Denko (2003), Kargl et al. (2002), and Viswanath and Obraczka 

(2002), no single protocol can manage the many different scenarios presented by ad hoc 

environments. As a result, investigative efforts continue to improve the efficiency of 

wireless protocols and expand their capabilities. 

 The significance of this inquiry is reflected in findings of investigators such as 

Denko (2003), Abolhasan, Lipman, and Chicharo (2004); and Garcia-Luna-Aceves, 

Mosko, and Perkins (2003). Buszko et al. (2001) indicated that developing ad hoc 

networks can have a positive economic impact on the corporate environment. According 

to Hubaux et al. (2001), ad hoc networks have the potential to create a new paradigm in 

networking by changing the fundamental relationship between information sources and 

users of information. Ad hoc networks also play a critically important role in situations 

such as disasters. As the routing requirements in situations change, the use of multiple 

protocols provides a deployment advantage. The use of a wide mix of equipment with 

varying capabilities suggests that a number of protocols may be present. Building a basic 

understanding of the performance characteristics of multi-protocol networks is the first 

step in building more robust and flexible ad hoc networks. This inquiry provides data 

indicating the impact of multi-protocols on the performance of ad hoc wireless networks. 
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Outcomes from this investigation contribute to the body of data necessary to develop 

more flexible and adaptable protocols for use in heterogeneous wireless networks. 

 Barriers and issues to this research included the difficulty in obtaining hardware 

and software resources to perform the necessary tests to prove the research questions. 

Additional challenges centered on the researcher becoming proficient in using the ns-2 

simulator program. This included becoming adept at using the languages and accessory 

programs necessary to do the simulations. A significant barrier was the lack of simulators 

that support multi-protocol environments. Currently, the simulators available to this 

researcher supported only single protocol environments. This limitation required either 

modification to the simulation program itself or additional processing of single protocol 

simulation results outside the simulation environment.  

 The main research question was introduced. Specifically, this investigation 

characterized the effects on throughput and end-to-end delay in environments consisting 

of two different ad hoc routing protocols. Secondary questions were posed that provide 

the basis for future research. Limitations and delimitations were indicated. All branches 

of science include specialized languages and terms in order to precisely communicate 

information within scientific communities. The key terms presented in this dissertation 

are a subset of general terms used within the wireless networking community.
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Chapter 2 

Review of the Literature 

 

Historical Overview 

The current field of WLANs has its antecedents in early mobile packet radio 

experiments conducted by Abramson at the University of Hawaii in the early 1970s 

(Briesemeister, 2001). The outcome of these experiments led to the development of 

ALOHANET, the first significant network to use packet radio to connect computers on 

the Hawaiian Islands. ALOHANET also used satellite links to connect University of 

Hawaii networks to the mainland Advanced Research Projects Network (ARPANET) 

(Microsoft, 2002). Originally a wireline network, ARPANET was developed in the 1960s 

by the U.S. Department of Defense Advanced Research Programs Agency (DARPA). 

Initially designed to interconnect military and educational computers (Patil et al., 2003), 

ARPANET served as the foundation for the present-day Internet (Microsoft). 

Work on radio relay in the 1970s sponsored by DARPA was directed primarily 

toward military applications. However, the results had wider applications (Hubaux et al., 

2001). Research efforts contributed to the development of the Transmission Control 

Protocol/Internet Protocol (TCP/IP) protocol suite that serves as the framework for the 

present-day Internet and next-generation networks such as Internet2 (I2).  



34
  

The ALOHA and slotted ALOHA wireless protocols were developed from 

findings in the fixed wireless ALOHANET experiments (Patil et al., 2003). The ALOHA 

wireless protocol approached contention and collision problems using Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA). CSMA/CA is currently 

employed in 802.11 wireless networks (Tseng et al., 2002). A variant of CSMA, Carrier 

Sense Multiple Access with Collision Detection (CSMA/CD) is widely used in Ethernet 

LANs (Newton, 2006).  

Packet radio entered a new phase in 1978 when amateur radio groups in Canada 

and the U.S. began developing hardware and software to send and receive text messages 

between transceivers (Dubendorf, 2003). A small packet link-layer protocol, AX.25 was 

developed to enable these transmissions. AX.25 supports functions similar to the X.25 

protocol used in wireline data networks (Newton, 2006). AX.25 still provides a 

transparent, error-free communications system for many amateur radio operators 

(Dubendorf).  

With the development and popularization of PCs, new methods of networking 

were introduced and wireless transmission media including spread spectrum, microwave, 

satellite, and infrared were employed (Goleniewski, 2002). Spread spectrum and infrared 

were found to be practical in WLANs due to cost and flexibility (Hać, 2003).  

Established by 160 companies in the early 1990s, the Infrared Data Association 

(IrDA) developed standards for infrared (IR) equipment interfaces (Vines, 2002). In 

1994, the specifications for the first versions of the infrared (IR) link access protocol 

(IrLAP) and the IR link management protocol (IrLMP) were released (Santamaria & 

Lopez-Hernindez, 2001). These standards were subsequently incorporated in products 
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such as laptop computers, printers, and PDAs, but found their most practical applications 

in connecting computers and printers in close proximity (Vines). Based on IrLAP and 

IrLMP specifications, the Infrared Communications (IrCOMM) protocol was developed 

which emulated serial or parallel port connections (Santamaria & Lopez-Hernindez). 

In 1997, the IEEE released the initial wireless radio and infrared WLAN 

standards in the initial 802.11 specification (Hać, 2003). Wireless radio refers to the 

electromagnetic frequencies generally between 10 kHz and 3 GHz. Spread spectrum is a 

frequency jumping and modulation technique that is employed in 802.11 wireless 

implementations. Additional standards and refinements are discussed in detail in the 

sections that follow. 

 

WLAN Technologies 

Infrared 

 A WLAN technology, infrared is relatively inexpensive to implement and has a 

wide base of support. A line-of-sight technology, infrared operates when there are no 

obstructions between the transmitter and receiver or transceivers (Wheat et al., 2001). A 

relatively short range technology, infrared only functions reliably within a few feet and a 

narrow angle of transmission (Suvak, 2000). Data rates up to 16 million bits per second 

(Mbps) are supported but typically infrared solutions enable transmissions of 4 Mbps. 

Protocols for IR LANs were developed in the mid-1990s by the Infrared Data 

Association (IrDA) and designed mainly to support legacy systems (Vrana, 2001).  

While infrared is specified as a transmission technology in the IEEE 802.11 

standards for WLANs, this limited optical technology is being replaced by spread 
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spectrum technologies that do not have the line-of-sight limitation and also provide 

higher bandwidth (Solis & Obraczka, 2004; Wheat et al., 2001). Infrared, nevertheless, 

remains a viable alternative as a replacement in applications involving connectivity 

between a laptop to a printer and for transporting small amounts of data between PDAs. 

IR technology is also used in remote control devices such as garage door openers and 

television remote controls (Solis & Obraczka; Suvak, 2000). 

 

Spread Spectrum Technologies 

 Spread spectrum modulation technologies were originally developed by the 

United States military to provide secure, tamper resistant communications (Hu et al., 

2002). Spread spectrum technologies such as direct sequence spread spectrum (DSSS) 

and frequency hopping spread spectrum (FHSS) are widely deployed today to comply 

with requirements set forth in the IEEE 802.11 standards for WLANs (Hać, 2003).  

DSSS was commercialized and deployed in the Direct Broadcast Satellite industry 

(Hać, 2003). DSSS operates by distributing a signal at a given frequency across a band of 

frequencies where the center frequency of the band is the original frequency (Bruno et al., 

2001). The frequency distribution changes over time thus making the signal appear 

random (Hać). As a consequence, DSSS has a high resistance to interference (Hać). 

According to Hać, the limited bandwidth available for use by IEEE 802.11 WLANs 

limits the effectiveness of DSSS making FHSS a more attractive long term solution. 

 FHSS operates by moving a signal within a band of frequencies based on a 

pseudorandom sequence of over 65,000 hops within 50 or more channels (Flickenger, 

2002). Prior to transmission, the sender and receiver exchange the sequence of 
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frequencies that the signal will use. Unlike DSSS, FHSS transmits the full signal strength 

on each frequency in the sequence; however, the frequency is changed multiple times a 

second making reception extremely difficult. As a consequence of the frequent changes 

in frequency, FHSS is relatively secure against unauthorized reception and interference 

(Hać, 2003).   

 

Narrowband Ultra High Frequency (UHF) 

 Narrowband UHF data systems have been available since the early 1980s and 

typically operate in the 430 million hertz (MHz) to 470 MHz range (Kain, 2003). 

Because much of this bandwidth is controlled by the FCC, a license is required in most 

instances.  

UHF solutions support relatively long distance communications with relatively 

low power, and have low to moderate data rates of 4.8 Kilobits per second (Kbps) to 19.2 

Kbps. Due to the relatively directional nature and signal propagation properties of 

narrowband UHF, this technology is infrequently used in highly mobile environments 

(Kain, 2003). Currently, UHF licensed frequencies support automated data collection 

with higher frequencies in the 460 MHz to 470 MHz range enabling data-intensive and 

sophisticated communications such as video transport (Kain). 

 

Unlicensed Radio Frequencies 900 MHz and above 

 FCC Part 15, Subpart C, Section 15.247, approved in 1985, allows unlicensed use 

of several frequency ranges in Industrial, Scientific, and Medical (ISM) bands 

(Flickenger, 2002). This provision also requires the use of FHSS or DSSS radio 
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transmission technology. Spread spectrum technology allows additional users to send 

transmissions over the same bandwidth without significant interference compared to 

technologies such as IR and UHF (Hać, 2003). Of the two spread spectrum bandwidth 

distribution techniques, Hać indicates that FHSS is more stable and resistant to 

interference than DSSS. Consequently, FHSS is expected to become more widely 

deployed (Hać). 

 RF bands ranging from 902 MHz to 928 MHz and 2.4 MHz to 2.4835 GHz are 

available for ISM use. In addition, the 5.725 GHz to 5.850 GHz band, designated as the 

unlicensed national information infrastructure (UNII) band, is available (Hać, 2003).  

 According to Hać (2002), the 2.4 to 2.4835 GHz band is the most useful in the 

marketplace today. The range and capacity of the 2.4 to 2.4835 GHz band and the 

relatively lower cost of manufacturing devices that operate in this band contribute to the 

popularity of this band. In addition, this band is the only one of the three bands that is 

available in other countries such as Germany and Japan in addition to the U.S. These 

countries designate alternative uses for the 902 to 928 MHz range and 5.725 to 5.850 

GHz RF bands that would require legislative changes and re-allocation of those bands. 

Governments in these countries independently assign RF bands for specific purposes 

such as for military, commercial, or educational use. As those bands are utilized, the 

difficulty and cost of re-allocating the RF bands becomes problematic. Those 

organizations such as the military that use the bands would be required to replace 

equipment to accommodate the changes. 

The 902 to 928 MHz frequency range enables operation of devices such as 

wireless headsets, mobile telephones, and remote controls. By contrast, the 5.725 to 5.850 
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GHz frequency range has excellent data carrying capacity, but relatively poor range and 

higher costs than the 2.4 to 2.4835 GHz RF bands (Hać, 2003). Given this assessment by 

Hać, it is not surprising that the first popular home and small business WLAN technology 

released in the late 1990s was compliant with the IEEE 802.11b standard and operated in 

the 2.4 to 2.4835 GHz frequency range. In addition, newer 802.11 extensions such as 

802.11g and IEEE 802.15 specification also referred to as Bluetooth, support services in 

the 2.4 to 2.4835 GHz frequency range as well. 

 

IEEE 802.11 Wireless LAN (WLAN) Standards 

 In 1997 the IEEE 802.11 Working Group (WG) for Wireless Local Area 

Networks (WLANs) released the original 802.11 standard and its extensions (Ross, 

2003). The 802.11 standard and its extensions cover spread spectrum and infrared 

transmission media and specify modulation and frequency distribution techniques (Ross). 

The initial data rates for 802.11 were specified as 1 Mbps and 2 Mbps with the 2 Mbps 

rate as an option and the 1 Mbps rate mandatory (Patil et al., 2003). 802.11 operated in 

the 2.4 to 2.483.5 GHz frequencies.  

This release of WLAN specifications was timely for several reasons. Ohrtman and 

Roeder (2003) point out that with deregulation resulting from the Telecommunications 

Act of 1996, a new and vigorous atmosphere for the introduction of wireless media was 

created. The provisions of this Act opened wireline telephone and data networks to 

competitors and discouraged new investments in expensive wireline infrastructure 

(Ohrtman & Roeder). Wireless became a less expensive alternative to building out 

networks that were increasingly in demand. 
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 The IEEE 802.11 suite of specifications describes standards and extensions for 

Medium Access Control (MAC) protocols. The MAC protocols provide either 

asynchronous or synchronous services, with asynchronous service mandatory and 

synchronous service an option (Hać, 2003). According to Hać, the asynchronous MAC 

basic access method implemented by the distributed coordination function (DCF) is 

CSMA/CA. This method tests for the presence of a carrier prior to initiating transmission 

on the shared frequency. If a carrier is present, transmission is delayed to avoid packet 

collisions. Synchronous services are provided by the point coordination function (PCF), a 

centralized, contention-free scheme normally implemented as a polling process (Anastasi 

& Lenzini, 2000).  

In addition, two different network topologies are specified, namely, infrastructure-

based and ad hoc (Hać, 2003). Infrastructure-based topologies consist of wireless 

terminals or nodes connecting through wireless access points (APs) that are linked to a 

wireline backbone (IEEE, 1999). The ad hoc network topology is formed without the use 

of APs that support connections to a wireline infrastructure. Instead, individual nodes 

communicate directly with other nodes, thereby eliminating the need for an established 

infrastructure. The 802.11 standard was followed by the release of extensions that 

included 802.11b and 802.11a in September, 1999. In addition, the 802.11g extension 

was released in 2003 and a task group was formed to develop 802.11n (Patil el al., 2003). 

 

IEEE 802.11b  

802.11b, also known as Wi-Fi for wireless fidelity, was the first wireless MAC 

and Physical Layer specification released by the IEEE 802.11 WG for WLANs and 
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contributed to WLAN popularity in the public sector (IEEE, 1999b). IEEE 802.11b 

operates in the 2.4 to 2.4835 GHz range of the unlicensed ISM frequencies set aside by 

the FCC. 802.11b has an approximate operating range of 300 feet with an optimum 

throughput of 11 Mbps and uses the DSSS bandwidth distribution technique with 

complementary code keying (CCK) modulation (Ohrtman & Roeder, 2003). 802.11b 

devices implement dynamic rate shifting which allows lower transmission rates of 1, 2, 

and 5.5 Mbps in noisy conditions (Hać, 2003). Dynamic rate shifting allows devices to 

vary the transmission rate based on the success of prior transmissions. In keeping with 

the general 802.11 specifications, 802.11b operates either in infrastructure-based or ad 

hoc mode. Although implementations typically utilize the infrastructure-based mode, 

considerable interest in developing the ad hoc mode is evident (Williams & Camp, 2002). 

802.11b signaling divides the available 2.4 to 2.483.5 GHz band into 14 channels 

each containing 22 MHz. Of the 14 channels, 11 channels partially overlap. This overlap 

requires built-in redundancy to accommodate data loss due to interference. The 

redundancy is accomplished through a technique called chipping (Ohrtman & Roeder, 

2003). Chipping is the process of modulating a data stream with a second 11 bit binary 

sequence known as the Barker code. The encoded data objects resulting from this process 

are called chips (Ohrtman & Roeder). 

 

IEEE 802.11a  

 The 802.11a specification was released in September 1999 at the same time as 

802.11b. Unlike 802.11b which operates in the 2.4 to 2.4835 GHz range using DSSS, 

802.11a operates in the UNII 5.725 to 5.850 GHz range and provides optimum rates up to 
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54 Mbps by using OFDM (Hać, 2003). The frequency range and modulation technique 

make 802.11a incompatible with 802.11b. The original implementation of 802.11a also 

restricted the range of transmission to about 150 feet or less in comparison to 802.11b. 

Like 802.11b, 802.11a has a number of fallback data rates that are used in noisy 

situations. The data rates of 6 Mbps, 12 Mbps, and 24 Mbps are mandatory transmission 

speeds while 9 Mbps, 18 Mbps, 26 Mbps, 48 Mbps, and 56 Mbps are optional (Patil et 

al., 2003). Patil et al. also point out that the 5.725 to 5.850 GHz range is available 

worldwide. As a consequence, implementations of 802.11a solutions that operate in the 

2.4 to 2.483.5 GHz range make 802.11a more appealing globally. 

 In addition to enabling increased throughput, the 5.725 to 5.850 GHz operating 

frequency range allocated to 802.11a is not as heavily used by other devices. In contrast, 

the 2.4 to 2.4835 GHz range is heavily used by devices such as telephones and 

microwaves competing for the limited bandwidth (Wheat et al., 2001). 802.11a devices 

are more complex, expensive to produce, limited in range, and subject to signal blockage 

from environmental obstructions in comparison to devices using the 2.4 to 2.4835 GHz 

range, thereby making 802.11a deployments less attractive to the mass market (Wheat et 

al.). 

 

IEEE 802.11g 

 Released by the IEEE 802.11 WG for WLANs in July 2003. 802.11g provides 

throughput similar to 802.11a while maintaining backward compatibility with 802.11b. 

Like 802.11b, 802.11g operates in the 2.4 to 2.483.5 GHz ISM band. 802.11g uses 

OFDM on the Physical Layer and either DSSS or FHSS. In addition, CCK modulation is 
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supported (Hać, 2003). This flexibility allows backward compatibility with the popular 

802.11b solution while still facilitating enhanced throughput for later generations of 

devices (Patil et al., 2003). 

 

IEEE 802.11n 

 In September of 2003 the IEEE 802.11 Work Group formed the 802.11 Task 

Group N (TGn) to address the increasing demand for bandwidth in wireless applications 

(Gilbert, Choi, & Sun, 2005). The goal of the 802.11 TGn was to produce a new 

extension to the 802.11 wireless standard, designated 802.11n, that is capable of wireless 

data speeds greater than 100 Million bits per second (Mbps). While the 802.11n 

extension is intended to eventually replace the 802.11a/b/g extensions, one goal of the 

new extension is to maintain some backward compatibility with the current 802.11a/b/g 

standards (Gast, 2005).  

The proposed 802.11n extension achieves the desired throughput by using 

multiple antenna arrays and receivers through a technology called multiple-input 

multiple-output (MIMO). MIMO creates multiple streams of data that are transmitted on 

an array of from one to four separate antennas. The data are then received on a like 

number of antennas and recombined at the receiving station producing throughputs as 

high as 600 Mbps according to the recently approved draft specification (Gast, 2005; 

IEEE, 2006). The current IEEE 802.11n draft standard provides throughput of 300 Mbps 

for two antenna systems and 600 Mbps for four antenna systems (IEEE, 2006). 

The 802.11n draft standard was approved in January of 2006 and was submitted 

for final ratification. The draft version of the 802.11n extension approved combines two 
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opposing technological approaches to achieve the goals of high data throughput and 

backward compatibility with the existing 802.11a/b/g extensions (IEEE, 2006). 

  

IEEE 802.15 – Bluetooth 

 Bluetooth is a short range wireless technology that connects a variety of electronic 

devices together (Golmie, Van Dyck, Soltanian, Tonnerre, & Rebala, 2003). Bluetooth is 

defined in the IEEE 802.15 standard and operates in the 2.4 to 2.4835 GHz ISM band like 

802.11b and 802.11g solutions. However, in contrast to 802.11b and 802.11g, Bluetooth 

functions at a very low power with a limited range of 30 feet (Golmie, Van Dyck, et al.). 

The technology operates at a 1 Mbps channel rate using a FHSS scheme that changes on 

a packet-by-packet basis (Soltanian & Van Dyck, 2001). Bluetooth uses Gaussian 

frequency shift keying (GFSK) as its modulation technique and a set of 79 frequencies or 

channels in normal operations (Peterson, Baldwin, & Raines, 2003). 

 The small networks formed by Bluetooth devices are called wireless personal area 

networks (WPANs). WPANs are distinguished from 802.11b networks by their small size 

and limited scope (Golmie et al., 2003). Bluetooth-based WPANs also support small ad 

hoc networks that in turn act as nodes on 802.11-based WLANs (Deb, Freburg, Surdu, 

Hall, & Maymi, 2002).  

Bluetooth ad hoc peer-to-peer networks operations are based on proximity (Deb et 

al., 2002). The network topology is called a piconet with one Bluetooth device acting as a 

master node while the others act as slave nodes to the master node (Deb et al.). The 

master node provides the communications synchronization and frequency hopping 

pattern to the slave nodes. When more than one master node is within communications 
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range of another, a scatternet is formed. However, the piconets that form the scatternet 

can retain their independence and separation by maintaining separate synchronization 

with their respective master nodes (Deb et al.). This capability allows multiple piconets to 

exist within the same scatternet space. 

 

IEEE 802.16 - WiMAX 

 The IEEE 802.16 family of standards defines the features of a wireless 

metropolitan area network (WMAN). The characteristics of a WMAN include high-speed 

data transfer over fixed and mobile wireless links that provide an alternative to current 

wired broadband options such as digital subscriber line (DSL), optical fiber, and coaxial 

cable (Ghosh, Wolter, Andrews, & Chen, 2005). The current 802.16d specifications 

support the MIMO model used in the 802.11n extensions. According to Gilbert, Choi, 

and Sun (2005), MIMO systems provide greater spatial diversity than single antenna 

systems. Spatial diversity refers to the probability that as the number of antennas used 

increases, the number of antennas in poor receiving positions decreases, thereby 

improving overall performance (Gilbert et al., 2005). Multiple antennas allow for 

multiple data streams, thereby increasing the throughput as compared to single antenna 

systems.  

 Unlike the 802.11 WLAN standard and its extensions, 802.16 originally specified 

operations in the 10 to 66 GHz licensed areas of the radio spectrum. As the standard 

evolved however, the 2 to 10 GHz range became increasingly attractive. This was largely 

the result of the line-of-sight issues present in the 10 to 66 GHz range (IEEE, 2004). 

Current proposals include operation in both licensed and unlicensed spectrum. The 
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unlicensed 5.725 to 5.850 GHz spectrum is the same spectrum that is currently used by 

802.11a/g standards (Ghosh et al., 2005). 

The 802.16e extension is currently under review by the development community 

and provides support for wireless mobility at speeds of 70 to 80 miles per hour. In 

addition, an asymmetrical wireless link structure is defined that will enable personal 

devices such as PDAs, cellular telephones, and laptop computers to access high-speed 

data links (Ghosh et al., 2005). 

 

High Performance Radio Local Area Network (HIPERLAN) 

The HIPERLAN specification was developed by the European 

Telecommunications Standards Institute (ETSI) Radio Equipment and Systems (RES)-10 

Group (Hać, 2003). Four types of HIPERLANs were defined. HIPERLAN Types 1 and 2 

most closely approximate the 802.11 WLAN standards (Wheat et al., 2001). HIPERLAN 

Type 1 (HIPERLAN/1), released in 1996 and also known as Wireless 8802, operates in 

the 5.725 to 5.850 GHz RF band and enables a throughput from 20 Mbps to 23 Mbps 

(Hać, 2003). HIPERLAN Type 2 (HIPERLAN/2) was released in 2000. HIPERLAN/2 

operates in the same 5.725 to 5.850 GHz RF band as HIPERLAN/1, but supports data 

rates reaching 54 Mbps (Chandramouli, 2002; Hać; Vasilakopoulou, Karastergios, & 

Papadopoulos, 2003).  

HIPERLAN/2 interoperates with asynchronous transfer mode (ATM), Ethernet, 

third generation global system for mobile communications (3GSM), Internet Protocol 

(IP), and other current technologies, thus providing a high degree of flexibility (Littman, 

2002). In contrast to the IEEE 802.11a CSMA/CD mode of operation, HIPERLAN/2 
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operates in time-division multiplexing (TDM) mode (Littman). TDM avoids the delays 

inherent in CSMA/CD and allows HIPERLAN/2 to support connection-oriented 

transmissions providing enhanced QoS services (Bolinth et al., 2001; Wheat et al., 2001). 

In contrast to 802.11a, HIPERLAN/2 allows each connection to be assigned specific QoS 

parameters including delay, jitter, and bit error rate limits (Wang, Khokhar, & Garg, 

2002). Flexibility is accomplished through operating multiple modes at the Physical 

Layer or Layer 1 of the OSI Reference Model (Wang et al., 2002). The Physical Layer 

operating modes allow any of four different modulation techniques to be used on each of 

the 52 available sub-channels. 

 

Home Radio Frequency (HomeRF) 

 HomeRF is an open industry specification developed by the Home Radio 

Frequency Working Group (Chandramouli, 2002). This specification defines how various 

electronic devices within a home share voice, data, and other information. Like the IEEE 

802.11b and 802.11g standards, HomeRF operates in the 2.4 to 2.4835 GHz ISM band. In 

contrast to IEEE 802.11b, HomeRF supports a theoretical data rate of only 1.6 Mbps with 

a maximum practical throughput of 650 Kbps (Wheat et al., 2001).  

HomeRF transmissions are restricted to a relatively short range of 150 feet. As a 

consequence, HomeRF is comparable to Bluetooth (Wheat et al., 2001). Version 2 of 

HomeRF, released in 2001, enables data rates of 10 Mbps, thereby making this 

technology similar to IEEE 802.11b, but with the advantage of built-in quality of service 

(QoS) (Chandramouli, 2002). The HomeRF WG developed shared wireless access 
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protocol (SWAP) to provide high-quality connectivity between voice and data devices in 

a home setting before disbanding in January 2003. 

  

WLANs and ad hoc routing protocols 

 This investigation focuses on the 802.11 WLAN standards that cover ad hoc 

networks. Major areas of research associated with ad hoc networks include ad hoc routing 

protocols, agent technology, and network simulation. These domains are discussed in this 

section and the sections that follow. Initially, wireless medium access (MAC) protocols 

are described. 

The real push for the popularization of WLAN technology began with the 

establishment of the IEEE 802.11 WGs in the early 1990s. Adler and Scheidler (1998) 

discussed the problems of contention, security, and energy consumption in their landmark 

presentation at the ACM Symposium on Parallel Algorithms and Architectures in Puerto 

Vallerta, Mexico. According to Adler and Scheidler, contention in ad hoc networks 

occurred when nearby nodes attempt to transmit at the same time. Nodes checked for 

active transmissions before beginning their transmissions using CDMA/CA. 

With the release of the 802.11b and 802.11a extensions in 1999 and the 

proliferation of wireless-enabled notebook computers and PDAs, demand for wireless 

connections increased (Papapetrou & Pavlidou, 2003; Patil et al., 2003). As noted, 802.11 

standards specify both infrastructure-based and infrastructure-less or ad hoc topologies 

(IEEE, 1999). Infrastructure-based WLANs are widely deployed. The accelerating 

interest in ad hoc or self-organizing, wireless networks that lack a permanent 
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infrastructure is reflected in the number of research efforts underway (Li & Cuthbert, 

2004; Papapetrou & Pavlidou; Solis & Obraczka, 2005). 

 As a consequence of the relatively new advancements in the mobile ad hoc 

networking field, researchers initially examined existing routing technologies and found 

them wanting (Abolhasan, et al., 2004; Baran & Sosa, 2001). Protocols and 

methodologies for establishing connectivity and determining paths, routing, and network 

control were typically developed for cellular devices and spread spectrum and wireline 

networks. Generally, these technologies utilized fixed hosts communicating with mobile 

nodes (Gast, 2005).  

In contrast, ad hoc networks operate without fixed locations and dedicated hosts 

(Williams & Camp, 2002). Rather, each node must act as a host and contain the routing 

software necessary to discover and communicate with nearby nodes (Hubaux et al., 

2001). According to Hać (2003), routing protocols designed for wireline networks cannot 

be used for ad hoc networks because of node mobility in ad hoc networks.  Investigators 

in the relatively established industries of telecommunications and IT, including the 

mobile radio and cellular telephony sectors, continue to investigate strategies for 

implementing ad hoc networks (Huang, Lee, & Tseng, 2004).  

 However, some transmissions may go undetected (Hać, 2003) as a result of a 

hidden terminal problem (Tseng et al., 2002). Hidden terminal problems occur when a 

node attempts to transmit a message to another node that is already receiving a message. 

Normally, prior to transmitting, a node checks for a carrier indicating the channel is in 

use before starting a transmission. In some cases, another transmitting node located 

outside the receiving range goes undetected. The intended receiver located between the 
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two transmitting nodes receives both messages now damaged. Adler and Scheidler (1998) 

and Wedde et al. (2005) examined the feasibility of using transmission power control as a 

means to reduce contention and energy consumption while improving security. Poon and 

Li (2003) proposed a method of reducing power requirements in ad hoc networks while 

dynamically adjusting transmission range.  

 

Mobile Ad Hoc Routing Protocol Overview 

 Mobile ad hoc routing protocols are classified in a number of different ways. One 

popular classification method divides protocols into three general categories, specifically, 

proactive, reactive, and hybrid (Zhang & Jacob, 2003). Proactive protocols actively seek 

and maintain path information for surrounding nodes in tables. Nodes employing reactive 

protocols seek path information only when they are ready to send a message (Lee et al., 

2002). Hybrid protocols combine aspects of both proactive and reactive protocols.  

Lee et al. (2002) also point out that ad hoc routing protocols may be classified as 

either unicast or multicast. Unicast protocols transmit message packets to a single 

recipient at a time while multicast protocols transmit a single message to an authorized 

group of recipients.  

 Ad hoc routing protocols are classified as single hop or multi-hop. A hop is 

defined as a transmission between adjacent nodes (Newton, 2006). Multi-hop refers to 

transmissions that travel through intermediary nodes to reach a destination (Newton). 

Multi-hop protocols are designed to store path information for intermediary nodes to 

facilitate transmission of messages destined to nodes that are not adjacent or are outside 

the range of the originating node (Tseng et al., 2002). Single hop protocols are designed 
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to transfer messages only to adjacent nodes and store path information only to adjacent 

nodes.  

Protocols are also classified as position-based versus topology-based, link state 

versus distance vector, flat structure versus hierarchical structure, decentralized 

computation versus distributed computation, source routing versus hop-by-hop routing, 

and single path versus multiple path (Zou, Ramamurthy, & Magliveras, 2002; Valera et 

al., 2003; Prakash, 2001; Williams & Camp, 2002; Mauve, Widmer, & Hartenstein, 

2001). An overview of the distinctive features of protocols included in these 

classification categories is presented in this segment. 

 Proactive or table-driven protocols that are well-suited for wireline environments 

do not perform well in ad hoc wireless environments (Hu et al., 2002; Valera et al., 

2003). In wireless ad hoc networks, changing topography and node motion dramatically 

increase the table storage requirement as well as the bandwidth necessary to maintain 

information about routes (Marwaha et al., 2001). In wireline networks, there is no 

movement and infrequent changes in equipment. Consequently, route tables do not 

change rapidly. In addition, the equipment attached to wireline networks usually contains 

more storage and computational power than wireless networks. In contrast to wireless 

network elements, wireline network elements are also less subject to the power 

limitations of battery operation. As a result, the bandwidth and power required for 

constantly maintaining the routing tables for a proactive routing protocol in a wireless ad 

hoc network may be prohibitive (Haas et al., 2002). Roy and Garcia-Luna-Aceves (2002) 

also point out that proactive routing protocols do not scale well due to the potentially 

large tables required for large ad hoc networks. 
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 Reactive or on-demand protocols do not proactively maintain a table of routes but 

determine the route to the receiver only when a message is ready to send. Consequently, 

these protocols tend to be more efficient in dynamic or rapidly changing ad hoc networks 

(Hu et al., 2002). As reactive routing protocols must determine the path to the intended 

recipient when a message is ready, route acquisition time can create significant negative 

impacts on the delay in transmitting the message (Tian et al., 2002). In multi-hop 

environments, delay is increased as route acquisition time is lengthened. The large end-

to-end delays that can result with the use of reactive protocols make them unsuitable for 

real-time or time-sensitive applications (Marwaha et al., 2001). 

 Hybrid protocols resolve some problems associated with purely reactive or 

proactive protocols by adopting features of each. For example, in contrast to proactive 

protocols, a hybrid protocol with tables may find updates only on an as-needed basis. 

Examples of hybrid routing protocols are also described later in this section.  

 

Proactive or Table-based Routing Protocols 

 Perkins and Bhagwat (1994) in their seminal article first proposed the destination 

sequenced distance vector (DSDV) routing protocol. Based on the conventional routing 

information protocol (RIP), DSDV was modified specifically for use in wireless ad hoc 

networks. This protocol utilized tables maintained in each node in the network and 

required active bidirectional links (Hać, 2003). In their classic work, Perkins and 

Bhagwat (1994) discussed the difficulties imposed by changing topology in mobile ad 

hoc networks as defined by the IEEE 802.11 WG for WLANs. At that time, the authors 

acknowledged that methods for enabling wireless ad hoc connections between mobile 
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computers were not available. Available routing protocols were designed for static 

infrastructure-supported networks and placed too high a computational burden on 

existing mobile computers. The lack of computational and storage capacity remains a 

problem today especially with smaller PDAs (Hubaux et al., 2001). New generations of 

mobile equipment supplied with the necessary storage and computational power will be 

able to perform better in ad hoc networks provided that appropriate routing protocols 

exist (Hu et al., 2002; Kanter, 2003). 

 In 1995, another table-based distance vector protocol, the wireless routing 

protocol (WRP) was introduced by Murthy and Garcia-Luna-Aceves (Hać, 2003). Like 

the DSDV protocol, WRP maintained a distance vector table and a route table as well as 

a link-cost and a message retransmission table (Raju & Garcia-Luna-Aceves, 2000). 

According to the authors, the additional tables assisted in reducing misdirected and lost 

messages by maintaining information on unresponsive nodes and the number of timeouts 

between successful transmissions between nodes (Raju & Garcia-Luna-Aceves). Nodes 

utilize regular circulated messages between neighboring nodes to maintain fresh 

information in the stored tables (Hać). 

 In 1998, Chen and Gerla introduced global state routing (GSR), an improved 

version of WRP (Haas et al., 2002). Like WRP, GSR maintains a number of tables 

including link state tables and relies on flooding to continually maintain current 

information on surrounding nodes and extended paths (Choudhury et al., 2002). Flooding 

results in excessive management traffic and expansive table size especially in larger 

networks (Hać, 2003).  
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 Fisheye state routing (FSR), an adaptation of GSR, limits the scope of the 

network traffic and table size by restricting updates to a limited number of hops from the 

table source (Pei, Gerla, & Chen, 2000). Accurate information is obtained for the nodes 

closest to the source while distant nodes store more general and less accurate information 

(Haas et al., 2002). 

 Optimized link state routing (OLSR) is a link state protocol that limits the scope 

of information that is collected and disseminated (Clausen & Jacquet, 2003). OLSR uses 

an efficient flooding technique to obtain link information from nodes within a two-hop 

distance unlike conventional link state protocols that propagate link information 

throughout the entire network (Haas et al., 2002). The two-hop subset of nodes 

surrounding a specific node is referred to as its multipoint relay (MPR) set. Typically, 

only those nodes within a MPR set participate in relaying messages, thereby eliminating 

the need for extensive tables of link data (Haas et al.). Development of the OLSR 

protocol continues. The hierarchical OLSR (HOLSR) protocol is a modified version of 

OLSR protocol designed to improve scalability in larger heterogeneous MANETs (Ge, 

Lamont, & Villasenor, 2005). In simulations the HOLSR protocol significantly reduced 

protocol overhead and improved scalability in large networks with high speed links such 

as those found in military environments (Ge et al.). 

 

Hierarchical Routing Protocols 

 Hierarchical protocols are a subset of table-based protocols. They provide another 

method for reducing overall management traffic overhead and table size by forming 

clusters of nodes (Hać, 2003). The hierarchical state routing (HSR) protocol introduced 
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by Iwata, Chaing, Pei, Gerla, and Chen (1999) partitions the ad hoc network into clusters. 

Each cluster has a specialized node called a cluster head that serves as a gateway and 

collection point (Hać). In this approach, the assigned cluster heads communicate 

frequently with the nodes within their assigned clusters. Cluster heads then exchange 

periodic summarized updates with surrounding cluster heads to maintain an accurate 

view of the overall network (Chaing et al.). Clustering and hierarchical schemes support 

network scalability and efficient multicast delivery (Kwon & Gerla, 2002). Kwon and 

Gerla also point out that active clustering requires significant amounts of cluster-

dependent traffic. This process will not work properly with partial neighbor information, 

a situation that is common in highly mobile networks.  

 Kwon and Gerla (2002) promote the use of passive clustering to overcome active 

clustering drawbacks such as the use of specific control packets and separate clustering 

schemes. Rather than gaining information on the surrounding nodes through repeated 

exchange of information, passive clustering acquires necessary data by monitoring 

normal traffic between nodes (Kwon & Gerla).  

 According to Pei, Gerla, Hong, and Chaing (1999), the wireless hierarchical 

routing protocol with group mobility (WHIRL) can enable operations in large ad hoc 

environments. WHIRL divides the network into logical subnets. Each subnet has a Home 

Agent (HA). Communications from nodes within a subnet are transferred to the HA prior 

to being routed to the cluster head of the final destination. The cluster head then routes 

the message to the final node within its subnet. Experimental results show improvements 

with WHIRL in comparison to other hierarchical methods in reducing overhead traffic 

and maintaining low latency (Pei et al.). Pei at al. also indicated that WHIRL had some 
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disadvantages in comparison to reactive or on-demand routing protocols. These 

limitations included dropped packets when routes become invalid as a consequence of 

mobility and increased complexity due to the addition of the HA (Pei et al.). 

 Additional examples of hierarchical routing protocols include core extraction 

distributed ad hoc routing (CEDAR), zone-based hierarchical link state (ZHLS), and 

landmark ad hoc routing (LANMAR) (Haas et al., 2002). Introduced in 1999, CEDAR 

employs core nodes. Each core node is within one hop of its neighbors (Sivakumar, 

Sinha, & Bharghavan, 1999). Link state information travels inward to the core node 

which stores data on stable, high-capacity, and nearby links (Haas et al.). Global route 

searching is done reactively. Core nodes, also called dominators, determine the shortest 

path to the receiving core node (Haas et al.). 

 Zone-based hierarchical link state (ZHLS) routing divides a network into a series 

of non-overlapping zones (Haas et al., 2002). This protocol also introduces the use of a 

global positioning system (GPS) to maintain information regarding a node’s physical 

location as well as its logical location within a zone (Hać, 2003). Zones can be further 

divided into sub-zones. Every node maintains both intra-zone and inter-zone routing 

tables. Intra-zone tables enable communications to other nodes within the sender’s zone 

while the inter-zone tables serve as gateways for communications outside the immediate 

zone (Haas et al.). In effect, the intra-zone table defines the detailed topology of a node’s 

position within its zone while the inter-zone table provides an overview of the zone’s 

position within the network (Hać). 

 Landmark ad hoc routing (LANMAR) is an adaptation of a wireline protocol first 

introduced by Tsuchiya in 1988 (Haas et al., 2002). Like the original, LANMAR creates 



57
  

a network of pre-defined logical subnets, each with a pre-selected landmark (Pei et al., 

2000). This protocol actively develops and maintains routes to landmarks through the 

exchange of distance vectors among the nodes. Message packets specify the hierarchical 

address. These packets are sent to the landmark for distribution within their subnet (Haas 

et al.), thereby reducing the amount of overhead required to maintain accurate routing 

tables. 

 The hybrid ad hoc routing protocol (HARP) is a hybrid hierarchical protocol that 

is operationally very similar to the ZRP and the ZHLS routing protocols (Nikaein et al., 

2001). HARP differs from both ZRP and ZHLS by restricting the amount of routing 

information stored to data about the path between the source node and the destination 

node and leaving topology definition to the distributed dynamic routing (DDR) protocol 

(Nikaein et al.). HARP reduces the need for widespread control packet flooding and 

bandwidth by restricting communications to a subset of the forwarding nodes in each 

zone. 

 

On-demand or Reactive Routing Protocols 

 On-demand routing protocols are a recent class of routing protocols that provide a 

method for dealing with scalability problems in wireless ad hoc networks (Hong, Xu, & 

Gerla, 2002). A key advantage of on-demand routing protocols is that they do not 

actively maintain tables of routes to surrounding nodes. As noted, table size becomes 

unmanageable in large networks. Instead, these protocols use a route discovery method to 

determine the path at the time it is required (Hać, 2003). Dynamic source routing (DSR) 

is an on-demand routing protocol that allows an ad hoc network to be completely self-
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organizing and self-configuring, thus eliminating the need for any infrastructure or 

administration (Johnson, Maltz, Hu, & Jetcheva, 2002). Each message packet transferred 

by the DSR protocol contains addressing information in the message header to enable 

successful information transmission (Hać). As a consequence, intermediary nodes are not 

required to maintain up-to-date routing tables. 

 On-demand routing protocols consist of functional components for routing, route 

discovery, and route maintenance (Hać, 2003). Unlike proactive protocols with 

predetermined route tables, on-demand protocols determine the appropriate path only 

when necessary. This approach can lead to significant problems such as long delays in 

determining routes and excessive control packet traffic reducing the effective throughput 

of messages (Marina & Das, 2001).  

 Ad hoc on-demand distance vector routing (AODV) improves on DSDV by 

eliminating proactively maintained route tables based on repeated update requests (Hać, 

2003). Instead, tables are created on-demand, thereby lowering the overhead of proactive 

route requests (Ye et al., 2003). Paths are defined with sequence numbers as in DSDV. 

However, the information is gathered on-demand through a process of flooding the 

network with route request (RREQ) messages. An intermediate or destination node stores 

the destination address in its local cache, responds with route reply (RREP) to the 

originator and provides the route information (Ye et al.). 

 The temporally ordered routing algorithm (TORA) protocol is an example of a 

distributed on-demand protocol that provides loop-free multi-path routing with reactive 

or proactive route establishment and maintenance (Park & Corson, 2001). The TORA 

protocol requires only information about adjacent routers. While maintaining path state 
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information on a per-destination basis, the TORA protocol does not actively maintain 

shortest-distance metrics for use in establishing routes (Hać, 2003). Hać describes the 

protocol as a highly adaptive and scalable protocol. The TORA protocol also supports 

link reversal by providing feedback to the routing source on paths that become blocked or 

congested, thereby redirecting messages to alternate paths (Park & Corson). The TORA 

protocol is not necessarily efficient however. According to Ye et al. (2003), at least one 

study showed the TORA protocol generated 50 times the overhead of the AODV and 

DSR protocols, thereby raising concerns about TORA’s effectiveness. 

 A recent entry into the reactive protocol field, the caching and multi-path 

(CHAMP) routing protocol creates a five packet cache in each node that is designed to 

reduce packets dropped as a result of path failure (Valera et al., 2003). In other reactive 

protocols such as DSR and AODV, these packets are normally discarded. The CHAMP 

protocol temporarily stores forwarded packets when a transfer error is encountered and 

forwards the packet along an alternate route. With the CHAMP protocol, multiple routes 

to each destination must be maintained (Valera et al.). Valera et al. demonstrated in a 

series of simulations in stressful environments that the CHAMP protocol supports 

significant gains in performance in contrast to DSR and AODV. 

 

Hybrid Mobile Ad Hoc Routing Protocols 

 Introduced by Haas (1997), ZRP is a representative example of a hybrid ad hoc 

routing protocol. In an effort to overcome protocol limitations including poor scalability 

and management of dynamic network architecture, Haas created a new single hybrid 

protocol. ZRP integrates proactive and reactive elements of route discovery and 
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maintenance, thereby combining the best features of distance vector and on-demand type 

protocols. Based on continued efforts at developing a converged routing protocol, Haas 

illustrates the need for a multi-protocol solution. 

 The geographic distance routing (GEDIR), the most forward with fixed radius 

(MFR), and the dynamic incremental routing (DIR) protocols combine positioned-based 

routing with loop free single paths and provide guaranteed delivery (Rangarajan & 

Garcia-Luna-Aceves, 2004; Stojmenovic & Lin, 2001; Woo & Singh, 2001). Guaranteed 

delivery is dependent on a collision-free and connected environment which is unlikely in 

any real ad hoc situation. These protocols depend on GPS to provide location information 

and use minimal hop counts. One advantage of the GEDIR, MFR, and DIR protocols is 

their reduction of overhead in large networks (Stojmenovic & Lin). 

Ramasubramanian et al. (2003) developed a unique approach to hybrid protocols 

by using two separate protocols. One protocol consists of an existing on-demand 

protocol. The second protocol is a table-based proactive protocol called the sharp hybrid 

adaptive routing protocol (SHARP). With SHARP, an individual can select between 

reactive or proactive protocols based on application requirements (Ramasubramanian et 

al.). 

 

Agent-based Routing Protocols 

 While still relatively new, agent-based routing protocols are popular research 

topic in the wireless ad hoc networking community. As an example, the multi-agent 

routing protocol (MARP) introduced in 2004 features an amalgam of several protocols 

and a mechanism for creating a topology-aware environment (Choudhury et al., 2004). 
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MARP can significantly reduce overhead associated with route maintenance in situations 

where the topology is rapidly changing. 

 According to Denko, (2003), mobile agents can perform clustering and maintain 

routing information in large hierarchical ad hoc networks. In situations with frequent 

changes in clusters, traditional methods of maintaining cluster information can result in 

high overhead. Moreover, mobile agents can significantly reduce bandwidth utilization 

and communications latency and minimize connection time (Denko). The architecture for 

mobile agents proposed by Denko includes two distinct agents, specifically, the routing 

mobile agent (RMA) and a clustering mobile agent (CMA). CMAs maintain cluster 

tables through the use of broadcast hello messages. RMAs maintain intra-cluster and 

inter-cluster route tables to known destinations.  

 Migas, Buchanan, and McArtney (2003) of the School of Computing at Napier 

University in Scotland investigate the use of mobile agents for routing, topology 

discovery, and automatic network configuration. According to these researchers, agents 

can solve numerous problems in ad hoc networks. Their research goals include 

maximizing ad hoc network performance, scalability, and reliability and reducing 

latencies.  

 Ant colony dynamics applied to routing is promoted in the ant colony routing 

algorithm (ARA) by Günes et al. (2002). According to Günes et al., no routing algorithm 

fits all cases in ad hoc networks. As a consequence, Günes et al. propose an algorithm 

based on swarm intelligence patterned after an ant colony. Günes et al. define two types 

of protocols, specifically, forward ants (FANTs) and backward ants (BANTs).  
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The FANT protocol supports the discovery of paths to the target node. In this 

process, the FANT creates an artificial pheromone trail along the path. Additional traffic 

increases the pheromone trail incrementally over a route. The same pheromone value is 

decreased over time just as the pheromone trail dissipates through disuse. ARA enables 

multiple path routing, features low overhead, is loop free, and facilitates on-demand 

operations (Günes et al.). In simulations performed by Günes et al., ARA performed well 

in comparison to DSR. In highly dynamic environments, DSR retained a slight 

advantage. ARA performance was clearly superior to AODV and DSDV in highly mobile 

environments.  

 An ant-based routing solution that consists of the topology abstracting protocol 

(TAP) and the mobile ants based routing (MABR) protocol is also in development 

(Heissenbüttel & Braun, 2003). TAP creates a two-layered hierarchical structure and 

logical routers in the upper layer. Each node falls within the domain of a logical router 

that is itself a node. Logical routers maintain two tables. The MABR protocol uses 

FANTs and BANTs as in the ARA protocol. As with ARA, the ants create an artificial 

pheromone trail to re-enforce well traveled paths. Once paths are determined, a technique 

called straight packet forwarding (SPF) facilitates message delivery (Heissenbüttel & 

Braun). 

 FANTs and BANTs are also used for supporting robust multicast routing (Shen & 

Jaikaeo, 2003). Shen and Jaikaeo utilized the swarm intelligence of the ants metaphor to 

develop the MANSI, (on-demand multicast for ad hoc network with swarm intelligence) 

protocol. The MANSI protocol creates multicast connections within defined groups using 

a forwarding set that consists of an intermediate set of nodes capable of facilitating 
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communications in core-based hierarchies. Ant-like agents assist in the development and 

evolution of the forwarding set to identify economical communications paths. Cost is 

determined by measuring the number of hops and the delay in the paths to the nodes 

within the set. Paths with lower delay or fewer hops are lower cost routes. Lower cost 

routes are preferred for efficient transmissions. As with other swarm intelligence 

protocols, both FANTs and BANTs are employed (Shen & Jaikaeo). 

 

Mobile Ad Hoc Protocol Performance 

 Boukerche (2004) described the use of simulation to determine the effectiveness 

of the DSDV, DSR, and AODV protocols. According to Boukerche, each protocol 

showed strengths and weaknesses. For example, Boukerche indicated the AODV protocol 

performed poorly when nodes were moving quickly but had very low throughput delay in 

more static environments. In contrast, DSR performed well in mobile environments but at 

the expense of high packet overhead. According to Boukerche, protocols such as these 

did not function optimally in multiple situations. 

 Lee et al. (2000) compared the performance of the ad hoc multicast routing 

(AMRoute) protocol, the on-demand multicast routing protocol (ODMRP), the ad hoc 

multicast protocol utilizing increasing identity numbers (AMRIS), and the core-assisted 

mesh protocol (CAMP). Basing their results on packet delivery ratio, or the number of 

packets sent divided by the number of packets delivered and the control bytes to 

transmitted bytes delivered ratio or the number of control and data packets transmitted 

divided by the total number of packets delivered, the authors concluded that in general 

mesh networks performed best in highly mobile environments. Lee et al. concluded that 
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the ODMPR protocol performed best overall and suggested the modification of this 

protocol to improve performance in environments with high numbers of transmissions. 

Prakash (2001) described the capabilities of the DSDV, DSR, AODV, and TORA 

protocols in supporting ad hoc networks with unidirectional links. Prakash found 

significant performance differences in tests of the aforementioned protocols with no 

single protocol performing well in multiple environments. A modified version of the 

DSDV protocol was recommended since this protocol performed well in a highly mobile 

environment with a strongly connected network. However, an efficient MAC sub-layer 

protocol was required for the modified protocol to operate effectively (Prakash). Prakash 

also recommended additional research to reduce increased overhead incurred in protocol 

modifications. 

Mauve et al. (2001) presented a study of the performance of position-based 

routing protocols. These investigators indicated that position-based algorithms can 

provide performance improvements over topology-based algorithms by using a location 

service (LS) to define node position within a network. Mauve et al. examined different 

packet forwarding approaches and obtained contrasting results in the greedy perimeter 

stateless routing (GPRS), the distance routing effect algorithm for mobility (DREAM), 

and the location aided routing (LAR) protocols. Results demonstrated that GPRS may 

drop packets in large networks. In contrast, DREAM provided reliable transmission of 

small numbers of packets. They concluded none of the protocols examined resolved the 

problems inherent in MANET implementations (Mauve et al.). 

Abolhasan and Wysocki (2003) compared the performance of the dynamic zone 

topology routing (DZTR) protocol to the AODV, LAR1, and LPAR protocols. The 
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researchers noted that the DZTR protocol is advantageous over other zone-based 

protocols since the DTZR protocol creates dynamic rather than static zones, reduces 

information redundancy and potential single point failures, and utilizes numerous 

different location strategies to minimize overhead. Abolhasan and Wysocki concluded 

that under worst case conditions, the DZTR protocol produced fewer control packets and 

better packet delivery than the AODV, LAR1, and LPAR solutions. In light to moderate 

network conditions, the same protocols may produce better results than DZTR. These 

outcomes also indicate the inability of a single routing protocol to perform effectively in 

all MANETs.  

Kassabalidis et al. (2001) discussed difficulties in developing new protocols to 

accommodate complexities in ad hoc networks. According to Kassabalidis et al., 

traditional static and dynamic routing protocols were unable to manage large-scale 

network operations, rapidly changing topology, or unstable linkages. Despite a concerted 

effort to develop new protocols to manage these problems, Kassabalidis et al. concluded 

that resolving the array of inherent problems in MANETs appeared unlikely with any 

single routing protocol solution. Based on their work, Kassabalidis et al. determined that 

an adaptive protocol is necessary to provide the greatest range of potential solutions. 

Kassabalidis et al. recommended the use of mobile agents belonging to the relatively new 

branch of artificial intelligence (AI) research called swarm intelligence.  

Swarm intelligence is patterned after the behavior of social insects such as bees 

and ants (Kassabalidis et al., 2001; Sugar & Imre, 2001). Each individual insect is limited 

in intellectual scope and ability. However, when functioning as a swarm, social insects 

accomplish complex tasks (Arabshahi et al., 2001). In a similar manner, mobile software 
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agents with limited individual capabilities can collaborate to manage more complex tasks 

than can be accomplished by any single software agent acting alone. 

 

Software agents 

Software agents are typically small mobile software programs that are 

environmentally aware and goal-oriented (Wooldridge, 2002; Kawaguchi & Inagaki, 

2000; Denko, 2003). Mobility implies that the software agent can replicate or move itself 

from host-to-host (Kotz, Gray, & Rus, 2002). Some agents are designed with 

environmental awareness and the ability to make decisions or perform tasks based on pre-

established rules. These qualities provide the flexibility necessary to cope with the highly 

dynamic environments in which ad hoc networks are formed. Scarce bandwidth, 

restricted battery power, and limited computing capacities are additional problems that 

must be addressed through proper adaptive selection of routing protocols (Sugar & Imre, 

2001). Mobile software agents provide a vehicle to support an adaptive solution to these 

problems. By contrast, intelligent software agents are mobile, learn from the 

environment, and change behavior based on experience. The software agents proposed in 

this research are mobile, but not intelligent. 

Mobile software agents are one method that can be used to address the highly 

variable performance of ad hoc routing protocols due to environmental factors 

(Kawaguchi et al., 2000). These agents are also proposed to support route discovery 

(Royer, Sun, & Perkins, 2001) and enable message carrier functions (Kawaguchi & 

Inagaki, 2000; Li & Rus, 2000). For example, Marwaha et al. (2002) combined agents 

and the AODV protocol to reduce end-to-end delay and route discovery latency in ad hoc 
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networks. Kassabalidis et al. (2001) used mobile swarm-based agents to address 

scalability problems in ad hoc networks. Agents were also adapted to improve efficiency 

in slow and unreliable networks (Chacón et al., 2000).  

Swarm-based agents, also called biologically inspired agents, follow the model of 

swarming insects such as ants (Baran & Sosa, 2001). There is considerable interest in 

swam intelligence within the ad hoc wireless research community (Arabshahi et al., 

2001). One of the first biologically-based agent techniques applied to ad hoc networks 

was AntNet described by Di Caro and Dorigo (1998). These authors introduced the 

concept of stigmergy or indirect communications by mobile software agents in 

facilitating ad hoc routing. Other researchers that used ant-like agents and pheromone 

trails for position-based routing included Camara and Loureiro (2000), Jiang and Camp 

(2002), and Sugar and Imre (2001). These investigators examined mobile software agent 

capabilities in supporting location services for position-based routing operations. 

Arabshahi et al. (2001) examined the use of intelligent software agents for 

adaptive routing in wireless networks and focused their research on using agents to detect 

and respond to dynamic traffic impacting events in order to maintain a specified quality 

of service (QoS). Arabshahi et al. concluded through their examination of the literature 

that swarm-intelligent routing can enhance MANET reliability and the effectiveness of 

data transfer in multi-node wireless networks. In addition, Arabshahi et al. determined 

that overhead resulting from increased network size, a problem associated with the use of 

table-based routing protocols, can be reduced through the use of intelligent agents.  

Swarm-based routing is popular in developing wireless routing solutions for a 

number of reasons. First, biological systems represented by ants and bees produce very 
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sophisticated behaviors based on a relatively small set of simple actors (Arabshahi et al., 

2001). In terms of routing, ants, for example, can find optimal or near optimal pathways 

to food through stigmergy. Arabshahi et al. also inferred that swarm-like agents such as 

ants optimized the use of local information, thereby eliminating the need for long 

distance exchanges, and created scalable networks that were generally fault-tolerant.  

Swarm-based agents have been applied to the problem of traffic prioritization in 

multi-path environments. White et al. (2002) developed architectures of multi-agent 

swarms that improved overall convergence of the address tables present in wireline 

network routing algorithms. This technique operates most efficiently when wireline 

connections are persistent. These operations are not supported in MANETs. 

Yang, Zincir-Heywood, Heywood, and Srinivas (2002) developed an ant-based 

routing algorithm for wireline LANs using FANTs and BANTs that were subjected to 

constant reinforcement learning. Results of the experiment showed that the algorithm 

developed paths autonomously. Interestingly, heavy traffic loads created better dynamic 

reinforcement than lighter traffic loads (Yang et al.). 

Extrapolation of rules of behavior demonstrated by biologically-based systems of 

agents such as swarms can resolve key problems in MANETs (Arabshahi et al., 2001; 

Wedde et al., 2005). These problems include route discovery, route optimization, and 

route repair. As a consequence, the author examined capabilities of mobile software agent 

technology as one potential method of managing operations and enhancing performance 

in multi-protocol ad hoc networking environments.  

Following the biologically-based systems example, Wedde et al. (2005) 

introduced the BeeAdHoc mobile ad hoc routing protocol. The BeeAdHoc protocol uses 
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two types of software agents called scouts and foragers. Through simulations, Wedde et 

al. showed that BeeAdHoc consumes less energy, a critical factor in MANETs, than 

previous mobile ad hoc routing protocols such as DSR, AODV and DSDV. 

 

Network simulation  

Researchers must test capabilities of TCP/IP and other routing protocols under a 

variety of conditions to determine their effectiveness and robustness in ad hoc wireless 

environments (Breslau et al., 2000). The cost of equipment for constructing test 

environments and the relative inflexibility of building test beds or laboratories to test 

protocols make protocol testing difficult (White, Lepreau, & Guruprasad, 2003). A multi-

protocol network simulator such as ns-2 enables efficient experimentation and validation 

of large-scale interaction studies in a controlled environment, along with streamlined 

comparison of results across the research community (Breslau et al.). 

Scherpe and Wolf (2002) described their experience with a real-time network 

delay and loss simulator (RDLS) and suggested several enhancements for improving their 

existing model. According to Scherpe and Wolf, the aspects that should be taken into 

consideration in developing a simulation scenario included delays, losses, fulfillment, 

network load, mobility routing decisions, resources, and radio quality. The simulator 

developed by Scherpe and Wolf was proprietary and not publicly available. However, the 

different network aspects they describe such as delay, losses, network loads, and routing 

decisions are relevant to this investigation. 

Johnson (1999) provided an excellent approach for validating wireless and mobile 

network simulators. Associated with the Carnegie Mellon University (CMU) Computer 
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Science Department that developed the mobile networking architectures (Monarch) ad 

hoc extensions for use with ns-2, Johnson was instrumental in developing the dynamic 

source routing (DSR) protocol. A novel on-demand ad hoc routing protocol, the DSR 

protocol does not require extensive maintenance of route information by intermediate 

nodes. In addition, DSR functions well as node mobility increases (Draves et al., 2004). 

Consequently, DSR was one of the protocols examined in this research. Moreover, 

extensive prior published research on the performance of DSR, DSDV, TORA, AODV, 

and ZRP protocols provided quantitative data that were used to check the baseline results 

of this research (Draves et al.).  

Tian et al. (2002) also recommend implementation of a graph-based mobility 

model operating on ns-2 platforms. Tian et al. documented the capabilities of DSDV, 

DSR, and AODV routing protocols; enhanced the ns-2 environment with the CMU 

Monarch extensions; and provided tabulated results including average end-to-end delay, 

routing packet overhead, and packet delivery ratios for these protocols. These findings 

were useful in evaluating the DSR, DSDV, AODV, and ZRP protocol functions in this 

investigation.  

 

Summary of the Known and Unknown 

 Ad hoc networks consist of temporary collections of nodes that can be mobile. 

These nodes route messages in an environment without a typical wireline infrastructure 

(Abolhasan & Wysocki, 2003). Ad hoc networks operate in the distributed coordination 

function (DCF) mode as defined by the IEEE 802.11 WLAN standard and its extensions 

(Acharya, Misra, & Bansal, 2002). DCF is a MAC layer protocol that implements 
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physical and virtual carrier sense mechanisms to reduce the impact of hidden terminal 

collisions (Rangarajan & Garcia-Luna-Aceves, 2004). Ad hoc wireless networks present 

several unique and challenging problems such as mobility, node entry and exit, and 

changes in topography as well as limitations in battery power, computational power, 

bandwidth, and coverage that must be addressed in enabling seamless MANET 

operations (Hać, 2003). In contrast to wireline networks nodes that are stationary, ad hoc 

wireless nodes are mobile. As a consequence, routing protocols must accommodate nodes 

entering and exiting the network due to changes in the topography. Limitations in battery 

power reduce operating distance and restrict computation power. Conventional wireline 

routing protocols such as the routing information protocol (RIP) and the open shortest 

path first (OSPF) protocol are unable to manage these challenges and function effectively 

in ad hoc environments (Lee et al., 2002).  

 Studies by Lee et al. (2000), Mauve et al. (2001), and Williams and Camp (2002) 

indicate that ad hoc routing protocols such as DSR, DSDV, and TORA are ineffective in 

supporting operations in multiple demanding wireless environments although these 

protocols perform well in single situations. Purely on-demand or table-driven protocols 

such as DSR, AODV, LAR, and ZRP tend to perform best in specific scenarios, but 

degrade quickly outside of simulated environments (Williams & Camp, 2002). Hybrid 

protocols such as ZRP perform better in some instances than purely reactive or proactive 

protocols but feature serious limitations such as high packet overhead at the 

environmental extremes including situations of high mobility and high node density 

(Haas et al., 2002).  
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 Software agents are useful in wireline and wireless network environments 

(Kawaguchi et al., 2000; Sugar & Imre, 2003). The flexibility, autonomy, and self-

organization capabilities of these biologically-based or swarm-based software agents 

contribute to research involving the resolution of complex problems inherent in ad hoc 

networks (Arabshahi et al., 2001; Günes et al., 2002).  

 

Contributions to the Field of Study 

 Ad hoc wireless networks are a growing field of interest in the networking 

domain. Ad hoc networks are temporary dynamic networks that form without a 

traditional infrastructure. This ability contributes to ad hoc application development in 

commercial and military sectors. The difficulties of creating and managing ad hoc 

networks are considerable due to factors that include topology, mobility, interference, and 

node additions and deletions (Arabshahi et al., 2001). Solutions developed to enable 

routing services in conventional wireline environments do not work well in ad hoc 

networks (Günes et al., 2002; Viswanath & Obraczka, 2002). Consequently, new 

approaches are in development.  

  Routing protocols are essential in facilitating effective functions in wireless ad 

hoc networks. To date, dozens of ad hoc routing protocols are available (Papapetrou & 

Pavlidou, 2003). Researchers such as Viswanath and Obraczka (2002) and Boleng et al. 

(2002) concluded that single routing protocols are unable to address challenges 

associated with ad hoc network deployment. In addition, hybrid protocols that combine 

the best aspects of on-demand and proactive protocols in support of acceptable solutions 

are also inefficient. As a consequence of the ineffectiveness of single protocol solutions 
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in ad hoc networks, new approaches including the use of multiple protocols are in 

development.  

 According to Arabshahi et al. (2001), White et al. (2002), and Barán and Sosa 

(2001), software agent technology provides a viable option for augmenting protocol use 

in dynamic environments. According to Denko (2003), renewed interest in applying 

mobile software agent technology to ad hoc networks is evidenced by the efforts of 

Marwaha et al. (2002) and Sugar and Imre (2001).  

The efforts of research pioneers such as Di Caro and Dorigo (1998) and more 

recent work by Arabshahi et al. (2001), Günes et al. (2002), Kassabalidis et al. (2002), 

Jiang and Camp (2002), and White et al. (2002) provide a framework and potential 

solution for managing a multi-protocol ad hoc network. According to Arabshahi et al. (p. 

3), “Swarm-intelligent routing methods will enhance the reliability and timeliness of data 

transfer within a heterogeneous multi-node wireless communications network.” 

Arabshahi et al. described the merits of using agent technology to address scalability 

problems and support robustness. Moreover, Arabshahi et al. explored successful 

applications of agent technology in traditional wireline networks and concluded that the 

same agent-based techniques used in wireline networks hold promise for resolving 

problems in ad hoc wireless networks. 

Jiang and Camp (2002) used software agents to perform discrete routing tasks 

such as providing location information updates. White et al. (2002) employed 

biologically inspired agents to facilitate priority routing in traditional wireline networks. 

Agents can manage communications on handheld devices as well (Caire, Lhuillier, & 

Rimassa, 2002).  
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This researcher investigated the effects of multiple ad hoc routing protocols 

operating in the same IEEE 802.11b WLAN environment. Earlier studies focused on the 

performance of single protocols in homogeneous environments (Xu & Gerla, 2002). In 

the absence of a flexible and efficient protocol that enables operations in MANETs, 

multiple protocols were deployed and required to co-exist in the same environment. It is 

important to note that heterogeneous environments are also an emerging area of study 

(Ge, Lamont, & Villasenor, 2005; Xu & Gerla; Ahmed, Vanitchannant, & Dao, 2002). 

Heterogeneous environments contain a mix of different type of nodes such as computers, 

PDAs, and cellular telephones that operate on the same frequencies using different 

routing protocols.  

For this inquiry, capabilities of agents in mediating protocol communications in a 

multi-protocol ad hoc wireless environment were also examined. Researchers such as 

Kassabalidis et al. (2001), Chacón et al. (2000), and Jiang and Camp (2002) applied 

agents to resolve specific flaws in single routing protocols. However, the use of agents to 

mediate protocols in heterogeneous and multi-protocol ad hoc wireless environments 

remains an open area of study.  

 

Summary 

 This review of the literature featured an introduction and examination of advances 

in the field of ad hoc wireless networking. A historical perspective on WLAN technology 

as well as current developments was provided. A special emphasis was placed on 

exploring the IEEE 802.11 WLAN standard and its extensions and the capabilities of the 

MAC protocol. 
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Capabilities of ad hoc networks and the routing protocols that enable these 

networks to function were discussed in detail. Protocol classification methods including 

proactive, reactive, and hybrid, and single-hop and multi-hop were described. The 

features and functions of representative protocols including DSDV, WRP, OLSR, HSR, 

ZHLS, HARP, DSR, and AODV were reviewed. These protocols were also classified in 

reactive, proactive, and hybrid categories. Specifically, the reactive or on-demand 

protocols included DSR, AODV, TORA, and CHAMP. Proactive or table-driven 

protocols included DSDV, WRP, GSR, OLSR, and FSR. Characteristics of hybrid 

protocols such as HARP, ZRP, GEDIR, MFR, and DIR with both reactive and proactive 

characteristics were examined as well. Hierarchical protocols including HSR, WHIRL, 

CEDAR, LANMAR, and ZHLS were also described. 

A discussion on the performance of routing protocols was included. Studies by 

Tseng et al. (2002) and Williams and Camp (2002) on the performance of different 

classification groups and specific routing protocols were examined. It is significant to 

note that Boleng et al. (2002), Kargl et al. (2002), and Viswanath and Obraczka (2002) 

concluded that an ad hoc routing protocol was incapable of performing effectively in 

diverse ad hoc environments. The author examined a series of heterogeneous 

environments consisting of varying populations of nodes operating with DSR or AODV 

protocols while measuring the effect on packet delivery ratio and latency, measures of 

network efficiency.  

A discussion of agents and agent functions in traditional wireline communications 

networks was presented. According to Kawaguchi and Inagaki (2000) and Chacón et al. 

(2000), agents and agent systems are also ideal candidates for resolving problems 
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inherent in wireless ad hoc networks. In particular, the capabilities of biologically-

inspired swarm-based agents in resolving specific wireless routing challenges were 

highlighted. 

This chapter also contains a brief discussion of network simulation. According to 

Lin, Noubir, and Rajaraman (2004), network simulation is an acceptable method for 

developing and testing network-related software such as routing protocols that are the 

subject of this research. Network simulators eliminate the cost and complexity of 

developing large-scale test bed environments and allow rapid prototyping of routing 

protocols (Jardosh, Belding-Royer, Almeroth, & Suri, 2003).  

The contribution of this research to the field of multi-protocol ad hoc networks 

was also noted. The primary goal of this research was to characterize the behavior of a 

multi-protocol wireless ad hoc environment. Facilitating communications among multi-

protocol nodes using mobile software agent technology was secondary to the primary 

goal of this research. In this investigation, mobile software agent technology was 

recognized as a potential mediator for protocol translation in multi-protocol ad hoc 

networks. Researchers such as Kawaguchi et al. (2000), Sugar and Imre (2003), and 

Denko (2003) utilized software agents to address only specific aspects of single routing 

protocols. This author examined the applicability of mobile software agent technology in 

multi-protocol environments and is based in part on the swarm intelligence work of 

Arabshahi et al. (2001) and Kawaguchi et al. (2001). In addition, this author expanded 

findings identified in the pioneering work of Abolhasan et al. (2004), Bhargava et al. 

(2004), and Cordeiro et al. (2004) in the field of heterogeneous wireless ad hoc networks.  
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This approach represented a significant change in direction of the current research 

in the field. Generally, researchers focused their efforts on developing hybrid protocols 

that accommodate a wide variety of conditions while sacrificing network operating 

efficiency (Haas & Perlman, 2001; Marwaha et al., 2002; Williams & Camp, 2002). 

Single protocols such as DSR, DSDV, TORA, and AODV that operate effectively in a 

narrow range of specific environments become inefficient in extreme environments 

(Williams & Camp). Environmental factors such as the number of hops and broken links, 

the size of the network in terms of the number of nodes, and the mobility of nodes 

continue to provide significant challenges for single routing protocol solutions.  

Numerous wireless devices such as notebook computers and PDAs are available 

that supports the IEEE 802.11b protocol. IEEE 802.11b compliant devices feature 

capabilities that are useful in diverse situations including heterogeneous environments 

where different device types operate in conjunction with multiple ad hoc protocols (Xu & 

Gerla, 2002; Abolhasan et al., 2004). While current research typically focuses on ad hoc 

routing protocols in homogeneous environments, investigations on the use of ad hoc 

multi-function routing protocols and mobile software agents in heterogeneous 

environments are gaining in popularity (Draves et al., 2004; Huang, Lee, & Tseng, 2004; 

Xu & Gerla).
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Chapter 3 

Methodology 

 

Approach 

The initial phase in this research involved conducting an extensive literature 

search to ensure that the proposed research contributed to the body of knowledge and 

advancement of the practice in the field. The methodology required the simulation of an 

ad hoc network of nodes operating two different ad hoc routing protocols. The ns-2 

simulator enabled simulations for this investigation. The author determined that if the ns-

2 simulator proved to be inadequate, the global mobile simulator (GloMoSim) would be 

used. While not as widely used in the development community as the ns-2 simulator, the 

GloMoSim simulator was developed specifically for evaluating wireless environments 

and for evaluating single protocol environments, thereby making post-simulation 

processing of simulation results necessary. 

Next, a pair of existing ad hoc routing protocols, specifically DSR and AODV, 

was selected based on availability within the simulation environment and the large 

number of studies focusing on the current capabilities and function of these protocols in 

the literature (Hu, Das, & Pucha, 2002; Roy & Garcia-Luna-Aceves, 2002; Rangarajan & 

Garcia-Luna-Aceves, 2004). According to Garcia-Luna-Aceves, Mosko, and Perkins 

(2003), AODV, DSR, and OLSR are representative of the state-of-the-art in ad hoc 
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routing protocols. Importantly, AODV and DSR protocols were also implemented in the 

current release of ns-2. These factors contributed to the use of these protocols for this 

research, thereby eliminating the need to program other protocols. As a consequence of 

using protocols built into ns-2, potential programming errors were reduced and 

repeatability and reliability were improved.  

A series of simulation experiments were designed and conducted to measure the 

change in the dependent variables specifically packet delivery ratio also know as 

throughput and end-to-end delay or latency while manipulating the three independent 

variables. Independent variables or the number of subject nodes consisted of the 

introduced nodes and the number of target nodes that formed the base or starting 

environment. The velocity of the nodes was the third independent variable. Constants 

were the size of the topography, packet size, transmission radius, radio propagation 

method, and experimental runtime (Camp, Boleng, Williams, Wilcox, & Navidi, 2002).  

The experimental topography consisted of a flat bounded area of 1000 feet by 500 

feet. A rectangular area was selected to provide greater interaction opportunities between 

nodes (Camp et al., 2002). The topography size was similar to that used by Roy and 

Garcia-Luna-Aceves (2002) and Lee, Han, and Shin (2002) who evaluated similar 

numbers of nodes. Bounding referred to the inability of nodes within the area to move 

outside the area. In the bounded environment used in this study, nodes were reflected or 

bounced off the perimeter. Transmission distance was set to 250 feet, which was the 

default distance in ns-2 and the GloMoSim simulators (Jardosh et al., 2003).  

Widely employed in simulating movement in MANETS, the random waypoint 

mobility model is also used in this investigation (Hu et al., 2002; Tian et al., 2002; 
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Viswanath & Obraczka, 2002; Williams & Camp, 2002). According to Yoon, Liu, and 

Noble (2003), the random waypoint model is the de facto standard in mobile computing 

research. In terms of operations, the random waypoint model randomly places nodes 

within an assigned space (Jardosh et al., 2003; Marina & Das, 2001). Each node is 

assigned a point to move toward that is defined by direction, distance, and velocity. The 

nodes then move toward their assigned points at the assigned velocities. When a node 

arrives at the point, it waits for a defined delay period that may be set to zero to simulate 

continuous movement (Marina & Das). After the delay, the node is assigned a new 

direction, distance, and velocity and proceeds to the new position. This process continues 

until the experiment time measured in seconds expires.  

The random waypoint model is not without its detractors. According to Yoon et 

al. (2003), the random waypoint model failed to provide a steady state by inadvertently 

decreasing velocity of nodes over time. Navidi and Camp (2004) implemented an 

auxiliary program specific to the ns-2 simulator to provide a steady state distribution thus 

eliminating the concerns expressed by Yoon at al. Moreover, Lin, Noubir, and Rajaraman 

(2004) analyzed the steady state problem and described a framework indicating how a 

steady state can be achieved to provide accurate results. The auxiliary program developed 

by Navidi and Camp was used in creating the movement scripts used in this research. 

Additionally, Bai, Sadagopan, and Helmy (2003) indicated that the random waypoint 

model did not capture the effects of barriers or obstacles and temporal and spatial 

dependencies on node movements, whereas temporal dependencies reflect the changes in 

the network connectivity that varies as a function of time, spatial dependencies exist as 
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relationships between the position of nodes and objects that restrict radio propagation. 

Barriers and obstacles within the movement area were not utilized in these experiments. 

The following experimental parameters were utilized. The transmission radius 

was set at a constant 250 feet. This distance is commonly used in testing ad hoc protocols 

(Abolhasan, Lipman, & Chicharo, 2004; Cordeiro et al., 2004; Zhang & Jacob, 2003). 

The duration of each experiment was set to 200 seconds. Simulation times reported in 

other research varied from as little as 120 seconds to 9000 seconds (Lo, Liu, & Chen, 

2004; Zhang & Jacob).   

A run time of 200 seconds was selected for this experimental series to generate 

sufficient data for throughput analysis without generating excessive data file size 

(Abolhasan & Wysocki, 2003; Sheu & Chen, 2002). The radio propagation model was 

two-ray ground reflective commonly used in ad hoc simulations (Shen & Jaikaeo, 2003; 

Valera et al., 2003). The packet payload size was 512 bytes. This payload size was also 

used by ad hoc protocol researchers including Hu and Johnson (2000), Kong and Hong 

(2003), and Rangarajan and Garcia-Luna-Aceves (2004). The number of sending nodes 

was set to half the total of nodes. 

Researchers developing and testing ad hoc routing protocols use a broad range of 

simulation sets to evaluate their work (Abolhasan et al., 2004; Hu et al., 2002; Marina & 

Das, 2001; Roy & Garcia-Luna-Aceves, 2002; Williams & Camp, 2002). In each case, 

the numbers of simulation runs were selected to provide an adequate number of data 

points and thereby reveal meaningful results. After evaluating the experimental 

parameters established by investigators such as Abolhasan and Wysocki (2003), 
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Boukerche (2004), Camp et al. (2002), and Zhang and Jacob (2003) who performed 

studies similar to this inquiry, the author selected a series of six simulation sets. 

The first experimental series began with an environment of 10 nodes, 5 sending 

and 5 receiving featuring the DSR ad hoc routing protocol. The velocity was set at 1 foot 

per second (fps) and the packet delivery ratio or throughput (packets received to packets 

sent) and latency or end-to-end delay were measured. The first series of simulations 

established the baseline performance at the 1 fps velocity and 10 node density. This 

experiment was repeated using the same mobility model but with velocities of 2 fps, 3 

fps, and 4 fps to establish additional baselines. The second and third experimental series 

followed the same pattern, but increased the number of target nodes to 20 and 30 

respectively. The fourth, fifth and sixth experimental series used AODV as the target ad 

hoc routing protocol but otherwise followed the same pattern. 

Once the baseline data points were acquired through these series of 24 

simulations, the series were re-evaluated introducing the subject nodes. In the case of the 

first series, 2 nodes (one sending and one receiving) operating the AODV protocol 

replaced 2 of the 10 nodes operating the DSR protocol. The same mobility and movement 

model used in the original baseline series was re-used and packet delivery ratio and 

latency were measured for the duration of the experiment at 200 seconds. Upon 

completion, the experiment was repeated at the second and third velocities. Two 

additional AODV nodes were introduced and the series was evaluated again at each of 

the four velocities.  

The process of replacing DSR nodes with AODV nodes was repeated until the 

total number of subject nodes equaled the number of target nodes, specifically 10 in the 



83
  

case of the first experimental series. The second and third experimental series followed 

the same pattern. However, the second and third series increased the starting target nodes 

to 20 and 30 respectively. Likewise, the subject nodes were introduced until they reached 

20 and 30 nodes respectively. The fourth, fifth, and sixth experimental series followed the 

same pattern while reversing the target and subject protocols in order to determine if 

there was any asymmetry to the measured effects. 

 

Simulation environment 

The use of simulators is critical to the development and design of networking 

protocols (Walsh & Sirer, 2003). As a consequence, the University of Southern 

California (USC) Information Sciences Institute (ISI) developed a discrete event network 

simulation tool called ns (Cavin, Sasson, & Schiper, 2002). The current ns-2 version is 

formally known as ns-2.28 and includes a number of enhancements. Since DSR, AODV, 

and DSDV ad hoc routing protocols are embedded in this release, the ns-2.28 is 

appropriate for simulating MANET environments (Jardosh et al., 2003). ns-2 is a 

relatively mature simulator with roots in the realistic and large (REAL) network 

simulator of 1989 (Cavin et al.). White et al. (2003) indicate that ns-2 is the simulator 

most frequently used by members of the wireless networking development community. 

ns-2 is available to the research community as source code. The source code must 

be compiled on the computer platform it will be used on. The simulator is available to the 

public without charge, thereby making this simulator especially appealing for 

independent research work. ns-2 operations are well documented (ns-2, 2005). However, 

this simulator lacks a user-friendly interface (ns-2), thereby creating a steep learning 
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curve for the new user. A significant amount of research time was required for 

developing the necessary programming skills in the ns-2 scripting language. Importantly, 

researchers such as Stoica (2000) make some simulation scripts for their proposed ad hoc 

protocols available on the Internet. As noted, routing protocols such as DSDV, TORA, 

AODV, and DSR are built into the ns-2 program. In addition, an active community of ns-

2 users is available for consultation. Information is freely shared among users although 

response time and accuracy of answers may be hit and miss. ns-2 has been in use for 

several years and archives of problem resolution threads are available via the Internet. 

Since search functions are poor, finding specific answers to relatively obscure problems 

was difficult. Generally, common problem solutions were easy to locate. 

Other simulation environments were available in addition to ns-2. The ad-hoc 

network simulator (ANSim) was a new entry into the simulation field. A limited Web-

based online version of ANSim was available free of charge. Unfortunately, the Web-

based online version did not allow sufficient collection of detailed simulation data such 

as delay and throughput. While ANSim was able to generate ns-2 scripts, considerable 

time programming each simulation session was required with very limited ability to save 

configurations. In addition, the author found the online version of ANSim was relatively 

slow and unreliable at completing simulations consisting of more than 20 nodes. Lastly, 

programming heterogeneous populations of ad hoc protocols was unsupported making 

ANSim unsuitable for this inquiry. 

Another new network simulator, Network Emulator (NE) was available at a 

moderate cost (Liu & Song, 2002). Like ANSim, NE was designed specifically for 

investigating challenges in ad hoc networks. The author found NE to be unsuitable for 
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this research because NE was written for older versions the Microsoft Windows operating 

system and had not been updated. Support was available only with the purchased version.  

The global mobile simulator (GloMoSim) developed at the University of 

California at Los Angles (UCLA) was also available (Jardosh et al., 2003). As with ns-2, 

GloMoSim was designed to simulate a single routing protocol environment. Also as with 

ns-2, GloMoSim was supported by an active user community and was featured in a 

number of ad hoc wireless research papers (Abolhasan, Lipman, & Chicharo, 2004; 

Abolhasan & Wysocki, 2003; Lundberg, 2004). As a consequence of its support and 

acceptance by the research community, GloMoSim was selected by the author to serve as 

a backup simulator if ns-2 proved unusable for this research. 

Initial experiments performed indicated that ns-2 provided the data required for 

this inquiry. Although designed for a single protocol environment, ns-2 scripts were 

sufficiently flexible to allow programming a heterogeneous environment. Since ns-2 was 

widely accepted in the ad hoc wireless protocol development community by researchers 

such as Viswanath and Obraczka (2004); Hu et al. (2002); Williams and Camp (2002); 

Zhang and Jacob (2003), and Al-Shurman et al. (2004) the author used this simulator for 

this investigation. 

A network simulator such as ns-2 has a number of auxiliary programs such as the 

Network Animator (Nam) that enhance its function (Nam, 2003). These auxiliary 

programs also assist in analyzing the data produced through simulation runs. Developed 

at the USC School of Engineering and ISI, the Nam program processes the log files 

generated by ns-2 simulations into animations. Both the ns-2 and Nam programs are 

under constant development and review by the user community. Modifications are 
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frequent. As a consequence, changes that potentially impacted ns-2 results were 

continually monitored by the author.  

 

Research Assumptions 

Assumptions were necessary to constrain the scope of the research. The following 

represents a high level listing of the major assumptions for this investigation. 

•    Τhe simulated physical communications medium was the 2.4 to 2.483.5 GHz range of 

radio frequencies as described by the 802.11b standard and implemented by the ns-2 

simulator. Although other 802.11 standards are currently available, the 802.11b 

standard is the most widely deployed (Hać, 2003).   

• Transmission power was fixed with no variable power output.  

• Α transmission range of 250 feet was assumed. This range is used by researchers that 

include Boukerche (2004), Hu and Johnson (2000), Ji and Corson (2001), Hu et al. 

(2002), and Marwaha et al. (2002). 

• Power consumption is another active area of research and can significantly influence 

the formation and effectiveness of MANETS (Buttyán & Hubaux, 2003). In order to 

reduce the number of variables that may skew research data, power constraints were 

not considered in this inquiry.  

• Mobile devices such as laptop computers and PDAs were assumed to be of the same 

capability regardless of type.  

• Computational power was assumed to be sufficient to support all proposed routing 

protocols.  
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• Mobile node storage related to routing caches was assumed to be sufficient to 

accommodate the environments tested. 

• Agent size was assumed to have minimal impact on the performance of host nodes. 

Minimal impact means that computational power and storage capacity in mobile 

nodes were not taxed (Denko, 2003). Bandwidth between nodes was, however, a 

major concern because of the scarcity of this resource. Bandwidth was also measured 

in the simulation environment. 

• Security was assumed. Nodes were assumed to be benign. Buttyán and Hubaux 

(2003) point out that nodes may not be willing to participate in the forwarding of 

packets. Some nodes may in fact have malicious intent. The author assumed that the 

nodes belong to a common authority and were equally motivated to provide 

forwarding services in a secure environment (Buttyán & Hubaux). 

• A two-dimensional, flat experimental environment was utilized without barriers. 

Real-world scenarios contain many objects that can impair message transference and 

MANETS may exist in three dimensions (Lundberg, 2004). Topology can adversely 

affect the range and effectiveness of transmissions (Yoon et al., 2003). These factors 

were not considered in this research. 

 

Resources 

 The primary resources required for this research were the following. 

• Computer system. An HP Media Center PC model 854n with an Intel Pentium 4 

processor operating at 2.54 GHz with 1 Gigabyte (GB) of memory and the Microsoft 

Windows XP operating system.  
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• cygwin, a UNIX emulator program. cygwin runs on the Microsoft Windows XP 

operating system, simulates a relatively standard version of UNIX, and can host the 

ns-2 network simulation package. The emulator and auxiliary programs such as a C 

and C+ compilers, ED and EMACS text editors, and graphical user interfaces (GUI) 

were available for free at the cygwin Web site. 

• ns-2. Network simulation package. As noted, the current package version is 2.28 and 

supports ad hoc wireless additions. The software and instructions on its installation 

are available at the ns-2 Web site. Importantly, a complete set of the required 

software packages was assembled for use under the cygwin UNIX emulator by 

Nicolas Christin (2005) at the University of California Berkley (UCB). This prepared 

set of software packages was used to install the ns-2 simulator in the cygwin 

environment used in this investigation.  

• Nam. A simulation results graphing program. Version is 1.9 was available at no cost 

from the developers (Nam, 2003).  

• Tool control language (tcl) and other UNIX scripting languages for creating scripts 

that are used by the ns-2 simulator. Tcl was available at no cost from the developers 

(Tcl Developers Exchange, 2005). 

•  X-Windows, a UNIX windowing environment required for Nam use. X-Windows 

was also useful for running multiple programs within the same desktop environment. 

A user developed version of X-windows is freely available (Xfree86, 2005).  

• Other UNIX utilities such as awk, sed, and grep as required. 
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• C and C+ programming languages for developing protocols for inclusion in the ns-2 

suite of protocols. C and C+ programming compilers are included in the cygwin 

package as part of the standard set of UNIX utilities.  

 

Reliability and Validity 

 Reliability was established through the use of standard simulation tools and 

published versions of existing protocols. Lui and Song (2002) indicated that simulation 

allows repeatable results in a controlled environment. The tests were repeated to ensure 

that they produced similar results given similar settings to provide a level of internal 

validation. The nature of mobile environments is subject to variation in direction, velocity 

and initial position of nodes. This variation is due to the use of random numbers used to 

create the mobility script files. Consequently, some variation in individual simulation 

results was expected. Repeating experiments using the same test parameters allowed 

convergence of the data to a repeatable norm.  

The random waypoint mobility model utilized the stationary distribution program 

created by Navidi and Camp (2004). This program established a steady state distribution, 

thereby eliminating the need for arbitrary disposal of initial data points (Navidi & Camp). 

 The utilization of an unmodified ns-2 simulation environment allows other 

researchers in the field to duplicate results in a known simulation environment. The ns-2 

simulation environment continues to be extensively tested and developed by an active 

MANET research community with a vested interest in accuracy.  

The installation process for the ns-2 simulation environment involved an 

extensive set of 33 suites of validation tests on different routing protocols with different 
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environmental settings. In all there were over 93 individual tests. The output of each of 

these tests was compared against a reference set of results that were validated and 

accepted by the user community (ns-2, 2005). The aforementioned validation tests were 

conducted in the test environment created by the author. Test results matched the user 

community provided validation results. No errors were generated. Therefore, it was 

reasonable to assume that extensively tested simulation environment scenarios developed 

in this research can perform in a similar manner in environments that also were subjected 

to the same extensive validation tests. 

The definitive test of repeatability and external validity is to open the developed 

test scripts to the research community for testing and comments. Therefore the researcher 

will make the developed scripts and results available to the active ns-2 community upon 

publication of the dissertation at the conclusion of this investigation. 

 

Summary 

 The intent of this investigation was to advance knowledge and practice in the field 

of wireless ad hoc networking. As a consequence, this research examined the throughput 

and delay characteristics in heterogeneous wireless ad hoc networks consisting of nodes 

operating DSR and AODV routing protocols. Heterogeneous ad hoc networks are an 

emerging area of study (Abolhasan et al., 2004). Implementation problems of wireless ad 

hoc networks are challenging for many reasons including the lack of a permanent 

infrastructure, node mobility, and the frequent adding and dropping of nodes (Hu et al., 

2002; Lee et al., 2002). Previous efforts to meet these challenges focused on identifying a 

single ad hoc routing solution (Viswanath & Obraczka, 2002). Ad hoc routing protocols 
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such as DSR, TORA, DSDV, and HSR provide efficient operation in a limited number of 

environments (Prakash, 2001). Unfortunately, the same routing protocols lose their 

effectiveness as the environment changes. As a consequence, researchers such as Boleng 

et al. (2002), Günes et al. (2002), Kargl et al. (2002), and Viswanath and Obraczka 

concluded that single ad hoc routing protocol solutions cannot support efficient 

operations in the diverse environments.  

 This research is based on findings from previous ad hoc protocol investigations 

including those conducted by Abolhasan et al. (2004), Park and Park (2004), Arabshahi et 

al. (2001), and Calafate et al. (2003). Heterogeneous ad hoc networks are an emerging 

area of study. The author contributed to the body of knowledge by quantifying and 

analyzing the effects of heterogeneous multi-protocol 802.11b-based environments 

consisting of DSR and AODV ad hoc protocols. Prior research focused primarily on 

quantifying performance in single ad hoc routing protocol environments (Ge et al., 2005). 

Performance measures described in this investigation can serve as the foundation for 

development of flexible ad hoc routing protocols that coexist in multi-protocol 

environments. In addition, the author examined the use of an agent mediator as one 

possible solution for enabling efficient and reliable routing services in heterogeneous 

multi-protocols environments.  

The author conducted an extensive literature search to identify appropriate 

wireless ad hoc routing protocols and mobile software agents to utilize in this effort. 

Capabilities of wireless ad hoc routing protocols were examined. Two protocols, 

specifically DSR and AODV were selected for inclusion in the simulation study as a 
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consequence of their ability to perform well in extreme operational environments 

(Garcia-Luna-Aceves, Mosko, & Perkins, 2003).  

Agent technology was investigated to determine the applicability of agents as 

mediators in multi-protocol environments. An examination of the literature revealed 

several applications of agent technology in the field of ad hoc routing. Denko (2003) and 

Dunne (2001) used agents to organize resources in mobile ad hoc networks. Günes et al. 

(2002) and Marwaha et al. (2002) introduced new routing protocols based on agent 

technology. Pirzada and McDonald (2004) used agents to establish trust and security in 

ad hoc networks. Importantly, Choudhury et al. (2004); Migas et al. (2003); Mochocki 

and Madley (2005), and Wedde et al. (2005) applied agent technology to improving 

network efficiency. Each of the agent applications added a layer of complexity and 

overhead to the ad hoc environment. As a consequence, agent technology is typically 

used in extreme environments unsupported by existing ad hoc routing protocols. 

Direct performance comparisons of agent-based ad hoc routing protocols with 

existing ad hoc routing protocols showed mixed results. For example, Wedde et al. 

(2005) compared their BeeAdHoc routing protocol to DSR, AODV and DSDV protocols. 

Their findings indicated significant improvement in delay when compared to DSR, 

however improvements compared to AODV and DSDV were insignificant. In addition, 

BeeAdHoc packet throughput percentages showed minor improvement compared to 

DSR, but were significantly lower than both AODV and DSDV. As velocity of the nodes 

increased, the packet throughput improvements compared to DSR became insignificant 

while both AODV and DSDV outperformed BeeAdHoc. Based on this assessment, an 
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agent protocol framework as a potential solution for facilitating enhanced operations in 

multi-protocol environments as used in this investigation was not recommended.  

For this inquiry, the experiments were programmed and simulated using ns-2. 

Simulation results were compiled and compared against the performance of single 

protocol solutions established through baseline experiments also performed by this 

researcher.  
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Chapter 4 

Results 

 

Introduction 

 This chapter describes the outcomes of the experiments performed in this 

research. The chapter begins with a detailed examination of the software programs and 

scripts that were used to conduct the experiments. The processes used to create the 

movement and communications script files are described. In addition, the specific 

parameters that were used by the ns-2 simulation program are presented. 

The data gathered from the 10, 20, and 30 node series of experiments are 

presented graphically. The process used to evaluate the data is described. The analysis of 

the data is discussed and the results are evaluated. Findings from the outcomes are 

discussed followed by the chapter summary.  

 

Data analysis 

The experimental sequences began with the creation of a number of necessary 

programs and script files. At the outset, a series of movement script files were developed 

using the program mobile-ss.exe. Mobile-ss.exe supports creation of movement script 

files also known as movement scenarios that begin in a steady state (Navidi, Bauer, & 

Camp, 2003). Yoon et al. (2003) found the random waypoint model failed to establish 

and maintain continuous steady state movement leading to unreliable results. Movement 
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scripts created with the mobile-ss program begin in a steady state and maintain consistent 

average velocities throughout the simulation (Navidi & Camp, 2004).  

The movement script files specified the number of nodes, the configuration and 

size of the area or topography for node movement, the duration of the simulation, the 

velocity and variance of the node movement, the pause time, and the pause variance. A 

total of 12 movement files that were created used the process outlined in Figure 1. Prior 

to execution, the required parameters for mobile-ss and the output file were specified on 

the command line using the format: mobile-ss.exe <number of nodes> <max-x> <max-y> 

<duration> <velocity mean> <velocity delta> <pause time> <pause time delta> <N> >> 

mov1-10.txt. With the numeric parameters the command line was: mobile-ss.exe 10 1000 

500 200 1 0.5 0 N >> mov1-10.txt. This specified 10 nodes, an area of 1000 feet by 500 

feet, a duration of 200 seconds, a mean speed of 1 fps, a speed variance of 0.5 fps, a 

pause time of 0, ns-2 compatible script output, and the results saved in file mov1-10.txt.  

Movement script files were created for each of the four velocities used by each of 

the three different populations of 10, 20, and 30 nodes. The four velocities varied plus or 

minus one-half of the median velocity. For example, with a velocity of 4 fps, the velocity 

was allowed to vary between 2 and 6 fps.  

The topography used throughout these experiments consisted of a rectangle 

measuring 1000 feet by 500 feet that was a flat space devoid of barriers. In addition, the 

simulation time was specified as 200 seconds with no pause time between movement 

transitions and a zero pause time variance to maintain relatively constant movement of 

nodes within the specified area.  
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Mobile-ss.exe

Movement 
Script File 

Movx-xx.txt

Input Parameters 
 

# of nodes 
Max X Dimension (1000 feet) 
Max Y Dimension (500 feet) 

End Time (200 seconds) 
Speed mean (1, 2, 3, or 4 fps) 

Speed delta (0.5 of speed Mean)
Pause Time (0) 

Pause Time Delta (0) 
Output type (N)  

Figure 1. Movement script file creation process 

  Each movement script file was utilized multiple times in specific sequences of 

experiments. For example, the movement file mov1-10.txt was established the baseline 

results of both the AODV and DSR series for 10 nodes with a velocity of 1 fps and a 

variance of 0.5 fps. In addition, the same file was used in the creation of the series of 

mixed 10 node AODV and DSR simulations. This process led to an additional four data 

runs in the AODV and four in the DSR. Printouts of the movement files mov1-10.txt, 

mov1-20.txt, and mov1-30.txt are presented in Appendices B, C, and D respectively.   

  Subsequently, communication pattern script files were created using cbrgen.tcl, a 

program that was included in the ns-2 suite of auxiliary files. The communications script 

files created by cbrgen.tcl defined the communications characteristics used between 

nodes in the simulation environment. In this case, a Constant Bit Rate (CBR) was used 

with a packet size of 512 bytes and a transmission frequency or rate of four times per 

second. A seed value of one was used in the random number generator for each run. The 

maximum number of connections was set to one-half the total populations or 5 in the case 

of the 10 node series, 10 for the 20 node series, and 15 for the 30 node series.  
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Examples of the communications script files for each of the three different node 

populations are presented in Appendices E, F, and G. Figure 2 details the process used to 

create the communications scripts. Cbrgen.tcl accepts command line parameters prior to 

interpretation by the ns-2 simulator. The general format used was: ns-2.exe cbrgen.tcl [-

type type] [-nn number of nodes] [-seed seed] [-mc maximum connections] [-rate rate] >> 

output.txt. Using the numeric values the command line would be: ns-2.exe cbrgen.tcl –

type cbr –nn 10 –seed 1 –mc 5 –rate 4 >> cbr10-1-5-4.txt. This command line specifies 

10 nodes, a random number seed of 1, a maximum of 5 connections, a rate of 4 packets 

per second, and the output file of cbr10-1-5-4.txt. 

Once the required input parameters were provided, the cbrgen.tcl program was 

interpreted by the ns-2.exe program. The results were redirected into a text file. The 

resultant text file contained the communications patterns that were subsequently used by 

the control scripts. Communications pattern scripts specified the individual nodes that 

transmitted data packets to specific receiving nodes. In addition, the timing of these 

transmissions was specified. For example, a communications script indicated that 

23.005693 seconds into the simulation node 4 would transmit a 512 byte packet to node 

7. The results of this transmission were recorded in the trace and nam output files. 

Figure 2. Process for creating communications scripts using cbrgen.tcl  

Input Parameters 
 
-type CBR (constant bit rate) 
-nn number of nodes (10,20, or 30) 
-seed 1 (random number seed) 
-mc (maximum number of 
connections – set to ½ total node 
population or 5, 10, and 15) 
- rate 4 (number of packets per 
second per transmitting node set to 4)

Cbrgen.tcl 

ns-2.exe 

Communications 
script file output 
cbrXX-X-X-X.txt 
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The third step in the process was the development of the ns-2 control scripts. 

Control scripts were written by the researcher in tcl and constituted the instruction set that 

was input into the ns-2 simulator for each simulation. The movement and 

communications pattern script files described above were used by the ns-2 control scripts 

and in turn by the simulator to generate data in the form of nam and trace files. ns-2 

control scripts included information on the type of network, the radio propagation model, 

the medium access control (MAC) model, antenna type, topography, ad hoc routing 

protocols used, and additional data required by the ns-2 simulator program. The radio 

propagation model used in this investigation was the ns-2 default, two ray ground 

reflection. This model considers both line of sight and ground reflected radio waves (ns-

2, 2005). The type of network was set to wireless with a MAC model set to 802.11. In 

addition, the control programs specified the trace and nam output files. An example of the 

ns-2 control scripts used in these experiments is included in Appendix H.  

The fourth step involved running the control scripts through the ns-2 simulator. In 

each simulation, two output files were created, one used specifically by nam and the 

second, a trace file used by other programs. Nam output files are used to view the 

movement and transmission patterns of the simulations. Nam files were not directly used 

to obtain data relating to delay and throughput for evaluating the hypotheses proposed in 

this research. However, viewing the movement and communication patterns was helpful 

to the researcher in evaluating results. Both nam and trace files contain detailed 

structured information from the simulations such as movement and communications data 

between nodes. As a consequence, these files can be very large in size making storage 

and manipulation difficult.  
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Movement script 
MovX-XX.txt 
 

Communications 
Script 
CbrXX-X-X-X.txt 

ns-2.exe 
simulator

Trace File 
XXD-xx-A-x-x.tr

Nam File 
XXD-xx-A-x-x.nam

Control Script  
XXDSR-xx-AODV-x-x.tcl 

Figure 3 indicates the process flow used in running the simulations. As indicated, 

movement and communications script files were loaded by the control script. The control 

script was then interpreted by the ns-2 simulation program. The results of the simulation 

were output into two files, specifically, the nam and trace files.  

Figure 3. Processing of control scripts  

Trace files contained the most detailed information and served as the primary 

source of data used to obtain results from which average data packet throughput and 

average end-to-end delay was calculated. Direct evaluation of the data contained within 

trace files was problematic given the volume of information and the cryptic nature of the 

entries. Consequently, additional processing of the trace files using auxiliary programs 

and scripts was necessary to obtain usable information. 

 One of the programs used to evaluate the trace files was Tracegraph. Tracegraph 

was developed by Malek (2003) specifically for the analysis of ns-2 trace files. 

Tracegraph provided a wide array of information including graphs based on the data 

present in the trace files. However, the program proved too cumbersome in extracting the 

specific data required for this research. As a consequence, Tracegraph was used primarily 

for validating the data derived from programs written by the author.  
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 One of the primary tools developed by the author for processing ns-2 trace files 

was A-stat. A-stat was written in awk, a Unix scripting language developed by Aho, 

Weinberger, and Kernighan (Dougherty & Robbins, 1997). A-stat processed the 

structured data of the trace files and extracted information such as the number of data 

packets sent and received by each node, the time sent and the time received, and whether 

the packet arrived successfully or was dropped in transit. The number of sent and 

received packets formed the basis for the data packet delivery ratio or throughput, while 

the send and receive times were used to calculate the end-to-end delay or latency. A copy 

of the A-stat program is presented in Appendix I. An abbreviated example of the output 

text file from the A-stat program is shown in Appendix J. 

 The text output of each run of the A-stat program was imported into Microsoft 

Excel spreadsheets. The spreadsheets enabled easy manipulation and presentation of the 

data and featured statistical tools used for data analysis. In addition, Microsoft Excel 

provided graphing tools for graphically representing the data in the form of figures 

presented in this report. 

 

10 Node Series Results 

 A total of 48 ns-2 traces constituted the data set used to develop average data 

packet throughput and end-to-end delay in the 10 node series. A baseline was established 

with four simulation runs in each of the four velocities. Each baseline consisted of two 

runs for pure AODV environments and two for pure DSR environments consisting of 10 

nodes each. After the baselines were established, additional data traces were created 

substituting the target protocol nodes for the subject protocol nodes while maintaining a 

total of 10 nodes. For example, the baseline of 10 AODV nodes had 2 ADOV nodes 
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replaced with 2 DSR nodes creating an environment with 8 AODV and 2 DSR nodes. 

This process was repeated until all of the AODV nodes were replaced with DSR nodes 

leaving an environment of 10 DSR nodes. The accumulated raw results of this series of 

simulations are displayed in Appendix K. 

 As discussed, each data series was run twice with the results averaged to remove 

any effects that might result from the ordered assignment of specific protocols to 

individual nodes. The results of these paired runs were averaged to produce the results 

displayed in Figure 4. The horizontal or x axis indicates the protocol mix with A as the 

AODV protocol and D as the DSR protocol. The number following the A or D indicates 

the number of nodes assigned to that protocol.  
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Figure 4. 10 node average data packet throughput percentage 

Analysis of the data revealed a general decrease in the average data packet 

throughput percentage as the mix of subject and target protocols increased. As noted in 

the Figure 4 graph, the throughput baseline percentage as indicated by the first and last 
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data points of each line decreased at lower velocities and conversely increased at higher 

velocities. For example, at 4 fps the baseline values represented by the first and last 

points on the topmost line were nearly 100% indicating that very few data packets were 

dropped. Conversely, at the 1 fps velocity, the baseline values were close to 50% 

indicating that almost half of the data packets were dropped in the non-mixed 

environment. The velocities of 2 fps and 3 fps fell between these extremes. 

 A statistical analysis of the baseline values for each velocity was performed using 

a confidence level of 95% or an alpha value of .05. The results are presented in Table M1 

in Appendix M. The left legend of Table M1 in Appendix M indicates the velocities in 

fps. The mean, standard deviation (SD), standard error of the mean (SEM), and the high 

and low limits were calculated. The SEM was calculated using the standard statistical 

formula: SEM =
s

x σ
± , where x  is the absolute value of the mean, σ is the standard 

deviation, and s is the sample size. In each case, the sample size was 2. The mean and 

standard deviation varied with each data set. The SEM was added to the mean to obtain 

the high limit and subtracted from the mean to obtain the low limit. The high and low 

values constituted the confidence interval used for evaluating the mixed protocol average 

packet throughput percentage. Values within the confidence interval were assumed to be 

a random occurrence or due to chance. Values outside of this range were considered 

significant from a statistical standpoint given the confidence level of 95% in this instance.  

 Average values from each of the additional data runs were compared against the 

high and low values for each of the four velocities. Significance was determined by 

evaluating each data point gathered from the test series against the high and low limit 

values or confidence interval using an Excel spreadsheet. The general format of the Excel 
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formula was =OR(data =>High,data<=Low). Where the data fell outside the high and low 

values, the formula returned TRUE, otherwise the formula returned FALSE. The results 

were compiled in Table M2 of Appendix M. In each case, the numeric measured results 

were well below the minimum or low limit values computed at the 95% confidence level.  

These data indicated that significant degradation occurred as populations of 

AODV and DSR nodes became increasingly mixed. As populations approached either all 

AODV or all DSR populations, the number of dropped data packets decreased, thereby 

increasing the average data packet throughput percentage. The left column in Table M2 

of Appendix M indicates the mix of protocols. For example, A2-D8 indicates a mix of 2 

AODV nodes and 8 DSR nodes. The data columns are arranged by velocity. The (T/F) 

next to each of the numeric data elements indicates the result of the confidence interval 

evaluation where (T) is true indicating statistical significance and (F) is false indicating a 

lack of significance or a probable random occurrence. In these results, all measured 

values were outside the expected limits of random occurrences.  

 Average latency or end-to-end delay was evaluated through the same process that 

was used to evaluate throughput. Throughout each data run, data packet send and receive 

times were accumulated and averaged as the simulation ended. An overview of the data 

obtained is summarized in Figure 5. The lines represent the four velocities tested. The 

horizontal or x axis indicates the protocol mix while the vertical or y axis shows the 

average end-to-end delay or latency in milliseconds. As with the throughput evaluation, a 

baseline was established using four data points from the data runs consisting of all 

AODV on the right and all DSR nodes on the left. The average of the AODV and DSR 

baseline data was represented by the end points of each line.  
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Figure 5. 10 node average end-to-end delay 

The baseline averages expressed in milliseconds were used to establish the mean, 

standard deviation, SEM and high and low limits following the same process as the 

throughput evaluation. The results are indicated in Table M3 of Appendix M. 

 The high and low limits or confidence interval were calculated using the same 

process as the average throughput percentage calculations. These limits were applied 

through an Excel spreadsheet using the same evaluation formula previously described 

with the results indicated in Table M4 of Appendix M. The columns are arranged by 

velocity with rows arranged by the protocol mix. Result of the confidence interval 

evaluation are indicated with a (T) for true or (F) for false. All numeric values are 

expressed in milliseconds. 

 An evaluation of the data showed a significant increase in the average end-to-end 

delay or latency as the mix of protocols increased. This result was most pronounced at a 

velocity of 1 fps. Results from simulations at higher velocities indicated a reduced delay 

effect. The delay remained significant in all cases except the 3 fps two AODV and eight 
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DSR node results. This anomalous finding resulted from the initial positioning of the two 

AODV nodes in close proximity at the beginning of the simulation, thereby causing very 

low delays. When these finding were averaged into the DSR delays, the result was a 

latency value that fell slightly under the upper limit of the confidence interval. 

 The overall results of the data analysis of the 10 node series of simulations were 

strongly supportive of the research hypothesis proposed by this the author. Evaluation of 

the simulation results using the 95% confidence level showed that there were significant 

differences in average throughput percentages and latency or end-to-end delay as the mix 

of protocols increased within this simulation environment.  

 

20 Node Series Results 

The second stage in this research involved execution of the series of 20 node 

simulations. Like the 10 node series, baseline values were established for each of the four 

tested velocities first using environments with 20 AODV nodes and no DSR nodes and 

then another using 20 DSR nodes with no AODV nodes.  

Programming bias resulted from the sequential assignment of specific protocols to 

specific node identifiers (IDs). For example, in the 20 node series with 10 DSR and 10 

AODV, the first 10 nodes would be assigned to operate using DSR with the second 10 

operated AODV. Node IDs were used by movement and communication script files. Both 

scripts created randomly distributed patterns which might produce more movement or 

communication within one group or the other. As a consequence, the data produced 

would be biased toward one group. Running the entire series twice while swapping the 

starting positions of DSR and AODV distributed any bias evenly. The results from each 

simulation using the same mix of protocols were then averaged to eliminate any bias.  
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Once the baselines were established, the replacement series of simulations were 

run starting with 2 AODV nodes and 18 DSR nodes at each of the four velocities. Next, 2 

DSR nodes were replaced with 2 AODV nodes, thereby maintaining a total of 20 nodes; 

and these simulations were re-run for each of the four velocities tested. This process 

continued until all nodes utilizing AODV were replaced with DSR nodes.  

As with the 10 node series, the entire sequence was repeated starting with 2 DSR 

nodes and 18 AODV nodes. In all, 88 simulations were run in the 20 node series. The 

results obtained from the AODV starting sequence and the DSR starting sequence was 

averaged. For example, the results of 2 AODV and 18 DSR nodes were averaged with 18 

DSR and 2 AODV node results. As discussed, this was necessary to eliminate any bias 

introduced by the assignment of protocols to specifically ordered nodes. 

The Figure 6 graph shows the overall results of the averaged data packet 

throughput percentage analysis for the series of 20 node simulations. The data packet 

throughput percentage is the ratio of received data packets and sent data packets. The x 

axis of the chart indicates the protocol mix with A representing the number of nodes 

assigned the AODV protocol and D the number of nodes assigned the DSR protocol. The 

y axis is the averaged data packet throughput ratio as a percentage. The four lines 

represent the four velocities that were tested in the simulations. 

The data represented in Figure 6 indicated a general decrease in the average data 

throughput percentage as the mix of protocols increased. In addition, there was some 

decrease in the average data throughput percentage as the velocity increased. Averaging 

the throughput percentages for 1 fps yielded 0.7964; at 2 fps the result was 0.7453, and 3 

fps and 4 fps yielded 0.6597 and 0.7341 respectfully. Observing differences in the 
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throughput percentage provided insight for evaluating the general effect of velocity as 

opposed to effects resulting from the protocol mix. While a linear relationship between 

velocity and average throughput was not obvious from an analysis, an observed trend 

toward reduced average data packet throughput as velocity increased was noted. Some 

variation in specific data points was expected due to the semi-random nature of the 

random waypoint model used in these experiments (Yoon, Lui, & Noble, 2003). As a 

consequence, direct observation of linear relationships was somewhat obscured by 

variations in position and velocities established within the random waypoint model. 
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Figure 6. 20 node average data packet throughput percentage 

 The author applied the same statistical analysis to the average throughput data 

obtained from the 20 node series of simulations that was used in the 10 node simulations. 

Table N1 of Appendix N shows the statistical values obtained through an analysis of the 

baseline simulation results of the 20 node series.  
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The confidence interval formed from the high and low limit values in Table N1 of 

Appendix N was applied to the simulation data obtained for each of the mixed 20 node 

protocol environments. Evaluations were made using the same formula already described 

using a 95% confidence level. The results of the extended analysis of the significance of 

the data are tabulated in Table N2 of Appendix N. The confidence interval evaluations 

for the 20 node simulations showed statistically significant results in all the mixed 

protocol node simulations as indicated by the (T) or true next to the numerical results. 

Results supported the hypothesis proposed by this author. 

Evaluation of the 20 node average end-to-end delays followed the same process as 

the throughput evaluation in both the 10 and 20 node series and the end-to-end analysis 

for the 10 node series. Table N3 of Appendix N reflects the statistical results obtained 

from evaluating the baseline series for each of the four velocities tested. Each of the four 

velocities tested are arranged by rows in Table N3 of Appendix N. 

 The confidence intervals indicated by the high and low limits in Table N4 of 

Appendix N were evaluated against the average end-to-end delay simulation results for 

each of the protocol mixes and each velocity in the 20 node series. The results are 

tabulated in Table N4 of Appendix N. Like the evaluation of the average data packet 

throughput percentage calculations of the 20 node series, the confidence interval 

evaluation of the average end-to-end delay revealed statistically significant differences 

indicated by the (T) next to the numerical results in all mixed node environments. 

 The mix of protocols is indicated in the far left column of Table N4 of Appendix 

N. The number of nodes operating AODV is indicated by an A followed by the number 

of nodes running AODV. Likewise, D represents nodes operating with the DSR protocol 
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followed by the actual number of nodes running DSR. All the values in Table N4 of 

Appendix N were measured in milliseconds. As in the previous 10 node average end-to-

end delay Table, the values presented are the averaged of results obtained from running 

two series of simulations.   

An analysis of data in Table N4 in Appendix N showed significant variation from 

the baseline data of the pure AODV and DSR environments. However, the relationship 

between the measured end-to-end delay and the protocol mix was not as clearly indicated 

as in the results for the 10 node series. Whereas the 10 node results showed clear 

increases in the end-to-end delay as the protocol mix increased, the 20 node results were 

both higher and lower than the high and low limits of the confidence level with little 

apparent relationship to the mix of protocols in the 1 fps results. Figure 7 shows the 

average end-to-end delay of the four velocities charted against the protocol mix.  

Figure 7. 20 node average end-to-end delay 
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 It is interesting to note that at higher velocities there was a tendency toward 

higher delays when the protocol mix was dominated by one protocol. The specific 

dominant protocol seemed to make little difference. As the protocol mix approached an 

equal mix of AODV and DSR nodes, however, the delay generally declined and became 

stable. These results appeared somewhat contrary to the 10 node series results. Based on 

an examination of the graphed results of the 10 node series, the author determined that 

the 1 fps velocity results indicated high delays as the protocol mix increased. Higher 

velocities in the 10 node series were less extreme. A comparison of the average baseline 

means for the 10 and 20 nodes series delays showed a 12% average decline in baseline 

delay in the 20 node series over the four velocities. Individual difference percentages 

were 8%, 12%, 22%, and 2% for velocities 1 fps through 4 fps respectively. 

 

30 Node Series Results 

The baseline data runs for the 30 node series were established using the same 

procedure that was used in the 10 and 20 node series. As with the previous series, there 

were four runs for each of the four velocities tested yielding 16 data points that were used 

to establish the baselines. These baseline data points also established the confidence 

interval which was then used to evaluate the subsequent data results. Table O1 of 

Appendix O details the analysis of the baseline data for average throughput for the 30 

node series. 

Following the development of the baseline data and the subsequent statistical 

analysis, the remaining series of simulations were run. In total, there were 14 additional 

simulations for each of the four velocities forming an additional 56 data sets. As with the 
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previous 10 and 20 node series, these simulations were run twice and the results were 

averaged together. These results are presented in Table O2 of Appendix O. As with the 

previous average throughput analysis tables, the (T) next to the numerical value indicates 

probable statistical significance with (F) indicating a lack of significance. As with the 

previous evaluation, a confidence level of 95%, or an alpha value of .05 established the 

confidence interval used in these evaluations. The same formula was used that was 

employed for the 10 and 20 node series. 

The average throughput percentage data is represented graphically in Figure 8. In 

comparison to the previous graphs, the representation of the 30 node data showed 

significant flattening in the graphed results. This outcome was a continuation of the trend 

evident in the differences observed by the author between the 10 node and 20 node 

throughput series. As noted, there was a tendency toward flattening as the number of 

nodes and the velocity increased. 
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Figure 8. 30 node average data packet throughput percentage 
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 While the results from the data analysis remained consistently significant for 

velocities of 1, 2, and 3 fps, at 4 fps, two of the 16 data measurements failed to show 

significance. Both of the readings that failed to show significance occurred in a dominant 

protocol mix where there were only four nodes of the target protocol. An examination of 

the graph indicated that the throughput percentage decreased as the mixed protocol 

environment increased. However, the decline in throughput percentage was less apparent 

when one protocol dominated the environment.  

 The statistical analysis of the end-to-end delay or latency of the 30 node series 

followed the same process that was used in the preceding evaluations. The results of the 

analysis for the baseline simulation results are shown in Table O3 of Appendix O.  

 This analysis of the end-to-end delay showed higher average delays for both the 1 

fps and the 4 fps baseline series. In addition, the standard deviation was higher, thus 

resulting in wider confidence intervals. As a consequence, Table O4 of Appendix O 

indicates that some data points fell within of the 95% confidence interval. In contrast to 

the 10 and 20 node series, the average delay for the 30 node series showed a considerable 

reduction in delay times. Whereas a 15% overall decrease in average end-to-end delay 

was identified from the 10 to the 20 node simulations, a 49% improvement was observed 

when comparing the 30 and 20 node series. This improvement was the result of the 

increased density of the nodes. With the greater the node density, a greater probability 

existed of sending nodes finding a suitable path to the receiving nodes through nodes 

operating with the same protocol (Lo, Liu, & Chen, 2004). The measured results are 

presented in Table O4 of Appendix O. All values are indicated in milliseconds. 
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  The far left column in Table O4 of Appendix O showed the mix of protocols with 

an A indicating AODV and D indicating DSR. A and D are followed by the number of 

nodes for each protocol. For example, A28-D2 means that there were 28 AODV nodes 

and 2 DSR nodes in the simulation environment. In each case, 30 nodes were used for 

this experimental series. The results of the confidence interval evaluations showed the 

majority of readings remain significant at the 95% confidence level.  

Figure 9 demonstrates the relationship between the average end-to-end delay and 

the protocol mix for each of the four velocities tested in the 30 node series. While there 

was less correlation of statistically significant delays in relationship to the protocol mix, 

there was a significant improvement in the overall average delays in comparison to the 10 

and 20 node series. The graph also indicated that the delay values were in a narrower 

range in comparison to the 10 and 20 node series. 
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Figure 9. 30 node average end-to-end delay 
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Findings 

 The data obtained through the simulations supported the hypothesis proposed by 

this researcher and allowed rejection of the null hypothesis. The data indicated that there 

were significant differences in data packet throughput and end-to-end delay or latency 

averages in mixed AODV and DSR ad hoc routing protocol environments as opposed to 

environments with only one of these protocols. The differences observed generally 

increased as the mix of protocols increased and diminished when the majority of nodes 

operated with either one of the protocols.   

Both the average data packet throughput and the average end-to-end delay results 

were most pronounced when node densities were low and when velocities were low. As 

node density and velocity increased, average data packet throughput percentages 

remained consistently significant until the 4 fps 30 node series. At 4 fps, the 30 node 

series showed two of the 14 data points fell within the 95% confidence interval while the 

remaining 12 remained significant  

A general narrowing of the range of graphed data was observed as node density 

and velocity increased. This result indicated that the observed differences in average data 

packet throughput and delay, while remaining significant through the experimental series, 

diminished in the intensity of the effect. One method of characterizing this effect was by 

evaluating the percentage change or range of the average data throughput percentage. 

The average data packet throughput percentage graphs revealed a relative 

narrowing of the range of the throughput percentage values as the velocity increased 

within each of the series of experiments. For example, in the 10 node series, the 1 fps 

average data packet throughput percentage range varied from a high of 55.8% to a low of 
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3.3%, thus yielding a range of 55.8%. In contrast, at 4 fps, the 10 node series highest 

percentage was 98.2% with a low of 64.8%, thus making the range 33.4%. In the 30 node 

series, the 1 fps high percentage was 98.0% and the low was 86.1%, thereby creating a 

range of 11.9%. The 30 node 4 fps high percentage was also 98% with a low of 85%, 

thus yielding a range of 12%. Ranges for the 20 node series fell between the 10 and 30 

node figures.  

An examination of the average data throughput means further underscores the 

significance of this result. The 10 node series data packet throughput percentage average 

of the means was 0.7686 indicating that on average 23.14% of the data packets were 

dropped in transit. This finding was in stark contrast to the 0.53% and 1.47% dropped 

packet rate of the 20 and 30 node series respectively. In sparse node environments, many 

packets were dropped when receiving nodes were out of range of either the sending or 

relaying nodes (Al-Shurman, Yoo, & Park, 2004). As the data indicated, this problem 

was diminished as the node density increased.  

Lo, Liu, and Chen (2004) indicated that environments with low node densities 

reduced the probability of connected pairs and thus increased the likelihood of dropped 

packets. These researchers also indicated that increasing the velocity of a mobile node 

produced a similar result. As node density increased, the probability of connections 

increased, thereby effectively reducing the number of dropped packets. Williams and 

Camp (2002) also noted that node density was a major factor in the performance of ad 

hoc routing algorithms with poor relative performance at low densities. The observed 

overall flattening of the data ranges obtained through the 10, 20 and 30 node series 



116
  

simulations in this investigation can be explained by the increasing probability of 

successful transmissions due to the increased density of nodes. 

 Latency or end-to-end delay was significantly different through the 10 and 20 

node series of simulation. In the 30 node series, however, some instances occurred where 

the data failed to show significant differences from probable random occurrences. For 

example, in the 30 node 1 fps and 2 fps series of 28 simulations, 6 results failed to show 

significant readings. The 3 fps series had only two data points that were not significant. 

By contrast, in the 4 fps 30 node series, 5 of the 14 data points failed to prove significant 

at the 95% confidence level.  

 The author determined that the end-to-end delay improved as node density 

increased. The 10 node series showed an overall average delay of 328 milliseconds 

through the four velocities. The 20 node series showed a drop to 288 milliseconds. The 

30 node series dropped to only a 141 milliseconds average end-to-end delay through the 

four velocity series. These results were consistent with the operation of the DSR and 

AODV protocols. Both DSR and AODV protocols determined the routes to send data 

packets on demand. Routes were cached once they were determined, thereby reducing the 

need to continually re-discover the paths (Prakash, 2001). As noted, in environments with 

dense node populations, the number of possible paths or connections to a destination 

increased along with the number of nodes that possessed transit information (Al-

Shurman, Yoo, & Park, 2004).   

 The reduction in observed overall end-to-end data packet delay as node density 

increased was consistent with the results presented in the work of Abolhasan and 

Wysocki (2003) and Al-Shurman et al. (2004). As with throughput, end-to-end delay was 
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reduced as node density increases. The data showed that the greater the node density in 

these test environments, the greater the number of possible nearby nodes with paths to a 

destination. Consequently, the requirement for path discovery was reduced and a higher 

probability of multiple paths leading to reductions in end-to-end delay was observed.  

 Throughout this research, significant differences in the measured end-to-end delay 

were attributed to the mixed protocol environment. As with the throughput analysis, the 

delay analysis showed a stronger correlation in the node density simulations consisting of 

10 and 20 nodes. In the 30 node simulations, several measurements failed to show 

significance. This outcome was most pronounced at 4 fps where 5 of the 14 data points 

failed to show significance.  

 

Summary 

 This chapter began with a detailed examination of the process leading to the 

execution of the experimental simulations. A discussion of the programs and scripts that 

were necessary to perform the experiments was presented. The function of each program 

and script was explained. In addition, an explanation of the programs that were required 

to analyze the data produced through the simulations was provided. A discussion of the 

execution of the simulations followed.  

 The chapter continued with an examination of the results of the 10 node series of 

simulations. The results of this series of experiments clearly indicated significant 

differences in both average data packet throughput and end-to-end delay in a mixed 

protocol environment. Outcomes supported the research hypothesis and allowed the null 

hypothesis to be rejected. The results also revealed a relationship between the average 
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data packet throughput and the velocity. Specifically, higher velocities improved the 

baseline throughput percentage and narrowed the range of results.  

 Next, the results of the 20 node series of simulations were discussed. Like the 10 

node series, the average data packet throughput and end-to-end delay results of the 20 

node simulations remained significant and were strongly supportive of the research 

hypothesis allowing rejection of the null hypothesis. The trend toward narrowing of the 

data range as a result of node density was discussed. It was noted that with the 20 node 

density in the 1000 foot by 500 foot environment, the number of dropped data packets 

declined significantly over the 10 node series. In addition, a decline in the end-to-end 

delay was observed. However, in terms of the average data packet throughput and the 

average end-to-end delay, the mixed protocol environment data showed statistically 

significantly differences from the baseline data.  

 A discussion of the 30 node series of simulations followed. It was noted that there 

was a continuation of the narrowing of the data range as a result of higher node densities. 

While the majority of data points remained significantly different through most of the 

series, there were points that failed to show significance especially at the 4 fps velocity.  

 Lastly, the findings of the research were discussed in detail. Findings supported 

the research hypothesis that differences exist in average data packet throughput and end-

to-end delay in mixed protocol versus single protocol environments. The data supported 

rejection of the null hypothesis. A detailed examination of the outcomes revealed direct 

relationships between the mix of protocols and the differences in average data packet 

throughput and average end-to-end delay from the baseline values. These differences 

were in addition to those produced by node density and node velocity. 
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 Differences in the baseline values for each of the series of simulations were 

examined and found to be the result of the effect of node density and velocity. These 

results were consistent with previous findings (Abolhasan & Wysocki, 2003; Al-Shurman 

et al., 2004; Prakash, 2001; Lo et al., 2004). The simulation results were evaluated and 

shown to have significance in consideration of the effects of node density and velocity. It 

was noted however that at the highest node density and velocity tested in this research, 

instances occurred where individual readings did not prove to be significant. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

 The data in these simulations supported the conclusion that there were statistically 

significant differences in the average data packet throughput and end-to-end delay in 

mixed wireless ad hoc AODV and DSR routing protocol environments as compared to 

single AODV or DSR routing protocol environments. The data also indicated that the 

measured delay increased as the protocol mix increased and conversely decreased as the 

protocol mix decreased. Node density and node velocity were significant factors in 

average data packet throughput and end-to-end delay as revealed by comparing the 

baseline values in the simulations. However, the mix of wireless ad hoc routing protocols 

produced significant results beyond those accounted for by velocity and node density in 

this series of simulations. The observed variance in throughput and end-to-end delay not 

attributed to velocity and node density were the result of protocol interaction in the mixed 

protocol environment. 

 The data supported rejection of the null hypothesis which stated that there would 

be no difference in delay and packet throughput between single protocol environments 

and mixed protocol environments. Moreover, the data also revealed that the effects on 

throughput and end-to-end delay in AODV and DSR ad hoc routing protocol 

environments diminished as node density and velocity increased regardless of the 
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protocol mix. In sparse environments, high percentages of packets were dropped 

primarily because of a lack of transfer or receiving nodes. In these simulations two 

probable causes were identified. Specifically, no node was within range to receive a 

packet from the transmitting node or the node within range was operating with a different 

routing protocol and therefore unable to recognize the packet. In either case, the packet 

was dropped.  

 An increase in the velocity of nodes also increased the probability of a 

transmitting node reaching a suitable receiver even in sparse environments. This outcome 

was evident in the 10 node baseline results where throughput at 1 fps was nearly 50% 

while at 4 fps throughput was nearly 100%. By doubling the node density to 20 nodes the 

positive effect obtained from increasing velocity was obscured as indicated by the 

baseline throughput values of nearly 100% for pure AODV and DSR protocol 

environments at all velocities. Similarly, this outcome was observed at 30 node series of 

simulations where baseline throughput was nearly 100% in all velocities tested. It is 

likely that these effects were independent of the ad hoc routing protocols implemented; 

however, proof of the relationship between throughput, velocity, and node density and 

additional routing protocols requires additional experimentation outside the scope of this 

research.  

Mobile software agents were investigated as a possible method of mediating 

communications between different ad hoc routing protocols and improving throughput 

and end-to-end delay in multi-protocol environments. In this inquiry, the agent could act 

as a third protocol layer taking requests from both protocols in the environment and 

providing the expected return for the sending protocol as well as forwarding on packets. 
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In this instance, the agent would not need to self-replicate frequently and transferring new 

protocols among nodes would not be required. The use of an agent translation layer was 

expected to increase the control packet overhead (Arabshahi et al., 2001; Wooldridge, 

2002). 

An examination of the literature indicated that mobile agents are typically used in 

situations were traditional ad hoc routing protocols fail to perform effectively (Baran & 

Sosa, 2001; Günes et al., 2002). Agent technology used to improve network efficiency in 

terms of throughput and delay had limited success (Wedde et al., 2005). In this 

investigation, the observed opportunity for significant improvements in throughput and 

delay diminished rapidly as node density and velocity increased. As a consequence, 

application of agent technology would be effective only in low density and low velocity 

environments. Based on the limited success producing significant improvements in 

throughput and delay using agent technology (Wedde et al., 2005), the author determined 

that an agent technology layer would not increase efficiency in the environments tested in 

this investigation.  

 

Implications 

 Results from these experiments indicated that mixed AODV and DSR wireless ad 

hoc routing protocol environments experienced degradation in data packet throughput 

and end-to-end delay. Degradation was most pronounced in sparse, low velocity 

environments consisting of a mix of protocols. As node velocity or node density 

increased, the negative effects of mixed node protocol operations diminished. 
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 In terms of throughput and delay, observed results from this series of experiments 

imply that multi-protocol environments consisting of relatively dense populations of 

nodes can operate effectively as distinct, separate networks without communication 

between the different protocol populations. Protocol interaction and the hidden terminal 

problem reduce throughput and increase delay overall, however, these effects were 

observed to diminish as node density and velocity were increased. In this investigation, 

high density and high velocity multi-protocol node populations approach the operational 

effectiveness of single protocol populations.  

 Results indicate that ad hoc networks in environments such as large conferences 

or battlefields can operate efficiently with different ad hoc routing protocols provided 

communication between the different populations is not required. For example, 

conference participants from France could establish an ad hoc network using the DSR 

protocol while participants from Germany could use AODV. The efficiency of 

communication within each group would vary with the individual population density as 

well as the average velocity of the nodes. Communications between populations of nodes 

operating DSR and AODV in this example would require the implementation of a 

bridging technology. Haung et al. (2004) described a two tiered system for bridging 

mobile and fixed wireless. A similar system could also serve to bridge two mobile 

populations of differing protocols. 

 

Recommendations 

The author examined mixed populations of AODV and DSR ad hoc routing 

protocols and their effect on throughput and end-to-end delay. Analysis of results 
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indicated that varying the number of nodes and the node velocity while using the random 

waypoint model did not completely isolate the effect of protocol mix on throughput and 

end-to-end delay. While the results clearly indicated that the mix of protocols did have an 

adverse effect on throughput and end-to-end delay, node density, velocity, and node paths 

also had an effect. Future simulations designed with static environments or highly 

structured movement patterns could eliminate the indeterminate effect of movement and 

position produced by the random waypoint movement model.  

  The author examined the effect of pairing of two of a wide variety of available 

wireless ad hoc routing protocols. The two protocols utilized in this research, AODV and 

DSR were both on demand protocols. Additional research pairing different available 

protocols including combinations of on demand protocols, proactive, and hybrid 

protocols may result in more efficient multi-protocol environments. Experiments creating 

more complex environments with more than two wireless ad hoc routing protocols could 

simulate more realistic real world situations. 

Researchers investigating heterogeneous ad hoc networks utilize the power and 

range of fixed wireless stations to bridge dissimilar networks (Haung et al., 2004). Future 

development in this area of research could also serve to bridge wireless ad hoc networks 

operating different routing protocols. Software agents represent another potential 

technology that could be used to bridge networks operating different protocols. Although 

agent technology had limited opportunity to improve throughput and delay in this 

investigation, environments operating different protocols may offer more potential for 

improvement. 
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 While revealing improvements in end-to-end delay and throughput as node 

density and velocity increased, this investigation was not designed to fully characterize 

these effects. Additional research may reveal limits to improvement or degradation in 

delay and throughput as either node density or velocities reach specific thresholds. 

Additional research may determine that delay and throughput improvements vary 

substantially depending on the protocols being tested. 

 Finally, the author focused on a mixed protocol network using an 802.11b 

WLAN. Additional experimentation using 802.11a, 802.11g, or the new 802.11n 

extension may produce different results. 

 

Summary 

 The IEEE 802.11 standards for WLANs specify two operating modes, 

infrastructure-based and ad hoc. Infrastructure-based IEEE 802.11 WLANs require a 

wired component to support discovery, routing, and connectivity management for the 

wireless nodes. Infrastructure-based WLANs are a common feature in today’s connected 

society. Products supporting the IEEE 802.11a/b/g extensions are readily available and 

businesses providing wireless connectivity for their customers are commonplace. 

Wireless ad hoc networks, based on IEEE 802.11 standards are less common. Wireless ad 

hoc networks, also called mobile ad hoc networks or MANETs are able to form and 

operate without a wired infrastructure. As a consequence of a lack of wired infrastructure, 

each device operating in an ad hoc network must have discovery, routing, and 

connectivity management capabilities. These capabilities are typically the domain of the 

routing protocol.  
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 Ad hoc routing protocols are an active area of research (Abolhasan et al., 2004; 

Choudhury et al., 2004; Mochocki & Madey, 2005). The difficulties associated with 

MANETs such as discovery, connectivity management, power conservation, node adds 

and drops due to mobility, and security are formidable (Al-Shurman et al., 2004; Lo et 

al., 2004). As a consequence, many ad hoc routing protocols were introduced in the past 

decade. Increasingly, researchers such as Viswanath and Obraczka (2002) and Boleng et 

al. (2002) have determined that single routing protocol solutions able to operate 

effectively in many different ad hoc environments are unlikely. As a consequence, 

heterogeneous environments consisting of nodes operating multiple protocols are 

probable.  

Research on heterogeneous networks is an emerging field of study (Bhargava et 

al., 2004; Cordeiro et al., 2004; Xu & Gerla, 2002). Previous research on ad hoc routing 

protocol performance focused on single protocol environments (Xu & Gerla, 2002). In 

this investigation, the author examined the effect multiple ad hoc protocols operating in 

the same environment had on throughput and end-to-end delay, two factors often used to 

determine network efficiency (Marina & Das, 2001; Lee et al., 2002; Lin et al., 2004).  

 The complexity of creating a test environment consisting of 30 or more wireless 

ad hoc devices was cost prohibitive for this investigation. As a consequence, simulation 

was selected to develop the data for multi-protocol environments. Simulation is often 

used by ad hoc routing protocol researchers such as Denko (2003); Hu et al. (2002); 

Viswanath and Obraczka (2002), and Wedde et al. (2005). Several simulators were 

examined including ns-2, GloMoSim, and ANSim. The ns-2 simulator was selected based 

on its broad acceptance by the research community, ability to operate on the computer 
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systems used by the author, and its cost-free availability to the research community. 

Although ns-2 was initially designed to simulate homogeneous networks, the author 

determined that multi-protocol heterogeneous networks could be simulated using ns-2 

scripts.  

 An extensive literature search examining and documenting the historical 

foundations and current state of the art in ad hoc networks was presented in chapter 2. 

WLAN technologies and standards including infrared, narrowband ultra high frequency, 

IEEE 802.11a/b/g/n, IEEE 802.15, IEEE 802.16, HIPERLAN/1, HIPERLAN/2, and 

HomeRF were examined in this chapter.  

 Different approaches used to classify mobile ad hoc routing protocols were 

investigated as well. The proactive, reactive, hybrid, and agent-based classifications were 

discussed and representative examples of ad hoc routing protocols from each class were 

described. Software agents were researched as a possible technology to improve 

performance in multi-protocol ad hoc networks since these software agents have been 

applied successfully in wireline networks (Arabshahi et al., 2001; Denko, 2003). As a 

consequence of their ability to perform complex tasks using simple rules, software agents 

based on biological systems such as ants and bees were of particular interest in 

supporting route discovery and maintenance (Baran & Sosa, 2001; Wedde et al., 2005).  

 The significance of simulation in ad hoc routing protocol research was examined. 

Researcher such as Abolhasan et al. (2004); Kim et al. (2004); Lo et al. (2004), and 

White et al. (2003) used simulation to evaluate the performance of new ad hoc routing 

protocols. In addition, researchers such as Boukerche (2004); Camp et al. (2002), and 
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Draves et al. (2004) used simulation to compare and contrast performance of existing 

protocols.  

 Chapter 3 described the methodology used in this investigation. The author 

designed experiments to expose potential variations in throughput and delay in multi-

protocol environments. Simulation was selected as the means of generating the data 

required. After an extensive review of the literature, the author used DSR and AODV in 

this investigation. The selection of DSR and AODV was based on the availability of 

performance data from prior studies and the inclusion of DSR and AODV in the standard 

suite of protocols in ns-2 (Garcia-Luna-Aceves et al., 2003; Wedde et al., 2005). 

 The author used a flat, featureless topography containing populations of nodes 

operating the DSR or AODV protocols for experiments in this investigation. Populations 

consisting of 10, 20, and 30 total nodes were tested. In each total population, different 

numbers of nodes were assigned to use either the DSR or AODV protocol. For example, 

in the series of 10 total nodes, 2 nodes were assigned to operate with the DSR protocol 

while 8 nodes operated with the AODV protocol. The next experiment in the series then 

used 4 DSR nodes and 6 AODV nodes. The pattern was repeated in this series until all 10 

nodes used the AODV protocol. The experiments were repeated reversing the assignment 

order and the results were averaged. 

 The random waypoint mobility model was used in this investigation to simulate 

node movement at velocities of 1 fps, 2 fps, 3 fps, and 4 fps. According to Loon et al. 

(2003), the random waypoint model is the de facto standard for developing mobility 

patterns in mobile computing research. Each series of 10, 20, and 30 node experiments 
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were repeated at the four velocities indicated. Finally, research assumptions and the 

resources required for this investigation were discussed.   

 Results from this investigation were presented in chapter 4. Details of the 

processes followed in developing the scripts necessary to run the experiments were 

described. In addition, the function of each script was indicated. Examples of the scripts 

and programs developed by the author for this inquiry are featured in Appendices B 

through I.  

The accumulated data on throughput and delay were presented graphically for 

each of the three populations tested. Results from the 10 node series of experiments 

showed that mixed populations of nodes operating DSR and AODV protocols had 

degraded throughput and delay as opposed to either all DSR or all AODV populations. 

Results from the 20 and 30 node series of experiments also showed significant declines in 

throughput and delay as a result of the mixed populations.  

In addition, the author observed improvements in throughput that were the result 

of increased node velocity and node density. Specifically, as node velocity increased, 

throughput and delay improved. This finding was most apparent when observing the 

baseline values for both throughput and delay in the 10 node series. In the 10 node series, 

nodes moving a 1 fps dropped almost half of the transmitted packets. At higher velocities, 

the throughput was dramatically improved.   

A statistical analysis of the results was performed. The analysis indicated that 

mixed protocol environments negatively impacted throughput and delay. As a 

consequence, the null hypothesis presented in chapter 1 was rejected. The data supported 
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the hypothesis that there would be significant differences in throughput and delay 

between single protocol environments and multi-protocol environments. 

 Chapter 5 began with a discussion of the conclusions derived from this series of 

experiments. It was found that the outcomes from the simulations supported the research 

hypothesis. The hypothesis stated that there would be significant differences in data 

packet throughput and end-to-end delay between environments consisting of a single 

wireless ad hoc routing protocol and environments with two wireless ad hoc routing 

protocols. Experimental outcomes clearly indicated reductions in data packet throughput 

and increases in end-to-end delay as a result of the mixed protocol environment.  

The significance of node density and velocity on throughput and delay was 

subsequently examined. Outcomes from this investigation indicated that increases in 

node density and velocity had a positive impact on the measured end-to-end delay and 

throughput within the constraints of this set of simulations. However, negative impacts on 

throughput and delay as a result of protocol interaction in the mixed environment 

remained significant. 

 The author then examined implications of the findings. While the data showed 

significant degradation in throughput and delay as a result of the mixed protocol 

environment, node density and velocity tended to moderate the effect. At higher levels of 

node density or at high velocities, both throughput and delay improved significantly. As a 

consequence of the limited opportunity for improvement to throughput and delay in this 

investigation, introduction of a mediating mechanism such as agent technology was not 

required.  



131
  

 Recommendations and suggestions for future experiments completed the chapter. 

Researchers Lundgren et al. (2006) found that limitations exist in both wireless 

simulation and  testbed environments. Experiment design and monitoring can produce 

unexpected effects requiring modification of the experimental environment (Lundgren et 

al.). Findings from this investigation also indicated improvements to the design of the 

experiments. As a consequence, the author recommended additional experiments pairing 

more diverse wireless ad hoc routing protocols as an area of future research. In addition, 

the author recommended modifying experimental parameters such as using a static 

environment rather than a dynamic random waypoint model and proposed conducting 

experiments structured with more than two wireless ad hoc routing protocols. The author 

also recommended conducting additional experimentation using fixed wireless as a 

mediating mechanism bridging dissimilar mobile networks. 

 The findings from this investigation add to the current research efforts in wireless 

ad hoc networks in several ways. First, the author builds upon the work of researchers 

such as Al-Shurman et al. (2004), Choudhury et al. (2004), and Samar et al. (2004) by 

providing quantitative data on ad hoc routing protocol performance in a multi-protocol 

environment. In addition, the author has introduced a scripting technique whereby ns-2, 

originally designed for single protocol simulation, can simulate multi-protocol 

environments. This provides an additional tool for heterogeneous network researchers 

using ns-2 such as Abolhasan et al. (2004), Ge et al. (2005), Huang et al. (2004), and 

Mochocki and Madley (2005). Finally, a significant finding of this investigation is that 

multi-protocol environments can function effectively as independent networks given 

sufficient node density and velocity.   
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Appendix A 
 

Definitions of Acronyms  
 
Acronym Definition 
 
3GSM   Third Generation Global System for Mobile Communications 
ACM   Association for Computing Machinery 
TDM   Time Division Multiplexing 
AODV  Ad hoc On-demand Distance Vector 
AMRIS  Ad hoc Multicast Protocol Utilizing Increasing Identity Numbers 
AMRoute  Ad hoc Multicast Routing Protocol 
ANSim  Ad hoc Network Simulator 
AP   Access Point 
ARA   Ant Colony Based Routing Algorithm 
ARPANET  Advanced Research Projects Agency Network  
ATM   Asynchronous Transfer Mode  
BANT   Backward Ant 
BSS   Basic Service Set 
CAMP  Core-assisted Mesh Protocol 
CCK   Complementary Code Keying 
CEDAR  Core Extraction Distributed Ad hoc Routing 
CHAMP  Caching and Multi-path Routing Protocol 
CMA   Clustering Mobile Agent 
CMU   Carnegie Mellon University 
CSMA/CA  Carrier Sense Multiple Access with Collision Avoidance 
CSMA/CD  Carrier Sense Multiple Access with Collision Detection  
DCF   Distributed Coordination Function 
DDR   Distributed Dynamic Routing Algorithm 
DIR   Dynamic Incremental Routing 
DREAM  Distance Routing Effect Algorithm for Mobility 
DSDV   Direct Sequenced Distance Vector 
DSR   Dynamic Source Routing  
DSSS   Direct Sequenced Spread Spectrum 
DTZR   Dynamic Zone Topology Routing Protocol 
FANT   Forward Ant 
FCC   Federal Communications Commission 
FHSS   Frequency Hopping Spread Spectrum 
FSR   Fisheye State Routing 
GEDIR  Geographic Distance Routing 
GFSK   Gaussian Frequency Shift Keying 
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Acronym Definition 
 
GHz   Gigahertz 
GloMoSim  Global Mobile Simulator 
GPRS   Greedy Perimeter Stateless Routing 
GPS   Global Positioning System 
GSR   Global State Routing 
HARP   Hybrid Ad hoc Routing Protocol 
HIPERLAN  High Performance Radio Local Area Network 
HOLSR Hierarchical Optimized Link State Routing 
HSR   Hierarchical State Routing 
IEEE   Institute of Electrical and Electronic Engineers 
IP   Internet Protocol 
IR   Infrared 
IrCOMM  Infrared Communications Protocol 
IrDA   Infrared Data Association 
IrLAP   Infrared Link Access Protocol  
IrLMP   Link Management Protocol  
ISI   Information Science Institute 
ISM   Industrial, Scientific and Medical 
IT   Information Technology 
LAN   Local Area Network 
LANMAR  Landmark Ad hoc Routing 
LAR   Location Aided Routing 
LS   Location Service 
MAC   Medium Access Control 
MANET  Mobile Ad hoc Network 
MANSI  Multicast for Ad hoc Network with Swarm Intelligence 
MARP  Multi-agent Routing Protocol 
MFR   Most Forward with Fixed Radius 
MHz   Megahertz 
MPR   Multi-point Relay 
NEC   Nippon Electric Corporation 
ns-2   Network Simulator version 2 
NSU   Nova Southeastern University 
ODMRP  On-demand Multicast Routing Protocol 
OFDM  Orthogonal Frequency-division Multiplexing 
OLSR   Optimized Link State Routing 
OSI   Open System Interconnection 
PCF   Point Coordination Function 
PDA   Personal Digital or Data Assistant 
QoS   Quality of Service 
RMA   Routing Mobile Agent 
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Acronym Definition 
 
RREP   Route Reply 
RREQ   Route Request 
SD  Standard Deviation 
SEM  Standard Error of the Mean 
SHARP  Sharp Hybrid Adaptive Routing Protocol 
SPF   Straight Packet Forwarding 
SS   Spread Spectrum 
SWAP  Shared Wireless Application Protocol 
Tcl   Tool Control Language 
TCP   Transmission Control Protocol 
TORA   Temporally Ordered Routing Algorithm 
UCB   University of California Berkeley 
UHF   Ultra High Frequency  
UNII   Unlicensed National Information Infrastructure 
USC   University of Southern California 
WG   Working Group 
WHIRL  Wireless Hierarchical Routing Protocol with Group Mobility 
WLAN  Wireless Local Area Network  
WPAN  Wireless Personal Area Network 
WRP   Wireless Routing Protocol 
ZHLS   Zone-based Hierarchical Link State 
ZRP   Zone Routing Protocol 
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Appendix B 
 

Movement file: mov1-10.txt 
 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# Steady-state Random Waypoint Model 
# numNodes   =     10 
# maxX       =   1000.00 
# maxY       =    500.00 
# endTime    =    200.00 
# speedMean  =    1.0000 
# speedDelta =    0.5000 
# pauseMean  =      0.00 
# pauseDelta =      0.00 
# output     =      N 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# output format is NS2 
# Initial positions: 
$node_(0) set X_ 377.061589936636 
$node_(0) set Y_ 142.950025009604 
$node_(0) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(0) setdest 213.580172142750 337.332695181171 
1.044557786525" 
$node_(1) set X_ 428.222648469468 
$node_(1) set Y_ 311.078216077202 
$node_(1) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(1) setdest 467.113770296384 339.464847855021 
1.239701798020" 
$node_(2) set X_ 716.314995811274 
$node_(2) set Y_ 26.926685442366 
$node_(2) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(2) setdest 751.980183064928 3.176781117533 
0.924389606534" 
$node_(3) set X_ 550.474972651754 
$node_(3) set Y_ 136.376394336778 
$node_(3) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(3) setdest 314.189445839352 428.433692282268 
1.420711371202" 
$node_(4) set X_ 688.377959627763 
$node_(4) set Y_ 365.817681435573 
$node_(4) set Z_ 0.000000000000 
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$ns_ at 0.000000000000 "$node_(4) setdest 961.619300284246 498.728191013787 
0.989928157468" 
$node_(5) set X_ 840.866588309453 
$node_(5) set Y_ 211.150794404886 
$node_(5) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(5) setdest 922.182274946097 202.090946818744 
0.816870118728" 
$node_(6) set X_ 478.463605476334 
$node_(6) set Y_ 166.330734047208 
$node_(6) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(6) setdest 760.819041058803 239.259250340638 
0.762830684322" 
$node_(7) set X_ 904.733215141626 
$node_(7) set Y_ 461.986875504181 
$node_(7) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(7) setdest 505.783993055012 383.626181810920 
0.697878558850" 
$node_(8) set X_ 136.565695559339 
$node_(8) set Y_ 278.707067154826 
$node_(8) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(8) setdest 5.835372491663 75.647388154477 
0.544364311192" 
$node_(9) set X_ 381.566046394972 
$node_(9) set Y_ 114.617571092920 
$node_(9) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(9) setdest 228.945312662490 84.076566195151 
0.774320438426" 
# Movements: 
$ns_ at 243.155294820286 "$node_(0) setdest 213.580172142750 337.332695181171 
0.000000000000" 
$ns_ at 38.839128872981 "$node_(1) setdest 467.113770296384 339.464847855021 
0.000000000000" 
$ns_ at 38.839128872981 "$node_(1) setdest 385.990210988554 392.668717257990 
1.376636833361" 
$ns_ at 46.354168933199 "$node_(2) setdest 751.980183064928 3.176781117533 
0.000000000000" 
$ns_ at 46.354168933199 "$node_(2) setdest 779.594728620534 41.793385307208 
1.270500747380" 
$ns_ at 83.720741809237 "$node_(2) setdest 779.594728620534 41.793385307208 
0.000000000000" 
$ns_ at 83.720741809237 "$node_(2) setdest 181.313381614775 273.184748959348 
1.046847091777" 
$ns_ at 100.161375652251 "$node_(5) setdest 922.182274946097 202.090946818744 
0.000000000000" 
$ns_ at 100.161375652251 "$node_(5) setdest 758.362679629756 36.567062855031 
0.984820822945" 



137
  

$ns_ at 109.310751905800 "$node_(1) setdest 385.990210988554 392.668717257990 
0.000000000000" 
$ns_ at 109.310751905800 "$node_(1) setdest 411.490526707606 455.340557943723 
1.409657455939" 
$ns_ at 157.309014924890 "$node_(1) setdest 411.490526707606 455.340557943723 
0.000000000000" 
$ns_ at 157.309014924890 "$node_(1) setdest 384.659518201211 95.409220128976 
0.988870522235" 
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Appendix C 

 
Movement file: mov1-20.txt 

 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# Steady-state Random Waypoint Model 
# numNodes   =     20 
# maxX       =   1000.00 
# maxY       =    500.00 
# endTime    =    200.00 
# speedMean  =    1.0000 
# speedDelta =    0.5000 
# pauseMean  =      0.00 
# pauseDelta =      0.00 
# output     =      N 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# output format is NS2 
# Initial positions: 
$node_(0) set X_ 609.713953566970 
$node_(0) set Y_ 94.765015483578 
$node_(0) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(0) setdest 32.993479647205 62.798523373342 
1.435818447012" 
$node_(1) set X_ 503.629374976061 
$node_(1) set Y_ 271.798450680344 
$node_(1) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(1) setdest 483.239852582682 234.592109096512 
1.112178609515" 
$node_(2) set X_ 783.783162802574 
$node_(2) set Y_ 459.927193749873 
$node_(2) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(2) setdest 554.606046320221 467.129013718632 
0.515043772021" 
$node_(3) set X_ 693.932879391633 
$node_(3) set Y_ 187.304402171786 
$node_(3) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(3) setdest 894.838210611994 125.351898896206 
0.924290645610" 
$node_(4) set X_ 154.271257548765 
$node_(4) set Y_ 204.187443869336 
$node_(4) set Z_ 0.000000000000 
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$ns_ at 0.000000000000 "$node_(4) setdest 235.008241718173 310.813499293669 
0.684910140937" 
$node_(5) set X_ 251.529768161337 
$node_(5) set Y_ 168.393214026418 
$node_(5) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(5) setdest 978.610490438813 166.718272569924 
0.909044020066" 
$node_(6) set X_ 294.390269748288 
$node_(6) set Y_ 236.963110656178 
$node_(6) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(6) setdest 518.918178285900 34.585376519051 
0.511929324408" 
$node_(7) set X_ 664.020930425334 
$node_(7) set Y_ 356.373998317001 
$node_(7) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(7) setdest 88.653523516214 430.474404678901 
1.289265460848" 
$node_(8) set X_ 301.558454509317 
$node_(8) set Y_ 243.426792727554 
$node_(8) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(8) setdest 845.152732378409 115.187869228044 
0.745741574344" 
$node_(9) set X_ 386.650526592591 
$node_(9) set Y_ 197.037455372650 
$node_(9) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(9) setdest 716.033334711582 4.784336083003 
1.420554145625" 
$node_(10) set X_ 879.053167433224 
$node_(10) set Y_ 379.910667594698 
$node_(10) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(10) setdest 989.238327829744 411.808145889923 
1.038892519299" 
$node_(11) set X_ 420.580865470209 
$node_(11) set Y_ 463.674678170427 
$node_(11) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(11) setdest 276.329505851646 151.493877243015 
0.550488799184" 
$node_(12) set X_ 648.326841801771 
$node_(12) set Y_ 417.177024312360 
$node_(12) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(12) setdest 199.247563350595 242.845282304494 
1.057275658237" 
$node_(13) set X_ 723.287466809567 
$node_(13) set Y_ 191.155641126374 
$node_(13) set Z_ 0.000000000000 
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$ns_ at 0.000000000000 "$node_(13) setdest 506.458271996332 323.496634756912 
0.542175067413" 
$node_(14) set X_ 177.668913835320 
$node_(14) set Y_ 5.950802877886 
$node_(14) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(14) setdest 174.171036190433 5.902941341467 
1.222986248623" 
$node_(15) set X_ 839.610800541788 
$node_(15) set Y_ 430.126675054608 
$node_(15) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(15) setdest 429.495510845210 299.763786047587 
0.835373030110" 
$node_(16) set X_ 400.847261465932 
$node_(16) set Y_ 162.865929343057 
$node_(16) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(16) setdest 959.527865033377 434.229535485725 
1.362682834465" 
$node_(17) set X_ 792.446071178900 
$node_(17) set Y_ 416.557502843634 
$node_(17) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(17) setdest 62.854505173329 16.240878038221 
0.558880996080" 
$node_(18) set X_ 651.592752268853 
$node_(18) set Y_ 22.760874376739 
$node_(18) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(18) setdest 212.814784242220 269.180033481298 
0.733026945497" 
$node_(19) set X_ 532.086256715655 
$node_(19) set Y_ 234.466501321593 
$node_(19) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(19) setdest 992.163338694798 265.256396152664 
1.498173360818" 
# Movements: 
$ns_ at 402.283252387275 "$node_(0) setdest 32.993479647205 62.798523373342 
0.000000000000" 
$ns_ at 2.860379729312 "$node_(14) setdest 174.171036190433 5.902941341467 
0.000000000000" 
$ns_ at 2.860379729312 "$node_(14) setdest 965.334832652162 216.120232230108 
0.523848679859" 
$ns_ at 38.147587696042 "$node_(1) setdest 483.239852582682 234.592109096512 
0.000000000000" 
$ns_ at 38.147587696042 "$node_(1) setdest 780.474657090602 401.025453303487 
0.992837455353" 
$ns_ at 110.414962942456 "$node_(10) setdest 989.238327829744 411.808145889923 
0.000000000000" 
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$ns_ at 110.414962942456 "$node_(10) setdest 652.789135767514 385.307159687070 
0.534101866667" 
$ns_ at 195.272979670240 "$node_(4) setdest 235.008241718173 310.813499293669 
0.000000000000" 
$ns_ at 195.272979670240 "$node_(4) setdest 559.369591325228 442.483012770528 
1.297743815835" 
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Appendix D 
 

Movement file: mov1-30.txt 
 
 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# Steady-state Random Waypoint Model 
# numNodes   =     30 
# maxX       =   1000.00 
# maxY       =    500.00 
# endTime    =    200.00 
# speedMean  =    1.0000 
# speedDelta =    0.5000 
# pauseMean  =      0.00 
# pauseDelta =      0.00 
# output     =      N 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
# output format is NS2 
# Initial positions: 
$node_(0) set X_ 613.712027039135 
$node_(0) set Y_ 407.781502118027 
$node_(0) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(0) setdest 778.178365797819 10.599654405657 
0.867165048443" 
$node_(1) set X_ 848.222321956188 
$node_(1) set Y_ 358.401099268853 
$node_(1) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(1) setdest 961.529760137913 355.493049302834 
1.058234459467" 
$node_(2) set X_ 680.607118547142 
$node_(2) set Y_ 169.646111779022 
$node_(2) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(2) setdest 740.555793391800 27.772419866068 
0.652226246514" 
$node_(3) set X_ 373.110890421037 
$node_(3) set Y_ 327.706941209160 
$node_(3) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(3) setdest 67.360786752478 241.658799928454 
0.650866535248" 
$node_(4) set X_ 841.815707709850 
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$node_(4) set Y_ 413.176368828150 
$node_(4) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(4) setdest 858.915223208682 411.970602540286 
1.180877481358" 
$node_(5) set X_ 217.096397190350 
$node_(5) set Y_ 421.859324029156 
$node_(5) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(5) setdest 259.328397577316 484.964666881116 
1.294193585055" 
$node_(6) set X_ 256.424182260918 
$node_(6) set Y_ 413.430079555596 
$node_(6) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(6) setdest 113.676609058714 426.616670995307 
0.801168741819" 
$node_(7) set X_ 780.053246273399 
$node_(7) set Y_ 362.394090331604 
$node_(7) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(7) setdest 352.890131693748 454.746367388752 
0.810368453896" 
$node_(8) set X_ 476.768083413225 
$node_(8) set Y_ 278.397004549892 
$node_(8) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(8) setdest 360.469018276999 252.719828045331 
1.427930509782" 
$node_(9) set X_ 293.709557046073 
$node_(9) set Y_ 102.440067302821 
$node_(9) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(9) setdest 664.158614195957 374.388675845409 
0.858536866585" 
$node_(10) set X_ 586.068842944261 
$node_(10) set Y_ 246.132104897799 
$node_(10) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(10) setdest 687.022038124046 226.469482633504 
1.146952281162" 
$node_(11) set X_ 78.467013181860 
$node_(11) set Y_ 92.662363200449 
$node_(11) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(11) setdest 39.278301428667 93.915270918009 
0.993153529604" 
$node_(12) set X_ 300.856625817404 
$node_(12) set Y_ 305.144488019547 
$node_(12) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(12) setdest 876.229434682163 403.959264701213 
1.005302994653" 
$node_(13) set X_ 434.185267501895 
$node_(13) set Y_ 19.008160708186 
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$node_(13) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(13) setdest 225.755109556837 21.822365243836 
0.761356920880" 
$node_(14) set X_ 409.204766980916 
$node_(14) set Y_ 129.759715831470 
$node_(14) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(14) setdest 236.586925683816 67.601430261322 
1.301051191699" 
$node_(15) set X_ 852.123465215560 
$node_(15) set Y_ 388.048226109769 
$node_(15) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(15) setdest 606.701148490748 453.372526892169 
1.354423522421" 
$node_(16) set X_ 218.646035061125 
$node_(16) set Y_ 358.179864557683 
$node_(16) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(16) setdest 382.919258616361 128.381972959443 
1.294380157538" 
$node_(17) set X_ 277.434944928625 
$node_(17) set Y_ 203.792318526688 
$node_(17) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(17) setdest 288.884230558241 187.089915940114 
1.041813340580" 
$node_(18) set X_ 312.554225908812 
$node_(18) set Y_ 370.195332553450 
$node_(18) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(18) setdest 971.238921848703 56.077140409535 
1.331946957662" 
$node_(19) set X_ 492.127314765973 
$node_(19) set Y_ 145.622585889827 
$node_(19) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(19) setdest 908.521630293001 303.313515290298 
0.756391690467" 
$node_(20) set X_ 313.934362963425 
$node_(20) set Y_ 434.871876422744 
$node_(20) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(20) setdest 76.229062432530 454.880705082268 
1.377265706732" 
$node_(21) set X_ 229.416013865152 
$node_(21) set Y_ 304.574308506223 
$node_(21) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(21) setdest 122.208689396367 332.885948863293 
0.837461672922" 
$node_(22) set X_ 839.424728234321 
$node_(22) set Y_ 256.693663263651 
$node_(22) set Z_ 0.000000000000 
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$ns_ at 0.000000000000 "$node_(22) setdest 568.448169421613 485.468710765927 
1.428051638795" 
$node_(23) set X_ 939.287827806221 
$node_(23) set Y_ 233.735920967497 
$node_(23) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(23) setdest 986.509317991561 242.531218213277 
1.389589496200" 
$node_(24) set X_ 689.943106825287 
$node_(24) set Y_ 55.013711285647 
$node_(24) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(24) setdest 43.066920732645 438.742113271142 
1.429589013598" 
$node_(25) set X_ 590.255274915271 
$node_(25) set Y_ 334.893862143365 
$node_(25) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(25) setdest 577.952300001845 355.300805929723 
1.113933907117" 
$node_(26) set X_ 656.417569998854 
$node_(26) set Y_ 119.888292494474 
$node_(26) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(26) setdest 279.813360087487 0.206849537886 
0.958166218084" 
$node_(27) set X_ 328.572574221616 
$node_(27) set Y_ 105.758041479865 
$node_(27) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(27) setdest 872.432790637218 445.216093885347 
0.949508138595" 
$node_(28) set X_ 500.559105983323 
$node_(28) set Y_ 209.575088050017 
$node_(28) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(28) setdest 492.269182806960 70.614737258579 
0.978418373489" 
$node_(29) set X_ 485.023573289753 
$node_(29) set Y_ 150.804713275158 
$node_(29) set Z_ 0.000000000000 
$ns_ at 0.000000000000 "$node_(29) setdest 99.956948356683 65.496281052705 
0.969152319116" 
 
 
# Movements: 
$ns_ at 495.738067676752 "$node_(0) setdest 778.178365797819 10.599654405657 
0.000000000000" 
$ns_ at 14.516302619213 "$node_(4) setdest 858.915223208682 411.970602540286 
0.000000000000" 
$ns_ at 14.516302619213 "$node_(4) setdest 919.863053094532 58.045198003783 
1.292372898102" 
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$ns_ at 19.437118373500 "$node_(17) setdest 288.884230558241 187.089915940114 
0.000000000000" 
$ns_ at 19.437118373500 "$node_(17) setdest 912.991756067142 75.594786124115 
0.891694721483" 
$ns_ at 21.391477099142 "$node_(25) setdest 577.952300001845 355.300805929723 
0.000000000000" 
$ns_ at 21.391477099142 "$node_(25) setdest 643.458755055190 313.704017463002 
0.920494727055" 
$ns_ at 34.566752693662 "$node_(23) setdest 986.509317991561 242.531218213277 
0.000000000000" 
$ns_ at 34.566752693662 "$node_(23) setdest 171.588039105566 491.383518088322 
1.364870510932" 
$ns_ at 39.479027070750 "$node_(11) setdest 39.278301428667 93.915270918009 
0.000000000000" 
$ns_ at 39.479027070750 "$node_(11) setdest 851.983278455205 350.976389297739 
1.216181742827" 
$ns_ at 58.672085979910 "$node_(5) setdest 259.328397577316 484.964666881116 
0.000000000000" 
$ns_ at 58.672085979910 "$node_(5) setdest 328.439371813293 186.194702138284 
0.813231100940" 
$ns_ at 83.407361205134 "$node_(8) setdest 360.469018276999 252.719828045331 
0.000000000000" 
$ns_ at 83.407361205134 "$node_(8) setdest 762.877216452210 204.424979493220 
0.959431933919" 
$ns_ at 89.672617398958 "$node_(10) setdest 687.022038124046 226.469482633504 
0.000000000000" 
$ns_ at 89.672617398958 "$node_(10) setdest 456.280221443754 131.537186508783 
0.865286000243" 
$ns_ at 105.691369067463 "$node_(25) setdest 643.458755055190 313.704017463002 
0.000000000000" 
$ns_ at 105.691369067463 "$node_(25) setdest 379.164769490792 420.231991876025 
0.876143274073" 
$ns_ at 107.107407779596 "$node_(1) setdest 961.529760137913 355.493049302834 
0.000000000000" 
$ns_ at 107.107407779596 "$node_(1) setdest 991.653556000280 371.650952320383 
0.792156525092" 
$ns_ at 132.403238904440 "$node_(21) setdest 122.208689396367 332.885948863293 
0.000000000000" 
$ns_ at 132.403238904440 "$node_(21) setdest 370.709939101110 137.187726626726 
1.135112311055" 
$ns_ at 141.015339869062 "$node_(14) setdest 236.586925683816 67.601430261322 
0.000000000000" 
$ns_ at 141.015339869062 "$node_(14) setdest 257.142488964434 487.961781438422 
1.042297978672" 
$ns_ at 142.277996704476 "$node_(28) setdest 492.269182806960 70.614737258579 
0.000000000000" 
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$ns_ at 142.277996704476 "$node_(28) setdest 677.876341472322 265.456088476561 
0.609125766954" 
$ns_ at 150.260034810076 "$node_(1) setdest 991.653556000280 371.650952320383 
0.000000000000" 
$ns_ at 150.260034810076 "$node_(1) setdest 903.301581229689 49.938698555314 
0.506315712820" 
$ns_ at 173.202551893527 "$node_(20) setdest 76.229062432530 454.880705082268 
0.000000000000" 
$ns_ at 173.202551893527 "$node_(20) setdest 508.727356562730 325.609420810644 
1.166178797216" 
$ns_ at 178.932777437676 "$node_(6) setdest 113.676609058714 426.616670995307 
0.000000000000" 
$ns_ at 178.932777437676 "$node_(6) setdest 914.293215104515 94.561847669334 
1.465007578006" 
$ns_ at 187.509499694718 "$node_(15) setdest 606.701148490748 453.372526892169 
0.000000000000" 
$ns_ at 187.509499694718 "$node_(15) setdest 29.587678625056 54.494423584311 
0.793457984130" 
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Appendix E 
 

Communications file: cbr10-1-5-4.txt 
 
# nodes: 10, max conn: 5, send rate: 0.25, seed: 1 
# 
# 1 connecting to 2 at time 2.5568388786897245 
# 
set udp_(0) [new Agent/UDP] 
$ns_ attach-agent $node_(1) $udp_(0) 
set null_(0) [new Agent/Null] 
$ns_ attach-agent $node_(2) $null_(0) 
set cbr_(0) [new Application/Traffic/CBR] 
$cbr_(0) set packetSize_ 512 
$cbr_(0) set interval_ 0.25 
$cbr_(0) set random_ 1 
$cbr_(0) set maxpkts_ 10000 
$cbr_(0) attach-agent $udp_(0) 
$ns_ connect $udp_(0) $null_(0) 
$ns_ at 2.5568388786897245 "$cbr_(0) start" 
# 
# 4 connecting to 5 at time 56.333118917575632 
# 
set udp_(1) [new Agent/UDP] 
$ns_ attach-agent $node_(4) $udp_(1) 
set null_(1) [new Agent/Null] 
$ns_ attach-agent $node_(5) $null_(1) 
set cbr_(1) [new Application/Traffic/CBR] 
$cbr_(1) set packetSize_ 512 
$cbr_(1) set interval_ 0.25 
$cbr_(1) set random_ 1 
$cbr_(1) set maxpkts_ 10000 
$cbr_(1) attach-agent $udp_(1) 
$ns_ connect $udp_(1) $null_(1) 
$ns_ at 56.333118917575632 "$cbr_(1) start" 
# 
# 4 connecting to 6 at time 146.96568928983328 
# 
set udp_(2) [new Agent/UDP] 
$ns_ attach-agent $node_(4) $udp_(2) 
set null_(2) [new Agent/Null] 
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$ns_ attach-agent $node_(6) $null_(2) 
set cbr_(2) [new Application/Traffic/CBR] 
$cbr_(2) set packetSize_ 512 
$cbr_(2) set interval_ 0.25 
$cbr_(2) set random_ 1 
$cbr_(2) set maxpkts_ 10000 
$cbr_(2) attach-agent $udp_(2) 
$ns_ connect $udp_(2) $null_(2) 
$ns_ at 146.96568928983328 "$cbr_(2) start" 
# 
# 6 connecting to 7 at time 55.634230382570173 
# 
set udp_(3) [new Agent/UDP] 
$ns_ attach-agent $node_(6) $udp_(3) 
set null_(3) [new Agent/Null] 
$ns_ attach-agent $node_(7) $null_(3) 
set cbr_(3) [new Application/Traffic/CBR] 
$cbr_(3) set packetSize_ 512 
$cbr_(3) set interval_ 0.25 
$cbr_(3) set random_ 1 
$cbr_(3) set maxpkts_ 10000 
$cbr_(3) attach-agent $udp_(3) 
$ns_ connect $udp_(3) $null_(3) 
$ns_ at 55.634230382570173 "$cbr_(3) start" 
# 
# 7 connecting to 8 at time 29.546173154165118 
# 
set udp_(4) [new Agent/UDP] 
$ns_ attach-agent $node_(7) $udp_(4) 
set null_(4) [new Agent/Null] 
$ns_ attach-agent $node_(8) $null_(4) 
set cbr_(4) [new Application/Traffic/CBR] 
$cbr_(4) set packetSize_ 512 
$cbr_(4) set interval_ 0.25 
$cbr_(4) set random_ 1 
$cbr_(4) set maxpkts_ 10000 
$cbr_(4) attach-agent $udp_(4) 
$ns_ connect $udp_(4) $null_(4) 
$ns_ at 29.546173154165118 "$cbr_(4) start" 
# 
#Total sources/connections: 4/5 
# 
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Appendix F 
 

Communications file: cbr20-1-10-4.txt 
 
# 
# nodes: 20, max conn: 10, send rate: 0.25, seed: 1 
# 
# 1 connecting to 2 at time 2.5568388786897245 
# 
set udp_(0) [new Agent/UDP] 
$ns_ attach-agent $node_(1) $udp_(0) 
set null_(0) [new Agent/Null] 
$ns_ attach-agent $node_(2) $null_(0) 
set cbr_(0) [new Application/Traffic/CBR] 
$cbr_(0) set packetSize_ 512 
$cbr_(0) set interval_ 0.25 
$cbr_(0) set random_ 1 
$cbr_(0) set maxpkts_ 10000 
$cbr_(0) attach-agent $udp_(0) 
$ns_ connect $udp_(0) $null_(0) 
$ns_ at 2.5568388786897245 "$cbr_(0) start" 
# 
# 4 connecting to 5 at time 56.333118917575632 
# 
set udp_(1) [new Agent/UDP] 
$ns_ attach-agent $node_(4) $udp_(1) 
set null_(1) [new Agent/Null] 
$ns_ attach-agent $node_(5) $null_(1) 
set cbr_(1) [new Application/Traffic/CBR] 
$cbr_(1) set packetSize_ 512 
$cbr_(1) set interval_ 0.25 
$cbr_(1) set random_ 1 
$cbr_(1) set maxpkts_ 10000 
$cbr_(1) attach-agent $udp_(1) 
$ns_ connect $udp_(1) $null_(1) 
$ns_ at 56.333118917575632 "$cbr_(1) start" 
# 
# 4 connecting to 6 at time 146.96568928983328 
# 
set udp_(2) [new Agent/UDP] 
$ns_ attach-agent $node_(4) $udp_(2) 
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set null_(2) [new Agent/Null] 
$ns_ attach-agent $node_(6) $null_(2) 
set cbr_(2) [new Application/Traffic/CBR] 
$cbr_(2) set packetSize_ 512 
$cbr_(2) set interval_ 0.25 
$cbr_(2) set random_ 1 
$cbr_(2) set maxpkts_ 10000 
$cbr_(2) attach-agent $udp_(2) 
$ns_ connect $udp_(2) $null_(2) 
$ns_ at 146.96568928983328 "$cbr_(2) start" 
# 
# 6 connecting to 7 at time 55.634230382570173 
# 
set udp_(3) [new Agent/UDP] 
$ns_ attach-agent $node_(6) $udp_(3) 
set null_(3) [new Agent/Null] 
$ns_ attach-agent $node_(7) $null_(3) 
set cbr_(3) [new Application/Traffic/CBR] 
$cbr_(3) set packetSize_ 512 
$cbr_(3) set interval_ 0.25 
$cbr_(3) set random_ 1 
$cbr_(3) set maxpkts_ 10000 
$cbr_(3) attach-agent $udp_(3) 
$ns_ connect $udp_(3) $null_(3) 
$ns_ at 55.634230382570173 "$cbr_(3) start" 
# 
# 7 connecting to 8 at time 29.546173154165118 
# 
set udp_(4) [new Agent/UDP] 
$ns_ attach-agent $node_(7) $udp_(4) 
set null_(4) [new Agent/Null] 
$ns_ attach-agent $node_(8) $null_(4) 
set cbr_(4) [new Application/Traffic/CBR] 
$cbr_(4) set packetSize_ 512 
$cbr_(4) set interval_ 0.25 
$cbr_(4) set random_ 1 
$cbr_(4) set maxpkts_ 10000 
$cbr_(4) attach-agent $udp_(4) 
$ns_ connect $udp_(4) $null_(4) 
$ns_ at 29.546173154165118 "$cbr_(4) start" 
# 
# 7 connecting to 9 at time 7.7030203154790309 
# 
set udp_(5) [new Agent/UDP] 
$ns_ attach-agent $node_(7) $udp_(5) 
set null_(5) [new Agent/Null] 
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$ns_ attach-agent $node_(9) $null_(5) 
set cbr_(5) [new Application/Traffic/CBR] 
$cbr_(5) set packetSize_ 512 
$cbr_(5) set interval_ 0.25 
$cbr_(5) set random_ 1 
$cbr_(5) set maxpkts_ 10000 
$cbr_(5) attach-agent $udp_(5) 
$ns_ connect $udp_(5) $null_(5) 
$ns_ at 7.7030203154790309 "$cbr_(5) start" 
# 
# 8 connecting to 9 at time 20.48548468411224 
# 
set udp_(6) [new Agent/UDP] 
$ns_ attach-agent $node_(8) $udp_(6) 
set null_(6) [new Agent/Null] 
$ns_ attach-agent $node_(9) $null_(6) 
set cbr_(6) [new Application/Traffic/CBR] 
$cbr_(6) set packetSize_ 512 
$cbr_(6) set interval_ 0.25 
$cbr_(6) set random_ 1 
$cbr_(6) set maxpkts_ 10000 
$cbr_(6) attach-agent $udp_(6) 
$ns_ connect $udp_(6) $null_(6) 
$ns_ at 20.48548468411224 "$cbr_(6) start" 
# 
# 9 connecting to 10 at time 76.258212521792487 
# 
set udp_(7) [new Agent/UDP] 
$ns_ attach-agent $node_(9) $udp_(7) 
set null_(7) [new Agent/Null] 
$ns_ attach-agent $node_(10) $null_(7) 
set cbr_(7) [new Application/Traffic/CBR] 
$cbr_(7) set packetSize_ 512 
$cbr_(7) set interval_ 0.25 
$cbr_(7) set random_ 1 
$cbr_(7) set maxpkts_ 10000 
$cbr_(7) attach-agent $udp_(7) 
$ns_ connect $udp_(7) $null_(7) 
$ns_ at 76.258212521792487 "$cbr_(7) start" 
# 
# 9 connecting to 11 at time 31.464945688594575 
# 
set udp_(8) [new Agent/UDP] 
$ns_ attach-agent $node_(9) $udp_(8) 
set null_(8) [new Agent/Null] 
$ns_ attach-agent $node_(11) $null_(8) 
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set cbr_(8) [new Application/Traffic/CBR] 
$cbr_(8) set packetSize_ 512 
$cbr_(8) set interval_ 0.25 
$cbr_(8) set random_ 1 
$cbr_(8) set maxpkts_ 10000 
$cbr_(8) attach-agent $udp_(8) 
$ns_ connect $udp_(8) $null_(8) 
$ns_ at 31.464945688594575 "$cbr_(8) start" 
# 
# 11 connecting to 12 at time 62.77338456491632 
# 
set udp_(9) [new Agent/UDP] 
$ns_ attach-agent $node_(11) $udp_(9) 
set null_(9) [new Agent/Null] 
$ns_ attach-agent $node_(12) $null_(9) 
set cbr_(9) [new Application/Traffic/CBR] 
$cbr_(9) set packetSize_ 512 
$cbr_(9) set interval_ 0.25 
$cbr_(9) set random_ 1 
$cbr_(9) set maxpkts_ 10000 
$cbr_(9) attach-agent $udp_(9) 
$ns_ connect $udp_(9) $null_(9) 
$ns_ at 62.77338456491632 "$cbr_(9) start" 
# 
#Total sources/connections: 7/10 
# 
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Appendix G 
 

Communications file: cbr30-1-15-4.txt 
 
# 
# nodes: 30, max conn: 15, send rate: 0.25, seed: 1 
# 
# 
# 1 connecting to 2 at time 2.5568388786897245 
# 
set udp_(0) [new Agent/UDP] 
$ns_ attach-agent $node_(1) $udp_(0) 
set null_(0) [new Agent/Null] 
$ns_ attach-agent $node_(2) $null_(0) 
set cbr_(0) [new Application/Traffic/CBR] 
$cbr_(0) set packetSize_ 512 
$cbr_(0) set interval_ 0.25 
$cbr_(0) set random_ 1 
$cbr_(0) set maxpkts_ 10000 
$cbr_(0) attach-agent $udp_(0) 
$ns_ connect $udp_(0) $null_(0) 
$ns_ at 2.5568388786897245 "$cbr_(0) start" 
# 
# 4 connecting to 5 at time 56.333118917575632 
# 
set udp_(1) [new Agent/UDP] 
$ns_ attach-agent $node_(4) $udp_(1) 
set null_(1) [new Agent/Null] 
$ns_ attach-agent $node_(5) $null_(1) 
set cbr_(1) [new Application/Traffic/CBR] 
$cbr_(1) set packetSize_ 512 
$cbr_(1) set interval_ 0.25 
$cbr_(1) set random_ 1 
$cbr_(1) set maxpkts_ 10000 
$cbr_(1) attach-agent $udp_(1) 
$ns_ connect $udp_(1) $null_(1) 
$ns_ at 56.333118917575632 "$cbr_(1) start" 
# 
# 4 connecting to 6 at time 146.96568928983328 
# 
set udp_(2) [new Agent/UDP] 
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$ns_ attach-agent $node_(4) $udp_(2) 
set null_(2) [new Agent/Null] 
$ns_ attach-agent $node_(6) $null_(2) 
set cbr_(2) [new Application/Traffic/CBR] 
$cbr_(2) set packetSize_ 512 
$cbr_(2) set interval_ 0.25 
$cbr_(2) set random_ 1 
$cbr_(2) set maxpkts_ 10000 
$cbr_(2) attach-agent $udp_(2) 
$ns_ connect $udp_(2) $null_(2) 
$ns_ at 146.96568928983328 "$cbr_(2) start" 
# 
# 6 connecting to 7 at time 55.634230382570173 
# 
set udp_(3) [new Agent/UDP] 
$ns_ attach-agent $node_(6) $udp_(3) 
set null_(3) [new Agent/Null] 
$ns_ attach-agent $node_(7) $null_(3) 
set cbr_(3) [new Application/Traffic/CBR] 
$cbr_(3) set packetSize_ 512 
$cbr_(3) set interval_ 0.25 
$cbr_(3) set random_ 1 
$cbr_(3) set maxpkts_ 10000 
$cbr_(3) attach-agent $udp_(3) 
$ns_ connect $udp_(3) $null_(3) 
$ns_ at 55.634230382570173 "$cbr_(3) start" 
# 
# 7 connecting to 8 at time 29.546173154165118 
# 
set udp_(4) [new Agent/UDP] 
$ns_ attach-agent $node_(7) $udp_(4) 
set null_(4) [new Agent/Null] 
$ns_ attach-agent $node_(8) $null_(4) 
set cbr_(4) [new Application/Traffic/CBR] 
$cbr_(4) set packetSize_ 512 
$cbr_(4) set interval_ 0.25 
$cbr_(4) set random_ 1 
$cbr_(4) set maxpkts_ 10000 
$cbr_(4) attach-agent $udp_(4) 
$ns_ connect $udp_(4) $null_(4) 
$ns_ at 29.546173154165118 "$cbr_(4) start" 
# 
# 7 connecting to 9 at time 7.7030203154790309 
# 
set udp_(5) [new Agent/UDP] 
$ns_ attach-agent $node_(7) $udp_(5) 



156
  

set null_(5) [new Agent/Null] 
$ns_ attach-agent $node_(9) $null_(5) 
set cbr_(5) [new Application/Traffic/CBR] 
$cbr_(5) set packetSize_ 512 
$cbr_(5) set interval_ 0.25 
$cbr_(5) set random_ 1 
$cbr_(5) set maxpkts_ 10000 
$cbr_(5) attach-agent $udp_(5) 
$ns_ connect $udp_(5) $null_(5) 
$ns_ at 7.7030203154790309 "$cbr_(5) start" 
# 
# 8 connecting to 9 at time 20.48548468411224 
# 
set udp_(6) [new Agent/UDP] 
$ns_ attach-agent $node_(8) $udp_(6) 
set null_(6) [new Agent/Null] 
$ns_ attach-agent $node_(9) $null_(6) 
set cbr_(6) [new Application/Traffic/CBR] 
$cbr_(6) set packetSize_ 512 
$cbr_(6) set interval_ 0.25 
$cbr_(6) set random_ 1 
$cbr_(6) set maxpkts_ 10000 
$cbr_(6) attach-agent $udp_(6) 
$ns_ connect $udp_(6) $null_(6) 
$ns_ at 20.48548468411224 "$cbr_(6) start" 
# 
# 9 connecting to 10 at time 76.258212521792487 
# 
set udp_(7) [new Agent/UDP] 
$ns_ attach-agent $node_(9) $udp_(7) 
set null_(7) [new Agent/Null] 
$ns_ attach-agent $node_(10) $null_(7) 
set cbr_(7) [new Application/Traffic/CBR] 
$cbr_(7) set packetSize_ 512 
$cbr_(7) set interval_ 0.25 
$cbr_(7) set random_ 1 
$cbr_(7) set maxpkts_ 10000 
$cbr_(7) attach-agent $udp_(7) 
$ns_ connect $udp_(7) $null_(7) 
$ns_ at 76.258212521792487 "$cbr_(7) start" 
# 
# 9 connecting to 11 at time 31.464945688594575 
# 
set udp_(8) [new Agent/UDP] 
$ns_ attach-agent $node_(9) $udp_(8) 
set null_(8) [new Agent/Null] 
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$ns_ attach-agent $node_(11) $null_(8) 
set cbr_(8) [new Application/Traffic/CBR] 
$cbr_(8) set packetSize_ 512 
$cbr_(8) set interval_ 0.25 
$cbr_(8) set random_ 1 
$cbr_(8) set maxpkts_ 10000 
$cbr_(8) attach-agent $udp_(8) 
$ns_ connect $udp_(8) $null_(8) 
$ns_ at 31.464945688594575 "$cbr_(8) start" 
# 
# 11 connecting to 12 at time 62.77338456491632 
# 
set udp_(9) [new Agent/UDP] 
$ns_ attach-agent $node_(11) $udp_(9) 
set null_(9) [new Agent/Null] 
$ns_ attach-agent $node_(12) $null_(9) 
set cbr_(9) [new Application/Traffic/CBR] 
$cbr_(9) set packetSize_ 512 
$cbr_(9) set interval_ 0.25 
$cbr_(9) set random_ 1 
$cbr_(9) set maxpkts_ 10000 
$cbr_(9) attach-agent $udp_(9) 
$ns_ connect $udp_(9) $null_(9) 
$ns_ at 62.77338456491632 "$cbr_(9) start" 
# 
# 11 connecting to 13 at time 46.455830739092008 
# 
set udp_(10) [new Agent/UDP] 
$ns_ attach-agent $node_(11) $udp_(10) 
set null_(10) [new Agent/Null] 
$ns_ attach-agent $node_(13) $null_(10) 
set cbr_(10) [new Application/Traffic/CBR] 
$cbr_(10) set packetSize_ 512 
$cbr_(10) set interval_ 0.25 
$cbr_(10) set random_ 1 
$cbr_(10) set maxpkts_ 10000 
$cbr_(10) attach-agent $udp_(10) 
$ns_ connect $udp_(10) $null_(10) 
$ns_ at 46.455830739092008 "$cbr_(10) start" 
# 
# 13 connecting to 14 at time 83.900868549896813 
# 
set udp_(11) [new Agent/UDP] 
$ns_ attach-agent $node_(13) $udp_(11) 
set null_(11) [new Agent/Null] 
$ns_ attach-agent $node_(14) $null_(11) 
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set cbr_(11) [new Application/Traffic/CBR] 
$cbr_(11) set packetSize_ 512 
$cbr_(11) set interval_ 0.25 
$cbr_(11) set random_ 1 
$cbr_(11) set maxpkts_ 10000 
$cbr_(11) attach-agent $udp_(11) 
$ns_ connect $udp_(11) $null_(11) 
$ns_ at 83.900868549896813 "$cbr_(11) start" 
# 
# 14 connecting to 15 at time 155.17211061677529 
# 
set udp_(12) [new Agent/UDP] 
$ns_ attach-agent $node_(14) $udp_(12) 
set null_(12) [new Agent/Null] 
$ns_ attach-agent $node_(15) $null_(12) 
set cbr_(12) [new Application/Traffic/CBR] 
$cbr_(12) set packetSize_ 512 
$cbr_(12) set interval_ 0.25 
$cbr_(12) set random_ 1 
$cbr_(12) set maxpkts_ 10000 
$cbr_(12) attach-agent $udp_(12) 
$ns_ connect $udp_(12) $null_(12) 
$ns_ at 155.17211061677529 "$cbr_(12) start" 
# 
# 15 connecting to 16 at time 39.088702704333095 
# 
set udp_(13) [new Agent/UDP] 
$ns_ attach-agent $node_(15) $udp_(13) 
set null_(13) [new Agent/Null] 
$ns_ attach-agent $node_(16) $null_(13) 
set cbr_(13) [new Application/Traffic/CBR] 
$cbr_(13) set packetSize_ 512 
$cbr_(13) set interval_ 0.25 
$cbr_(13) set random_ 1 
$cbr_(13) set maxpkts_ 10000 
$cbr_(13) attach-agent $udp_(13) 
$ns_ connect $udp_(13) $null_(13) 
$ns_ at 39.088702704333095 "$cbr_(13) start" 
# 
# 15 connecting to 17 at time 43.420613009212822 
# 
set udp_(14) [new Agent/UDP] 
$ns_ attach-agent $node_(15) $udp_(14) 
set null_(14) [new Agent/Null] 
$ns_ attach-agent $node_(17) $null_(14) 
set cbr_(14) [new Application/Traffic/CBR] 
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$cbr_(14) set packetSize_ 512 
$cbr_(14) set interval_ 0.25 
$cbr_(14) set random_ 1 
$cbr_(14) set maxpkts_ 10000 
$cbr_(14) attach-agent $udp_(14) 
$ns_ connect $udp_(14) $null_(14) 
$ns_ at 43.420613009212822 "$cbr_(14) start" 
# 
#Total sources/connections: 10/15 
# 
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Appendix H 
 

Control file: AODV-10-1-5-4-0.tcl 
 
 
# 30AODV-10-DSR-20-1.tcl 
# Makes use of 'standard' movement and communications  
# pattern files (sc) and (cp)   
# 
===============================================================
= 
# Define options 
# 
===============================================================
= 
set val(chan)       Channel/WirelessChannel ;# Channel model 
set val(prop)       Propagation/TwoRayGround ;# radio propagation model 
set val(netif)      Phy/WirelessPhy  ;# physical layer (wireless) 
set val(mac)        Mac/802_11   ;# MAC model is set to 802.11 
set val(ifq)      Queue/DropTail/PriQueue   ;# Queue type for DSDV & AODV 
# set val(ifq)        CMUPriQueue          ;# Use this Queue for DSR 
set val(ll)         LL 
set val(ant)        Antenna/OmniAntenna  ;# Antenna type to use 
set val(x)              1000     ;# X dimension of the topography 
set val(y)              500      ;# Y dimension of the topography 
set val(ifqlen)         10              ;# max packet in ifq 
set val(seed)           1.0 
set val(adhocRouting)   AODV   ;# this is the protocol to use 
set val(nn)             30               ;# how many nodes are simulated 
set val(nn1)  10 
set val(nn2)  30 
set val(cp)           "cbr30-1-15-4.txt"  ;# this is the transmission pattern  
set val(sc)           "mov1-30.txt"   ;# this is the movement pattern file 
set val(stop)           200.0            ;# simulation time to run in seconds 
 
#==============================================================
== 
# Main Program 
#==============================================================
== 
# 
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# Initialize Global Variables 
# 
# create simulator instance 
 
set ns_  [new Simulator] 
 
# setup topography object 
 
set topo [new Topography] 
 
# create trace object for ns and nam 
# these are the files that record the results 
 
set tracefd [open 30A-10-D-20-1.tr w] 
set namtrace    [open 30A-10-D-20-1.nam w] 
 
# tell the program to trace all the events 
 
$ns_ use-newtrace 
$ns_ trace-all $tracefd 
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y) 
 
# define topology 
 
$topo load_flatgrid $val(x) $val(y) 
 
# 
# Create god 
# 
set god_ [create-god $val(nn)] 
 
# 
# define how node should be created 
# 
# global node setting 
 
set val(adhocRouting)   AODV 
set val(ifq)      Queue/DropTail/PriQueue 
$ns_ node-config -adhocRouting $val(adhocRouting) \ 
                 -llType $val(ll) \ 
                 -macType $val(mac) \ 
                 -ifqType $val(ifq) \ 
                 -ifqLen $val(ifqlen) \ 
                 -antType $val(ant) \ 
                 -propType $val(prop) \ 
                 -phyType $val(netif) \ 



162
  

                 -channelType $val(chan) \ 
   -topoInstance $topo \ 
   -agentTrace ON \ 
   -wiredRouting OFF \ 
                 -routerTrace ON \ 
                 -macTrace ON  
# 
#  Create the specified number of nodes [$val(nn)] and "attach" them 
#  to the channel.  
 
for {set i 0} {$i < $val(nn1) } {incr i} { 
 set node_($i) [$ns_ node]  
 $node_($i) random-motion 0  ;# disable random motion 
} 
#  
 
set val(adhocRouting)   DSR 
set val(ifq)      CMUPriQueue 
$ns_ node-config -adhocRouting $val(adhocRouting) \ 
                 -llType $val(ll) \ 
                 -macType $val(mac) \ 
                 -ifqType $val(ifq) \ 
                 -ifqLen $val(ifqlen) \ 
                 -antType $val(ant) \ 
                 -propType $val(prop) \ 
                 -phyType $val(netif) \ 
                 -channelType $val(chan) \ 
   -topoInstance $topo \ 
   -agentTrace ON \ 
   -wiredRouting OFF \ 
                 -routerTrace ON \ 
                 -macTrace ON  
# 
#  Create the specified number of nodes [$val(nn)] and "attach" them 
#  to the channel.  
 
for {set i 10} {$i < $val(nn2) } {incr i} { 
 set node_($i) [$ns_ node]  
 $node_($i) random-motion 0  ;# disable random motion 
} 
 
# Define node movement model 
# In this case, a movement model is loaded from the file indicated above (cp) 
# 
 
puts "Loading connection pattern..." 
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source $val(cp) 
 
#  
# Define traffic model 
# In this case, the traffic model is loaded from the file indicated above (sc) 
 
puts "Loading scenario file..." 
source $val(sc) 
 
# Define node initial position in nam 
 
for {set i 0} {$i < $val(nn)} {incr i} { 
 
    # 20 defines the node size in nam, must adjust it according to your scenario 
    # The function must be called after mobility model is defined 
     
    $ns_ initial_node_pos $node_($i) 20  ;# value indicates size of circle from 20 to 10 
} 
 
# 
# Tell nodes when the simulation ends 
# 
 
for {set i 0} {$i < $val(nn) } {incr i} { 
    $ns_ at $val(stop).0 "$node_($i) reset"; 
} 
 
# End the simulation 
 
$ns_ at  $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt" 
 
# store the first four lines of the trace data 
 
puts $tracefd "M 0.0 nn $val(nn) nn1 $val(nn1) nn2 $val(nn2)" 
puts $tracefd "M 0.0 x $val(x) y $val(y) rp $val(adhocRouting)" 
puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)" 
puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)" 
 
# Run the simulation 
 
puts "Starting Simulation..." 
$ns_ run 
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Appendix I 
 

A-stat.awk 
 
# USE:   awk -f allc.awk tracefile_Name 
# This is an awk program that summarizes information about Network Simulation 
# 
 
BEGIN { 
   highest_packet_id = 0; 
   highest_flow_id = 0; 
   highest_node_id = 0; 
   duration_total = 0; 
   flow_number = 0; 
   dropped = 0; 
   pkt = 512; 
   simtime = 200; 
   node_id = 0; 
   max_nodes = 20; 
   sendtime = 0; 
   sent = 0; 
   fwdnode = 0; 
   pktcount = 0; 
} 
 
####### Packet Delivery Fractions ######################################## 
//                 { total++ }    # Total gross packets 
/AGT/||/RTR/||/MAC/ || /ARP/     { totalNL++ }   # total packets (Network trace Level) 
/AGT/            {agt++}             # total packets  AGT 
/RTR/            {rtr++}             # total packets  RTR 
/MAC/            {mac++}             # total packets  MAC 
/ARP/            {arp++}             # total packets  ARP 
/AGT/ && /-It cbr/ {data_agt++}   # total data packets 
/^s/   {sent++}            # sent packets total 
/^s/ && /AGT/    {agt_sent++}            # sent packets AGT 
/^s/ && /RTR/    {rtr_sent++}             # sent packets RTR 
/^s/ && /MAC/    {mac_sent++}            # sent packets MAC 
/^s/ && /AGT/ && /-It cbr/ {data_agt_sent++} # sent data packets 
/^r/   {rec++}             # received packets total 
/^r/ && /AGT/    {agt_rec++}              # received packets AGT 
/^r/ && /RTR/    {rtr_rec++}              # received packets RTR 
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/^r/ && /MAC/    {mac_rec++}             # received packets MAC 
/^r/ && /AGT/ && /-It cbr/ {data_agt_rec++} # received data packets 
/^d/   {drop++}           # dropped packets total 
/^d/ && /AGT/    {agt_drop++}            # dropped packets AGT 
/^d/ && /RTR/    {rtr_drop++}             # dropped packets RTR 
/^d/ && /MAC/    {mac_drop++}            # dropped packets MAC 
/^d/ && /AGT/ && /-It cbr/ {data_agt_drop++} # dropped data packets 
/^d/ && /IFQ/    {ifq_drop++}           # ROP_IFQ_QFULL i.e no buffer space in IFQ. 
/^f/             {forw++}            # forwarded packets total 
/^f/ && /AGT/    {agt_forw++}            # forwarded packets AGT 
/^f/ && /RTR/    {rtr_forw++}             # forwarded packets RTR 
/^f/ && /MAC/    {mac_forw++}            # forwarded packets MAC 
/^f/ && /AGT/ && /-It cbr/ {data_agt_forw++} # forward data packets 
 
######## Throughput Analysis  #################################### 
 
{  event = $1; 
   time = $3; 
   node_id = $5; 
   packet_size = $37; 
   flow_id = $39; 
   packet_id = $41; 
   flow_t = $45; 
 
   # Determine the highest packet ID  
    if ( packet_id > highest_packet_id ) highest_packet_id = packet_id; 
   # Determine the highest flow ID 
    if ( flow_id > highest_flow_id ) highest_flow_id = flow_id; 
   # Determine the highest node ID 
    if ( node_id > highest_node_id ) highest_node_id = node_id; 
       
    if ( ($19 == "AGT" ) && (start_time[flow_id] == 0) ){ 
       start_time[flow_id] = time;   } 
 
# Determine receive times of data packets 
   if ( ($1 == "r") && ($19 == "AGT") && ($35 == "cbr")) { 
      end_time[flow_id] = time; 
      nodert[node_id] = time; 
      rnode[node_id]++; 
      } 
 
##### Begin individual node analysis ##################################### 
 
# Store packets send time of data packets 
if (sendTime[packet_id] == 0 && (event == "+" || event == "s") && packet_size >= pkt) 
{ 
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  sendTime[packet_id] = time; 
  nodest[node_id] = time; 
  } 
# Count dropped packets 
 if (event == "d" && packet_size >= pkt ) { 
  dnode[node_id]++; 
  dropped ++; 
  } 
# Count total sent packets 
 if ((event == "s" || event == "+") && $19 == "AGT" && packet_size >= pkt) { 
  snode[node_id]++; 
  } 
 if ((event == "f" ) && ($19 == "AGT" && $35 == "cbr") && packet_size >= 
pkt) { 
  fnode[node_id]++; 
  fwdnode ++; 
  } 
# Update total received packets' size and store packets arrival time 
 if (event == "r" && $19 == "AGT" && packet_size >= pkt) { 
 # Rip off the header 
  hdr_size = packet_size % pkt; 
  packet_size -= hdr_size; 
 # Store received packet's size 
  recvdSize += packet_size; 
 # Store packet's reception time 
  recvTime[packet_id] = time; 

# Set individual nodes receive time 
  nodert[node_id] = time; 
 # Set individual nodes bytes received 
  noderecsize[node_id] += packet_size; 
         } 
# Compute average delay 
 delay = avg_delay = recvdNum = 0 
 for (i in recvTime) { 
  if (sendTime[i] == 0) { 
     printf("\nError in delay.awk: receiving a packet that wasn't sent %g\n",i) 
     } 
  delay += recvTime[i] - sendTime[i]; 
  recvdNum ++; 
     } 
 if (recvdNum != 0) { 
  avg_delay = delay / recvdNum; 
     } else { 
  avg_delay = 0; 
     } 
 for (node_id = 0; node_id < max_nodes; node_id ++){ 
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 if ((nodert[node_id] - nodest[node_id]) >= 0) { 
node_delay[node_id] = (nodert[node_id] - nodest[node_id])} 

 if (noderecsize[node_id] != 0) { 
    anode_delay[node_id] = node_delay[node_id]/rnode[node_id]} 
 } 
} 
##### End of individual node analysis ################ 
END {  
 
#### Print Packet Delivery Fractions ################################### 
      cp_sent = rreq + rrep + rerr;         # Control Packets sent 
      cp_lost = cp_sent - cp_rec;           # Control Packets lost 
      if (data_agt_sent > 0) pdf =(data_agt_rec/data_agt_sent)*100;     # Packet Delivery % 
      if (data_agt_rec > 0) nrl = ((cp_sent +cp_forw)/data_agt_rec)*100;    # Load 
      lost = sent - rec;                       # Packets lost 
      data_lost = data_agt_sent - data_agt_rec;   # Data Packets lost 
      agt_lost = agt_sent - agt_rec;         # Packets lost by Agent 
      mac_lost = mac_sent - mac_rec;        # Packets lost by Mac 
      rtr_lost = agt_lost + cp_lost;         # Packets lost by Router 
      print "Data Analysis:";       # Print results. 
      printf ("   Packets total: %2d\n",totalNL); 
      printf ("   Packets RTR:     %2d\n",rtr); 
      printf ("   Packets MAC:   %2d\n",mac); 
      printf ("   Packets Data AGT: %2d\n",data_agt); 
      printf ("\n"); 
      printf ("   Packets sent by Agent: %2d\n", agt_sent); 
      printf ("   Packets received by Agent:     %2d\n", agt_rec); 
      printf ("   Packets forwarded by Agent:  %2d\n", agt_forw); 
      printf ("   Packets dropped by Agent:     %2d\n", agt_drop); 
      printf ("   Packets lost by Agent:         %2d\n", agt_lost); 
      printf ("\n"); 
      printf ("   Data_Packets sent:      %2d\n",data_agt_sent); 
      printf ("   Data_Packets received:         %2d\n", data_agt_rec); 
      printf ("   Data_Packets forwarded:        %2d\n", data_agt_forw); 
      printf ("   Data_Packets dropped:          %2d\n", data_agt_drop); 
      printf ("   Data_Packets lost:             %2d\n", data_lost); 
      printf ("\n"); 
      printf ("   Packet_Delivery Precent:        %3.2f\n", pdf); 
      printf ("   Normalized_Routing Load(Percentage):         %3.2f\n", nrl); 
      printf ("   Highest flow number:          %3.2f\n", highest_flow_id); 
      printf("%6s %6s %8s %8s %8s %10s %12s %12s \n", \ 
        "Node","sent","recpkts","forward","dropped ", \ 
        "avgTput-kbps","avgDelay-ms",  \ 
        "totdatabytes") 
 for (node_id = 0; node_id < max_nodes; node_id ++){ 
 printf("%6g %6s %8d %8g %8g %10g %12g %12g \n", \ 



168
  

       node_id,snode[node_id],rnode[node_id],fnode[node_id],dnode[node_id],\ 
       (noderecsize[node_id]/simtime)*(8/1000),anode_delay[node_id]*1000,\ 

        noderecsize[node_id])   
 } 
 printf ("%6s %8s %8s %10s %10s %10s %12s %8s \n", \ 
        "Totals","Sent","Received","Forwarded","Dropped ", \ 
        "avgTput-kbps","avgDelay-ms", "Packets") 
 printf("       %8g %8s %8d %10g %10g %12g %8g \n", \ 
        data_agt_sent,data_agt_rec,fwdnode,dropped,              \ 
        ((recvdSize/simtime)*(8/1000)),(avg_delay*1000), pktcount)   
 
######### Throughput ############################################# 
 
     for ( flow_id = 0; flow_id <= highest_flow_id;flow_id ++ ) { 
       start = start_time[flow_id]; 
       end = end_time[flow_id]; 
       if ( start <= end ){ 
  packet_duration = end - start;      # single distance 
  duration_total += packet_duration;   # total duration 
  flow_number ++;               # flow number 
         bits_total += $37;                    # Bits Total 
       } 
   } 
   printf ("Total Number of Flows: %d\n",flow_number); 
   thrgputPackets = flow_number / duration_total; 
   thrgputBits    = bits_total / duration_total; 
  
   printf ("Average Duration of packets per sec.:%f\n", thrgputPackets); 
   printf ("Average Duration of Bits per sec.: %f\n", thrgputBits); 
} 
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Appendix J 
 

Sample Output of A-stat 
 
20D-0-A-20-2
Data Analysis:
Packets total: 55172
Packets RTR: 10642
Packets MAC: 37575
Packets AGT: 6954
Packets Data_AGT: 6954

Data_Packets sent: 3478
Data_Packets received: 3476
Data_Packets forwarded: 0
Data_Packets dropped: 14
Data_Packets lost: 2

Packet_Delivery Precent: 99.94
Normalized_Routing Load(%): 0

Node sent recpkts dropped avgTput-kbpsavgDelay-ms Recdatabytes
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 770 0 15.7696 259.611 394240
3 0 0 0 0 0 0
4 712 0 0 0 0 0
5 462 363 10 7.43424 0.0312498 185856
6 0 811 0 16.6093 246.457 415232
7 308 0 0 0 0 0
8 0 308 0 6.30784 648.801 157696
9 0 0 0 0 0 0

10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 189 0 0 0 0 0
13 0 189 0 3.87072 1057.95 96768
14 0 0 0 0 0 0
15 285 0 0 0 0 0
16 218 285 0 5.8368 0.884873 145920
17 0 218 0 4.46464 917.013 111616
18 816 0 2 0 0 0
19 488 532 2 10.8954 0.0463096 272384

Totals Sent Received Dropped avgTput-kbpsavgDelay-ms TotBytecount
3478 3476 14 71.1885 8.63691 0

Total Number_of_Flows: 20
Average_Duration (packets per sec).:0.152995
Average_Duration (Bits per sec).: 6.731793  
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Appendix K 
 

10 Node Series Data Collection 
 
 

R
un # 

Target Protocol 

# Target Protocol N
odes 

Subject Protocol 

# Subject Protocol N
odes 

M
obility M

odel 

Velocity 

Total Packets Sent 

Total Packets R
eceived 

D
elivery R

atio 

End-toEnd D
elay (Latency) 

A
verage E-2-E D

elay 

1 DSR 10 AODV 0 RW 1 2118 1182 55.81% 951 1001
2 DSR 10 AODV 0 RW 2 2106 1768 83.95% 278 617
3 DSR 10 AODV 0 RW 3 2100 1574 74.95% 145 1098
4 DSR 10 AODV 0 RW 4 2117 2079 98.21% 121 275
5 DSR 8 AODV 2 RW 1 2100 627 29.86% 702 997
6 DSR 8 AODV 2 RW 2 2107 891 42.29% 48 253
7 DSR 8 AODV 2 RW 3 2098 932 44.42% 118 1020
8 DSR 8 AODV 2 RW 4 2109 1142 54.15% 109 9
9 DSR 6 AODV 4 RW 1 2115 130 6.15% 18905 896

10 DSR 6 AODV 4 RW 2 2112 1210 57.29% 78 537
11 DSR 6 AODV 4 RW 3 2094 1354 64.66% 150 945
12 DSR 6 AODV 4 RW 4 2106 1786 84.81% 136 241
13 DSR 4 AODV 6 RW 1 2098 63 3.00% 18905 14
14 DSR 4 AODV 6 RW 2 2080 666 32.02% 195 509
15 DSR 4 AODV 6 RW 3 2098 771 36.75% 310 967
16 DSR 4 AODV 6 RW 4 2102 1049 49.90% 244 18
17 DSR 2 AODV 8 RW 1 2111 786 37.23% 455 284
18 DSR 2 AODV 8 RW 2 2094 1529 73.02% 75 337
19 DSR 2 AODV 8 RW 3 2113 1032 48.84% 97 389
20 DSR 2 AODV 8 RW 4 2118 1657 78.23% 74 10
21 DSR 0 AODV 10 RW 1 2093 1079 51.55% 1020 208
22 DSR 0 AODV 10 RW 2 2133 1795 84.15% 261 292
23 DSR 0 AODV 10 RW 3 2128 1482 69.64% 147 483
24 DSR 0 AODV 10 RW 4 2078 1999 96.20% 130 110
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25 AODV 10 DSR 0 RW 1 2093 1079 51.55% 1020 208
26 AODV 10 DSR 0 RW 2 2133 1795 84.15% 261 292
27 AODV 10 DSR 0 RW 3 2128 1482 69.64% 147 483
28 AODV 10 DSR 0 RW 4 2078 1999 96.20% 130 110
29 AODV 8 DSR 2 RW 1 2116 604 28.54% 709 371
30 AODV 8 DSR 2 RW 2 2117 891 42.09% 47 45
31 AODV 8 DSR 2 RW 3 2118 876 41.36% 117 347
32 AODV 8 DSR 2 RW 4 2089 1116 53.42% 112 11
33 AODV 6 DSR 4 RW 1 2127 101 4.75% 18871 13
34 AODV 6 DSR 4 RW 2 2096 1180 56.30% 77 410
35 AODV 6 DSR 4 RW 3 2108 1277 60.58% 154 576
36 AODV 6 DSR 4 RW 4 2094 1675 79.99% 136 18
37 AODV 4 DSR 6 RW 1 2109 68 3.22% 15791 13
38 AODV 4 DSR 6 RW 2 2129 646 30.34% 190 684
39 AODV 4 DSR 6 RW 3 2127 735 34.56% 330 816
40 AODV 4 DSR 6 RW 4 1202 1052 87.52% 245 15
41 AODV 2 DSR 8 RW 1 2094 823 39.30% 429 1726
42 AODV 2 DSR 8 RW 2 2100 1647 78.43% 73 558
43 AODV 2 DSR 8 RW 3 2103 1083 51.50% 96 529
44 AODV 2 DSR 8 RW 4 2098 1661 79.17% 74 9
45 AODV 0 DSR 10 RW 1 2118 1182 55.81% 960 1001
46 AODV 0 DSR 10 RW 2 2106 1786 84.81% 279 617
47 AODV 0 DSR 10 RW 3 2100 1574 74.95% 145 1098
48 AODV 0 DSR 10 RW 4 2117 2079 98.21% 121 274
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Appendix L 
 

20 Node Series Data Collection 
 

R
un # 

Target Protocol 

# Target Protocol N
odes 

Subject Protocol 

# Subject Protocol N
odes 

M
obility M

odel 

Velocity 

Total Packets Sent 

Total Packets R
eceived 

D
elivery R

atio 

End-toEnd D
elay (Latency) 

A
verage E-2-E D

elay 

1 DSR 20 AODV 0 RW 1 4659 4655 99.91% 136 65 
2 DSR 20 AODV 0 RW 2 4684 4683 99.98% 135 10 
3 DSR 20 AODV 0 RW 3 4683 4544 97.03% 141 312 
4 DSR 20 AODV 0 RW 4 4734 4724 99.79% 134 77 
5 DSR 18 AODV 2 RW 1 4699 3916 83.34% 112 58 
6 DSR 18 AODV 2 RW 2 4637 3873 83.52% 123 9 
7 DSR 18 AODV 2 RW 3 4683 3712 79.27% 129 570 
8 DSR 18 AODV 2 RW 4 4683 3838 81.96% 124 96 
9 DSR 16 AODV 4 RW 1 4671 4171 89.30% 154 118 

10 DSR 16 AODV 4 RW 2 4671 4595 98.37% 137 62 
11 DSR 16 AODV 4 RW 3 4681 3850 82.25% 156 434 
12 DSR 16 AODV 4 RW 4 4670 3989 85.42% 139 79 
13 DSR 14 AODV 6 RW 1 4658 3389 72.76% 205 165 
14 DSR 14 AODV 6 RW 2 4639 3866 83.34% 188 13 
15 DSR 14 AODV 6 RW 3 4671 3429 73.41% 249 225 
16 DSR 14 AODV 6 RW 4 4687 3228 68.87% 214 327 
17 DSR 12 AODV 8 RW 1 4641 3338 71.92% 223 112 
18 DSR 12 AODV 8 RW 2 4719 4279 90.68% 111 11 
19 DSR 12 AODV 8 RW 3 4676 3094 66.17% 152 188 
20 DSR 12 AODV 8 RW 4 4679 3574 76.38% 141 345 
21 DSR 10 AODV 10 RW 1 4682 2700 57.67% 76 10 
22 DSR 10 AODV 10 RW 2 4675 3747 80.15% 116 14 
23 DSR 10 AODV 10 RW 3 4667 2710 58.07% 162 342 
24 DSR 10 AODV 10 RW 4 4724 3396 71.89% 134 212 
25 DSR 8 AODV 12 RW 1 4699 2651 56.42% 92 9 
26 DSR 8 AODV 12 RW 2 4688 4091 87.27% 118 10 
27 DSR 8 AODV 12 RW 3 4665 3226 69.15% 152 227 
28 DSR 8 AODV 12 RW 4 4671 3556 76.13% 230 162 
29 DSR 6 AODV 14 RW 1 4684 3238 69.13% 109 9 
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30 DSR 6 AODV 14 RW 2 4676 4253 90.95% 135 12 
31 DSR 6 AODV 14 RW 3 4652 3807 81.84% 173 264 
32 DSR 6 AODV 14 RW 4 4676 4024 86.06% 217 155 
33 DSR 4 AODV 16 RW 1 4675 4097 87.64% 112 13 
34 DSR 4 AODV 16 RW 2 4662 4253 91.23% 111 29 
35 DSR 4 AODV 16 RW 3 4664 4088 87.65% 112 197 
36 DSR 4 AODV 16 RW 4 4684 4203 89.73% 112 18 
37 DSR 2 AODV 18 RW 1 4688 4406 93.98% 145 115 
38 DSR 2 AODV 18 RW 2 4686 4680 99.87% 135 40 
39 DSR 2 AODV 18 RW 3 4676 4482 95.85% 143 119 
40 DSR 2 AODV 18 RW 4 4691 4564 97.29% 140 62 
41 DSR 0 AODV 20 RW 1 4676 4664 99.74% 135 39 
42 DSR 0 AODV 20 RW 2 4655 4653 99.96% 136 11 
43 DSR 0 AODV 20 RW 3 4675 4486 95.96% 141 148 
44 DSR 0 AODV 20 RW 4 4683 4649 99.27% 136 41 
                        
                        
1 AODV 20 DSR 0 RW 1 4676 4664 99.74% 135 40 
2 AODV 20 DSR 0 RW 2 4655 4653 99.96% 136 11 
3 AODV 20 DSR 0 RW 3 4675 4486 95.96% 62 148 
4 AODV 20 DSR 0 RW 4 4683 4649 99.27% 136 41 
5 AODV 18 DSR 2 RW 1 4657 3804 81.68% 126 96 
6 AODV 18 DSR 2 RW 2 4647 3878 83.45% 123 10 
7 AODV 18 DSR 2 RW 3 4663 3602 77.25% 123 127 
8 AODV 18 DSR 2 RW 4 4687 3767 80.37% 125 63 
9 AODV 16 DSR 4 RW 1 4674 4225 90.39% 152 85 

10 AODV 16 DSR 4 RW 2 4702 4658 99.06% 135 54 
11 AODV 16 DSR 4 RW 3 4673 3745 80.14% 99 173 
12 AODV 16 DSR 4 RW 4 4673 3924 83.97% 159 68 
13 AODV 14 DSR 6 RW 1 4694 3449 73.48% 204 62 
14 AODV 14 DSR 6 RW 2 4671 3888 83.24% 188 9 
15 AODV 14 DSR 6 RW 3 4650 3319 71.38% 99 184 
16 AODV 14 DSR 6 RW 4 4702 3245 69.01% 210 388 
17 AODV 12 DSR 8 RW 1 4658 3518 75.53% 192 118 
18 AODV 12 DSR 8 RW 2 4682 4244 90.65% 111 9 
19 AODV 12 DSR 8 RW 3 4718 3108 65.88% 103 174 
20 AODV 12 DSR 8 RW 4 4656 3657 78.54% 137 315 
21 AODV 10 DSR 10 RW 1 4705 2724 57.90% 75 7 
22 AODV 10 DSR 10 RW 2 4669 3735 80.00% 117 10 
23 AODV 10 DSR 10 RW 3 4668 2703 57.90% 118 337 
24 AODV 10 DSR 10 RW 4 4667 3266 69.98% 140 197 
25 AODV 8 DSR 12 RW 1 4688 2638 56.27% 94 9 
26 AODV 8 DSR 12 RW 2 4660 4068 87.30% 118 8 
27 AODV 8 DSR 12 RW 3 4680 3290 70.30% 99 298 
28 AODV 8 DSR 12 RW 4 4689 3639 77.61% 173 186 
29 AODV 6 DSR 14 RW 1 4670 3220 68.95% 110 9 
30 AODV 6 DSR 14 RW 2 4699 4698 99.98% 135 9 
31 AODV 6 DSR 14 RW 3 4682 3933 84.00% 101 442 
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32 AODV 6 DSR 14 RW 4 4691 4071 86.78% 217 253 
33 AODV 4 DSR 16 RW 1 4675 4097 87.64% 113 13 
34 AODV 4 DSR 16 RW 2 4668 4267 91.41% 111 10 
35 AODV 4 DSR 16 RW 3 4685 4268 91.10% 96 272 
36 AODV 4 DSR 16 RW 4 4709 4216 89.53% 113 74 
37 AODV 2 DSR 18 RW 1 4700 4515 96.06% 137 14 
38 AODV 2 DSR 18 RW 2 4706 4706 100.00% 134 9 
39 AODV 2 DSR 18 RW 3 4676 4504 96.32% 79 304 
40 AODV 2 DSR 18 RW 4 4659 4630 99.38% 136 141 
41 AODV 0 DSR 20 RW 1 4659 4655 99.91% 136 65 
42 AODV 0 DSR 20 RW 2 4684 4683 99.98% 135 10 
43 AODV 0 DSR 20 RW 3 4683 4544 97.03% 54 312 
44 AODV 0 DSR 20 RW 4 4734 4724 99.79% 134 77 
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Appendix M 

10 Node Series Results 

 
Table M1. 10 node series average throughput percentage baseline statistics 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  0.5368008 0.0300844 0.041694 0.578495 0.495107 
2 pfs  0.8426587 0.0014365 0.001991 0.842513 0.838531 
3 fps  0.7229761 0.0375440 0.052032 0.775009 0.670944 
4 fps  0.97201637 0.0141898 0.019666 0.991682 0.952351 
 

 
Table M2. 10 node series throughput percentage results 
   Velocity 

1 fps  2 fps  3 fps  4 fps 

High Limit 0.578495 0.842513 0.775009 0.991682 
Low Limit 0.495107 0.838531 0.670944 0.952351 
Protocol Mix  Average Throughput Percentages 

A2-D8  0.345799(T) 0.603581(T) 0.479605(T) 0.666597(T) 
A4-D6  0.046854(T) 0.438173(T) 0.496083(T) 0.861631(T) 
A6-D4  0.038757(T) 0.441585(T) 0.486640(T) 0.649477(T) 
A8-D2  0.328890(T) 0.575530(T) 0.451001(T) 0.658284(T) 
 

 
Table M3. 10 node end-to-end delay statistical analysis 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  310.2  20.14  27.92  338.08  282.24 
2 fps  336.62  3.606  4.997  341.61  331.62 
3 fps  373.89  15.95  22.10  395.99  351.79 
4 fps  294.26  8.251  11.44  305.69  282.82 
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Table M4. 10 node end-to-end delay results analysis 
   Velocity 

1 fps  2 fps  3 fps  4 fps 

High Limit  338.08  341.61  395.99  305.69 
Low Limit  282.24  331.62  351.79  282.82 

Protocol Mix 

A2 - D8  219.65(T) 233.55(T) 384.63(F) 274.41(T)  
A4 - D6  1287.0(T) 432.49(T) 572.76(T) 400.99(T) 
A6 - D4  1480.8(T) 427.84(T) 567.15(T) 411.54(T) 
A8 - D2  228.87(T) 243.12(T) 406.72(T) 278.17(T) 
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Appendix N 

20 Node Series Results 

 
Table N1. 20 node average throughput percentage statistical analysis 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  0.9997  0.00041 0.00056 1.000  0.9991 
2 fps  0.9986  0.00203 0.00282 1.000  0.9957 
3 fps  0.9852  0.01687 0.02337 1.000  0.9618 
4 fps  0.9951  0.00282 0.00390 0.9990  0.9912 
 

Table N2. 20 node average throughput percentage results analysis 
   Velocity 

1 fps  2 fps  3 fps  4 fps 

High Limit  1.000  1.000  1.000  0.9990 
Low Limit  0.9991  0.9957  0.9618  0.9912 
Protocol Mix 

A2-D18  0.8547(T) 0.8172(T) 0.7917(T) 0.8173(T) 
A4-D16  0.7372(T) 0.6583(T) 0.6124(T) 0.6617(T) 
A6-D14  0.6615(T) 0.5741(T) 0.5387(T) 0.5735(T) 
A8-D12  0.7352(T) 0.6745(T) 0.4550(T) 0.6220(T) 
A10-D10  0.7799(T) 0.7455(T) 0.5334(T) 0.7658(T) 
A12-D8  0.7353(T) 0.6835(T) 0.4657(T) 0.6187(T) 
A14-D6  0.6663(T) 0.5732(T) 0.5463(T) 0.5540(T) 
A16-D4  0.7365(T) 0.6623(T) 0.5827(T) 0.6613(T) 
A18-D2  0.8547(T) 0.8124(T) 0.7610(T) 0.8108(T) 
 

Table N3. 20 node average end-to-end delay statistical analysis 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  286.28  1.8878  2.6164  288.90  283.67 
2 fps  288.10  0.9683  1.3420  288.90  286.76 
3 fps  291.64  5.1018  7.0706  298.71  284.57 
4 fps  288.33  0.7011  0.9717  289.30  297.36 
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Table N4. 20 node average end-to-end delay results analysis 
   Velocity 

1 fps  2 fps  3 fps  4 fps 
High Limit  288.90  288.90  298.71  289.30 
Low Limit  283.67  286.76  284.57  297.36 
Protocol Mix 

A2-D18  303.54(T) 323.48(T) 329.86(T) 341.71(T) 
A4-D16  312.68(T) 360.77(T) 367.20(T) 377.18(T) 
A6-D14  304.05(T) 348.31(T) 364.83(T) 351.16(T) 
A8-D12  271.24(T) 294.62(T) 306.29(T) 354.98(T) 
A10-D10  294.76(T) 308.46(T) 313.98(T) 299.55(T) 
A12-D8  270.18(T) 293.96(T) 299.94(T) 325.17(T) 
A14-D6  303.26(T) 349.29(T) 361.21(T) 360.68(T) 
A16-D4  311.77(T) 357.62(T) 385.26(T) 377.61(T) 
A18-D2  306.23(T) 326.76(T) 340.71(T) 342.98(T) 
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Appendix O 

30 Node Series Results 

 
Table O1. 30 node average throughput percentage statistical analysis 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  0.9760  0.02088 0.02894 1.0000  0.9471 
2 fps  0.9988  0.00057 0.00079 0.9997  0.9981 
3 fps  0.9965  0.00241 0.00334 0.9999  0.9932 
4 fps  0.9699  0.01508 0.02090 0.9907  0.9489 

 

Table O2. 30 node average throughput percentage results analysis 
   Velocity 

1 fps  2 fps  3 fps  4 fps 
High Limit  1.0000  0.9997  0.9999  0.9907 
Low Limit  0.9471  0.9981  0.9932  0.9489 
Protocol Mix 

A2-D28  0.9449(T) 0.9533(T) 0.9533(T) 0.9402(T)  
A4-D26  0.9415(T) 0.9998(T) 0.9836(T) 0.9499(F) 
A6-D24  0.9406(T) 0.9055(T) 0.9559(T) 0.9306(T) 
A8-D22  0.8280(T) 0.8847(T) 0.8608(T) 0.8612(T) 
A10-D20  0.8355(T) 0.9224(T) 0.8753(T) 0.9015(T) 
A12-D18  0.7451(T) 0.9222(T) 0.8897(T) 0.9055(T) 
A14-D16  0.7527(T) 0.8979(T) 0.8353(T) 0.8763(T) 
A16-D14  0.7353(T) 0.8981(T) 0.8325(T) 0.8751(T) 
A18-D12  0.7415(T) 0.9197(T) 0.8868(T) 0.9022(T) 
A20-D10  0.8227(T) 0.9211(T) 0.8704(T) 0.8982(T) 
A22-D8  0.8069(T) 0.8827(T) 0.8563(T) 0.8509(T) 
A24-D6  0.9205(T) 0.9565(T) 0.9501(T) 0.9285(T) 
A26-D4  0.9237(T) 0.9988(T) 0.9810(T) 0.9565(F) 
A28-D2  0.9207(T) 0.9470(T) 0.9495(T) 0.9371(T) 
  

 

   



180
  

 
Table O3. 30 node average end-to-end delay statistical analysis 
Velocity Mean  SD  SEM  High Limit Low Limit 

1 fps  143.1  2.9924  4.1471  147.29  139.00 
2 fps  140.4  0.3591  0.4977  140.87  139.87 
3 fps  140.6  0.9135  1.2660  141.89  139.37 
4 fps  143.6  1.6631  2.3046  145.90  141.29 
 

Table O4. 30 node average end-to-end delay results analysis 
   Velocity 

1 fps  2 fps  3 fps  4 fps 

High Limit  147.29  140.87  141.87  145.90 
Low Limit  139.00  139.87  139.37  141.29 
Protocol Mix 

A2-D18  135.99(T) 134.84(T) 134.37(T) 136.09(T) 
A4-D16  137.05(T) 140.09(F) 142.09(T) 145.32(F) 
A6-D14  136.39(T) 147.25(T) 146.73(T) 147.94(T) 
A8-D12  157.92(T) 160.85(T) 166.91(T) 161.25(T) 
A10-D20  156.28(T) 139.06(T) 147.57(T) 141.23(T) 
A12-D18  172.76(T) 138.40(T) 145.28(T) 140.96(T) 
A14-D16  154.42(T) 128.98(T) 139.48(F) 132.46(T) 
A16-D14  157.88(T) 129.19(T) 140.56(F) 131.59(T) 
A18-D12  174.15(T) 139.44(T) 145.46(T) 141.65(F) 
A20-D10  158.22(T) 139.04(T) 148.27(T) 142.35(F) 
A22-D8  162.32(T) 161.17(T) 167.19(T) 163.20(T) 
A24-D6  139.34(F) 146.34(T) 147.76(T) 142.97(F) 
A26-D4  139.73(F) 140.23(F) 143.12(T) 145.20(F) 
A28-D2  139.07(F) 133.80(T) 134.60(T) 136.29(T) 
 



181
  

 
 

 
 

References 
 
Abolhasan, M., Lipman, J., & Chicharo, J. (2004). A routing strategy for heterogeneous 

mobile ad hoc networks. Proceedings of the IEEE 6th CAS Symposium on 
Emerging Technologies: Frontiers of Mobile and Wireless Communications, 
Shanghai, China, 1, 13-16. 

 
Abolhasan, M., & Wysocki, T. (2003). A performance study of dynamic zone topology 

routing protocol. Proceedings of the 7th International Symposium on DSP for 
Communications Systems, Coolangatta, Gold Coast, 111-117. 

 
Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2003, February). LPAR: An adaptive 

routing strategy for MANETs. Journal of Telecommunication and Information 
Technology, 2, 28-37. 

 
Acharya, A., Misra, A., & Bansal, S. (2002). A label-switching packet forwarding 

architecture for multi-hop wireless LANs. Proceedings of the 5th ACM 
International Workshop on Wireless Mobile Multimedia, USA, 33-40. 

 
Adler, M., & Scheidler, C. (1998). Efficient communication strategies for ad hoc wireless 

networks. Proceedings of the ACM Symposium on Parallel Algorithms and 
Architectures, Puerto Vallerta, Mexico, 259-268. 

 
Ahmed, M., Vanitchannant, N., & Dao, S. (2002). A collaborative multicast routing 

(CMR) protocol for hybrid wireless networks. Retrieved April 12, 2004, from 
http://www.ee.ucla.edu/~ameesh/papers/2232-342.pdf 

 
Al-Shurman, M., Yoo, S-M., & Park, S. (2004). A performance simulation for route 

maintenance in wireless ad hoc networks. Proceedings of the 42nd annual ACM 
Southeast Conference, USA, 25-30. 

 
Anastasi, G., & Lenzini, L. (2000). QoS provided by the IEEE 802.11 wireless LAN to 

advanced applications: a simulation analysis. Wireless Networks, 6, 99-108. 
 
Arabshahi, P., Gray, A., Kassabalidis, I., Das, A., Narayanan, S., El-Sharkawi, M., & 

Marks II, R. (2001). Adaptive routing in wireless communication networks using 
swarm intelligence. Proceedings of the 9th AIAA International Communication 
Satellite Systems Conference, Toulouse, France, 256-265. 

 



182
  

Bae, S., Lee, S., & Gerla, M. (2001). Multicast protocol implementation and validation in 
an ad hoc network testbed. Proceedings of the Third International Workshop on 
Implicit Computational Complexity, Aarhus, Denmark, 3196-3200. 

 
Bai, F., Sadagopan, N., & Helmy, A. (2003). IMPORTANT: a framework to 

systematically analyze the impact of mobility on performance of routing protocols 
for ad hoc networks. Proceeding of the 22nd Annual Joint Conference of the IEEE 
Computer and Communications Societies, USA, 825-835. 

 
Baran, B., & Sosa, R. (2001). AntNet routing algorithm for data networks based on 

mobile agents. Revista Iberoamericana de Inteligencia Artificial, 12, 75-84. 
 
Beech, W., Nielsen, W., & Taylor, J. (1998). AX.25 link access protocol for amateur 

packet radio. Retrieved July 06, 2005 from http://www.tapr.org/pdf/AX25.2.2.pdf 
 
Bhargava, B., Wu, X., Lu, Y., & Wang, W. (2004). Integrating heterogeneous wireless 

technologies: a cellular aided mobile ad hoc network (CAMA). Mobile Networks 
and Applications, 9(4), 393-408. 

 
Boleng, J., Navidi, W., & Camp, T. (2002). Metrics to enable adaptive protocols for 

mobile ad hoc networks. Proceedings of the International Conference on Wireless 
Networks, USA, 293-298. 

 
Bolinth, E., Lappeteläinen, A., Ojala, J., Pauli, M., Kreämling, A., Journé, T., Lacroix, 

D., Böhnke, R., Wegmann, B., & Schultz, E. (2001). QoS enhancements for 
HIPERLAN/2. Proceedings of the IST Mobile Communications Summit, 
Barcelona, Spain, 171-181. 

 
Boukerche, A. (2004). Performance evaluation of routing protocols for ad hoc wireless 

networks. Mobile Networks and Applications, 9(4), 333-342. 
 
Breslau, L., et al. (2000, May). Advances in network simulation. IEEE Computer, 33(5), 

59-67. 
 
Briesemeister, L. (2001). Group membership and communications in highly mobile ad 

hoc networks. Unpublished doctoral dissertation, Technischen Universitat, Berlin, 
Germany.  

 
Bruno, R., Conti, M., & Gregori, E. (2001). WAN technologies for mobile ad hoc 

networks. Proceedings of the 34th Hawaii International Conference on System 
Sciences, USA, 9003-9014. 

 
Buszko, D., Lee, W., & Helal, A. (2001). Decentralized ad-hoc groupware API and 

framework for mobile collaboration. Proceedings of the 2001 International ACM 
SIGGROUP Conference on Supporting Group Work, USA, 5-14. 

 



183
  

Buttyán, L., & Hubaux, J-P. (2003, October). Stimulating cooperation in self-organizing 
mobile ad hoc networks [Electronic version]. Mobile Networks and Applications, 
8(5), 579-592. 

 
Caire, G., Lhuillier, N., & Rimassa, G. (2002). A communications protocol for agents on 

handheld devices. Proceedings of the First International Joint Conference on 
Autonomous Agents and Multi-agent Systems, Bologna, Italy, 201-215. 

 
Calafate, C., Garcia, R., & Manzoni, P. (2003). Optimizing the implementation of a 

MANET routing protocol in a heterogeneous environment. Proceedings of the 
IEEE Eighth International Symposium on Computers and Communication, 
Kemer-Antalya, Turkey, 217-225. 

 
Camara, D., & Loureiro, A. (2000). A novel algorithm for ad hoc networks. Proceedings 

of the 33rd Hawaii International Conference on System Science, USA, 8, 8022-
8030. 

 
Camp, T., Boleng, J., Williams, B., Wilcox, L., & Navidi, W. (2002). Performance 

comparison of two location based routing protocols for ad hoc networks. 
Proceedings of the twenty-first annual joint conference of the IEEE Computer and 
Communications Societies, USA, 3, 1678-1687. 

 
Cavin, D., Sasson, Y., & Schiper, A. (2002). On the accuracy of MANET simulators. 

ACM Workshop on the Principles of Mobile Computing, Toulouse, France, 38-43. 
 
cygwin (2005). Software to emulate UNIX [Computer software and manual]. Retrieved 

February 16, 2005 from http://cygwin.com/ 
 
Chacón, D., Bell, B., & McCormick, J. (2000). Using autonomous agents to improve 

efficiency and robustness in slow, unreliable networks. Proceedings of the 
American Association for Artificial Intelligence Spring Symposium, USA, 34-36. 

 
Chandramouli, V. (2002). A detailed study on wireless LAN technologies. Unpublished 

manuscript, University of Texas at Arlington. 
 
Chen, T., & Gerla, M. (1998). Global state routing: A new routing scheme for ad-hoc 

wireless networks. Proceedings of the IEEE International Conference on 
Communications, USA, 171-175. 

 
Choudhury, R., Paul, K., & Bandyopadhyay, S. (2002). An agent-based connection 

management protocol for ad-hoc wireless networks. Journal of Network and 
Systems Management, 10(4), 483-504. 

 
Choudhury, R., Paul, K., & Bandyopadhyay, S. (2004). MARP: a multi-agent routing 

protocol for mobile wireless ad hoc networks. Autonomous Agents and Multi-
Agent Systems, 8, 47-68. 



184
  

 
Clausen, T., & Jacquet, P. (2003). Optimized link state routing protocol. Retrieved 

November 12, 2003 from http://www.ietf.org/ietf/1id-abstracts.txt 
 
Cordeiro, C., Abhyankar, S., Toshiwal, R., & Agrawal, D. (2004). Bluestar: enabling 

efficient integration between bluetooth WPANs and IEEE 802.11 WANs. Mobile 
Networks and Applications, 9, 409-422. 

 
Christin, N. (2005). ns-2 all-in-one [Computer software and manual]. Retrieved February 

15, 2005 from http://www.sims.berkeley.edu/~christin/ns-cygwin.shtml 
 
Das, B., Perkins, C., & Royer, E. (2000). Performance comparison of two on-demand 

routing protocols for ad hoc networks. Proceedings of the IEEE Conference on 
Computer Communications, Tel-Aviv, Israel, 1, 1-13. 

 
Deb, A., Freburg, K., Surdu, J., Hall, A., & Maymi, F. (2002) Modeling the 

communications capabilities of the infantry soldier. Communication Networks 
and Distributed Systems Modeling and Simulation Conference, USA, 906-911. 

 
Denko, M. (2003). The use of mobile agents for clustering in mobile ad hoc networks. 

Proceedings of the South African Institute for Computer Scientists and 
Information Technologists, Pretoria, South Africa, 241-247. 

 
Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for 

communications networks. Journal of Artificial Intelligence Research, 9, 317-
365. 

 
Di Caro, G., & Dorigo, M. (1998b). Ant colonies for adaptive routing in packet-switched 

communications networks. Proceedings of the Fifth International Conference on 
Parallel Problem Solving from Nature, Amsterdam, Holland, 1498, 673-682. 

 
Dougherty, D., & Robbins, A. (1997). Sed & awk. Sebastopol, CA: O’Reilly Media Inc. 
 
Draves, R., Padhye, J., & Zill, B. (2004). Comparison of routing metrics for static multi-

hop wireless networks. Proceedings of the ACM conference on Applications, 
technologies, architectures, and protocols for computer communications, USA, 
133-144. 

 
Dubendorf, V. (2003). Wireless data technologies. New York, NY: John Wiley & Sons. 
 
Dunne, C.R. (2001). Using mobile agents for network resource discovery in peer-to-peer 

networks. SIGecom exchanges, 2(3), 1-9.  
 
Flickenger, R. (2002). Building wireless community networks. Cambridge, MA: O’Reilly 

Press. 
 



185
  

Garcia-Luna-Aceves, J., Mosko, M., & Perkins, C. (2003). A new approach to on-
demand loop-free routing in ad hoc networks. Proceedings of the Twenty-Second 
ACM Symposium on Principles of Distributed Computing, USA, 53-62. 

 
Gast, M. (2005). 802.11 Wireless Networks the Definitive Guide 2nd Edition. Cambridge, 

MA: O’Reilly Press. 
 
Ge, Y., Lamont, L., & Villasenor, L. (2005). Hierarchical OLSR – a scalable proactive 

routing protocol for heterogeneous ad hoc networks. Proceedings of the Wireless 
and Mobile Computing Conference, Montreal, Canada, 1-7. 

 
Ghosh, A., Wolter, D., Andrews, J., & Chen, R. (2005). Broadband wireless access with 

WiMAX/802.16: Current performance benchmarks and future potential. IEEE 
Communications Magazine, 43(2), 129-136. 

 
Gilbert, J., Choi, W-J., & Sun, Q. (2005). MIMO technology for advanced wireless local 

area networks. Proceedings of the 42nd Annual Design Automation Conference, 
USA, 413-415. 

 
Goleniewski, L. (2002). Telecommunications essentials. Indianapolis, IN: Addison 

Wesley. 
 
Golmie, N., Chevrollier, N., & Rebala, O. (2003). Bluetooth and WLAN coexistence: 

challenges and solutions. IEEE Wireless Communications Magazine, 10(6), 22-
29.  

 
Golmie, N., Van Dyck, R., Soltanian, A., Tonnerre, A., & Rebala, O. (2003). Interference 

evaluation of Bluetooth and IEEE 802.11b systems. Wireless Networks, 9, 201-
211.  

 
Günes, M., Sorges, U., & Bouazizi, I. (2002). ARA – the ant-colony based routing 

algorithm for MANETs. Proceedings of the International Workshop on Ad Hoc 
Networking, British Columbia, Canada, 79-85.  

 
Haas, Z. (1997). A new routing protocol for the reconfigurable wireless networks. 

Proceedings of the IEEE International Conference on Personal Communications, 
USA, 562-566. 

 
Haas, Z., Deng, J., Liang, B., Papadimitratos, P., & Sajama, S. (2002). Wireless ad hoc 

networks. Encyclopedia of telecommunications (John Proakis, Ed.). Ithaca, NY: 
John Wiley & Sons. 

 
Haas, Z., & Pearlman, M. (2001). The performance of query control schemes for the zone 

routing protocol. IEEE/ACM Transactions on Networking, 9(4), 167-177. 
 
Haas, Z., Pearlman, M., & Samar, P. (2003). The zone routing protocol for ad hoc 

networks. Retrieved November 05, 2004 from http://www.ietf.org/proceedings/ 



186
  

02nov/I-D/draft-ietf-manet-zone-zrp-04.txt 
 
Hać, A. (2003). Mobile telecommunications protocols for data networks. Ithaca, NY: 

John Wiley & Sons. 
 
Heissenbüttel, M., & Braun, T. (2003). Ants-based routing in large scale mobile ad-hoc 

networks. Proceedings of the Kommunikation im verteilung Systemen, Leipzig, 
Germany, 91-99. 

 
Hong, X., Xu, K., & Gerla, M. (2002). Scalable routing protocols for mobile ad hoc 

networks. IEEE Network, 6(4), 11-21. 
 
Hu, Y-C., Das, S., & Pucha, H. (2002). Exploiting the synergy between peer-to-peer and 

mobile ad hoc networks. Proceedings of the Ninth Workshop on Hot Topics in 
Operating Systems, USA, 1-6. 

 
Hu, Y-C., & Johnson, D. (2000). Caching strategies in on-demand routing protocols for 

wireless ad hoc networks. Proceedings of the ACM Conference on Mobile Ad Hoc 
Networking (MobiCom), USA, 231-242. 

 
Hu, Y-C., Perrig, A., & Johnson, D. (2002). Ariadne: A secure on-demand routing 

protocol for ad hoc networks. Proceedings of the 8th ACM International 
Conference on Mobile Computing and Networking, USA, 12-23. 

 
Huang, C-F., Lee, H-W., & Tseng, Y-C. (2004). A two-tier heterogeneous mobile ad hoc 

network architecture and its load-balance routing problem. Mobile Networks and 
Applications, 9, 379-391. 

 
Hubaux, J-P., Gross, T., Boudec, J-Y., & Vetterli, M. (2001). Toward self-organized 

mobile ad hoc networks: The terminodes project. IEEE Communications 
Magazine, 31(1), 118-124. 

 
IEEE (1999). IEEE standard 802.11, 1999 edition. New York, NY: Institute of Electrical 

and Electronics Engineers. 
 
IEEE (1999b). IEEE standard 802.11b-1999 supplement to ANSI/IEEE standard 802.11, 

1999 edition. New York, NY: Institute of Electrical and Electronics Engineers.  
 
IEEE (2004). IEEE 802.16-2004 Standard for Local and Metropolitan Networks Part 16: 

Air Interface for Fixed Broadband Wireless Access Systems. New York, NY: 
Institute of Electrical and Electronics Engineers. 

 
IEEE (2006). IEEE task group advances standards process for higher-speed 802.11™ 

wireless local area networks. Retrieved February 20, 2006 from 
http://standards.ieee.org/announcements/pr_tgp802.11n.html 

 



187
  

Illmann, T., Krueger, T., Kargl, F., & Weber, M. (2001). Transparent migration of mobile 
agents using the JAVA platform debugger architecture. Proceedings of the 
International Symposium on Mobile Agents, USA, 198-212. 

 
IrDA (1997, July 18). Specifications for IrLAN. Retrieved January 30, 2004 from 

http://www.irda.org/standards/pubs/IrLAN.PDF 
 
Iwata, A., Chaing, C-C., Pei, G., Gerla, M., & Chen, T-W. (1999). Scalable routing 

strategies for ad hoc wireless networks. IEEE Journal on Selected Areas in 
Communications, 17(8), 1369-1379. 

 
Jardosh, A., Belding-Royer, M., Almeroth, K., & Suri, S. (2003). Towards realistic 

mobility models for mobile ad hoc networks. Proceedings of the ACM Conference 
on Mobile Ad Hoc Networking, USA, 217-229. 

 
Ji, L., & Corson, S. (2001). Differential destination multicast – a MANET multicasting 

routing protocol for small groups. Proceedings of the IEEE Conference on 
Computer Communications, USA, 1192-2001. 

 
Jiang, X., & Camp, T. (2002). An agent-based location service for ad hoc networks. 

Unpublished manuscript, Colorado School of Mines, Golden, CO. 
 
Johnson, D. (1999). Validation of wireless and mobile network models and simulation. 

Unpublished manuscript, Carnegie Mellon University. 
 
Johnson, D., Maltz, D., Hu, Y-C., & Jetcheva, J. (2002). The dynamic source routing 

protocol for mobile ad hoc networks (Updated). Retrieved November 14, 2003 
from http://www.ietf.org/ietf/1id-abstracts.txt 

 
Jung, E-S., & Vaidya, N. (2002). A power control MAC protocol for ad hoc networks. 

Proceedings of the 8th annual International Conference on Mobile Computing and 
Networking, USA, 36-47.  

 
Kain, C. (2003). Commercial mobile radio services for public sector agencies. Retrieved 

September 7, 2004 from 
http://www.itspublicsafety.net/docs/MitretekFinalCMRS_PublicSafety.pdf 

 
Kannan, S., Mellor, J., & Kouvatsos, D. (2003). Investigation of distance vector routing 

for mobile ad hoc networks. Proceedings of the Post Graduate Networking 
Conference, Liverpool, United Kingdom, 1-4. 

 
Kanter, T. (2003). Going wireless, enabling an adaptive and extensible environment. 

Mobile Networks and Applications, 8, 37-50. 
 



188
  

Kargl, F., Nagler, J., & Schlott, S. (2002, July 23). Building a framework for MANET 
routing protocols. Paper presented at the 2002 Symposium on Mobile Ad-Hoc 
Netzwerk. Retrieved August 9, 2003 from http://medien.informatik.uni-ulm.de/ 

 ~frank/research/manetframework.pdf 
  
Kassabalidis, I., El-Sharkawi, M., Marks II, J., Arabshahi, P., & Gray, A. (2001). Swarm 

intelligence for routing in communications systems. Proceedings of the IEEE 
Conference on Global Communications (Globecom), USA, 3613-3617. 

 
Kawaguchi, N., Toyama, K., & Inagakia, Y. (2000). MAGNET: ad hoc network system 

based on mobile agents. Computer Communications, 23(8), 761-768.  
 
Kawaguchi, N., & Inagaki, Y. (2000). Ad-hoc on-demand communications system based 

on mobile agents. Retrieved January 07, 2003, from 
http://www.inagaki.nuie.nagoya-u.ac.jp/~kawaguti/research/wpmc2000.pdf 

 
Kim, Y., Lee, J-J., & Helmy, A. (2004). Modeling and analyzing the impact of location 

inconsistencies on geographic routing in wireless networks. Mobile Computing 
and Communications Review, 8(1), 48-60. 

 
Kotz, D., Gray, R., & Rus, D. (2002). Future directions for mobile agent research (Tech. 

Rep. TR2002-415). Hanover, NH: Dartmouth College.  
 
Kuri, J., & Kasera, S. (2001). Reliable multicast in multi-access wireless LANs. Wireless 

Networks, 7, 359-369. 
 
Kwon, T., & Gerla, M. (2002). Efficient flooding with passive clustering (PC) in ad hoc 

networks. ACM SIGCOMM Computer Communications Review, 32(1), 44-56.  
 
Lee, S., Han, B., & Shin, M. (2002). Robust routing in wireless ad hoc networks. 

Proceedings of the IEEE International Conference on Parallel Processing 
Workshops (ICPPW), Vancouver, B.C., Canada, 73-79. 

 
Lee, S-J., Hsu, W., Gerla, M., & Bagrodia, R. (2000). A performance comparison study 

of ad hoc wireless multicast protocols. Proceedings of the Nineteenth Annual 
Joint Conference of the IEEE Computer and Communications Societies 
(INFOCOM), Tel Aviv, Israel, 565-574.  

 
Li, Q., Aslam, J., & Rus, D. (2001). Online power-aware routing in wireless ad-hoc 

networks. ACM SIGMOBILE, Rome, Italy, 97-107. 
 
Li, Q., & Rus, D. (2000). Sending messages to mobile users in disconnected ad-hoc 

wireless networks. Proceedings of ACM Mobile Computing and Networking 
Conference, USA, 44-55. 

 
 



189
  

Li, Q., & Rus, D. (2003). Communication in disconnected ad hoc networks using 
message relay. Journal of Parallel Distributed Computing, 63, 75-86. 

 
Li, X., & Cuthbert, L. (2004). Node-disjointness-based multipath routing for mobile ad 

hoc networks. Proceedings of the First ACM International Workshop on 
Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks, 
Venezia, Italy, 23-29. 

 
Lin, G., Noubir, G., & Rajaraman, R. (2004). Mobility models for ad hoc network 

simulation. Proceedings of the IEEE INFOCOM, Hong Kong, China, 454-463. 
 
Littman, M. (2002). Building broadband networks. Boca Raton, Florida: CRC Press. 
 
Liu, W., & Song, H. (2002). Research and implementation of mobile ad hoc network 

emulation system. Proceedings of the 22nd IEEE International Conference on 
Distributed Computing Systems Workshops (ICDCSW), Vienna, Austria, 749-756. 

 
Lo, S-C., Liu, J-C., & Chen, W-T. (2004). Heterogeneous routing protocol for group 

communications in wireless ad hoc networks. Proceedings of the 2nd International 
Conference on Information Technology for Application, Harbin, China, 5-10. 

 
Lu, Y., Wang, W., Zhong, Y., & Bhargava, B. (2003). Study of distance vector routing 

protocols for mobile ad hoc networks. Proceedings of the IEEE International 
Conference on Pervasive Computing and Communications, USA, 187-194. 

 
Lundberg, D. (2004). Ad hoc protocol evaluation and experiences of real world ad hoc 

networking. Unpublished master’s thesis, Uppsala University, Uppsala, Sweden. 
 
Lundgren, H., Ramachandran, K., Belding-Royer, E., Almeroth, K., Benny, M., Hewatt, 

A., Touma, A., & Jardosh, A. (2006). Experiences from the design, deployment, 
and usage of the UCSB meshnet testbed. IEEE Wireless Communications, 13(2), 
18-29. 

 
Mangold, S., Choi, S., May, P., Klein, O., Heirtz, G., & Stibor, L. (2002). IEEE 802.11e 

wireless LAN for quality of service. Proceedings of the European Wireless 
Conference, Florence, Italy, February 2002. 

 
Marina, M., & Das, S. (2001). On-demand multipath distance vector routing in ad hoc 

networks. Proceedings of the Ninth International Conference on Network 
Protocols (ICNP’01), Riverside CA. 

 
Marwaha, S., Tham, C., & Srinivasan, D. (2002). Mobile agent based routing protocol for 

mobile ad hoc networks. Proceedings of the IEEE Symposium on Ad Hoc 
Wireless Networks, Taipei, Taiwan, R.O.C., 1-5. 

 



190
  

Mauve, M., Widmer, J., & Hartenstein, H. (2001, November). A survey on position-
based routing in mobile ad hoc networks. IEEE Network Magazine, 15(6), 30-39. 

 
Microsoft (2002). Microsoft computer dictionary (Fifth ed.). Redmond, WA: Microsoft 

Press.  
 
Migas, N., Buchanan, W., & McArtney, K. (2003). Mobile agents for routing, topology 

discovery, and automatic network reconfiguration in ad hoc networks. 
Proceedings of the 10th International Conference and Workshop on the 
Engineering of Computer Based Systems, USA, 200-207.  

 
Mochocki, B., & Madey, G. (2005). H-MAS: Heterogeneous, mobile, ad-hoc sensor-

network simulation environment. Proceedings of the Agent Directed Simulation 
Conference, USA, 1-7. 

 
Nam (2003). Nam: Network Animator [Computer software and manual]. Retrieved 

January 20, 2004 from http://www.isi.edu/nsnam/nam/ 
 
Naor, Z., & Levy, H. (2001). A centralized dynamic access probability protocol for next 

generation wireless networks. Proceedings of the Twentieth Annual Joint 
Conference of the IEEE Computer and Communications Societies, USA, 767-775. 

 
Navid, N., Houda, L., & Bonnet, C. (2000). DDR: Distributed dynamic routing algorithm 

for mobile ad hoc networks. First Annual Workshop on Mobile Ad Hoc 
Networking and Computing, USA, 19-27.  

 
Navidi, W., Bauer, N., & Camp, T. (2003). Improving the accuracy of random waypoint 

simulations through steady-state initialization (Tech. Rep. No. MCS-03-08). The 
Colorado School of Mines. 

 
Navidi, W., & Camp, T. (2004). Stationary distributions for the random waypoint 

mobility model. IEEE Transactions on Mobile Computing, 3(1), 99-108. 
 
Newton, H. (2006). Newton’s telecom dictionary (22th ed.). New York, NY: CMP Books. 
 
Nikaein, N., Bonnet, C., & Nikaein, N. (2001). Hybrid ad hoc routing protocol – HARP. 

Proceeding of International Symposium on Telecommunications, Tehran, Iran, 1-
7. 

 
Nikaein, N., Labiod, H., & Bonnet, C. (2000). DDR-distributed dynamic routing 

algorithm for mobile ad hoc networks. Proceedings of the 1st International 
Symposium on Mobile Ad Hoc Networking & Computing, USA, 19-27. 

 
ns-2 (2005). Network simulator software (version 2.28) [Computer software and manual]. 

Retrieved February 18, 2005 from http://www.isi.edu/nsnam/ns/ 
 



191
  

Obraczka, K., Viswanath, K., & Tsudik, G. (2001). Flooding for reliable multicast in 
multi-hop ad hoc networks. Wireless Networks, 7(6), 627-634. 

 
Ohrtman, F., & Roeder, K. (2003). Wi-Fi handbook: Building 802.11b wireless networks. 

New York, NY: McGraw-Hill. 
 
Papadimitratos, P., & Haas, Z. (2003). Secure link state routing for mobile ad hoc 

networks. Proceedings of the IEEE Workshop on Security and Assurance in Ad 
Hoc Networks, USA, 379-383. 

 
Papapetrou, E., & Pavlidou, F. (2003, October). A novel approach to source routing for 

multi-hop ad hoc networks. IEEE Communications Letters, 7(9) 472-474. 
 
Park, S., & Park, D. (2004). Adaptive core multicast protocol. Wireless Networks, 10, 53-

60.  
 
Park, V., & Corson, S. (2001). Temporally-ordered routing algorithm (TORA) version 1 

functional specification. Retrieved 12-1 2003 from http://www.ietf.org/ietf/1id-
abstracts.txt 

 
Patil, B., Saifullah, Y., Faccin, S., Sreemanthual, S., Aravamudhan, L. Sharma, S., & 

Mononen, R. (2003). IP in wireless networks. Upper Saddle River, NJ: Prentice 
Hall Professional Technical Reference. 

 
Pei, G., & Gerla, M. (2001). Mobility management for hierarchical wireless networks. 

Mobile Networks and Applications 6, 331-337. 
 
Pei, G., Gerla, M., Hong, X. (2000). LANMAR: Landmark routing for large scale 

wireless ad hoc networks with group mobility. First Annual Workshop on Mobile 
and Ad Hoc Networking and Computing (MobiHoc), USA, 11-18. 

 
Pei, G., Gerla, M., Hong, X., & Chaing, C-C. (1999). Wireless hierarchical routing 

protocol with group mobility (WHIRL). Proceedings of the IEEE Wireless 
Communications and Networking Conference, USA, 1-18. 

 
Pei, G., Gerla, M., & Chen, T. (2000). Fisheye state routing: A routing scheme for ad hoc 

wireless networks, Proceedings of the IEEE International Conference on 
Communication, USA, 70-74. 

 
Perkins, C., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance 

vector routing (DSDV) for mobile computers. 1994 Conference on 
Communication Architectures, Protocols and Applications, USA, 234-244. 

 
Peterson, B., Baldwin, R., & Raines, R. (2003). Inquiry packet interference in bluetooth 

scatternets. Mobile Computing and Communications Review, 7(2), 66-75. 
 



192
  

Pirzada, A., & McDonald, C. (2004). Establishing trust in pure ad-hoc networks. 
Proceedings of the 27th Australasian Computer Science Conference, Dunedin, 
New Zealand, 47-54. 

 
Poon, E., & Li, B. (2003). SmartNode: Achieving 802.11 MAC interoperability in power-

efficient ad hoc networks with dynamic range adjustments. Proceedings of the 
23rd International Conference on Distributed Computing Systems, USA, 650-657. 

 
Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., & Zipl, A. (2001). 

CRUMPET: creation of user-friendly mobile services personalized for tourism. 
Proceedings of the IEEE Second International Conference on 3G Mobile 
Communications Technologies, London, United Kingdom, 28-32.  

 
Prakash, R. (2001). A routing algorithm for wireless ad hoc networks with unidirectional 

links. Wireless Networks, 7, 617-625. 
 
Puliafito, A., & Tomarchio, O. (2000). Using mobile agents to implement flexible 

network management strategies. Computer Communications, 23, 708-719. 
 
Raju, J., & Garcia-Luna-Aceves, J. (2000). A comparison of on-demand and table driven 

routing for ad-hoc wireless networks. Proceedings of the 2nd Annual Conference 
on Implicit Computational Complexity, USA, 1702-1706. 

 
Ramasubramanian, V., Haas, Z., & Sirer, E. (2003). SHARP: A hybrid adaptive routing 

protocol for mobile ad hoc networks. Proceedings of the ACM Conference on 
Mobile Ad Hoc Networks, USA, 303-314. 

 
Rangarajan, H., & Garcia-Luna-Aceves, J. (2004).Achieving loop-free incremental 

routing in ad hoc networks. Proceedings of the IEEE International Symposium on 
Computers and Communications, Alexandria, Egypt, 1, 182-187. 

 
Ross, J. (2003). The book of Wi-Fi – install, configure, and use 802.11b wireless 

networking. San Francisco, CA: No Starch Press.  
 
Roy, S., & Garcia-Luna-Aceves, J. (2002). Node-centric hybrid routing for ad hoc 

networks. Proceedings of the IEEE International Mobility and Wireless Access 
Workshop, USA, 63-72.  

 
Royer, E., Sun, Y., & Perkins, C. (2001). Global connectivity for IPv4 mobile ad hoc 

networks, 2001. Retrieved December 1, 2003 from http://www.ietf.org/ietf/1id-
abstracts.txt 

 
Samar, P., Pearlman, M., & Haas, Z. (2004). Independent zone routing: An adaptive 

hybrid routing framework for ad hoc wireless networks. IEEE Transactions on 
Networking, 12(4), 595-608. 

 



193
  

Santamaria, A., & Lopez-Hernindez, F. (2001). Wireless LAN standards and 
applications. Norwood, MA: Artech House. 

 
Scherpe, C., & Wolf, J. (2002). Real-time simulation of multi-hop ad hoc networks. 

Proceedings of the 6th CaberNet Radical Workshop, Madeira Island, Portugal, 1-
7. 

 
Shen, C-C., & Jaikaeo, C. (2003). Ad hoc multicast routing algorithm with swarm 

intelligence (Tech. Rep. No. 2003-08). Newark, DE: University of Delaware. 
 
Sheu, S-T., & Chen, J. (2002). Mr2RP: The multi-rate and multi-range routing protocol 

for ad hoc wireless networks. Proceedings of the Seventh International 
Symposium on Computers and Communications, Taormina, Italy, 435-440. 

 
Shurman, M., Yoo, S-M., & Park, S. (2004). A performance simulation for route 

maintenance in wireless ad hoc networks. Proceedings of the ACM Southeast 
Conference, USA, 25-30. 

 
Sinha, S., Krishnamurthy, S., & Dao, S. (2000). Scalable unidirectional routing with zone 

routing protocol (ZRP) extensions for mobile ad hoc networks. Proceedings of the 
IEEE Wireless Communications and Networking Conference, USA, 1329-1339. 

 
Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: A core-extraction 

distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in 
Communications, Special Issue on Wireless Ad Hoc Networks, 17(8), 1454-1465. 

 
Soltanian, A., & Van Dyck, R. (2001). Performance of the Bluetooth system in fading 

dispersive channels and interference. Proceedings of the IEEE Global 
Telecommunications Conference, USA, 3499-3503. 

 
Spohn, M., & Garcia-Luna-Aceves, J. (2001). Neighborhood aware source routing. 

Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and 
Computing, USA, 11-21. 

 
Solis, I., & Obraczka, K. (2004). FLIP: A flexible interconnection protocol for 

heterogeneous internetworking. ACM/Kluwer Mobile Networks and Applications, 
9(4), 347-361. 

 
Stoica, I. (2000). Ns-2 software and simulation results. Retrieved December 12, 2003, 

from University of California at Berkeley, Web site: 
http://www.cs.berkeley.edu/~istoica/csfq/software.html 

 
Stojmenovic, I., & Lin, X. (2001). Loop-free hybrid single-path/flooding routing 

algorithms with guaranteed delivery for wireless networks. IEEE Transactions on 
Parallel and Distributed Computing, 12(10), 1023-1032. 

 



194
  

Sudame, P., & Badrinath, B. (2001). On providing support for protocol adaptation in 
mobile wireless networks. Mobile Networks and Applications 6(1), 43-55. 

 
Sugar, R., & Imre, S. (2001). Adaptive clustering using mobile agents in wireless ad-hoc 

networks. Proceedings of the 8th International Workshop on Interactive 
Distributed Multimedia Systems, Lancaster, UK, 199-204.  

 
Suvak, D. (2000). IrDA and Bluetooth: A complementary comparison. Retrieved January 

30, 2004 from http://www.techonline.com/community/tech_topic/bluetooth/ 
tech_paper/20990 

 
Tcl Developers Exchange (2005). Tcl and Tk software [Computer software and manual]. 

Retrieved January 4, 2005 from http://www.tcl.tk/software/tcltk/ 
 
The CMU Monarch Project (1999). The CMU wireless and mobility extensions to ns. 

Retrieved on March 16, 2005 from http://www.monarch.cs.cmu.edu/ 
 
Tian, J., Hahner, J., Becker, C., Stepanov, I., & Rothermel, K. (2002). Graph-based 

mobility model for mobile ad hoc network simulation. Proceedings of the 35th 
Annual IEEE Simulation Symposium, USA, 337-344.  

 
Tseng, Y., Ni, S., Chen, Y., & Sheu, J. (2002). The broadcast storm problem in a mobile 

ad hoc network. Wireless Networks, 8(2/3), 153-167. 
 
Valera, A., Seah, W., & Rao, SV. (2003). Cooperative packet caching and shortest 

multipath routing in mobile ad hoc networks. Proceedings of the 22nd Annual 
Joint Conference of the IEEE Computer and Communications Societies, USA, 
260-269. 

 
Vasilakopoulou, E., Karastergios, G., & Papadopoulos, G. (2003). Design and 

implementation of the hiperlan/2 protocol. Mobile Computing and 
Communications Review, 7(2), 20-32. 

 
Viswanath, K., & Obraczka, K. (2002). An adaptive approach to group communications 

in multi-hop ad hoc networks. Proceedings of the seventh International 
Symposium on Computers and Communications, Taormina, Italy, 559-567. 

 
 Viswanath, K., Obraczka, K., & Tsudik, G. (2004). Exploring mesh- and tree based 

multicast routing protocols for MANETS. Retrieved July 11, 2005, from 
University of California at Santa Cruz, Inter-networking Research Group Web 
Site: http://inrg.cse.ucsc.edu/publications.html   

 
Vrana, G. (2001, May 24). Wireless ethernet: Serving the public. EDN. Retrieved 

November 6, 2004 from http://www.edn.com/article/CA159700.html 
 



195
  

Walsh, K., & Sirer, E. (2003). Staged simulation: A general technique for improving 
simulation scale and performance. ACM Transactions on Modeling and Computer 
Simulation, 14(2), 170-195. 

 
Wang, J., Khokhar, A., & Garg, V. (2002). Video communication with QoS guarantees 

over HIPERLAN/2. Proceedings of the IEEE Fourth International Symposium on 
Multimedia Software Engineering, USA, 312-319. 

 
Wedde, H., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J., & 

Jeruschkat, R. (2005). BeeAdHoc: An energy efficient routing algorithm for 
mobile ad hoc networks inspired by bee behavior. Proceedings of the Genetic and 
Evolutionary Computation Conference, USA, 153-160. 

 
Wheat, J., Hiser, R., Tucker, J., Neely, A., & McCullough, A. (2001). Designing a 

wireless network. Rockland, MA: Syngress Publishing.  
 
White, B., Lepreau, J., & Guruprasad, S. (2003). Lowering the barrier to wireless and 

mobile experimentation. ACM SIGCOMM Computer Communications Review, 
33(1), 47-52. 

 
White, T., Pagurek, B., & Duego, D. (2002). Biologically-inspired agents for priority 

routing in networks. Proceedings of the 15th International Florida Artificial 
Intelligence Research Society Conference, USA, 282-287. 

 
Wieselthier, J., Nguyen, G., & Ephremides, A. (2001). Algorithms for energy-efficient 

multicasting in static ad hoc wireless networks. Mobile Networks and 
Applications, 6(3), 251-263. 

 
Williams, B., & Camp, T. (2002). Comparison of broadcasting techniques for mobile ad 

hoc networks. Proceedings of the ACM International Symposium on Mobile Ad 
Hoc Networking and Computing, Lausanne, Switzerland, 194-205. 

 
Woo, S-C., & Singh, S. (2001). Scalable routing protocol for ad hoc networks. Wireless 

Networks, 7(5), 513-529. 
 
Wooldridge, M. (2002). Introduction to multiagent systems. Chichester, UK: John Wiley 

& Sons. 
 
Xfree86 (2005). Xwindows software [Computer software and manual]. Retrieved January 

5, 2005 from http://www.xfree86.org/ 
 
Xu, K., & Gerla, M. (2002). A heterogeneous routing protocol based on a new stable 

clustering scheme. Proceedings of the Military Communications Conference, 2, 
USA, 838-843. 

 



196
  

Yang, Y., Zincir-Heywood, A., Heywood, M., & Srinivas, S. (2002). Agent-based 
routing algorithms on a LAN. Proceedings of the 2002 IEEE Canadian 
Conference on Electrical & Computer Engineering, Winnipeg, Manitoba, 
Canada, 1442-1447. 

 
Ye, Z., Krishnamurthy, S., & Tripathi, S. (2003). A framework for reliable routing in 

mobile ad hoc networks. Proceedings of the 22nd Annual Joint Conference of the 
IEEE Computer and Communications Societies, USA, 270-280. 

 
Yoon, J., Liu, M., & Noble, B. (2003). Random waypoint considered harmful. 

Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and 
Communications Societies, USA, 1312-1321. 

 
Zhang, X., & Jacob, L. (2003). Adapting zone routing protocol for heterogeneous 

scenarios in ad hoc networks. Proceedings of the 2003 International Conference 
on Parallel Processing, Kaohsiung, Taiwan, 341-348. 

 
Zou, X., Ramamurthy, B., & Magliveras, S. (2002). Routing techniques in wireless ad 

hoc networks – classification and comparison. Proceedings of the 6th World 
Multi-conference on Systemics, Cybernetics & Informatics, IV, USA, 1-6.  


	Nova Southeastern University
	NSUWorks
	2006

	A Quantitative Analysis of Performance in a Multi-Protocol Ad Hoc 802.11b-based Wireless Local Network
	Paul Christian Nielsen Jr.
	Share Feedback About This Item
	NSUWorks Citation


	tmp.1476906335.pdf.Yn8xk

