
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

1998

A Simplified Faceted Approach To Information
Retrieval for Reusable Software Classification
Victor Allen Nguyen
Nova Southeastern University, drnguyenusa@yahoo.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Victor Allen Nguyen. 1998. A Simplified Faceted Approach To Information Retrieval for Reusable Software Classification. Doctoral
dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences.
(749)
https://nsuworks.nova.edu/gscis_etd/749.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A SIMPLIFIED FACETED APPROACH TO INFORMATION RETRIEVAL FOR
REUSABLE SOFTWARE CLASSIFICATION

by

Victor Allen Nguyen

A Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer Information Systems and Sciences
Nova Southeastern University

1998

We hereby certify that this dissertation, submitted by Victor Allen Nguyen, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

S. RollIns Guild, Ph.D.
~h-I/Tt
Date

Chairperson of Dissertati~n Committee

"

Michael Moody, Ph.D
Member of Dissertation Committee

Date
Member of Dissertation Committee

Approved:

c-~
Edward Lieblein, Ph.D. Date
Dean, School of Computer and Information Sciences

School of Computer and Information Sciences
Nova Southeastern University

1998

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Simplified Faceted Approach To Information Retrieval For Reusable
Software Classification

by
Victor Allen Nguyen

June 1998

Software Reuse is widely recognized as the most promising technique presently available
in reducing the cost of software production. It is the adaptation or incorporation of
previously developed software components, designs or other software-related artifacts
(i.e. test plans) into new software or software development regimes. Researchers and
vendors are doubling their efforts and devoting their time primarily to the topic of
software reuse. Most have focused on mechanisms to construct reusable software but few
have focused on the problem of discovering components or designs to meet specific
needs. In order for software reuse to be successful, it must be perceived to be less costly
to discover a software component or related artifact to satisfy a given need than to
discover one anew. As results, this study will describe a method to classify software
components that meet a specified need.

Specifically, the purpose ofthe present research study is to provide a flexible system,
comprised of a classification scheme and searcher system, entitled Guides-Search, in
which processes can be retrieved by carrying out a structured dialogue with the user. The
classification scheme provides both the structure of questions to be posed to the user, and
the set of possible answers to each question. The model is not an attempt to replace
current structures; but rather, seeks to provide a conceptual and structural method to
support the improvement of software reuse methodology.

The investigation focuses on the following goals and objectives for the
classification scheme and searcher system:

(1) the classification will be flexible and extensible, but usable by the
searcher;

(2) the user will not be presented with a large number of questions; the user
will never be required to answer a question not known to be germane to
the query;

Victor Allen Nguyen

(3) the user will not be presented with a large number of possible answers to
any single question; and

(4) the user will be allowed to specify an answer, even though he or she did
not know exactly what question the searcher will pose to elicit that
answer. (This is similar to a key word search.)

Acknowledgments

This dissertation would not have been possible without the understanding and
guidance of my committee during the research process. I wish to extend my
Sincere appreciation to Dr. S. Rollins Guild for his patience, encouragement
and guidance in all stages of my study. I also wish to express my gratitude to the
members of my academic advisory committee: Dr. Michael Moody, Dr. Lee Leitner,
Dr. William M. Hartman, Dr. Diane King and the School of Computer and Information
Sciences Dean's Representative - Dr. Edward Lieblein for their valuable advice and
service.

I would like to express my gratitude to Professor Van Snynder, a mathematician
at Jet Propulsion Laboratory. He aided my research tremendously by providing 19
pages of unfinished material relating to the subject matter which began my thesis.
Although Professor Van Snyder was working two jobs, he always found the time to
help. I would also like to include Professor Van Snyder's family who welcomed
me into their home with undivided encouragement. They are my inspiration of the
spirit of the American family.

I would like to thank Hoa V. Phan and his family for their friendship over the
last 15 years and their hospitality while visiting Florida. A special thanks goes to
Irene Hill, my sister-in-law, and Ms. Shaeffer for their editing talents.

Finally, I would like to express unconditional love for my family ... my wife,
Thao who has given many sleepless nights to encourage and motivate me and my
two daughters, Ariana and Chloe, whom have been very patient.

Table of Contents

Abstract
Table of Contents
List of Figures

Chapter

I. Introduction
-- Background of the Problem
-- Barriers and Issues
-- Relevance and significance

1. Classification Schemes
2. A Guides-Search System
3. Users interface

-- Purpose of the study
-- Research statements to be investigated
-- Assumptions and Limitations

Definition of terms
-- Chapter Summary

n. Research and literature review
Capsule Description

-- Object-Oriented Programming
-- Classes
-- Encapsulation
-- Inheritance

Reuse Via Inherit
-- Composition
-- Polymorphism

-- Background of Mathematics Leading Toward Computing
Abstraction and Reuse

Abstraction and Reuse
-- Functional Abstraction
-- Data Driven
-- Message Driven

Language Evolution
Research on Reuse

Evolution to measurements
Measurements

-- Line-of-code
-- Function Points (Complexity)

VI

III

VI

IX

10
12
14
15
16
18
18
20
21
23
24
27

29
30
30
32
34
36
38
39
40

42
42
45
46
46
47
54
54
55
56
57

-- Model (Program Size)
Reduction of Complexity
Complexity Analysis

-- Hierarchical Classification
-- Faceted Classification
-- Natural Language Model

Communicating Sequential Processes (CSP)
Object-Oriented Technology in Development and Reuse

-- Frame and Frameworks in Reuse
Pattern Languages design in Reuse

-- Data Abstraction
-- Complexity Reduction

-- Background of the Theoretical Model
-- Relation
-- Frames
-- Propositional Logic
-- Constraint Satisfaction

Background of Practical Machine
Mathematical Verification by Group Theory

-- The Algebra of Notation
-- The Algebra of Sets
-- Relations
-- Functions
-- Euler-Venn Diagrams

Group Theory in Real World Problems
-- New Functions for C++
-- Constraint Satisfaction and frame-Based

-- Expert System
-- Validation by I/O ofFBE System

Chapter Summary

III. Methodology
-- Introduction
-- Specific Classification Schemes for Software Reuse
-- Research Methods

Research Procedures and Formats
-- User-Interface

Searcher Mechanism
Searcher System Roles

-- Retriever Functionality
-- Syntax and Semantics for Entity Descriptions

Description of Browser System
Link Classification Scheme
Description of Database

-- Pack!lge Domain

Vll

58
60
61
64
65
65
66
67
67
70
72
75
77
77
81
82
83
84
84
85
85
85
86
86
88
89
89
89
93
96

99
99
100
101
101
103
108
109
115
117
119
124
125
126

-- Classification Schemes
-- Projected Outcome
-- Resources To Be Used

System Measurement
-- Link Weight
-- Adequacy

-- Research Method to Verify Usefulness
-- Reliability and Validity Procedures

-- Chapter Summary

130
130
131
133
135
136
137
138
140

IV. Implementation of the Guides-Search System and Evaluation 143
-- Introduction 143
-- Environment and Characteristics 144
-- Reuse Support Information in the Guides-Search 145

-- Unconditional Rules 146
-- Conditional Rules 147
-- Global Defined Variables and Local Defined Variables 148

Information File Structures 154
-- The Mapping Phase 157
-- The Ordering Phase 158
-- The Searching Phase 158

-- Evaluation of the System 162
-- User Interface 164
-- Data Presentation and Analysis 168
-- Discussion of Finding 174
-- Chapter Conclusion 176

v. Conclusions and Recommendations 179
-- Introduction 179
-- Summary of the Study 179
-- Answers to Research Statements 182
-- Conclusions 185
-- Recommendations 187

References
Annotated Bibliography
Appendix A: Numbers of Modules from GAMS
Appendix B: Reusability Tally Sheet
Appendix C: Recording Sheet

viii

190
205
221
222
223

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Table 1
Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 4.5

Classes
Objects

List of Figures and Tables

Access Control in C++
GNN (Gaussian Random Numbers)
High Level Programming Languages Path
Class-Object
Intersection
Euler Venn Diagram
Symmetric Difference
General Framework for Software Reuse System
An Overview of the System Scheme
Semantic Structure to the Dialogue Menu Type
Composition by Merging
Composition Divide
Cyclic Graph
Cyclic Problems Solved
Relation Value Retrieval
Component/Property Linkage Diagram
Tree Structure
Database Tables in Category Packages
Ordering
Data Structures to Support Searcher
Searcher Screen
View Components Screen

33
34
36
38
49
79
86
87
87
103
106
119
122
122
123
124
127
129
151
155
158
161
165
167

Software packages to be Used 133
Query to Specific Questions 169
Inteaction, Search, and Browser Times for Three Measures 172
Components Classified in Real Time, By User Time, and
By System Time (1,100 Functions) 172
Components Classified in Real Time, By User Time, and
By System Time (2,300 Functions) 173
Findings for Functions Counted, Notes Found, Unique Components
Identified, Number of Cyclic Found, and Number of Components 173

IX

CHAPTER I

INTRODUCTION

The literature acknowledges that there has been a need for software sharing and

reuse for quite some time (Endoso, 1992; Full Computing Reviews, 1990; Griss, 1993;

Jones, 1994). The need for ways to improve the software development process has led

many companies to focus on software reuse. This need was recognized in the late 1940s.

The SHARE library, a repository of subprograms donated by users of IBM equipment,

was one of the first attempts to address these needs.

10

According to the opinion of ACM Computing Reviews (Full Computing Reviews,

1990), however, routines from this library have frequently been unreliable. The

Collected Algorithms of the ACM (CALGO) also have a long history, and have since

about 1970 become somewhat more reliable. Commercial vendors of mathematical

software libraries such as IMSL, Inc. (1987, 1989) and NAG, Ltd. (1986), because they

have a vested survival interest in the quality of their product, have also become more

proficient in the construction, distribution and maintenance of components of

mathematical software in recent years. Still, Poulin and Werkman (1995) contend that

reusable software libraries often suffer from poor interfaces, too many formal standards,

requirements of high levels of training, and a high cost to build and maintain. Novak

(1995) agrees, adding that software reuse has also been inhibited by the many different

ways in which equivalent data can be represented.

11

The need for better reuse techniques continues to be a concern (Baker&

Kauffinan, 1991; Biggerstaff, 1994; Chauvet, 1995;Esteva, 1995). Over the years there

have been numerous articles, books, symposiums and workshops devoted to the topic of

software reuse. Most of the literature deals with methods for construction. Little has

been found to address the problem of discovering software components or designs that

meet specific needs (Baer, 1997; James, Sangiovanni-Vincentelli, & Alberto, 1997;

Poulin & Werkman, 1995; Krueger, 1992; ACM Full Computing Reviews, 1990). It has

become obvious that success is only attainable if it becomes less costly to discover an

existing software component or software related artifact than to develop a new one.

Moreover, current research points out that the majority of reuse today involves user

interface and systems-related functions (Baer, 1997; Novak, 1992).

With that in mind, there are two fundamental points which need to be addressed

for reusable component systems to be successful, from both the user's point of view and

the system itself. With respect to systems issues, the model must be as maintenance free

as possible. Maintenance of classification must become more reliable and less tedious.

But this is not an easy task (Freitag, 1995). Indeed, it requires a great deal of efforts and

is a challenge to the proposed investigation which will answer to both needs as described.

The goal of the proposed thesis is to provide a methodology to classify software

components in general and two mechanisms, specifically - searcher and user-interface -

to use a classification developed by the methodology to discover software that meets a

specified need. In summary, the contribution ofthis study is a recursive methodology

that provides interaction between system and programmers for finding reusable

components. To achieve this goal, this researcher reviews the current problems and the

complexity of reusability, as well as current methods.

Background of the Problem

12

The advent of the computer in the latter half of this century caused a major

revolution in the processing of infonnation. The tools used by analysts and engineers in

achieving infonnation processing objectives have continued to evolve alongside

technology (Quinian & Ross, 1989). The increased use of computers, infonnation

systems concepts, and approaches gave birth to systems modeling (Blissmer, 1991;

Whitten & Bentley, 1989). The technology revolution created a proliferation of software

applications to meet every conceivable need. Programmers and analysts were

commissioned to create new applications and, as a result, costs escalated as applications

have become huge.

In order to meet the growing need to control costs and to analyze applications, a

full-scale research movement gained momentum in the early 1970s, which led to the

development of expert, artificial intelligence, and knowledge based systems (Klein, 1995;

Turban, 1995; Van Hom, 1986). Programs that emulate human expertise in well defined

problem domains were called developed: expert systems, neural nets, and fuzzy logic,

among others (Frenzel, 1989; Gold & Plant, 1990; Jackson, 1992; Klinker, Linster &

Yost, 1995; Plant, 1992).

According to authorities, expert systems have and continue to impact efficiency,

effective, and expertise associated with applications in business and industry (Chen &

Prinz, 1994; Copley, 1994; Giarratano & Riley, 1993). The problems solved with these

applications in the business and engineering areas have resulted in increased efficiency

and productivity with minimal time and money invested (Holden, 1992). The primary

concentration of expert systems research used for information retrieval focuses on

mathematical applications.

Current literature explores promising techniques to reduce and control software

production costs and to improve the quality of reuse (Biggerstaff & Richter, 1987;

Caldwell, 1994; Weigret & Jang, 1992). This technique is defined as the adaptation or

incorporation of previously developed software components, designs, or other software­

related artifacts (e.g., test plans) into new software or developmental paradigms

(McClure, 1995; Schlukbier, 1995; Schrage, 1995; Tibbetts & Bernstein, 1995).

Software reuse essentially catalogs engineering processes, and also identifies,

reorganizes, and then reuses existing software (Krueger, 1992; Novak, Hill, Wan, &

Sayrs, 1992). Some of the goals are to improve system reliability and reduce costs by

using proven components (Esteva, 1995; Frakes & Pole, 1994).

13

For users to discover software that meets programmers' needs, IMSL (1987,

1989) and NAG (1986) provide hard-copy software component catalogs and Quick

Reference guides. In every issue, ACM Transactions on Mathematical Software provide a

list of algorithms published in the previous four to five years. This has been an adequate

mechanism for discovery of mathematical software because of the standard terminology

14

that exists in the field of mathematics. For disciplines that are partially or totally non­

mathematical, the situation is not so advantageous. This study relates to data-driven non­

mathematical and semi-mathematical algorithms.

Barriers and Issues

Current methodology for reusable software has not been wholly successful. Many

researchers address different processes (Biggerstaff, 1989; King, 1995; Price & Girardi,

1990; Redwine, 1989; Prieto-Diaz, 1987; Scheier, 1996; Shoesmith, 1996). The only

discipline in which software reuse has consistently been more common than re-invention

is mathematical software. Many theories suggest that software development must utilize

current methodology for reuse. These methods include structured programming, abstract

data types, or object oriented programming (Coad et aI, 1994; Carmichael, 1994).

Semi-mathematical software reuse is common, but has been less successful for

several reasons:

(1) The intellectual investment per unit of is substantially larger for

mathematical software than for software in most other disciples;

(2) The background of experience or education required to construct high

quality (or even some of the most simple) mathematical software is not

common;

(3) Mathematics provides a framework for classification that has been

standardized by several centuries of use.

The first two factors tend to increase the cost of reinvention, while the third tends

to reduce the cost of discovering components. In order for software reuse to be

15

successful, it must be less costly to discover a software component or software related

process that satisfies a given need than to develop one anew. This is the basis of pattern

languages.

Relevance and Significance

Inconsistent conclusions of new production methodologies have been responsible

for the lack of success in reusing existing software. Perhaps failure has been due to the

lack of tools in supporting reuse during development, rather than inadequate

methodologies. The significant of the proposed study is its ability to meet this need.

The investigative research also relates to the increasing need for an accurate,

effective and quick search of entire databases for both routines and phrases. The present

study has attempted to provide a methodology to classify software components in genre

(not just mathematical software), and a mechanism to use a classification developed by

the methodology to discover software that meets a specified need. Such a tool would

meet the needs of non-mathematical users.

As previously explained, to aid users in discovering software needs, commercial

vendors of mathematical software libraries such as IMSL (1987, 1989), NAG (1986), and

MathPro (1995) provide software component catalogs andlor Quick Reference guides.

They have become more proficient in constructing, distributing and maintaining

components in recent years. The proposed study will help fulfill this need, which further

emphasizes the significance of the investigation for semi-mathematical software.

Many discussions on software reuse focus on the mechanisms of construction.

~

To be successful, a developer must have a large collection of useful and reliable parts and

16

also a mechanism for discovering components. Software reuse should not be practiced in

environments where it will cost more to discover existing components than to invent

them anew. In fact, this is often a major question for companies to resolve. The purpose

of the investigative study will be to describe a method to classify software components

and a system to use such a classification efficiently to discover software component

needs. The classification and retrieval methodology will apply to software, hardware,

patents, books, legal cases, and others of a related nature.

The methodology used to classify software components and the mechanisms used

in classifications developed to discover existing software will be reviewed. One of the

mechanisms reviewed is called a Guides-Search by this researcher. This is a system in

which processes are retrieved by carrying out a structured dialogue with the use. Guides­

Search is used to display the results for interactive use. A mechanism such as this is

intended to be independent, but equivalent views ofthe same classification. They can be

employed when appropriate. A review of this nature adds significance and relevance to

the study. Relevance of the study is also explained in following sections.

1. Classification Schemes

A classification scheme is described as a generalization of the use of processes. It

will provide both the structure of questions to be posed to the user and a set of possible

answers to each question. It will consist of specifying a set of properties in each

component to be classified and then refining those properties by specifying additional

properties they may enjoy. This is accomplished by using binary relations of the form

entity relation value. When the entity is a component or property, the value can be a

component, property or even an atom (a term for which no further description is

provided).

17

A relation is equivalent to a process. The value of a relation is equivalent to the

position in the dimension of "classification space" as described by that process. Consider

SGEFS, for example. SGEFS is a Program Unit name defined in ANSI Fortran77. It is a

subprogram for solving determinate systems of linear algebraic equations. Its name

means (S)ingle precision, (GE)neral square system oflinear equations, (F) actor and

(S)olve. If the purpose of SGEFS is to solve a general single precision real NXN system

oflinear equations, SGEFS uses LINP ACK subroutines SGECO and SGESL. That is, if

A is an NxN real matrix and if X and B are real N-vectors, then SGEFS solves the

equation A *X=B. The matrix A is first factored into upper and lower triangular matrices

U and L using partial pivoting. These factors and the pivoting information are used to

find the solution vector X. An approximate condition number is calculated to provide a

rough estimate of the number of digits of accuracy in the computed solution. If the

equation A *X=B is to be solved for more than one vector B, the factoring of A does not

need to be performed again and the option to only solve (ITASK .GT. 1) will be faster for

the succeeding solutions. In this case, the contents of A, LDA, N and IWORK must not

have been altered by the user following factorization (ITASK=l). IND will not be

changed by SGEFS in this case.

An example of the notation to specify that the value of the fUnctionality for the

component SGEFS of solve is to write the relations. SGEFS has-functionality solve.

Components and Properties can be arranged into hierarchies. Properties can enjoy other

18

properties specified by relations. A relation of the form property is permitted. Suppose

that the component SGEFS enjoys the relation SGEFS has-operand equation-ALD. The

"equation-ALD" is the name of a property that enjoys the relations equation-ALD is-a

equation. Equation-ALD has-kind algebraic. Equation-ALD has-determination exact

and equation-ALD has-linearity linear. The relation equation-ALD is-a equation

denotes a relation in a hierarchy, while the other relations denote properties enjoyed by

the property equation-ALD. It is assumed that the is-a relation is known to software that

uses this classification scheme. It must also be reflexive, transitive and anti-symmetric.

2. A Guides-Search System

A guides-search is a software system that enables a user to discover software

needs. The interaction of searcher and user will mainly consist of alternately displaying

questions known to be germane. Once a user has selected a question, the searcher will

display possible answers to that questions. Questions will correspond to relations and the

series of answers will correspond to the set of values of that relation. If there is a small

number of retrieved components, the user may simply view them. If there is a large

number, the searcher will construct a new and smaller database. The set of questions and

answers will be presumably less and a new dialogue will begin.

3. Users Interface

Communication between the user and system will be represented through a listing

of results and germane questions. Interaction consists of the system alternately

displaying questions and answers to the user. Once the user has selected a question, the

system will display possible answers to that question. The questions will correspond to

relations and the set of answers will have the set of values of that relation.

19

There are many interpretations of the meaning of non-excluded components. The

proposed study will consider systems performance which has led to the adaptation of an

alternative interpretation. It is important to explain that there are at least two different

interpretations of "non-excluded components." One view is that one considers all

answers that the user has provided. The second interpretation excludes components that

do not enjoy the specified relations. This can cause the searcher to operate unacceptable

or very slowly. An alternate interpretation is to allow the user at any instant to retrieve the

set of components that enjoy the specified relations and to consider the set of non­

excluded components to be those present as a result of the last retrieval operation. But

the set of non-excluded components is not affected by questions answered since the last

retrieval operation.

The later allows a searcher of somewhat better performance than the other.

However, it may present an answer that is inconsistent with other questions already

answered. For example, the user might have software to evaluate polynomials and to

evaluate integrals in the FORTRAN programming language, but software only to

evaluate polynomials in the C programming language. If the individual adopts the former

interpretation of non-excluded components, a user having selected the relations "has­

functionality evaluate" and "has-language C" would be presented only with the answer

"polynomials" when answering the question "what is the operand?" Adopting the latter

20

interpretation allows both "integrals" and "polynomials" to be displayed, even though no

components would be selected if "integrals" were chosen.

This researcher believes the alternative view will allow users at any moment to

retrieve the set of components that enjoy specified relations. The study will also consider

the presence of a set of non-excluded components which should not be affected as a result

of questions answered in the last retrieval operation.

Purpose of the Study

Most discussions of software reuse focus on mechanisms to construct reusable

software. For reuse to be successful, however, there must not only be a large collection

of useful, reliable parts available, but also a mechanism to discover components that meet

a specified need. Software reuse should not be practiced in environments where it costs

more to discover components that meet a specified need than to invent them anew. The

purpose of the present study is to describe a method to classify software components, and

a system to use such a classification efficiently to discover software components that

meet a specified need.

Specifically, the purpose of the present research study is to provide a flexible

system, comprised of a classification scheme and searcher system, entitled Guides­

Search, in which processes can be retrieved by carrying out a structured dialogue with

the user. The classification scheme provides both the structure of questions to be posed to

the user, and the set of possible answers to each question. The model is not an attempt to

replace current structures; but rather, seeks to provide a conceptual and structural method

to support the improvement of software reuse methodology.

The investigation focuses on the following goals and objectives for the

classification scheme and searcher system:

(1) the classification will be flexible and extensible, but usable by the

searcher;

(2) the user will not be presented with a large number of questions; the user

will never be required to answer a question not known to be germane to

the query;

(3) the user will not be presented with a large number of possible answers to

any single question; and

(4) the user will be allowed to specify an answer, even though he or she did

not know exactly what question the searcher will pose to elicit that

answer. (This is similar to a key word search.)

Research Statements to be Investigated

The research investigation will be specifically designed to address the following:

• A comprehensive review of related literature will indicate that existing

techniques are inadequate in supporting information requirements.

• There is a significant need for a new approach or method to classify

software components and a system to use such a classification efficiently

to discover software components that meet a specified need.

• Design of a searcher software system used to discover software needs will

address the following three concerns: (l) it will allow users to retrieve the

desired software without being required to answer an inordinate number of

21

questions; (2) it will present an adequate number of possible answers but

not too many to anyone question; and (3) it will not artificially restrict the

performance of an expert user.

.. There is a significant set of guidelines, or model, that exists to select

software for reuse and thereby reduce the cost of software production as

related to non-mathematical applications and systems.

The methodology developed for the proposed investigation will consist of five

distinctive and sequential steps. These are described as follows:

Step 1: A review of literature will be conducted, relevant to the background

of computing in terms of types of computing/problem solving, pattern

languages, research on reuse measurement, complexity and analysis, and use

of 00 for program development. It will also focus on the background of the

study's theoretical model and background of practical machine for the

study's model.

Step 2: Literature review results will be recorded, analyzed, and compared to

determine any inadequacies The scheme will use a guides-search engine to

describe relations.

Step 3: Conclusions will be developed and summarized to answer questions

based on the review of the literature and presentation of a flexible

classification guides-search system.

22

Step 4: A simple model will be developed which will include the necessary

features to classify software components and systems to utilize such

classifications efficiently to discover components for specific needs.

Step 5: Recommendations will be made from the findings and summary.

Assumptions and Limitations

23

The researcher assumes that, from the comprehensive literature review, guidelines

can be established from the literature review to assess the inadequacies of existing

techniques to support information reuse needs and the development of new flexible

classification schemes. It will be assumed that the results can be specified and evaluated

to provide a model or set of guidelines. However, the formation ofthe study's results

will not be a randomly conceptualized assumption. Rather, formulation of such

guidelines is seen to constitute an accepted goal of many types of research investigation

(Babbie, 1990; Downie & Heath, 1984).

Conclusions in the proposed research will be limited by that amount of

information and data discovered in the documents, reports, research, and other related

materials. Other limitations existed in using this type of technique in providing guidelines

and validating findings. This appears consistent no matter what methods are used

(Babbie, 1986, 1990; Fowler, 1984).

To classify processes, the present investigation focuses on the provisions of a

mathematical method derived from Relation theory. It assumes that the model for a

flexible classification system (generalization of the use of facets) could be developed for

semi-mathematical software reuse and classification. It is believed that the overall

24

approach to the reusable software methodology may tum out to be the most important

contribution of the research, which is to make discovery of a classification more reliable

and less tedious.

It is also assumed that the proposed study has significant and relevance to

complexity theory in general in that it attempts to provide a methodological tool for

discovering software for reuse, and thereby reduce complexity. Complexity theory

relates to the subject of the proposed study because it impacts the ability to reuse.

Complexity is a realm that is difficult to define and even harder to understand because it

deals with the aggregate of many simple things that can create complex forms (Goering,

1995; Kochen, 1984). Complexity theory is actually the study of how much computing is

required to solve various kinds of problems, especially those related to large software

systems (Devanbu, Brachman, Selfridge, & Ballard, 1991). It deals with systems as a

whole. Researchers often create computer simulations of extremely intricate systems.

They then use those computer programs to develop hypotheses that can later be tested

with experiments. A natural measure of complexity is the entropy rate of a random

process that models the problem.

Defmition of Terms

A number of terms and designations are applicable to the proposed study. and

have been defined for clarity.

Classification Scheme: In general terms, a classification scheme is defined as a

technique for supporting information needs (Poulin & Werkman, 1995; Prieto-Diaz,

1987). Popular schemes include hierarchical and faceted classification (Biggerstaff &

25

Pedis, 1989). Top levels in the hierarchical scheme consist of an application domain and

refinements, such as computer graphics or numerical analysis. Lower levels often

represent some type of functionality such as solve equations or evaluate integrals and

programming language.

Faceted classification, on the other hand, considers facets as independent views

of the properties of software components. Many of the objections to a hierarchical

scheme are answered by faceted classifications (Forslund, 1995; Klein, 1995).

Flexible Classification Scheme: This designation is defined in the present study

as a part of the Guides-Search system, which was developed by this researcher. It is a

generalization of the use of facets. A flexible classification system specifies a set of

properties of each component to be classified. Properties are then classified using the

same methodology.

Current literature states methodology that employs classification and retrieval

works well with artifacts not related to software, such as hardware, patents, books, and

legal cases, etc. (Full Computing Reviews, 1990; Klein, 1995; Tibbetts & Bernstein,

1995). It uses binary relations in the entity relation value form. Here, the entity will exist

as a component or property and the value may also be a component, property, or atom (a

name for which no further description is provided).

Facets: Facets are considered by Prieto-Diaz (1985) as dimensions in Cartesian

space. The value collection of facets constitute the coordinates of a point in a space.

They are also considered to be independent views of the properties of software

components. The properties are sufficient and necessary to include application domain,

functionality, and operand.

26

Guides-Search: This tenn is defined as an approach system. It contains a

classification scheme and searcher system in which artifacts can be retrieved by carrying

out a structured dialogue. Guides-search is a name this researcher has coined for the

research engine employed in the study, similar to the method utilized by Esteva (1995)

who built a library engine and called it Snooper. For the present project, a library was

built to prove the theory and has been called Guides-Search.

The retriever is a software component that retrieves all necessary files to utilize a

selected component. In the simplest case, the component date base and searcher reside in

the same computer and the retriever simply produces a list of file names necessary to

utilize selected component. The classification scheme provides both the structure of

questions to be posed to the user, and the set of possible answers to each question.

Guides-Search Interface: The searcher, as created by this researcher in a

manner similar to that used by Esteva (1995), is a software system that can be used to

discover software needs. Dialogs will mainly consist of alternating questions known to

be gennane and displaying possible answers to a selected question. Questions will

correspond to relations and the set of answers to a question will consist of values to that

relation.

Processes: Software processes can include design documents, source code,

specifications, and test plans, among others. Any text file that is part of the software

components. The properties are sufficient and necessary to include application domain,

functionality, and operand.

26

Guides-Search: This term is defined as an approach system. It contains a

classification scheme and searcher system in which artifacts can be retrieved by carrying

out a structured dialogue. Guides-search is a name this researcher has coined for the

research engine employed in the study, similar to the method utilized by Esteva (1995)

who built a library engine and called it Snooper. For the present project, a library was

built to prove the theory and has been called Guides-Search.

The retriever is a software component that retrieves all necessary files to utilize a

selected component. In the simplest case, the component date base and searcher reside in

the same computer and the retriever simply produces a list of file names necessary to

utilize selected component. The classification scheme provides both the structure of

questions to be posed to the user, and the set of possible answers to each question.

Guides-Search Interface: The searcher, as created by this researcher in a

manner similar to that used by Esteva (1995), is a software system that can be used to

discover software needs. Dialogs will mainly consist of alternating questions known to

be germane and displaying possible answers to a selected question. Questions will

correspond to relations and the set of answers to a question will consist of values to that

relation.

Processes: Software processes can include design documents, source code,

specifications, and test plans, among others. Any text file that is part of the software

engineering process is defined as an artifact (Franks & Pole, 1994; Lemaire & Moore,

1994).

27

Relation: According to McAllister (1995), "a relationship is a modeling object

with two or more roles, each of which links a specific entity to the relationship" (p. l33).

A relation, however is equivalent to a facet, a dimension in Cartesian space (Prieto-Diaz,

1985). The value of a relation is equivalent to the position in the "classification space"

dimension described by that facet (Prieto-Diaz, 1985). An example of this notation in

specifying that the value ofthe functionality for the component ABCDEF is solve is to

write the relation ABCDEF has-functionality solve. For the purposes of the study, a

relation is equivalent to a process. The value of a relation is equivalent to the position in

the dimension of "classification space" as described by that process.

Relations need not be symmetric, transitive, or reflexive, although they may exist

in this form (Biggerstaff & Perlis, 1989). When several groups collaborate to classify a

large collection of software or several unrelated bodies of software, it is of the utmost

importance to use a common dictionary of relation names or a same-as relation to connect

names in different classifications.

Chapter Summary

This chapter served as an introduction to the research investigation. It discussed

the background of the study introduced the problem of concern. It was noted that the goal

is to provide a methodology to classify software components in general and two

mechanisms, specifically - searcher and user-interface - to use a classification developed

by the methodology to discover software that meets a specified need. The contribution of

this study is a recursive methodology that provides interaction between system and

programmers for finding reusable components.

28

Chapter 2 provides an examination of the relevant literature. The background of

computing leading toward abstraction and reuse is first reviewed. Following discussion

focuses on reuse in terms of measurement, complexity, and new functions for C++,

among other topics. Use of object orientation (00) for program development and reuse,

the background of the study's theoretical model, and the background of practical machine

for this study's model are additional concerns ofthe literature review. This information

provides a basic foundation for the study.

Chapter 3 presents a flexible classification scheme that attempts to address the

inadequacies of existing classification approaches. A detailed analysis of components

and properties is undertaken. Chapter 4 concludes the present investigation. A summary

is first provided, followed by answers to the study questions and conclusions based on the

results. Recommendations follow.

29

CHAPTER II

RESEARCH AND LITERATURE REVIEW

Software reuse is a current technology whereby artifacts of the software

engineering process are cataloged, reorganized, identified for reuse, and reused (Ransom

& Marlin, 1995; Tracz, 1988). The goals of software reuse include improved system

reliability and reduced system cost by using problem components. The reuse of software

is an important aspect of controlling and reducing software costs and improving quality

(Humphrey, 1990; Marlin, 1995; Prieto-Diaz, 1993). The present investigation focused

on this topic.

The purpose of this chapter of the study is to present a review of the literature on

the reuse of software components, design and programs. To achieve this goal, however,

it is first necessary to review the background of computing leading toward abstraction

and reuse. Following discussion focuses on reuse in terms of measurement, complexity,

and new functions for C++, among other topics. Use of object orientation (00)

technology for program development and reuse, the background of the study's theoretical

model, and the background of practical machine for this study's model are additional

concerns of the literature review. This information provides a basic foundation for the

study. A review of historical developments such as the evolution of artificial intelligence,

expert systems, knowledge-based systems, and object-oriented technology, leads to the

conclusion that there is a need to reuse components.

30

Capsule Description

Mathematical problem models and representational models are beyond the scope

of the present study because computational problems are too complex. Perfect

mathematical problems models formulate equations for any given problem. Perfect

mathematical representational models captured the problem's relevant properties, such as

part structures and components and transform solutions for a given problem. Because of

the complexity in mechanical analysis of the equations, it seems more realistic to assume

the requirements of the interactive system from software engineers to specifY a specific

needed. The current research devoted efforts with these ideals in mind. The model

covered the areas of propositional logic, set theory, Boolean algebra, relations, Automata

for process and Graphic-Matrix Theory for data representation, and isomorphism and

homomorphism for verification. However, before the history and literature related to the

current background of the research can be reviewed, parameters for object oriented

software and its association to reuse must be established. It is only with the

understanding of object-oriented programming that a model can be fully adopted.

Object-Oriented Programming

Object-Oriented Programming has been evolving rapidly as a technology that will

support aspects of the reusable application (University of Liverpool, 1997). New

technology concepts have moved out of the research communities into the commercial

world and can be found Simula, Algol-60, Smalltalk, C++, Fortran95, and LISP, among

other object-oriented programming found in today's marketplace. Each programming

paradigm may have different name, but share the same spirit and common goal - to have

a machine do what programmers want them to do in the way that they can described for

better maintenance, structure, complexity, power and reusability. In this manner they

have a significant economical impact and influence products quantity.

31

There are numerous objects definitions, as noted by Bednarczyk, (1996). Object­

Oriented methodology represents an approach to bring technology in line with business

by providing a new way for groups to think about processes and information systems

(Booch, 1994; Taylor, 1990). Construction of models expresses business concepts as real

objects which include people, places, and things. Technology-based details are

suppressed. This method uses object-oriented programming and case tools. Routines and

procedures are considered to be objects.

However, in general it can be seen in the literature that Object-Oriented software

is all about objects and related methodology. An object is a Black Box which receives

and sends messages. The Black Box contains code, sequences of computer instructions,

and data information upon which the instructions operate (Coad et aI., 1994; Hutt, 1994).

Traditionally, code and data have been kept apart. In object-oriented programming, code

and data are merged into a single indivisible thing - an object. The Black-Box is mainly

responsible for sending and receiving messages, where messages define the interface to

the object. Object is defined via its class (Montlick, 1997), which carries out class

actions, often called methods. Classes and objects are related but they are different.

Object-oriented information systems provides a different way of thinking.

Learning to "object think" is, in fact, a core requirement to understanding. Reusable

groups of software code can be used and reused to save time in building custom

applications (Bartholomew, 1996; Anderson, 1996). In this way, applications can be

adapted to a changing business or project without the requirement of changing the

underlying code. Adaptability is essentially the key. Off-the-shelf software that is built

using object technology can offer incredible flexibility, Anderson (1996) explains.

Applications can be easily changed because they are built using reusable, modular

components.

Classes

Class is the schematic of a object with determines everything about the object.

32

Within the Object-Oriented context, object is an instance of a class. That is, any object is

unique and associated with an identifier to the base-class. Bednarczyk (1996) explains

that "a class is a specification of structure (instance variables), behavior (methods), and

inheritance (parents, or recursive structure and behavior) for objects."

According to Mattison and Sipolt (1995), Object-Oriented (00) programming is

streamlining the way industrial engineers are building corporate information systems.

But success will not be realized until everything is treated as objects - software and

hardware - and the information systems department is restructured to fit that model. In

their view, the reason for the need for this approach is because the life cycle of current

traditional systems no longer provides an accurate model to explain how objects are

perceived, created, and delivered due to assumptions that are no longer true. One of the

primary assumptions of older methodology is that most system development work

involves the creation of new systems, not retrofitting old system components into a new

architecture. "But it is exactly the latter that defines what the majority of corporate

computer system development work will be for the next several decades" (Mattison and

Sipolt, 1995, p. 53).

33

Consider the following example called "Bank-Account." Bank-Account has

Checking-Account and Saving-Account. Thus, Checking-Account and Saving-Account

are corresponding unique attributes of Bank-Account. That is, Bank-Account "has-a"

Saving-Account; Bank-Account "has-a" Checking-Account. Bank-Account can be

presented as a "base-class" where

Figure 2.1: Classes

Therefore, the objects of class Bank-Account has the following forms

34

Bank-Account Bank-Account Bank-Account

Checking-Account Savmg-Account

Object Object Object

Figure 2.2: Objects

Further information on 00 context may be described. Bednarczyk (1996) denotes class is

an object via visa object is a class. The researcher defines class is a object true only in 1

level (called single-hierarchy) systems. In his view, it is not true in C++ because C++

classes are accessible to programs. On other hand, object is a class denoted in

Bednarczyk (1996). An Object has encapsulation, inheritance, composition and

polymorphism, as discussed in subsections below.

Encapsulation

The class encapsulates and protects the data from inadvertent or malicious use. It

is the process that distinguishes the outside interface of the object from the internal - that

is, access to the object. One does not needed to understand the internal detail of the

object to receive requested information. Encapsulation also implies that the internal

detail of the object could be changed without any effect to the information requested. To

define a program and solve the problems, relationships to from each object can be

presented in the fonn called "Top-Down topological hierarchy." These principles are

believed to reduce software maintenance and increased reusability.

Encapsulation consists of two features: interface and implementation. The

interface feature defines the types of objects by specifying their interfaces. An interface

consists of a set of named operations and the parameters to those operations. It is the

unique way that the particular object tells potential clients what operations are available

and how they should be invoked.

35

With respect to the implementation feature, it is important to understand that

object implementations do not depend on how the participant objects invoke the object in

question. It a black-box because it allows access without required a knowledge of how

the infonnation is implemented. Practically, besides defining the methods for the

operations themselves, object implementation often allows the construction of object by

using other objects or non-object facilities to make the object state persistent, to guard the

object, and to implement methods. It consists ofthe following (as depicted below):

PRIV ATE data and functions dedicated to manipulating that data.

PUBLIC functions which fonn the interface to access the class or objects.

The different between private and public is that a Class declared member

public allows everyone access. Private is only accessible inside of the

class.

PROTECTED is accessible inside of the class and its inheritance classes.

Inheritance is a mechanism allows sharing the commonality among

classes.

36

I'UBUC

I'ROTECTED

Figure 2.3: Access Control in C++

Inheritance

Inheritance is a key feature ofthe Object-Oriented paradigm. Inheritance is one

of the ways that allow objects with similar operations and behaviors to be closely

organized in the form of taxonomical hierarchies. It is a core concept that can be used to

model the problem (abstraction) and code reuse in the real-world (Lea, 1993). With

regard to the present thesis, abstraction and inheritance .types can be emphasized by the

following abstraction example:

Abstraction means to share a commonality between each class. For example, in

the algorithm for generation of Gaussian random numbers (FORTRAN 77), components

of the function DRANE and SRANE have the following:

DRANE:
has-function Unifonn-random number
has-precision double
has-output scalar
has-function Exponential-random-number
has-operand Number-R

END DRANE

SRANE:
has-function Unifonn-random number
has-precision

ifp = s then
single

else
double

endif

has-output scalar
has-function Exponential-random-number
has-operand Number-R

ENDSRANE

First, it can be recognized that functions DRANE and SRAND are almost

identical except one has precision double. The other has single or double precision. If a

function GRN (Gaussian random numbers) is carrying commonality of the DRANE and

SRANE, then:

GRN:
has-function Unifonn-random number
has-output scalar
has-function Exponential-random-number
has-operand Number-R

ENDGRN

37

GRN restores the commonality of DRANE and SRANE by letting function DRANE and

function SRANE inherit from:

38

GNN

SRANE

Figure 2.4: GNN (Gaussian Random Numbers)

GRN is a father or super class of the DRANE and SRANE. DRANE and SRANE

inheritance to GRN. In other words, GRN is a DRANE and GRN is a SRANE. That is,

Class DRANE and SRANE are subclass of its parent class GRN when all components of

GRN are the components of DRANE and SRANE as well. Additionally, the subclass

DRANE is constrained by one additional double precision and class SRANE has

precision either single or double.

Reuse Via Inherit

A second reason for using inheritance is to avoid "done-it-twice" while allowing

other to share data and functions. In the real-world of actions, the idea is to organize

relevant objects into a taxonomically which goes from the general object with similar

operations and behavior on the top to an increasingly divided form. In mathematics

during model construction, using, for example, the function DRANE, function DRANE

and function SRANE, it is important to note that both contain "has-function Uniform­

random number," "has-output scalar," "has-function Exponential-random-number," and

39

"has-operand Number-R2" components. These were inherited from function GRN.

Function DRANE has "has-precision double" defined as private component and function

SRANE has "has-precision if p = s then single else double" as a private defined

component. Likewise, sharing among these function can also be described as following,

exemplifying the goals of Object-Oriented Programming.

Function DRANE like function SRANE
Except has-precision double

End Function DRANE

The real advantage of inheritance is gains associated with constraints to the

superclass, sometimes called a baseclass. Thus, class Q is a subclass of superclass P.

Then for any features, constraints of a class P, class Q can also be used. That is, an

attribute, constraint and transition network of class P can be used for class Q. But class Q

is stronger than class P as instances of Q have all properties and components of class P

with the addition of one or more specific features in Q (Douglas, 1993). Inheritance and

polymorphism are used to represent classification in a application domain. Day (1995)

explains that polymorphism is the ability to write generic code that works for families of

related types. It is a name that has several meanings and implementations. These include

Overloaded Function Signature, Overloaded Operators, and Virtual functions (undefined

until runtime).

Composition

Object composition allows an object be used as a component part of other object.

Object composition techniques bring together components parts from one object to

another as needed. Once again, consider the Bank-Account example. As previously noted,

40

Bank-Account is composed of Checking-Account and Saving-Account. However, Bank­

Account's composition has an internal structure that describes the relationships to its

accounts. Perhaps a Saving-Account or a Checking-Account may not be as complex as a

Bank-Account. The programmer may not want to continue de-composing the Bank­

Account and risk ajail sentence.

Another example is a bitmap file. Images from another bitmap file can be "cut­

and-pasted" into a piece. Commonly, the bitmap file contains the following associated

compositions:

-Object ID.

-Translation X and Y coordinate of the top left comer of the bitmap canvas.

-Depth: depth of the object in the bitmap.

-Relation: associate component relation in some degree.

-Scale X and Y: Scaling dimension in horizontal and vertical.

Polymorphism

The same message can respond to differs objects. In numeric polymorphism,

consider the example of SRANE above. The result returned by SRANE is the appropriate

value of kind real or double, depending on whether condition p = s or not. Likewise,

consider the function COSIN. Function Cos(X) can either return the result of single or

double, depending on whether the parameter value X is a single or double. This generic

property has a significant impact on the portable robust application which commonly can

be found in ANSI Fortran 77.

As the result, Object Oriented creates high level abstraction, large scale

organization, and reduction of the complexity of the inter-relations of components. It is

41

clear why programming paradigms have become increasingly popular over the years,

especially when note is taken of successive improvement in readability, maintainability,

reliability, testability, complexity, power, structure and reusability. (University of

Liverpool, 1997). There are numerous major object-oriented programming languages in

use today, but there are few leading commercial ones. Montlick, (1997) has listed these as

C++, Smalltalk and Java. C++ appears to have and continue to maintain the largest

nucleus of programmers.

In summary, the literature supports the view that reuse is widely recognized as a

most promising technique presently available to reduce the cost of software development

and speed development with tested components in terms of adaptation or incorporation of

previously developed software components, designs, or other software-related artifacts

such as test-plans into new software or software development regimes. It may also be

noted that "software reuse" means exactly what the name implies - basically it infers that,

if it is possible, do not develop new code, just reuse code.

Sophistication such as this is related to the techniques of Pattern Languages.

Pattern Language was first discovered by Christopher Alexander. The researcher began

using pattern language to describe the events and forms that appeared in towns, buildings

and construction in the world at large. The significance of his work lies in its implication

and emphasis on the potential for reuse. It captures common Object-Oriented concepts to

solve problems and abstract them from the underlying building blocks(objects). In other

words, it provides a way to share the design expertise. It also describes a solution to a

problem in an environment in such a way that allows programmers to use this solution

over and over many times without ever doing it the same way twice. (Alexander, 1977).

42

Alexander's work begins with the "problems described," follows with "discussion of the

constraints forces on the problem," and proceeds to the final task where the "solution on

the problem" is provided. (Brown, 1990).

Background of Mathematics Leading Toward
Computing Abstraction and Reuse.

Abstraction and Reuse

Mathematics and computation must first be described in their broad sense.

Mathematics started from the unique human thought involved in number counting into

the development of a notation-aimed mathematics. Mathematics is a foundation, driving

computing application to precision of specification and to predict and reason about

properties in the application system aspects. Mathematical foundations for reuse and

those for software are closely related. The relationship described further between

mathematical logic and computation "will be as fruitful in the next century" as described

by McCarthy (1996). Likewise, LISP syntax is based on lambda calculus (Stanford,

1996).

Like mathematics, programming language derived from the counting of numbers

to geometry-coordinated calculus and analysis methods. Computer programming

languages also have a long history from the well known Turing Machine to today's

languages. Each has improved in development over time, especially since costs issue

have increased and subsequently been recognized. To understand C++, an overview of

mathematics history is required.

Mathematics has a long history which started from counting number through the

Greek mathematicians period and led to the revitalization of science and mathematics.

43

The Greek period covered a splendid tradition of work in the exact sciences:

mathematics, astronomy, and related fields. These are described in the works ofIsaac

Newton on Mathematics. (History of Mathematics, 1995). Before this period, perhaps

from 2000 BC, earlier value notation allowed a larger number system base 60 to evolve

and fractions to be represented. This development denoted the beginning of a higher

power mathematics (History of Mathematics, 1995). Around 1700 BC, linear system

thinking evolved, such as that evidenced by the Pythagorean triples a, b and c with a2+b2

= c2. The major Greek mathematics, according to History of Mathematics (1995), was the

algebraic solution of cubic and quartic equations. This had a major impact on the

psychological effect and enthusiasm for mathematical research revolution and led to co-

ordinate geometry, calculus and analysis in the 18th Century. This new science was most

clearly discovered by Newton's mechanics and is described by Harrison (1996) as

follows:

- Co-ordinate Geometry: Newton's study which discovered inverse
problems. This find had a major impact to the science which led to the
birth of algebraic methods which solve polynomial equations of degree 3
and 4.

- The Calculus: Newton and Liebniz work discovered the calculus system
which depend on irrational and infinitesimal numbers (infinitesimal either
has zero or non-zero).

- Analysis: Calculus was further developed during the 18th century period.
However, there still existed a lack oflogical method to until the 19th
century, but this period began further analysis in mathematics activities.

Bessel's functions are next in importance. Bessel Friedrich Wilhelm, a German

astronomer and mathematician, was the a first person to discover the approximate

distance to a star. French philosopher and mathematician, Descartes Rene also impacted

44

history. He attempted to explain the entire material universe in term of mathematics and

physics. There were many others brilliant mathematicians in this century. Christopher

Wren, for example, was an English architect who was famous for his discovery of the

method or plan for rebuilding the city on Classical lines. He used the idea of a refined

and sober Baroque to fit buildings into irregular sites. However, it was the development

of the Analytical machine by Charles Babbage that had the greatest impact. The first

digital computing used a Jacquard punch card machine. It was then the birth of

computation actually began (History of Mathematics, 1995).Ofinterest is the fact that

Countess Lovelace was the first programmer; she was the person sponsored Babbage.

Computation is the essence of mathematical science. A machine instructed to

carry out intellectual processes is the tool. There are at least three directions of

mathematical research related in mathematics computing, according to Harrison (1995).

These include:

1. Numerical Analysis: This is the first kind related to science and
computing. Mainly used to solve by brute force problems like numerical
integration. FORTRAN and C are common languages.

2. Computability: Is known as a branch of recursive theory which
includes, among others: unlimited register machines, Turing machines,
partial recursive functions, algorithmically unsolvable problems and
diagonalization, Kleene normal form theorem, universal programs, and
Rice's theorem. (Davis, 1994).

3. Formal Language Theory: This pertains to a theory of finite automata
which includes functions such as: deterministic and non-deterministic
finite automata and their equivalence to regular expressions, pumping
lemma and Myhill-Nerode theorem, context-free grammars and languages,
and the corresponding pushdown automata. (Davis, 1994)

45

Numerical analysis, computability and formal language theory are about using

programming language design to activate concepts of real-world problems. There are two

main activities described in scientific computing: theory development and numerical

analysis (Peter, 1995). In theory development, the designer uses pen and paper to describe

relevant properties -part structures, substructures and components -as related to the model

of the object. Numerical analysis is the form to which the manual model is translated to

the program where it can be simulated.

Programming language appears to be the most important tool to mathematicians

and computer scientists. From the perspective of software engineering, computation is the

ability to write programs that emphasize the outcome of the specified results rather than

concentrate on how it should be built or written. Therefore, specified results must also be

driven in a form of or determined by the perceptual characteristics of the inputs. It

focuses on predictions of outcomes or goals to be achieved. As a consequence, it is an

evolution which emerged into abstraction and reuse. From current research, three

significant computation types leading to abstraction and reuse in recent years can be

summarized: Functional abstraction, Data-driven and Message-driven. These are

described in subsections below.

Functional Abstraction

Functional by definition is a technique that can be implemented among many

different languages (Backus, 1978; Jagadeesan, 1991; Jarvis, 1995; Mannino, 1990). An

example of functional language is Pi, square root functions. Many use these functions in

daily use but do not realize this and take commonly expected results for granted. Perhaps,

that was the intention from the very beginning.

46

Before 1954, programming was developed from machine code or assembly

language. This had great error potential and was extremely labor intensive. Computing

communities looked for a way that a language could be easily moved from one machine

to another. That is, they sought adoption, improvement in readability, maintainability,

reliability, complexity and reusability. Modules in FORTRAN were soon introduced.

FORTRAN is a powerful programming language and is heavily used to perform

numerical calculations. Modules have subsequently had a significant impact on structure

programming as well. Davis (University of Liverpool, 1996) presented a good example of

an unstructured program of 100 lines of code, which can have up to 10"158 paths. Using

Modules program (function) to have structured program, approximately 100 lines of code

could be placed into 4 separate functions. This reduced the paths to 10"33.

Data Driven

By definition, data driven refers to the results or output specified from the

perceptual characteristics of the input (Harrington, 1995). It is commonly known as a

basic estimating methodology such as analogy, factor/ratios and parametric. It also well

known for the lexical decision task which can be found primarily on languages or

bilingual translators.

Message Driven.

Message driven is believed to derive from the traditional method parallel

computer which involved a traditional message-passing style of programming (Gursoy &

Kale, 1996). With respect to the message-driven process, one processor can send one or

many message to others while still running. Performance was a main technical issue and

blocking was a main concern when message driven provided scheduling which prevented

47

the blocking processes. There are numerous researchers devoting serious effort into

message-driven programming. Each has contributed to improvement of productivity of

parallel programming. New features and techniques were introduced to simplify the task

of development parallel applications. However, there are many complexities and

techniques that may not clearly express some specific situations (Kale, 1996).

Example of message-driven is the Dagger system. Dagger was developed at the

University of Illinois (Kale, 1996). The structure of Dagger extends from the Charm

system which was also developed at University of Illinois. Dagger solves the complexity

of Charm system blocking. The component "when-blocks" is included to enforce the

blocking-condition to be satisfied before it can be scheduled for execute.

Language Evolution

No one is able to recall exactly when the history of computing began. However, it

is known that the Turing Machine was a first computer language machine. Turing­

Machine was developed by Alan Matheson Turing in the 1930s and used two binary

number, "0" and "1." Turing proved that a machine could be used to compute a real

number. Not long after the Turing machine was introduced, the Recursion-Theory was

discovered. Recursion-theory helped solve a multiple of independent problems.

Continued research led to the discovery of Church's lambda calculus and Posts

production systems. Finite Automata theory was discovered by Kleene, Mealy, Moore

and Robin in the 1950s. Context Free Gramma, Push-Down Automata theories were

introduced in the 1960s by Chomsky, Oettinger and Church (Cohen, 1991).

Programming up to this point used machine code, with no indexing and limitation

of memory (Rhodes). This method was complex and prone to much error. The need for

interpreters and compiler language motivated John Backus at the IBM to introduce in

1954 a high-level programming language called FORTRAN (Wilkes, 1993). Since its

introduction, it has become the principal language used in the scientific community. Its

numerical capabilities have marked the foot steps for many other languages to follow,

especially with regard to its techniques and extensive numerical libraries which will

continue to characterize the predominant infrastructure for science generations to come.

Concepts of FORTRAN include variables, expressions, statements, static arrays,

condition control structures, modules (non-recursive) and directed input/output.

FORTRAN continues its developments and expansion to adopted trends in technology

change, mainly focused on reuse. For example, FORTRAN90, FORTRAN95 in today's

market includes Object-Oriented techniques. FORTRAN was a first computer language

brought us out of machine code into high-level programming. Even after many years

since its introduction FORTRAN is still used extensively in science communities

(University of Liverpool, 1996). Today there are numerous high-level programming

languages, but in purpose of this thesis, only a few are considered - those believed to be

related to the present study. A full explanation of the history of the computing and

mathematics can be found in the works ofUCSB at

http://www.arts.ucsb.eduIHAClhis.comp and the works of John Harrison (1996).

48

__ -;;» : re-introduced or synthesis of

===)~ : main driven

(), : same as

Figure 2.5: High Level Programming Languages Paths

As shown in the diagram above, from FORTRAN, the Algol language was

introduced. It was based on the Recursion-Theory which McCarthy developed for the

LISP language in early 1960s, together with Fritz Bauer and Joe Wegstein. The

49

motivation to develop Algol derived from the need for a computer language that could be

used by the commercial industry. FORTRAN, as noted, was developed for scientific

application. The first version was Algo160 and led to the introduction of Algo168. Algol

provided a language hidden structure, clear interface and data manipulation (Wilkes,

1993). Algol provided a fundamental framework and conceptual basis for programming

language research for many years afterward. Although FORTRAN is geared for

practically and Algol for the theoretical, they have similarities.

50

From the need for symbolic computation rather than numeric computation, LISP

was developed by McCarthy at MIT in 1959. It became well-known through McCarthy's

Recursion-Theory (The Structure of Higher Level Languages, 1997). LISP is also well

known as the premier language for Artificial Intelligence language. It is primarily syntax

based on lambda calculus, recursion and conditional expressions control. Researchers

continue to develop LISP and expand the language to meet the most recent standards,

Common LISP adopted some of the methods found in SIMULA67, such as heaps and

classes structure (Matuszek, 1996).

A major issue in development needed to address programming performance. This

led to the development of SIMULA67 by Nygaard and Dahl in the late 1960s. It provided

inheritance concepts known for classes and prefixing. Class features included: set of

procedures, data declaration,; sequence of statements, and class data type which allows

the assignment of instances of class and allows data structure in the class (The Structure

of Higher Level Languages, 1997). Its concept and methodology had a major impact

which led to Object-Oriented Programming as seem today.

C language is commonly used by professional programmers in a UNIX

environment. It was designed mainly for UNIX systems programming by Dennis Richie

at Bell Laboratories in 1972. It reflects all the main features of the architecture UNIX

systems, with emphasis on facilities "low-level programming" which has an impact on

program performance (The Structure of Higher Level Languages, 1997). In 1970s the

entire Unix operator was re-written in C language. Unix became a portable flat form able

to cross from one machine to another. The term low-level-programming refers to the

assembly code or close to the machine code.

It may be noted that C is very popular in computing at large. The language has

dynamic memory allocation and pointers and includes some user defined structures.

Modularization makes for easy maintenance as well as code development by large

groups. However, it was originally designed for general purpose programming and not

specifically for numerical work. It has other disadvantages. For example, it is not object

oriented. It has a terse syntax (e.g., n*=1) and is not completely standardized. In

addition, it contains no concise syntax for manipulating user defined data structures.

ML (MetaLanguage) came next in development (Riecke, 1996). MetaLanguage

described the mechanism for declaring, raising and handling exceptions. This feature

allow easy recovery from the errors. According to Bednarczyk (1996), "ML is a

functional programming language with a strongly typed polymorphic type system."

Unlike 00 languages, ML does not allowed inheritance for polymorphism, but provides

prototypical such as parametric polymorphism.

51

Smalltalk was developed at Xerox by Alan Kay in the 1980s (The Structure of

Higher Level Languages, 1997). Bednarczyk (1996) defined Smalltalk as belonging in

the group of dynamically-typed languages. It was known as a first implementation of an

object-oriented language with data abstraction, inheritance and dynamic data type

binding. It was designed mainly from Simula67's class concept. With dynamically-typed

language, it "does not check types during assignment (and hence for parameters) and

therefore provides parametric polymorphism without static constraints" (The Structure of

Higher Level Languages, 1997).

Miranda was introduced by Davis A. Turner at the University of Kent also in

1980. It is a program that consists of functions and data structures represented in

recursive equations. The Miranda is a strong typed program; "list" is a high point. For

example a list of operation can be presented as:

Operation = ["++" "-", "#", ":", "!", " .. "].
Which "++" is an addition list,
"-" is a subtraction list,
"#" length, ":" list consing,
"!" list subscripting and
" .. " list notation (to). FORTRAN (www.csc.liv.ac.uk/~u4sdg/his­

fortran.html).

52

Ada was designed in 1983 in accordance with the requirements of the Department

of defense (DoD). DoD called for a language with considerable expressive power

covering a wide application domain, independent of any particular hardware or operating

system, and able to support good software engineering and safety-critical systems. A later

version is now called Ada95. This language completely supports object-oriented

programming with a modem algorithmic language (Gargaro & Peterson, 1996). It has the

usual control structures and the ability to define types and subprograms, modularity, data,

and types. Subprograms can be packaged. That is, Ada has fully support inheritance,

polymorphism and provides complexities through hierarchies packages. In addition, Ada

distinguishes between public and private features of type and structure libraries access.

(Church, 1991).

C++ was originally created by Strouptrup Bjame at the Bell Laboratories in 1986.

Its precursor was called "C with classes" and has been in use since 1980. Strouptrup and

his team wanted to write an event-driven simulations which could be used with Simula67.

Their goal was then to write a program in a shortest time possible in such a way that the

program contained less code. From its original version, C++ was developed and

expanded to include more features. It has been updated several times in recent years

53

(Stroustrup, 1996). C++ is extremely popular. It is basically similar to C, but fully object

oriented. It allows overloading of operators and the code is highly reuseable. However, it

also has disadvantages. It is large and difficult to learn. In addition, similar to C, it is not

standardized.

Java is the newest language available today. It was just developed at the Sun

Company (Sun Microsystems, 1997). With the trends of technology changing to a

client/server environment, the research team at Sun Microsystems wanted to develop a

portable language that only required a once time design and could run on any machines or

operators. This solved the cross-platform problems that existed within the World Wide

Web (WWW). It also promised the momentum for development for many years to come.

It is believed that Java has the potential to eventually mark another generation in

computing models (Sun Microsystems, 1997).

One report has described in great detail the advantages and disadvantages of

Fortran77 versus Fortran90 and also C versus C++ (Blue Team Software Design Manual

for FortranlCIC++,). According to Sun Microsystems (1997), many languages such as

Smalltalk, LISP, and Miranda have proven themselves quite powerful and are heading to

the same direction as C++ - to the object-oriented paradigm. Perhaps, C++, however, has

the greatest following of C programmers. This researcher believes that has been a major

contribution for quick adoption. It is for this reason that more tools have been developed

to support object-oriented programming.

Data-abstraction, inheritance, virtual functions and dynamic-hiding are key

features for the object-oriented paradigm. C++ programming has supported these

features. C++ provides data abstraction, modularity interface and implementation. For

54

example, the C++ data type int, together with the operators +, =, * and / allows

programmers to use the feature without the need to understand how float types were

implemented. C++ also supports derived class (or inheritance). It extends the notion of

data-abstraction to express hierarchical relationships, that is, to express commonality

among classes with the most general on the top, containing a base class to lower classes

in a tree structure. Consider the example of employee in which "employee" is a base class

for manager. Both employee and manager have name, age, department and salary. A

manager is also a employee and is derived from employee class.

C++ also supports virtual function which helps to overcome the problems with

"type." This language allows programmers to declare functions in a base-class that can

also be redefined in each of derived class. Another advantage of C++ is that it supports

dynamic binding. C++ allows operations to be invoked on an object without showing the

actual type of the object. It only shows this at the run time. This has freed programmers

from the detail of overhead.

Research on Reuse

Evolution to Measurements.

Negative economic trends in previous years eventually led to company

downsizing and restructuring. Organizations have and continue to be greatly influenced

by trends in techniques to control the processes of software production and by the need ,

for quality to stay in business. Companies have learned the hard way that they must

participant in reuse application to remain viable in today's economic marketplace.

Authorities generally agrees that reuse application offers the potential to simplify

55

software development which results in costs saving, high quality and increase

productivity (Jones, 1994, Comaford, 1995, Urban &Chang, 1995).

Numerous researches have contributed and continue to devote their efforts to

finding new techniques in software reuse. There may be many different techniques, but

all agree to the fundamental goal and definition - to recognize that application designers

do not have a need to write new code, but must engage in the use of inhering and

capturing commonalty tasks(Deng-Jyi & Lee, 1993). Inheriting and sharing knowledge in

system design, code and others project documents are related. Design patterns reduce

complexity by providing conceptual guidelines to help programmers use the proper tools

for a given context. Opportunities for reuse software arise under many different

circumstances of the life-cycle software development. Opportunities can be realized

during measurements and specifications, design, and applications development, for

example.

Measurements.

Revolution in software engineering drives software complexity. As previously

indicated, there is an increasing need to control the processes of software production and

quality of the product. The software metrics method has been used as a viable approach to

measure a system component or process to a given attribute (IEEE, 1991). It is not only

used to evaluate, determine and support reuse component, but also to facilitate in creating

,
components for reuse (Martin, 1990). Software metrics typically involved: lines-of-code,

function-points, program size. These are further described in subsections below.

Another approach is structure measures that integrate a process for identifying

candidate objects in program code. This method assumes that the complexity of a

56

program correlates to the size of the program; then components tokens and objects tokens

can be used to formalize the complexity measurement. In the view of Esteva (1995), such

"structural measures are related to the data flow for procedural languages. They are

concerned with assessing both the internal complexity of a component and the

complexity of its relationship to the rest of the program" (p. 81). However, quality in

software essentially depends on many different variables. Also, dimensional is a barrier to

the software reuse community (Salamon & Wallace, no date).

Lines-of-Code

In the past, the most common measures has been based on the number lines of

code. This measure does not necessary predict program complexity, however. It is a well-

known fact that in the earlier days of programming, the ad-hoc" method was quite

common. This resulted in similar programs carrying out similar results, but not

containing the same number oflines of code. An example of this problem can be found in

"Hello World" in C. One routine has more lines-of-code than another; however both carry

out similar results. Example A as shown below clearly indicates that the developer had

more technique productivity than the one who designed Example B.

Example A:

str_temp := "Hello World"
str fr:=" from "
str id := "Joe Number II"
prinf("%s ", str_temp);
printf(" %s ", str_fr);
printf("%s", str _id)

ExampleB:
prinf("Hello World from Joe Number II")

57

Metrics can assist this problem by measuring data complexity in routines, logic in

routines, size metrics based on lines-of-code, comments, and executable statements.

Another view of using line-of-codes method with structure style may be considered. It is

called the building block approach to software development. It is believed to be most

important and should be considered in software reuse (Watson & McCabe, 1996).

Function Points (Complexity)

Researchers soon realized that previous methods for software engineering

measurement were not accurate for estimating project costs and resources. Function­

points was an alternative software metric approach developed to assist with this problem.

Function Points are "derived using empirical relationships based on countable measures

of software information domain and assessment of the software complexity" (Bryant, no

date). Information domain includes: number of inputs, number of outputs, inquiries

(combinations of inputs and outputs), number of files and number of external interfaces.

(Salamon & Wallace, no date).

With function points, there may be a total count calculate to product the

final function value. One report provided an example that was used to prove the

productivity and costs saving of FORTRAN and MS Access when both have the

same 50 Function-Points. It was proved that MS Access coding activities required

five months as compared to FORTRAN, which required 24 months, Cost per­

function-point FORTRAN was $2,700 UK compared to MS Access of $800.00

UK. A technical complexity adjustment (TCA) can be found from in the work of

Salamon and Wallace at the United States Department of Commerce.

58

Model (Program Size)

It has been indicated that information system size is an important factor that

contributes to system complexity. Program size has a significant impact on development

efforts (Boehm, 1981). It is important to explain that relative complexity refers to a

number that represents the essential characteristics of any set of metrics that may be

selected to use in the software development process. Ordinary software complexity

metrics simply cannot be added together to summarize the complexity of each program

module. Raw metrics must first be combined into smaller uncorrelated metrics sets.

These are called domain metrics (Precision Software Measurement Products, 1996).

There are certain reasonable constraints that must be observed in the computation

of relative complexity. One of the most important is that no metric may be derived from

any other in the set of metrics. The classic example is provided by Halstead who

measured of program size in accordance with the following formula: N = Nl + N2

(Precision Software Measurement Products, 1996). There is no new information in the

metric N. It is merely the sum of the metric Nl and N2, the total number of operands and

operators.

One report explains that many software measurement tools produce a large

number of software complexity metrics, but a large number are so highly related that they

basically measure the same thing.

For example, if our metric tool were to report on the total statement count
and the total lines of code we would find that these metrics are strongly
related to one another. If you have a program module with a large number
of statements, then it will also have a large number of lines of source code
as well. These two metrics are both measures of a size domain (Precision
Software Measurement Products, 1996. p. 1).

59

The report further noted that it is important to first determine the actual number of

measurement domains represented. If one measures Statement Count, Lines of Code,

Halstead program size, and McCable's cyc10matic complexity, there would be but one

actual measurement domain because all are simply measures of program module size. In

addition, metrics used to compute relative complexity should relate to the criterion

measure. "For example, if you wish to use relative complexity as a surrogate for software

faults then all of the metrics that you use to compute relative complexity should relate to

software faults. Relative complexity will only be as good as the metrics that make it up"

(Precision Software Measurement Products, 1996, p. 2).

In summary, it requires everyone look at the subject from the same standpoint.

Frenton (1991) provided an example ofthe problem in which measurement of human

height was being considered. Should shoes be allowed? Should the measure take place

from the top of the head or from the top of the hair? This variables must also be taken

into consideration with respect to software reuse.

Another example can be found in the works of Esteva (1995). This author

considered that the size of a given program correlated to the complexity of the program -

that is, how tightly or loosely was the relationship from one component to other. This was

used to determine the complexity of the program. Snooper is the name of the program

(Esteva, 1995). In this work, the author has extended and formulated the results to

support the representation of commonality and variability in a domain. Esteva denoted:

FOV: (F)unction (O)ccurrence (V)ector
AFO: (A)verage Function Occurrence
NO: (N)umber of Objects

OOV: (O)bject (O)ccurrence (V)ector
AOO: (A)verage (O)bject (O)ccurrence

Reduction of Complexity

Current literature has noted that programs can be developed while breaking all

structure rules or not considering the efficiency factor. Such an example was "hello

world," as previously described. Modules have impacted structure programming and

60

served to reduce complexity. Davis (University of Liverpool, 1996) presented an example

of an unstructured program of 100 lines of code, which can have up to 10/\ 158 paths.

Using Modules program (function) to have structured program, approximately 100 lines

of code could be placed into 4 separate functions. This lowed the number of the paths to

10/\33 which highly reflects cohesive modules, and thus represents an improvement.

Clearly it is possible to reduce complexity by carefully analyzing components into

sub-components and applying the black -box approach. In this context, estimated size of

code for a module in development phase should also be taken seriously with respect to

complexity. Kumar (1996) used the "big-O notation" to generate a structure chart which

presented the worst-case, average-case and the bast case complexity during modules

development. With structure charts, software engineers will be able to determine the best

approach to complexity in program code, modules which relate to the whole application.

However, it is obvious that complexity must have a measurement to determined the

complexity reduced.

The fundamental for complexity measurement is continually impacted by

economic concerns as well as quality of the product. Time and space elements are also a

fundamental concern of complexity measurement. Matuszek (1996) described the "time"

61

and "space" elements that drive complexity of the system. Time complexity is a measure

of the time (or machine cycle for a digital computer) to the time execute. Space

complexity is a measure of the space needed for computation. Line-of-codes, program

size and function points together with structure layer are the absolutely elements to the

model complexity. Detail in coupling and cohesion can be found from the lecture notes

provided by Gerard Lyons at http://it-hal.ucg.ie/CAI_Tutor/func_dec/Ccopcoh.htm.

Complexity Analysis

Software engineering is influenced by reuse in general and the building of reuse,

specifically. Reuse at the same time is called backward-reuse; build-to-reuse is called

forward-reuse (Urban & Chang, 1995). According to authors, backward-reuse can be

defined as an existing set of components with their activities involved in the retrieval

components mechanism. On other hand, forward-reuse involves the product that will be

developed with reuse in mind. Reuse engineering encompasses both domain engineering

and application engineering and is considered to be essential to institutionalization of

software reuse. The term "reuse" is a conceptualization of components already build.

Likewise, build-to-reuse is a conceptualization for new components such as those which

can be started from the scratch. Both approaches facilitate software reuse to its

maximization point. The present thesis only focuses on the domain engineering concepts

and its methodology, reviewing application concepts of the greatest importance.

Domain engineering embraces the scope of the body knowledge mechanism. The

need for formal domain engineering methods is apparent in large-scale application.

Formal domain engineering method underscores similarities and differences among

62

components Activities represented in a domain model included: analysis, definition,

identification and integration (Krut & Zalman, 1996; Withey, 1994). Domain engineering

is defined as "The process of identifying, collecting, organizing, and representing the

relevant information in a domain, based upon the study of existing systems and their

development histories, knowledge captured from domain experts, underlying theory, and

emerging technology within a domain" (Kang, 1990).

Team members employed at The Pacific Software Research Center (Bell, 1994)

used a method which was based on domain engineering to automatic program generation

from reusable components suitable to a specific program. It is important to explain that

application engineering is a specific instance of a domain. By contrast, reuse-based on

application engineering "studies the commonalties and difference among software­

intensive systems within a functional area" (Domain Engineering: A Model-Based

Approach, no date). Activities include: user requirements analysis, prototype plan and

development, demo, implementation.

Key model concepts are abstraction and refinement. Many guidelines exist to

perform some or part of the application engineering (U.S. Department of Defense, 1997).

Feature Oriented Domain Analysis (FODA) uses the abstraction feature to create domain

products from the specific applications in the domain and apply refinement methods to

both refine the generic domain products and the domain products into applications.

Software engineering now exists to support software reuse. It is important to

realize however, that the challenge in software reuse from reusable components focus on

how to find reusable components (Frakes & Gandel, 1990). To find the reuse

components, common techniques involved in software retrieval mechanism may included

63

systematic approaches, such as a set of keywords and index components. This approach is

described in the work of Prieto-Diaz (1991), Price and Girardi (1990), and MSC (1991).

Other approaches used semantic concepts like natural language in users interfaces to

apply to retrieval system (Girardi & Ibrahim, 1995). Common approaches include

Hierarchical Classification, Faceted Classification and Natural language model. These are

described below. However, regardless of the path taken, software design must also be

considered during system implementation. The absolute of software design

methodologies is to product simple design that corresponds to the problems domain. The

functional provides good design which involves structure aimed at the data structure that

acts on them (Allworth, 1981). Methodologies structural architecture include top-down,

bottom-up and Object-Oriented. In Blue team (www) explained in detail oftop-down

design, bottom-up design and Object-Oriented design.

Top-Down Design refers to the practice of dividing a complex software system

into smaller and smaller parts, each of which are then refined independently. However, it

is desirable to design each small piece to be a reusable software component that can be

composed with other such components to form new applications. Thus, a side effect of a

good top-down design of a system, is that the design of subsequent systems may indeed

prove to be, at least in part, from the bottom-up. In practice, these two approaches are

meshed.

It is also important to explain the difference between top-down and Object­

Oriented design. In 00, a system is decomposed according to key abstractions in the

problem domain. The problem domain is viewed as a set of autonomous entities which

collaborate to perform a higher level behavior. Each "entity" in the software system is a

64

model of a tangible entity in the real world problem domain which displays some well-

defined behavior. A most important feature of the building blocks, called objects, is that

the representation of the state (data) of the object is inextricably linked with the functions

that manipulate that state. Object oriented languages like C++ naturally enforce this

binding. The architecture of an object-oriented system specifies the relationships between

objects, of which there can be a number. These are often represented on an object

diagram. Representation of object diagrams has recently been standardized in the Unified

Modeling Language (UML) specification.

Hierarchical Classification

Hierarchy is best described by Li and Loew (1987) and in the Full Computing

Review Classification Scheme (ACM, 1990). At the top levels one might have the

application domain and refinements thereof, e.g. "computer graphics" or "numerical

analysis"; lower levels might represent functionality such that "solve equations" or

"evaluate integrals", "programming language", etc. However, there are a number of

problems associated with this view. These can be listed as follows:

- a hierarchy is sometimes too irregular, that is, at a given depth in one
branch one might discriminate a fine point of the application domain,
whereas at the same depth in another branch one might discriminate the
functionality;

- it is too tall, that is, the user must answer too many questions;

- some components might reasonably be classified several ways. For
example a "lisp compiler" might be classified under "programming
languages" and under "artificial intelligence"; and

- the hierarchy chosen by the classifier might not be the most convenient to
the person attempting to retrieve a component. It might be found to be
more convenient to put the application domain at the top of the hierarchy,

while another find it more convenient to put the programming language or
hardware at the top of the hierarchy.

Faceted Classification

The Faceted approach has been best described and advocated by Prieto-Diaz

65

(1987). Facets can be considered to be dimensions in a Cartesian space. The collection of

values of the facets can be considered to constitute the coordinates of point in that space.

Alternately, facets can be consider to be independent views of the properties of software

components. In Prieto-Diaz (1987) the properties asserted to be necessary and sufficient

include operand, application-domain, and functionality.

Many of the objections to a hierarchical classification are answered by a faceted

one. Solderitsch (1995) described the number of limitations of faceted model. These

include the following:

- reliance on a query specification and refinement approach to discover
the contents of the underlying software catalog;

- lack of change ability of the underlying classification scheme as the
domain evolves;

- no explicit support for supporting different user communities (e.g.
managers and programmers) and different user abilities; and

- lack of a graphical view of the underlying domain model.

Natural Language Model

The Natural Language model provides a natural-language interface that allows

communication to system in ordinary English sentences. Girardi and Ibrahim (1995)

provide a technique for retrieval of reusable components through processing both in

queries and in natural-language descriptions. This technique is believed to improve

retrieval and make it more effective. However, more researches effort needs to be

directed to this area of study before any definitive conclusions can be reached.

66

Obviously, components libraries are only as good as the information contained

therein. They must have a large number of components to reuse. The potential for

reusability increases with an increase in components. For this reason, the size of

components libraries is continuing to expand. There is no longer a single retrieval that is

able to provide specific components requested. This is not an easy task for human

interactions participants (Esteva, 1995). For the most optimal level of effectiveness of the

components retrieval system, users must be knowledgeable and able to interact in the

appropriate manner to provide specific components requested. Such interaction is

achieved through menu dialog for users selection. Gordon (1992) provide numerous

examples in this respect. Also, graphical environments can be found in the works of

Citrin and McWhirter from the University of Colorado (1995).

Communicating Sequential Processes (CSP)

Current technologies undoubtedly promise a great increase in system processing.

Object-Oriented allows inherence from object to other objects, which greatly contributes

to the increase in processing power. However, Object Orientation inherently has also

created new problems in design and implementation (Hinchey, 1995). Communicating

Sequential Processes (CSP) offers a solution to solve this problem. CSP commonly used

to increase the processes power system in concurrent methodology offers what has been

called "process algebra". Process-algebra is defined by Glabbeek as "An algebraic

approach to the study of concurrent processes. Its tools are algebraic languages for the

specification of processes and the formulation of statements about them, together with

calculation for the verification of these statements." (Van Olabbeck, 1987).

CSP's concepts and methodologies can best be viewed at the following Internet

address: http://heart.engr.csulb.edu/-foster/ch2-6b.asc. The Web page is produced by

Foster in Language Mechanisms for Synchronization. CSP approaches included

Sequential 110, Repetitive sequential and Concurrent 110. Foster describes CSP

commands as follows.

Input command: <source process id> ? <target variable>
Output command: <destination process id> ! <expression>
Repetitive command: *[01 -> CLI 02 -> CL2 .. On -> CLn]
Concurrency: [process PI's code II process P2's code II process Pn's code]

Example *[c: character; west?c -> east!c]
Said:

input from process west
output to process east
terminates when west terminates

There are various works available such as Models for Distributed-Memory

Programming. Trace driven simulation has been successfully studied in research on

memory design and caches performance (Smith, 1992). Decision Support Systems have

been reported by D. R. Dolk and J. E. Kottemann at the following Internet address:

http://www.iscs.nus.edu.sg/-yeogklMMlbiblio/journallj000038.htm.

Object-Oriented Technology in Development and Reuse

Frame and Frameworks in Reuse

Frame concepts were introduced by Minsky(1975). Frames provide the defined

structure to reduce complexity nets. Elements of this technology include: goals, key

problems, problem strategies, requirements strategies, current theories, tacit knowledge,

67

testing procedures, implement methods design, users' interactive features, perceived

substitution function and exemplary artifacts. (Minsky, 1975, 1988). In relational

database systems, frame is also viewed as a records structure with database attributes.

Each segment of a database is also called a frame. The structure is always hierarchical,

cross-referencing link though defined relationships (RDBM concepts).

In Gentleman's (1996) R-Ianguage manual, it is suggested that the first step to

follow is to frame a data frame whose components are either logical vectors, factors or

numeric vectors. Data frame is a class of objects facility for the data storage which are

usually used in fitting models. They are similar to matrices structure in the way that

variables can be presented as a matrices columns and the observations as rows. For

example, the attributes of "address" frame may have attributes such as "street", "city",

"state" and "zip code" represented in columns. In R-language, Gentleman (1996)

presented the data-frame in the "frame" with included attributes "syntax", "arguments",

"value", "see also". For example of these attributes, consider a data-frames which was

obtained from R-Ianguage (Gentleman, 1996):

[Syntax
data.frame(... , row.names=NULL, col.names=NULL,

as.is=F ALSE)
as. data. frame(x)
is.data.frame(x)
row.names(data.frame.obj)
print(data. frame. obj)

Arguments

these arguments are of either the form value or tag=value.
Component names are created based on the tag (if present) or the
deparsed

argument itself.

68

69

row.name
a character vector giving the row names for the data frame.

col. names

as.is

Value

a character vector giving names for the variables in the data
frame.

a logical value indicating whether character variables
should be left" as is" or converted to factors.

A data frame. Data frames are the fundamental data
structure used by most of R's modeling software. They are
tightly coupled collections of variables which share many
of the properties of matrices. The main difference being
that the columns of a data frame may be of differing types
(numeric, factor and character).
as.data.frame

attempts to coerce its argument to be a data frame.
is. data. frame

returns TRUE ifits argument is a data frame and
FALSE otherwise.

See Also
read.table.]

Frameworks are reusable designs for an application scope focusing on reducing

unnecessary and redundant system development through the reuse set of abstract classes

or a part of class. According to Coplien & Schmidt (1995), framework provides an

integrated set of domain specific functionality; frameworks exhibit an inversion of

control at run-time. Essentially, a framework is a semi-complete application. Frameworks

contain such elements as: Building Blocks, Abstractions and Processes reuse relative to

the software reuse. Thus it becomes clear that a framework is a reusable design for an

application or a part of an application that is represented by a set of abstract classes and

the way these classes collaborate, as defined by (Johnson (1988). Frameworks differ from

class libraries as described in Coplien and Schmidt (1995):

1. As pertains to an integrated set of domain-specific functionality, in
framework, particular domains are addressed such as business data
processing, GUI, databases. Class library contains such things as
strings, complex numbers, dynamic arrays and bit-sets.

2. Exhibit an "inversion of control" at run time. It is a framework's
responsibility to determine which methods to invoke in response to
events. Events such as messages arriving, keyboard and mouse from
users interaction.

3. Is a "semi-complete" application in which allows programmers
complete applications by inheriting and instantiating framework
components.

In Object Oriented Programming like C++, C++ is the higher-level object

implemented by objects at lower levels of abstraction. An example can be found in

Stroustrup (1996) for abstract frameworks such as "shape," of which "circle" and

"square" can actually be used. The Lockheed Martin Tactical Defense Systems Reuse

Library Framework (RLF) has successfully developed domain-specific reuse libraries

with knowledge-based which are written in Ada,. The Internet address site,

http://iktt.zgdv.de/VASIE/Reports/All/I0496/0bjectives.html, has also developed an

70

Object-oriented framework for vessel control systems as a part of the pilot project which

determined its succeed when compared with other methodologies. These included Booch

and Object Modelling Techniques (OMT).

Pattern Languages Design in Reuse

Software reuse mechanisms allow programmers to create a new pattern on top of

other patterns specified. In Budinsky (1996), pattern "describes a solution to a recurring

design problem in a systematic and general way." Design patterns like Object-Oriented

software have promised potential techniques for software reuse - potential for software

reuse communities, specifically. It provides the solution together with guidance on how

to implement. Pattern is not a code, rather a template which provides developers with

guidelines for solving problems. The structure form is represented (Budinsky, 1996) in

the template of Name, or the name of the pattern. It is also represented in the following:

- Intent: context of pattern

- Also Know As: other name relevant to the pattern
Force: pattern motivation

- Application: the kinds of question whatlwherelhow

- Structure: graphical representation of the classes in the pattern

- Participants: classes or objects if any participating in the design pattern
and its responsibilities

- Collaborations: description of how the participants carry out their
responsibilities

- Consequences: the trade off and results

- Implementation: pitfalls and hints considering

- Sample Code: code fragments

- Related Patterns: others pattern related and patterns considering to use.

As based on a survey by Stephen Siu, there are two reuse mechanisms in reuse.

71

Design patterns for extension are: Composition and Refinement and can be understand as

a black-box and white-box, respectively. The following set of component and refinement

statements are used in Siu study.

1. Composition which allows developers to create new design patterns by

interconnecting an arbitrary graph of design patterns. The new pattern can,

in tum, be used recursively inside another pattern. Composition is a black

box reuse because developers do not need to know the implementation of

the design patterns to connect them together.

2. Refinement which allows developers to create new design patterns by

specializing the structure inside existing design patterns. The behavior of

the existing pattern remain unaffected in refinement. Using the

mechanism, developers can substitute a node in the graph of an existing

design pattern with another graph. It is a white box reuse because

developers have to know the internal structure of the existing pattern to

specialize it.

72

One research report offers Date functions written in C language and presented in

refinement forms (Object Oriented Decomposition Generalization, 1995). Others use

design pattern techniques. Budinsky, Finnie, Vlissides and Yu successfully developed the

automatic code generation from design patterns (Budinsky, 1996). In the works of

Roberts and Johnson at the University of Illinois, (st-www.cs.uiuc.edulusers/droberts/

evolve.html), they describe A Pattern Language for Developing Object-Oriented

Frameworks. The authors placed examples in the Pattern template itself.

Data Abstraction

Data abstraction mechanisms are well known as important tools in software reuse

with significant impacting abstract data type. (Peter, 1987, 1995). According to the

author, activities of the abstracts data type (also known as user-defined types) are to

provide an abstraction of one implementation per program or to describe as a single

73

implementation, or to allow multiple implementation per program. Two approaches in the

multiple implementation abstract data types are, according to the author, data

encapsulation and procedural encapsulation. Data encapsulation relies on a type system

with existential types while procedural encapsulation can be applied in a polymorphic

Milner/Mycroft type system with algebraic types. Such data abstraction in c++ has

significant practical and easy-to-use data capability. In other words, "A type created

through a module mechanism is in the most important aspects different from built-in type

and enjoys support inferior to the support provided for built-in types." (Stroustrup, 1996.

p 18). Simple examples are Integers, Complexes, Sets, and Lists, among others. Stroustrup

(1996), well known as a C++ creator, gave an example ofthe Arithmetic types such as

rational and complex numbers.

class complex {
double re, im;

public:
complex (double r, double I) { re = r; im = i}
complex (double r) II float ->complex conversion

};

(re = r; im = 0; }
friend complex operator + (complex, complex);
friend complex operator - (complex, complex) ;
friend complex operator - (complex);
friend complex operator * (complex, complex);
friend complex operator I (compelx, complex);
II ...

II binary
II unary

Classically, in this example above, the user defined type "complex" specifies the

whole set of operation on a complex number, which is easy-to-use in this "complex"

class. To call this function, for example:

void fO

{

}

complex a = 2.3;
complex b = l/a;
complex c = a+b*complex(l,2.3)/a
II ...

74

It can also be noted that the user who uses this class "complex" should not have to

know the internal associated with class "complex". This method is also called a "black-

box" because it does not require the user to understand or known the class "complex"

implementation.

It has been generally agreed that the reasons for user-defined-types include the

following:

1. Programmers can work directly with so called real-world objects of
that type. Rather than from the traditional lower-level types language.
This certainly yields more natural solutions.

2. Better design and document modules mechanism.

3. Provides hidden components and encapsulation variables which leads
fewer global variables.

4. Reuse easy and simplifies program verification.

Various Object-Oriented Language offer this classic data abstraction such as Ada,

Clu, and GLISP, among others. GLISP provides data abstraction facility with hierarchical

inheritance of properties and object centered programming (Novak, 1983).

75

Complexity Reduction

Software is often complex, especially when the application is for a large module

level. Abstraction reduces the apparent complexity of an implementation in a way that

presents only the most relevant component and hides all others. However, because each

human mind thinks differently, views differ from one to other. No one user-interface can

be suitable to all. This is also clearly reflected in programming. According to Strouptrip

(1996), the problems with abstract data type is that there is no way of adapting it to new

uses within a program without modifY its definition. This can lead to several problems

such as inflexibility, prone error. For example, for the purpose of use in a graphics

system, consider the type "shape." Define "shape" like:

enum kind { circle, triangle, square};
class shape {

public:

};

point center;
color col;
kind k;

point whereO; {return center;}
void move (point to) {center = to; drawO;}
void drawO;
void rotate(int);

and the function draw can be defined:
void shape::drawO
{

}

switch (k) {

}

I I draw a circle
break;
Iidraw a triangle
break;
I I draw a square
break;

76

This is known as a trouble-maker because the function drawO requires the user to

know all the its elements of "shape." If a shape like a triangle is needed, this function

then needs to be modified, thereby creating great potential for error. Unfortunately, not

anyone can go in and modify this function; it required access authorization. This

represents yet another problem.

However it is possible to reduce complexity. A common way is to divide into sub­

systems. Sub-systems in tum can be divided into their sub-systems until further division

can not be performed. This is often called the hierarchical decomposition of system

(Verstraete, 1997). It is important to note that there are several decomposition classes

(Object Oriented Decomposition Generalization, 1995). These are written in C language

such as class decomposition of constructor c _timeO, constructor function c _time(int, int),

constructure function c_time(c_time&), destructor function c_time::add(int), -c_timeO.

In summary, it can be seen that there are many motivational factors to use Object­

Oriented concepts in software engineering programs. The following is a list of some of

the many reasons why programmers use 00 concepts.

- Improvement of trace-ability.

- Reduction of integration problems.

- Improvement of the impact of process and product.

- Need to keep to a minimum objectification and de-objectification.

- Hiding of information.

- Abstraction of data.

- Encapsulation.

- Concurrency.

77

Background of the Theoretical Model

Looking back from the counting number in Greek period to structure languages

and more recently, Artificial Intelligence, researchers have stressed the role of general

computing mechanisms. Many of the goals of computing languages such as Fortran, C,

Lisp, Ada are the same as those of languages in general: to provide a mechanism notation

useful for humans and machine to understand and hopefully a method of expressing

notation in words for greater understanding. One view is that the collection of various

notational mechanism can be "strict enough in its syntax, and on the other hand, rich

enough in its semantics ... " (Barabashev, 1995, p. 1). Semantics of a languages tells the

user what a sentence means. Syntax of a languages tells the user how a sentence in a

language is put together in a sentence or formula.

Relation

The term relation here refers to its common use in the computer science and

mathematics literatures. Given a set (xl, x2, x3 ... xn), R is a relation on these n-tuples if

for each element ofx is in R. R is say to have degree n, degree 1 often called "unary", 2

called binary, 3 called "ternary" and degree n called "n-ary". For example, the n-ary

relation has the following properties (Codd, 1970):

- Each row-X represented an n-tuple ofR

- The ordering of row is immaterial

- All rows are unique

- All column are partially conveyed by labeling its name corresponding
domain

- The ordering of column is corresponding to the ordering of xl, x2, ... xn
which R defined.

78

Consider the relation of degree called "sale" which reflects the products-solve of

"product_id" to specified "cust-id" in specified "quantity" (a relation of 3 degree)

sales (cust-id, product-id, quantity)

1, 2, 5
2, 3, 1
2, 4, 6

The Artificial Intelligence Applications Institute(1996) defins data relation as:

A relation is a set of tuples that represents a relationship among objects in
the universe of discourse. Each tuple is a finite, ordered sequence (i.e., list)
of objects. A relation is also an object itself, namely, the set of tuples.
Tuples are also entities in the universe of discourse, and can be
represented as individual objects, but they are not equal to their symbol­
level representation as lists.

In context, there is a definition of "set" theory which needs to be explored. Sets are the

most commonly used in mathematics and known as a building-block. The elements in set

include a "sub-set", "union", "intersection". The most used "sets" and "empty-sets" in

mathematics are "natural numbers," "integer," "rational," and "real numbers." For

example, ifN, I, R, ° are natural-numbers, then Integer, real and empty-set is denoted in

the order in which they represented. Then

N = {O, 1,2,3 ... n} = natural numbers
1= { ... , -2, -1, 0, 1, 2, ... } = integer
R = {l/3, nI q} = real number
0= {O} = empty set

Likewise, consider the same in the definition of a function. Function is a correspondence

between two sets. Each first element corresponds to exactly one and only one second

79

element. If A and B be two sets, a function f said has relation between A and B such that

for each a E A there is one and only one associate ofb where each b E B. Function often

denotes y = f(x) indicating the relation { (x, f(x» }. Therefore, the set of A is called

"domain" and set ofB is called the "range."

By convention, consider relations via visa classes. As defined, equivalence

relations are one of the most useful kind of relation besides functions. Functions are also

relations called equivalence relations. A relation is an equivalence relation if it has three

properties: reflexive, symmetric, and transitive. Reflexive as defined in KSL (Stanford,

no date) "Relation R is reflexive ifR(x,x) for all x in the domain ofR., Relation R is

symmetric ifR(x,y) implies R(y,x), and Relation R is transitive ifR(x,y) and R(y,z)

implies R(x,z)." With respect to class equivalence to the Objects (00 context as

described), classes are objects and objects are classes, as denoted by Bednarczyk (1996).

Class also has-a objects. The relation "is-a" and "has-a" represented in the dimension

space one look at.

Figure 2.6: Class-Object

.....
CI>

I
Ilo)

80

Class provides inheritance. Inheritance as defined means that a new class can be

derived from existing class (types) - that is, super-class - sub-classes concepts. Sub-

classes inherit all attributes and operators of super-class and additional attributes and

operators as the additional instance of super-classes. This mechanism id commonly found

in Object-Oriented Concepts and that is all Object-Oriented above.

The inheritance ("is-a") relationship is significant and impacts the design and

implementation of an application systems. Such concepts provide application to avoid

redundant information. For example, a properties real-number in mathematics contains in

"number:" Real-number is-a Number. It must also be considered that has type real. This

will be further discussed in paragraphs below. Likewise, Fortran77 is-a Fortran.

With respect to types, most of relations preserve the subtype relation (KSL, no

date). It also called the "constituency" and allows the propagation of information. The

relation "has-a" is also considered as playing a significant roles in the object-oriented

paradigm. In the ACL project, the example was given of a "wall" which has "window"

and "door." If the "wall" needed to be moved, then all its objects need also to be

informed. The preserving-subtype in KSL is such that:

A headword presented N. Automobile has-part motor can be presented as:
N. automobile.
{ {has-part} } motor.

Likewise, the relation "isnota" (is-not-a) is used in KSL to prevent inheritance properties

when the hierarchy is not correct. Consider the example in the KSL case as "salary" with

''benefits'' which is also a part of salary. "Salary" usually money, but if there is a clearly

stated "benefits are not money," KSL uses the following notation:

81

{{has-part (salary)}} {{!:not-has-subtype (money)}} benefits.

This example can be seen completely and in greater detail at its Web site. The following

are some of the relations defined and used in KSL listing for the study purpose.

In KSL, hierarchy/class include:

F I : is_a, has_subtype, has _ subtype_x, has_subtype _ d
F2: has_domain, domain_of
F3: isnota means do not continue chain of inheritance from higher categories.
Physical related:

part_of, has yart, partition_of, has yartition ...

Frames

Frame is well known as a conventions support in object-centered knowledge

representation. To reduce the complexity such as number oflink or path in semantic nets,

frame allows objects to have knowledge by themselves (Moledor). Each frame represents

a set (or class, entity, slot). Consider properties defined for class "Elephant" (Cawsey,

1996).

Elephant
subclass:
* color:
* size:

Mammal
grey
large

The frame "Elephant" has attributes or slots of "color" and "size" where these

slots have value "grey" and "large" respectably. Frame sometimes can also be viewed as

a record data structures in database system (Cawsey, 1996). In other words, the record

named "elephant" has fields: color and size and field color has value "grey" and field

"size" has value "large." However, as the author points out, frame with the additional is

82

supported inheritance. In this case, frame "elephant" has inherited from the parent-frame

"Mammal."

Other examples can be cited. Consider the following Standard Generalized

Markup Language (SGML) example, presented here for the study perspective:

Property definition:

RCS name: "PROLOG", application name: "", full name: ""

belongs to class: "sgmldoc"
specification document: "SGML", clause: "71001"
datatype: "NODELIST"
allowed value classes: "DOCTPDCL LKTPDCL COMDCL PI SSEP"
allowed class names: ""
node relation: "SUBNODE"
lexical type: ""
string normalization rule: '''I
verify type: ""

Where name, belongs to class, data type, allowed class names, node relation, lexical type,

string normalization rule and verify type are elements contained in the defined frame in

SGML system.

Propositional Logic

Propositional logic is an algebra term for reasoning about the truth oflogical

expressions. Where a logic is concerned only with sentence connectives, it is called a

propositional logic. In natural languages, words whose primary role is truth functions

often have other roles as well. This is one of many ways in which natural languages fail

to be ideal for some logical or technical purposes. In the natural language such

connectives as "and," "or," "not," and "implies" are constraints that predicate logic.

When A and B are two sentences, "and" is consist in conjoining two sentence (A and B)

83

which formed true if and only if sentence A hold true and sentence B also hold true

(Jones, 1995). "Or" is a disjunction formed true if either A or B is formed true or both

true.

Also in First Order Predicate Logic: (A -> B) -> (B -> A), there exists x A(x) ->

(For all) x A(x), therefore (A -> C) AND (B -> C) -> (A -> B). In Russell and Norvig (p.

167), the authors described a very simple logic:

BNF grammar

sentence -> literal I complex sentence
literal-> atomic sentence I NOT atomic sentence
atomic sentence -> TRUE I FALSE I P I Q I ...
complex sentence -> (sentence) I sentence connective sentence I NOT sentence
connective -> AND I OR II =>

According to Jones (1995), there are certain constructions in natural languages

which have the following features: they are sentential operators; they operate on one or

more complete sentences to give a new sentence; they are truth functional operators; the

truth of the resulting sentence can be determined knowing only the truth values of the

sentences from which it was constructed. The most well known, and probably the

simplest of propositional logic is known as classical or boolean, in which it is assumed

that all propositions have a definite truth value; a proposition is either true or it is false.

Constraint Satisfaction

A constraint satisfaction problem is concerned only a local consistency conditions

instead of corresponding to an optimal path. One definition that has been provided in the

literature is that "A constraint satisfaction problem is one in which a series of constraints

84

is imposed on a set of discrete variables. The task is to find a set of values for all the

variables that satisfies all the constraints simultaneously" (Indiana University, no date).

For example, in a crossword puzzle game, the search mechanism concerns only the words

cross to each other which have the same letter in the location where they cross. In

context, constraint satisfaction represents relationships among variables which constraint

structure and consist of node and arcs. Node represents a variables or constraint and arc

represents the relationship among variables and the constraints.

Many problems can be solved when a constraint satisfaction is applied to problem

concepts. MathSoft poses numerous problems together with the solutions which can be

stated by constraint satisfaction concepts. Detailed information in this regard can be

found at the Internet address, http://www.mathsoft.comlpuzzle.html. Graphical user­

interface such as 3-D Playing Cards can be found at

http://www.unitedvisions.coml3dcards/ .

Background of Practical Machine

Mathematical Verification by Group Theory

Group Theory is not only central to the mathematical of use, but also provides

useful application in other areas as well. This is true because the natural algebraic

structure which defines a group is natural and familiar with the concept of a

correspondence and transformations of a physical system. When one begins to place rules

to the set, a richer algebraic structure is created. Before the review can focus on

mathematics by group theory, however, it is first necessary to provide an outline of basic

85

definitions and notations. This is intended to refresh the memory regarding algebra

notations, algebra sets, relations and functions.

Set:

The Algebra of Notations

A = {I, 2, 3} said, 1, 2, and 3 are elements or members of set A. Therefore,
1 E A said, 1 is a element of set A. Likewise 2 E A, 3 E A

Subset:
A c B said, A is a subset of, or is contained in a set B if

for each x E A and x E B.
Empty:

Set is empty or null which denoted 0

Union:
A u B defined, A u B = {x I x E A or x E B}

Intersection:
A n B defined, A n B = {x I x E A and x E B}

Invert:
A ~ B defined, elements of set A which are not in B

Cancel (also called symmetric difference)
A Ll B defined, the symmetric difference of two sets A and B such that

A Ll B = (A u B) ~ (A n B) also implies, (A ~ B) u (B ~ A)

The Algebra of Sets

The following rules are straight forwardly from the algebra definitions

A u (B u C) = (A u B) u C, likewise A n (B n C) = (A n B) n C.
A u B = B u A, likewise A n B = B n A.
An (BuC)=(AnB) u (A nC),likewiseAu(BnC)=(AuB)n(A u C)
A u A = A, likewise A n A = A
AcC and BcC imply AuBcC
A u 0 = A, likewise A n 0 = 0

Relations:

An equivalence relation has three properties:
1. aRa for each a E A, called reflexivity.
2. If aRb then also bRa, called symmetry

3. If aRb and bRc, then also aRc, called transitivity.

Functions:

Let fbe a function on X to Y. Therefore f: X -> Y and designate by f(x), for x -> X.
A constant function f: X -> Y for some fixed y E Y, f(x) = y for all x EX
A identity function on X, a: X-> X is a(x) = x for all x EX
one-to-one function. The function f: X-> Y if f(X) = Y and

xl *" x2 implies f(xl) *" f(x2)

"G" is a notion function: "G" is commonly used as a notation of a group finite and

86

infinite objects A, B and C which implies the combination and product algebraic. That is,

A(BC) = (AB)C likewise, if A, B are elements of set then the product of A and B = AB is

also an element of set.

Euler-Venn Diagrams

In dealing with the real-world problems, specially commonly used in the set theory,

Euler-Venn Diagrams are frequently helpful to picture relations between the sets. For

example, the following Euler Venn diagram, shows A n Bas:

Figure 2.7: Intersection

and the following Euler Venn diagram, shows A u B as

87

AUB

Figure 2.8: Euler Venn Diagram

Cancel (symmetric difference) of set A and B:

A.A.B

Figure 2.9: Symmetric Difference

Therefore, it holds true that A n B = (A u B) - (A ~ B).

A quick view of the problems in Group Theory and their solution are also in

order. Consider a subgroups problem in Group Theory as presented by Dixon (1967).

Problem 1.38 states that, if A, B, and C are subgroups of a group G, and A c C, then AB

n C=A(B n C).

The solution in Dixon (1967, p. 80). Is as follows:

Let ac E A(B n C) where a E A and c E B n C.
Then, ac E AB, and ac E aC = C
Therefore, A(B n C) c AB n C. On other hand,

if ab E A(B n C, where a E A and b E B,

88

-1
Then b E a C = C and so

ab E A(B n C).
Thus, AB n C c A(B n C)
Therefore, implies A = A(A n K) = A (B n K) = AK n B = BK n B = B also

hold true.

Group Theory in Real World Problems.

Perhaps no concept is more central to group theory than the Automatic structure.

Automatic concept is based on the computer scientists' version of finite state automata.

According to Cohen (1991), Finite State Automata (FSA) can briefly be described as a

collection three things (1) A finite set of states, a start state and a final state, (2) A

alphabet L of possible input letters which automaton reads a word one letter at a time and

(3) a finite set of transitions for its operation or recording states. FSA uses an algorithmic

method to determine if a given language and said words have particular properties by

examining its elements. The automaton reads one element in this finite state one at a time

and it recognizes only that element the automaton in at that time. That element is also

used to determine the next state into which the automaton goes. The state may be an

accept state, or not. If it is a accept state, the word that led to this word has a property. If,

after all elements have been visited and it has not reach to the final state, that word is

rejected.

Keeping this word problem in mind, the automatic structure can provide a

significant impact to efficiency when dealing with a large lists of group. In addition, it

requires only a small amount of memory because it does not require that all elements be

retained in memory (Sander, 1994).

89

New Functions for C++

It is important to first explain that each object (entity) in Object-Oriented design is

a specific instance of a more general construct known as a class. A class is a template for

a set of objects that have a common structure and functionality. Object oriented languages

have representations of relationships between classes which allow new classes to inherit

structure and behaviors from previously defined classes. Such a feature promotes a great

deal of code module reuse and extendibility.

For this reason, among others, there is increasing motivation on the part of

programmers to use Object-Oriented concepts, data abstraction methods, and inheritance

methods to solve problems and to provide ease of maintenance. Functions in C++ allow

programmers to implement readable modules, reuse predefined and tested functions, and

simplify the programming task. According to Stroustrup (1996), new functions for C++

also allow programmers to:

- Identify static data members and member functions, classes features;

- Use and override assignment operators;

- Copy constructors and convert classes; and

- Allow inheritance, multiple inheritance and polymorphism in a program.

Constraint Satisfaction and Frame-Based
Expert System

Artificial intelligence, expert, and knowledge-based systems made a first step

forward in assisting to reorder information in such a way as to begin to simulate the basic

foundations of the way complex problem-solving occurs (Biondo, 1990; Buchanan &

90

Shortliffe, 1985). Programming languages designed in the past were used for the

procedural manipulation of data, but the solution of complex problems by people

frequently involve the use of symbolic and very abstract approaches. These are not well

suited for a procedural programming language. In the late 1960s this need provided the

impetus for concerted effort into the development of artificial intelligence, expert, and

knowledge based systems (Giarratano & Riley, 1993; Jackson, 1992). It was hoped at that

time that analysts would be able to create "thinking" machines (Frenzel, 1989). This

designation remains popular today even though the technology never moved forward to

the point of realizing this goal.

Expert computer systems or knowledge-based systems are computer programs

that analyze data in a way that, if performed by an individual, would be considered

intelligent (Frenzel, 1989). They are characterized by symbolic logic, rather than just

numerical calculation and an explicit knowledge base that is understandable to an expert

in that area of that particular knowledge. In addition, they have the ability to explain

conclusions with concepts that are meaningful to the user.

Expert systems allow inferences to be drawn on encapsulated knowledge. This

type of system is characterized by its method of logical deduction from stored data, in

accordance with rules independent of the program while conducting the search strategy.

There are three basic components of an expert system. These include: a knowledge base,

an inference engine, and a user interface (Giarratano & Riley, 1993; O'Keefe & Rune,

1993). These programs embody the modeling of information at higher levels of

abstraction and are easier to develop and maintain.

91

Jackson (1992) has noted that user interfaces are the means of users to

communicate with the system. Current expert systems use a pseudonatural dialogue

through graphical user-interfaces to communicate. According to the literature, current and

near future research is moving in the direction of development of full natural-language

interfaces which use a syntax that is close to the user's native language are largely a future

development (Frenzel, 1989; Turban, 1995).

Like a database, the knowledge base stores information, or facts. Different than a

database, the knowledge base also holds rules for manipulating and interpreting the data

(Klinker, Linster & Yost, 1995). Rule-based programming is at the heart of knowledge­

based and expert systems (Goble, 1989; Jackson, 1992). It is one of the most commonly

used techniques. Rules are used to represent heuristics which specify a set of actions that

need to be performed for a given situation. This knowledge is in the form of factual

statements, frames, or classes.

As described previously, experts were initially developed in LISP and Prolog. The

methodologies commonly used in an expert system are Rule-based and Frame-based

methods. Rule-based methods are mainly in the IF-THEN statement with an associated

confidence factor. For example, IF N is a set of numbers contains -2, -1, 0, 1,2 THEN N

is called a natural numbers. This IF THEN statement is widely used in higher level

languages such as Fortran, C, C++. The conditions and conclusions of the rules consist of

object/attribute/value triples. The "if" portion of a rule is essentially a series of patterns

which specify the facts, or data, which cause the rule to be applicable. The "if' portion of

a rule could be perceived of as the "whenever" portion, since pattern matching will

always occur whenever changes are made to facts. In expert systems, pattern matching

92

occurs as a result of the process of matching facts to patterns. In this way the expert

system tool provides a mechanism which automatically matches facts against patterns and

determines which rules are applicable. The mechanism is commonly called the inference

engine (King, 1993). The parts of the whole of an expert system can best be viewed from

a flow chart perspective.

The function of the inference engine is to perform logical inferences on the data

held in the knowledge base. The inference engine component of the system tends to be a

conventional program that is written in an imperative language. However, it is the

inferencing process whereby a controlled search strategy is used to draw information

from a knowledge base, in accordance with a set of rules held within that portion, that

makes an expert system unique. One technique that is utilized by the inference engine is

forward-chaining. It reaches a conclusion directly from the user's data. When necessary,

the program requests the provision of supplementary information. Another way of

performing logical inferences is through the technique of backward-chaining, which

begins with a hypothesis, or conclusion, and works backwards, using the data to either

prove or disprove it (Klein, 1995). According to Plant (1992), more sophisticated expert

systems can combine these techniques.

Rule-based methods offer applications of expert systems to commercial industries

(Bell, no date; Motorola, 1995;Pesky, no date) and has been widely used in object­

oriented context (Frohn, 1994; Gehani, 1994). However, frame-based knowledge has

been recognized as a most useful approach in data modeling (Genesis Database Model) in

for two reasons (1) can represent infinite data, and (2) supports a flexible solution domain

in a reasonable alternative solution to a problem. A frame based knowledge

93

representation is the same as a semantic network such that information is arranged in the

network hierarchies. Grant's knowledge base (Cohen, 1987) was an example of a frame­

based representation in a semantic network. Grant's knowledge base also highly cross­

indexed which provides high performance in finding resources for a given proposal. In

the Genesis database model, information is arranged as a network of hierarchies. Each

sub-frame inherits a characteristics from its parent-frames. It also has data structure that

provides inheritance, a reasonable alternative to the solution if the specific data instance

is not available.

However, inheritance is complex and sophisticated when there is multiple frame

to sub-frames and a child-frame to multiple parent-frame (sometimes called cyclic graph).

There are various mechanisms for solving this kind of problem. But it is frame-based

concepts that are well recognized for solutions by distinguishing between default and

define values, and by allowing users to make slots (first class citizens), giving the slot

particular properties by writing a frame-based defmition, such as "has-part," "is-a," and

"is-part," among others. Ongoing research between Stanford University and the United

States Army with the investment over $2,700K per year in the development of the

structures for concrete reinforcement (PD13,) proves that the frame-based method is

viable. For this reason it has and will continue to receive increased attention in research

communities and industries.

Validation by 1/0 of FBE System

Function-Based Encryption (FBE) is accomplished by a specialized mathematical

function (as a hash function, for example) and an entity called a Secondary Function Set

94

(SFS) to manipulate data in a complex manner. Input and output are coordinated. Input

forms or convert letters calculate successive outputs as a secret key in such a way that no

single input letter is encrypted twice in the same way though a word, text or application.

The same algorithm is then used to convert ciphertext back to its original plaintext (often

called decryption). Data only can be read (cipher) by using exactly the same key used to

encipher it. In this section, description mode is used to describe the function FBE and its

elements, rather than symbolic notation which create more harm than good.

The algorithm is described by Hanink (1997). FBE transforms the input letters

(plaintext) with a 4-byte random initialization vector into an un-plaintext (ciphertext)

output feedback mode, according to the form V2(x) = G(x)+[S(x-4)V2(x-4)V(x-4) + S(x-

3)V2(x-3)V(x-3) + S(x-2)V2(x-2)V(x-2) + S(x-I)V2(x-I)V(x-1)] + Vex) Modulo 256.

G(x) is a secret key, V2 is the ciphertext, V is the input vector, and "x" is the current

position letter to be encoded. S denotes the SFS values, V(x-4) to Vex-I), the last four

encrypted ciphertext values. According to Hanink, what allows the result to remain secret

is the correlate values substitution S(x-4)V2(x-4)V(x-4) with V2 and V. This substitution

is also responsible for the output characteristics (offer called a cipher feedback) which

ensure that each ciphertext value also corresponds to the previous plantext.

In this study, the focus is on the input and output process. As described, the secret

key ensures that there are no ciphertext products used the same way twice, even the same

plaintext in words, text or application. The algorithm may access many times over the

finite output state in the working memory. The internal computational overflow in the

output block is amenable to description. It is important to realize that the absolute values

ofx in function G(x) described above will get larger when x values increase. The concern

95

here is that when the algorithm is applied too many times to a message in order to encrypt

it, it will generate and exceed computational overflow limitations. To prevent this, it has

been suggested by Hanick (1997) that the program place an upper bound (divide into

subset, subgroup). Pre-computing is also needed on the output values according to the "x"

position. However, by employing this technique, the coordinated between value stored in

x and the position ofx's character no longer exists. This changes the definition ofx

which helps to control or prevent the overflow limitation in working memory. In Terlouw

(1997), the author describes the output set and subsets ofthe function "GDSOUT" and

subroutines "GDSCPA" and "GDSCSA". These functions reflect to this problem area.

There are much needed research efforts taking place at the present time in this

area. Numerous researchers have devoted efforts toward improving the FBE algorithm,

such as Skipjack (Brickell, Denning, Kent, Maher, & Tuchman, 1993), Xmath (1996),

and The Autonomous Machine Learning Laboratory (AUTON) (no date). The objective

of Skipjack was to provide a mechanism whereby persons outside the government could

evaluate the strength of the classified encryption algorithm used in the escrowed

encryption devices and publicly report their findings. Skipjack was but one component of

a large, complex system.

The problems still remains, however, especially the need for a generically

encryption function which will provide security to any given circumstance. There are

promising research studies devoting efforts into this area, such as the work of the

Terlouw (1997), Soar, Cellular Automata (Gutowitz, 1996) and Data Encryption

Standard, which is most well known system (DES, 1994) for its secure reliability.

96

Chapter Summary

The purpose of this chapter was to present a review of the literature on the reuse

of software components, design and programs. To achieve this goal it was first necessary

to review the background of computing leading toward abstraction and reuse. Discussion

focused on object-orientation programming with respect to classes, encapsulation, and

inheritance, and reuse via inheritance in terms of composition and polymorphism.

The background of mathematics leading toward computing abstraction and reuse

was the subject of the second major section. Abstraction and reuse were discussed as

relevant to functional abstraction, data driven and message drive. Language evolution

was also reviewed. It was noted that no one was able to recall exactly when the history of

computing began, but it is known that the Turing Machine was a first computer language

machine to be developed. The review briefly outlined evolutionary developments of

FORTRAN, Algol, Lisp, C, ML, Miranda, Ada and c++.

Research on reuse was the concern of the third major section. Evolution to

measurement was traced first, followed by a review of measurements in terms of lines of

code, function points (complexity), and model (program size). Reduction of complexity

was the focus of the next subsection. The literature agreed that it is possible to reduce

complexity by carefully analyzing components into sub-components and applying the

black-box approach. The topic of complexity analysis was reviewed next. Hierarchical

classification, faceted classification, and the natural language model were explained. The

last subject of this portion of the review centered on communicating sequential processes.

The fourth major section of the review was concerned with object-oriented

technology in development and reuse. In the review of frame and frameworks in reuse, it

97

was noted that the frame concepts were first introduced by Minsky in 1975. Frames

provide the defined structure needed to reduce complexity nets. With respect to relational

database systems, frame is viewed as a records structure with a database attributes. Each

segment of a database is also called a frame. The structure is always hierarchical, cross­

referencing link though defined relationships.

It was explained in the following subsection focused on pattern languages design

in reuse, that pattern describes a solution to a recurring design problem in a systematic

and general way. Design patterns like object-oriented software have promised potential

techniques for software reuse. Pattern is not a code, rather a template which provides

developers with guidelines for solving problems. The subjects of data abstraction and

complexity reduction were also reviewed. It was clear that there were many motivational

factors to using object-oriented concepts: trace-ability improvement, reduction of

integration problems, improvement of process and product, need to keep to a minimum

objectification and de-objectification, ability to hide information, abstraction of data,

encapsulation, and concurrency, among others.

Background of the theoretical model was next subject of review. The review

included explanations of relations, frames, propositional logic, and constraint satisfaction.

The sixth major section dealt with the background of practical machine. Mathematical

verification by group theory was discussed first. This included a review of the algebra of

notations, the algebra of sets, relations, functions, and Euler-Venn diagrams. An

examination of group theory in real world problems, and new functions for c++

followed. According to the literature, new functions for c++ will allow programmers to

identify static data members and member functions, classes features; use and override

98

assignment operators; copy constructors and convert classes; and apply inheritance,

multiple inheritance and polymorphism in a program. Final subsections focused on

constraint satisfaction, frame-based expert systems, and validation by 1/0 ofFBE

systems. The components of expert systems were described in detail. It was noted that

expert systems allow inferences to be drawn on encapsulated knowledge. This type of

system is characterized by its method of logical deduction from stored data in accordance

with rules independent of the program while conducting the search strategy. Like a

database, the knowledge base stores information, or facts. It also holds rules for

manipulating and interpreting the data, unlike a database.

The section concluded with a review of Function Based Encryption (FBE)

systems which use a specialized mathematical function and a Secondary Function Set

(SFS) to manipulate data in a complex manner. Input and output are coordinated. Input

forms or convert letters calculate successive outputs as a secret key. No single input letter

is encrypted twice in the same way though a word, text or application. The same

algorithm is then used to convert ciphertext back. FBE transforms input letters (plaintext)

with a 4-byte random initialization vector into an un-plaintext (ciphertext) output

feedback mode. In the algorithm, G(x) is a secret key. What allows the result to remain

secret is the correlate values substitution S(x-4)V2(xA)V(x-4) with V2 and V. This was

important to this researcher because the present study focuses on the input and output

process. The review concluded that many researchers are currently devoting efforts

toward improving the FBE algorithm.

99

CHAPTER III

METHODOLOGY

Introduction

The purpose of the proposed study is to describe a method to classify software

components and a system to use such a classification efficiently to discover software

components that meet a specified need. Specifically, the purpose is to provide a flexible

system, comprised of a classification scheme and searcher system, entitled Guides­

Search, in which artifacts can be retrieved by carrying out a structured dialogue with the

user. The classification scheme provides both the structures of questions to be posed to

the user, as well as the set of possible answers to each question. This classification and

retrieval methodology applies well to artifacts that are not related to software, such as

hardware, patents, books, and legal cases, among others. The model is not an attempt to

replace current structures; but rather, seeks to provide a conceptual and structural method

to support improvement of software reuse methodology.

The purpose of this chapter is to describe the methodology that will be used for

classification purposes and for verifying the effectiveness of the scheme and searcher

system. Following portions ofthe chapter are devoted to this purpose. The first two

subsections discuss specific classification schemes for software reuse and study research

methods and formats which include explanations of user interface, searcher function,

searcher-system roles, and relations used by searcher system. Following subsections

describe the browser system, database, projected outcome, resources to be used, and

100

system measurement. The next portion of the chapter discusses the second type of

methodology employed by the study to evaluate the usefulness of this approach. Included

are descriptions of the software environment and procedures. A final summary section is

also provided.

Specific Classification Schemes for Software Reuse

The review of the literature indicated that for software reuse to be successful, it

should not be practiced in environments where it will cost more to discover components

than to invent them anew. In addition, there are critical factors which software reuse

systems development must take into account in designs and developments. These can be

described as follows:

• The classification scheme should include the following attributes:

flexibility, extensibility, and ease of use.

• A user should not be presented with a large number of questions or be

required to answer any questions known to be germane to query.

• A user should not be given a large number of possible answers to any

one single question.

• A user should be allowed to specify an answer not knowing exactly

what question the searcher posed to elicit that answer.

In this research, a model of software reuse which will satisfy these critical factors

is explored. The methods and procedures used in this study will be discussed in detail in

this chapter. The methods used to determine reliability and validity of this study are

101

discussed in various chapter sections. It is also important to note that, throughout this

chapter, the word "user" or ''users'' refers to system users. In addition, a system users can

include software engineers, programmers, managers, or persons in similar positions who

uses this system for any reason.

Research Methods

A new method for software reuse as a framework for retrieval systems was briefly

described in Chapter 1. It derived from mathematical concepts. While its features

provides for improving current software reuse problems, the methodology presented is

believed to be compatible to all engineering disciplines. This includes hardware, patents,

books, and legal cases, among others. The ad-hoc concept model is used as a guideline

for description and will be discussed further in the next section.

The second methodology of the present study focuses on the measurement of

components reuse and effectiveness to determine usability. Research procedures and

formats using the second methodology are also discussed in greater detail in a later

section ofthis chapter (see section entitled, Research Method to Verify Usefulness).

Research Procedures and Formats

There are various techniques that can found in the current literature for presenting

software reuse components. These include: an indexing scheme (Maarek, 1991),

keyword-based systems (Mili et aI, 1993) and knowledge-based systems (Fischer, 1992;

Smith, 1992). Indexing systems use indexing languages to place selected resources into

groups or sets. Keyword-based systems are more domain-independent than other

schemes. Knowledge-based systems include semantic-nets and AI technologies.

102

In the present research, the system can be viewed as one that incorporates a

combination of all of these features. The combination of hierarchies model lays over

domain model. As pertains to the user-interface, the directed-graph is employed where

nodes represent the reusable components(objects) and arcs representing the relationship

among objects through classification schemes actions. The specific problems can be

specified within the user-interactive mechanism which performs recursively with search

and browse capability. Menu-based or windows is used in dialog mapping the input­

output for specific components retrieval. Hypertext provides links features among

objects or resources on a frame-based according to their relations. At any given stage,

users can simply view components stored in the working memory or continue to simplify

more specific problems through coordination among the user-interface, retrieval

mechanism and browser mechanism.

103

tTsers-Interface

~
Browser Mechanism Retrieval Mechanism

Figure 3.1: General Framework for Software Reuse System.
To support the specific retrieval components, a formal feature describes

properties and attributes of reusable components organized through the finite sets of

classification schemes known as domain-knowledge. Classification schemes are careful

built and stored in the knowledge-base. The database provides a link mechanism to

classification schemes. It can be described as a visual storage in which local and global

are considered as the same level links. Such components are found in the local machine,

WWWrespectively. Figure 3.1 provides a flowchart diagram ofthe general framework

for a software reuse system. As indicated, there are three major components. These

include a user interface, retrieval mechanism, and browser mechanism.

U ser-Interface

A successful system goes beyond basic concepts in its definition of user

friendliness. However, designing the best user-interface system requires reaching even

further. This proposed research effort is devoted to the mechanism for increasing the

104

efficiency of user-interaction with the system. Obviously, almost all systems include the

user interface mechanism. According to the literature, Graphical User Interfaces (OUI)

are quickly moving forward to become the most pervasive interface for desktop

applications because they are easy to use, as evidence through today's Microsoft

Windows Systems (Yazici, Muthuswamy, & Vila, 1994). Although OUI software can be

found on DOS and UNIX operating systems, it is a standard feature of Microsoft. Graphic

representation of the association between elements of knowledge helps users build their

representation of the problem (Heeren, & Collis, 1992). Mental pictures with context

instructions improves performance. The picture display helps users to store the

relationships between the system variables in working memory, thus functioning as a

memory aid (Yazici, Muthuswamy, & Vila, 1994). According to Heeren and Collis

(1992), graphical overviews should be organized according to the contextual structure of

plans, as they unfold to test various hypotheses in succession as the decision progress.

OUI display interactive objects such as Icons, Buttons, List-boxes, Combo-boxes

through its input and output (I/O) mapping concepts. Input-Output mapping concepts

should be in perspective from the users point of view, not from that of the application

designers (Johnson, 1993). In other words, an information space can be tailored to

convey general properties. For example in graphical views, information space is a

resolution constraint. An information view can be changed as the user moves through

resolution. Objects of interest in the user's view may be moved closer while others of

non-interest can be moved further away from immediate attention. The present study is

no exception and takes this into consideration. The user-interface mechanism and

features are discussed as follows.

105

The user-interface mechanism basically represents results in a tree structure

dialogue using relations. That is, interaction of users mainly consist of alternately

displaying questions known to be germane. For example, users may select "mathematics

functions" to be specified. The following paragraphs describe the subset of questions

users may choose.

An answer typically would be a property in which a question corresponds to

relations and a set of answers to a question which consists of the set of values of that

relation. Take, for example, a simple sentence search which asks:

"What is the function"?

This sentence consists of an "is-a" relation and the property defined "function." The

initial display result on the properties have the relation "is-a" such as

Legendre functions

Inverse cumulative distribution function

Bessel Function First kind

Parabolic cylinder functions

Probability density functions

Sparsity functions

Time series analysis

Trigonometric functions

Weber functions ...

106

In other words, the user is allowed to specify a ''word'' and ask for the relations

for which that word is a value (or sub-string of the value, entity names equal to the

keyword or which the key word is a sub-string) to be displayed. (An overview of the

system scheme is presented in Figure 3.2) Thus, for example, a user might simply

specify the key word "spline," and thereby initiate a query to select:

{x I x has-operand spline} U

{x I x has-result spline} U
{x I x has-operand 2D-cubic-B splines} ...

\ Search Mechanism
~ I

...- User Intetfac e Knowledge Based t-
(ClassifIcation Scheme)

,t' I"

Browse Mechanism I
\

~ Database (local & Global) IL / 1\

Figure 3.2: An Overview of the System Scheme

107

However, if the keyword is a value enjoyed by the is-a relation, the user will be

allowed to carry out a dialogue to discriminate the value or if the user declines to

differentiate the request for equation, all of the entities in the set {x I x is-a equation}

should be selected. Equivalently, all entities not in the set should be excluded,

respectively. For example, if the user denotes V' as a possible candidate for components

found per query, and x and y denote properties or components it represents, then using

'is-a' relation:

V' = {x I x E Vr U V'r} U
{y I x E Vr U Vir J\ xis-ay}­

{x I x E Vr U V'r J\ x is-a y}

Given these user-interactive concepts, the research presents an alternatively

resolved multiple relationship (cyclic) of problems. A components may have multiple

parents through a means often called partitioning. Speaking in Dor. Dilemma to

Disjunction, partitioning is characterized from its relations by the user-interactive derived

specified problems. The Dor meta-rule is used to show links between a disjunction and

the conditionals that the user might choose. For example the user might simply ask a

system for a "function." The sets components are returned such as has-mathematical-

functions and has-Statistical-functions - that is, {x I x has-mathematical-functions} n {x

I x has-Statistical-functions}. Having chosen x, x has-mathematical-functions and

negative binomial distribution. Normal distribution would be excluded. In addition, the

user should also be allowed to type a prefix of an equation or answer. Ideally this would

108

allow a regular expression with display showing the set of questions or answers of which

the typed expression is a prefix (example (x and y)). Also, the user should be allowed to

change the value selected for any relation or to indicate the relation to be excluded for

which a value has been selected. Association with relations are described. Propositional

logic such as negation "not x" and disjunction (x or y) are also allowed. Input and output

mapping can totally clear out in the working memory at any given stage. When the

"Cancel" button is triggered, it brings users to the start-selection state.

Searcher Mechanism.

According to the literature and previously described, a retrieval mechanism is

crucial in software reuse systems (Girardi & Ibrahim, 1995; Novak, Hill, Wan, & Sayrs,

1992; Solderitsch, 1995). It is not that it just provides fast and easy identification of

reusable components in the library, but also permits browsing relevant components that it

enjoys through relation form (a r b). "A" is denoted as a component sharing or holding

some functionality and "b" is denoted as either components or properties through its

relation defined "r".

In context, the searcher is a software system that a user employs to discover the

specified software. Interaction of the searcher with a user mainly consists of alternately

displaying questions known to be germane. Once a question/answer has been selected, it

displays possible answers to that question. Questions correspond to relations. The set of

answers to a question that the user chooses to answer consists of the set of values of that

relation. To help users discover alternative components that can meet their needs, the

role of the searcher system must first be described. Role components include the

following:

• To assist users in extracting components specified.

• To provide a similarity candidate, potential components prior to the

components specified.

• To narrow a relations by using recursive methods.

109

The role and responsibility of the searcher mechanism is to retrieve relevant

components specified by the user. The retrieval mechanism mainly communicates with

relations existing classification schemes repositories to obtain all possible candidates

related to the request. This mechanism is mainly responsible for matching the users input

to the existing classification schemes via the relations. This research uses the "is-a"

relation to collect components and properties in the form of [a r b] relation - that is, to

represent a classification by the collection of triples, where a triple is a record in the

database, and each member of each triple is a field in a record. For efficiency, the

relation "r" will be sorted first, followed by components "b" in the relation form

"property relation component." Thus, it is presented as a form (a r b) in which a precedes

b in lexicographic order. By using lexicographic order, the searcher mechanism forces

every components-relation-properties form in a canonical form in which there are no

duplicated classification schemes.

a. Searcher System Roles

In order to archive its roles, this study will need to examine the following critical

points: how to avoid giving too many answers to a single question; how to avoid asking

110

too many questions for a single answer; how to get users to specify answers not knowing

exactly what question the searcher posed; and how to broaden the performance of expert

users. These topics are addressed in separate sections below.

How to avoid presenting the user with too many possible answers to any question:

This example will compute the set of values V r that a germane relation r enjoys. It is

most ideal when restricted to non-excluded components, that is:

V = U a not excluded {x I a r x}. r

consider only components in {x I x has-application-domain numerical-analysis}; it is

unlikely that the value of another language such as value lisp will remain for relation has-

programming-language (lisp should not be in V r has-programming-Ianguage). This

will prevent the user from asking a question for which there is only one or no answer.

Moreover, it must be assumed that Vr is very large. To avoid exposing the entire set, the

classifier might have arranged V r values into hierarchies. This is accomplished by using

the is-a relation which considers the top of a hierarchy or parent node. For example,

suppose the SVECP has-operand vector and SGEFS has-operand equation-ALD. The

property vector does not employ any is-a relations. It employs the relation equation-ALD

is-a equation. The algorithm illustrated below makes an obvious point which is to avoid

asking a question for which there is only one possible answer available:

III

While .3 Z E v 'r .3 x is-a z /\ lSI = 1
where S = {t I t is-a z}

{replace v'r by (v'r-z) U S}
End while.

This amounts to replacing the top of a hierarchy with its child if there is only one

child. For example, one might have software for solving algebraic and differential

equations in the FORTRAN programming language, but software only to solve algebraic

equations in the C programming language. A user having selected has-functionality

solve and has-language FORTRAN would find the answer equation when answering the

question ''what is the operand?"

Thus, the FORTRAN software for solving algebraic equations employs the

relation has-operand equation-ALD, while the FORTRAN software for solving

differential equations employs the relation has-operand equation-ODIN2. The equation-

ALD and equation-ODIN2 employ the relation is-a equation. A user who selects has-

language C instead of has-language FORTRAN would find equation-ALD in the set of

possible answers to the question "what is the operand?". This would occur because the

equation-ALD is the only property that is the value of the operand relation for a non-

excluded component, and that employs the relation is-a equation. Therefore, it should

not ask the user "what kind of equation?" because the only possible answer to the

question is equation-ALD.

If the user chooses a value z E {y I x is-a y}, the interface then exposes one of

two subsidiary windows depending on N = n xEs (N x), the intersection of the sets of

112

relations employed by the property in S. In this case N = {is-a}, the searcher simply

exposes a window containing S. For example, if the user selects equation as the value of

the bas-operand relation and the only is-a relation is employed by equation-ALD and all

other properties in E = {x I x is-a equation} (even though some members of E enjoy other

relations), the subsidiary window should contain equation-ALD and all other values in E.

In the examples above, one saw that the property equation-ALD also enjoys the relation

equation-ALD bas-kind algebraic. In fact, every property x that employs the relation x

is-a equation also employs the relation x bas-kind k. Having specified a value k for the

has-kind relation, the set

S' = {x I x is-a equation /\ x has-kind k} c S
therefore lSI ~ lSI

Having restricted attention to S', there may be relations that apply to every

member of S' but did not apply to every member of S. For this reason users should be

asked to specify values for them. Other than using the is-a relation in reverse, the same

mechanism that was used above can be applied to avoid asking the user questions that are

not known to be germane.

If the user has selected a property value z such that S '* 0, that user need not

select one x from S. The effect of declining to select is that the system behaves as though

every element of S+ ={x I x is-a + z} were selected. Thus a user might specify

equation as the value of the bas-operand relation and decline to differentiate further the

kind of equation about which one is interested.

113

How to avoid asking too many questions: The proposed study will look into the

solicitation of answers to questions known to be germane. The searcher will ask the user

to provide values only for relations that can distinguish between components that have

not yet been excluded. (It can also be noted that this method also solves the semantic

problems often encountered in the so-called cyclic link). After the values are received,

construct for each component x a set N x = {rl x r y} which will consist of names of

relations that component x employs. The set N x for a component x from a library of the

mathematical software might include has-linearity and has-precision but would

probably not include has-data-model. At any given stage in the query, the searcher

displays only the set of relation names that are in N = n x not excluded (N x), The

intersection of all sets N x for components x that have not been excluded, the searcher

displays a set of relation names that apply to every component. Therefore, this initial set

should be computed a priori. Thus, the user initially might be asked to specify values for

the has-application-domain and has-programming-Ianguage relations, but s/he will

not be asked about the precision of floating point calculations nor whether a data model is

hierarchical or relational. For example, after specifying the application-domain is

database systems, every non-excluded component might employ the relation has-data­

model.

A user may have knowledge of key words which relate to the problem, but might

not know the relations. If queries are directed by key words (allowing users to specify a

word and ask the relations for its value), a sub-string or entity name will correspond to

114

that key word. This will provide a better server system. When the set is non-empty, the

user can be allowed to stipulate relations having a value given by that key word. For

example, a user might simply specify the key word "spline". This will initiate a query to

select {x I x has-operand spline} U {x I x has-result spline} U {x I x has-operand

2D-cubic-B-splines}. A key word is a value that can be employed by the is-a relation.

When a user declines to differentiate a request for an equation, all of the entities in the set

{x I x is-a equation} will be selected. All remaining entities not in the set {x I x is-a

equation} will be eliminated.

An alternative choice could be that the user selects a property value such that

z;:j:. O. This would not necessitate selecting one x from S. There is a declining effect

selected through every element of S = {x I x is-a z}. Thus, the user may specify an

equation as the value of the has-operand relation and choose to decline to differentiate the

alternative equation.

An expert user may know a set of relations germane to query. A value of any

relation in the catalog will be available at any given moment as requested by the user.

Initially, a list of names of relations will be displayed. Once the name of a relation is

selected, the value of that relation will appear. For example, if choosing to start with

"what is the function," the selected answer would be Bessel fonctions of the first kind.

Because the value of a relation will be selected, the previous screen will be displayed

again showing the value selected for each relation. In addition to using a pointing device,

the user will be allowed to type the prefix of a question or answer which is a regular

115

expression. The display will show the set of questions or answers that contain the typed

prefix.

When sufficient infonnation is specified from the typed prefix, a unique

detennination will be made from the question entered. The user will be able to change

the value selected for any relation or to indicate a relation for which a value has been

selected or to not have a value selected. The user may choose to provide values for any,

all or none of the relations. Declining to specify a value for a relation is equivalent to

specifying all possible values. An example would be a user interacting by selecting {x I x

has-functionality solve} n {x I x has-operand equation-ALD}.

b. Retriever Functionality

The retriever is a software component that retrieves all of the files necessary to

use a selected component. In the simplest case, the component database and searcher

reside in the same computer and the retriever might simply produce a list of the names of

the files necessary to use the selected component. In another more complex case, the

component might be distributed across several computers. This case would require

specific tools such as TCP/IP, FTP, and modem. However, for the purpose in this study,

the Word Wide Web (WWW) is used to present other components not found in the local

machine.

The needs for relations "is-in", "needs", and "part-of' are of use to a retriever.

The relation "is-in" specifies the file in which a component is contained. The second

relation is the "needs" relation, which indicates other components which are necessary to

use the specified component. The third is the "part-of' relation, which specifies that one

116

component is part of other component, the latter being a composite component in which

one might not require all components in order to use one of them, such as the library of

mathematical software. An example can be found in the Guide to Available

Mathematical Software (GAMS). Let us consider the components available in the

AMOS. That is,

Package AMOS
has-function CBESY
has-function CAIRY ...
is-in http://math.nist.gov/ cgi -bini gams-serve/list-modules-in-package

IAMOS.html
End Package AMOS

Likewise, considering a component Zero of a Univariate Function in ANSI FORTRAN77

Component SZERO
has-operand univariate-function
has-function zero-find
has-datatype real
has-precision single
is-in LocalFile C:\Public\Math\Fortran77\SZERO.FOR
needs (RIMACH ERMSG)

End Component SZERO

where RIMACH ERMSG is an external references. (FORTRAN77, Fortner Research

LLC).

To retrieve the set of files necessary to use a component x, one might naively

believe it is sufficient to compute the set of components c , needed by x or that are a part
x

of x, that is, c = {x} U {t I x needs t V t part-of x} and retrieve the set of files f = {f I
x x

117

cis-in f 1\ c E c } in which these components are contained. However, the file might
x

contain more than one function and that function might not be present in the same file.

To construct the correct set, let <l> denote a set of files and x denote a set of components.

The auxiliary functions can be described in the following way:

c(f): <l> -> X = U E f {t I tis-in g}; is a set of components in the set of files
g

n(c): x -> x = U E c {t I z needs t V t part-ofz} is the set of components
z

needed or part of the set components

f(c):x -> <l> = U E c {f I z is-in f} is the set of files containing a set of components.
z

The set of files needed is then the least solution of the equation

f~ = f({x}) U f(n(c(f~))) which can be solved by fixed-point iteration:

Let f~ := f (x{x}) which initially contains only one element

repeat let f~ := f~ U f (n(c(f~))) until nothing is added to f~

c. Syntax and Semantics for Entity Descriptions

The collection of relations that describes an entity could be specified by

enumerating all the relations the entity enjoys. However in the real world, components

often enjoys several relations and specifying the entity name in every one is repetitive.

An alternative way to solve this problem is to group into a block the relations that

characterize an entity. Let us considering in the example of the property equation-ALD:

Propertyequation-ALD
is-a equation
has-kind algebraic
has-determination exact
has-linearity linear

end equation-ALD

118

A component block describes an object to be classified or the properties of a

collection of objects. As described, a property might be an atom. An atomic property

enjoys only exactly the relations specified in "is-a" relation. An example that numerical-

analysis is-a computing and numerical-analysis is-a mathematics.

Entities frequently enjoy similar relations. Components classified can be

simplified into a group of relevant. The mechanism allows an entity is "like" another

entity. Such that

Property equation-ALO like equation-ALD
except has-determination over-determined

End property-ALO

where the syntax of a default block is

default (component I type-name? Property)
(relation-name relation-value) *

end default

((type-name? Property I Component)
entity-name ("("(g(","g)*)?")")

(like entity-name)?
((except I needs)? (relation-name relation-value))*)*

It is also important to note that the language (inner default block elements) is

defined by 0*, indicating that the language could contains the null word (Automata

theory). Also, it should be noted that a block is generic if it includes a list of names or

generic parameters in parentheses after the block name. It may be used to collect

relations enjoyed by several similar components or properties without enforcing an order

in which users must indicated questions about properties. The mechanism can be defined

in a frame-based as described in the previous chapter.

A vaiable C omp onents
(Library)

Selected Components
(Searcher Mechanism)

Figure 3.3: Semantic Structure to the Dialogue Menu Type

Components Presented
(Browser Mechanism)

119

The relationship of the Semantic Structure to the Dialogue Menu Type is

illustrated in Figure 3.3. In the new semantic of classification and inheritance, a

" component default block indicates that all relevant components enjoy the relations and

values specified in the block until another component default block is brought to the

current working memory. This allows objects (higher level object, groups level)

constructor to achieve higher abstraction. That is, any specification of relations within a

component block replaces the values of corresponding relations inherited from the default

block. An example ofGNN is described in Chapter 2 of this study.

Description of Browser System

The algorithm known to be a key player of software reuse systems and its features

is significantly impacted on the research in the way that it allows a specified problem to

be presented. The key concept in this case is the communications of a concurrent graph,

called nodes. Each node is representing the relationship R over the set of relevant or

120

neighbor components. The mapping of nodes is transparent through users interaction

with the system. Therefore, it is possible to provide functionality to the dynamically

composition divide or merge nodes. These components can briefly be denoted in terms

of the "has-a" relationship, as described in the previous chapter. Additional, there is also

denoted in term of an inheritance "is-a" relationship. Katzenelson (1992) defined such

composition in terms of type-graphs and can be summarized in terms of composition

merge and composition divide as follows:

The group G levels to be constructed is based on the values of the most general

relation according to a specified priority (Salton, 1989). It is assumed that the relations

can be ordered lexicographically once described in type-graphs. This assumption relates

to the uniqueness of the labeling operands (or types). Priority form such that priorities

(relation-names) where relation-names one might specify "has-application-domain", "has-

functionality", "has-operand", or "has-language", "has-package", etc.

These relations may generate a large number of distinct displays possible in

interacting with the users. This poses an important difficulty. To avoid exposing the

entire set, the classified might have arranged values G into hierarchies by using the "is-a"

relation. As described in the previous chapter, that is only the top of a hierarchy, i.e., the

relation values in the G' as an alternative solution of the equation

G' = {x I x E G U G'} U {y I x E G U G' /\ x is-a y} -

{x I x E G U G' /\ x is-a y} should initially be exposed.

121

Consider a function SVECP. (SVECP has-operand vector) and (SVECP has-

operand equation-ALD). The property vector does not enjoy any "is-a" relations,

although it may enjoy others. Likewise, the property equation-ALD enjoys the relation

(equation-ALD is-a equation). Thus when soliciting a value for the "has-operand," the set

of possible values should initially include vector and equation, but not equation-ALD.

Likewise, let Arb = {a I arb} then values (V) would be

Vrv,s = {w I a E Arv /\ as w} - {w I a E Arv /\ as w /\ w is-a+ z} U

{z I a E Arv /\ a s w /\ w is-a z}

if a selection of the value x E Vrv,s for the relation s is subsequently made, the only

values displayed for the relation t would be values in the set:

V rv,sx,t= {YI a E Arv n Asx /\ a ty /\ y is-a+ z}-

{YI a E Arv n Asx /\ a t y} U

{zl a E Arv n Asx /\ at y /\ Y is-a + z}

Thus, the total number displayed in the browser is the sum of the numbers of

components that employ values of relations that contribute to the classification browser

(See Figure 3.3). This led this researcher to consider in this case that relations value

refers to a duplicated nodes already exist in the working memory, as indicated in Figure

3.4 which presents a flow diagram of composition by merging.

122

+

Figure 3.4: Composition by Merging

Whenever a relations value refers to an existing node, that relation-value-node

will be eliminated and all edges will be redirected to the corresponding referred node.

That is, given a set G where G = {x I x E X} and a set G' = {y lyE Y}, for each x(i)with

an edge (x -> X), there is a y(i) with an edge (y -> Y), and partitioning instance of the

relation (or number of common features) X(r) = Y(r). Therefore, G = G'. The end ofthe

results is that, G' will be eliminated and leave G with whole components are the sum of x

and y. G = {x, y I x E X and y E X} by composition merge. On other hand in the

composition divide, the new relation-node can be created, called "N". Composition

divide is diagrammed visually in Figure 3.5.

N

Figure 3.5: Composition Divide

123

By using a one-level-deep traversal in hierarchy and a substantial interactive part

with users, X or Y can be automatically determined. This raises the issue of how this

algorithm handles the case of a cyclic graph in which a component might be determined

by multiple nodes or by multiple parents. This issue is illustrated in the cyclic graph

presented in Figure 3.6.

Figure 3.6: Cyclic Graph

In Figure 3.6, G could be denoted as "a computing language" which has­

components in nodes A, K and B. For example, A "lisp" compiler (node K) might be

classified under programming-languages (node G) and also under artificial intelligence

(AI) in node A. That is, AI is a programming language, a LISP compiler. LISP compiler

is also referred to as an AI. The cycle can be eliminated as users participate.

The relation defined set of components, as indicated in Figure 3.6 can be

presented as; G = (A, K, B), A = (E, K). By applying an ordered depth-first search

(assuming that the height of a node has been defined, that is h(GA) = 1, h(GE) = 2, h(AK)

= 1, h(GK) = 1, etc.), it is guaranteed that the unique set of elements can be defined. In

124

this case, G and A (GA) = (E, K, K, B) ~ = (E, K, B), as illustrated in Figure 3.7 which

offers a solution to cyclic problems.

Figure 3.7: Cyclic Problems Solved

It can also be noted that the original graph can be recalled by applying the

composition laws as has been described above. If GA is a current state, questions

correspond to a G or A. Upon selection of "A" by using the height h(v) as defined in the

tgraph, it redraws A and goes back to its original as showed in Figure 3.6. E is closer to A

than to G, likewise K is closer to A than to G, as previously described previously. In any

state, however, users can reset and the search will start from the beginning or users can

continue on with smaller possible components and in this manner move closer to the

specified problem.

Link Classification Scheme

In addition to the classification schemes described, the system supports the users

in defining relations link from classification schemes to their documents. In this context,

documents refer to a collection of source-code posted as a file on the World Wide Web,

125

or in the local machine. However for efficiently search, classification-schemes are

carefully defined and stored in the local machine. Classification schemes also provide the

location of components, as described in the relation "is-in" above.

The advantage of technologies as seen today can also be noted, commonly found

through the WWW. Perhaps within the near future there may be possible for a real­

efficient search (a hope!) an algorithm that will be able to provide a mechanism which

can travel into all world personal computers and all networks to obtain a component that

has been specified. If this should eventually come about, there will be no need to be

concerned with the data space requirements on local machines for the building of

classification-schemes.

N aturallanguages mechanism has at the present time become one of the most

popular areas in which much research is currently devoted. These efforts continue to

bring more promise to this hope. It appears possible that someday the hope will be

realized. At that time, users will only need to obtain a front-end mechanism and a

perfect-natural-language mechanism for sharing whole word problems, together with

their respective solutions. However, considerably more effort needs to be exerted in this

direction before this hope can become a reality. In the mean time, it is important to

discuss the database.

Description of Database

This research will maintain a "virtual library" database. The local database

contained on the PC and global databases will provide the classification of software

126

mainly through the World Wide Web (WWW). Thus, for consistency in the present

study, the local database and the global database are to be considered at the same level.

The researcher does not maintain a complete repository; but rather provides indexing to

other resources through the WWW.

However, there are database tables to represent the classification schemes which

consist of a data structure to the values of the relations in the (a r b) form. For the

purpose of this research, the study mainly focuses on the resources obtained from GAMS.

This relationship is illustrated in Figure 3.6.

a. Package Domain

A Package Domain can be presented in the form of tables in the relation database.

In GAMS, the package-Domain table contains:

Database: GAMS

ID
Domain
Package-Des
Location
Language
Reference
Developer
Distributor

Char
Char
Char
Char
Char
Char
Char
Char

Such a record contains:

ID: ITPACK
Domain: NETLIB

II TOMS, NAG, NAPACK, etc ...
I IOn-Site as Called in GAMS
I I Package Description
II URLs (www), File C:\ ...
II Fortran77 ...
II Ex: ACM Vo13, no:2, (Oct, 1997)
II Authors
IINETLIB

Domain: A collection of subroutine packages solving large sparse systems of
linear algebra

Location: http://math.nist.gov/ cgi -bin! gams-serve/list-package-componentsl
ITP ACK.html

Language: Fortran
Reference: ACM TOMS 8 (1982)
Developer: University of Texas at Austin
Distributor: NETLIB

ID field and Domain field are used to represent the primary key because there

may be cases in the same package that exist in different locations. Such a package is

127

IMSLM, in GRANTA, CAMSUN, TIBER, etc. Likewise, sometime at the same location

different packages contain the same components. For example, Class-O, Symbolic

Computation at CAMSUN location, there are existing packages such that FORMAT,

MACSYMA, MAPLE, MATHEMATICA, TOMS, etc., containing symbolic-

Computation relevance components.

Package Domain

Figure 3.8: Relation Value Retrieval

Each package contains one or many components. They are presented in GAMS as

a module and assigned to an unique index number in each package or its retrieval. For

the purpose ofthis research, for the elements (modules, procedures, etc.), each package

will be represented in the database format of:

Domain-Elements

ID Char
Domain Char
GAMS-Index Char

II Unique DOMAIN-ID identification
II
II 746-in package TOMS to the problem:
II Class-O Symbolic Computation

GAMS-Des
Location

Char II Modules description or title
Char II http://math.nist.gov/cgi-binlgams-
serve/list-module-components/TOMSI7 46/13033 .html

128

Catalog: Char II Problems/solution. For example: Class­
o Symbolic Computation.

II Also defined as Problems-Domain

Fields: ID, Domain and GRAMS-index is defined as a primary key in this table. The

following is an example of a record:

ID: TOMS
Domain: NETLIB
GAMS-Index: 746
GAMS-Des: PCOMP: An automatic differentiation package
Location: http://math.nist.gov/ cgi-binl gams-serve/list-module-

components/TOMSI
746/13033.html

Catalog: Symbolic Computation

Figure 3.9: Component/Property Linkage Diagram

(Name)

)

o Link to same text, CD May be absent
maybe different

c£) Link to same relation,
maybe different text

129

130

b. Classification Schemes

As described above, classification schemes will be presented in the form of (a r b)

-that is (components relations properties). The database table consists of the following:

ID
Domain
Relations
Property

Char
Char
Char
Char

II an unique identification (ID-DOMAIN) defined
I I component name
II has- ... , is-a, like, except, etc .. .
II Uniform-random-number, etc .. .

For example, in ANSI Fortran77 (Fortner, 1995). Function SRANU is used to

compute a uniform random number and can explored in the format of the relation

database such as:

ID:RANU
Domain: Fortner
Relations: has-function
Property: Uniform-random-number

Likewise, Component RANU has-operand none,

Component RANU has-precision if p=s then single else double fi
Component RANU has-output scalar

Projected Outcome

A flexible classification scheme is believed by this researcher to be the significant

contribution of the study and one of the projected outcomes. This scheme can be defined

as an interaction among users to specify users' needs which acknowledge the value of the

different levels of expertise among users. The contributions of the scheme can be

characterized in the following manner. It is:

1. a mechanism that allows recursive interaction between users and

systems;

2. a mechanism that allows users to specify problems without too many

questions/answers;

3. a mechanism that allows the expansion of classification schemes; and

4. a model that makes no attempt to replace the current structure. Instead,

it seeks to provide a conceptual and structural method to support the

improvement of software reuse designs.

131

A second projected outcome for the study is agreement between the data obtained

in this study from this evaluator with that derived from the Guides Search system. It will

be explained in later sections that this researcher will apply human intervention to

determine the amount of time necessary to retrieve components and rate specified

components of three or four identified systems according to three criteria. It is critical that

a system responds in a reasonable time frame. It was hoped that human subject evaluation

of the same components derived from application of the Guides Search system would

agree with respect to reusability and efficiency, thereby validating the reliability, validity,

and usefulness of the searcher system approach.

Resources To Be Used

As noted, the present study focuses on provisions of a simplified, faceted

approach to information retrieval for reusable software classification. The purpose was to

describe a method to classify software components and a system to utilize such a

132

classification efficiently for discovering software component needs. To succeed, a

prototype library system will need to be designed and developed in conjunction with

simplified classification schemes. Microsoft Visual Foxpro v5.0, running on the

Pentium-133 with 2.5 GHD and 16MRAM, could be used to build the prototype system.

Additionally, there are software packages from well-known companies that can be

used - Fortner Research LLC, GAMS on the WWW.Itis also important to point out that

the research goal is to provide a link to all available components or modules in this

system in all different language such as C, VBASIC, VC++, LISP, Smalltalk, and others

of a similar nature. It could be possible if there are modules available in the public

domain and if time permits. However, for the purpose of this research study, some

packages from GAMS need to be selected and used for link purposes. The indicated

numbers of modules from GAMS are provided by Boisvert who was personally contacted

(Appendix A, 1997). These can be, but are not limited to, incorporation as a part of the

prototype library. A breakdown of pertinent information regarding these packages is as

follows:

System or
Package*

FORTRAN77

GAMS-NAG

GAMS-IMSLS

GAMS-CMLIB

Number of
Components/Modules

450

2148

625

739

Language

FORTRAN

FORTRAN

FORTRAN

FORTRAN

GAMS-DATAPAC

GAMS-IMSLM

GAMS-IMSLS

169

1049

752

Table 1: Software Packages to be Used. *(Appendix A)

System Measurement

FORTRAN

FORTRAN

FORTRAN

133

As stated in the current literature, in order for repositories be useful they must

have a large number of components in all different areas to support the developer

(Henninger, 1996; Esteva, 1995). However, when there are many components available,

it is no longer possible for a single retrieval to find the specific components a user needs.

According to the current literature, this is an open problem and it is acknowledged that

there are many necessary tools currently available.

Given this challenge, the researcher introduced a flexible classification scheme

which acknowledges the value of expertise differences in users and coordinates that value

by allowing interaction between users and the system to locate specific components that

are specified by the user. With that in mind, reliability measures will be demonstrated as

pertains to the complexity for reusability. Within the flexible methods for reusable

components, the measures of the effectiveness will also be evaluated by this researcher

during the evolution of the interactive and retrieval components.

This study confirms that reusability is related to many variables. These variables

range from program size to each component's attributes and the expertise level of the user

to the capabilities of software engineering. There are many things surrounding each

134

system which need to be considered in its measurement. Taking all of these variables

into consideration is hard to do, according to Esteva (1995). In this research, notice must

be taken that the collection of values of the facets can be considered to constitute the

coordinates of a point in space. Therefore, the importance of how tightly or loosely each

component is bounded to another in its relations must be considered. This researcher

asserts that these bound variables and their components attributes are also correlated with

the level of human expertise.

As previously explained, the software reuse system mainly focuses on three

mechanism: user-interface, retrieval mechanism and browser mechanism. Each has its

own responsibilities to the outcome related to the efficiently and effectively to the

system. Their distinguish tasks can simply be summarized in the following manner. The

retrieval mechanism is responsible for identifying reusable components or relevant

components that a user has specified. The browser mechanism is responsible for the

organization of identified components in such as way that components can be closely

linked to their respective groups. The user-interface mechanism is utilized to present the

answers or questions interactively to the retrieval and browser mechanisms which in turn,

present the results to the users.

The idea is to start with the set of values of the relations which is identified as the

infinite components relevant to the one specified. Upon identification of the relevant

components, the algorithm then generates components in the successful group as

described in the graph. The node of components may changed during the process. This

depends on the values of relations each new component enjoys. That is, the algorithm

may repeatedly be called and process per unbound components specified.

135

To generate the new unbound components path, the algorithm stores the previous

node and its baseline paths in working memory and changes the current state by allowing

the new component to be rejoined as when a new process begin. Subject to the constrains

of the relevant from the values of relations corresponding to the current node, a node

might be terminated from its parent node or it becomes a parent node itself Regardless

of the current components set, user-interaction is required for a specific identification.

Relevance to the nodes can be determined by the shortest path (region 1, following the

Euler formula) which make up the set the components enjoy. This method can simply be

measured in the link-weight and is described in the next section.

Link Weight

As explained in the previous section, the purpose for the complexity of the

reusability of the classification scheme is to divide the information space into many small

pieces and solve one piece at the time. This approach has led to the measurement of the

closeness between each component and its relation. The link weight is also a good

indicator of the number of questions or answers in the user's interaction. The simplest

concept that can be used to explain this is the hierarchy form. The relation is at the root

{*}, denoted as a parent node of a classification scheme. If an arc is drawn from each

child to the parent node, this concept can be measured by measuring the distance and

computing the minimal value for the closeness formula.

To compute the distance between each component, let U x be a set of an

unbounded component of S, denote Q .. a subset of S in the infonnation space
y

136

where dlj" denotes the shortest path as described above from all set a . to a . components
I J

in a given search.

S==:L; {aX,y I aX,y E Qy} /\ {xix EU}

where y = 1 to n and "= =" denotes nearly or equal.

Applying this concept to compute the shortest path in S can be denoted:

Adequacy

In order to evaluate the efficiency of the selected relevant components, the quality

attribute to be used in the system is defined as an adequacy measurement. This structure

measures the consists of high level set in tenn of relevant percentages. As described in

the link weight above, the high level set is subject to the constrains of the relevant from

the values of relations corresponding to the current node. Nodes might be tenninated

from its parent node or it is a parent node itself. If the graph has no edges cross

(sometimes called as a planar graph), it is then left to the user's detennination (X or Y).

However, if there are existing paths draw from each high level set, then the computation

of percentage components relevant to each components set would be as follows:

Adequacy (C, G) ~ [1-
Number of actually selected components 1

'* 100
Total number of relevant components identified

137

where C is a candidate component and G is a denoted high-level set or parent nodes or a

group.

Research Method to Verify Usefulness

It was previously explained that the proposed research will describe the

complexity for reusability of the system using complexity and structural measures. This

research describes linkages among components, adequacy, and finally, issues of

measurement, control, and maintenance. However, more is needed to evaluate the

system. This research also proposes an evaluation of the system, as derived this

researcher who will produce an ad-hoc report describing amount of time taken to

understand components, the reusability or non-reusability of system components, and

system procedures. Using Snooper (Esteva, 1995) which contains critical features as a

basis for usefulness evaluation, the proposed approach will deal directly with practicality,

reusability, and understandability, respectively. In this manner, results from the searcher

system will be benchmarked against this researcher in terms of recognizing reusable

components. In this manner, the usefulness of the searcher system approach will be

validated and confirmed.

138

Reliability and Validity Procedures

Kochen (1984) stated that time has a major impact on human decision: "The value

of an expert's time or that of a user's time is considered to be far more valuable than that

of communication channels, computer memory or CPU time" (p. 354). Within a minute,

sometimes even seconds, the human mind can change focus from one problem to another.

This aspect of the human mind is extremely important to consider when a user needs an

item of information. It is critical that the system responds in a reasonable time frame or

the user's mind will change focus to some other concern.

Bearing this in mind, this researcher will pose a number of questions concerning

the components that will be selected for evaluation. Components of three to four systems

will be selected for evaluation. The effective number of selected components will be

identified for each system. This researcher will record the amount of time it takes to

retrieve the selected components for each system in order to determine if that amount of

time is reasonable and compares favorably to the Guides Search system. In this way the

reliability and validity of the Guides Search system can be ascertained. It is important to

explain that reliability applies to a measure when similar results are obtained across

situations. Reliability always refers to consistency throughout two or more

measurements. Broadly defined, reliability is the degree to which measures are free from

error and therefore yield consistent results (Daniel & Terrell, 1995; Devore, 1991;

Zikmund, 1991). For example, ordinal-level measures and reliable if they consistently

rank order variables in the same manner. The test-retest method such as the one that will

be conducted in the proposed study involves evaluating the same variables at two

separate times which therefore tests for stability.

139

This researcher will rate library components using a Reusability Tally Sheet

(Appendix B). Responses of this researcher will be compared to those derived from

classification by Guides-Search, the proposed scheme and searcher system, as reusable or

non-reusable and thereby ascertain validity of the Guides-Search system. According to

the literature, reliability, although necessary for validity, is not in itself sufficient (Babbie,

1990; Daniel & Terrell, 1995). Validity addresses the problem of whether a system

produces what it is supposed to produce and how valid the system is for the decision that

users will make during its use. In other words, the question to decide is for what decisions

this system is valid. For this reason, the following three criteria will be used by this

researcher:

1. Whether or not there are too many answers to a question;

2. Whether or not there are too many questions; and

3. Whether or not a shortcut has been provided.

In summary, results that are derived from the scheme and searcher system in

terms of recognizing reusable components in a timely and efficient manner will be

compared against those found by this researcher. Results obtained from the Guides­

Search system will be noted on a Recording Sheet (Appendix C) prepared by this

researcher especially for documenting the information.

140

Chapter Summary

The purpose of this chapter was to describe the methodology of the study that will

be used for classification purposes and for verifying the effectiveness of the scheme and

search system, called the Guides Search. It was important to explain that the model is not

an attempt to replace current structures; rather, it seeks to provide a conceptual and

structural method to support improvement of software reuse methodology. It was noted

that the methodology will employ two types of analysis:

(1) identification of system components and classification of reusability or

non-reusability by Guides-Search, the proposed scheme and searcher

system; and

(2) this researcher's evaluation of the same components in order to

determine reusability or non-reusability and thus the reliability validity,

and usefulness of the searcher system approach.

Research methods were first described, including formats and procedures

incorporated in the proposed scheme and searcher system. Various techniques exist for

presenting software reuse components. These include an indexing scheme, keyword­

based systems, and knowledge-based systems It was explained that the Guides Search

system incorporates a combination of all of these features.

Attributes of the classification scheme were also noted. It should, for example,

include flexibility, extensibility and ease of use. A user should not be presented with a

large number of questions nor be required to answer any questions known to be germane

141

to query. A user should not be given a large number of possible answers to anyone single

question nor be allowed to specify an answer not knowing exactly what question the

searcher posed to elicit that answer.

Descriptions of the browser system, database, projected outcome, and resources to

be used were presented in following sections. It was noted that this research will maintain

a virtual library database. The local database contained on the PC and global databases

will provide the classification of software mainly through the World Wide Web (WWW).

For consistency in the study, local and global databases are to be considered at the same

level.

It was also explained that a complete repository will not be maintained. The

researcher provides indexing to other resources through the Web. However, database

tables will exist to represent the classification schemes which consist of a data structure to

the values of the relations. Also, to succeed, a prototype library system will need to be

designed and developed in conjunction with simplified classification schemes. Microsoft

Visual Foxpro vS.O, running on the Pentium-133 with 2.S GHD and 16MRAM, could be

used to build the prototype system. Additionally, there are software packages from well­

known companies that can be used.

System measurement was the focus of the next portion of the chapter. For

repositories to be useful, they must have a large number of components in all different

areas to support the developer. But when too many are available, it is no longer possible

for a single retrieval to find the specific components that a user needs. Given this

challenge, the researcher introduces a flexible classification scheme that acknowledges

142

the value of expertise differences in users and coordinates that value by allowing

interaction between users and system to locate precise components that are specified by

the user. In addition, this study confirms that reusability is related to many variables. But

how tightly or how loosely components are bound to others in their relations must be

considered. This researcher asserts that bound variables and their component attributes

are also correlated with the level of human expertise.

In the next section, this researcher's procedures for human intervention evaluation

were described. According to Esteva (1995): "It is important to understand that even the

most successful identification system will require human intervention when evaluating

components for reusability" (p. 84). It was for this reason that this researcher desired to

rate and evaluate components and compare his rating to those of Guides-Search to

determine differences or similarities.

For evaluation purposes, three to four systems will be selected by this researcher.

Size and number of components will be identified for each system. This researcher will

evaluate each in accordance with criteria established by three critical features of the

system. Results derived from the scheme and searcher system will be compared in terms

of recognizing reusable components.

CHAPTER IV

IMPLEMENTATION OF THE GUIDES-SEARCH
SYSTEM AND EVALUATION

Introduction

143

The first three chapters of the present research introduced the subject of concern

and the study problem, reviewed the literature pertinent to the theoretical foundations and

major variables of the searcher system, and described the methodology employed to

implement the Guides Search system, as well as to collect the data. Included were four

research statements to be investigated. It was noted that the purpose of the present

research study was to provide a flexible system, comprised of a classification scheme and

searcher system, entitled Guides-Search, in which processes can be retrieved by carrying

out a structured dialogue with the user. The present study focused on the input and output

process.

The purpose of this portion of the study is to present the implementation of the

Guides System, analyze, and report the findings. The first section focuses on a description

of the overall strategy of the implementation and the design method that was used.

Details that comprise a basic understanding of the system were discussed in previous

sections of the study. The searcher mechanism and browser system, for example, was

described in depth in the third chapter. The concern at this point is to provide crucial

details and some of the major particulars.

In the next section, research support information in the Guides-Search is

presented. Global defined variables and local defined variables are explained. In the third

144

portion of the chapter, information file structures are detailed. Aspects of the Guides­

Search System structure includes subsystem, topologically mapping relationships

between components, and coupling. The subject of concern in the following section was

evaluation of the system and verification of usefulness. It is here that tests that were used

to verify usefulness are explained and the resulting data presented. Included are

descriptive statistics of test results. Tables are provided for this purpose. A final section

concludes the presentation and analysis.

Environment and Characteristics

The Guide-Search System was implemented using Visual Basic, MS SQL Sever

6.5 Evaluation version, and lIS 4.0 Beta version to manipulate the requests/problems­

solution. The object-oriented method was applied because the characteristics of the

Guide-Search are basically hierarchical. The Guide-Search is provided according to the

fundamentals of object-oriented in the following manner:

1. Emphasis is on structuring a system around the relations objects

manipulates.

2. Objects are described as instances of abstract data relations. The system

knows from an interactive rather than system representation of such

aspects as keywords.

3. The basic module unit describes a set of possible components of the

same abstract data type or its relations.

4. Finally, structure reflects the relations in the form property-relation­

components which provided the inheritance relations.

145

It is also important to mention that encapsulation is another significant feature of

the Guide-Search system. As described, Guide-Search allows users to interact with the

system to traverse any child node for specific problems-solution, once the user has

entered the specified information.

Overloading may also be applied to the Guide-Search. Take, for example, methods to

browse a set of relations , components. Each set's relation component in different phases

may be different components. Levels of its relations that are presented in tree nodes are

also considered. In order to browse its specified components, level of nodes mayor may

not be written in chunks. If the data can be fit into memory, the value of relations can be

used to retrieve all the data in one operation. If their related components are in large,

organized components, then they must written in chunks. In chunks, relations of the

components are presented in directed graph form, as found in variety words-lexicon

searches rather than a tree graph which knows the size needed and helps the system with

respect to performance.

Reuse Support Information in the Guide-Search

In order to implement the Guide-Search, there are generic program developed to

provide set of rules. They exist in addition to the reuse itself. Rules are basically

categorized into two kinds: (a) those indicating properties/components to be inherited;

and (b) those indicating properties/components to be rejected. Components are primary

presented through users for classifying items into categories that are based on common

characteristics. Rules, on the other hand, specify characteristics but allow the

classification of components into more than one location in the scheme through its

146

relations. The components link activates the search in the classification scheme,

which in tum contains search links throughout its components.

Unconditional rules

Regardless of any constraint and condition, this methodology is used in a

leveraged manner. It is used for retrieval and adaptation in an ad-hoc fashion, browsing

taxonomies and faceted views of reusable system components. These components belong

or are related to the candidate properties defined in the classification scheme of the

relations "is-a," "has," "is-in", and "like." That is, the classification scheme allows many

relations for distinguishing components and can be copied directly with no tailoring in the

browser mechanism. Rule are interpreted in pseudo code in the following manner:

At <components/properties>
/* Establish the link of <components/properties> */
F or each component link to node

Established components
Loop

End unconditional rule

It is also important to discuss the components to be established in the Guide-

Search system. These include:

Component SEI like EI(s) end SEI
Component DEI like EI(s) end DEI

Property Elliptic-integral
is-a special

end Elliptic-integral

Property Elliptic-integral-first -kind
is-a Elliptic-integral

end Elliptic-integral-first-kind

Property Elliptic-integral-second-kind
is-a Elliptic-integral

End Elliptic-integral-second-kind

Property Elliptic-integral-third-kind
is-a Elliptic-integral

end Elliptic-integral-third-kind

Property Number-R
is-a Number
has datatype Real

end Number-R

The key concept of this approach is to translate the most relevant components,

based on the classification scheme that is defined and translated in the natural way

without any conditions.

Conditional Rules

147

The condition-rules are established to interpreted components that by themselves can

not be executed or complete. They must depend on other properties - that is, components

that must inheritance properties from other. The pseudo-code and example components

described in this catalog are designed using recursive algorithm. It may simply be

described in the following manner:

At <components/properties>
/* Establish the link of <components/properties> */
For each component link to node

Established components
If inherited from others

Inherit Except, Part-of, need, etc ...
End-if

Loop
End conditional rule

148

The condition which depends on all the possible inheritance components can

be specified. These are included from the classification scheme and are specified by the

users from the accept/reject feature. Components to be established such that

Low-level component INITDS
like INITS
except has-precision double
is-in C:\fi1e:INITDS

needsDERMl
end INITDS

Property Number-I
like Number-R
except has-datatype Integer

end Number-I

Property Number-C
like Number-R
except has-datatype Complex

end Number-C

Low-level component CSEVL
has-precision single
is-in C:\File:CSEVL
needs (SERMI, IERMI)

endCSEVL

Global Defined Variables and Local Defined Variables

In order to implement the Guide-Search, global defined variables and local-

defined variables must be included. Global defined variables are stored in the cursor

tables and shared by all the selection components. It is assumed that there is enough

memory space to store these components. In other case, one can simply defined a cursor

table and manages on disk if needed. The concept in this case is that, for any given

query, the components will be checked from the cursor table based on the most relevant

and flexible components for reuse. They are organized in the frame-base. In this study,

149

related-class" was simply described in the table where inner-join query was used to

retrieve available components in the cursor tables before going out to physical database.

The global variables defined in this case were used in the present study during the

life of the search components. While global defined variables components continue to be

stored on the cursor table until users reset or re-query, local variables defined use only

during the group selection. During each group selection, components are captured from

the relevant properties related to the relation and mapping against global variables

defined. Where components are found in the global defined, it may simply be dropped.

When components are not found in the global defined, the system then captures into

global defined for later reuse in the form of design decisions. However, the local

variables defined task differs from the global defined. It builds from scratch for each new

group or node that is found.

Components that are created from the scratch or by an abstraction process from

the specific global variables defined are used to help the browser mechanism reduce over­

processing which in tum helps system performance. The idea here is to transform the

solution if found in the global area into potential solution problems components

associated with particular components that are specified by the user. In other words,

global variables defined can be described as an index to the domain-problems. Local

variables defined can be presented in terms of specific problems/solution specified by the

user. The more information users specify, the deeper in detail or closer to exact problems

can be found. In other words, in this level the available assets are specific components or

components that can specified close to exact problems one has specified. For the Guide-

150

Search, local variables defined reference to when users first select "equation."

Results found in Fortran77 and GAMS package software include:

- Kind
- Linearity
- Detenninacy
- Constraints

Upon users selected "kind" equation, the critical query carries out the results and

contains:

Has Kind Differential
Has Kind Integral
Has Kind Difference ...

Components "Function has kind integral" can then be defined as a global and be

placed in the cursor table with its relevant components referenced in GAMS.

Bessel integral
Complete elliptic integral
Error integral
Exponential integrals
Mathematical Functions
Sine integral
Volterra integral. ..

These components also reference its location in such away that Bessel integral "is-

in" GAMS at C 1 Of. The C 1 Of is a location where component document stored. This

location could be in C:\, networks, or on the internet at a specified www (World Wide

Web) location.

Figure 1 on the following page presents this structure in a tree. Assume that

nodes A, B, C and D are among selected components. If node B was chosen, the query

then carries out the combination AB to perfonn the search. That is, at node A, A is in

query. At node B, AB are used in the respective query. AT node C, ABC are in the

151

query and so forth. Level components are derived from the overall Guide-Search

system. In order to facilitate reuse, the components available for selection should meet

the classification scheme that has been defined. Without such consideration, many

potential components for reuse could not be eliminated from reuse because they could not

fit in any component classes. In this situation, rule base functionality helps to capture and

allocate one or more component classes elements as well as alternative and optional

constraints.

The present study developed a search option that allows the user to be more

specific and precise with regard to his or her problem-solutions query. It may be

described in the following manner.

1. The Boolean operators includes conjunctive terms included: AND, OR operators.

"AND" operator which requires that all components must be presented. In using an

"OR" operator, it is simply required that at least one component be satisfied in the

respective request.

A

AD

Figure 4.1: Tree Structure

Components

Component AND Component
Component OR Component
Component AND Component AND Component
Component OR Component OR Component

152

Component AND Component OR Component (process in format of A * B + C)
Component OR Component AND Component (process in format of A + B * C)

Wildcard search

Example if a Fortran77 files search: was performed:

Function has-operand equation-ODIN2
AND

Function has-precision double
Results

Function SIVA
Function IV AS ...

2. A wide-card search is also allowed. In this case, users can search for entity database

or include all components from the current states. In the screens following, one can

simply search without specified any constraints.

3. Block constraints allow queries to automatically be reconstructed. In other words,

inner levels within block search will be based on the term or condition which are

relevant to the block. For instance, as results when searching for "what is functions

has determine" when components in GAMS-package are specified:

- Linear equations

When the constraints "has-least squares solution" is specified, this is the following

results

DBOCLS

DBOLS

Solves the general linearly constrained linear least squares

problems.

Solves linear least squares problems with simple bounds

on the variables.

Solves least projected distance problem.

153

LPDP

LSEI Solves linearly constrained least squares problem with equality and

inequality constraints.

WNNLS Solves linearly constrained non-negative least squares problem.

Block constraint is a most important feature of the Guide-Search System. Block

constraint is used to present a measurable strength or weakness of gathering components

in the system. Blocks represent only a small percentage of available components in the

database. The corresponding blocks are given in the fonnat of outer loop and inner loop

routines. The algorithm is given as follows:

Component "c" of a given block B with a node N is defined by c(B(N)) and is

defined recursively:

(a) Initial Block

(b) Fetch relevance components into the current state.

(c) Node defined. If the node N' corresponded to N and has N's properties, but

N has no immediate descendant, then N' is started as a new block.

(d) Otherwise, for each immediate descendant i ofN, set h(i) and edges ordered

according to the order of the immediate descendants in the block B.

154

Block size is gathered from the following data collection sizes: 450

components, 1100 components and 750 components. Normalization percentage for any

given components given by:

C(G) = [I-C/G] * 100

Note also that components are presented through a frame-based - that is, a

component that a user does not qualify or specify in the search. These components are

built in classification scheme so that it provides the opportunities for users to retrieve all

components associated, even those that the user has not specified. It is important to

explain that component presented in frame-based do not effect the mechanisms search.

This occurs primarily because they are mostly presented through the relation "is-a" and

"need."

Information File Structures.

The following discussion provides a description of the various aspects of the Guide-

Search System Structures. These include:

(a) The subsystem, which further decomposed components in large system;

(b) topologically mapping of the relationships between components; and

(c) coupling, which analyzes the binding strength between components.

In the Guide-Search system, a Relation Database Management System (RDMS) is

used because it has a strong mathematical basis. It is important to explain that RDMS

allows users to demand a solution from specified problems. A major feature of the system

is to express each components in the class which uses SQL statements. Only particular

155

critical tables used in Guide-Search System are described in the current analysis.

Figure 4.1 illustrates database tables as found in category packages.

Category
Package

r-- roo--

Package-Category

4 ~

Figure 4.2: Database Tables in Category Packages

Additional portions from the Package-Domain, Package-Elements, as defined in

Chapter 3, are category tables. Components include:

(a) Arithmetics
(b) Number theory
(c) Elementary and special functions
(d) Linear algebra
(e) Interpolation ...

Categories are used to reference mathematical routine within a specific category

defined in GAMS, Mlab, and others. A single letter presents a key-field each category. It

is used to reference a mathematical routine within mathematical database.

Package table components include:

GAMS
AMS
MathPro
Mlab
Fortran77 ...

http:// gams.nist.gov
http://e-math.ams.org
http://sashimi.wwa.com/mathiMathPro.html
http://software-guide.com/cdprodl/swhrec/Oll170S.shtml
C:\Fortran77

156

Package tables are used to present each major Mathematical Providers and their

locations.

The Category-Package-Table is used to hold multiple relationships between Category

and Package tables and to present a "decision tree." Itis also used to hold all subclasses

defined in GAMS, Mlab, MathPro and a wide variety of others applications. It contains a

sequence number which is used as a unique constraint and in the present case is called:

Seq-ID, Package_ID (Parent) and its categories (items).

The table used for this purpose can be presented as follows:

Seq-ID Parent Items

1 GAMS A
2 GAMS B
3 MLab A
4 MathPro A
5 1 Integer
6 1 Rational
7 1 Real
8 1 Complex ...

--

Seq-ID is used to define the distinct components in each package which is

associated to its category. In GAMS, single letter used to reference mathematical routines

included A thru Z. Where each major category is divided into its sub-categories such that

A represented "Arithmetic, error analysis," a "1" is used to identify "A." In turn,

Arithmetic, the error analysis category, is divided into many sub-categories which have

the following sub-categories:

Integer has Key-ID 5 and belongs to parent denoted "I"
Rational has Key-ID 6 and belongs to parent denoted "I" and so on.

157

The same is true for the Components tables (component-relations-property).

Elements stored within this table include:

SIVA has-function solve
SIVA has-operand equation-ODIN2
SIVA has-output per-step time-intervals G-stop
SIVA has-precision double
SIVA IS-Ill C:\Fortran77\SIVA
SIVA needs RIMACH
SIVA needs SASUM
SIVA like IVAS ...

The present study applied G-node to describe how each individual classes linked

together. Links specifications included both data and direction. This architecture is used

to join a specific existing component in term of relationships between each class to

another from the mapping, ordering, and searching phases. These phases are subsequently

described in individual subsections listed below.

The Mapping Phase

The method used in mapping is to travel through all edges using depth-first

methodology of all components in G as an algorithm:

- Split components into a directory part, called x and the rest called y.

- Move components into cursor table where all the pattern rules one of whole

targets match x or y.

- If any rule can not be applied, remove components from the list.

In using this technique, it was found filtering technique was best.

158

The Ordering Phase

In the Ordering Phase, components are presented in the lexicon ordered. Edges are

labeled by a letter which represents the relevance to components. Each component in the

lexicon that is ordered corresponds to the inheritance from the G-node. For two

components sharing an initial path from their initial G-node end ending, if applied, in an

"is-a" relation, it is called a terminate node. The height of the node that is called v, is

denoted h(v) and is defined with respect to the ordering of the G-node. At each node,

components that are not called will be assigned the number 0, and at each subsequent

ordering, the assigned number is increase by a value of 1. In other words, the

components inheritance by level ° will appear at level l; components inheritance from

level ° and levell will appear at level 2, and so forth, as indicated in Figure 3.

Operand Le elO

Equation Le el1

Number Le el1

Polynomial Level 1

Integral Level 1

Kind Level 2

Linear~y Level 2

Determinacy Level 2

Constrains Level 2

Difference Level 3

Figure 4.3: Ordering

The Searching Phase

Automated functions to support extract components from its query to generate

components to the users is accomplished in the Searching Phase. There is also a case

159

where there is a set of components sharing an alternate. It the presented to users for

more specific selection. Upon selection by the user, the set of components that is

eliminated will not be used for further consideration until a new search is undertaken.

Thus, this activity is further decomposed into lower-level functions.

Functions provide a set of analysis capabilities for Guide-Search system. This

approach also avoids the duplication of components. The Guide-Search system also

allows dynamic set through SQL functions. They can be outlined in the following

manner. To decide the set of relations to display, the entries for values of"r" in the

symbol table for the A(rb) data structure include the number of components in which that

value of "r" is used. The algorithm is described as follows:

- The symbol table is sorted into descending order according to this

number, For a given value for this number it sorted into alphabetic order

according to the value of "r".

- Ifthere exist values of "r," initial only those ''r'' values.

-Otherwise, the system allows users to view all selected components, only

ifthere are no existing value of"r."

- When the user selects a value of "r", the associated values of''b'' by using "r" to

access the first elements of the parse representation of the (r b) matrix for any

given value of"r."

The list then traverse in the direction of constant ''r'' and increasing ''b''

- When is value "b" selected, column (r b) matrix to traverse until the

given value of "r" is discovered.

- To reduce the amount of data transfer between cursor tables and

physiscal tables. Filtering techniques was applied.

160

- The fragment of the orginal RB(a) data structure that corresponds to the

retrieved components constitute a new instance of a RB(a) data structure. Since,

the RB(a) data structure contains the (r b) pairs that correspond to each a.

Rationals are provide to facilitate components selection among reusable

components. For example, the first 10 selection components are used to display back to

users while the rest continue to be retrieved in the backend.

Building the Browser Components

After the components are elected, they undergo construction in the organization

structure from Searcher-mechanism. Once the components are determined,

Figure 4.4: Data Structures to Support Searcher

r, b Hash Table

Main memory

a Hash Table

A
rb

r, b Symbol Table

r1, b1
r2, b2 ...

161

Cache Memory

162

they are ready to populated with infonnation to users. The components selected for

users are based on characteristics of their respective classes. The rules based are used to

compare and ensure their best fit.

It is important to eliminate a duplicate node. The present study first attempt was to

define type equality of the properties associated with the corresponding nodes and the

order components associated to its relations. However, because components are in space

direction, the study only considered backward chaining, which points to one level

direction to each relations-components relationship.

Evaluation of the System

It was noted in the literature, that in order for repositories be useful, they must

have a large number of components in all different areas to support the developer

(Henninger, 1996; Esteva, 1995). However, when there are many components available,

it is no longer possible for a single retrieval to find the specific components a user needs.

Given this challenge, this researcher introduced a flexible classification scheme which

acknowledges the value of expertise differences in users and coordinates that value by

allowing interaction between users and the system for the purpose of locating specific

components that are specified by the user.

It was previously explained that the purpose of the present study was to describe

the complexity for reusability of the system using complexity and structural measures.

Although the research described linkages among components, adequacy, and issues of

measurement, control, and maintenance, more was needed to evaluate the system. For this

reason an evaluation was proposed as derived from this researcher in the fonn of ad-hoc

reports describing the amount of time it was taken to understand components, the

reusability or non-reusability of system components, and system procedures. Using

Snooper (Esteva, 1995) which contains critical features as a basis for usefulness

evaluation, the current approach dealt directly with practicality, reusability, and

understandability of the system.

163

This researcher first posed a number of questions concerning the components to

be selected for evaluation. Components of three to four systems were selected for

evaluation. The effective numbers of selected components were identified for each

system. The amount of time it took to retrieve the selected components for each system

was recorded in order to determine if that amount of time was reasonable and compared

favorably to the Guides Search system. In this way the reliability and validity ofthe

Guides Search system could ascertained.

Results from the search system were benchmarked by this researcher in terms of

recognizing reusable components, thus validating and confirming the usefulness of the

searcher system approach. It is important to explain that there are three common steps to

evaluating a system. These were used in the present analysis for evaluative purposes. The

first step included posting a problem which related to the user-interface. Utilization of the

Searcher mechanism to gather available components was the second step. The third and

final step was to initiate the browser mechanism. This provided a mechanism for the user

to specify his or her needs. These three functions provide most users with the tools

needed to gather problem solutions.

164

User Interface

Before the data can analyzed, it is first necessary to describe the user interface that

was employed in the present study. It was previously noted that a successful system goes

beyond basic concepts in its definition of user friendliness. Designing the best user-

interface system is also a requirement for success. The user-interface mechanism

represents results in a tree structure dialogue using relations and can be used to generate

graphical information. Graphics indicate in picture form the relationships among

components. In the current development, the study used the combobox, listbox, and

buttons command. Components were automatically selected from Browser mechanism.

Figure 5 reveals the fan-ins and fan-outs of each component that was selected. The

listbox was used to display selected components. Consider the following example when

the user is asking for Function has Operand Number-R. The results included list in the

listbox, as indicated in the following figure define:

Component ERF
Component Inverse-Hyperbolic
Component SASINH
Component DASINH ...

Components included:

Function
Operand
Output ...

Relations included:

has-function
has-operand
has-precision

Figure 4.5: Searcher Screen

Guides-Search~~~----

1. Component:

IF~nctio~(s) ..

1;!. Component:

I

rfundions
proximation

Bessel fundions

.f. Relation

.4. AND/OR ItlND.ii
.§. Relation

Beta fun~io~s..w.

J Property

1. Property

165

has-output
is-in
like
except ...

Properties included:

Solve
Equation-ODIN2
Per-step time-interval G-stop
Double
Single
C:\fortran77 ...

Logical AND or OR but not both.

A search description displays the actual query will be used (see Figure 6).

Consider the following example when the user performs selects in the Component-

Combobox "Function," selects in the Relations-Combobox a value "has-operand," and

166

selects in the Properties-Combobox a value "equation-ODIN2." When the Search-Button

is clicked, the system first reads a query-statement in search-Textbox and performs its

search routines. The Search-Statement can be reached such as "Select * from

Components-Table where properties = 'equation-ODIN2.'''

Results carried out from the query are described as follows. It first involved the

function Mapping and Ordering phases, as described in previous sections. This placed the

results-elements in a set, together with all their associated relevance components and

nodes. Results were then presented back to the user. In the majority of cases, the results

are presented back to the user in the Listbox. The user simply views them. In other cases,

however, results are dependent upon the number of nodes. When the query provides

results larger than three levels of nodes, the system brings back to the user not just the

167

Figure 4.6: View Components Screen

iii. Guides-Search View Screen !!!!!lIE 13

..£ Database (Pad.'ages, etc) It0C!?u~CJ'(~8~~inC,~1~1~":~ll!lsC!urce:fr?rrI0~/.\,rJT~6:" M •• w .11
, httplit1!t:'\h!:n.i ?t:90 Y/c:9 i-~l rl/'g(:1rrl?:S;ar'!'2:1G: ETlF yll?i?IJrC~~ of~g~IYr1E3l?j rl,,",g~JPf? Jr9!n=q~tlTi

C ABSTRACT
'C CJYHBS COMPUTES BESSEL FUNCTIONS J/SUB(NU)/(Z), Y/SUB(NU)/(Z).
C AND STRUVE FUNCTIONS H/SUB(NU)/(Z). FOR COMPLEXZAND NU=O OR

: C 1. BACKWARD RECURSION IS USED FOR THE J BESSEL FUNCTIONS OF
C INTEGER ORDER TO SUM THE NEUMANN SERIES FOR THE Y AND H

. C FUNCTIONS FOR O.LT.CABS(Z).LT.30. FOR CABS(Z).GT.30 THE
C ASYMPTOTIC EXPANSIONS ARE USED. FOR Z, CABS(Z).GT.O.
C AND ·PI.LT.ARG(Z).LE.PI

:C
C
C
C
C
C
C
C
C
C

DESCRIPTION OF ARGUMENTS

INPUT
KODE -A PARAMETER TO SELECT THE PROPER FUNCTION PAIRS

KODE=1 RETURNS JO,J1,YO,Y1 FUNCTIONS
KODE=2 RETURNS JO,J1 ,HO,H1 FUNCTIONS
KODE=3 RETURNS JO,Jl,YO,Yl,HO,H1 FUNCTIONS

Z . COMPLEX ARGUMENT, Z.NE.CMPLX(O.,O.)
•• ww •• J~NP .:PJ.:L.I AI:t§gJ~.~.fL....." _ .. ~...... , ~ ... ~~ ~._ "

168

results placed in the Listbox, but also results in a pop-up window fonn which identifies

more specific options. At the time the user is required to provide more specific values.

The system uses the Filter-Technique in the Database Functions to filter results. Each

time it sends the results back to the Mapping and Ordering phases and presents back to

the user increasingly more specific solutions. For any given task, the user has a variety of

option. The user can re-select, back, clear results, or simply specifY a keyword to be

matched on the current results.

Data Presentation and Analysis

As a test result, it was found that even for a first result returned to users, a

question was generated for more specific components. It was found that the system

tenninated a great number of components from which the user would ordinarily have to

browse for the necessary results. Consider the following query example:

Function has-function solve

The results that were returned included 152 functions out of a possible 2,300

functions included in the database. When the system responded to a more specific

inclusion, "has-language Fortran77," the results significantly changed. Specifically, the

system returned with 21 functions for the "has-function-solve" and "has-language

Fortran77."

Results were recorded for three specific questions: What is a function; What is an

Operand; and What is the language. These data are presented in Table 4.1. Percentage

decreases for each question are included. As indicated, the first result for the question as

to what is a function produced 2,300. The second, however, was reduced to 301 (a 76.9

Table 4.1: Query Results to Specific Questions

Question

What is a function?

Percentage Decrease

What is an Operand?

Percentage Decrease

What is the language?

Percentage Decrease

First
Results

2,300

1,012

2,300

Second
Results

301

76.9

37

96.4

450

80.4

Third
Results

3

99.7

1

99.9

6

99.6

169

170

percent decrease). The third result reduced the number retrieved to 3. Similar results were

obtained for the second and third question. For the question as to what was an operand,

the first result produced 1,012 responses. A decrease of 96.4 percent was realized for the

second result, which was then reduced to one. For the question as to what is the language,

the first results produced 2,300 responses, which were reduced to 450 for the second

result. The third time, only 6 were retrieved.

It is important to explain that relations were represented as a directed graph rather

than a tree for the purpose of reducing size. For any given component, different finite

state were recognized. These are described as follows:

CD Nodes in the graph are the states of the finite-state machine;

CD Edges of the components are the transitions of the machine; and

CD Terminal nodes are the accepting states.

In other words, each relation is represented as a tree node where each corresponding

components that share the same properties are joined. Thus, a path is created from an

initial components to the newly found components.

In the present study, queries were run on the program database SQL-Server 6.5

with Visual Basic which was operating in a Window environment. The Searcher

retrieved from the 450 functions database where the browser mechanism presented 132

nodes for users selection from a 2,300 functions database. Once components were

selected, the view function then obtained the "file" or location and attributes of the

selected function. This was followed by a retrieval of the text from the source files. The

time stamp on each function was used to provide useful information for evaluation,

specifically in term of performance issues. Units were measured in mini-seconds.

171

Tables 4.2, 4.3, 4.4, and 4.5 on the following pages present the information

gathered :from testing by this researcher to verify the usefulness of the Guides Searcher

system. Testing data was collected in real time, :from testing by users, and :from testing

using the Guides Searcher System. All data are presented in mini-seconds, which was the

unit of measurement as previously noted.

Table 4.2 presents the data regarding the number of times the user must be

interactive, the searcher time, and the browser time. The data are presented on 450

functions for three measures. These included: Real Time, User Time, and System Time.

As indicated in the table, in real time the user was required to be interactive 120 times,

while the user interacted 54 times and the system interacted 89 times. Similar information

is contained in the next two tables, but for 1,100 functions and for 2,400 functions.

Table 4.5 presents the findings for the number of functions counted (450), the

nodes presented and found, the number of unique components identified, the number of

cyclic found, and the number of regular components. Data is separated in subsequent

tables by the number of functions assessed. These included: 450, 1,100, and 2,300. As

indicated, 130 nodes were presented and found for 450 functions. This number increased

to 176 for 2,300 functions. A total of 1,873 components were identified for 450 functions.

A significant increase was realized for 2,300 functions. Specifically, 8,920

components were found. Unique component identification also increased with the

increase in the number of functions. For 450 functions, 210 unique components were

found, but for

Table 4.2:

Interaction, Search, and Browser Times for Three Measures (450 Functions)

Number Times User
Measure Must be Interactive

(in Mini-seconds)

Real Time 120

User Time 54

System Time 89

Table 4.3

Searcher Time
(in Mini-seconds)

15

9

21

Browser Time
(in Mini-seconds)

145

52

69

Components Classified in Real Time, By User Time, and By System Time (1100
Functions)

Number Times User
Measure Must be Interactive

(in Mini-seconds)

Real Time 230

User Time 150

System Time 210

Searcher Time
(in Mini-seconds)

21

19

30

Browser Time
(in Mini-seconds)

290

180

150

172

Table 4.4

Components Classified in Real Time, By User Time, and By System Time (2,300
Functions)

Number Times User
Measure Must be Interactive

(in Mini-seconds)

Real Time 250

User Time 230

System Time 250

Table 4.5

Searcher Time
(in Mini-seconds)

27

21

30

Browser Time
(in Mini-seconds)

310

195

180

173

Findings for Functions Counted, Nodes Found, Unique Components Identified, Number
of Cyclic Found, and Number of Components

No. Functions Nodes Presented
Counted and Found

450 130

1,100 145

2,300 176

No. Unique
components

210

325

392

No. Cyclic
Found

36

29

17

Number of
Components

1,873

4,717

8,920

2,300 functions, a total of 392 unique components derived. This represented a 176.6

percent increase.

Discussion of Findings

174

From the findings it became clear that there was a significant advantage to using

the Guides Searcher system. Evaluation of the system, although run on a very small scale

by this researcher, provided preliminary results that verified the usefulness of the model

in general and the system, specifically. As previously noted, the search for ways to

improve the software development process has led many organizations to pursue the

substantial benefits available through software reuse. According to the literature

previously reviewed, design reuse is emerging as a powerful and essential tool for dealing

with increasing complexity. As noted by Yoelle, Maarek, Berry and Kaiser (1991),

among other authorities, software reuse is widely believed to be a promising means for

improving software productivity and reliability. However, it is only through application

of searcher systems such as the one developed in the present study that the benefits can be

realized.

The presentation and analysis clearly indicated that there was direct correlation

between system performance and search critical. That is, the package with the most

options yielded the most complexity and therefore it represented the worst case in term of

system performance. An alternate way that was suggested was to break a query into

numerous times search rather than place all in a single search statement.

When taking performance issues in consideration, the user was able to create a

new node for each search. All nodes that were found were placed with their

175

corresponding relations which were found in memory. Thus, a cursor table in double

link-list layer was built. Each node that was found was then stored in this cursor table.

Therefore, for any given node and its corresponding components, it need only be found

once. For each search, the study first performed all possible components related to a

given relation. A check was performed to determine if those relations corresponded to

components already found in the cursor table. If this was true, components

corresponding to each relations-node with their structure (presented in tree) were

gathered. Another factor is also crucial to system performance - that of terminate nodes.

When relations have only one component that corresponds to the relation, results are

masked as a terminate node. Thus there are no further requirements for a search.

The present findings have significant and relevance to complexity theory in

general in that the searcher system provided a valid methodological tool for discovering

software for reuse, and thereby reduce complexity. Complexity theory related to the

subject of the study because it impacts the ability to reuse. Complexity has been and

continues to be a realm that is difficult to define and even harder to understand because it

deals with the aggregate of many simple things that can create complex forms (Goering,

1995; Kochen, 1984). Complexity theory is actually the study of how much computing is

required to solve various kinds of problems, especially those related to large software

systems (Devanbu, Brachman, Selfridge, & Ballard, 1991). It deals with systems as a

whole. Researchers often create computer simulations of extremely intricate systems,

then use those computer programs to develop hypotheses that can later be tested with

experiments. A natural measure of complexity is the entropy rate of a random process

that models the problem. Reduction of complexity was the focus on the study. The

literature agrees that it is possible to decrease complexity by carefully analyzing

components into sUb-components and applying the black-box approach. This is the

approach this researcher used in developing the Guides Searcher system and its

usefulness in this respect was verified.

It was previous noted in the literature that, for software reuse to be successful,

there are critical factors which software reuse systems development must take into

account in designs and developments. These were described as follows:

(1) The classification scheme should include the following attributes: flexibility,

extensibility, and ease of use;

176

(2) Users should not be presented with a large number of questions or be required to

answer any questions known to be germane to query;

(3) Users should not be given a large number of possible answers to anyone single

question; and

(4) Users should be allowed to specify an answer not knowing exactly what

question the searcher posed to elicit that answer.

In the present research, a model of software reuse which would satisfy these

factors was explored. Findings also verified the fact that such a model could be developed

and its usefulness verified.

Chapter Conclusion

The purpose of this portion of the study was to present the implementation of the

Guides System, analyze, and report the findings. The first section focused on a

177

description of the overall strategy of the implementation and the design method that was

used. The concern was provide crucial details and some of the major particulars. In the

next section, research support information in the Guides-Search was presented. Global

defined variables and local defined variables were explained. In the third portion of the

chapter, information file structures were detailed, followed by an evaluation of the system

and verification of usefulness. It is here that tests that were used to verify usefulness were

explained and the resulting data presented. Included were descriptive statistics oftest

results.

To classify processes, the present investigation focused on the provision of a

mathematical method derived from Relation theory. It assumed that the model for a

flexible classification system (generalization of the use of facets) could be developed for

semi-mathematical software reuse and classification. It was believed that the overall

approach to the reusable software methodology may tum out to be the most important

contribution of the research, which is to make discovery of a classification more reliable

and less tedious. This researcher believes this goal has been achieved. The model was

developed which appeared to be more reliable and less tedious. Its usefulness was

verified through a small, mini-test.

From the review of literature presented in previous portions of this study, it

became that technology is moving closer to reality in natural language translaters. A

natural language technique can be applied to gather a classification scheme automatically.

Libraries only need to keep all mathematics functions in the document format and the

system will provide the associated scheme.

178

The need for a dictionary table was found to be critical for the components

search. In other words, a dictionary of all relevant terms related to mathematics functions

is needed. The present study continued to develop the system throughout the thesis. The

goal was to have a semantic and syntactic search related to natural1anguage which could

automatically build the classification scheme. Although findings in the present study

verified the usefulness of the Guides Search system, when the new classification scheme

is introduced to the real-world system, it will first be required to pass a major audit. A

future goal is to place the Guide-Search system on a public www, where users can enjoy

its many benefits. Another goal is to develop an updated version to provide visualization

levels of components as, for example, in 3D graph format.

179

CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

Introduction

Previous portions of the research presented modular components of the study.

This chapter combines previous modules into a unified whole, summarizing the research,

discussing the model that was implemented and the data that have been presented,

drawing conclusions from the data analysis and literature review, and providing

recommendations. Recommendations focus on suggestions for future investigative

studies of a similar nature, as well as on areas of concern deemed important in the light of

the findings of this study. The following subsections provide this information.

Summary of the Study

Most discussions of software reuse focus on mechanisms to construct reusable

software. For reuse to be successful, however, there must not only be a large collection of

useful, reliable parts available, but also a mechanism to discover components that meet a

specified need. Software reuse should not be practiced in environments where it costs

more to discover components that meet a specified need than to invent them anew. The

purpose of the present study was to describe a method to classify software components.

Of secondary, but equal importance, was to develop a system to use such a classification

efficiently to discover software components that meet specified needs.

Specifically, the purpose ofthe present research study was to provide a flexible

system, comprised of a classification scheme and searcher system, entitled Guides­

Search, in which processes can be retrieved by carrying out a structured dialogue with

180

the user. The classification scheme provides both the structure of questions to be posed to

the user, and the set of possible answers to each question. The model did not attempt to

replace current structures. Rather, it sought to provide a conceptual and structural method

to support the improvement of software reuse methodology.

The study focused on the following goals and objectives for the classification

scheme and searcher system: (1) The classification must be flexible and extensible, but

usable by the searcher; (2) users cannot be presented with a large number of questions;

the user cannot be required to answer a question not known to be germane to the query;

(3) users cannot be presented with a large number of possible answers to any single

question; and (4) users are allowed to specify an answer, even though the user does not

know exactly what question the searcher will pose to elicit that answer. (This is similar

to a key word search.)

The literature pertinent to the background of computing was reviewed, followed

by an examination of reuse of software components, design, and programs. It was

explained that design patterns - templates that provide developers with guidelines for

solving problems - like object-oriented software have promised potential techniques for

software reuse. Data abstraction and complexity reduction were also reviewed. It was

clear that there were many motivational factors to using object-oriented concepts such as

trace-ability improvement, reduction of integration problems, improvement of process

and product, ability to hid information, abstraction of data, encapsulation, and

concurrency.

Also reviewed were relations, frames, propositional logic, and constraint

satisfaction. Included were explanations of the algebra of notations, the algebra of sets,

181

regulations, functions, and Euler-Venn diagrams. The components of expert systems were

described in detail. This type of system is characterized by its method oflogical

deduction from stored data in accordance with rules independent of the program while

conducting the search strategy. Current expert systems use a pseudo-natural dialogue

through graphical user-interfaces to communicate. Current and future research is moving

in the direction of development of full natural-language interfaces which use a syntax that

is close to the user's native language.

The review was concluded with an examination of Function Based Encryption

(FBE) systems which use a specialized mathematical function and a secondary function

set to manipulate date in a complex manner. This was important because the present

study focused on the input and output process.

The methodology that was used for classification purposes and for verifying the

effectiveness of the scheme and searcher system was described in detail. Explanations

were provided of the user interface for system communication purposes, the searcher

function and mechanism, searcher-system roles, the database, and relations used by the

searcher system. It was noted that, in addition to the classification schemes described, the

system supports users in defining the relations link from the classification schemes to

their documents. In this context, documents referred to a collection of source-code posted

as a file on the World Wide Web or in the local machine. For efficient searching,

however, classification-schemes in the present study were defined and stored in the local

machine.

The overall strategy of the implementation and design method that was used for

the Guides Searcher system was also described in depth. Included were reuse support

182

information in the Guides Search, such as unconditional and conditional rules, globally

defined and locally defined variables, and information file structures (ordering and

searching phases). It was first explained that the object-oriented method was applied

because the characteristics of the Guides Search were basically hierarchical. The Guides

Search was provided in accordance to the fundamentals of object orientation: emphasis

was on structuring the system around the relations objects manipulations; the system

gained knowledge from an interactive rather than a system representation of such aspects

as keywords; and structure reflected the relations in the form of property-relation­

components which provided the inheritance relations.

Answers to Research Statements

F our research statements were outlined at the beginning of the research. Each

statement is reiterated below. Each is followed by an answer as derived from the review

and implementation of the model.

1. A comprehensive review of related literature will indicate that existing

techniques are inadequate in supporting information requirements.

The review ofliterature indicated that existing techniques are currently inadequate

in supporting information requirements. Baker and Kauffinan (1991), for example,

concluded that few companies know what programs are in their current inventory; even

less have solid productivity measurement systems in place to monitor systems

development efforts in supporting information requirements. Booch (1994) suggested

that, to overcome the problem of inadequacy, the discipline of object-oriented technology

will soon give rise to a marketplace of reusable software components that can be

183

assembled into robust and scaleable software solutions. According to Due (1995),

techniques designed to promote code reuse are sound; the problem has been with

implementation and support. In this respect, Maarek, Berry, and Kaiser (1991)

commented, "Although software reuse presents clear advantages for programmer

productivity and code reliability, it is not practiced enough. One of the reasons .. .is the

lack of software libraries that facilitate the actual locating and understanding of reusable

components" (p. 800).

Poulin and Werkman (1995) agreed, adding that reusable software libraries suffer

from poor interfaces, too many formal standards, high levels of training required for their

use, and a high cost to build and maintain. Their study used a structured abstract of

reusable components. Structured abstracts provided them with a natural, easy to use way

for developers to search for components, quickly assess the component for us, and submit

components to the reusable software library.

2. There is a significant need for a new approach or method to classify

software components and a system to use such a classification efficiently

to discover software components that meet a specified need.

Review ofthe literature clearly documented that there was a significant need for a

new approach or method to classify software components and a system to use such a

classification efficiently (Brian, 1992; Chauvet, 1995; Freitag (1994); Novak, 1991;

Novak, Member, Hill, Wan, & Sayrs, 1992; Prieto-Diaz, 1987, 1991; Ray, 1992). The

reuse of software as an important aspect of controlling and reducing software costs and

improving quality has also been documented in the literature (Humphrey, 1990; Marlin,

184

1995; Prieto-Diaz, 1993). According to Novak (1991), a significant barrier to the reuse of

software has been the rigid interface presented by a subroutine. For nontrivial data

structures, it is unlikely that the existing fonn of the data of an application will match the

requirements of a separately written subroutine.

A new flexible approach was introduced and implemented in the present study. It

was called Guides Search system. The system's ability to discover and identify

components that met a specified need was verified though testing. By using the Guides

Search, processes were retrieved by carrying out a structured dialogue. The classification

scheme provided both the structure of questions to be posed to the user and the set of

possible answers to each question. In this manner the Guides system provided a

conceptual and structural method to support the improvement of software reuse

methodology.

3. Design of a searcher software system used to discover software needs

will address the following three concerns: (a) it will allow users to retrieve

the desired software without being required to answer an inordinate

number of questions; (b) it will present an adequate number of possible

answers but not too many to anyone question; and (c) it will not

artificially restrict the perfonnance of an expert user.

Implementation of the Guides Searcher software system addressed each of the

concerns listed above. For example, it allowed this user to retrieve the desired

components without being required to answer an inordinate number of questions. It

presented an adequate number of possible answers and did not restrict performance.

Testing verified its usefulness, applicability and time saving capabilities.

4. There is a significant set of guidelines, or model, that exists to select

software for reuse and thereby reduce the cost of software production as

related to non-mathematical applications and systems.

185

Implementation and mini-testing for usefulness produced results from the study to

verify that the Guides Searcher system had merit and could serve as a practical

mechanism for effectively identifying and classifying reusable components from existing

software libraries. Thus, the model that was presented and implemented in the present

study can serve as a set of guidelines to select components for reuse and thus reduce

software production costs as related to non-mathematical applications and systems.

Conclusions

On the basis of the literature review, implementation and analysis of the Guides

Searcher system, and findings from the implementation, this research study reached the

following conclusions:

1. While it is too early to claim a major success, the results of the present

study are encouraging enough to support the idea that this particular

approach for identification of reusable components is a valid one. The

classification was flexible and extensible, but usable by the searcher. The

model for a flexible classification system (generalization of the use of

facets) was successfully developed for semi-mathematical software reuse

and classification. However, it is important to note that even the most

successful model and identification system will still require human

intervention when performing evaluation for the reusability of

components.

2. The study concluded that the Guides Searcher system approach has merit

and can serve as a practical mechanism for effectively identifying reusable

components from existing software libraries.

3. The study also concluded that the present overall approach to the reusable

software methodology was an important contribution of the research,

which was to make discovery of a classification more reliable and less

tedious. Also, the user interface allowed views to be created quickly and

easily. This appears to be an efficient and practical technique. The Guides

Searcher system, through its user-interface, is self-documenting and allows

vies to be created quickly and easily.

4. In addition, it was concluded that the study had significance and relevance

to complexity theory in general in that it provided a methodological tool

for discovering software for reuse and thereby reduce complexity. It was

noted in the literature that complexity is a realm that is difficult to define

and even harder to understand because it deals with the aggregate of many

simple things that can create complex forms. Software is often complex,

but abstraction such as that employed in the Guides Searcher system

reduces the apparent complexity in a way that presents only the most

relevant component and hides all others. Still, no one user-interface (the

186

means of users to communicate with the system) can be suitable to all.

This is clearly reflected in programming. It may be concluded, then, that

the present investigation has made a contribution to research specifically

focused on reducing complexity.

5. Finally, it was concluded that the present study supported the method

utilized by Esteva (1995) who built a library engine and called it Snooper.

Esteva considered that the size of a given program correlated to the

complexity of the program that is, how tightly or loosely was the

relationship from one component to another. Snooper was thus used to

determine the complexity of the program. Similar to the method employed

by Esteva, the Guides Search contains a classification scheme and searcher

system in which artifacts can be retrieved by carrying out a structured

dialogue. The name Guides Search was coined by this researcher for the

research engine employed in the present study.

Recommendations

In an effort to apply the findings of the study, specific recommendations have

been formulated, as based on the findings and conclusions of the present investigation.

These recommendations are as follows:

1. The study recommends that future research, in an effort to support the

findings of the Guides Searcher system usefulness, conduct follow-up

studies, but on a broader scale as regards sample size and number of

components to discover and classify. A research investigation that

included more knowledgeable persons for testing purposes would almost

187

certainly yield greater insight and perhaps an even closer convergence

with the findings of the present research. A research study that would

include a greater number of knowledgeable testers would serve to validate

the findings of this study and provide additional and substantial support to

the growing body of empirical evidence on the importance and the need

for developing systems such as the Guides Search. Esteva commented that

steps would be taken to continue the development of Snooper. The same

should occur for the Guides Searcher system.

2. It is also recommended that the Guide-Search system be placed on a public

World Wide Web location in the future, where users can enjoy its many

benefits. Another recommendation is for future research to develop an

updated version to provide visualization levels of components as, for

example, in 3D graph format.

3. Also, it is recommended that replication of the presents study should

logically be made at intervals in the future in an effort to empirically

verify the usefulness and applicability of the Guides Searcher system and

was developed and implemented in the present study. The system

described and implemented in the present investigation has been proven to

be useful, but additional work remains to be done. For this reason, this

researcher recommends increased usage and development of the Guides

Searcher system because it is eminent and financially necessary for

companies in order to remain economically viable in today's competitive

corporate world. Spiraling costs associated with programming in the

188

current business environment far outweigh the costs of developing new

approaches such as the one presented in the current research study.

189

References.

Adamczyk, J., & Moldauer, T. (September,1995). Trading Off: Inheritance
vs. Reuse. Object Magazine,

Alexander, Christopher. (1977). A Pattern Language: Towns, Building, Construction.
Oxford University Press, New Yord, 1977

190

Allworth, S. T. (1981). Introduction to real-time Software Design. Macmillan, N ew York.
QA76.54 A44

Anthes, Gary H. (1993). Software reuse plans bring paybacks. Computerworld
v27, n49 (Dec 6, 1993):73.

Attila, Gursoy and Kale, Laxmikant V., (1996). Simulating Message-Driven Programs.
University of Illinois. (charm.cs.uiuc.eduipapers/SimulatorICPP96.www)

Automated Information Mining of Large Software Collections for the Extraction of
Reusable Code. NAS5-38035, July 21, 1994.

Auton (no date). www.cs.cmu.edul~AUTON/doc

Babbie, E. (1990). Survey research methods. Belmont, CA: Wadsworth
Publishing Company.

Babbie, E. (1986). The practice of social research. Belmont, CA:
Wadsworth Publishing Company.

Backus, J., (1978). Can programming be liberatedfrom the von Neumann style? A
functional style and its algebra of programs. ACM (v21 , n8). p.613

Baer, Tony. (1997). The politics of reuse. (software code reuse)
Software Magazine v17, nl (Jan, 1997).

Baldwin-Morgan, A. A. (1994). The Impact of an Expert System for Audit
Planning: Evidence from a Case Study. International Journal of Applied
Expert Systems, 2(3), 101-106.

Banker, Rajiv D.; Kauffman, Robert J. and Zweig, Dani. Repository Evaluation
of Software Reuse. IEEE Transactions on Software Engineering, Vol. 19,
No.4, April 1993, 379-389.

191

Barabashev (no date). Mathematical Notational Systems and the Visual Representation of
Metaphysical Ideas. http://www.seas.gwu.edulseas/institutes/nel/vladi.html

Baum, D. (1995). The Right Toolsfor Coding Business Rules. Datamation,
v.42, n.4, 36-38.

Baun, John D. (1991). Elements of point set topology. Dover, New York, 1991

Bednarczyk, Marek A. (no date). Gdansk Division of the Institute of Computer Science,
Polish Academy of Sciences. http://www.ipipan.gda.pV~mareki

Bell, F. Bellegarde; et al (1994). Pacific Software Research Center. Oregon Graduate
Institute of Science & Technology. TRI-Ada '94 Proceedings, ACM Press,
November, 1994, pages 396-404.

Bererd, Edward V., (no date). Motivation for an Object-Oriented Approach to Software
Engineering. http://www.toa.comlpub/net_ articals/motivation _article. txt

Biondo, S. J. (1990). Fundamentals of Expert Systems Technology: Principles
and Concepts. Norwood, NJ: Ablex Publishers.

Biggerstaff, T. J., and Pedis, A. J. (1989). Software Reusability. New York,
NY: ACM Press.

Biggerstaff, T. J.; and Richter, C. (1987). Reusability Framework, Assessment,
and Directions, IEEE Software 41-49.

Blissmer, R. H. (1991). Introducing computers: Concepts, systems and
applications. New York: Wiley and Sons.

Boehm, RW (1981). Software Engineering Economics. Prentice Hall, Englewood
Cliffs, NJ.

Brown, Kyle (no date) Design Reverse-Engineering and Automated Design Pattern
Detection in Smalltalk. www2.ncsu.eduleos/info/tasuglkrownlthesis2.htm

Buchanan, R G., & E. H. Shortliffe (1985). Rule-Based Expert Systems.
Reading, MA: Addison-Wesley.

Budinsky, F.J; Finnie, M.A.; Vlissdes, J.M and Yu, P.S (1996). Automatic code
generation from design patterns. IBM Systems Journal. V35, n2 (1996).
http://www.almaden.ibm.comljournal/sjlbudin

191

Barabashev (no date). Mathematical Notational Systems and the Visual Representation of
Metaphysical Ideas. http://www.seas.gwu.edulseas/institutes/nell vladi. html

Baum, D. (1995). The Right Toolsfor Coding Business Rules. Datamation,
v.42, n.4, 36-38.

Baun, John D. (1991). Elements of point set topology. Dover, New York, 1991

Bednarczyk, Marek A. (no date). Gdansk Division of the Institute of Computer Science,
Polish Academy of Sciences. http://www.ipipan.gda.pll~marekl

Bell, F. Bellegarde; et al (1994). Pacific Software Research Center. Oregon Graduate
Institute of Science & Technology. TRI-Ada '94 Proceedings, ACM Press,
November, 1994, pages 396-404.

Bererd, Edward V., (no date). Motivationfor an Object-Oriented Approach to Software
Engineering. http://www.toa.com/pub/net_ articals/motivation _article. txt

Biondo, S. J. (1990). Fundamentals of Expert Systems Technology: Principles
and Concepts. Norwood, NJ: Ablex Publishers.

Biggerstaff, T. J., and Pedis, A. J. (1989). Software Reusability. New York,
NY: ACM Press.

Biggerstaff, T. J.; and Richter, C. (1987). Reusability Framework, Assessment,
and Directions, IEEE Software 41-49.

Blissmer, R. H. (1991). Introducing computers: Concepts, systems and
applications. New York: Wiley and Sons.

Boehm, B.W (1981). Software Engineering Economics. Prentice Hall, Englewood
Cliffs, NJ.

Brown, Kyle (no date) Design Reverse-Engineering and Automated Design Pattern
Detection in Smalltalk. www2.ncsu.eduleos/info/tasuglkrownlthesis2.htm

Buchanan, B. G., & E. H. Shortliffe (1985). Rule-Based Expert Systems.
Reading, MA: Addison-Wesley.

Budinsky, F.J; Finnie, M.A.; Vlissdes, J.M and Yu, P.S (1996). Automatic code
generationfrom design patterns. IBM Systems Journal. V35, n2 (1996).
http://www.almaden.ibm.com/joumal/sj/budin

Busch, E. (1988). A CASEfor Existing Systems. Salem, MA: Language
Technologies, Incorporated.

Caldwell, B. (1994, Nov. 14). Software reuse comes of age. Information
Week, 501:122-124.

Carmichael, A. (1994). Object Development Methods. New York: SIGS
Publications.

Cawsey, Alison (1994). Databases and Artificial Intelligence 3 Artificial Intelligence
Segment. http://www.cee.hw.ac.uk/~alisonlai3notes/subsection2_ 4_2_2.html

Chen, D.l; Chen, David T.K. (1994). An experimental study of using reussable
software design framworks to achieve software reuse. Journal of Object­
Oriented Programming v7, n2 (May, 1994):56.

Chen, H. et al. (1994). Explaining and Alleviating Information Management
Indeterminism: A Knowledge-Based Framework. http://ai.bpa.arizona.edul
papers/ipm91 Ilistoffigures3 _ 2.html#SECTI ON0002000000000000000

Chen, R. W., & Prinz, F. B. A Cost-Benefit Model of Product Design for
Recyclability and its Application. IEEE Transactions on Computers,
1994, pp. 502-512.

Cho, Youngsuck, (1994). A Multi-Faceted Software Reusability Model: The
Quintet Web, The Department of Computer Science, Laouisiana
State University and Agricultural and Mechanical College.

192

Citrin, Wayne; McWhirter, Jeffrey D. (1995). Diagram Entry Mechanisms in Graphical
Environments. CHI '95 Proceedings. http://www.acm.org/sigchi/chi95/proceedings/
shortppr/wc _ bdy.htm

CMU Artificial Intelligence Repository Home Page (1996). Internet Publishers:
Author.

Coad, P., et al. Object Models: Strategies, Patterns and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

Codd, E. F. (1970). A Relation Model of Data for Large Shared Data Banks.
Communications of the ACM, v13, n6 (June, 1970):p377.

Cohen, Daniel I. A. (1991). Introduction to computer Theory. John Wiley & Sons, Inc.

Cohen, P. Rand Kjeldsen, R (1987). Information retrieval by constrained spreading
activation in semantic networks. Information Processing and Management
1987, v23, n4, Page 255-268

Cohen, Sholom G. et al (1992). Application o/Feature-Oriented Domain Analysis
to the Army Movement Control Domain(CMU/SEI-91-TR-28, ADA 256590).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University, 1992.

Compton, P. et al (1989). Maintaining an Expert System. In 1. Quinlan & J. Ross
(eds.), Applications 0/ expert systems, Vol. II, Addison-Wesley, 366-384.

Constantine, L. L. & Y ourdon E. (1989). Structured Design. Englewood Cliffs,
NJ: Prentice-Hall.

Day, M; Gruber, R; Liskov, S; A.C. Myers. (1995). Subtypes vs. Where Clauses:

193

Constraining Parametric Polymorphism. In the proceedings of OOPS LA '95. Austin
TX, October 1995. www.pmg.lcs.mit.edu

Davis, M; Sigal, R.; Weyuker, E. (1994). Computability, Complexity and Languages.
Fundamentals of Theoretical Computer Science, Second Edition, Academic Press,
New York, NY, 1994.

DES (no date). The Data Encryption Standard. raphael.math.uic.edu/-jeremy/crypt/
des.html

Diaz-Herera, Jorge L.; Cohen, Sholom and Withey, James (1996).
Institutionalizing Systematic Reuse: A Model-based Approach. Software
Engineering Institute, Carnegie Mellon University. (http://www.sei.cmu.edu)

Dixon, John D. (1967). Problems in Group Theory. Blaisdell Pub. 1967. QA 171 D59.

Downie, N., & Heath, R W. Basic Statistical Methods (5th ed). New
York: Wiley, 1984.

Endoso, Joyce (1992). Army center spearheads domain analysis. (so/tware
reuse in US Army). Government Computer News vII, n23 (Nov 9, 1992):71.

Esteva, Juan Carlos (1995). Automatic Identification o/Reusable Components. IEEE
1995

Ettel, R, Fingar, P. , & D. Read (1995). Shared Objectives: Object-Oriented
Information Systems. CIO, 8, 68-72.

Faris, C. (1995). Reuse Initiative. Andersen Consulting Home Page.
http://www.ac.com

FDR Manual. (1997). Formal Systems (Europe) Ltd. Failures-Divergence Refinement
FDR 2. User Manual, 1997. ftp.comlab.ox.ac.uklpublPackagesIFDR.

Finch, Steven (1996). Favorite Mathematical Constants. Research and
Development Team, MathSoft, Inc. (www.mathsoft.com)

Fischer, G. (1992). Domain-Oriented Design Environments in KBSE '92 Knowledge­
based Software Engineering Conference, IEEE Computer Society Press, page 204

Forslund, G. (1995, August). Toward cooperative advice-giving systems: A
case study in knowledge-based decision support. IEEE Expert, 1 0(4),

27-37.

Fox, Edward A.; Chen, QI Fan; Daoud, Amjad M. and Heath, Lenwood S. (1991).
Order-Preserving Minimal Perfect Hash Functions and Information
Retrieval. ACM Transactions on Information Systems, Vol. 9, No.3,
July 1991,281-308.

Frakes, W. B. and Gandel P. (1990). Representing Reusable Software, Information and
Software Technology, Vol. 32, No. 10, pp. 653-664.

Frakes, W. B., and Pole, T. B. (1994). An empirical study of representation
methods for reusable software components. IEEE Transactions on
Software Engineering, 20(8): 617-630.

Frakes, W. B.; Gandel, P. B. (1990). Representing reusable software. Information and
Software technology, v32 (Dec, 1990)

Freitag, Burkhard (1994). A Hypertext-Based Toolfor Large Scale Software Reuse.

194

Advanced Information Systems Engineering, 6th International Conference, CAiSE '94,
Utrecht, The Netherlands, June 1994. Springer-Verlag.

Frenzel, L. E. Crash Course in Artificial Intelligence and Expert Systems.
Indianapolis, IN: Sames Publishing Co, 1989.

Fritzson, Peter; Viklund, Lars; Herber, Johan (1995). High-Level Mathematical
Modeling and Programming. IEEE Software. VI2, n4 (July, 1995). p77

Frohn, Jiirgen; Lausen, Georg; Uphoff, Heinz. (1994).Access to Objects by Path
Expressions and Rules. VLDB 1994: 273-284. http://researchsmp2.cc.vt.eduIDB/db/
conflvldb/vldb94-273 .html

Gales, L., & D. Mansour-Cole (July, 1995). User Involvement in Innovation
Projects: Toward an Information Processing Model. Journal of Engineering
and Technology Management, 12(1-2), 77-109.

Gaska, Marilyn T. (1996). Reuse Lessons Learned from Architecture and
Building Systems Integration. Lora! federal Systems-Owego.
(www.lfs.loral.com).

195

Gehani, N. H.; Jagadish, H. V.; Roome, W. D. (1994). OdeFS: A File System Interface to
an Object-Oriented Database. VLDB 1994.249-260. http://researchsmp2.cc.vt.edul
D BI dbl conf/vldb/vldb94-249 .html

Gentleman, Robert (no date). The R Language. http://www.stat.math.ethz.chIR-manual/
funsl data.matrix.html

Giarratano, J., & G. Riley (1993). Expert Systems Principles and Practice.
Boston, MA: PWS Publishing.

Glen, Ron (1993). Common traits and reuse rates. I.T. Magazine v25, n9 (Sept,
1993):32.

Goble, T. (1989). Structured Systems Analysis through PROLOG. Englewood
Cliffs, NJ: Prentice-Hall.

Gold, D., and R. T. Plant (1990). Towards the Formal Specification of an
Expert System. Working Paper CIS/RTP/9012, CIS Dept, University of

Miami, Coral Gables, Florida.

Girardi, M. R.;Ibrahim, B. (no date). An approach to improve the effectiveness of
software retrieval. www.unige.ch/eao/wwwIROSA.papers/ISS93.

Gutowitz, Howard (1994). A Massively parallel Cryptosystem Based on Cellular
Automata. http://www.santafe.edul~hag/call

Hanink, Joe (1997). Function-Based Encryption. home.earth1ink.netl~ortech/fbeinfo.html

Harris, D. G. et al. (1990). Report on Computer Board Initiative on Knowledge
Based Systems. Sterling, UK: University of Sterling, Institute for Retail
Studies.

Hinchey, Michael G. (1995). Formal Development in CSP. McGraw-Hill, 12/95

Hislop, Gregory W. (1995). Reuse versus reusable. Information Week, n510
(Jan 16, 1995):67.

History of Mathematics (1995). Re-use and Abstraction. http://kalypso.cybercom.neti
-rbjones/rbjpub/matchs

Hoare, C .. A. R. (1985). Communicating Sequential Processes. Prentice Hall, 1985.

Holmes, Steve (1995). Finding Information about Library Functions.
C Programming. University of Strathc1yde Computer Centre.
(http://www.strath.ac.uklCC/Courses/NewCcourse/ccourse.html)

Humphrey, W. S. (1990). Managing the Software Process. New York: Addison­
Wesley.

Hutt, A. T. (1994). Object Analysis and Design: Description of Methods. Burr
Ridge,IL: Irwin.

IMSL, Inc. (1987). Library Reference Manual. Houston, TX.

IMSL, Inc. (August, 1989). Math/Library Quick Reference. Document Number
MALB-QRF-EN8909, Houston, TX .

196

Jackson, P. Introduction to Expert S Klein, M. Knowledge Based Decision
Support Systems: With Applications in Business. New York: Wiley, 1995.

Jagadeesan, Radha & Pingali, Keshav. (1991). A Fully Abstarct Semantics for a First­
Order Functional Language with Logic variables. ACM Trans. Lang. And Systems,
v13, n4 (Oct, 1991):577-625

Johnson, Jeff A; Nardi, Bonnie A.; Zarmer, Craig L.; Miller, James R. (1993).
ACE: building interactive graphical applications. Communications ACM, v36, n4
(April 1993), Pages 40-55

Johnson, Ralph; Foote, Brian. (1988). Designing Reusable Classes. Journal of Object­
Oriented Programming. SIGS, 1,5 (June/July. 1988),22-35.

Jones, Capers (1994). Economics of software reuse. Computerv27, n7 (July,
1994):106.

Jones, Roger Bishop (1995). Propositional Logic. http://www.rbjones.comlrbjpub/
logic/log003.htm

Kale L. V. (1996). The Chare Kernel parallel programming language and system.
Proceedings of the International Conference on Parallel processing. v.2
(Aug, 1990) p.17

Kang, Kyo C. And et al (1990). Spencer Feature-Oriented Domain Analysis (FODA)
Feasibility Study(CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, Pa.:Software
Engineering Institute, Carnegie Mellon University, 1990.

Keenan, B. T. (no date). www.cs.ac.uklUserlB.T.Keenaniprojectlknow.html

King, B. (October 27, 1993). Expert Systems in Manufacturing. School of
Computing and Information Systems, University of Sunderland. Occasional
Paper 93-1.

Kirk, R. E. (1978). Experimental design: Procedures for the Behavioral
Sciences. Belmont, CA: Wadsworth.

Klein, M. Knowledge Based Decision Support Systems: With Applications in
Business. New York: Wiley, 1995.

Kochen, Manfred (1984). Coding For Recording and Recal of Information.
Information Processing & Management, Vol. 20, No.3, 343-354.

Krueger, Charles W. (1992). Software reuse. (creating applications from existing
elements). ACM Computing Surveys v24, n2 (June, 1992):131.

KSL (Stanford, no date) http://www-ksl.stanford.edu/testfileslhtw/experimental­
ontologies/frame-ontologyIREFLEXIVE-RELATION.html

197

Kumar, Vive S. (1996). Personal Software Process in Meta-CASE CMPT 856 - Project.
http://www.cs.usask.ca/grads/vsk719/academic/856/projectlnode27 .html

Kuokka, D. (No Date) MAX: Meta-reasoning Architecturefor ''X''
krusty.eecs.umich.edu/cogarch2/specific/max.html

Landau, Susan et al (no date). Chapter 1: Information Protection in the Information Age.
http://info.acm.orgIREPORTS/ ACM _ CRYPTO _STUDY / _ WEB/ /chap l.html

Lenz, Manfred; Schmid, Hans Albrecht; Wolf, Peter F. (1987). Software Reuse through
Building Blocks. IEEE Software. v4 (1987)

Leong, L. H. S. (1992). Applications of Expert Systems in Manufacturing: A Case
Study. Computers in Industry, 18, 193-198.

Li, Shu-Xiang & Loew, Murray H. (1987). The quadcode and its arithmetic. ACM v.30
n.7 (July 1987), p.621-626

Maiden, Neil A.; Sutcliffe, Alistair O. Exploiting reusable specifications through
analogy. (Computer-aided software engineering tool support for software
specification reuse). Communications of the ACM v35, n4 (April, 1992):55

Manley, Kirk C. (1997). Composite Grid/Frame Reinforcementsfor Concrete
Structures. http://www.cecer.anny.mil/facts/sheetsIPD 13 .html

Mannino, Michael V. (1990). The Object-Oriented Functional Data Language. IEEE
Trans. On Software Engr. V16, nIl. (Nov, 1990): 1258

Marais, Johannes L (1994). Oberon System 3: designed with software reuse in
mind. Dr. Dobb's Journal v19, nIl (Oct, 1994):42.

Marcus, S., & J. McDennott (1989). SALT: A Knowledge Acquisition Language
for Purpose-and-Revise Systems. Artificial Intelligence, 39, 1-37.

Marlin, C. D. (April, 1995). Exploring the Role of the ProgrammingLlanguage in
an Integrated Software Development Environment. Presented at Workshop
on Research Issues in Software Engineering and Programming Languages.
Seattle, Washington.

Martin, J. (1990). Structured techniques: The Basisfor CASE. Englewood
Cliffs, NJ: Prentice-Hall.

Martin, J. (1983). Managing the Data-Base Environment. Englewood Cliffs,
NJ: Prentice-Hall.

Martin, J., & J. Odell (1993). Principles of Object-Oriented Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall.

Math77, Mathematical Subprogramsfor Fortran 77. Fortner Reserach LLC, 2rd
Printing November 1995.

Mattison, R., & M. L. Sipolt (1995). An Object Lesson in Management.
Datamation,41, 51-55.

198

Matuszek, David (1996). P and NP. http://www.netaxs.comipeople/nerp/automataip-and­
npl.html

McCarthy, John (1996). Mathematical Theory of computation. www.fonna1.stanford.­
edu/jmc

McClure, C. (1995, June). Reusefinds common ground. Software
Magazine, 15(6): 5-6.

McNaughton, R., & D. Patel (1992). A Framework for a Quality Management
Cycle for Expert System Development in a Prototyping Environment. In
Sunderland Advanced Manufacturing Technology. International Conference
on Manufacturing Technology, Proceedings 27-30.

Mili, Hafedh; Radai, Roy; Weigang, Wang; Strickland, Karl; and others.
Practitioner and Softclass: a comparative study of two software reuse
research projects. Journal of Systems and Software v25, n2 (May, 1994):147

Minsky, M. (1975). Aframeworkfor representing knowledge. In P. H. Winston, editor,
The Psychology of Computer Vision, pages 211 - 277. McGraw-Hill, New York

Mizoguchi, R., & H. Motoda (October, 1995). AI in Japan: Expert Systems
Research in Japan. IEEE Expert, 10(5).

Mitchell, Gail Anne (1993). Extensible Query Processing In An Object­
Oriented Database. Department of Computer Science, Brown University.

Moldovan, Dan I.; Wu, Chung-I (1988). Concise Papers. A Hierarchical
Knowledge Based System for Airplane Classification. IEEE Transactions on
Software Engineering, v14, n12, December 1988. (1829).

Montlick, Terry, (1997). What is Object-Oriented Software? www.softdesign.coml
software/objects.html

NAG, Ltd. (1986). Library Reference Manual. Oxford, England.

Navak, Gordon S., Jr.; Member, IEEE, Hill, Fredrick N.; Wan, Man-Lee and Sayrs,
Brian G. (1992). Negotiated Interfacesfor Software Reuse.
IEE Transactions on Software Engineering, Vol. 18, no. 7, July 1992.

Novak, Gordon S. Jr.; Hill, Fredrick N.; Wan, Man-Lee; Sayrs, Brian G.
Negotiated interfaces for software reuse. IEEE Transactions on Software
Engineering v18, n7 (July, 1992):646.

Novak, Gordon S. Jr. (1983). GLISP: A Lisp-based language with Data Abstraction.
A.I Magazine,v4,n3 (Fa111983). http:://www.cs.utexas.edulusers/novak/
aimag83.html

O'Brien, L. (1996). From Use Case to Database: Implementing a Requirements
Tracking System. Software Development, 4(2), 43-47.

O'Keefe, R. M., & D. Rune (1993). Understanding the Applicability of Expert
Systems. International Journal of Applied Expert Systems, 1(1), 17-27.

199

Olson, J. R, & H. Reuter (1987). Extracting Expertise from Experts; Methods for
Knowledge Acquisition. Expert Systems, Vol. 4(3), 152-168.

Orfali, R., & D. Harkey (1995). Object Component Suites: The Whole is Greater
than the Parts. Datamation, 41, 44-46.

Pearce, C. (1994). A Dynamic Hypertext Environment through N-Gram
Analysis. Ph.D. Dissertation, UMBC.

200

Peter (no date). Data Abstraction. http://www.cs.kun.nl/~peter88IPeterThesisCh5.html

Plant, R T. (1992). Expert system development and testing: A knowledge
engineer's perspective. Journal of Systems and Software, 19, 141-146.

Poulin, J.S.; Caruso, J.M.; Hancock, D.R. The business casefor software reuse.
IBM Systems Journal v32, n4 (Dec, 1993):567.

Practical Application of Small Expert Systems (1996). TOPS Exhibit #S-405.
NASA Exhibits. Internet page.

Price, R T.; Girardi, M. R (1990). A class retrieval tool for an object-oriented
environment, in Procs. 3rd Int. Conf. Technology on Object-Oriented Languages and
Systems, Sydney, 28-30 Nov. 1990.

Prieto-Diaz, R (May, 1993). Status Report: Software Reusability. IEEE
Software, 10(3).

Prieto-Diaz, R (1985). A Software Classification Scheme. Department of
Information and Computer Science, University of California at Irvine.

Prieto-Diazo R (1987). Classification of reusable modules, IEEE Software,
6(1).

Prieto-Diaz, R & P. Freeman. (January, 1987). Classifying Software for
Reusability. IEEE Software, 4(1), Jan 1987.

Prieto-Diaz, R (1991). Implementing Faceted Classificationfor Software Reuse, CACM,
vol. 34, no. 5, May 1991, pp. 88-97.

Purtillo, James. (1990). The Polylith software toolbus. Technical report CS-TTR-2469.
University of Maryland, Department of Computer Science and UMIACS, 3/90

Quantitative Data Systems (1996). Software Reuse: Establishing a Framework
of Reuseable Software. Internet Home Page (www.qds.com/qds.hom.page).

Quinlan, I., and J. Ross. (1989). Applications of expert systems. Volume
II. Reading, MA: Addison-Wesley.

Radding, Alan (1993). Not quite ready for prime time. (Object-oriented
programming) (includes related article on object-oriented databases,
definitions of objects, important trends and software reuse). Computerworld
v27, n24 (June 14, 1993):107

Ransom, K. J. & C. Marlin (April, 1995). Supporting Software Reuse within and
Integrated Software Development Environment. Proc. ACM SIGSOFT
Symposium on Software Reusability. Seattle, Washington, 233-237.

Ray, Garry (1992). Software reuse not a panacea; some firms pursue it as a
development goal; others question its viability. Computerworld v26, n51
(Dec 21, 1992):47.

Reid, Glenn (1994). Today's reuse recipe comes in three flavors. Computing
Canada v20, n4 (Feb 16, 1994):25.

Reuse Issues. (1993). ICSE 15 Parallel Session 2F. Baltimore, MD: ICSE.

Rhodes (no date). www/Juniata.edU/-Rhodes

Roth, F. H. (1984). The Knowledge Based Expert System: A Tutorial. IEEE
Computer, 17(9), 11-28.

201

Rowson, James; Sangiovanni-Vincentelli, Alberto (1997). Interface-based code design
weighs reuse. Electronic Engineering Times, n935 (Jan 6, 1997)

Rubinovitz, Harvey and Thuraisingham, Bhavani (1993). Design and
Implementation of a Query Processor for a Trusted Distributed Data Base
Management System. J. Systems Software, 1993; 21:49-69.

Salamon, W.J; Wallace D.R. (no date). Quality characteristics and Metricsfor
Reuseable software. hissa.ncsi.nist.gov/HHRF datal artifacts/Itdocl 5459/metrics.html

Salton, G. (1989). Automatic Text Processing: The transformation, Analysis and
retrieval of Information by Computer. Addison-Wesley, 1989.

Sander, Evelyn (1994). Groups Symmetry. http://www.cee.hw.ac.uk/~alisonlai3notes/
subsection2 4 2 2.html

Schlukbier, A. (1995, May 8). The future is reuse. Computerworld, 29(19):
77-78.

Schmidt, Coplien. D. (1995). Pattern Languages of Program Design. Addison Wesley

Schrage, Michael. (1995, August 21). Software: reuse it or lose it.
Computerworld, 29(34): 31-33.

Schwartz, Karen D. (1993). DOD resue libraries get linked today. (Department
of Defense project boosts software engineering efficiency). Government
Computer News vI2, nS (April 12, 1993):1.

202

SER (no date). Solutions for Software Evolution and Reuse. www.sema.es/projects/SER

Shai, Ben-Yehuda (no date). The Canonical 00 Framework Pattern. http://www.sela.
co.iI:SOSO/-shai/canon fw.htm

Skipjack. (no date). www.austinlinks.comlCrypto/skipjack-review.html

Slofstra, Martin (1995). Netron takes to the road to talk of frames and reuse.
Computing Canada v21, n9 (April 26, 1995):20.

Smith, A. (1992). A. Smith. Cache memories. ACM Computing Surveys. V14, n3.
Sep, 1992. p.473

Smith, D. (1992) KIDS: A knowledge-based software development in KBSE '92
Knowledge-based Software Engineering Conference, IEEE Computer Society Press,
page 204.

Smith, P. et al (1992). The Use of Expert Systems for Decision Support in
Manufacturing. Expert Systems with Applications, 4, 11-17.

Special Issue on Systematic Reuse (Sept., 1994). IEEE Software, 11(5).

Solderitsch, James (no date). Creating an Organon Intelligent Reuse of Software Assets
and Domain Knowledge. http://source.asset.comlstars/lm-tdslPapers/ cr-org! ancoat­
final.html

Srinivasan, P., & and Rama, D.V. (19S9, January). An Investigation of
content representation using text grammars. ACM Transactions on
Information systems, 11(1): 4S-53.

Stanford University (no date). www-ksl.stanford.edulKSL_Abstracts/KSL-93-6S.html

Stroustrup, Bjarne (1996). The C++ Programming language. Addision Wesly, 1996.

Sun Microsystems, Inc. (no date). Special Java Issue. http://www.tdmi.com/hottestOl0S/

Taylor, D. A. (1990). Object-Oriented Technology: A Manager's Guide.
Reading, MA: Addison-Wesley.

Teer, F. (1994). The Trend in Expert Systems Coverage in Business Schools
and Implications for People in Industry. International Journal of Applied
Expert Systems 2(3), 127-133.

Terlouw, J.P. (1997). Groningen Image Processing System. System for Astronomical
Image Processing. http://www.astro.rug.nl/~gipsy/gds/inputy.html

The Full Computing Reviews Classification Scheme (1990, January). ACM
Computing Reviews, 31(1).

Tibbetts, J., & Bernstein, B. (1995, March 27). Build on what's already
there: With patterns, developers don't always have to start from scratch.
Information Week, 520:126-128.

Todd, Daniel (1990). Code recycling: reuse of software can save on
development. Information Week, n270 (May 14, 1990):50.

Tracz, W. (1988). Software Reuse: Emerging Technology, Washington, DC:
IEEE Computer Society.

Turban, E. (1995). Decision support and expert systems: Management
support systems. Englewood Cliffs, NJ: Prentice-Hall.

203

University of Liverpool, (1997). Object Oriented programming. University of Liverpool,
1996. BST 1997. www.liv.ac.uk

Urban, M.L.; Chang, I. N. (1995). Information Architecture as a Frameworkfor reuse.
sw-eng.falls-church.va.us/reuseic/pubs/proccedings

Van Hom, M. (1986). An understanding of expert systems. New York:
Bantam Books.

Verena (no date). Comparision of Fortran 77, C, C++, and Fortran 90. http://csepl.phy.
orm.gov/pl/node2.html

Verstraete, (1997). System Decomposition. Revised: September, 1997.
www.smeal.psu.edu/misweb/systems/sycodeco.html#HIER

Virginia Center of Excellence for Software Reuse and Technology Transfer.
Reuse Adoption Guidebook, Version 2.0. (www.software.org).

Wasmund, M. (1993). Implementing critical success factors in software reuse.
IBM Systems Journal v32, n4 (Dec, 1993):595.

Weigret, T., & and Jang, H. C. (1992, December). A hybrid knowledge
representation as a basic of requirement of specification and
specification analysis. IEEE Transactions on Software Engineering,
18(2): 1076-80.

Welbank, M. (1983). A Review of Knowledge Acquisition Techniques for Expert
Systems. Martlesham Health: UK, British Telecom Research Laboratories.

Werth, J. S., & L. H.Werth (May, 1991). Directions in Software Engineering
Education. In Proceedings of Thirteenth International Conference on
Software Engineering.

Wexelblat, R. L., (1981). History of Programming Languages. Academic Press, The
history of Fortran. (www.csc.liv.ac.uk/~u4sdg)

White, A. P. (1995). An Expert System for Choosing Statistical Tests. New
Review of Applied Expert Systems, 1, 48-53.

Whitten, J. L. & Bentley, L. D. (1989). Systems Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

Wilkes, Maurice (1993). Communication of the ACM. V36, n7 (July, 1993). p21

204

Willis, P. J. (1994). ANSI C Programming. www.bath.ac.uk/~maspjwINOTES/ansi_c

Woolnough, Roger (1990). Esprit: let's reuse software. Electronic Engineering
Times, n620 (Dec 10, 1990):20.

Wyder, T. (1996). Capturing Requirements with Use Cases. Software
Development, 4(2), 37-40.

Xmath (no date). www.isi.comiProducts/MA TRIXxlTechspec/MATRIXxXmathi

Zimmerman, H. J. (1987). Fuzzy Sets, Decision Making, and Expert Systems.
Boston, MA: Kluwer Academic Publishers.

Annotated Bibliography.

Ang, T. S. L., Arnott, D. R., & P. O'Donnell (1995). Formal Problem Formulation
in the Development of Decision Support Systems. In the Proceedings of the
Pan Pacific Conference on Information Systems, Singapore, 179-182.

205

In the development of decision support systems, formal problem formulation is an
important concern, according to the authors in their report at the Pan Pacific Conference.
They point out the pitfalls of inaccurate problem formulation and provide guidelines for
effectiveness. They conclude that problem formulation invariably relies on logical,
detailed thinking processes, as based on tested approaches such as case-based reasoning.

Arnott, D. R., & P. A. O'Donnell (1991). What are Decision Support Systems? In D. R.
Arnett and P. A. O'Donnell (eds). Readings in decision support systems. Melbourne:
CISR, 309-322.

This article provides an in-depth definition with accompanying examples of decision
support systems in a large collection of readings on decision support problems, benefits,
and areas of concern. The authors note that these systems are used mainly where similar
decision processes are repeated, but where the information to decide upon differ. Typical
application areas include medical diagnosis, credit evaluation, and process control
systems.

Baker, Rajiv D.; Kauffinan, Robert J. and Zweig, Dani (1994). Automating
output size and reuse metrics in a repository-based computer-aided
software engineering (CASE) environment. IEEE Transactions on Software
Engineering, Vol. 20, No.3, March 1994:169.

Researchers describe three reuse metrics: leverage, value, and classification, but continue
to erroneously define reuse as the "use" of a component and include repeatedly "using" a
component within a team (external reuse is defined as software from other applications).
The classification metric differentiates between internal and external reuse. mainstream
effort in software reuse are ignored. The best part of the article comes in the appendix in
which the authors provide an excellent summary of how to calculate function points.

Baker, Rajiv D.; Kauffinan, Robert J. (1991). Reuse and productivity in
integrated computer-aided software engineering: an empirical study. MIS
Quarterly vIS, n3 (Sept, 1991):375.

In this assessment of reuse on productivity, the focus is on reuse in integrated computer­
aided software engineering. A number of companies are included in the analysis. A later
paper by the same team raises the issues to a higher level. They concluded that few
companies know what programs are in their current inventory. Even less have solid
productivity measurement systems in place to monitor systems development efforts.

Baxter, Ira D. (1992). Design maintenance systems. Communications of the ACM
v35, n4 (April, 1992):73.

In Baxter's view, efficient design maintenance systems must be in place for system
success. There are not as many design issues in expert systems as there are in neural
networks. Fewer choices are available to represent knowledge. In neural networks a
series of decisions must be made on system structure. Designers must determine the
number oflayers, the type of connectivity, the method oflearning, and learning
parameters. A number of other design and maintenance issues are reviewed.

Benoit, L. Lemaire & J. Moore, (1994). Human Factors in Computing
Systems. Boston: Allyson & Bacon.

206

A major point in the book is that human factors have not been totally considered in
current computing programs. Experts often have the knowledge but do not know how to
put it into a workable form. Using shells taking into account human factors has been less
rewarding, but can overcome problems because they contain the explanation generator
and inferencing code. Experts and the developer need only enter the knowledge base
rules and customize the user interface. A number of other issues are discussed in the
book.

Berry, C., & D. E. Broadbent (1986). Expert Systems and the Man-Machine
Interface. Expert Systems, 3(4), 228-231.

The authors define expert systems as computer programs that have been constructed in
such a way that they are capable of functioning at the standard of human experts in given
fields. They briefly discuss the need for improved user interfaces to effectively use
expert systems, noting that man-machine interfaces have improved over time. They also
point out that the process of collecting knowledge remains a time-consuming task..

Berry, C., & D. E. Broadbent (1987). Expert Systems and the Man-Machine
Interface. Part Two: The User Interface. Expert Systems, 4(1), 18-27.

This is a continuation of the article cited above. In this section, the authors thoroughly
review problems associated with user interfaces. They explain that interfaces are the
user's means of communicating with the system and tend to use a pseudonatural
dialogue. Full natural-language interfaces using a syntax close to the user's native
language are largely a future possibility.

Biggerstaff, Ted J. (1994). The Library Scaling Problem and the Limits o/Concrete
Component Reuse. Proceedings of the 3rd International Conference on Software
Reuse, Rio de Janeiro, Brazil, 1-4 November 1994, 102-109.

207

This is a well-written paper describing issues surrounding growing the stereo-typical
reuse library of a limited number of small components to one with larger and more
components. The researcher describes techniques to abstract variations of components
such as variable macros, parameterized types, and module interconnection languages,
among others. He concludes from his study that Draco and P++ seem to have taken the
best approach.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications.
Reading, MA: Addison-Wesley.

Grady Booch suggests that the discipline of object-oriented technology will soon give
rise to a marketplace of reusable software components that can be assembled into robust
and scaleable software solutions. He provides descriptions of 0-0 design and general
applications. This book builds on his previous works discussing software engineering
with Ada. Unfortunately, no reusable software component marketplace has yet to arise.

Boose, J. H., & J. M. Bradshaw (1987). Expert Transfer and Complex Problems:
Using AQUINAS as a Knowledge Acquisition Workbench for Knowledge­
Based Systems. Journal o/Man-Machine Studies, 27, 167-179.

Complex problems associated with transfer of expert knowledge is the focus of this
article. Bottlenecks are discussed. Conceptualization tools are noted to support domain
elicitation and owe their origin to psychological theories or repertory grids and card
sorting techniques. Examples cited include AQUINAS, a successor to the Expertise
Transfer System which has a broader scope of functionality. Use of AQUINAS is
recommended.

Borgatta, E. F., & G. W. Bohmstedt (1980). Sociological Methodology. 2nd ED.
San Francisco, CA: Jossey-Bass.

This represents a well-organized, clearly written, and practical basic primer for research
design and methodology. The work seeks to introduce the basic tools of research by
explaining the various research techniques and methodologies. Numerous examples are
provided. Included are various types of study designs and methods of statistical analysis.
The authors also provide guidelines for collecting study and research data.

208

Bose, Ranjit. (1995). Organizational Computing, Coordination, and Collaboration: An
Expert Systems Framework. New Review of Applied Expert Systems, 1 (1), 27-32.

This paper illustrates design and construction of an automated group support system
using expert systems technology. Software framework automates collaborative
organizational processes, based on augmenting human members with computerized
assistants, called intelligent agents. Framework organizes intelligent agents to match the
human group. Designed using 0-0 technology; implemented using logic programming
language, Prolog2.

Boyd-Williams, Michael. (1993). Expert System Support/or Object-Oriented Database
Design. International Journal of Applied Expert Systems, 1(3): 91-96.

Reports on the development of the Object Design Assistant (ODA), an expert system for
providing intelligent assistance in design of structural aspects of object-oriented
databases. The purpose of ODA was to allow a user to design the database without
having extensive knowledge. Tool illustrated that it was effective. Demonstrates
practical application of expert system techniques. Concludes with discussion of areas for
future development.

Bradley, John, & Gupta, Uma G. (1995). A Classification Framework/or Case-based
Reasoning Systems. New Review of Applied Expert Systems, 1 (1).

Case-based reasoning, a powerful approach to solving problems that require experience,
intuition, and judgment, has been discussed as if all case-based systems are alike. This
paper presents a framework, useful for differentiating case-based reasoning systems into
one of four categories. Authors believe that this categorization will assist the developers
in planning, since there are common characteristics to the systems in each category,

Brown, Carol V., Ph.D., and Bostrom Robert P., Ph.D., (1990). Choosing the
Right approach/or End-User Computing Management. Information
Executive, Fall 1990, 30-33.

The right approach for management of end-user computing is essential if a both larger
systems and subsystems are to function adequately, according to the report. Selecting the
right approach is essential to responding effectively and meeting the needs of company
executives. They describe a number of approaches that have been used and provide
several techniques as well as their view of the better method.

Chandrasekaran, B. (1986). Generic Tasks in Knowledge-Based Reasoning:
High-Level Building Blocks for Expert System Design. IEEE Expert, 1,
23-30.

209

This report presents an excellent review of generic tasks that should be associated with
knowledge-based reasoning. In his view, reasoning is often based on common sense and
logic. As noted in other studies, good mental models are necessary for knowledge-based
reasoning. The author notes that certain repertory grids and card sorting tools have been
developed to handle specific categories of problems known as generic tasks. He provides
an example of a trouble-shooting tool called TDE.

Chapman, A. J. (1994). Stock Market Trading Systems through Neural
Networks: Developing a Model. International Journal of Applied
Systems, 2(2), 1-8.

This article explores the use of neural networks for stock market trading application,
noting that neural networks serve as strong predictive models to uncover complex
relationships. The author provides definitions, reviews the impact of neural networks, and
presents an example of how neural networks can be used as a tool for analyzing market
share. Trading systems are defined in the context of stock market trading and forecasting.

Chauvet, Jean-Marie (1995). Maintain your software: efficient use and reuse of
object-oriented technology. Software Development v3, n8 (August,
1995):34(5).

The focus of this paper is on the efficient use and reuse of 0-0 technology in maintaining
software. The author believes that 0-0 programming and languages give users a better
chance to reach their goal. Object-oriented design focuses on abstractions (classes), which
seem to be practical units for reusable components. Also, the improved techniques on
data-hiding, genericity and the use of inheritance available in current object-oriented
languages are better suited for the needs of reusable software components.

eMU Artificial Intelligence Repository Home Page (1996). Internet Publishers:
Author.

The Internet posting discusses MIKE (Micro Interpreter for Knowledge Engineering), a
full-featured, free, and portable software environment designed for teaching purposes.
MIKE forms the core of an Open University course on Knowledge Engineering, written
in Prolog. Features include: forwardlbackward chaining rules with user-definable
conflict resolution strategies, a frame representation language with inheritance, and
automation of "how" explanations.

Collantes, Lourdes Y. (1992). Agreement In Naming Objects and Concepts
For Information Retrieval. Graduate School-New Brunswick Rutgers, The
State University of New Jersey.

210

This represents a very readable layman's book detailing current concepts and approaches
for the standardization of naming objects across projects. In the author's view, this is
critical for accurate information retrieval. The move from reuse to object-oriented
technology is reviewed. The need for a standardized library of objects, one which can be
shared, is discussed. Author cites several groups addressing the problem.

Comaford, Christine, (1995). Stop obsessing over reuse - just do it already. PC
Week v12, nlO (March 11, 1995):20.

Comaford, a major contributor to PC Week, believes that developers spend so much time
obsessing about the negative and positive aspects of reuse that they stop adding business
value. The balance between meeting business needs and disciplined development is
always tricky, she warns. Her advice is that IT management should not get obsessed. In
order to realize the potential and cost effectiveness of reuse, just move forward and use it.

Constantine, Larry (1992). Rewards and reuse. (the benefits of reusing
software designs and models). Computer Language v9, n7 (July, 1992):104.

The potential benefits of reuse of software components is the focus of this article. Author
attempts to consolidate views and provide a clear and non-subjective assessment in a
comprehensive report. Rewards associated with reuse specifically of modules of software
design as well as models are detailed. Realization of the such benefits depends upon the
degree to which new modes of reuse may be successfully substituted for selection.

Copley, M. G. (1994). An Expert System to Aid Probation Officers in Sentence
Recommendation. International Journal of Applied Expert Systems, 2(1),
42-55.

Probation Officers are required to make sentence recommendations for some offenders.
The decision-making necessary to make recommendations matches the criteria for expert
system development. This paper describes an expert system that performs this task,
points out the improvements that using the system makes possible, and suggests research
and evaluation of the system's effects on its environment.

Crestani, F. (1994). Domain Knowledge Acquisition for Information Retrieval
using Neural Networks. International Journal of Applied Expert Systems,2(2).

211

The results of experiments investigating neural network use in the learning engine of an
CIRS information retrieval system are presented in this paper. CIRS uses the learning!
generalization capabilities of the Black Propagation algorithm to acquire and use
application domain knowledge in the form of sub-symbolic knowledge representation.
CIRS architecture is described. Experiments on three learning strategies are reported.

Cullen, J., & A. Bryman (August, 1988). The Knowledge Acquisition Bottleneck:
Time for Reassessment? Expert Systems, 5(3),216-225.

Examines resistance to expert systems technology which derives from the idea that expert
systems would replace personnel. Focuses on knowledge acquisition problems, perceived
as a major bottleneck to development. Survey concludes that knowledge acquisition
viewed as difficult and time-consuming is unjustified. Attitudes based on inappropriate
techniques. Acquisition accounted for only a small portion of development time.

Deng-Jyi, Chen; Lee, P .J. (1993). On the study of software reuse using reusable
C++ components. Journal of Systems and Softwarev20, nl (Jan, 1993):19.

Although the study of software reuse using reusable C++ components is the focus of this
report, other problems are reviewed. It is noted that current object-orientation has largely
been focused on 0-0 programming; more code is still created instead of effectively
reusing existing objects and classes. Much C++ code takes no account of the concepts of
object reuse. Management still tries to measure productivity by lines of code written.

Depompa, Barbara, & John Foley. (1996). IBM to HELP Data Miners. Information
Week, 5743, 32.

This short article reports on the efforts of IBM to provide users with better tools to
analyze information contained in company large data warehouses. IBM offers an object­
oriented programming environment to simplify working with databases running on
parallel-processing computers. Many believe 0-0 technology is the answer to reuse.

Dologite, D. G., & R. J. Mockler (1994). Designing the User Interface of a
Strategy Planning Advisory System: Lessons Learned. International
Journal of Applied Expert Systems, 2(1), 23-30.

212

Uses a framework of three central user interface issues as basis for examlmng
knowledge- based expert system, the Strategy Planning Advisor (SPA), an experimental
system intended to support managers with strategic business unit planning. User
interface design, anchored in human factors research, doubled development time and cost.
The authors report on the design process and lessons learned.

Due, Richard. (1995). The Economics of Reuse. Information Systems Management, 12,
70-78.

Reports on economics of reuse. Code reuse has been a failure at application level. Data
reuse is limited at the enterprise/industry level. Techniques of software engineering
designed to promote code reuse are sound; the problem has been with implementation
and support. Concludes that designers should consider the reuse of existing designs and
requirements instead of trying to promote code reuse. This shift in emphasis involves
thinking about systems in terms of frameworks and patterns.

Edwards, Stephen H. (1996). Good Mental Models are Necessary for
Understandable Software. Department of Computer and Information Science,
The Ohio State University. (www.cis.ohio-state.edu)

Edwards believes conventional programming languages still do little to help
programmers develop good mental models of software subsystems. Psychological insight
has only been informally applied. He proposes that modules should not be merely
syntactic units, but must' 'mean" in the sense that they have denotations in the semantic
framework that are not hierarchically constructed from meanings of implementations. He
suggests a model for those who reason about interacting software parts collections during
design.

Eichmann, David and Irving, Carl (1996). Life Cycle Interaction in Domain/
Application Engineering. Repository Based Software Engineering Program,
Research Institute for Computing and Information Systems, University of
Houston-Clear Lake. (rbse.jsc.nasa.gov).

The importance of life cycle interaction in domain and application engineering is
reviewed. Designers are only now beginning to understand that by bringing software
reusability issues to the first phases of the software life-cycle they can greatly enhance the
impact of software reusability. In their view, by studying the designs of many systems
within a particular application domain, programmers are finding out that designs are very
reusable.

Endoso, Joyce (1994). Lookfor a new version of the Defense Software
Repository System. The Army Reus Center is converting its DSRS version
3.5. Government Computer News v13, n6 (March 21, 1994):77.

213

Describes a new version of the Defense Software Repository Systems, an automated
repository for storing and retrieving reusable assets. DSRS serves as a central collection
point for quality assets and facilitates software reuse. It will now will support storage and
retrieval of other than Ada-related products. It uses the ORACLE database management
system and operates on the UNIX platform. DSRS will provide an on-line help facility,
dependency information, session maintenance, and user suggestion facility.

Endoso, Joyce (1992). Business issues impede software reuse. (includes related articles
on standard Army Management Information Systems, software reuse terminology).
Government Computer News vII, n23 (Nov 9, 1992):l.

In Endoso's view, getting programmers to write good reusable code is an educational
process. But besides technical problems to address, other connected issues must be
considered: business issues of a military, political, legal, financial, and managerial
nature. She outlines a number of general issues that continue to impede software reuse
for Army MIS development. She includes related articles and suggests approaches to
resolution.

Faris, C. (1995). Reuse Initiative. Andersen Consulting Home Page.
(http://www.ac.com).

Farris discusses the Andersen Consulting Center, which focuses on developing
technology solutions that enable reuse. Anderson now leads an effort to raise the level of
reuse within the firm, using existing technology. Their goal is to provide as many
leverage points as possible, to allow firms to step up to reuse in a planned manner, and to
leverage existing knowledge on how reuse should best be accomplished. Four activities
are described.

Fowler, F. J. (1984). Survey Research Methods. Newbury, CA: Sage
Publications.

The author presents a thorough review of basic survey research methods. Included are
descriptions of research methodology, testing procedures, sample population selection
and basic survey techniques. Theory building, the research process, and measurement
concepts are also discussed. This work provides support for various types of
methodology such as that selected by the present study.

Gentle, C. R., O'Neil, M., & J. V. Sealey (1995). Nominal Group Technique as a
Method of Knowledge Elicitation for Expert Systems: A Case Study Involving
Assessment of Undergraduate Projects. New Review of Applied Expert Systems, 1,
54-67.

214

This was a case study to discover how Nominal Group Technique (NGT) can be used to
gather data as part of knowledge elicitation involved in expert system development.
Adopts methodology for interviewing large numbers of students and analyzes responses
to project performance. Data were incorporated into an expert system for assessing
progress. Concludes that NGT provides a simple method of gathering knowledge from
large numbers of low grade experts and putting into a form directly suitable for expert
systems.

Griss, M. L. (1993). Software Reuse: From Library to Factory. IBM Systems Journal,
32(4),548-551.

The report provides a good, all-around discussion of software reuse issues and problems,
as well as the problems associated with moves of standardized library components to the
industrial environment, in terms of real-world application. Identifies the potential
benefits to be realized from implementing reuse.

Grudin, J. (1990). Groupware and Cooperative Work: Problems and Prospects. In B.
Laurel, The Art of Human-Computer Interface Design. Reading, MA: Addison­
Wesley, 171-185.

The first half of the chapter describes problems that have led to expensive and repeated
failures of Group Ware development efforts, after providing a thorough explanation of
uses and reuses. In the second half, the author describes a groupware success story, which
demonstrates the importance of focusing the analysis on the work setting. The chapter
concludes that this focus provides a basis for speculating about the future.

Hajsadr, S. M., & A. P. Steward (1990). An Approach to Knowledge Elicitation of
Manufacturing Skills and Production Behavior in Industrial Environment.
Proceedings of UKlT90 Conference, IEE, London.

Reviews approaches to knowledge elicitation of manufacturing skills. Believes another
use for expert systems arises from lack of communication between worker teams
operating on different shifts. Approach advocates storing knowledge in the system from
one shift and passing it to the next. Concludes prototype system using HyperCard with a
hypertext interface has increased production behavior and efficiency in the industrial
environment. Discusses other ways to elicit knowledge from experts.

Hodges, Julia E. and Cordova, Jose L. (1993). Automatically Building a Knowledge
Base through Natural Language Text Analysis. International Journal of
Intelligent Systems, Vol. 8, 921-938.

215

An excellent review of the need to build a knowledge base through natural1anguage text.
Pressure to provide this attribute gave rise to this report. States that current systems are
expected to acquire natural human language; research has focused on systems that permit
access to databases by queries posed in natural language. Restricting systems to a limited
domain allows developers to simplify the linguistic processing problem.

Holden, P. (1992). Expert Systems in Manufacturing. Part 1. A User's Perspective on
Expert Systems Innovation. Knowledge-Based Systems, 5(2).

Surveys resistance to expert system technology in the manufacturing industry. Found
that, although companies had an understanding of the benefits, many (60%) had not
ventured beyond the provision of a prototype demonstration model. Of those not
interested, many confessed a lack of awareness, believed expert system technology was
of no use to them, felt it was too costly, or believed the problem of domain was too
complex. Resistance from both experts and potential users was shown as another barrier.

Huff, Sid. (1993). Object-Oriented Programming. Business Quarterly, 58, 85-90.

Article discusses new method of building/maintaining computer software, object-oriented
programming. Traditional view first explained: software development emulates
traditional engineering work, emphasis is placed on standardized approaches, and
software is reused wherever possible. But software is hard to reuse. Once a full library of
objects has been defined, building software systems can be done very rapidly, but
developing the library in the real world is a major undertaking.

Ignizio, James (1991). Introduction to Expert Systems: Development and
Implementation of Rule-Based Expert Systems. New York: McGraw-Hill.

This book is concerned with knowledge-based models and their proper implementation
from a decision-making perspective. Also covered are knowledge acquisition, inference,
and validation. The work is especially good for students in fields other than computer
science, such as business and engineering. There are exercises at the end of every
chapter, clear and concise explanations, and good examples are also provided.

216

Johansen, R. (1989). User Approaches to Computer-Supported Teams. In M. Olson,
Technological Supportfor Work Group Collaborations. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1-32.

Johansen provides a tour of seventeen different approaches to using computers and
component program parts to support work teams, showing that the field of technological
support for collaboration is still emerging. He shows how many seemingly unrelated tools
can be labeled as team support. Predictions are made of how the field will develop, what
its new and reused products will be, and who will be users and vendors.

Jones, Capers (1994). Economics of software reuse. Computer, v27, n7 July,
1994:106.

The author asks how much can be saved by using pre-existing or modified software
components when developing new software systems. With the increasing adoption of
reuse methods and technologies, this question becomes critical. Directly tracking actual
cost savings is difficult. States that a worthy goal would be to develop a method of
measuring savings indirectly by analyzing the code for reuse of components.

Klinker, G., Linster, M., & Yost, G. Cooperative systems for workgroups.
IEEE Expert, 1995, 10, 37-44.

Central problems that arise when building cooperative expert systems are the focus of this
report. Authors note recent shift from traditional expert systems to cooperative systems
for workgroups. They discuss the need for consideration of the workplace'S contextual
information to create successful applications, rather than the development of applications
to perform tasks in isolation. They conclude that traditional expert system development
methods are insufficient to create effective cooperative systems.

King, James A. (1995). Software reuse and knowledge reuse. AI Expert vIO, n4
(April,1995):13.

A detailed comparison and contrast of software and knowledge reuse is provided by this
author. Differences associated with software and knowledge reuse are explored in depth.
The article provides a well-written assessment of both software and knowledge reuse,
noting the benefits and drawbacks of reuse associated with each.

217

Kirk, R. E. (1978). Experimental design: Procedures for the Behavioral Sciences.
Belmont, CA: Wadsworth.

Major components of experimental design are discussed in detail in this book. Represents
a comprehensive examination of survey and experimentation. Provides numerous
examples of all phases of design, including: types, research steps, population samples,
and other aspects of method. Included are explanations of various statistical and
quantitative approaches and techniques. Statistical formulae and application reasons are
reviewed.

Maiden, Neil A.; Sutcliffe, Alistair G. Exploiting reusable specifications through
analogy. (Computer-aided software engineering tool support for software
specification reuse). Communications of the ACM v35, n4 (April, 1992):55

Problem-scooping is an important concern. The development of computer-aided software
engineering tool support for reuse has focused on knowledge-based CASE tools. Little
thought has been given to the practical problem of initially eliciting such information.
Analogical specifications are discussed in both technical and methodological terms. The
authors believed it can provide relevant domain models with similar boundaries to assist
problem-scooping. A report was provided with an in-depth definition of an intelligent
reuse advisor (Ira). Accompanying examples also included in the report was the problem
identifier, the analogy engine, and the specification advisor.

Mili, Hafedh; Radai, Roy; Wei gang, Wang; Strickland, Karl; and others.
Practitioner and Softclass: a comparative study of two software reuse
research projects. Journal of Systems and Software v25, n2 (May, 1994):147

The article provides an excellent discussion for software reuse issues as well as problems
associated with the technical aspects. It includes a detailed examination of reuse methods
and technologies. Some of the topics are building reusable software, repackaging
existing software (to make it more readily reusable), and providing support for software
development with reusable components. The technical aspects among all other
surrounding factors in the development of software reuse is equally important to its
success.

Montgomery, George (1992). Matermind: Improving The Search. AI Expert, April
1992,41-47.

This paper illustrates an in-depth technical search into the mastermind game. It focuses
on the searching problems the game represents and shows how to minimize number of
plays needed to finish. An assessment of the impact of a state-space search and examples
as well as definitions will be provided. Some of the major points will be organizing the
state-space into a tree hierarchy, exploring state-space size, transforming a parent node
into its child nodes, and defining suitable predicates for testing branch nodes.

218

NASS-38035 (1994). Automated Information Mining of Large Software Collections for
the Extraction of Reusable Code. NAS5-38035, July 21, 1994.

The technique of infonnation mining - the search for relationships and global patterns
that exist in large databases but are hidden among the vast amounts of data - has enjoyed
a recent resurgence of interest as databases grow increasingly larger in today's
companies. The report discussed the techniques of automation pertinent to large software
collections for the purpose of reusable code extraction. It explains major problems and
the need for intelligent search strategies.

Perry, William E. (1992). For DOD software reuse to succeed, it must be easy.
Government Computer News vll, n22 (Oct 26, 1992):22.

The Department of Defense (DoD) Center for Software Reuse Operations is pursuing a
comprehensive reuse initiative. This is a direct result of rapid growth in software
programs and increasing developmental costs. According to the Perry, the DoD center
has a collection of 1,531 reusable software modules that contain 2.2 million lines of Ada
and Cobol code. The reuse center provides 50% of programmer needs from reusable
elements. The best part of the article is when the author suggests that the search system
should allow key words and phrases search. This will enable users to identify a small
group of modules to satisfy specific needs.

Seybold, Patricia (1993). The road to reuse. (advantages to reusing software).
LT. Magazine v25, n6 (June, 1993):12.

Reuse methods can be very appealing due to the potential for significant cost savings
although not all businesses are adopting this technology. An author suggests in
promoting reuse software, one must show how it will reduce corporate computing costs.
A technique which must considered in development is building software systems from
common reusable components. The best part of the article comes in with a suggestion the
modules should be able to link to other modules to create new applications. An
intelligent system must exist in these modules to assist in interface.

219

Appendix A

Numbers Of Modules From GAMS Are Provided By Boisvert Who Was
Personally Contacted On 10114/97.

From: Dr. Ronald F. Boisvert
Leader, Mathematical Software Group
Editor-in-Chief, ACM Transactions on Mathematical Software

Date: Tue, 14 Oct 9708:07:43 EDT
From: boisvert@cam.nist.gov (Ronald F Boisvert)
Message-Id: <9710141207 .AA04779@fs3 .cam.nist.gov>

Package Number of Modules

A 16
AMD 6
AMOS 16
BESPAK 1
BIHAR 12
BLACS 4
BLAS 24
BLASI 42
BLAS2 66
BLAS3 30
BMP 1
C 8
CBLAS 136
CLAPACK 598
CMLIB 739
CONFORMAL 5
CONTIN 2
COULOMB 1
CRA YFISHP AK 23
DATAPAC 169
DATAPLOT 87

220

DERIV 1
DIERCKX 29
DIFFPACK 3
DISSPLA 1
EISPACK 70
ELEFUNT 20
ELLPACK 7
ENVELOPE 1
F90GL 1
FFTPACK 19
FISHPACK 19
FITPACK 1
FN 187
FORMAT 1
FORTRAN 2
FP 3
GO 12
GRAPHICS 5
HBIO 1
HOMPACK 7
IML++ 1
IMSLM 1049
IMSLS 752
ITPACK 4
JAKEF 1
JCAM 4
LANZ 1
LAPACK 598
LASO 4
LINALG 23
LINPACK 176
MA28 7
MACSYMA 1
MANPAK 2
MAPLE 1
MATHEMATICA 1
MATLAB 1
MINPACK 11
MISC 16
MPFUN 4
MV++ 1
NAG 2148
NAPACK 140
NASHLIB 19
NCAR 1

221

NLR 4
NMS 52
NSPCG 1
ODE 30
ODEPACK 6
ODRPACK 2
OPT 13
PARANOIA 6
PDELIB 3
PDES 2
PLTMG 2
PORT 659
QUADPACK 58
RANDOM 5
SAS 40
SCALAPACK 4
SCILIB 169
SCRUNCH 9
SEISPACK 70
SLATEC 899
SMINPACK 11
SODEPACK 6
SPARSE 1
SP ARSE-BLAS 4
SP ARSELIB++ 1
SPBLASC 1
SPECFN 3
SPECFUN 16
SPM MORPH 1
STARPAC 145
STOPWATCH 1
TEMPLATE 1
TEMPLATES 6
TOMS 268
TRANSFORM 1
VANHUFFEL 3
VECLIB 118
VFFTPK 13
VFNLIB 16
VOLKSGRAPHER 1
VORONOI 2
Y12M 3

Appendix B

Reusability Tally Sheet:

Components Classified by the Researcher as Reusable

System Number: _______ _

Size and Number of Components Selected: ______ _

Specific System Component Selected: _________ _

1. There are not too many answers to a question. Yes No

2. There are not too many questions. Yes No

3. A shortcut has been provided. Yes No

Amount of time it took to retrieve the selected component for each system identified
above.

Time:
--------------~

222

223

Appendix C

Recording Sheet:

Components Classified by the Guides-Search as Reusable

System Number: (identify the system number and name here)

Size and Number of Components Selected: (list size and number)

System Component Selected: (name the component)

Time taken by Guides-Search to retrieve the selected component for each system
identified above.

Time: ----------------------------

	Nova Southeastern University
	NSUWorks
	1998

	A Simplified Faceted Approach To Information Retrieval for Reusable Software Classification
	Victor Allen Nguyen
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1478177370.pdf.6v00P

