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Abstract

Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common
genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure
have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration
for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25
cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets
(a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we
tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected
patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele
of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6610211). However, restricting
analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of
lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide
significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no
evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5D32 homozygosity). Thus, these data suggest that
genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
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Introduction

Variation in infection susceptibility and severity is a hallmark of

infectious disease biology. This natural variation can be attributed

to a variety of host, pathogen and environmental factors, including

host genetics. Several genome-wide association studies (GWAS) of

HIV-1 outcomes have been performed primarily to assess the

impact of human genetic variation on plasma viral load and/or

disease progression [1,2,3,4,5,6,7,8,9,10,11]. These studies have

confirmed the key role of major histocompatibility complex

(MHC) polymorphisms in HIV-1 control, with a minor impact

of variants in the CCR5 gene region.

A smaller number of GWAS have also investigated host genetic

influences on HIV-1 acquisition using samples of individuals with

known or presumed exposure to an HIV-1 infected source

[12,13,14,15,16]. With the exception of CCR5D32 homozygosity

(known to explain a proportion of HIV-1 resistance in Europeans

[17]), no reproducible associations with increased or reduced

HIV-1 acquisition have been observed. Additionally, several

variants reported to influence HIV-1 acquisition by candidate

gene studies have either failed to be replicated or lacked sufficient

investigation as to be considered confirmed.

We here describe a large study of human genetic determinants

of HIV-1 acquisition, performed under the auspices of the

International Collaboration for the Genomics of HIV, a collab-

orative research effort bringing together the HIV-1 host genetics

community. By collecting for the first time all available genome-

wide single nucleotide polymorphism (SNP) data on HIV-1

infected individuals and comparing them with population-level

control data sets we sought to uncover common genetic markers

that influence HIV-1 acquisition.

Results

Association testing and meta-analysis
Genome-wide genotype data were collected from 25 cohort

studies and clinical centers (listed at the end of the paper and in

Note S1 in Text S1). We obtained a data set of 11,860 HIV-1

infected individuals genotyped at multiple centers using several

platforms (Table S1 in Text S1). The present analysis focused on

the subset of these individuals that are of European ancestry as

assessed by principal components (PCs) analysis (see methods).

For two of the genotyping centers, matched HIV-1 uninfected

controls were available. For the remaining samples, large

population-level control data sets were accessed from the

Illumina Genotype Control Database (www.illumina.com) and

the Myocardial Infarction Genetics (MIGen) Consortium

(genotyped using the Affymetrix 6.0 platform) [18]. Sample-

level quality control and case-control matching (Figure S1 in

Text S1) resulted in six non-overlapping data sets including

6,334 HIV-1 infected cases and 7,247 controls (Table S1 in Text

S1). After imputation, each variant was individually tested for

association with HIV-1 status by logistic regression including

PCs to correct for residual population structure, under additive

and recessive genetic models. Association results were then

combined across data sets.

Restricting to variants observed in all six data sets with .1%

frequency and a minimum imputation quality of 0.8 in at least 2

groups, approximately 86106 common variants (SNPs and indels)

were tested. The overall distribution of p-values was highly

consistent with the null hypothesis (l1000 = 1.01) suggesting that

the matching strategy was successful in minimizing inflation

(Figure 1a). We observed 11 SNPs with combined evidence for

association passing the genome-wide significance threshold

(p,561028, Figure 1b) under an additive genetic model. All

genome-wide significant SNPs were located in the MHC region,

centered on the class I HLA genes HLA-B/HLA-C (Figure 2a and

Table S2 in Text S1). The top SNP, rs4418214 (p = 3.6610211,

odds ratio (OR) for the C allele = 1.52) has previously been

associated with control of HIV-1 viral load [8], with the C allele

tagging the classical HLA-B alleles 57:01 and 27:05, both known to

associate with lower viral load and longer survival after infection.

Analysis assuming a recessive genetic model did not identify any

genome-wide significant associations (data not shown).

Exploration of top associations
Since variation in the HLA region is well known to impact rate

of HIV-1 disease progression and not acquisition, we sought to

better understand the observed associations at this locus. Due to

their shorter survival time, patients with rapid disease progression

are underrepresented in seroprevalent cohorts, while individuals

with prolonged disease-free survival times are more likely to be

included, leading to an enrichment of factors that protect against

disease progression in such populations. Additionally, some of the

cohorts accessed for this analysis specifically recruited long-term

non-progressors (LTNPs, Groups 2, 3 and 4). Inspection of the

effect estimates at the top SNP (rs4418214) per data set showed

that the majority of the association signal was driven by groups

specifically enriched for LTNPs (Figure 2b) suggesting a possible

frailty bias in the overall results.

To assess the potential contribution of frailty bias, we ran

association testing as previously but restricting the case popula-

GWAS of HIV-1 Acquisition in 13,500 Indivuals
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tion to 2,173 individuals with a known date of seroconversion

that were not enrolled in LTNP cohorts. Association testing in

this sample showed no variants passing the genome-wide

significance threshold. Additionally, rs4418214 dramatically

dropped in strength of association to p = 0.02, with all other

previously genome-wide significant SNPs suffering a similar loss

in association strength (Figure 2c and Table S2 in Text S1). In

order to address whether this loss of association signal could be

due to the reduced size of the case population rather than frailty

bias, we performed a sensitivity analysis where we tested for

association at rs4418214 restricting the HIV+ cases to 2,173

individuals randomly selected from the full case sample. We

repeated this procedure 1,000 times and compared the p-value

from the random case selection to that obtained when restricting

to seroconverters. Of these 1,000 tests, only one resulted in a loss

of association signal that was similar to what was observed when

restricting to seroconverters (Figure S2 in Text S1). This suggests

that the signal observed in the full acquisition analysis is most

likely due to frailty bias.

Polygenic analysis
Previous studies in large cohorts have shown that multiple

genetic variants with small effect sizes that contribute to complex

traits, but fall below the genome-wide significance threshold, can

be detected by examining the consistency of their combined effects

across studies [19]. We sought to test for evidence of such

polygenic inheritance in our study population. To do this (and to

avoid overfitting), we split our sample into a discovery set (Groups

1,2,4,5 and 6) and a test set (Group 3) and performed genome-

wide association testing and meta-analysis on the discovery set.

Based on these results, we generated sets of high-quality SNPs

(minor allele frequency .0.1, imputation accuracy .0.9) in

relative linkage equilibrium (r2,0.1, informed by p-value in the

discovery set, see methods) falling below various p-value thresholds

(PT). Scores were then generated for all individuals in Group 3 by

summing the weighted genotype dosage (using the log odds ratio

from the discovery set as weights) of all SNPs below a given PT.

Phenotype was then regressed on this score using logistic

regression including covariates. We assessed both the significance

of the score and the phenotypic variance explained (using

Nagelkerke’s pseudo-R2 [20]). We did not observe a significant

association between the calculated score and phenotype in the

discovery set at any PT (Figure 3). This further suggests that effects

of common variants on HIV-1 acquisition detectable by this study

design are negligible.

Analysis by transmission risk
Since different modes of HIV-1 transmission may be influenced

by different host factors, we further investigated if genetic variants

may contribute to enhanced HIV-1 acquisition within transmis-

sion risk sub-groups. We stratified the study population by

reported risk groups that were either primarily sexual (homosexual

and heterosexual, n = 3,311) or parenteral (injection drug use and

transfusion, n = 1,046). Association results in these sub-groups

were consistent with those observed in the full set with no genome-

wide significant signals detected (data not shown).

Association testing of variants previously reported to
influence HIV-1 acquisition

With the exception of CCR5D32 (addressed in the next section),

many variants reported to influence HIV-1 acquisition have

remained unconfirmed. We sought to assess the evidence for

Figure 1. Association results for approximately 8 million common DNA variants tested for an impact on HIV-1 acquisition. A)
Quantile-quantile plot of association results after meta-analysis across the six groups. For each variant tested, the observed 2log10 p-value is plotted
against the null expectation (dashed line). P-values lower than 561028 are truncated for visual effect. B) Manhattan plot of association results where
each variant is plotted by genomic position (x-axis) and 2log10 p-value (y-axis). Only variants in the MHC region on chromosome 6 have p-values
below genome-wide significance (p,561028 dashed line, large diamonds).
doi:10.1371/journal.ppat.1003515.g001

Author Summary

Comparing the frequency differences between common
DNA variants in disease-affected cases and in unaffected
controls has been successful in uncovering the genetic
component of multiple diseases. This approach is most
effective when large samples of cases and controls are
available. Here we combine information from multiple
studies of HIV infected patients, including more than 6,300
HIV+ individuals, with data from 7,200 general population
samples of European ancestry to test nearly 8 million
common DNA variants for an impact on HIV acquisition.
With this large sample we did not observe any single
common genetic variant that significantly associated with
HIV acquisition. We further tested 22 variants previously
identified by smaller studies as influencing HIV acquisition.
With the exception of a deletion polymorphism in the
CCR5 gene (CCR5D32) we found no convincing evidence to
support these previous associations. Taken together these
data suggest that genetic influences on HIV acquisition are
either rare or have smaller effects than can be detected by
this sample size.

GWAS of HIV-1 Acquisition in 13,500 Indivuals
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association of 22 variants previously reported to influence HIV-1

acquisition in this sample. All 22 of these variants could be

measured in this sample either through direct genotyping or

imputation. Of these, only one variant (rs1800872) showed

nominal significance (p,0.05, Table 1) although it did not survive

correction for the number of variants tested (p.2.561023). Thus,

none of the previously reported associations can be considered

confirmed in this large sample.

Power for variant detection
Parameters required for determining power for variant detec-

tion, specifically the trait prevalence and the level of enrichment of

enhanced HIV-1 acquisition, are difficult to estimate given this

study design. Thus, we sought to determine the extent to which we

could detect known genetic influences on HIV-1 acquisition in this

sample by assessing the depletion of CCR5D32 homozygosity in

the HIV-1 infected sample. Although this variant is not captured

by commercial arrays (and is not included in the 1,000 Genomes

Project reference panel), genotypes of the deletion were available

for a majority of the HIV-1 infected individuals (n = 4,854). As

expected, we observed very few D32/D32 homozygous individuals

in this sample (n = 4) and a large deviation from Hardy-Weinberg

equilibrium (Table S3 in Text S1).

To assess the association strength of this variant, we used a

subset of our sample with available CCR5D32 genotypes to build a

reference panel, which was then used for imputation of CCR5D32

in both cases and controls (see methods). Overall the imputation

accuracy was acceptable (average information score = 0.82) and

we observed good correspondence between typed and imputed

dosage (Figure S3 in Text S1). Using a recessive genetic model, we

observed a genome-wide significant association between CCR5D32

homozygosity and HIV-1 acquisition (p = 561029, OR = 0.2). No

impact on HIV-1 acquisition was observed under any other

genetic model.

Figure 2. Common DNA variants within the MHC region that are associated with HIV-1 acquisition comparing 6,334 HIV-1 infected
patients to 7,247 population controls are driven by HIV-1 controllers and not maintained when restricting to patients with known
dates of seroconversion. A) Regional association plot of the locus containing genome-wide significant SNPs after meta-analysis. The signal of
association is centered on the HLA-B/HLA-C genes. The association result for the top SNP, rs4418214, is indicated by the purple diamond, with dark
blue indicating SNPs in high LD (r2.0.8), light blue indicating moderate LD (r2 between 0.2 and 0.8) and grey indicating low or no LD (r2,0.2) with
rs4418214. The dashed line indicates genome-wide significance (p,561028). The location of classical class I and class II HLA genes (green arrows) is
given as reference. B) Forest plot of effect estimates for the C allele at rs4418214 with 95% confidence intervals per group (box and whiskers) and
after meta-analysis (diamond). The majority of the association signal is contributed by Groups 3 and 4, which are enriched for HIV-1 controllers. C)
Regional association plot of the same variants as in A) but restricting analysis to include only individuals with a known date of seroconversion to limit
frailty bias.
doi:10.1371/journal.ppat.1003515.g002
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To address whether the association signal at CCR5D32 was

subject to the same frailty bias as the MHC SNPs, we next tested

for association between CCR5D32 and HIV acquisition restricting

only to the 2,173 HIV+ individuals with known dates of

seroconversion. Using these individuals, CCR5D32 remains

strongly associated (p = 161026 for the recessive model), suggest-

ing that the observed association statistic in the full set is not simply

due to frailty bias. This demonstrates that, despite an inability to

precisely estimate power, other variants of similar or somewhat

weaker effect could also have been detected in this sample.

Discussion

By assembling a large collaborative network of cohorts and

institutions involved in HIV-1 host genetic studies we sought to

test for common genetic polymorphisms that influence HIV-1

acquisition. Through this network, we were able to combine

genome-wide SNP data on over 6,300 HIV-1 infected patients of

European ancestry. In order to maximize power, we further

accessed large population-level genotype data sets to use as

controls. Where necessary, case/control samples were iteratively

matched to limit inflation in the test statistic due to platform or

cohort effects. Genome-wide imputation using the 1,000 Genomes

Project CEU sample as a reference panel resulted in a set of

approximately 86106 high-quality variants that were tested for

association with HIV-1 acquisition. We observed 11 variants that

passed the genome-wide significance threshold, all located in the

MHC region. Imputation and association testing of the CCR5D32

polymorphism demonstrated that this sample size and study design

are appropriate to detect strong associations that impact HIV-1

acquisition.

The fact that the top association in the full analysis (rs4418214)

is a tag SNP for HLA-B*57:01 and 27:05 highlights the frailty bias

inherent to studies of diseases with high mortality rates. HLA-B

alleles have been associated with reduced HIV-1 transmission in

heterosexual couples [21], likely due to the effects of HLA-B on

HIV-1 viral load, which decreases infectiousness. To further

explore the possibility that HLA-B alleles are also associated with

HIV-1 acquisition, we ran an analysis restricting the case

population to the 2,173 individuals with a known date of

seroconversion, assuming that cohorts of patients recruited soon

after HIV-1 acquisition are less likely to suffer from frailty bias.

This analysis resulted in an almost complete loss of signal at

rs4418214 that is unlikely to be due to the reduction in size of the

case population. Thus, the most parsimonious explanation for the

association result in the HLA class I region is that it reflects an

enrichment of alleles that protect against disease progression

(hence survival) rather than increasing acquisition.

Under ideal circumstances, this sample size provides approxi-

mately 80% power to detect a common variant (MAF = 0.1) with

genotypic relative risk of 1.3 at genome-wide significance.

However, we recognize that the present study design allows for

a proportion of the sample to be misclassified (i.e. individuals at

average or low susceptibility to HIV-1 infection included as cases)

which can reduce power [22]. Nevertheless, even under assump-

tions including a large proportion of controls in the case group,

this sample size is suitable to discover large effect variants

(GRR.3, Figure S4 in Text S1). This is further evidenced by

our ability to detect the known effect of CCR5D32 homozygosity

on HIV-1 acquisition in this sample, even given imperfect

imputation.

Additionally, the lack of enrichment of the control population

for individuals with proven or suspected resistance against HIV-1

infection may also influence power [23]. However, in line with our

results, GWAS looking at HIV-1 acquisition in mother-to-child

transmission pairs [12], discordant couples [13], areas of

heightened prevalence [14] and in hemophiliacs exposed to

potentially contaminated blood products [16] (although much

smaller than the present study) have been similarly unable to

discover novel associations.

This large study population is useful for attempting to replicate

previous associations, particularly with genetic variants thought to

reduce HIV-1 acquisition, as they would be depleted in infected

individuals. None of the 22 previously reported variants tested in

this sample were associated with HIV-1 acquisition after

correcting for multiple tests. This lack of replication is consistent

with other, smaller GWAS of this phenotype [14]. These data

suggest that many or all of these variants do not appreciably

impact HIV-1 acquisition. Thus, evidence is mounting that

common polymorphisms affecting acquisition are either very

difficult to detect (perhaps due to weak effects) or absent, with the

exception of CCR5D32 homozygosity.

The early observation that CCR5D32 influences both acquisi-

tion (when homozygous) and disease progression (when heterozy-

gous) suggested shared biology between these phenotypes.

However, this proved not to be a generalizable observation since

variation at other loci, such as HLA class I and KIR, associate

with disease progression but are not generally believed to

modulate acquisition. Mechanisms mediating acquisition i.e.

permissiveness to HIV upon parenteral or mucosal exposure,

likely involve cellular targets and innate immune factors that play

none or a limited role in disease progression. On the other hand,

mediators of host tolerance (as defined by [24]) and of acquired

immunity are only expected to exert their effects after infection has

been established.

Although this study focuses on the host genetics of HIV-1

acquisition, it is possible that the extensive variation in HIV-1

genotype also plays a role in determining susceptibility. This

Figure 3. Analysis of bulk SNP effects shows no evidence for
enrichment of association signal across data sets. LD pruned SNP
sets falling below various p-value thresholds (grey shades, x-axis) were
selected based on association results calculated in five of six groups
(discovery set). Per individual scores were calculated in a non-
overlapping test set (Group 3) by summing the beta-weighted dosage
of all SNPs in that set. Model p-value (listed above bars) and variance
explained (using Nagelkerke’s pseudo R2, y-axis) were calculated by
regressing phenotype on per individual score using logistic regression.
doi:10.1371/journal.ppat.1003515.g003
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notion is supported by the observation that amino acid changes,

generally in response to host HLA pressure, result in decreased

viral fitness (reviewed in [25]). However, defining viral variants

that limit or enhance infection would require large-scale epidemi-

ological investigations in HIV-1 endemic areas.

Despite the large sample size and comprehensive genotype

information obtained through imputation, this study is still limited

to analysis of common variation with detectable effects present in

European samples. Thus, we cannot rule out whether multiple

common variants of small effect, population-specific variants or

rare variants exist that influence HIV-1 acquisition. Of particular

note, in light of the well-known effect of CCR5D32 on HIV

acquisition, is the inability to comprehensively test structural

variation using array-based genotyping platforms. Although SNPs

contained on commercial arrays have been shown to tag a large

proportion of common structural variants [26] it is still possible

that unobserved or poorly tagged structural variants contribute to

HIV acquisition. Detection of these types of effects will require

large-scale sequencing efforts, preferably in samples with known

levels of exposure to HIV-1.

Materials and Methods

Ethics statement
Ethical approval for this study was obtained from institutional

review boards at each of the Cohorts, Studies and Centers listed at

the end of the manuscript. All subjects provided written informed

consent.

Sample collection, genotyping and quality control
The International Collaboration for the Genomics of HIV was

established as a platform to combine all available genome-wide

SNP data sets obtained on HIV-1 infected individuals worldwide.

Patient material was collected at multiple clinical centers across

North America, Europe, Australia and Africa (a list of contributing

cohort studies and centers is given at the end of the paper).

Genotypes for uninfected control individuals were obtained

directly from three of the participating centers (GRIV, ACS,

CHAVI) and from the Illumina genotype control database (www.

illumina.com/icontroldb) and the Myocardial Infarction Genetics

Consortium (MIGen) (NIH NCBI dbGaP Study Accession:

phs000294.v1.p1) [18]. Each data set was subject to quality

control procedures performed prior to centralization of all data for

the combined analysis. However, to ensure consistency, all data

were subject to further quality control once submitted. Per data

set, samples with high missingness (,95% of sites successfully

genotyped) and high heterozygosity (inbreeding coefficient .0.1)

were removed. Ancestry was determined using EIGENSTRAT to

project sample data onto the HapMap III reference panel. For the

present analysis, only individuals clustering with the CEU/TSI

subset were retained. To remove samples genotyped by multiple

centers (and those with high relatedness) we performed identity-

by-state analysis taking the intersection of SNPs across all

genotyping platforms, using PLINK version 1.07 [27]. In the case

of duplicates, the sample contributing the larger number of

genotyped SNPs was retained. We further filtered out individuals

with relatedness higher than 0.125, adopting a strategy to

Table 1. Results for 22 SNPs previously reported to affect HIV-1 acquisition sorted by reported effect and genomic location.

SNP CHR BP (hg19) A1 A2
Frequency
HIV+

Frequency
HIV2 OR SE P Gene

Reported effect on
acquisition Reference

rs1800872 1 206946407 T G 0.245 0.232 1.08 0.030 0.01 IL10 Increased [34]

rs3732378 3 39307162 A G 0.163 0.164 0.97 0.035 0.35 CX3CR1 Increased [35]

rs3732379 3 39307256 T C 0.279 0.282 0.98 0.028 0.46 CX3CR1 Increased [35]

rs6850 7 44836314 G A 0.123 0.133 0.94 0.039 0.09 PPIA Increased [36]

rs754618 10 44886206 T C 0.311 0.304 1.01 0.028 0.73 CXCL12 Increased [37]

rs1946518 11 112035458 G T 0.590 0.592 0.98 0.026 0.49 IL18 Increased [38]

rs2280789 17 34207003 G A 0.136 0.134 1.04 0.038 0.30 CCL5 Increased [39]

rs2280788 17 34207405 C G 0.022 0.023 0.90 0.088 0.25 CCL5 Increased [39]

rs2107538 17 34207780 T C 0.183 0.180 1.02 0.034 0.49 CCL5 Increased [39]

rs2549782 5 96231000 T G 0.477 0.477 1.00 0.026 0.94 ERAP2 Decreased [40]

rs2070729 5 131819921 A C 0.428 0.426 1.02 0.026 0.50 IRF1 Decreased [41]

rs2070721 5 131825842 G T 0.427 0.426 1.02 0.026 0.50 IRF1 Decreased [41]

rs6996198 8 65463442 T C 0.159 0.167 0.97 0.035 0.46 CYP7B1 Decreased [42]

rs1552896 9 14841387 G C 0.227 0.227 1.01 0.032 0.77 FREM1 Decreased [15]

rs1801157 10 44868257 T C 0.200 0.209 0.97 0.032 0.36 CXCL12 Decreased [37]

rs10838525 11 5701001 T C 0.357 0.355 1.00 0.027 0.95 TRIM5 Decreased [43]

rs3740996 11 5701281 A G 0.113 0.117 0.93 0.040 0.05 TRIM5 Decreased [44]

rs1024611 17 32579788 G A 0.267 0.277 0.95 0.029 0.08 CCL2 Decreased [45]

rs1024610 17 32580231 T A 0.200 0.205 0.97 0.032 0.31 CCL2 Decreased [46]

rs2857657 17 32583132 G C 0.196 0.200 0.97 0.032 0.32 CCL2 Decreased [46]

rs4795895 17 32611446 A G 0.193 0.196 0.97 0.032 0.40 CCL11 Decreased [46]

rs1719134 17 34416946 A G 0.240 0.231 1.05 0.031 0.13 CCL3 Decreased [45]

Reported effects correspond to the A1 allele.
Frequency and odds ratio (OR) are calculated for the A1 allele with an OR.1 indicating a higher frequency of A1 in the HIV-1 infected sample.
doi:10.1371/journal.ppat.1003515.t001
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maximize sample retention. After sample removal, SNPs with high

missingness (.2%), low minor allele frequency (,1%) or that were

out of Hardy-Weinberg equilibrium (p,161026) were removed.

Case/control matching
To limit bias introduced due to the majority of the control

samples being genotyped separately from cases we used a 2-stage

case/control matching strategy. In the first round, cases and

controls were matched by platform and geographic origin. This

resulted in four clusters; The Netherlands (Illumina, Group 1),

France (Illumina, Group 2), North America and non-Dutch/non-

French European (Illumina, Groups 3 and 4), North America and

non-Dutch/non-French European (Affymetrix, Groups 5 and 6).

To test the success of this method at controlling inflation, we ran

association testing on all genotyped SNPs including the top PCs as

covariates per cluster and assessed lambda (Figure S1 in Text S1).

For samples ascertained from France and The Netherlands, this

was sufficient to control inflation in the test statistic (l,1, Figures

S1a–d in Text S1). For the remaining two clusters, we plotted each

sample based on their coordinates across the top two PCs and split

each cluster into two sub-clusters based on these coordinates. Sub-

clusters then underwent either 1:3 or 1:1 case/control matching

using Euclidean distance across the top 10 PCs (with the top PC

given twice the weight of the others). Samples were removed if no

suitable match could be identified. This strategy proved sufficient

to control inflation in these remaining clusters (Figures S1e–l in

Text S1).

Imputation and association testing
After sample matching and per group quality control, unob-

served SNP genotypes were imputed using the 1,000 Genomes

Project Phase I release integrated SNPs and indels (March 2012).

Two teams from this Collaboration performed the analysis

independently using different tools. The first team used BEAGLE

[28], the second team used the pipeline IMPUTE2, SNPTEST

and META [29,30] with a pre phasing step using ShaPEIT [31].

Per group, phenotype was regressed on genotype dosage including

population covariates calculated by EIGENSTRAT to control for

residual structure under both additive and recessive genetic

models. Association results were then combined using inverse-

variance weighted meta-analysis including a covariate to correct

for group-specific effects. The results obtained by each team were

compared for cross-validation and found to be highly consistent

(Figure S5 in Text S1). SNPs were considered associated if the

combined p-value was below the accepted level of genome-wide

significance (p,561028).

Polygenic analysis
We performed analysis to test for evidence of polygenic effects

using five of the six groups as a discovery set and Group 3 (the

largest single group) as the test set. To build a SNP set we first

filtered out all SNPs with low minor allele frequency (MAF,0.1)

and low imputation quality (R2,0.9) and removed the MHC

region. We then performed LD pruning informed by the p-value

calculated in the discovery set such that the SNP with the lowest p-

value was selected and all other SNPs in LD (r2.0.1) were

removed. The SNP with the lowest remaining p-value was then

selected and again all other SNPs in LD were removed. This

procedure was repeated until no remaining SNPs fell below the

selected PT. In the test set, per individual scores were generated by

summing the dosage of all SNPs in a set weighted by the effect size

(beta) calculated in the discovery set. We then regressed phenotype

on this score using logistic regression including top PCs. SNP set

pruning was performed using PLINK version 1.07 [27], logistic

regression, calculation of variance explained and results visualiza-

tion was performed using R version 2.12 (www.r-project.org) and

the Design package [32].

Testing previous associations
A list of SNPs previously reported to associate with HIV-1

acquisition was taken from Petrovski et al [14] and updated to

include recently reported associations. All SNPs were either

directly genotyped or imputed, and tested in the same logistic

regression/meta-analysis framework as all other variants.

Imputation and association testing of CCR5D32
CCR5D32 genotypes were obtained by individual cohorts using

either Sequenom genotyping, PCR or direct sequencing as

described in the original publications. Since genotype of this

deletion was not available in the control populations we used a

subset of the HIV+ sample with both genome-wide genotypes and

CCR5D32 types as a reference panel for imputation. For this, we

used the subset typed on the Illumina 1M platform (n = 1,100) to

maximize SNP coverage. Additionally, we included 383 non-

overlapping individuals with known CCR5D32 genotype from a

recent GWAS in hemophiliacs [16]. Phasing of the reference panel

and imputation was performed using ShaPEIT [31] and

IMPUTE2 [29,30]. We imputed CCR5D32 genotype in both

cases and controls using a leave-one-out strategy such that, if an

individual was present in both the reference and test sample, their

genotype information was removed from the reference panel and

imputation was carried out using the remaining samples as

reference. Association was tested under a recessive model and

assuming an additive or heterozygous advantage model.

Estimating power for variant detection
Power for variant detection was estimated over a wide range of

possible proportions of controls being misclassified as cases (Figure

S4 in Text S1). Calculations were made under an additive genetic

model assuming a risk variant of 10% frequency for a study of

6,300 cases and 7,200 controls at genome-wide significance

(p,561028). Calculations were performed using PAWE-3D

[22,33].

Cohorts, studies, and centers participating in the
International Collaboration for the Genomics of HIV

1. The AIDS clinical Trial Group (ACTG) in the USA

2. The AIDS Linked to the IntraVenous Experience (ALIVE)

Cohort in Baltimore, USA

3. The Amsterdam Cohort Studies on HIV infection and AIDS

(ACS) in the Netherlands

4. The ANRS CO18 in France

5. The ANRS PRIMO Cohort in France

6. The Center for HIV/AIDS Vaccine Immunology (CHAVI) in

the USA

7. The Danish HIV Cohort Study in Denmark

8. The Genetic and Immunological Studies of European and

African HIV-1+ Long Term Non-Progressors (GISHEAL)

Study, in France and Italy

9. The GRIV Cohort in France

10. The Hemophilia Growth and Development Study (HGDS)

in the USA

11. The Hospital Clinic-IDIBAPS Acute/Recent HIV-1 Infec-

tion cohort in Barcelona, Spain

12. The Icona Foundation Study in Italy
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13. The International HIV Controllers Study in Boston, USA

14. The IrsiCaixa Foundation Acute/Recent HIV-1 Infection

cohort in Barcelona, Spain

15. The Modena Cohort in Modena, Italy

16. The Multicenter AIDS Cohort Study (MACS), in Balti-

more, Chicago, Pittsburgh and Los Angeles, USA

17. The Multicenter Hemophilia Cohort Studies (MHCS)

18. The NCI Laboratory of Genomic Diversity in Frederick,

USA

19. The Pumwani Sex Workers Cohort in Nairobi, Kenya, and

Winnipeg, Canada

20. The San Francisco City Clinic Cohort (SFCCC) in San

Francisco, USA

21. The Sanger RCC Study in Oxford, UK, and in Uganda

22. The Swiss HIV Cohort Study (SHCS), in Switzerland

23. The US military HIV Natural History Study (NHS)

24. The Wellcome Trust Case Control Consortium (WTCCC3)

study of the genetics of host control of HIV-1 infection in

the Gambia

25. The West Australian HIV cohort Study

Supporting Information

Text S1 Includes Note S1: the cohorts and individuals

contributing to the International Consortium for the Genomics

of HIV, Tables S1, S2, S3, Figures S1, S2, S3, S4, S5 and
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