
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2002

A Technique for Visualizing Software Architectures
Jon M. Inouye
Nova Southeastern University

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Jon M. Inouye. 2002. A Technique for Visualizing Software Architectures. Doctoral dissertation. Nova Southeastern University. Retrieved
from NSUWorks, Graduate School of Computer and Information Sciences. (603)
https://nsuworks.nova.edu/gscis_etd/603.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu


 

 

 
 
 
 
 
 
 

A Technique for Visualizing Software Architectures 
 
 
 
 

by 
 

Jon M. Inouye 
 

 
 
 
 
 
 
 
 
 

A Final Dissertation Report 
submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 
 
 
 
 

Graduate School of Computer and Information Sciences 
Nova Southeastern University 

 
2002 

 
 





 

 

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial 
Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 
 

A Technique for Visualizing Software Architectures 
 

by 
Jon M. Inouye 

 
March 2002 

 

 

Software architecture appeared in the early 1990s as a distinct discipline within 
software engineering.  Models based on software architecture attempt to reduce the 
complexity of software by providing relatively coarse-grained structures for representing 
different aspects of software development.  A software architecture typically consists of 
various components and connections arranged in a specific topology.  Elements of the 
topology can serve as abstractions on (for example) modules, objects, protocols or 
interfaces.  The meaning of the topology depends on viewpoint. 

Software architectures can be described using an architecture description 
language (ADL).  The key goals of ADLs are to communicate alternate designs to the 
different individuals involved in software development (such individuals are referred to 
as "stakeholders"), to detect reusable structures, and to record design decisions.   

A major problem in software architecture has been the difficulty of creating 
different representations of an architecture to accommodate differing viewpoints of 
stakeholders. Ideally, different viewpoints would be conveyed in a way that is both 
comprehensive enough for specialists but consistent enough for generalists.  The 
representation problem has been one of reconciling and integrating different viewpoints. 

This dissertation provided a solution to the representation problem by creating a 
tool for three-dimensional visualization of software architectures using the Virtual 
Reality Modeling Language (VRML).  Different architectural viewpoints were first 
defined in an ADL called the Visually Translatable Architecture Description Language 
(VTADL). When VTADL was translated into VRML, software architectures were 
embodied within three-dimensional "worlds" through which stakeholders may navigate.  
Each viewpoint was a separate VRML world.  A viewpoint could be related to other 
viewpoints, representing different facets of software architectures, to reflect different 
stakeholder requirements.  Traceability from design to requirements was possible through 
VRML hyperlinks from the visualized architecture.  

The goal of the dissertation was to develop a prototype for demonstrating the 
visualization technique.  Based on the successful results of two visualization case studies, 
we concluded that the goal was achieved. 

Refinement of the prototype into a polished visualization tool was recommended.  
In future research, the refined version should be used for realistic evaluation of the 
technique in an actual software development environment. 
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Chapter I 
 

Introduction 
 
 
 
Introduction 
 
   

The emerging field of software architecture, within the broader context of 

software engineering, capitalizes on the proclivity of human beings to draw simplified, 

highly abstracted "first sketches" of a system prior to detailed design [Perry & Wolf, 

1992; Shaw & Garlan, 1996].  Rather than dismissing these first sketches as informal 

exercises, software architects have classified and analyzed the preliminary abstractions.  

Software architects have even formalized the representation of architectures by using 

formal languages [Allen, 1998; Abowd et al., 1995].   

Software architecture focuses on the structure and interrelationships between 

software components.  The architectural approach describes the components and 

connections with relatively coarse granularity, hiding design details to achieve simplicity.    

An architecture tries to capture the essence of the software system, so that those involved 

in the development process (referred to as "stakeholders") may readily comprehend the 

system's purpose.   The approach is a way to regain intellectual control over the growing 

complexity of software.   
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Software architecture allows stakeholders to evaluate alternate designs at an early 

stage, in order to make informed decisions about the later phases of software 

development.    

Thus, software architecture serves as a framework, or "architectural baseline"  

[Jacobson et al., 1999], to develop a more detailed design.  The process of defining a 

software architecture traditionally followed the requirements specification, but preceded 

the detailed design and implementation phases of the software life cycle.    

In recent years, the concept of software architecture has grown to encompass the 

entire software development life cycle [Abowd et al., 1997; Jacobson, Booch, & 

Rumbaugh, 1999].  Software architecture is now seen as a reference model that evolves 

along with software development.   The reference model ideally reflects changes to the 

software architecture over time.  Through spotting inconsistencies in architectural design, 

detecting invalid interfaces between software components, or discovering other mistakes 

in the software architectural reference model (such mistakes are referred to as 

"architectural mismatches"), software errors can be detected and eliminated as early as 

possible.  Architectural design errors, if caught early in the software development life 

cycle, can result in substantial savings in the development cost, since such errors caught 

later in development (during implementation or maintenance) are many orders of 

magnitude more expensive to fix.   

Software architectures are represented in textual form using an Architectural 

Description Language (ADL).  The motivation behind an ADL is to facilitate 

communication on the overall structure to stakeholders [Bass et al., 1998].  Ideally, ADLs 

represent the different viewpoints of several stakeholders in order to increase joint 
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understanding and agreement on the overall design.   However, as Hofmeister, Nord, & 

Soni of Siemens Corporation have observed, software architects "…can't yet succinctly 

describe which design details are important over all domains and system sizes" 

[Hofmeister, Nord, & Soni, 2001].   

The textual ADL may not be understandable to all stakeholders in a problem 

domain.  For instance, nontechnical management in the organization may not readily 

grasp the structure merely by perusing the ADL even when the ADL is accompanied by 

natural language descriptions.  As the structural complexity increases, so does the need 

for an effective architectural representation. 

Stakeholders desire that specialized viewpoints communicate effectively to the 

intended audience.  On the other hand, stakeholders require that the viewpoints be 

consistent with one another (that is, elements of one view can be mapped to one or more 

elements of another view), and do not diverge to such an extent that the views can no 

longer be integrated or comprehended by a nonspecialist.  These apparently contradictory 

demands on an architectural representation can lead to problems when using an ADL as a 

medium of communication.   

Thus, representation of a software architecture in a form that is readily grasped by 

stakeholders continues to be a fundamental problem in software engineering [Bass, 

Clements, & Kazman, 1998; Egyed, 1999]. 

Another important goal of the ADL is to standardize the structural representation 

in a language independent of system implementation, so that knowledge of abstract 

patterns can be detected, reused, and transferred to future projects.   An effective ADL 
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can even be used for training purposes, dramatically reducing the learning curve for new 

project members. 

Good architectural designs allow the completed software system to be maintained 

without degrading the performance of the system.  In other words, our architecture 

description should be unambiguous and consistent so that we can change or replace 

components without having adverse or unforeseen impacts on other parts of the system 

[Jacobson, Booch, & Rumbaugh, 1999].    

Any architectural description must incorporate not only the topology, but also the 

correspondence between software requirements and elements of the structure [Shaw et 

al., 1995].   Thus, the original reasoning behind aspects of the architecture can be traced.  

When linked to original requirements, an ADL file can serve as an archive of design 

decisions, design rationale, and reusable patterns. 

 

Problem Statement 

This research focused on the problem of representing and communicating the 

software architecture to different stakeholders involved in the software development 

process.   Ideally, different viewpoints on the software architecture would be conveyed in 

a way that is both comprehensive enough for specialists and general enough to 

stakeholders trying to consolidate the different views (e.g., project managers or 

executives).   In reality, as the software system becomes more complex and the 

viewpoints on the system become numerous, difficulties in integrating viewpoints begin 

to emerge. 
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Based on the desired stakeholder viewpoint, the components and links in the 

software topology would be represented differently.    

An analogy may be drawn with the architectural viewpoints to the structure of a 

physical building.  The building contractor, architect, electrician, interior designer, 

landscaper, plumber, and occupants will all have different views of the same building.  

Each person needs to view separate components and relationships, requiring different 

spatial, hierarchical, textural, and qualitative views.  When taken together, the different 

views comprise the building's entire architecture.  In like fashion, each viewpoint of the 

software architecture requires a different combination of component/connection topology 

and spatial displacement.   The elements of each abstraction will be interpreted 

differently; each interpretation is modified based on the particular nomenclature and 

mindset of the stakeholder.   In other words, an architectural viewpoint must be 

distinctive and separable enough to do justice to the specialist, yet consistent enough so 

that the view may be integrated with other views without incompatibility errors in the 

modeling.   

Incompatibility between views is referred to as "viewpoint mismatch" [Egyed, 

1999; Egyed & Medvidovic, 1999].   For an example of viewpoint mismatch, consider 

the blueprint of the physical architecture of a five-story building.  The electrician's view 

is comprised of the wiring and electrical outlets; only the general outline of the building 

is provided for reference.  The plumber's view, on the other hand, consists of pipes and 

pumping motors along with the general building outline; a cursory view of electrical 

power generators is provided to the plumber as a safety measure.  Let us suppose that, 

when integrating the electrician's and plumber's view, it is found that the plumber's view 
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consists of electrical power generators that are not found in the electrician's view.  Or that 

the electrician's view inadvertently contains the outline of doors and corridors which do 

not exist.  These viewpoint mismatches may lead to serious design flaws and expensive 

fixes during construction of the actual building. 

A view may contain more than one software architecture.  Incompatibilities 

between software architectures within a view may also occur and are called "architectural 

mismatches" [Garlan, Allen, & Ockerbloom, 1994].   For instance, a view may consist of 

a software architecture modeling a process with two inputs and a single output, and 

another architecture modeling a process with three inputs and five outputs.  One of the 

outputs of the first architecture is directed as input into the second architecture.  

However, the second architecture requires all three inputs in order to function at all.  

Here, then, is an incompatibility between the two architectures.  Visualization of both 

software architectures will assist us in detecting such mismatches. 

This dissertation proposed a solution to the representational problem by allowing 

interaction with a three-dimensional, virtual reality "world" modeling the software 

architecture.  The research began by designing an ADL capable of representing different 

viewpoints, then provided a compiler which translated the ADL into a three dimensional 

representation in VRML (Virtual Reality Modeling Language).  

The presence of three dimensions in a complicated representation, accompanied 

by the capacity for user-directed movement in a three-dimensional medium, have been 

shown empirically to enhance comprehension of complex structures [Ware & Franck, 

2000]. 
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The stakeholder can navigate (move about) through the software structure, 

examining patterns and relationships not readily discernible from the original ADL.  

Other research in software visualization indicates that visual identification of software 

flaws and even the discovery of reusable design patterns are often possible from the 3D 

representation of software structures [Feijs & de Jong, 1998].  Furthermore, as Dutch 

researchers Feijs and de Jong enthusiastically point out, "...walking through or rotating a 

complex design is exciting, almost like having the design in your hands." 

 The use of different viewpoints to explore requirements and design specifications 

is nothing new [De Michelis et al., 1998].  However, the virtual reality visualization of 

software structures from different qualitative as well as spatial viewpoints had not been 

fully explored. 

Different viewpoints may occupy different initial positions in a relational 

hierarchy of software components.   That is, based upon the viewpoint, certain objects 

and relationships will be emphasized and other objects/relationships kept hidden.  For 

example, software quality assurance testers may need portions of the full hierarchy, from 

high-level requirements components down to code-level modules, in order to trace 

compliance with code to requirements.  Marketing managers or vice-presidents, however, 

would probably be interested only in a high-level perspective on the architecture; such 

stakeholders desire to observe how the finished product may function, and thus only a 

few high-level components need to be rendered, with lower-level code modules kept 

hidden.   Computer programmers would need to view only select low-level code 

modules; irrelevant higher-level components would be kept hidden.  Code modules 
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unrelated to the computer programmer's current activity would not be rendered from the 

programmer's viewpoint. 

Based on the desired viewpoint, stakeholders will visually navigate through the  

portion of the "world" which represents their application domain.   However, the 

stakeholder (based on security clearances) would have access to an expanded 

representation beyond his or her immediate domain.  Certain visual icons may represent 

portals, or entranceways, to other branches of the world not yet visible to the person 

navigating through the world.   The portal may be an entranceway either to another 

portion of the architecture at the same level of hierarchy or to a lower-level portion of the 

architecture with a more detailed viewpoint of the software complexity (previously kept 

hidden in order to maintain a higher level of abstraction).   Conversely, the portal may be 

an entrance to a higher-level world, with several components in the virtual world kept 

hidden in order to represent a higher level of abstraction.  

For example, when the visual portal (such as a three-dimensional sphere) is 

selected by a pick device (a mouse), another branch of the world will be entered.   A 

department manager, viewing higher-level components in the software structure, may for 

whatever reason desire to navigate to lower-level portions of the "world,” closer perhaps 

to the code modules normally viewed by programmers.   

Furthermore, the objects in the world may represent hyperlinks to real-world 

requirements documents, design documents, audio recordings of design conferences or 

management interviews, video snapshots, and so on.   

It should be noted that recently, an important distinction has been made between 

the definitions of "view" and "viewpoint" by the Institute of Electrical and Electronic 
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Engineers [IEEE, 2000].  A view is defined by IEEE Standard 1471-2000 as an 

abstraction on a particular model, based on the concerns of a particular stakeholder or 

group of stakeholders.   A viewpoint is the template or specified format for describing the 

abstraction.  The viewpoint would specify, for example, how the elements of the notation 

are interpreted and configured, in concurrence with the mode of thinking and semantics 

of the stakeholder.  The viewpoint would also specify data hiding and decomposition – 

what data is to be emphasized at a higher level, and which details of the data are to be 

kept hidden for a lower level.   

Thus, a view is the instantiation of a viewpoint (using the IEEE definition) in the 

same way that an object in the object-oriented model is the instantiation of a class. 
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Goal 

 The goal of this research was to devise algorithms for converting an ADL into 

effective VRML representations based on the desired viewpoint.  The VRML 

representations were intended to enhance comprehension on the overall design and to 

improve communications between diverse stakeholders.  In other words, the tangible goal 

was to allow for visualization of more than one viewpoint, and to allow the stakeholder to 

toggle between multiple viewpoints within a participatory medium.  Using hyperlinks 

from certain aspects of the architecture, stakeholders may trace the rationale behind 

certain designs or may verify the correctness (or flaw) of architectural elements. More 

importantly, the ADL, along with the ADL's visualization in virtual reality, may serve as 

a repository for reusable patterns in future projects.  

 As far as the constraints of this research were concerned, the goal was obtained 

when we developed a tool consisting of an ADL capable of representing multiple 

architectural viewpoints, a translator from the ADL to VRML representation, and a 

successfully translated VRML representation from the architecture originally described 

by the ADL.   Aspects of the VRML representation were required to be traceable (using 

hyperlinks) back to the requirements documentation. 

 Several case studies of different representations in more than one architectural 

style were conducted to demonstrate the viability of the approach.  Among the case 

studies was a representation of a structured program topology ("Program Call-and-

Return") and a Linux conceptual and concrete view. 
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The actual use of the tool in a commercial development environment was not 

explored and was considered a topic for future research. 
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Relevance and Significance 

 David Garlan and Dewayne Perry provided a comprehensive overview of key 

research areas in software architecture [Garlan & Perry, 1995].   As will be elaborated in 

the literature review, these research areas have only intensified within the past six years.   

Perhaps one of the most significant trends in software engineering since the late 

1990s has been the ascent of the Unified Modeling Language (UML) into an industry 

standard for object-oriented design, analysis, and specification.   

UML was originally not a true language, but actually a graphical notation for 

representing object-oriented models (classes, objects, relations, methods, state charts to 

model behavior, etc.).  UML was standardized by the Object Management Group into a 

semiformal language [Egyed & Medvidovic, 1999].  Prior to UML, three methodologies 

were in widespread use in the object-oriented programming community:  OMT (invented 

by James Rumbaugh), the Booch methodology (by Grady Booch), and OOSE (by Ivar 

Jacobson).    

Each method had strengths and weaknesses.  OMT emphasized the design phase 

but was poor in analysis; OOSE was strong in modeling behavior but weak in other areas; 

and Booch's method was strong in design but weak in the analysis phase [Quatrani, 

2000].  The three competing methodologies were unified when all three software 

engineers (Booch, Jacobson, and Rumbaugh) joined forces at the Rational Corporation 

during the mid-1990s.  They unified their methodologies and combined the strengths of 

each methodology into the Unified Modeling Language [Booch, Rumbaugh, & Jacobson, 

1999]. 
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Because the Unified Modeling Language has become the de facto standard in 

software design, UML has been proposed by numerous authors as a standard tool for 

software architecture description [Egyed, 1999; Medvidovic, Rosenblum, Robbins, & 

Redmiles, 2000; Jacobson, Booch, & Rumbaugh, 1999].   However, UML is a visual 

language, not a textual one, and was originally intended for object-oriented design rather 

than exclusively architecture description.  The UML notation in its current form does not 

model configurations of architectures explicitly; the explicit modeling of configurations 

is one of the criteria for defining an ADL [Medvidovic & Taylor, 2000].   Furthermore, 

UML does not adequately describe the details of connector or component attributes to the 

extent of dedicated ADLs such as UniCon or Wright.  Typically, architecture descriptions 

are implemented in UML using extensions to the language [Medvidovic, Rosenblum, 

Robbins, & Redmiles, 2000; Selic, 2001].  However, the problem is that these extensions 

are not standard to the native UML and, hence, the argument for a dedicated architecture 

description language appears to have merit.  

UML has other weaknesses in modeling software architectures.  As Alexander 

Egyed pointed out, UML is not formal or complete in integrating different views [Egyed, 

1999].   That is, UML's ability to define views may be ambiguous, and the capability for 

defining interrelationships between views does not exist.  Medvidovic and Taylor of the 

University of Southern California's Center for Software Engineering [Medvidovic & 

Taylor, 2000] have also pointed out that an ADL has a formal semantic theory with 

respect to the architectural domain, an underlying framework to the language.  Since 

UML was originally intended to assist in the modeling of design classes and not software 

components or connectors, the separation of object-related concerns from architectural 
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concerns would complicate rather than simplify the design task.  In other words, using 

UML for software architecture would make architectural design more difficult, not less 

complex. 

Some authors have suggested that UML and ADL can complement rather than 

compete with one another [Gomma & Wijesekera, 2001; Medvidovic, Rosenblum, 

Robbins, & Redmiles, 2000].  UML can serve as the object-oriented and analysis tool, 

with ADLs focusing in a complementary way on the architectural views.   These same 

researchers are also striving to incorporate architecture description language capabilities 

in the next version of UML (UML 2.0). 

While three-dimensional visualization of UML notation remains a distinct 

possibility for future research, this dissertation had decided to use a dedicated ADL as the 

preliminary definition for an architecture description.  The reason was due to the original 

purpose of UML: UML was invented as an object-oriented design tool and does not, in its 

current form, explicitly define software architectures with the versatility of ADLs. 

Architecture description languages have so far been relegated to research 

environments and have not succeeded commercially, despite the potential of the 

languages to assist in software development [Jazayeri, Ran, & van der Linden, 2000]. 

 Other active research areas include formal methods for software architectures, 

architectural analysis techniques, architectural recovery for legacy systems, architectural 

codification, and the recording of architectural expertise for future use.  Most importantly 

(from the standpoint of this dissertation), Garlan and Perry discussed the need for more 

research in architectural tools and environments.  This need was echoed by Shaw and 
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Garlan [Shaw & Garlan, 1996] at the very beginning of the software architecture 

discipline.   

 Very few tools existed for the flexible, and three-dimensional, visualization of 

multiple views on software architecture.   This research noticed the powerful capability of 

VRML to model worlds containing a variety of user-defined structures [Ames et al., 

1997].  A natural association was made by the author of this dissertation between the 

world-modeling capabilities of the virtual reality paradigm and the nature of a software 

architecture viewpoint.   A major component of the tool developed in this dissertation 

was to map a viewpoint definition contained in an architecture description language to a 

VRML world. 

Feijs and de Jong [Feijs & de Jong, 1998] are one of the few software engineers to 

visualize software architecture using VRML.  They emphasized the need for flexible 

architecture visualizations with multiple viewpoints and software traceability: 

"Although helping remember complex structures and making appealing images 

are alone not strong reasons for pursuing 3D, making design objects consistent with an 

object's intended role, choosing new viewpoints, and identifying new design metaphors 

are serious motivation and should be investigated." 

While Feijs and de Jong did use VRML as the medium for representing software 

architecture, they based their visualization on a relational database containing 

connectivity information.   

To the best knowledge of this research, no compiler had been created which 

directly translated a dedicated architecture description language into VRML.  

Furthermore, very little or no research had been done on the representation of interrelated 
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architectural viewpoints in a three-dimensional, virtual reality medium.  This research 

allowed the definition of separate but integrated viewpoints within an ADL, and also 

translated the architecture description to a corresponding visualization in VRML.  Each 

viewpoint was represented as a self-contained, separate world (a separate reality), 

hopefully reflecting the stakeholder's concerns in an interactive, exploratory medium that 

would enhance understanding about the stakeholder's world.  The viewpoints were 

integrated through hyperlinks (experienced by stakeholders as portals), as though 

entering the door to a separate room in an office building. 

Perhaps the maxim that the specialist lived in his or her own world can be taken 

literally in this visual representation.  But now the specialist's world was visible for all to 

see, in three-dimensional color, movement, and with realistic lighting, appearing literally 

in the midst of a clear blue sky.  So perhaps the excuse that the stakeholder could hide in 

his or her own world no longer applied. 

This dissertation contributed to the field of software architecture by providing a 

three-dimensional visualization tool to represent multiple viewpoints of a software 

architecture.  The visualization attempted to make the software architecture more 

comprehensible by immersing the stakeholder in a virtual world representing that 

architecture.  User-directed movement, along with three dimensions, had been shown to 

increase comprehension of complex structures.  The tool also provided traceability from 

objects in the visualized architecture to source documentation, so that stakeholders may 

trace aspects of the architecture back to the rationale behind the design. 

This research was significant since very little effort had been made to visualize 

viewpoints on software architectures using VRML.  This research also attempted to 
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integrate viewpoints using the techniques of virtual reality.
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Barriers and Issues 

Software architects such as Philippe Kruchten [Kruchten, 1995], Alexander 

Egyed [Egyed, 1999; Egyed, 2000], Christine Hofmeister [Hofmeister, Nord, & Soni, 

2000] and Rich Hilliard [Hilliard, 2001] have discussed at length the problems of 

modeling different viewpoints on the software architecture.  These authors presented 

different solutions on the viewpoint representation problem.  

Philippe Kruchten tried to solve the viewpoint representation problem by 

decomposing the architecture description process into four main views:  the logical, 

process, development, and physical views.1  The logical view dealt with the concerns of 

stakeholders involved with the object-oriented development.  The process view dealt with 

process synchronization and concurrency issues, while the development view represented 

the static organization of the software (what we would call the static software 

architecture), and is perhaps closest to the software architectural representation discussed 

in this dissertation.  Kruchten's physical view represented the physical configuration of 

the hardware and mapped the software onto the hardware components.  A fifth "view" 

established the possible use case scenarios to model the system behavior.   

Hofmeister, Nord and Soni also divided a system under development into 

independent views, yet their views did not exactly coincide with Kruchten.  Hofmeister et 

al. proposed the code, module, execution and conceptual views.  The code view dealt 

with implementation code, while the module view was a slightly higher-level abstraction, 

where components represented modules.  The execution view dealt with mapping 

                                                                 
1 Please Note:  The terms view and viewpoint were not necessarily differentiated in earlier literature until 
IEEE Std. 1471-2000, the first standard for architecture description.   



19                                       
 

modules into the runtime view of the software architecture.  The conceptual view 

consisted of high-level conceptual designs and how they interrelated.    

Rich Hilliard discussed modeling views and software architectures using UML.   

Alexander Egyed, using UML as a modeling tool, discussed the modeling of viewpoints 

in a much broader, more universal sense.  Egyed crystallized many of the problems that 

exist in viewpoint modeling, and suggested future research in the area of viewpoint 

modeling. 

"This deficiency (in viewpoint modeling) would not exist," Egyed wrote, "if we 

could have a few perfect views that could be used by all stakeholders...which were 

precise enough but still easy enough to use.  These views, unfortunately, do not exist.  

Instead, we are confronted with a number of loosely coupled, sometimes quite 

independent views.  This is not really what we want.  Nuseibeh wrote that 'multiple views 

often lead to inconsistencies between these views -- particularly if these views represent, 

say, different stakeholder perspectives or alternative design solutions.' " 

In order to develop a tool for representing different viewpoints on one or more 

software architectures, we first had to clarify exactly how we wanted to represent a view 

and the associated semantics of our particular research model behind the view, and how 

we wanted to represent one or more software architectures within that view.   

In other words, the barrier we first had to overcome was how to represent the 

view in the ADL.  Second, we had to decide how we wanted to map the view defined in 

the ADL to the Virtual Reality Modeling Language (VRML).  Different software 

architectures for different aspects of the system were defined in the ADL.  These 

software architectures had one or more architectural styles.  Given the architectures, a 
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given viewpoint may contain one or more architectures, or even parts of architectures, 

within the view.  Certain styles of architectures determined a particular rendering of the 

objects in VRML.  That is, there was a distinct mapping from the ADL to VRML objects 

(spheres, cones, etc.) based on architectural style.   

 The exact appearance of the VRML objects was an aesthetic consideration.  This 

research intended to make the aesthetics as palatable as possible but left the polished, 

professional graphics to a future version.  In a future version of the compiler, some 

allowances may even be made for the viewer to customize the objects.  Once again, the 

aim of this research was to build a prototype to demonstrate the workability of the 

visualization technique rather than seek aesthetic perfection. 

Alexander Egyed and his colleagues mentioned the need for view integration 

tools to automatically check for errors during the composition of views.   While a view 

integration tool that can check for viewpoint mismatch would be a valuable one, this 

research did not intentionally follow this road of development.   

Ultimately, the actual view integration was left to the stakeholder or software 

architect.  The tool developed by this dissertation intended to make the task of view 

integration easier by translating each view into a virtual reality world. 

The development of an architecture description language capable of being 

translated into VRML resulted in the Visually Translatable Architecture Description 

Language (VTADL) and was loosely based on ASDL [Eixelsberger & Gall, 1998].   The 

motivation for creating VTADL was to obtain a relatively simple language for defining 

essential architectural information (i.e., components, connectors, interfaces, and style).   

VTADL allowed the software architect to ignore details about the interface behavior of 
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components and to concentrate on architectural structure.  Language features were added 

to VTADL both to constrain the structural topology and to make explicit certain visual 

attributes of an architecture within VRML.   

VTADL was formally defined using BNF (see Appendix A).  The BNF 

specification was used as input to the parser generator called yacc (yet another compiler 

compiler), which generated the compiler for a Unix environment.  The resulting parser 

was a program shell capable of recognizing the VTADL language, but not yet capable of 

generating code in the target language (VRML).  Final code generation into VRML 

depended upon the implementation of an effective geometric model representing each 

architectural style.   The geometric model was implemented using abstract data types and 

associated operations on the data types. The intermediate geometric model was the 

medium through which the architectural structure defined by VTADL was mapped to the 

visual objects within VRML. Hence, the implementation of the intermediate geometric 

model was a major barrier to overcome.  

In considering the geometric model, we also considered the concept of an 

architectural style [Shaw & Clements, 1997].  Architectural styles in software 

architecture are analogous to the various styles in building architecture (e.g., Gothic, 

Victorian, Modern, etc.).   An architectural style defines how the components and 

connectors of the architecture may be used, with constraints on the topology and 

instantiation.  Examples of the better-known styles are the program call-and-return, 

pipelined, and layered styles. 

 Two possible architectural styles were represented in VRML: the call-and-return 

and the layered architectural styles.  The components and connections of the call-and-
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return architectural style were represented using an n-ary tree; component attributes were 

stored in the fields associated with the vertices, and connections were defined by tree 

edges.  The layered style used linear arrays.  Pertinent architectural information was 

stored in each cell of a given array. 

As the compiler scanned and parsed the source language, component/connector 

identifiers and attributes were stored in the appropriate data structure based on the style 

(the parser knew the style at the very beginning of the parse, since the style was declared 

at the start of the architectural description).  When all the components, connectors and 

views were inserted into the data structure, the code generation phase of the compiler 

program then traversed the data structure and used logic about the topological constraints 

of the style to generate VRML commands.   The VRML commands defined the 

geometric shape, position, scaling, color, and other visual attributes of the objects in 

three-dimensional space. 

 In other words, using the intermediate data structure for the given architectural 

style, the code generation phase mapped the ADL components and connectors into an 

appropriate VRML representation. 

 VRML as a target language has numerous advantages in the representation of 

software architectures.   VRML could represent a number of diverse objects in a user-

defined three-dimensional world.  Texture-mapped and reflective surfaces, multiple light 

sources, shading, and object animation are but a few examples of the capabilities of this 

virtual reality paradigm [Ames et al., 1997].  VRML is an immersive medium, in the 

sense that the user (stakeholder) is considered to be occupying a position in the world, 

and may be surrounded by a visually rich environment (including interactive 
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representations of other stakeholders who may be seen as avatars).  The user is capable of 

navigating through the world, viewing objects interactively and from a variety of 

positions (including inside the object itself).   The virtual reality worlds definable by 

VRML were used to represent viewpoints; each viewpoint defined in the architecture 

description language was mapped to a separate VRML file by the VTADL-to-VRML 

compiler. 

 While VRML as a medium for user interaction and visualization had numerous 

advantages, the VRML medium also had disadvantages which should be mentioned.  

Chief among them was the often inconsistent rendering qualities of many VRML add-

ons.  Visual qualities such as shading, motion and lighting would vary from add-on to 

add-on.  This dissertation used (and recommended) the VRML add-on called Cortona for 

Windows environments (95, NT, 2000).   

 Another disadvantage was the need for add-ons at all.  Recent advances in XML 

technology [Web3D, 2001] intend to incorporate the functionality of VRML as tags 

within XML.  The use of XML tags for virtual reality visualization of software 

architectures will eliminate the need for separate add-ons, and is a recommended avenue 

for future research. 
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Limitations of the Research 

 The communicative quality and aesthetic appeal of the visualized architectures 

were major considerations.  It was anticipated that the visual appearance could be 

"tweaked" as needed, by adjusting cosmetic attributes (component colors, shapes, etc.) of 

the VRML rendering of the architecture.  However, it was understood that "degree of 

communication" and "aesthetic appeal" were highly subjective in nature.  This research  

conducted no stakeholder survey to determine the psychological appeal of different 

renditions of the same software architecture.   

 The following constraints were based on the fact that a prototype, rather than a 

full commercial product, was developed: 

 1. Static, rather than dynamic, architectures were visualized.  This 

dissertation focused on static software architectures, and the associated views of the static 

architectures.  The task of representing static architectures alone was a challenging one; 

representing dynamic architectures (such as state-based architectures modeling behavior) 

was reserved for future research. 

 2. Not all properties of each architecture were visualized.  For example, 

although components and connections were visualized, explicit interfaces defined in the 

ADL were not shown as separate entities.  Directionality (bidirectional or unidirectional) 

was ignored; only the presence of a connector itself, with no arrows, indicated a relation. 

 3. Only two architectural styles, the program call-and-return style and the 

layered style, were visualized.   Although an arbitrary network and pipelined architectural 
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styles were definable in the ADL, only the call-and-return and the layered styles were 

visualized.   

 4. Software architecture topologies were acyclic (without cycles) and coarse-

grained.   Again, the motive was to demonstrate a "proof of concept" behind the 

visualization of software architectures in VRML.  A given software architecture was 

limited to twenty-five components and twenty-four connectors.  A given architecture 

requiring more detail than twenty-five components could be decomposed into smaller 

sub-architectures; each sub-architecture could be referenced either in the same view, or in 

another view (as defined by the architecture in the original VTADL file).  In addition, a 

maximum of twenty-five architectures were allowed in a given view.    

 While research into visualizing complex, three-dimensional structures with 

tremendous numbers of components had taken place [Parker, Franck, & Ware, 2000], 

software architectures typically were coarse-grained.  In other words, it did not benefit 

the software architect to incorporate tremendous numbers (on the order of hundreds or 

thousands) of components and connectors in a representation, even if paging techniques 

were used.  This would defeat the premise of software architecture – simplicity.  

Therefore decomposition into other architectural views would take place long before the 

limit of twenty-five components or twenty-four connectors was reached.  In such a 

manner, hundreds or thousands (or more) components could be represented by 

decomposing them into simpler but interrelated architectures and architectural views.  In 

fact, the classic empirical studies on human comprehensibility by Miller [Miller, 1956] 

had shown that human beings were comfortable grasping no more than seven or so 

entities at a time.   
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 5. The VTADL-to-VRML visualization tool was a prototype only. 

The effectiveness of the VTADL visualization tool in a real-world development 

environment was not explored in this dissertation and is an avenue for future research.  

Case studies were conducted, however, in order to demonstrate the workability and future 

potential of the prototype of the VTADL-to-VRML compiler. 
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Research Questions 

 

 This research provided a solution to the representation problem (as described in 

the first section) by developing an architecture description language and a language 

translator to visualize the architecture in VRML.  The resulting tool was intended as a 

"proof of concept" rather than a full-scale commercial project. 

 Although no user survey was conducted and no formal software engineering 

quality metric study was performed to determine how well the tool contributed to 

reducing long-term software development costs (this is an avenue for possible future 

funding and research), the initial question for which the tool was devised is an important 

one:   

How can one effectively represent different viewpoints on software architectures 

so that they are more comprehensible and more engaging?   This research proceeded on 

the assumption that three-dimensional movement in a realistic, virtual world assisted in 

the comprehension of complex structures [Ware & Franck, 2000].   VRML was 

determined to be an excellent medium for immersing the stakeholder's views, allowing 

user-controlled, three-dimensional navigation and participation (see the “Barriers and 

Issues” section).  The technique for visualization, as described in detail in Chapter Three 

(Methodology), devised an architecture description language called VTADL for 

specifying the architectures and viewpoints on the architectures, a compiler for mapping 

the specifications into an intermediate geometric model, and an algorithm for 

instantiating the contents of the geometric model into VRML files. 

 A second question was intimately related to the first one: 
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 Since each view addresses the specialized concerns of different stakeholders, how 

does one consistently integrate the separate views in a way that addresses the more 

general concerns of broader stakeholders, yet avoid the pitfalls of viewpoint mismatch 

(i.e., flaws uncovered in relating the viewpoints)?  Integrating viewpoints and the 

discovery of viewpoint mismatch during view integration were discussed at length by 

Egyed [Egyed, 1999; Egyed, 2000].   

 This dissertation addressed these research questions by providing a visualization 

tool to represent software architectures and the integrated viewpoints on software 

architectures.  However, the VTADL compiler did not attempt to automatically detect 

viewpoint or architectural mismatches; the mismatches were left for the stakeholder to 

detect manually (or rather, visually!) through observation of the visual representation.   
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Definition of Terms 

 
Architecture Mismatch:  The incompatibility between elements of different architectural 

structures, often caused by invalid assumptions about the architecture.  Architecture 

mismatch may occur when component reuse is attempted; the reused component may not 

interface properly with a new architecture due to erroneous assumptions about how the 

component connected to other elements in the architecture. 

 

ADL:  See Architecture Description Language. 

 

Architecture: See Software Architecture. 

 

Architecture Description Language:   A language intended to specify the structure of a 

system by describing the system's architecture; the description includes specifying the 

components, interconnection between components, and the constraints on the topology.  

Also included in the language would be the capability to describe the rationale behind 

elements of the architecture, and the behavior of the architecture under specified 

conditions.   

 

Architectural Framework:  (from Hofmeister et al., 1998)  A specification or template for 

the architectural structure and flow of control/data.  Part of the specification would be in 

the form of a partial implementation, ready for use in a specific problem domain. 
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Architectural Style:  A definition of how the components and connectors of an 

architecture can be used, with constraints on the topology and instantiation.  Typical 

architectural styles are the program call-and-return, pipelined, layered, and event-based 

styles.  

 

BNF:  Backus-Naur Form, a formal language for defining the syntax and grammar of a 

language. 

 

Call-and-Return Architectural Style: (Also "Main-program-and-subroutine”)  The 

classical programming paradigm.  Each component represents a program or subroutine; 

each link represents a call (control flow) to a lower-level routine.  The decomposition of a 

program is thus represented hierarchically. 

 

Class:  A set of elements having common characteristics; the domain which defines an 

object.  An object is an instantiation of a class.   

 

Component:  An encapsulated part or unit; a fundamental element of a software 

architecture.  In a graphical representation of the software architecture, a component is 

represented as a node which, depending on the viewpoint, can be interpreted as a module, 

process, chunk of code, workflow, etc. 

 

Compiler:  A computer program for translating statements from a source language to a 

target language.  Often the source language is a higher-level language (such as C, C++, 
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Fortran, etc.) and the target language is an object language such as machine code.  For 

this dissertation, the source language is a text-based architecture description language 

called VTADL, and the target language is the Virtual Reality Modeling Language 

(VRML).   

 

Connector: (also referred to as "connection")  A link between software components.  

Based upon the viewpoint, the link may be defined as a relation, an association, data 

flow, control flow, inheritance, etc. 

 

Control Flow:  In the parlance of an architecture description, control flow refers to the 

flow of control from one component to another.  A connection may typically be defined 

as the flow of control from a server to a client.   

 

CORBA:  Common Object-Oriented Request Broker Architecture.  A specification 

(established by the Object Management Group) to allow distributed objects to request 

services from one another, independent of system or locale.    

 

Data Flow:  An architectural style where the system is viewed as a series of 

transformations on input data.  Data is seen to flow along a connector to a component, 

undergoing transformation within the component, and emerging from the component in 

altered form.  Data flow may also simply refer to the flow of data along a connector from 

one component to another (as compared to a control flow).   
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Design Pattern:  (from Gamma, Helm, Johnson, & Vlissides, 1995).  Patterns are 

"descriptions of communicating objects and classes that are customized to solve a general 

design problem in a particular context.  A design pattern names, abstracts, and identifies 

the key aspects of a common design structure that make it useful for creating a reusable 

object-oriented design."   

 

Formal Language:  A language generated from an alphabet using a set of production 

rules.  The advantage to a formal language is that it is defined mathematically and, hence, 

mathematical techniques can be used to prove the correctness of the assertions made in 

the formal language.  Ambiguity and incompleteness are eliminated in a correct formal 

language description.  Formal specifications in software engineering use a formal 

language to describe the requirements of the system; formal specifications can also be 

proved to be correct using mathematical techniques.   

 

4+1 View:  The four views (and the fifth "view", the use case modeling) of software 

architecture as proposed by Philippe Kruchten of the Rational Corporation.  These views 

included the logical view (the object model),  process view (architecture at execution 

time), physical view (implementation onto hardware), and the development view (static 

software architecture within the development environment).   

 

Geometric Model:  An intermediate representation of the geometry of a graphical object 

for later display in a visual medium.  The geometric model may consist of data structures 
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such as arrays, stacks, queues, matrices, etc., used for representing the geometric 

properties of objects.  

 

IEEE:  The Institute of Electrical and Electronics Engineers.  A nonprofit, international 

organization involved with topics of interest to electrical or electronics engineering or 

related professions (such as applied physics and computer science).   IEEE is widely 

recognized for setting standards and for publication of research.  

 

IEEE Standard 1471-2000:  A standard established by the Institute of Electrical and 

Electronic Engineers for the recommended practice of describing software architectures. 

This standard is perhaps the first major standard by a recognized standards body dealing 

with software architecture.  It attempted to establish definitions for what was meant by a 

software architecture, a software architecture description, a software view and viewpoint, 

and so on, by establishing a broad consensus among many practitioners and academicians 

in software engineering.  

 

Interface:  In a general sense, an interface is the common face (or surface) shared by 

intersecting objects.  In software architecture, the interface is the point at which a 

connection touches a component, analogous to a wall socket; the manner in which a 

component deals with a connector.  An interface is typically assigned a role defining how 

the component and connector interact. 
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Layered Architectural Style:  An architectural style in which components are seen as 

hierarchical layers; a lower layer provides a service to a higher layer.  Connections 

between layers are kept hidden.  The OSI Seven-Layer Network is an outstanding 

example of the layered style. 

 

Legacy System:  An existing system for which documentation may be minimal, missing 

or nonexistent.  A software architecture may be extracted from a legacy system as a 

means of comprehending the older system. 

 

Lex:  For "lexical generator" or "scanner generator."  Lex is a popular program that 

generates lexical analyzers.  Lex is normally used in conjunction with yacc. 

 

Lexical Analyzer:  Also referred to as "lexer" or "scanner".  The part of a compiler 

program that reads through the source program, establishing the valid tokens (such as 

keywords, operators, and variables or labels) in the language, and building a symbol table 

for later reference.  Invalid strings are noted as errors by the lexical analyzer. 

 

Model:  A representation of a system, showing only those features of interest in order to 

reduce complexity; an abstraction.  

 

Object:  A member of a class which has existence (occupies space, persists through time, 

etc.).  The instantiation of a class.   
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OMG:  Object Management Group.  An international consortium intended to set 

standards.  OMG is most widely known for creating the CORBA standards for distributed 

object services. 

 

Parser:  Sometimes called "syntax analyzer."  A phase of the compiler which accepts 

tokens from the lexer and, based on the grammar and the symbol table, determines 

whether or not the token's appearance is valid in the language.  The parser creates a 

"parse tree" representing the source code statement; the parse tree is later traversed to 

generate the target code. 

 

Regular Expression:  A string from an alphabet generated by production rules defining 

the grammar of the language.  Many programming languages are generated by regular 

expressions.    

 

Regular Language:  A language consisting entirely of valid regular expressions. 

 

Scenario:  A description of a possible sequence of events between actors, thus describing 

the behavior of a system.  Scenarios are instantiated by use cases. 

 

Semantics:  The meaning of words or phrases, as opposed to their order (syntax). 

 

Software Architecture:  A discipline within software engineering that attempts to simplify 

the complexity of a software system by describing the overall system in terms of coarse-



36                                       
 

grained structures, such as components, connections between components, and 

configurations of components and connections.   

 

Software Homeostasis:  The propensity of a software system to automatically "restore to 

normal or desired or equilibrium state when something occurs to upset or disturb that 

state" (from M. Shaw, Sufficient Correctness and Homeostatis in Open Resource 

Coalitions). 

 

Software Traceability:  (sometimes also called "requirements traceability").  The 

capability of tracing a path from a component in the requirements phase of a software life 

cycle model to one or more components in the later phases of software development 

(such as design, coding, and testing); also, the capability of tracing a path backwards 

from a component in a later phase, such as design, to a particular requirement.  Software 

traceability is a technique for insuring conformance of design to requirements and 

insuring software quality control during maintenance.    

 

Stakeholder:  An individual or group with a "stake" (interest) in the success of the 

software development project.  A stakeholder may be the client, manager, user, 

developer, or anyone else with an interest in the success of the software development 

project.     

 

Style:  See "Architectural Style". 
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Sufficient Correctness:  (from M. Shaw):  "The degree to which the system developer 

aspires to establish that the system meets its specifications, given constraints of time, 

cost, and limited knowledge." 

 

Syntax:  A description of the allowed order of words in a language; the form of words in 

the language. 

 

Token:  A string of characters from a valid alphabet in the language that form the 

building blocks of the language.  Examples of tokens may be keywords, an arithmetic 

operator, a variable name, integer, and so on.  

 

Topology:  A description of the way components of the architecture are connected, 

implemented by a connectivity matrix.   

 

Traceability:  See software traceability. 

 

UML:  "Unified Modeling Language,” a visual language for modeling various aspects of 

software development (especially analysis and object-oriented design).  UML was a 

unification of the earlier object-oriented modeling techniques by Booch, Rumbaugh, and 

Jacobson.   Modifications to UML have been proposed to make the language an 

architecture description language. 
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Use-Case:  A software development technique intended to describe behavior of a system.  

A use-case is an instantiation of a particular scenario (see "scenario"). 

 

View:  (from Egyed, 1999):  "A piece of the model (used to represent some aspect of the 

real world) which is still small enough for us to comprehend and which also contains 

relevant information about a particular concern."  A view is an abstraction on a model, 

hiding details which would make the model more complex, but revealing only those 

details of concern to us from a certain perspective.   

 

Viewpoint:  A template specifying a view on one or more software architectures.  The 

viewpoint tells us the format for how a view is described.  A viewpoint is to a view in 

much the same way as a class (in object-oriented programming) is to an object.   

 

Viewpoint mismatch:  An inconsistency in the way viewpoints are modeled.  For 

example, suppose viewpoints are supposed to have a one-to-one mapping between 

components in their representations.  If one viewpoint has many more components than 

the other, there is a mismatch.   

 

Virtual Reality:  A term referring to techniques for the realistic simulation of reality, 

typically using advanced three-dimensional computer graphics.  Virtual reality is a 

paradigm that defines an entire world through which certain rules (navigational, 

movement, lighting, etc.) logically apply.  Simulation is based on the assumption that a 
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viewer is immersed in this world and is considered to occupy a particular viewpoint 

within the world. 

 

VRML: Virtual Reality Modeling Language.  A versatile language intended to model 

worlds in three dimensions, using the virtual reality paradigm.  VRML is designed to 

display its results on the Internet by means of an Internet browser; hence, VRML is 

platform independent. 

 

Yacc:  For "yet another compiler-compiler."  Yacc is a popular program for generating 

compilers based on a grammar with semantic actions.   

 

Z  (Pronounced "Zed"):  A formal language used for system specifications.  It has been 

used to formalize architectural descriptions. 
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Summary 

 
Software architecture is an emerging discipline within software engineering.  

Models based on software architecture attempt to reduce the complexity of a software 

system by representing the system with coarse-grained structures.  A software structure 

could be represented by components and connections arranged in a specific topology.   

An architectural style defines the constraints on the topology and instantiation of the 

structure during run-time.  Depending on the stakeholder viewpoint, elements of the 

topology are interpreted differently; a component, for example, may be an abstraction 

representing a program module, object, concept, or database.   

Software architectures may be described using a text-based architecture 

description language (ADL).  The key goals of an ADL are to communicate alternate 

designs between different stakeholders, to detect reusable structures, and to record design 

decisions.  ADLs serve as tools to assist in analytical reasoning about the preliminary 

software design, to insure software quality early in software development.   

A major problem in software architecture has been the difficulty of creating 

different representations to accommodate the contrasting viewpoints of stakeholders.  A 

set of viewpoints should be conveyed in a way that is both comprehensive enough for 

specialists but understandable to generalists.  The representation problem has been one of 

integrating different viewpoints without losing consistency (viewpoint mismatch) and 

without errors in relating architectural structures (architectural mismatch).   

This dissertation provided a solution to the representation problem by creating a 

tool for three-dimensional representation of architectural viewpoints.   
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The tool consisted of an architecture description language (VTADL) to first 

describe the software architectures and viewpoints on the architectures; and a VTADL-

to-VRML compiler to translate each viewpoint into a separate virtual reality world.   

This research was significant since no compiler existed to translate a dedicated 

architecture description language into VRML.  To the best knowledge of the dissertation 

author, very little or no research had been conducted on representing software 

architectural viewpoints in virtual reality. 

 An additional benefit of the VTADL-to-VRML compiler was the support for 

software traceability, the capability of tracing a path from elements of the architecture to 

associated requirements documentation.  Using the VRML visualization, a stakeholder  

could trace the rationale behind the design using hyperlinks from elements of the 

visualization to source documents. 

 



 

 

 

Chapter II 

Review of Literature 

 

 

History and Foundation of Software Architecture 

The motivation of software architecture as a discipline within software 

engineering was the need to manage complexity by reducing complex structures to 

smaller, simpler parts.  At the most fundamental level, a software architecture consists of 

discrete components and connections between the components, a form of decomposition 

of a system into coarse-grained parts.    

For example, a complex system may be broken down into smaller pieces, perhaps 

four or five subsystems at the next level.  Each of the four or five subsystems would, in 

turn, be broken down.  At any given node in this hierarchy, no more than seven or so 

subsystems would lie directly beneath the parent.  Traversing the tree structure, one could 

confront and manage a small number of subsystems at a given level.  This decomposition 

process would continue until the leaves are reached, at which point we have reached the 

lowest level of detail.   

The instinctive need for human beings to handle complexity by breaking the 

complexity down into a manageable number of pieces was empirically confirmed by 

psychologist George Miller [Miller, 1956] in his influential paper, The Magic Number 

Seven, Plus or Minus Two:  Some Limits on Our Capacity for Processing Information.   
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Miller discovered that the average human being can handle no more than seven or so 

discrete entities of information at a given moment.   

One of the earliest software engineers to note the advantages of decomposition 

was Edgar Dijkstra [Dijkstra, 1968].  Dijkstra was involved with the "THE" project, an 

operating system developed in the Netherlands.  By using a "separation of concerns" 

during development of the operating system, the implementation and testing phase 

became less cumbersome, with the resultant savings in development time. 

David Parnas's classic paper, On the Criteria to be Used in Decomposing Systems 

into Modules [Parnas, 1972] studied the criteria for breaking a larger software module 

into smaller modules.  Among the criteria that Parnas used were the modifiability of 

independent modules, comprehensibility, and reduced development time (since 

independent modules could be developed in parallel by more than one software 

development team).   Depending on the priorities of the developer, a software module 

could be decomposed in vastly different ways.   Parnas's paper was one of the earliest 

papers to mention the benefits of information hiding – when decomposition is performed, 

the details below the current module are suppressed.   

Hierarchical, modular decomposition with the use of data hiding of lower-level 

details set the stage for the emergence of software architecture.  A precursor to software 

architecture description languages were the module interconnection languages (MILs), 

which were in vogue during the 1980s [Prieto-Diaz & Neighbors, 1986].  MILs focused 

on describing the interface between software components (or modules).  The 

concentration on describing module interfaces was intended to assist in detecting errors in 
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integrating modules (which in software architecture is referred to as "architectural 

mismatch"), or to assist in reusing modules. 

 The paper by Perry and Wolfe [Perry & Wolfe, 1992] served as the catalyst for 

the emergence of the architectural approach.   Earlier approaches akin to the architectural 

approach (representation of the key components and connections of a software system) 

were performed in an ad hoc manner.   Perry and Wolfe analyzed these "first sketches" 

not as throwaway "rough drafts," but as important, albeit coarse-grained, designs.  Their 

early model of software architecture consisted of elements (components), forms 

(connectors), and rationale (the reason behind the topology, based on system 

requirements).   With software architecture now defined and acknowledged as a powerful 

new method of abstraction, other researchers refined and elaborated on the technique. 

David Garlan and Mary Shaw [Garlan & Shaw, 1993] wrote a paper summarizing 

many of the key concepts of the new field.  The same authors wrote the first highly 

influential book on software architecture [Shaw & Garlan, 1996], covering the gamut of 

software architectural concepts and methods.  The authors emphasized the classification 

of architectures into different styles. 

Architectural styles in software architecture are equivalent to the various styles  

used in the architecture of physical structures (e.g., Gothic, Victorian, Modern, etc.).  

Architectural styles were defined by the authors as the set of design rules which govern 

the types of components and connectors used, and the relational constraints between 

components and connectors.  Garlan and Shaw provided several case studies 

demonstrating the use of architectural styles in software architecture.  One of these case 

studies, based on Parnas's KWIC (Key Word in Context), has become a well-known 
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standard to demonstrate the idea of  "decomposition."  A future case study in architectural 

visualization may visualize the KWIC decomposition. 

A novel architectural description language (ADL) called UniCon was also 

introduced and discussed by the authors.  UniCon was capable of representing 

interconnection properties (protocols, messages, etc.) as well as components.   

 Shaw and her colleagues at the Software Engineering Institute at Carnegie Mellon 

University further developed UniCon and implemented it as one of the first workable 

architectural description languages [Shaw et al., 1995].   The focus was on developing 

tools to describe various architectural styles, with the profound hope that software 

architecture could help elevate software engineering into a "science of software" on a par 

with more traditional engineering disciplines. 

With both foresight and confidence in the new approach, Shaw and Garlan 

proposed the educational curriculum for software architects (as a branch of software 

engineering).   

 Mary Shaw and Paul Clements further explored the idea of architectural styles in 

A Field Guide to Boxology [Shaw & Clements, 1997].  In this important paper, the 

authors provided one of the first comprehensive classifications of the different 

architectural styles.  Prior to A Field Guide to Boxology, architectural styles were defined 

in an informal fashion.   The styles were classified into the data-flow (based on the 

movement of data through components and connectors), call-and-return (such as a main 

program which calls subroutines), independent processes, data-centered repository 

(database or client/server), data sharing, and hierarchical styles (such as the Java virtual 

machine).   What is most significant about this paper, however, is that the authors 
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described the criteria for applying each style to a particular problem.  For example, if the 

problem involved transformations on continuous data streams, the pipelined architectural 

style was recommended. 

 In Comparing Architectural Design Styles [Shaw, 1995], Mary Shaw studied 

eleven different designs of the same automobile cruise-control system.  She discovered 

that all eleven designs fell into one of four generic architectural styles:  object-oriented, 

state-based, feedback-control or real-time styles.   Each of the different styles focused on 

different aspects of the problem.  In other words, the presence of different viewpoints was 

noted within each design.  A given viewpoint would emphasize certain components and 

relations, and suppress other components/relations.   

 After analyzing the manner in which design styles were selected to model the 

solution, Shaw concluded that a systematic means was needed to establish the relations 

between multiple viewpoints (and to ensure consistency between viewpoints).   Also 

needed were techniques to evaluate which architectural style would be most appropriate 

to the problem. 

 David Garlan was instrumental in developing an object-oriented architectural 

design tool called Aesop, as described in the paper, Exploiting Style in Architectural 

Design Environments [Garlan, Allen, & Ockerbloom, 1994].  Aesop was a generic 

architectural model capable of being instantiated into the desired architectural style; i.e., 

instantiated into a pipelined, call-and-return, or event-based style.  Using a generic 

approach, rather than a style-specific architectural model, had several advantages – one 

was not limited to just one style and thus had more design versatility.  The disadvantage  
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was that the stylistic constraints had to be incorporated into the methods of instantiated 

objects.  The use of methods tended to obscure invariant properties of certain styles.   

 Software architectural techniques were compared to object-oriented design and 

design patterns [Monroe, Kompanek, Melton, & Garlan, 1997].   The strengths of 

architectural design – enhanced comprehensibility through data hiding, ability to 

communicate design decisions to different stakeholders, etc. – have been covered in the 

other literature and repeated here.   

 Noteworthy was the authors' discussion on the weakness of architectural design.  

The weakness was evident when one system used one architectural style, but another 

system used a different architectural style.  Reusability between systems, or even 

compatibility between systems, was made more difficult by differing styles.  The authors 

concluded that the three models were complementary; one model does not subsume the 

other. 

 Alexander Egyed and his co-authors discussed the idea of architectural families, 

in which a generic software architecture could be reused by many different software 

products [Egyed, Nikunj, & Medvidovic, 1999].  The idea of architectural families was to 

accelerate reuse of designs, dramatically reducing development time.  Traditional 

architectural families were defined around software components; Egyed and his co-

authors presented a method to design around software connectors.  A taxonomy of 

software connectors was used to define and constrain the software families.   

 The difficulties of reusing software components were discussed in Architectural 

Mismatch:  Why Reuse is So Hard [Garlan, Allen, & Ockerbloom, 1994].  The authors 

defined "architectural mismatch" as the incompatibility between software components.  
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Architectural mismatch may occur when off-the-shelf components are used to build a 

system, and the components cannot communicate with each other.  Garlen, Allen and 

Ockerbloom related their experiences with architectural mismatch while developing the 

Aesop system, a tool for experimenting with software environments.  They found that 

incorrect assumptions about the architecture, or miscommunication in the architectural 

description, were primary causes of mismatch.   

The authors proposed several solutions to the architectural mismatch problem.  

One proposed solution was to devise techniques that make the assumptions about the 

architecture explicit, leaving no room for ambiguity.  Another proposed solution was to 

construct the software components from "orthogonal subcomponents"; i.e., from 

independent modules.  The authors recommended developing tools to guide the design 

process, and developing techniques for surmounting mismatches once the mismatches 

occur. 

 Within the past few years, the use of formal methods in software architecture has 

come to the fore.   Formal methods make the assumptions about architectures explicit, 

eliminate ambiguities, and allow for logical reasoning about the architecture.  With 

formal methods we can prove the "correctness" of an architecture (if our initial 

assumptions are valid).  The disadvantages to formal methods lie in the costs to produce a 

formal description.  The skilled personnel involved in writing a formal description must 

be knowledgeable in discrete mathematics as well as in the problem domain; such 

personnel must either be trained (a costly investment) or hired from the ranks of trained 

mathematicians or computer scientists (also a costly investment). 
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 Formalizing Style to Understand Descriptions of Software Architecture [Abowd, 

Allen, & Garlan, 1995] applied the Z formal language to describe the components, 

connections and properties of software architectures.  Significantly, the authors 

mathematically formalized the idea of an architectural style. 

 The authors presented the argument that the cost of producing a formal 

architectural description for a product family is worthwhile.  The investment is in 

producing a family of systems, rather than an individual system.  Formalization of the 

properties and styles of product families would be applicable to a wide spectrum of 

products. 

 The advantages and disadvantages of Z notation to software architectures are also 

explored by the dissertation work of one of the co-authors of the above paper, Robert J. 

Allen [Allen, 1997]. 

Since the inception of software architecture in the early 1990s, the initial flurry of 

activity defining the nature of this new discipline has given rise to books about the 

applications of software architecture to large-scale development projects.   Noteworthy 

among the recent "applications" books is Software Architecture in Practice [Bass, 

Clements, & Kazman, 1998].  The authors were software engineers with the Software 

Engineering Institute (SEI) of Carnegie Mellon University.  The process of developing 

and refining a software architecture was viewed as an iterative process that must be 

integrated throughout the software life cycle.   This application-oriented model was 

referred to as the "architecture business cycle."  Software architectures were evaluated 

from the standpoint of software quality assurance and the degree of reusability. 
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Applications of software architecture to real-world projects were described 

through numerous case studies.  The A-7E Avionics System used software architecture to 

simplify the overall structure of the system and insure reusability.  Most interesting was a 

case study on the architecture of the World Wide Web, and the impact that this 

architecture had on the organization that designed it (the Web’s structure far outgrew its 

anticipated size).  The architecture of the CORBA (Common Object Request Broker 

Architecture), designed by the Object Management Group to achieve interoperability 

between different software products, was also examined in light of the goals of the 

businesses that supported the standard.   

Other case studies included an air traffic control system, a flight simulator, and a 

corporation (CelsiusTech) that implemented a product line based on reusable software 

architecture. 

 In a similar vein, but taking a more European perspective, Software Architecture 

for Product Families [Jazayeri, Ran, & van der Linden, 2000] described the work of 

ARES (Architectural Reasoning for Embedded Systems).  The ARES project was funded  

by the European Commission and lasted from  December 1995 to February 1999; it 

involved six European partners, three industrial and three academic. 

 Each research group reported on their successes or failures in the use of software 

architecture.  The emphasis of the research was architecture-centric software 

development.  Software architectures were developed with reusability in mind; 

specifically, the ability to create entire product families based on similar architectures.   

 Software architecture as a distinguishable branch of study within software 

engineering has matured to the point where the Institute of Electrical and Electronics 
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Engineers have released their first standard, the IEEE Recommended Practice for 

Architectural Description of Software-Intensive Systems, IEEE Std. 1471-2000 [IEEE, 

2000].   IEEE Standard 1471-2000 is significant in that it is the first standard by a major 

organization to address software architecture explicitly.  A consensus on various 

definitions and practices (such as on software architecture, views, viewpoints, 

architecture description, and so on) was reached by a standards committee, the 

Architecture Working Group, comprised of influential members of the software 

architecture community from both industry and academia.  IEEE Standard 1471-2000 

was as generic as possible in advising how architectures should be described; no one 

architecture description language was recommended over another.  Instead, a 

standardized template containing the necessary properties of an architecture (components, 

connectors, configuration, etc.) was provided. 

 The standard was not without its critics.  Rich Hilliard, a member of the original 

Architecture Working Group which established IEEE Standard 1471-2000, stated in his 

position paper, IEEE Standard 1471 and Beyond, that too much emphasis was placed on 

conceptual modeling while lacking a "larger context needed in most practical, industrial-

strength applications" [Hilliard, 2001].  However, Hilliard admitted that the standard was 

"worth appreciating relative to current work in architectural research and practice."   

In 1995, David Garlan and Dewayne Perry, among the pioneers (along with Mary 

Shaw) of software architecture, summarized several active areas of research [Garlan & 

Perry, 1995].  The areas of research they pinpointed were architectural description 

languages (i.e., the problems associated with representing different viewpoints), formal 

software architecture, architectural analysis techniques, architectural development 
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methods, architectural archeology, architectural codification and guidance, and 

architectural tools and environments.  Most of these areas of research have accelerated 

since 1995.   

Though this dissertation research focused primarily on software architecture 

representation (textually and visually), the research itself may be classified into three of 

the topics mentioned by Garlan and Perry.  This dissertation can be considered an 

architectural tool, and the resulting description and visualization can be considered 

architectural description languages and architectural guidance.  The resulting tool can, 

arguably, be used to derive and visualize legacy code, placing the research into a fourth 

research topic as well (software archeology).   
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Software Architecture in the Software Development Process 

 As mentioned in Chapter I, software architecture has grown to encompass the 

entire software development life cycle, incorporating elements of the requirements, 

design, implementation and maintenance phases into the architectural framework.   

The works of object-oriented pioneers Grady Booch, Ivar Jacobson, and James 

Rumbaugh are highly significant to software architecture.  Their most recent work, The 

Unified Software Development Process [Jacobson, Booch, & Rumbaugh, 1999], 

described an object-oriented and architecture-centric software development process.  

Their visual modeling language for representing software design, called the Unified 

Modeling Language (UML), combined the earlier methods of the authors into a single 

method. UML has rapidly become an industry standard in the modeling of software 

design.  The UML User Guide [Booch, Rumbaugh, & Jacobson, 1999] gives specific 

details on how UML is used to model object-oriented development using an iterative, 

evolutionary life cycle model.   

 The earlier work by object-oriented pioneer Grady Booch [Booch, 1994] 

supplements the unified method book.  Booch's overall discussion on the nature of 

modularity, hierarchy, and the object-oriented view of the world is outstanding and 

should be read for its own sake.  Booch's classified bibliography is highly comprehensive 

(as of the early to mid-1990s). 

 Assuring the quality of the software architecture as it evolves along with the 

software development life cycle is of paramount important.  Abowd et al. discussed 

techniques for evaluating software architectures in Recommended Best Industrial 

Practice for Software Architecture Evaluation [Abowd et al., 1997].  Prior to this paper, 
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scant research was focused on insuring the quality of software architectures during the 

development process. 

 Len Bass, Paul Clements and Rick Kazman of the Software Engineering Institute 

at Carnegie Mellon wrote the seminal work on incorporating software architecture in 

real-world applications.  Software Architecture in Practice [Bass, Clements, & Kazman, 

1998] discussed in depth how the architecture may be incorporated into the business 

cycle of development.  Significantly, the authors incorporated numerous case studies 

from actual development environments: the development of the World Wide Web, 

CORBA, and an air traffic control system were explored from an architectural 

perspective.  Successful cases where reusability was achieved through software 

architecture were discussed.   

In Taming Architectural Evolution, authors van der Hoek et al. described a novel 

architectural evolution environment called Mae [van der Hoek, Rakic, Roshandel, & 

Medvidovic, 2000].  Mae modeled changes to the software architecture in a way 

analogous to more established configuration management techniques.  This paper is of 

interest because the authors described how changes to software architecture could be 

modeled as the overall system evolves.  There is a possibility that the visualization 

techniques developed by this dissertation could be used to model software evolution.  

 Software architecture is increasingly used to model legacy systems, especially 

when minimal or no documentation exists.  Jazayeri et al. [Jazayeri, Ran, & van der 

Linden, 2000] provided several case studies in "software architecture recovery," also 

known as software archeology.  The overriding theme of the authors was the derivation 
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or recovery of general architectural properties, so that the software architecture could 

describe an entire product family.  

Ivan Bowman performed a notable architectural recovery on the Linux operating 

system.  In Conceptual Architecture of the Linux Kernel [Bowman, 1998] and Concrete 

Architecture of the Linux Kernel [Bowman, Siddiqi, & Tanuah, 1998], Ivan Bowman 

created two-dimensional visualizations of the conceptual and concrete software 

architectures of the Linux operating system kernel.  The software architectures were 

formulated with only minimal or nonexistent references. 

Software architectural recovery is a form of reverse engineering.  Ted Biggerstaff 

of Microsoft Corporation [Biggerstaff et al., 1993] called the problem of deriving the 

human concepts behind computer code the "concept assignment problem" in 

understanding existing program code.   In other words, aspects of the program code are 

mapped to the conceptual model.  In software architectural terms, this is equivalent to 

deriving the conceptual view from the implementation model.   

 Biggerstaff isolated two types of concepts – human-oriented concepts and 

program-oriented concepts.   While program-oriented concepts tend to be more precise 

and are logically recognizable by an automated parser, human-oriented concepts are 

fuzzier and more ambiguous.   The authors developed a program understanding assistant 

called DESIRE (for "Design Recovery").  The DESIRE reasoning system provided a 

domain-specific, a priori knowledge base to allow inference of formal information types 

from informal information types, and vice versa.     

The authors believed that a completely automated design recovery system would 

not be possible, due to instances of incomplete, contradictory or nonexistent knowledge 
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about the program code.   But the authors did conclude that a recovery assistant such as 

DESIRE could greatly accelerate and simplify the manual derivation of concepts from 

legacy code. 

 The Internet has affected how software architectures evolve, and how we may 

judge the correctness of software architectures.  Traditional software architectures were 

relatively static.  In a technical report published by Carnegie Mellon university,  entitled 

Sufficient Correctness and Homeostasis in Open Resource Coalitions:  How Much Can 

you Trust your Software System?,  Mary Shaw pointed out that software architectures on 

the Internet are dynamic and constantly evolving, demanding an updated criteria on how 

we gauge the correctness of software architectures [Shaw, 2000].   

 Dr. Shaw proposed the idea of "sufficient correctness" when dealing with the time 

constraints and limited information of the Internet.  Distributed software systems could 

automatically monitor and correct their own behavior when a deviation from a norm is 

detected, much like an air conditioning system uses a thermostat to maintain a 

sufficiently correct temperature.  The monitoring and correction of dynamically evolving 

architecture was called "software homeostasis" by the author.  She argued that software 

homeostasis could be used to verify software architectural quality with the sufficient 

correctness of a fuzzy system. 

 
 

Software Architecture and Design Patterns 

 Design Patterns: Elements of Reusable Object-Oriented Software [Gamma, Helm, 

Johnson, & Vlissides, 1995] is a compendium of design patterns intended for reuse by 

object-oriented developers.   It is a "bible" of known object-oriented design patterns and 
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represents an effort to standardize reusable patterns within the object-oriented software 

design community.   

 Many of the ideas behind design patterns are pertinent to software architecture.  

However, Hofmeister et al. point out [Hofmeister, Nord, & Soni, 2000] that design 

patterns may be relevant to architecture or they may be relevant only to detailed design.  

Design patterns may be considered architectures when the design patterns describe 

interactions between architectural elements.  Design patterns are relevant only to detailed 

design (and not architecture) when the design patterns describe interactions within 

architectural elements.  In other words, when the design patterns describe detail more 

fine-grained than the architectural elements, they are no longer part of software 

architecture.  

Christopher Alexander [Alexander et al., 1979; Alexander, Ishikawa, & 

Silverstein, 1977], in a two-volume work about using patterns in the construction of 

buildings (The Timeless Way of Building and A Pattern Language) influenced an 

analogous pattern language movement in object-oriented programming.  Alexander et al. 

take an almost Taoist approach to defining patterns for architectural construction; they 

indicate that the best and most universal patterns come from the inner knowledge locked 

within the human being, flowing naturally from the essence of the requirements.   Since 

the architecture of physical artifacts consists of relating components to one another, and 

the overall philosophy of reusing patterns to build successful structures is such a natural 

and eloquent one, it was inevitable that software engineers would see the analogy to the 

development of software components. 
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Software Architecture Description Languages 

 The architecture description language defined by this dissertation research, 

VTADL (Visually Translatable Architecture Description Language) was patterned after a 

language called ASDL (for Architecture Structure Description Language).  ASDL was 

originally developed to assist in architecture recovery from legacy systems; the language 

was intended to convey basic architectural properties (configuration, basic components, 

information interchange), while ignoring properties such as interface behavior 

[Eixelsberger & Gall, 1998].   

 Elements defined by the language seemed unambiguous and straightforward to 

visualize.  However, the language did not extend to defining viewpoints.  Additional 

language syntax was needed to allow different architectural styles and explicit positions 

(e.g., left, right, top, bottom) when positioning could be ambiguous.   Thus, a new 

language was devised (VTADL) and is defined in more detail in Chapter Three and the 

Appendix. 

 Though mentioned in the History and Foundation section of this literature review, 

the 1995 paper by Shaw et al. was seminal in the field of software architecture 

description languages and is worth repeating here.  Abstractions for Software 

Architecture and the Tools to Support Them [Shaw, DeLine, Klein, Ross, Young, & 

Zelesnik, 1995] was one of the first papers to discuss the idea of software architecture 

description languages for describing different architectural styles, and also for 

implementing the architecture beyond the design.  One of the first ADLs, called UniCon, 

was presented.  The authors expressed the hope that ADLs, along with other software 
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architectural tools, could lead to a science of large-scale systems, just as there is a science 

of algorithms.    

 By the late 1990s, enough ADLs had been created to merit a classification of the 

languages based on various criteria.  In two important papers, Nenad Medvidovic and his 

co-authors provided such a classification.  

Domains of Concern in Software Architectures and Architecture Description 

Languages [Medvidovic & Rosenblum, 1997] classified the architectural domains of 

architecture description languages.  For example, refinement and simulation were two 

different application domains.  The ADL called "C2" was used to represent simulation 

and event filtering, while Darwin was used for hierarchical views on the architecture.   

The ADL called "MetaH" was ideal for static analysis of a parser or for security analysis 

of an architecture.   

In A Classification and Comparison Framework for ADLs [Medvidovic & Taylor, 

2000], the authors classified architecture description languages according to key criteria.  

According to the criteria, an ADL must be capable of describing (to varying degrees) the 

components, connectors, and configuration of an architecture.  An ADL must also have 

tool support.   Furthermore, each type of description must possess, to greater or lesser 

extent, key features such as interfacing capability, typing, semantics, constraints, 

evolution, and non-functional descriptive capability.  Using this classification scheme, 

the authors compared languages such as ACME, C2, Aesop, Darwin, Metcalf, Rapide, 

SADL, UniCon, Weaves, and Wright. 

 The use of formal languages for architecture description appeared almost at the 

very beginning of software architecture as a discipline.  The dissertation by R.J. Allen, A 
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Formal Approach to Software Architecture [Allen, 1997], and the paper by Abowd et al. 

[Abowd, Allen, & Garlan, 1995] were discussed at length in the History and Foundation 

section of this literature review.   

 However, a fascinating formal language using a chemical model to describe 

software architectures was discussed by Inverardi and Wolf.  In Formal Specification and 

Analysis of Software Architectures Using the Chemical Abstract Machine Model 

[Inverardi & Wolf, 1995], the authors reported on their research with CHAM, the 

Chemical Abstract Machine Model, a formal language based on chemical reactions.  

Since CHAM was a formal language, it could be used to reason and prove the correctness 

of architectures; CHAM could also be used to formalize the idea of architectural styles.  

The authors concluded that CHAM might be "...one useful tool in the software architect's 

chest of useful tools," since no one formal language could be all things to all 

architectures.    

 Using an architecture description language to describe and visualize a neural 

network was discussed by Inouye in An Architecture Description Language for 

Visualizing Neural Network Designs [Inouye, 2001].  The style used for the neural net 

description was not implemented in this dissertation.   

Rapide was an architecture description language intended for event-driven and 

concurrent systems [Luckham, Kenney, Augustin, Vera, Bryan, & Mann, 1995].  

Components were viewed as states and connectors were interpreted as transition arcs 

between the states.   



61 

 

By describing architectural families instead of single architectural structures, 

software development time could be significantly reduced.  In Software Connectors and 

Refinement in Family Architectures [Egyed, Nikunj, & Medvidovic, 1999], the authors  

expanded upon the idea of architectural families by including generic software 

connectors (traditional architectural families were defined using software components).  

The idea of architectural families is to accelerate reuse of designs and to dramatically 

reduce overall development time.  Egyed et al. presented a taxonomy of software 

connectors to define and constrain the architectural families.  The authors presented a 

case where using software connectors could increase the flexibility of product families 

and allow for the automation of architecture refinement.  They mentioned the 

development of automated tools to detect architectural mismatch and to ensure 

consistency between architectures. 

 With the wide number of versatile ADLs available by the late 1990s, some 

software engineers began to consider ways of integrating the various languages.  The idea 

of a canonical "ADL toolkit" was proposed by Garlan et al. in Towards an ADL Toolkit 

[Garlan, Ockerbloom, & Wile, 1998].   The ADL toolkit used an ACME language 

environment.  ADL translators were capable of translating ACME to UML, ACME to 

MetaH, C2 to ACME, and so on.  Using ACME as the intermediary, several ADLs could 

be translated to one another.  However, the idea of translating an ADL to ACME, and 

ACME to VRML, has not been explored and would involve geometric and computer 

graphics issues.  The translation of an ADL to VRML was, of course, the topic of this 

dissertation. 
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 A very recent and interesting trend has been the idea of representing a known 

ADL using the Extensible Markup Language (XML).  The authors at the University of 

Southern California's Center for Software Engineering represented several ADLs, 

including ACME, C2, SADL, and Darwin, using XML tags [Dincel, Roshandel, & 

Medvidovic, 2000].  The authors expressed the goal of making ADLs interact with one 

another through connectors in the XML environment. 

 The reasoning and philosophy preceding IEEE Standard 1471-2000 (the first 

standard on software architecture from a recognized organization) was discussed in 

Toward a Recommended Practice for Architecture Description [Ellis, Hilliard, Poon, 

Rayford, Saunders, Sherlund, & Wade, 1996].   The authors reported on the work of their 

Architecture Planning Group (chartered by the IEEE) to standardize the practice of 

software architectural descriptions.  The IEEE standard was ultimately finalized and 

released four years later (in 2000) as IEEE Std. 1471-2000. 

 The Recommended Practice for Architectural Description of Software-Intensive 

Systems [IEEE, 2000] stands as an important milestone in software architecture 

description.  A consensus on the definition of software architecture, view, viewpoint, on 

what information constituted an architecture description, and so on, was reached by 

members from both industry and academia in the field of software engineering.   

 Like any standard, some of the definitions or explanations in the standard – no 

matter how rigorously described – could still be open to interpretation.  The IEEE Std. 

1471 Frequently Asked Questions (FAQ) [Maier, Emery, & Hilliard, 2001] document was 

one attempt to correct this.  The authors pointed out that the standard was non-restrictive, 

not enforcing a particular ADL or viewpoint template.  The standard simply set 
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guidelines for what should be included in an architectural description:  common sense 

items such as identification of stakeholders, definition and selection of viewpoints, 

documentation standards for viewpoints, recording viewpoint inconsistencies, and 

recording rationale behind the architectural decisions. 

Rich Hilliard's position paper, IEEE Std. 1471 and Beyond [Hilliard, 2001] 

discussed the ramifications and use of the new standard, attempting to dispel many of the 

misconceptions. 
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Software Architectural Viewpoints 

 Phillipe Kruchten, of the Rational Corporation, defined software architecture in 

terms of different views on the software development process [Kruchten, 1995].  

Krutchen's views were developed in response to the problem of representing software 

architectures for the different stakeholders involved in the development process.   He 

claimed that any view of the software architecture could be folded into one of four 

possible classifications of software viewpoints.  The logical view describes an object 

model of the environment when object-oriented design methods are used; as an 

alternative, the logical view can be represented by an entity-relationship diagram in 

traditional structured programming.  The process view describes the architecture at 

execution time, covering aspects such as concurrency and synchronization.  The physical 

view describes the mapping of software implementation onto the hardware, whereas the 

development view describes the static software components during development time.   

 Each of the four views can be illustrated using a fifth view, the use case scenarios 

where the interrelationships between components of the view are instantiated.   

An equally effective but alternate set of views was developed by Soni, Nord and 

Hofmeister of  the Siemens Corporation and described in their paper, Software 

Architecture in Industrial Applications [Soni, Nord, & Hofmeister, 1995].  The authors 

studied several software systems built by the Siemens Corporation and discovered that 

multiple architectural views were desirable.  They classified the views into conceptual 

architectures, module interconnection architectures, execution architectures, and code 

architectures.  These views differed from the 4+1 View Model as proposed by Kruchten, 



65 

 

and arguably could not be folded into one of Kruchten's views.  The contribution of this 

paper was to show that alternate view models beyond the 4+1 View Model were viable. 

Christine Hofmeister, Robert Nord and Dilip Soni applied their model of software 

architectural views to actual products at the Siemens Corporation as described in Applied 

Software Architecture [Hofmeister, Nord, & Soni, 2000].  It was interesting and highly 

informative to see how the authors abstracted the general software architecture of each 

commercial product into their defined views. 

In A Three-Faceted View of Information Systems, authors Giorgio de Michelis et 

al. [de Michelis, Dubois, Jarke, Matthes, Mylopoulos, Schmidt, Woo, & Yu, 1998] do not 

refer specifically to software architecture, but to managing software change in general.   

Software change is managed through the use of software traceability, the capability of 

following a path between requirements documentation and software components 

established later in the development process.  This paper was included in the literature 

review due to the classification of software change into three major sources:  system-

related views, group collaborative views, and organizational views.  Since the visualized 

architectural structures of this dissertation (represented within VRML worlds) were 

hyperlinked to requirements, organizational, or other documents, the three viewpoints 

mentioned by these authors were of note. 

 In Integrating Architectural Views in UML [Egyed, 1999], Alexander Egyed 

examined the nature of views in software architecture and how architectural views could 

be implemented in the Unified Modeling Language (UML).   Egyed presented the 

argument that views should be both independent and related to one another from the 

standpoint of a consistent model of software.  When different views within a model are 
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inconsistent (e.g., cardinality within the different views are inconsistent, components 

mean different things, etc.), we have what is called viewpoint mismatch, a more general 

form of architectural mismatch.  Egyed discussed the generic types of viewpoint 

mismatch based on different possible views and proposed methods to detect and correct 

them.  The possibility of automating the task of detecting viewpoint mismatch was 

proposed as a major benefit to software architecture. 

 Because UML alone was limited in representing architectural views, Egyed and 

Medvidovic proposed that architectural description languages such as C2 and Wright be 

integrated into UML using extensions [Egyed & Medvidovic, 1999].  While this solution 

was notable, their more general insights were of greater value. 

Egyed and Medvidovic argued that three things were necessary for successful 

view integration:  mapping, transformation, and differentiation between the views.  

"When we talk about the need to integrate views," the authors wrote, "we are really 

talking about the need of having a system model integrated with its views."   

Dr. Egyed described a technique to integrate views using architectural patterns 

[Egyed, 2000].  Architectural patterns were used to map existing views to one another, or 

to transform one view into a separate view.  The author also demonstrated how 

architectural patterns could be used to evaluate the correctness of architectural views. 

In Viewpoint Modeling [Hilliard, 2001], the author proposed that a view should 

first be defined in a given viewpoint language, and then translated or conformed to UML.  

Hilliard (one of the committee members instrumental in forming IEEE Standard 1471-

2000, the standard for architectural description discussed in detail in the section on 
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architectural description languages) proposed a standard template for modeling 

architectural views.   

In this dissertation, however, views were first described in VTADL and then 

translated into VRML. 
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Visualization of Software Architectures 

 The focus on techniques to visualize software architecture is relatively recent, 

having begun in earnest in 1997.  

The paper The Artistry of Software Architecture [Boasson, 1998], along with the 

paper 3D Visualization of Software Architectures [Feijs & de Jong, 1998], served as 

catalysts for this research.   

 Boasson pointed out the aesthetics inherent in software architecture.  Software 

design is similar to artistic design in the sense that designers are producing complex 

structures that may have appeal to our sense of form; a great masterpiece of software 

design, the author argued, is no less valuable than other works of art that have appeared 

in cultural history.  Another similarity between software design and artistic design is that 

designers are not limited by physical constraints.  However, software designers are 

limited by utilitarian constraints (just like physical architecture and other engineering 

disciplines).  Boasson emphasized the need for formal mathematical methods to analyze 

software representations in order to reduce the chaos of large-scale system development. 

 The paper by Loe Feijs and Roel de Jong of the Phillips Corporation discussed a 

visualization tool which converted an architectural representation (stored in a relational 

database) into a VRML file.  The authors expressed the need for a tool to generate not 

only a 3D visualization of a software architecture, but also hyperlinks from the visualized 

components to relevant multimedia documents.  This dissertation intended to develop a 

tool to allow traceability from aspects of the visualization to hyperlinked multimedia 

documents. 
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 In another paper, Loe Feijs and his co-authors at the Phillips Corporation used 

mathematical relations as the basis to represent software architecture [Feijs, Krikhaar, & 

van Ommering, 1998].  Tools were developed to extract relations from the structural 

information contained in source code and documentation.  The extracted relations were 

stored in a Microsoft Access database and visualized as graphs with a visualization tool 

called TEDDY.   However, in this paper and the one mentioned earlier, Feijs et al. did not 

visualize an architecture directly from an architecture description language but, rather, 

from a relational database. 

Though the papers by Boasson and Feijs et al. served as the inspiration to the 

author of this dissertation, the motivation behind architectural visualization can be traced 

to earlier work. 

David Harel presented a strong argument that complicated computer systems 

could be better understood by visualizing the systems using a small number of graphical 

elements that are topological, rather than geometric, in nature [Harel, 1988].   He referred 

to the diagrams as "visual formalisms," and provided an example of a visual formalism 

called a higraph.  A higraph combines the idea of a Venn diagram (which represents sets) 

with the idea of a hypergraph (for representing relations that are not always binary).  The 

resulting visualization was quite versatile when visualizing concepts such as the 

Cartesian product and finite-state machines.     

Harel believed that the formalisms would encourage more visual modes of 

thinking in managing the intricacies of complex software. 

R. C. Holt discussed the use of directed graphs to represent software architectures 

[Holt, 1996].  The directed graphs are "typed" (or "colored") in the sense that the graphs 
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may have more than one type of edge.  Holt then used binary relational algebra to 

formalize the idea of architectural styles.  This paper is important (but not necessarily 

seminal) from the standpoint that the paper demonstrated how the mathematics of binary 

relations can be used to formalize a description of the architecture of a system.  In the 

words of the Holt:  "These visual formalisms provide the advantage that they bring the 

mathematical formalism close to the mental images that many people visualize."   

The stated goal of the authors of Architectures with Pictures [Buhr & Casselman, 

1992] was to reconcile different ways of conceptualizing software architectures.  Buhr 

and Casselman provided a preview on many of the motivations for visualizing software 

architecture; their prescient work appeared before the emergence of software architecture 

as a distinct branch of study.   

The authors visualized software architecture using a two-dimensional notation.  

The visual notation was comprised of "wired" and "wireless" models.  With wired 

architectures, the relations between components were represented as static wires; with 

wireless architectures the relations between components were seen as dynamically linked.  

The authors demonstrated how more intricate interrelationships between components 

could be represented by factoring the wiring diagrams into simpler diagrams (a form of 

visual decomposition).   

The wired and wireless models were viewed in terms of contracts (establishing 

how independent objects interact to accomplish tasks), roles (the job that the components 

play when entering and leaving contracts), wires, softlinks (the dynamic link in wireless 

models), and timethreads (a time-based path through an architectural design intended to 

offer a behavioral trace).   
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Hence, this versatile and early model of software architecture visualization 

provided not only topological information, but software traceability to the rationale 

behind the design.  

 An architectural visualization of the Linux operating system [Bowman, 1998; 

Bowman, Siddiqi, & Tanuah, 1998], available on the Internet, was studied as an example 

of how an architecture could be visualized in the plane.  This dissertation research 

intended to use a portion of the planar Linux visualization and project various 

components and connections into a three-dimensional, virtual world using VRML.  

 The empirical studies of Colin Ware and Glenn Franck on the effectiveness of 

three dimensions in visualizing software architecture are of great significance to this 

dissertation.  In Visualizing Object Oriented Software in Three Dimensions [Ware, Hui, 

& Franck, 1993], the authors compared the human comprehension (among several human 

subjects) of a complex structure visualized in two dimensions to the same structure 

visualized in three dimensions.  It was found that the three-dimensional visualization 

substantially reduced the error rates in the comprehension of the complex structure.   

 The same authors refined their experimental studies on three-dimensional 

visualization in Evaluating Stereo and Motion Cues for Visualizing Information Nets in 

Three Dimensions [Ware & Franck, 2000].  Experiments were conducted on a number of 

human subjects to measure how well the subjects could trace a path through a complex 

two-dimensional and three-dimensional graph.  The error rate of tracing the path was 

significantly reduced (by a factor of three) when using three dimensions.  Furthermore, 

allowing the subject to rotate his or her head relative to the three-dimensional structure 

resulted in dramatically increased comprehension of that structure. 
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 Visualization of Large Nested Graphs in 3D:  Navigation and Interaction [Parker, 

Franck, & Ware, 2000] is a remarkable paper that discussed the techniques for 

visualizing very large graphs.   

When viewing large graphs with a tremendous number of nodes and arcs (at least 

thirty or more), the images become muddled and complex.  The authors defined the 

generic "focus-context" problem with large graphs:  it is desirable for information to be 

provided for the overall large structure, yet important to be able to view arbitrarily small 

details.  The traditional techniques for solving the focus-context problem were discussed 

(rapid zooming, distortion techniques, component hiding, multiple windows, and three- 

dimensional visualization).  The authors were partial to three-dimensional visualization, 

and described a system called NV3D that allowed visualization of very large graphs with 

nested structures.  Visualization of dynamic behavior was achieved using a "snake," the 

animation of arc behavior over time to allow tracing of execution threads.  Snake 

animation could be superimposed over the larger static structure to attract user attention 

and provide an execution history of the behavior.  

NV3D was being applied to a commercial environment at Nortel Corporation, 

with applications to software training (visualization of software architectures to 

indoctrinate new programmers), code management, and visualization of execution paths 

through the program structure. 

While the NV3D software may resemble the research of this dissertation, it is 

important to point out the differences:  this dissertation used an architecture description 

language as a starting point and mapped elements described in the ADL to elements of 

the architectural structure in VRML based on the architectural style.  One viewpoint 
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defined in the ADL was mapped to one world defined by a separate VRML file.  The 

VRML worlds may be linked to one another, and elements within each architecture may 

be hyperlinked to source documentation.  The intention of this dissertation was to map 

the architectural description language to a virtual-reality environment using the VRML 

language, and not to serve as a sophisticated 3D visualizer of large-scale graphs.  The 

dissertation took a purely software architectural approach and operated on the assumption 

that the graphs would be relatively coarse-grained at the outset, with details kept hidden.  

Lower-level details in a potentially large structure would be unveiled only as needed (the 

traditional "component hiding" approach was taken).  Furthermore, the VTADL-to-

VRML compiler was intended as a relatively inexpensive application capable of being 

viewed on the Internet. 

Algorithms for the effective modeling of hierarchical graphs in three dimensions 

were discussed by Sugiyama, Tagawa and Toda in Methods for Visual Understanding of 

Hierarchical System Structures [Sugiyama, Tagawa, & Toda, 1981].   The algorithms 

provided here were of special interest to the visualization of software architectures.  

Sugiyama et al. emphasized algorithms which would make graphs more "readable."  The 

authors defined several criteria for determining a readable graph.  A hierarchical graph 

was considered readable if it had a minimal number of crossed edges per level (since 

crossed edges make for a more complicated graph), if the graph's long span edges were 

straight, if the layout of edges was balanced, and if the layout of nodes in the graph were 

close to one another.  Sugiyama et al. provided both theoretical and heuristic methods to 

insure that their criteria for readability could be met.   
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The research of this dissertation did not use the algorithms by Sugiyama et al., 

since the VTADL-to-VRML geometric algorithms were already implemented prior to 

reading the paper.  However, the algorithms provided in the paper may be of use in future 

research where large number of nodes and more arbitrary hierarchical structures are 

encountered.    

Papakostas and Tollis provided two algorithms for drawing orthogonal graphs in 

three dimensions in which edges do not cross, fulfilling a criterion for graph readability 

as defined by Sugiyama et al. [Papakostas & Tollis, 1999].  The algorithms were 

analyzed for time complexity based on graph size and were shown to be linear-time in 

efficiency.  This dissertation did not use their algorithms but the existence of this 

fundamental and graph theoretic research was noted for future versions of the VTADL-

to-VRML intermediate geometric model.  

A standard reference on VRML is the VRML 2.0 Sourcebook [Ames, Nadeau, & 

Moreland, 1997].  This book discussed the virtual reality paradigm, VRML in the context 

of the Internet, and provided detailed syntax and examples on the language itself.    

The wider literature on the target language of this dissertation research, VRML, is 

relatively informal.  The Web3D Consortium Home Page is the definitive source of up-

to-the-minute information on VRML and related technologies [Web3D Consortium, 

2001].  The Web3D Consortium is a non-profit trade association consisting of both 

corporations and individuals involved with modeling three-dimensional graphics on the 

Internet (some of the larger corporations include Sony and Phillips).   The Web3D 

Consortium inherited the standardization and specification tasks from the San Diego 

Supercomputer Center in the late 1990s.   The Web3D site is comprehensive, providing 
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the original specification for VRML 1.0 and the most recent version, VRML 2.0 (referred 

to as "VRML 97").  In 2001, the functionality of VRML was incorporated into the 

Extensible Markup Language (XML) using a new standard defined by the Web3D 

Consortium, X3D.  X3D is intended as a successor to VRML, since X3D can be run 

directly on an Internet browser without a VRML add-on.  Existing VRML applications, 

however, will remain compatible to X3D.  The X3D standard was released on May, 

2001; a specification update was released on November 25, 2001.  

 

General References 

Key references used in the development of the ADL-to-VRML compiler include 

the classic compiler text widely known as the "dragon book" [Aho, Sethi, & Ullman, 

1986], an outstanding reference on lex and yacc [Levine, Mason, & Brown, 1992], and 

the "bible" of VRML, the VRML 2.0 Sourcebook [Ames, Nadeau, & Moreland, 1997].   

 The compiler text by Aho et al. was used to gain a better understanding of the 

ADL-to-VRML translation.  The book lex and yacc by Levine et al. was invaluable when 

implementing the shell of the actual compiler for the ADL.  The VRML 2.0 Sourcebook 

by Ames et al. was invaluable for understanding the target language, VRML, and the 

visualization capabilities of the target language. 

 The widely read text by Hearn and Baker, Computer Graphics [Hearn & Baker, 

1986] was used for quick references on matrix algorithms for geometric translations and 

transformations, and for geometric modeling for computer graphics. 

 While programming the data structures and subroutines using the C language, a 

textbook by J. Antonakos and K.C. Mansfield, Practical Data Structures Using C/C++ 
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[Antonakos & Mansfield, 1999] provided excellent description on standard algorithms 

and abstract data types, greatly assisting in the implementation of the intermediate 

geometric model and VRML code generator.   

During research into architecture descriptions with UML, two reference works 

were used outside of academic literature.  Pierre-Alain Muller's Instant UML [Muller, 

1997] served as a handy reference when studying UML tools and concepts; and Terry 

Quatrani's Visual Modeling with Rational Rose 2000 and UML [Quatrani, 2000] provided 

a vendor-specific reference on the popular Rational Rose implementation of UML.   
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Summary of Knowns and Unknowns 
 
 
 Architecture description languages (ADLs) may be text-based or graphical and 

are used explicitly for the purpose of representing software architectures.  Different 

ADLs place emphasis on different aspects of software architecture.  UniCon focused 

more on connectivity, for example, than ADLs that preceded it [Shaw et al., 1995].  

Rapide [Luckham et al., 1995] was an ADL for event-driven and concurrent system 

architectures, while Wright was one of the first formal architecture description languages.   

 The Unified Modeling Language (UML), a graphical notation for representing 

object-oriented designs and behavioral analysis (such as scenarios and use cases), has 

become a de facto standard in the software development industry for modeling software 

development.  However, UML is not considered an ADL since UML does not model 

configurations of architectures explicitly, one of the criteria for defining an ADL 

[Medvidovic & Taylor, 1999].  UML does not adequately describe the details of 

connector or component attributes to the extent of dedicated ADLs.  Attempts to model 

components or connectors with UML have been made through using extensions to UML, 

but these architectural extensions are not native to the language.  UML has no capability 

for modeling relationships between views. 

 Hence, there continues to be a need for ADLs, at least until UML 2.0 contains the 

capability for explicit and intentional architectural descriptions.  However, even UML 2.0 

will still be a two-dimensional representation.  It will still be designed with object-

oriented, notational design in mind, rather than as a virtual medium inviting exploration 

of three-dimensional structures. 
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 Feijs & de Jong claimed (from a subjective standpoint) that visualizing software 

architectures with VRML can make the representation of software architectures more 

engaging and more comprehensible, perhaps even assisting in detecting reusable patterns 

in the architecture.  However, the authors did not visualize an ADL explicitly; rather, 

they defined the software architecture through a relational database and translated the 

connections into VRML.   

Parker et al. presented strong, empirical evidence that using three-dimensional 

visualizations, along with user-directed movement within the three dimensions, greatly 

enhanced the user's comprehension of complex structures in comparison to planar 

representations [Parker, Franck, & Ware, 2000].  This evidence, along with related 

research [Ware, Hui, & Franck, 1993; Feijs & De Jong, 1998] form the basis for 

translating an ADL into the VRML format. 

 The inherent capability of VRML in representing distinct worlds using the virtual 

reality paradigm is a powerful yet natural medium for modeling different stakeholder 

viewpoints [Ames et al., 1998].  VRML is designed for rendering on an Internet browser, 

and so is platform-independent and available at minimal cost.   

Surprisingly, only a handful of researchers have used VRML to represent 

software architectures [Feijs & de Jong, 1998].  To the best knowledge of this researcher, 

no research has yet focused on using VRML as a medium to explicitly create viewpoint 

models on software architectures.  The inherent capability of VRML to represent a 

distinct world using the virtual reality paradigm is a prime advantage, along with 

VRML's availability on the Internet.  A world can easily be interpreted as a viewpoint 
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containing multiple structures.  Each structure could be readily understood to be software 

architectures contained within the world representing the view.  

Furthermore, to the best knowledge of this research, no compilers existed which 

directly translated an ADL to VRML.  

The ability to represent viewpoints using three-dimensional interaction, along 

with traditional decomposition techniques, can lead to easily comprehended and 

aesthetically engaging software architectures. 

  

 
Contribution to the Field of Software Architecture (Software Engineering) 
 
 With the shortcomings of UML in mind, and the continuing need for research in 

architecture description languages, this research contributed to the field of software 

architecture by creating a new ADL (called VTADL, for Visually Translatable 

Architecture Description Language) capable of representing separate but integrated 

viewpoints on software architectures.  VTADL allowed a flexible and relatively simple 

description of one or more viewpoints, and one or more architectures within each 

viewpoint.  VTADL allowed the selective hiding or revealing of elements of an 

architecture, allowed for the representing of multiple architectural styles, and allowed for 

hyperlinks of any element of any architecture within a view, either to another view or to a 

desired file external to VTADL.   

 This research also contributed to the field of software architecture by translating 

the views and architectures defined by VTADL into a visual medium, VRML.  Each view 

defined in VTADL was translated into a separate VRML file; the views (and the 

associated VRML files) were related to one another by the VTADL definitions.   
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 Any relatively complex architectures defined in the architecture description file 

could be made more interesting and hopefully more comprehensible by visualizing them 

in three-dimensional, colorful worlds, rendered using the virtual reality paradigm.  

Although the visualizations were of static software architectures, the stakeholder was  

free to navigate through the visual representation, able to glance at the structures from 

different perspectives; the stakeholder was also able to navigate through other viewpoints 

not necessarily his own as easily as clicking a mouse, perhaps exploring alternate worlds 

and gaining a better understanding of the whole.   



 

 

 
Chapter III 

 
Methodology 

 
 
Research Methods 
 
 
Overview of Procedures Employed 
 
 In Chapter I, the stated goal of this research was to develop a new technique for 

software architecture visualization using virtual reality.  Ware and Franck demonstrated 

that the presence of three dimensions in the visualization of complex structures, when 

accompanied by user-directed movement, increased the comprehension of those 

structures [Ware & Franck, 1993].  VRML is a highly flexible medium, intended for 

representing realistic worlds in three-dimensional space.  When the VRML file is 

instantiated, a viewer may navigate through an engaging world, exploring objects from a 

variety of locations.   

A natural association was made by the author of this dissertation between the 

virtual reality worlds modeled by VRML and the representation of a viewpoint.  It was 

determined that each VRML file would be a separate view (abstraction) containing one or 

more software architectures.  The views (and the architectures within each view) were 

defined by the software architect through means of an architecture description language. 

The overall strategy of this research was to first develop an architecture 

description language; second, to develop a compiler capable of translating the 

architecture description language into VRML; and third, to run case studies 

demonstrating the visualization.  The developed software was a prototype demonstrating 

the "proof of concept" and not a polished, commercial product. 
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 The strategy was realized in five major steps (or phases).  The procedures behind 

each step are described as follows: 

Procedure Step One defined a simple yet effective architecture description 

language, capable of being visualized.  The language was capable of describing software 

components, connectors, configurations, and architectural styles; the language could also 

allow for the definition of multiple views on one or more architectural structures, 

conforming as much as possible to the architecture description standards defined by IEEE 

1471-2000 [IEEE, 2000].   The language could allow for hyperlinks from elements of an 

architecture to external files, so that the rationale behind the architecture could be traced 

to source documentation.   

The reasoning behind features of the language was documented within the context 

of current research in the field of architecture description languages.  The result of 

Procedure Step One was a formal description of the language in BNF (Backus-Naur 

Form). 

 Procedure Step Two began once the grammar of the architecture description 

language was defined.  This step was the design phase of a compiler that ultimately 

translated the regular expressions in the source ADL to visualized objects in VRML.  In 

Procedure Step Two, a mapping was defined between the objects (such as architectural 

components or connectors) in the ADL to the objects within VRML.  This mapping was 

achieved by a geometric model, which defined the topology of an architecture using a 

connectivity matrix. 
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The mapping from ADL architecture to the geometric model was determined by 

the architectural style as defined in the ADL (with the types of style as described 

originally by Shaw and Garlan [Shaw & Garlan, 1996]).    

 Procedure Step Two also defined the overall data structures required to implement 

the geometric model, and the basic algorithms needed to traverse the data structures to 

generate VRML code. 

 The BNF for the source ADL was used as input to a parser generator, yacc 

(acronym for "yet another compiler-compiler").  The tokens of the source language were 

defined and fed into lex (a lexical analyzer generator).  The end result of Step Two, then, 

was a parser shell capable of recognizing the source language, and a lexer capable of 

accepting tokens and feeding them to the parser.  In other words, the syntax of the source 

language was defined, but the full semantics had yet to be implemented as C code in the 

form of functions and subroutines embedded in the parser shell. 

 Step Three involved coding and initial testing of the subroutines that operated on 

the data structures representing the geometric model.  These subroutines comprised the 

semantics of the compiler.  After the subroutines were tested, they were integrated into 

the parser shell.   

 The subroutines for traversing the data structures and generating VRML code 

were successfully integrated into the compiler; the compiler was then fully implemented 

and was ready for acceptance testing. 

 Step Four performed acceptance testing of the compiler on a number of ADL test 

files. 
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 Step Five conducted actual case studies, starting with the rudimentary and 

progressing into more intricate cases.  Step Five represented the culmination of this 

research into software architecture visualization, and resulted in a prototype capable of 

translating an architecture description language into a three-dimensional visualization in 

the Virtual Reality Modeling Language. 

 As mentioned in Chapter I, this research proceeded only as far as the development 

of a prototype.  The actual effectiveness of the visualization software in a real software 

development environment was left as a topic for future study.   
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Specific Procedures to be Employed 
 

For each test or case study, the following items of documentation were provided: 

 
(1) Documentation on the purpose, background, and pertinent details of the test or 

case study; 
 
(2) The VTADL source file(s); 

(3) The actual visualizations by means of a color screen printout.  An  
explanation of the view and architectures within the view were provided. 

 These items were incorporated in the template in Appendix H. 
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Description of Procedures 
 

 
Procedure Step One 
 
 The purpose of Step One was to specify a general architecture description 

language, capable of meeting the basic requirements of an ADL as specified in the IEEE 

Recommended Practice for Architectural Descriptions [IEEE, 2000].  The ADL was also 

required to fulfill the fundamental criteria as specified by the key literature [Bass, 

Clements, Kazman, 1998; Jazayeri, Ran, & van der Linden, 2000; Medvidovic & Taylor, 

2000; Shaw & Garlan, 1996].   Fundamentally, an ADL described the overall coarse-

grained structure of software.  The language had to be capable of describing components, 

connections between components, and configurations of topologies.  General properties 

of components (such as role, associated process, interfaces, etc.) or connectors (relation 

type, weight, directionality, connectivity definition, etc.) also had to be specified in the 

language.   

We desired the capability to describe architectural styles.  An architectural style 

defined how the components and connectors were used, with constraints on the topology 

and instantiation. Examples of the better-known styles were the pipelined, main-program-

and-subroutine, object-oriented, layered, and state-based styles.   Though VTADL 

allowed for several different styles, only two were visualized in VRML for this 

dissertation: program-call-and-return and the layered styles. 

It was possible to combine styles using a "heterogeneous" style, where elements 

of an architecture may consist of more than one style (e.g., a component in a program 

call-and-return style could represent a pipeline).  Heterogeneity had the drawback that, by 
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combining too many styles, the original reason for software architecture – simplicity – 

was lost.   VTADL did not allow for direct representation of heterogeneous styles; 

however, architectures of more than one style could be visualized in a view, juxtaposed in 

proximity to one another for easy comparison. 

 Another important goal of an ADL was to standardize the structural 

representation into a language independent of system implementation, so that knowledge 

of successfully applied patterns could be detected, reused, and transferred to future 

projects.  Bass, Clements and Kazman [Bass et al., 1998] reasoned that ADLs shared 

features of requirements, programming and modeling languages, yet were distinct from 

all three.  Requirements languages were rooted in the problem domain, while ADLs 

concentrated on the solution space.  Programming languages mapped all architectural 

components to the execution space, while ADLs attempted to hide the execution and 

concentrate on structure.  Finally, modeling languages referred to the behavior of the 

whole system, rather than the parts.  ADLs concentrated on component structure and 

connections.   

We modified the ADL criteria by adding a further constraint: that the language be 

translatable into visual form in a way that lucidly and unambiguously communicated the 

architectural descriptions to the stakeholders. 

 It was intended that the ADL not be domain-specific.  In other words, the 

language was required to be generic in nature; the language was required to be relatively 

easy for a non-specialist to understand, and was required to contain non-ambiguous 

structures capable of being visualized.  For example, if a structural hierarchy was present, 
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the language must have explicitly stated whether one component was a child of another 

component, to the left or right of another component, etc.   

 The ADL was required to focus on the static representation of a software 

architecture, rather than the state-based notations modeling the dynamic behavior. 

Finally, the ADL was required to allow for rapid and simple description of an 

architecture.   

An existing architecture description language called ASDL, for "Architecture 

Structure Description Language" [Eixelsberger & Gall, 1998] was used as a model in the 

design of the ADL for this dissertation.  ASDL emphasized important static structural 

properties, while hiding many behavioral details, a key feature in the design of our own 

language.  Although ASDL was originally intended for architectural recovery from 

legacy systems, the authors pointed out that ASDL had general use to a wide variety of 

domains.  

However, the capability for representing different views on one or more software 

architectures was needed, per the stated goals of this dissertation.  Other features, such as 

the ability to define hyperlinks on selected elements, the ability to selectively show or 

hide elements of an already defined architecture, and the ability to show multiple 

architectures within the same view were also be required.  Using ASDL as a starting 

point, a new language incorporating the additional features was developed.   

With the aforementioned language characteristics in mind, a new language was 

defined on May, 2001.  The new architectural description language visualized by this 

dissertation was called VTADL, an acronym for Visually Translatable Architectural 

Description Language.  The unique feature of VTADL was that it allowed for a flexible 
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description of both views and architectures within views.  VTADL was a regular 

language whose expressions were recursively generated from the grammatical production 

rules in an LR (left-to-right) derivation.  VTADL was translated into VRML by an LR 

parser (see Figure 1).   

Appendix A contains the full grammatical specification of VTADL in BNF 

(Backus-Naur Form).   

 

Figure 1:  VTADL-To-VRML Translation 

 

 

 

 

To reiterate the definition of a view: a view is an abstraction of a model (in this 

case, an architectural structure), based upon the concerns and interests of a stakeholder.   

The analogy of a physical building architecture to a software architecture noted in 

Chapter I is worth repeating here, but with the caveat that the analogy is not meant to be 

taken too literally.  Often, software may be far more untenable than a physical structure 

since software itself is fundamentally an immaterial abstraction, which may be changed 

at the whim of stakeholders.   

If we were to provide a blueprint of an electrician's view of the building, the 

diagram would probably hide most of the physical details except for the overall 

dimensions of the walls, doors, etc.  The electricians' diagram would emphasize the 

wiring, power sources, and overall cable circuitry.  A plumber's view would contain 
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details about the piping, while suppressing most if not all information about the wiring 

circuitry (except in isolated cases where intersection with electrical wiring would present 

a potential hazard to the plumber).   

The VTADL source file consisted of two parts: the architecture list, which listed 

all architectures, and the view list, which listed the views on one or more of the 

architectures.  A view may have used one or more architectures from the architecture list; 

however, a view may not have used an architecture not defined in the architecture list.   

See Figure 2 for the body of an architecture definition.   

 

Figure 2.  Architecture Definition (Template) 
 
Architecture <Arch-Name> 
type <Style> 
{ 
  ComponentList 
  { 
      Component <Name-1>; 
       . 
       . 
       Component <Name-n>; 
   } 
   ConnectionList 
   { 
      Connection <ConnName-1> 
      . 
      . 
      Connection <ConnName-n> 
    } 
} 

 

Note that the reserved words in the language are in bold font. 
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An architecture definition was assigned a unique name, and an architectural style 

was assigned for the entire structure that followed.  The architectural styles available in 

VTADL were: 

 

 1.   The program call-and-return style (PROGRAM selection), where 
 components represent program modules and connections represent 
 calls to subroutines; 
 
2. The object-oriented style (OBJECT selection), where components  
 represent classes or objects, and connections represent an association or  
 relation; 
 
3. The pipelined style (PIPELINE selection), where a component  
 represents a transformation on data flow, and a connection represents a 
 flow of data; 
 
4. The layered style (LAYER selection), where components represent 
 a service to a higher layer, and connections are hidden.  The highest  
 layer represents a service to the overall system. 
 

Of the four style selections, only two were implemented in the VTADL-to-VRML 

compiler: the program call-and-return and the layered style. 

The architectural style determined how the components and connections were 

visualized.  In other words, the style mapped the architectural structure to a particular 

geometric model which was, in turn, rendered in VRML. The architecture definition itself 

consisted of a component list, defining the components in the topological order that they 

should appear in, and a connection list, which established the connectors between the 

defined components.  Each component in the component list had a set of properties, 

depending on the architectural style constraints; each connector also had a set of 

properties.   
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A component in a component list was first given a unique component name.  The 

component name had to be unique only within the component list. Following the name, 

the component was assigned a component type.  The component type may have been 

defined as a Processing Element, a Program Component, a Conceptual Component, an 

Object Component, or a Data Repository Component.  For the present implementation, a 

Program Component was used (for the program call-and-return or layered styles). 

Component properties were defined using the following template (see Figure 3): 

 

Figure 3:  Properties of the Component 

Component <Comp-Name> 
ComponentType <Type-of-Component>; 
Properties: 
 CompRole: <Role-of-Component>; 
 ChildOf:  <Component-Parent>; 
 Layer:  <Layer-Name>; 
 Process: <Process-Name>; 
 InterfaceList: 
  Interface <Relative-Position>  <Interface-Name-1>; 
  { InterfaceRole: <Role-Selection>; } 
  . 
  . 
  Interface <Relative-Position>  <Interface-Name-n>; 
  {  InterfaceRole: <Role-Selection>; } 
 

 

 Following the reserved word, Properties, the component attributes were defined.  

CompRole defined the Component Role, or the role that the component played in any 

interaction with another component.  The component may have served roles as Input (an 

input node to a network), Output (an output node to a network), Root (root node of a 

hierarchy), CmpProducer (producer in a client server relation), or CmpConsumer 
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(consumer in a client-server relation).   A component role must always have been 

indicated. 

 The ChildOf property need not have been indicated, however.  The ChildOf 

property was defined when a component was a child to another component in a hierarchy 

(such as a program call-and-return or layered relation).   If the component was a child, 

then the name of the parent component was provided. 

 The Layer property was used to define an additional identifier for the component 

when the component was used as a service in the layered style, or when the component 

occupied a defined layer of nodes in the network style (the network style will be 

implemented in a future version of VTADL).   The layer definition was optional, but may 

be defined as Linput (for layer input node in a network), Loutput (for layer output 

node), or may be assigned an alphanumeric name. 

 In the Process property (optional), a component may be assigned a process type.  

The process types were for use with neural network nodes; the process type selections 

were Sigma (for summation node) or Threshold (for the threshold function of a 

processing element).   

 A component had one or more interfaces defined for the component.  Connections 

to that component must have been instantiated through an interface name.  In other 

words, the interface name was the medium between the component and a connection to 

the outside world.  An interface name was analogous to an electrical "socket" which 

accepts attachments from electrical plugs.   

 At the end of the component properties section, the InterfaceList was defined.  

The interface list contained the definitions of interface names and interface properties.  
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An interface in the interface list was defined using the reserved word, Interface, 

followed by the relative interface position and the interface name.   

The relative interface position must have been selected from one of six possible 

locations:  Top, Bottom, Left, Right, Front, Back.  The component was visualized as 

occupying a position within a cube; the interface was at the center of one of the six faces 

of the cube.  For instance, the Top position could be considered to occupy the center of 

the top face, and so on.   A maximum of 25 interface names were allowed for any given 

component.  However, in the current implementation of the VTADL-to-VRML compiler, 

the interfaces were not visualized as separate objects in VRML. 

For each interface, an interface role was defined.  The interface role determined 

how the interface was used by the component with respect to the connection.  In the 

current version of VTADL, there were only two possible interface roles:  Producer and 

Consumer.  An interface was a producer if it supplied data or sent control signals to the 

connection; an interface was a consumer if it received data from the connection or 

received control signals. 

Once the components were defined within the component list, a connection list 

was used to define the connections between the previously defined components.  The 

connection list must always have followed the component list, since the connections were 

defined using the interface names from the component properties. 

Figure 4 gives the template for the connection list of a software architecture. 
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Figure 4:  Template for a Connection List 

ConnectionList 
              {  
                  Connector <Connect-Name-1> 
                     ConnectType <Connect-Type>  <Connect-Direction>; 
                     Connect( <From-Interface-Name> , <To-Interface-Name> ); 
  . 
  . 
        Connector <Connect-Name-n> 
                     ConnectType <Connect-Type>  <Connect-Direction>; 
                     Connect( <From-Interface-Name> , <To-Interface-Name> ); 
     } 
   
 
 
 
                   
                 
A given connection was defined using the Connector reserved word, followed by 

the connector name.  After the connector name, the connector type was specified as one 

of three options:  DataFlow (meaning that the connection was used to transport data), 

ControlFlow (the connection was used for control purposes), or Associates (meaning 

that the connection was used to establish a relation in the conceptual model or object-

oriented model).  Following the connector type, the directionality of the connector was 

established as either Unidirect (the connection was unidirectional, flowing in one 

direction) or Bidirect (the connection was bidirectional, flowing in either direction).   

The actual connection was established using the Connect reserved word.  Within 

the parenthesis of the Connect clause, the From-Interface-Name was the name of the 

interface from which the connector originated, and the To-Interface-Name was the name 

of the interface which served as the destination for the connector.    
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It should be noted that an interface name within an architecture should be unique.  

That is, an interface name should be associated with only one component, otherwise an 

error condition may result.  

A given architecture was not instantiated unless it was incorporated within a given 

view.   In the second section of a VTADL file, a View-List was built, defining one or 

more views.  A main view was always required, even though the main view may have 

been empty (the trivial case).  Within a given view, preferably one or more architectures 

could be used.  If more than one architecture was used by the view, the first architecture 

specified in the ordering within the view-list was rendered first; the second, third, and nth 

architectures were displaced into the background in successively more distant and step-

wise fashion.   

Figure 5 gives the template of the view-list section of a VTADL file.  

 

Figure 5.  View-List Template of a VTADL File 

ViewList 
  { 
      ViewMain  
        { 
            { UsingArch <Arch-Name-1>; } 
 .  
 . 
 { UsingArch <Arch-Name-n>; }  
 . 
 . 
         } 
       . 
       . 
       View  <View-Name-1> 
 { 
     { UsingArch <Arch-Name-1>; } 
     . 
     . 



97 

 

     { UsingArch <Arch-Name-n>; } 
 } 
 
         View  <View-Name-n> 
 { 
     { UsingArch <Arch-Name-1>; } 
     . 
     . 
     { UsingArch <Arch-Name-n>; } 
 } 
   } 
 
    
 The main view was defined using the ViewMain reserved word.  If the view was 

not the main view, the reserved word View was used, followed by the view name.  The 

architectures within a view were defined with the UsingArch reserved word, followed by 

the name of the architecture.  The name of the architecture must have been previously 

defined in the architecture list section of the VTADL file, otherwise an error condition 

was generated by the compiler.   The same architecture name could be used more than 

once within a view; different versions of the same architecture could represent different 

aspects of the same structure.  When several architectures were used within a view, the 

architectures were successively translated further into the distance in a step-wise fashion. 

 For any architecture specified within the view, components and connections could 

be selectively displayed or hidden.  Hyperlinks could also be established from specified 

components or connections to external files. 

 After the UsingArch clause and architecture name, the hyperlinks and show/hide 

clauses were established within a pair of brackets { ... } for the architecture being used.  

The referenced component or connection identifiers must have been valid for the 

architecture. 
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 For the architecture being used, the Components reserved word indicated which 

components were to be shown.  If the word All was used, all components were shown; 

however, if individual component names were listed, only the listed component names 

were shown.  The component names were listed with one or more spaces between them.  

The word Connections was used to indicate the desired connections to be shown.  If the 

word All followed Connections, then all connections were shown.  However, if one or 

more individual connection names were listed, only those connections were shown (and 

the remainder kept hidden).   

 If a given component or connection was selected for display, a hyperlink could be 

established from that component or connection to a file.  The following statement was 

used whenever a hyperlink was desired: 

  

 HyperLinkOn <Component-or-Connection> ToFile <File-Name>; 

  

 A hyperlink may be only established once for any component or connection in the 

architecture.  The hyperlink may be either to a view file or to an external file name.  If the 

hyperlink was to a view file, the view file name may be used without quotes; if an 

external file name was desired, the file name must have been defined as a literal, with url 

or directory path included if the file name resided in a location other than the default 

location.   

 Each view in the view-list generated a separate VRML file, using the view name 

as file name, followed by the extension, "wrl."  The main view always generated the file, 

"Main.wrl."  
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So far, we have defined a VTADL file as consisting of the architecture list, which 

defined each architecture using a style, components, connectors, and a topology; and a 

view-list, which listed the main view and user-defined views, with each view using one 

or more architectures.  We have shown how each architecture specified within a view 

may have components or connectors selectively shown or hidden, with hyperlinks on 

elements in each architecture to either other views or to external files. 

 Appendix E provided a simple example of a VTADL file which defined two 

architectures: ExampleProgram, a hierarchical structure with a root and three children, 

(four components and three connections) in the call-and-return style; and ExampleLayer, 

with four components in the layered style.   

 The main view contained both architectures, using all components and 

connections.  A hyperlink existed from the root in ExampleProgram to the source 

VTADL file (a text file named "Example.txt").   Another hyperlink was established from 

the top layer of ExampleLayer to a view named "SecondView." 

 SecondView contained three versions of ExampleLayer.  Version one used the 

first and second layers, hiding the other layers; version two used the first, third and fourth 

layers; and version three used all four layers.  The first layer of version one contained a 

hyperlink to the main view; the second layer of version one contained a hyperlink to the 

source VTADL file, Example.txt. 

 Example.txt was used as one of several test cases to demonstrate that the program 

was working according to requirements.  The resulting VRML target files, and the 

accompanying visualizations, were described in Appendix G. 
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Procedure Step Two:   Design of Geometric Model (Data Structures and Algorithms) 
 
 
 Figure 1 illustrated the general translation process from VTADL source file to 

VRML target file.  Figure 6 decomposes the translation process into the well-known 

subdivisions of a compiler [Aho, Sethi, & Ullman, 1986].    Since the text-based source 

file was translated into a graphical language, an intermediate geometric model was 

included to map the architectural structures defined in the source language to VRML 

objects.  At an even higher level of abstraction, the intermediate geometric model  

mapped each view defined in the VTADL source file to a separate world defined by a 

separate VRML file.  That is, one VRML file was generated for each view defined in the 

VTADL source file.   

  

 
Figure 6.  Basic VTADL-to-VRML Compilation Process 

  
 
 

            
   
 

 

 

 The VTADL source file was required to be a text file.  The VTADL file was 

scanned by a lexical analyzer (or "lexer"), which built the symbol table, detected tokens, 

and passed the tokens to the parser.   If any symbol or string was invalid (not allowed in 

the string specifications of the language) the lexer generated an error message for the 

 
VTADL Source file ===> Lexical Analyzer ===> Tokens  ===> Parser 

 
Parser ===> Geometric Modeler ==> VRML Generator 

 
VRML Generator ===> VRML View ===> Visualization of Views 
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symbol.  If the symbol or string was valid, the token was passed to the parsing program 

(or "parser").   

 The parser builds a parse tree during the first pass of the parsing process; during a 

second pass, the parse tree is traversed to validate the syntax of the grammar.  If the 

syntax is invalid (e.g., a token existed in an order where the token violated the grammar 

of the language), an error message is generated indicating the parsing is unsuccessful.   

 If the parse is successful, the statements in the source file are grammatically 

correct.  However, the semantics of the statements must also be generated.  By semantics 

is meant the corresponding actions taken by the target language, VRML, for the source 

language statement (Appendix C shows the parser shell, the yacc specification of 

VTADL without the semantic actions to generate VRML code).   

 The corresponding actions (statements) in VRML were generated by various 

subroutines which were called as semantic responses to VTADL statements.  The 

subroutines called in response to VTADL statements served two basic tasks: first, they 

stored properties of components and connections defined in the source language to an 

intermediate geometric model; second, the subroutines traversed the intermediate 

geometric model, performed space-related calculations, and generated the corresponding 

VRML code. 

 The intermediate geometric model was implemented as data structures in the C 

programming language.  What we have referred to as the "geometric model" was in 

reality a collection of abstract data types such as multidimensional arrays, pointer 

variables, and linked lists.  In this section, we defined these abstract data types and 

described the algorithms that would later operate on the data structures. 
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 The first section of the VTADL source file was the architecture list.  The list of 

architectures was represented as a linearly linked list, with each node representing one 

architecture.  An architecture described in VTADL was stored in an architecture node; 

the architecture node was inserted into the linked list in the order that the architecture 

appeared in the architecture list of the VTADL file. 

 A given architectural node contained information that identified the name of the 

architecture and defined the style, components, connectors, and topology (connectivity).   

A count of the number of components and connectors in the architecture was also 

included in the architecture node.   Figure 7 illustrates a node in an architecture linked 

list. 

 

Figure 7:  Node in Architecture Linked List 

 

 

 

 

 

 

 

 

  

 

 

 
Arch-List Node 

 
Style 
Arch_ID[25] 
Arch_CompID [25] [25] 
 
Arch_CompPosition[25][4] 
Arch_ConnID[25][25] 
 
Arch_ConnPosition[25][4] 
Topology[25][25] 
 
No_Comps 
No_Conns 
 
archlink:  Pointer to next node 
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For each architecture, the architectural style determined how the components and 

connectors were rendered in VRML.   In a program call-and-return style, components 

were rendered as spheres and connectors were rendered as cylinders.   The enforced 

topology of the call-and-return style was a three-dimensional tree, with child components 

under a parent rotated around the y-axis in an imaginary circle.  All spheres at a given 

level (height) in the tree hierarchy were given the same color and radius.  Spheres at 

higher level numbers were assigned successively smaller radii and different colors. 

 For the layered style, components were rendered in VRML as successively larger 

cones with successively more space between each layer beyond the base layer.  Even-

numbered layers (with the base layer being 0) were assigned one color, while odd-

numbered layers were assigned a second color.  Since the layered style hid information 

about connections, the connection information defined in VTADL for layered styles was 

not rendered in VRML. 

 The algorithms for rendering the two styles will be given later in this section. 

 Referring again to Figure 7, Arch_ID is the 25 character name of the architecture 

defined in the architecture list node.  No_Comps is a counter variable telling how many 

components were used in the architecture.  No_Conns is a counter variable telling how 

many connectors were used in the architecture. 

Arch_CompID[25][25] was a two-dimensional array containing the identifying 

names of components.  Each component could be a maximum of 25 characters.  There 

could be a maximum of 25 components in the architecture.  To access the name of the 

first component, an index of 0 was used:  Arch_CompID[0].  To access the name of the 

last component, an index of No_Comps - 1 was used, or Arch_CompID[No_Comps-1].   
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 In likewise fashion, Arch_ConnID[25][25] was a two-dimensional array 

containing the identifying names of connectors.   

 Topology[25][25] was a two-dimensional, 25 x 25 array of integers.   The 

Topology matrix was used to represent the connectivity between components, and 

provided the index of the connector used for connecting one component to another.  A 

row number of Topology represented the index of the component from which the 

connection originated; a column number of Topology represented the index of the 

destination component to which the connection terminated.  Specified at the row and 

column intersection was an integer representing the index of the connector that linked the 

originating component (row) to the destination component (column).  If no connector 

existed at the row and column intersection, a negative one (-1) was placed at that 

location.   

 Arch_CompPosition[25][4] was a matrix storing the relative coordinate positions 

and level of a component in a hierarchy.  The row number was the index (an integer from 

0 to 24) identifying the component within the architecture.   The column numbers 

indicated the x, y, and z positions relative to the top of the architecture itself, and the 

level number within the hierarchy.  The root was assigned the level number 0, the 

immediate children of the root were assigned the level number 1, and so on.  For 

example, Arch_CompPosition[0][0] would be the relative x-position of the root (which 

had the component index of 0); Arch_CompPosition[0][1] would be the relative y-

position of the root; Arch_CompPosition[0][2] would be the relative z-position.  Finally, 

Arch_CompPosition[0][3] would be the level number of the root, in this case 0. 
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 We mentioned coordinate positions relative to the top of the architecture.   For 

each architecture, the origin (or top) of the architecture was considered to be the center of 

the root node.   

 Arch_ConnPosition[24][4] was a matrix storing the relative coordinate positions 

of a connector.  The x, y and z coordinates specified the coordinates for the center of a 

cylinder representing the connector.   

 As an example, Arch_ConnPosition[0][0] would specify the x-position for a 

connector with the identifying index of 0.  Arch_ConnPosition[0][1] would specify the y- 

position for the connector.  Arch_ConnPosition[0][2] would specify the z-position.   

 Arch_ConnPosition[0][3] would specify the rotation (in radians) of the cylindrical 

connector around the y-axis.  This value would place the connector in its correct position 

as a child to a parent.  The algorithms for connector rotation and position calculations 

will be given later in this section. 

 The arrays and matrices contained in the architecture node defined only a single 

architecture from the architecture list of the VTADL file.    A pointer variable, Archlink, 

pointed to the next node in the linked list of architecture nodes.  If there were no 

successor nodes, Archlink was set to null.   

 The second part of the VTADL file was the view-list.  The view-list was required 

to contain the main view ("ViewMain") and could contain one or more user-defined 

views.  The view-list was implemented as a linear linked list.  Each node of the linked list 

represented one view.  The first node in the linked list was the required main node, 

followed by any user-defined view nodes.  The views in the linked list were inserted in 

the order that they appeared in the VTADL source file.   
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A view could use one or more architectures from the arch-list defined at the 

beginning of the file.  It should be noted that a view could contain no architecture, but 

this was considered the trivial case.  All the properties of a single view were included in a 

node of the view-list.  Figure 8 describes the properties of a view-list node. 

 

Figure 8:  View List Node Definition 

 

 

 

 

 

 

 

 

 

 

 

      

 A view was represented as a world in VRML.  Each architecture within a view 

containing multiple architectures must be related in some way for the view to make 

logical sense.  The view could be effective or ineffective depending on how well the user 

defined the original VTADL file.  The process of eliminating ambiguity or viewpoint 

mismatch was a manual and not an automated process in the current implementation.   

 
View-List Node 

 
View_ID[25] 
 
No_Archs 
Arch_ID[25] [25] 
 
All_Comps[25] 
All_Conns[25] 
View_Comps[25][25] 
View_Conns[25][25] 
 
Hyperlinks_Comps[625][25] 
Hyperlinks_Conns[625][25] 
 
Viewlink: pointer to next View node 
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 View_ID was a character array that identified the view name of the node.  

No_archs was a count of the number of architectures contained within the view. 

 A software architecture was instantiated by being included within a view by the 

UsingArch <ArchID> statement.   The architecture names defined by each UsingArch 

statement were successively stored in the Arch_ID[25][25] array.  Arch_ID was a two-

dimensional array that contained a maximum of 25 architecture names; each name could 

be a maximum of 25 characters.  The row index of Arch_ID indicated the architecture, 

while the columns indicated the character positions of the name itself.   

 Each architecture identified in the Arch_ID could have a maximum of 25 

components or connectors.  Any component or connector in an architecture used within a 

view may be selectively shown or hidden.  The array All_Comps[25] was used to 

indicate whether a given architecture (identified by an index ranging from 0 to 24) would 

display all components.  For example, if All_Comps[5] was set to 1, then all components 

of the architecture whose index was 5 would be displayed; otherwise, if All_Comps[5] 

was set to 0, only selected components would be shown.  In likewise fashion, the array 

All_Conns[25] was used to indicate whether all connectors would be shown for the 

architecture. 

 If selected components were desired for display, the View_Comps[25][25] array 

was used.  The row number of View_Comps was the index of the architecture, and the 

column number was the index of the component of the architecture to be viewed.  If the 

array element specified by the row and column contained a 1, the component was 

rendered in VRML; if the array element specified by the row and column contained a 0, 

however, the component was kept invisible.   
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 A similar scheme was used to display or hide selected connectors.  The 

View_Conns[25][25] array was used, with the row number being the index of the 

architecture, and column number being the index of the connector.  If the array element at 

the intersection of row and column was 1, the connector was viewed; otherwise the 

connector was hidden.   

 Hyperlinks could be specified from any component or connector in an 

architecture to another view file, or to an external file.   

 The array, Hyperlinks_Comps[625][25] allowed for a hyperlink from a specified 

component in an architecture to a file name.  An architecture within Hyperlinks_Comps 

was accessed by means of an index, which may range from 0 to 24.  A component within 

that architecture may also be accessed by an index (0 to 24).  Since there were a 

maximum of 25 architectures and a maximum of 25 components per architecture, 

Hyperlinks_Comps contained a maximum of 625 rows.  Given the architecture index and 

component index, we could calculate the row index of Hyperlinks_Comps by using the 

hashing formula described by Equation 1: 

 

Row index = (index of architecture)*25 + (index of component)  (1) 

 

 The resulting row index was an integer in the range from 0 to 624. 

 As an example, to access the tenth component (component index = 9) of the 

architecture whose identifying index was 4, the row index = (4) * 25 + 9 = 109.  The 

hyperlink file name was accessed at row index 109 of Hyperlinks_Comps. 
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 Once the row had been located (which represented the architecture and 

component within that architecture), the 25 columns allowed for a file name with a 

maximum of 25 characters.  If a file name was used without quote marks and without an 

extension, the compiler assumed that a view file was being hyperlinked, and stored a 

VRML file name with the extension, ".wrl."  However, if the file name was used with 

quote marks around it, a literal string was assumed, and the file name was stored as a 

literal at the calculated row number. The file name would be the destination of the 

hyperlink from that component. 

 Hyperlinks_Conns[625][25] was the array for establishing hyperlinks from 

connectors, and followed a similar scheme described for components.  See Equation 2 for 

the calculation scheme for the row of Hyperlinks_Conns: 

 

Row index = (index of architecture)*25 + (index of connector)  (2) 

 

 The pointer variable, "Viewlink," pointed to the next view node (if any) in the 

linked list.  Viewlink was set to "null" if there was no succeeding view node. 
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Description of Geometric Algorithms on Data Structures 

 

 At the highest level, the algorithms that operate on the intermediate geometric 

model have two main phases: 

 

1. Build Geometry Phase. Parse the VTADL source file and build the 
architecture list and view list data structures; 

  

2. Code Generation Phase.  Traverse the view list from first to last node, 
using the architectures specified for each view.  While generating a view, 
search the architecture list for arch-node details.  Render the architectures 
within the view.  Generate a separate VRML file for each view. 

 
 
The algorithms for Phase One and Phase Two are briefly described (in pseudo-code) as  
 
follows: 
 
 
 
Phase One:  Algorithm for the "Build Geometry Phase" 

 
Parse the source file using the parser.   
 
While the End of File ("$") symbol is NOT encountered: 

 
/* Read through the architecture list */ 

 
While the architecture list has another architecture defined in it: 
 Store the architecture name in Arch_ID. 
 Store the style in style_var 
 Initialize component, connection, interface counts and arrays. 
 
  For each component in component list: 
   Store component name to comp_name_array. 
   For each interface name in properties section: 
    Store interface name to interface_name_array. 
    Store component ID associated with interface name to interface_comp. 
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   End For each interface name. 
   Add 1 to comp_index, the component counter. 
  End For each component in component list. 
 
  For each connector in the connector list: 
   Store connector name to conn_name_array. 
   Define connection using interface1 to interface2: 
    Find component index for interface1: 
     Search array interface_comp for interface1. 
     If component index found, use component index 
     as source component in the connection, 
      else generate ERROR and EXIT. 
    Find component index for interface2: 
     Search array interface_comp for interface2. 
     If component index found, use component index 
     as destination component in the connection, 
      else generate ERROR and EXIT. 
     
   Place source component index ("from_index") and destination 
   component index ("to_index"), along with connector index,  
   in a temporary array, "from_to[conn_index][3]".    
 
   from_to[conn_index][0] = index of connection name. 
   from_to[conn_index][1] = index of originating component. 
   from_to[conn_index][2] = index of destination component. 
 
   Add 1 to conn_index. 
 
  End for each connector. 
 
 /* Call subroutine to create new arch-node and insert in linked list */ 
 /* Note:  Details of Insert_arch_node are provided in Appendix D.  */ 
 
 Insert_arch_node(component, connector, and connectivity arrays). 
  This subroutine moves the architectural values into the node values. 
  The routine also generates the component and connector positions for  
  an architecture relative to the topmost component, whose center is  
  viewed as the origin (0.0, 0.0, 0.0) of the architecture. 
 
End While arch list has another architecture. 
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/* For view-list section of VTADL, create view linked list */ 
 
While view-list has another view defined in it: 
 Store view name in View_ID.   
 (Note constraint:  The very first view must be called "ViewMain").   
 Initialize temporary view component, view connection, and hyperlink 
 arrays. 
 
 Search the view-list for View_ID. 
  If View_ID already exists, generate an ERROR and EXIT. 
   
 Store view name in a global view name array called View_Names. 
  View_Names array will be used to generate a legend of views in each  
  VRML file during VRML code generation. 
 
 For each architecture specified in the "Using Architecture" command: 
  Search for Arch_ID from architecture linked list.  
  If architecture NOT found (-1), generate ERROR and EXIT. 
  If architecture found, proceed: 
 
  Components Show or Hide Section: 
   If user specified "ALL" components: 
    Set All_Comps array to 1 for the current architecture. 
   If user specified selected components: 
    Set All_Comps array to 0 for the current architecture. 
    For each selected component specified for viewing: 
     Search for the specified component in the component array 
     of the current architecture node. 
     If component not found, generate ERROR and EXIT. 
     If component found: 
      Set temporary array, view_comps[curr_arch_index][comp_index] 
      to 1 for the architecture index and component index. 
    End for each selected component. 
 
  Connectors Show or Hide Section: 
   If user specified "ALL" connectors: 
    Set All_Conns array to 1 for the current architecture. 
   If user specified selected connectors: 
    Set All_Conns array to 0 for the current architecture. 
    For each selected connector specified for viewing: 
     Search for the specified connector in the connector array  
     of the current architecture node. 
     If connector NOT found, generate ERROR and EXIT. 
     If connector found: 
      Set temporary array, view_conns[curr_arch_index][conn_index] 
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      to 1 for the architecture index and connector index. 
    End for each selected connector. 
 
  Hyperlinks section: 
   For each selected element specified for a hyperlink: 
    Set the element ID to test_string. 
    Search the component array using test_string. 
    If found, the element is a component. 
    If NOT found: 
     Search the connector array using test_string. 
     If NOT found, ERROR and EXIT. 
     If found, the element is a connector. 
 
    /* At this point, the element was determined as a comp or conn */ 
 
    If element was a component: 

Set hyperlink index to access the hyperlink component array using 
Equation 1: 

     Row index of Hyperlinks_Comps is: 
      (index of architecture)*25 + (index of component) 
 
     If the file name was specified without quotes, we assume the  
     file name is a view file and add the extension ".wrl".   
     If the file name was specified within quotes, we use the string 
     as a literal and assume that an extension was given. 
 
     Store the file name for hyperlink in the array of  
     hyperlinked components, Hyperlinks_Comps[row index][ ]. 
 
    If the element was a connector: 
     Set hyperlink index to hyperlink connector array using Equation 2: 
     Row index of Hyperlinks_Conns is: 
      (index of architecture)*25 + (index of connector) 
 
     If the file name was specified without quotes, we assume the  
     file name is a view file and add the extension ".wrl".   
     If the file name was specified within quotes, we use the string 
     as a literal and assume that an extension was given. 
 
     Store the file name for hyperlink in the array of  
     hyperlinked connectors, Hyperlinks_Conns[row index][ ]. 
 
   End for each selected element specified for a hyperlink. 
 
 End for each architecture specified in the "Using Architecture" command. 
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 /* Call subroutine to Insert View into view linked list */ 
 Insert_View_Node (view_name, architecture_array, all_comps, all_conns, 
  view_comps array, view_conns array, hyperlink_comps, hyperlink_conns, 
  count of architectures) 
 
 Add 1 to number of views. 
   
End While view-list has another view. 
 
 
End While End-of-file NOT encountered. 
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Phase Two:  Code Generation Phase (Generate VRML Files) 
 
/* At this point, the parse of VTADL file has been completed. */ 
/* Data structures representing architectures and views have been built.  */ 
/* The view list must be traversed from first to last node, architectures within */ 
/* each view must be rendered, and the VRML output file(s) will be generated. */ 
 
/* Note:  Each view occupies one VRML file.  */ 
   
 
/* Traverse the View linked list; generate one VRML file per node. */ 
 
While there are more view nodes in the view linked list: 
 Store the view name as VRML file name with extension ".wrl". 
 Get the number of architectures count from the view node data. 
 Generate the VRML heading.  
  Headings include View Name and VRML legend. 
  Use global View_Names array to generate legend. 
  Legend includes listing of all view file names with highlighted spheres 
  next to each view name.  No sphere is drawn near the view name  
  that is the current view file.   
 
   For each view name:  
    Establish hyperlink from the sphere for that view name 
    to the VRML file. 
   End for each view name. 
 
  For each architecture in the "used-architecture" array of view node: 
   Using the Arch_ID, get the arch node from arch list. 
   If unable to get the arch node, generate ERROR and EXIT. 
   Using the origin of the architecture (call-and-return or layered),  
   set the x, y, and z displacements for the architecture: 
    x_displacement = old_x_displacement - 25.5; 
    y_displacement = old_y_displacement + 15.0; 
    z_displacement = old_z_displacement - 50.0. 

The effect of these displacements is to display each successive architecture in 
a given view as being farther back, moved farther to the left, and slightly 
raised.   
 
Write VRML architecture header using displacements. 
Traverse Topology matrix in breadth-first fashion, using a  
queue, as follows: 
Initialize queue for node traversal. 
Start with the very first row of Topology matrix: 
 Curr_root = 0, set the current component index to 0. 



116 

 

 Insert Curr_root into queue. 
 While queue is NOT empty: 
  Remove item from queue (item is component index). 
  Store item into Curr_root. 
  Using Curr_root as index, get positions from  
   Arch_CompPosition: 
  root_x = Arch_CompPosition[Curr_root][0]. 
  root_y = Arch_CompPosition[Curr_root][1]. 
  root_z = Arch_CompPosition[Curr_root][2]. 
  Level  = Arch_CompPosition[Curr_root][3]. 
 
  If the Style of the current architecture is "Call-and-Return": 
   We assume an acyclic, tree-like structure.   
   We do not assume that Topology matrix contains solely diagonal  
   elements. 

 
  Based on the level (0, 1, 2, ... etc.), set  
  the spherical color of VRML component. 
 
  Based on the level, set the radius of the sphere.  The lower  
  levels (higher level numbers) have successively smaller radii. 
   
  If all_comps array set to 1 for component,  
  render the sphere at the position root_x, root_y, root_z. 
 
  If all_comps array set to 0 for component, 
  check view_comps array for component: 
   If view_comps set to 1, render sphere at position  
   (root_x, root_y, root_z) in VRML; 
   otherwise, do not render sphere. 
 
  If the component was rendered in VRML, check for a  
  hyperlink at that component.  If there is a hyperlink, 
  generate the VRML command for a hyperlink to the  
  file name. 
 
  /* Next we render the connection found in the row, column */ 
  /* intersection of Topology matrix */ 
 
  Using Curr_root value as the row: 
   For all columns of Topology matrix for that row: 
   If Topology[Curr_root][column] NOT (-1) 
    Column represents component index of child of curr_root. 
    Store Topology[Curr_root][column] to Conn_index. 
    /* Column represents destination component index */ 
    /* and Topology(Row, Column) is index of connector.  */ 
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    /* Each Column NOT -1 is therefore a child of Curr_root. */ 
Using Conn_index as index, and the connector position array 
from the arch node, set connector positions: 

     Conn_x = Arch_ConnPosition[Conn_index][0] 
     Conn_y = Arch_ConnPosition[Conn_index][1] 
     Conn_z = Arch_ConnPosition[Conn_index][2] 
     /* Delta_sum contains rotation for cylinders */ 
     Delta_sum = Arch_ConnPosition[Conn_index][3] 

 
     If all_conns array set to 1 for connector,  

set height of connector based on level number; 
rotate around y-axis by delta_sum * (no_children – 1); 
render the cylinder at  position conn_x, conn_y, conn_z. 

 
     If all_conns array set to 0 for connector, 
     check view_conns array for connector: 
      If view_conns set to 1,  
      set height of connector based on level; 
      rotate around y-axis by delta_sum * (no_children -1); 
      render cylinder at position. 
     otherwise, do not render connector. 
       
     If the connector was rendered in VRML, check for a  
     hyperlink at that connector.  If there is a hyperlink, 
     generate the VRML command for a hyperlink to the  
     file name. 
 
  If the Style of the Architecture is “Layered," we assume components 
  are rendered as cone-like objects using VRML extrusion nodes.   
  Traversal of Topology matrix is diagonal since we assume a layered 
  architecture.  If not diagonal, we generate an error. 
 
  For the component represented by curr_root, we first check all_comps 
  to see if the component is rendered.   
 
   If all_comps is set to 1, render the component as an extrusion node,  
   scaled and colored for the level; 
   otherwise if all_comps is set to 0: 
    If view_comps is set to 1, render the component as an extrusion 
    node with proper scaling and coloring for the level. 

If view_comps is set to 0, do not render and hide the 
component. 

    
   If the component was rendered, check for hyperlinks and  
   establish the hyperlink in VRML code. 
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  Insert the column index representing the child component  
  into the queue. 
 
  End For all columns of Topology matrix for that row: 
 
 End While queue is NOT empty.    

 
  End for each architecture in "used architecture" array of view node. 
 
End While there are more view nodes. 
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Procedure Step Three:  Coding and Code Testing 
 
 The routines for translating VTADL to VRML were incorporated in the yacc file, 

"vtadlv1.y."  The complete yacc specification was listed in Appendix F.  The 

corresponding lex file which fed tokens to the parser was "vtadlv1.l," and was listed in 

Appendix B. 

 The parser was generated by using the following command in a Unix 

environment: 

 

% yacc -d vtadlv1.y 

 

 This command generated the default file, "y.tab.c" and a header file, "y.tab.h." 

The file "y.tab.c" was the C source code for the parser. 

The lexer was generated by using the command: 

 

% lex vtadlv1.l 

 

The lex command generated the default file, "lex.yy.c," the C file for the lexer.  

After the C code files representing the parser (y.tab.c) and the lexer (lex.yy.c) were 

generated, the two C files were compiled using the gcc compiler command: 

 

% gcc -o vtadl_run y.tab.c lex.yy.c -lm -ll -ly 
 

 
 
 The lexer and parser C programs were compiled and linked into an executable 

object file, "vtadl_run." 
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 The vtadl_run program represented the actual compiler and must be executed in a 

Unix environment, but the VRML files that vtadl_run generates may be run on any 

platform that has a VRML 97 add-on to an Internet browser. 

 The vtadl compiler may be executed as follows: 

 

% vtadl_run < datafile.txt 

 

 The example command line above uses a VTADL source file named "datafile.txt" 

as input to the compiler.  One or more VRML files may be generated as a result of the 

VTADL-to-VRML compilation process. 

 The VTADL-to-VRML compiler was validated and passed the preliminary testing 

phase.  Procedures Step Four and Five will discuss the testing and case studies in more 

detail.
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Procedure Step Four:  Acceptance Testing of ADL Files 
 
 More intricate testing was conducted using the Case Study Report Template, with 

results given in Appendix G.   
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Procedure Step Five:  Case Studies 
 

Two case studies were conducted to demonstrate the workability of the VTADL-

to-VRML visualization tool.   Table 1 provides a summary of the two case studies.  Each 

case study first documented the background of the case study, described the VTADL 

interpretation of the architecture(s), and provided the VRML visualization of the VTADL 

source file.   

Case Study One used a case study originally discussed by Shaw and Garlan in 

Software Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996].   

Several solutions were offered to the problem of designing an architecture to control a 

mobile robot.  Two of the solutions involved a layered style and a call-and-return style.  

These solutions were translated into VTADL representation, and then compiled into one 

or more VRML files.   

Case Study Two was the most complex of the case studies and could be 

considered the capstone of this dissertation.  The Linux operating system kernel was 

visualized using VRML.  The views on the Linux kernel were established by two 

VTADL files, which were translated into the corresponding VRML visualizations.  Case 

Study Two was based on the work of Bowman et al., who performed a software 

architecture recovery of Linux with minimal documentation [Bowman, 1998; Bowman, 

Siddiqi, & Tanuah, 1998].   Bowman's visualization was conducted in the plane in a static 

medium.  This dissertation used Bowman's planar visualizations, redefined the 

architectures using VTADL, and then translated the views into separate VRML worlds 

representing the Linux kernel. 
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Results and analyses of the case studies were provided in Chapter IV and 

Appendix I. 

 
Table 1.  Summary of Case Studies 

 
Case Study Name Description 
Case Study One:  Mobile Robot 
Architecture 

Multiple views of the architectures for a 
mobile robot included both layered and 
program call-and-return styles.  Case study 
originally from Shaw and Garlan [1996], 
re-visualized in VRML. 

Case Study Two:  Linux OS Case study visualizing Linux operating 
system using VRML; based on original 
work by Bowman [1998].   
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Formats for Presenting Results 
 
 A report template for conducting the case studies was provided in Appendix H.  

 The format for presenting results included a documented description on the goals 

and stakeholder requirements for the case study, the VTADL source file, a representative 

sample of translated VRML files (due to the length of VRML files, not every file was 

included), and screen printouts of key views for each visualized VRML file.  Sample files 

referenced by the architecture (through hyperlinks) were also selectively shown. 

 

 
Projected Outcomes 
 

 The goal of this research was attained when the architectures and viewpoints 

defined by the ADL were automatically translated into VRML.  Two case studies were 

conducted to demonstrate that the goal had been reached. 

 It was anticipated that the visualization tool would greatly assist stakeholders in 

comprehending different aspects of a software system.  However, a human factors survey 

on the impact of VRML visualization on various stakeholders, and the effectiveness of 

the tool on an actual development project or environment, were not explored in this 

research.   
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Resource Requirements 
 
 A VTADL source file must be compiled in a Unix environment using the 

compiler program, vtadl_run.  The compiler may create one or more VRML files, with 

each file having the extension "wrl." 

 In order to view the VRML files, the local computer system should have an 

Internet browser (either Internet Explorer or Netscape Navigator).  A VRML add-on to 

the Internet browser is also required.  Parallelgraphic's Cortona is recommended for 

Windows 95, Windows NT, or Windows 2000 environments.   

 

 

Reliability and Validity 
 
 The validity of the VTADL-to-VRML compiler was confirmed during the test 

and integration procedures. 

 Source VTADL files were created for both trivial and more complex software 

architectures, in two architectural styles (call-and-return and layered).  The visualization 

of components, connectors, and the topology of the styles were required to accurately 

reflect the source VTADL files.  The capability to selectively show or hide architectural 

elements or to establish hyperlinks was also verified.  Reliability of the visualizations was 

confirmed by checking the architectures in each view against the VTADL specifications. 

 Appendix G provided a representative sample of two test cases. 
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Summary 
 

This chapter discussed the methodology by which the research in visualization of 

software architectures was conducted.  

The first part of this research created an architecture description language capable 

of being visualized in three dimensions.  The grammar of the language was specified in 

BNF. 

The second part of this research used compiler generation tools (yacc and lex) to 

create a parser shell based on the BNF specification.  The parser shell was capable of 

recognizing the language but did not generate VRML code.  The second part of the 

research also designed data structures and algorithms capable of representing an 

intermediate geometric model of the software architecture.  Using an architectural style, 

the architectural elements defined in the source file were mapped to the appropriate 

geometric model.  Code generating algorithms were designed to traverse the geometric 

model and create the corresponding objects in VRML.   

The third part of the research coded the algorithms and data structures defined in 

the second part, and integrated the coded subroutines within the compiler shell.  The 

result of the third part was a completed compiler program.   

The fourth part performed acceptance testing of the completed compiler, while the 

fifth part conducted case studies to demonstrate the workability of the prototype.  The test 

cases were documented in Appendix G, while the case studies were documented in 

Appendix I. 

 



 

 

Chapter IV 
 

Results 
 
 
 
Analysis 
 
 This chapter presents the results of two case studies using the VTADL-to-VRML 

visualization tool.  In earlier literature, the software architectures for a mobile robot and 

the Linux operating system kernel were modeled in the plane (and without using 

architecture description languages) by the original authors. 

 In this dissertation research, both case studies were first represented using an 

architectural description language (VTADL), then translated into VRML using the 

visualization techniques developed by this dissertation.  Each viewpoint was ultimately 

represented as a three-dimensional, virtual world. 

Case Study One was performed originally in Software Architecture: Perspectives 

on an Emerging Discipline [Shaw & Garlan, 1996].   Four alternate architectural 

approaches were provided by Shaw and Garlan to model the control mechanism of a 

mobile robot: a control loop, layered, implicit invocation, and blackboard architecture.  In 

this dissertation, the first three solutions were represented in VTADL using the call-and-

return and layered styles; however, the fourth solution (blackboard architecture) was 

ignored, since the blackboard data repository style was not implemented in the compiler. 

 Case Study Two used the visualization study of the Linux kernel conducted by 

Bowman et al [Bowman, Siddiqi, & Tanuan, 1998].  The authors originally visualized the 

Linux kernel in the plane using a tool called the Portable Bookshelf.   This dissertation 

research visualized the Linux kernel using both call-and-return and layered styles within 



128 

 

VRML worlds.   However, only the IPC (Interprocess Control) module of Linux was 

visualized to the lowest level of detail.  

 The goal of this dissertation was to develop a prototype to demonstrate the “proof 

of concept” of this visualization technique; namely, to demonstrate that viewpoints on a 

software architecture could be visualized in three dimensions using the interactive 

medium of virtual reality.  The software architecture, and the viewpoints on the 

architecture, were first represented in a new software architecture description language 

presented by this dissertation (VTADL); the architectural viewpoints described by the 

language were translated into virtual worlds, with each viewpoint defined by a separate 

VRML file.  The separate views were integrated using hyperlinks between the VRML 

worlds.  Traceability to requirements was also demonstrated using hyperlinks from 

elements of the VRML representation to source documentation (both text and HTML).   

 The visualized case studies were documented in Appendix I.   

 Although the prototype worked according to the specifications stated at the 

beginning of this research, not all aspects of the architecture description language 

(VTADL) were implemented in the target visualization language.  For example, 

interfaces were not visualized in VRML.   

Only the layered and call-and-return architectural styles were implemented in the 

compiler.  Important styles such as the pipelined and data repository styles were ignored 

in the current version.  Heterogeneous styles, while desirable for more complex 

architectures, were not implemented in the prototype. 

 Each architectural style was translated into VRML using only a small number of 

visualized objects.  The call-and-return style used different sphere colors and sphere sizes 



129 

 

to represent program modules (a size and color were assigned for each level in the call-

and-return tree).  Cylinders were used to represent the connectors.  The layered style used 

cone-like extrusions to represent components in a layered architecture.  While the limited 

object set served the purposes of the prototype, a more diverse object set would be 

desired in any visualization tool beyond the prototype. 

 

Findings 

 A prototype was developed to translate a software architecture (and the 

viewpoints on the architecture) described in an ADL into VRML.   Details of the 

prototype and its development were included in the appendices.  Appendix G 

demonstrates the functional correctness of the prototype, while Appendix I demonstrates 

the application of the prototype to well-known or existing software systems. 

This dissertation demonstrated that software architectures could be represented in 

VTADL; that the VTADL-to-VRML compiler could be successfully used to translate 

architectural viewpoints described in VTADL into the target VRML files; and that the 

VRML files could be viewed using a standard Internet browser and a VRML add-on to 

the browser.    

 Based on the case studies described in Appendix I, the stated goals of this 

dissertation were achieved.   
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Summary of Results 

 In Chapter I, a fundamental problem in software architecture was pinpointed:  

how does one represent different viewpoints on the software architecture in a way that is 

detailed enough for a stakeholder who is a specialist, but comprehensive enough for a 

generalist?  A ramification of this problem was to integrate the different viewpoints in a 

consistent way, avoiding the pitfalls of viewpoint and architectural mismatch. 

 This dissertation proposed a solution to the representational problem by 

developing a visualization tool to allow interaction with a three-dimensional, virtual 

reality world modeling the software architecture.  The research began by designing an 

ADL capable of representing different architectural viewpoints.  A compiler was then 

developed to translate the ADL into one or more VRML files representing the 

corresponding viewpoints on the software architecture. 

 The stated goal was to develop a prototype to demonstrate a "proof of concept" of 

the visualization tool.  Aesthetic concerns, the user response to the visualization, or the 

impact of the visualization tool on software productivity were not explored in this 

dissertation.  The latter issues will be the topic for future research. 

 The test cases of Appendix G demonstrate the functional correctness of the 

prototype.  The two case studies of Appendix I demonstrate that the prototype could be 

used to visualize the software architectures of well-known or existing systems (namely, 

the software architecture of a mobile robot and the architecture of the Linux operating 

system kernel). 
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 Based on the narrow constraints established at the beginning of this dissertation 

research (Chapter I), the results of the test cases (Appendix G), and the two case studies 

(Appendix I), we concluded that the stated goals of this dissertation were achieved. 

 While the limited number of architectural styles and visualized objects served the 

purposes of a prototype, more visualization capabilities would be required for a truly 

versatile tool.  It was recommended that the refined version of the visualization tool be 

tested and evaluated in an actual software development environment. 

 



 

 

Chapter V 
 

Conclusions, Implications, Recommendations, and Summary 
 
 
 
Conclusions 
 

Based upon the analysis of results in the fourth chapter, we conclude that the 

prototype does indeed fulfill the role of serving as a "proof of concept" of the 

visualization technique.  The immediate goals of this dissertation were achieved. 

 From a purely subjective standpoint, the three-dimensional visualizations in the 

case studies appeared to be more engaging than the original static visualizations in the 

plane.  The claim that the VRML visualizations are more engaging to stakeholders can be 

supported by subjective, anecdotal evidence, but cannot be conclusively proved without 

objective, empirical evidence.  A secondary claim that the visualization tool could 

increase software development productivity (through improving communication between 

stakeholders) must also be validated by a controlled experiment, measuring the impact of 

the tool in a software development environment.  As specified at the very beginning of 

this dissertation, the actual impact of the visualization tool on users in a software 

development environment should be addressed in future research. 
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Implications 

Few tools exist for the three-dimensional visualization of software architecture.  

To the best knowledge of this research, no compiler existed prior to this dissertation to 

translate an architecture description language into VRML.  Furthermore, the 

representation of integrated viewpoints on a software architecture using virtual reality 

had not been previously explored.   The prototype developed by this research 

demonstrated that an ADL could model several viewpoints on a software architecture, 

and that the viewpoints could be translated from the ADL into VRML based upon the 

architectural style specified in the ADL.  The resulting tool is an inexpensive, three-

dimensional technique to visualize software architectures. 

An additional contribution that the tool made to software architecture was to 

allow software traceability from the three-dimensional visual representation to the 

original design rationale.  This capability was made possible using hyperlinks from 

elements in the virtual reality representation to requirements documentation. 

 The translation of architectural views into VRML was offered as a creative 

solution to the broader problem of representing contrasting viewpoints on the software 

architecture.  The solution was intended to enhance communication among stakeholders 

who were specialists in different domains and stakeholders who were generalists.  

Stakeholders who were generalists, for example, could be managers with an interest in 

coordinating the different specialties. 
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Recommendations 

The limitations of the prototype should be noted.  The current version of the 

visualization tool needs to be developed beyond a prototype in order for the effectiveness 

of the tool to be gauged in a software development or training environment.   

In the prototype, only two architectural styles were implemented; each style used 

a limited number of visualized objects.  The small number of styles and lack of 

diversified objects limited the scope of software architectures that could be visualized.  

Heterogeneous styles were not implemented.  Component interfaces, connector 

directionality, and a greater diversity of visualized objects within each architectural style 

should be incorporated within the visualization tool. 

At present, the visualization technique models only static architectures.  Dynamic 

architectures should be represented using event-based architectural styles.  VRML has the 

capability to animate objects; this capability should be utilized to animate the evolution 

of software architectures over time, or to animate dynamic relationships between 

architectural elements. 

The resulting visualizations from the compiler are intuitively more engaging than 

images sketched in a plane.  Using VRML, the user can navigate through a three-

dimensional world, with the sensation of exploring or manipulating different objects 

within the world.   

However, the actual impact on stakeholders must be examined in a consistent and 

scientific manner.  The effectiveness as a training tool could be determined through 

analysis of user surveys.  The effectiveness of the tool in modeling real-world software 

architectures could be determined through quantifying software productivity 
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improvements, improvements in architectural comprehension, and enhanced stakeholder 

communication.  

 

Summary 

Software architecture is an emerging discipline within software engineering.  

Models based on software architecture attempt to reduce the complexity of a software 

system by representing the system with coarse-grained structures.  A software structure 

could be represented by components and connections arranged in a specific topology.   

An architectural style defines the constraints on the topology and instantiation of the 

structure during run-time.  Depending on the stakeholder viewpoint, elements of the 

topology are interpreted differently; a component, for example, may be an abstraction 

representing a program module, object, concept, or database.   

Software architectures may be described using a graphical or text-based 

architecture description language (ADL).  The key goals of an ADL are to communicate 

alternate designs between different stakeholders, to detect reusable structures, and to 

record design decisions.  ADLs serve as tools to assist in analytical reasoning about the 

preliminary software design, to insure software quality early in software development.   

A major problem in software architecture has been the difficulty in creating 

different representations to accommodate the contrasting viewpoints of stakeholders.  A 

set of viewpoints should be conveyed in a way that is both comprehensive enough for 

specialists but understandable to generalists.  The representation problem has been one of 

integrating different viewpoints without losing consistency (viewpoint mismatch) and 

without errors in relating architectural structures (architectural mismatch).   
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This dissertation provided a solution to the representation problem by creating a 

tool for three-dimensional representation of architectural viewpoints.   

The tool consisted of an architecture description language (VTADL) to first 

describe the software architectures and viewpoints on the architectures; and a VTADL-

to-VRML compiler to translate each viewpoint into a separate virtual reality world.   

This research was significant since no compiler existed (prior to this dissertation) 

to translate a dedicated architecture description language into VRML.  To the best 

knowledge of the dissertation author, very little or no research was being conducted on 

representing software architectural viewpoints in virtual reality.  

This research noticed the powerful capability of VRML to model worlds 

containing a variety of user-defined structures [Ames et al., 1997].  A natural association 

was made by the author of this dissertation between the world-modeling capabilities of 

the virtual reality paradigm and the nature of a software architecture viewpoint.   A major 

component of the tool developed in this dissertation was to map a viewpoint definition 

contained in an architecture description language to a VRML world.  Furthermore, 

VRML offered an inexpensive, easily accessible means (via the Internet) of presenting 

software architectural visualizations. 

 An additional benefit of the VTADL-to-VRML compiler was the allowance for 

software traceability, the capability of tracing a path from elements of the architecture to 

associated requirements documentation.  Using the VRML visualization, a stakeholder 

could trace the rationale behind the design using hyperlinks from elements of the 

visualization to source documents. 
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 The goal of the dissertation was to devise algorithms for translating an ADL into 

effective VRML representations based on the desired viewpoint.  The VRML 

representations were intended to enhance comprehension on the overall design and to 

improve communications between diverse stakeholders.  In other words, the tangible goal 

was to allow for visualization of more than one viewpoint, and to allow the stakeholder to 

toggle between multiple viewpoints within a participatory medium.  The ADL, along 

with the ADL's visualization in virtual reality, would serve as a repository for reusable 

patterns in future projects.  

 As far as the constraints of this research were concerned, the goal was considered 

to be reached when we accomplished the following: 

 
1. Developed a prototype consisting of an ADL capable of representing multiple  

architectural viewpoints; 
 

2. Developed a translator from the ADL to VRML representation; 
 
3. Demonstrated the successfully translated VRML representation from the 

architecture originally described by the ADL; 
 

4. Demonstrated software traceability (using hyperlinks) from aspects of the  
VRML representation back to the requirements documentation. 
 

 
In addition, two architectural styles (the layered and call-and-return) were 

implemented in the compiler.  Visualization of heterogeneous styles, connector 

directionality, component interfaces, and dynamic architectures were not implemented in 

the current version of the compiler. 

 The development and validation of the prototype consisted of five phases.   

 The first phase of the research was to create an architecture description language 

capable of being visualized in three dimensions.  The new language was called VTADL 
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(Visually Translatable Architecture Description Language).  The full grammar of the new 

language was specified in Backus-Naur Form (BNF).   

 The second phase used compiler generation tools (yacc and lex) in a Unix 

environment to create a parser shell based on the BNF specification.  The parser shell at 

this stage was only capable of recognizing the syntax of the language, and could not 

generate target VRML code.  The second phase also involved the preliminary design of 

data structures and algorithms representing the intermediate geometric model of the 

software architecture.  Using an architectural style, the architectural elements defined in 

the source file were mapped to the appropriate geometric model.  Code generating 

algorithms were designed to traverse the geometric model and create the corresponding 

objects in VRML. 

 The third phase of the research implemented the algorithms and data structures 

(defined in the second phase) in the C programming language.  Coded subroutines were 

integrated and tested within the compiler shell, resulting in a completed compiler 

program. 

 The fourth phase performed acceptance testing of the completed compiler 

program (documented in Appendix G), while the fifth phase performed case studies using 

the final visualization tool (documented in Appendix I). 

 Case Study One modeled the software architecture for an autonomous mobile 

robot.  Several different solutions were extracted from earlier literature, and re-

represented in VTADL.  The VTADL-to-VRML compiler was used to generate a VRML 

file for each view of the architecture.   
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 Case Study Two modeled the software architecture for the Linux operating 

system kernel in VTADL.  Using the compiler, VTADL was translated into several 

VRML files representing a hierarchy of integrated views on the kernel.  Although all 

modules of the Linux kernel were represented at a high level of abstraction, only the IPC 

(Interprocess Control) module was visualized to the lowest level of detail.   

 Hyperlinks to source documentation were used in both case studies, and all views 

were integrated through the use of VRML portals. 

 Based on the test cases and two case studies, the prototype demonstrated that the 

viewpoints on a software architecture could be represented in an architecture description 

language, then visualized in three dimensions using the techniques of virtual reality 

(VRML).  Further, the prototype demonstrated that the viewpoints could be integrated 

using hyperlinks, and that software traceability could be established between elements in 

the virtual world to source documentation. 

 We concluded that the goals of the dissertation were achieved, but emphasized the 

limitations of the prototype and constraints placed on the research.  The foremost 

constraint was that no study was undertaken to measure the effectiveness of the 

visualization tool. 

 The prototype should be developed into a more polished, versatile tool suitable 

for use by software developers or trainers.  The effectiveness of the refined visualization 

tool could then be realistically evaluated in an actual software development environment.   
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Appendix A 
 
 

BNF Specification for VTADL 
 

(Visually Translatable Architecture Description Language) 
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BNF Specification for VTADL 
 

(Visually Translatable Architecture Description Language) 
 
 
 
Please Note: Terminal tokens are capitalized in bold. 
 
 
<vtadl>      ::= <archmain> <viewpart> 
 
<archmain>  ::=  NULL | <archmain> <archdef>            
            
<archdef>    ::= <architecture> <archname> <architect_style>  

    <leftmark> <partslist> <connslist> <rightmark>                      
 
<architecture>   ::= ARCHITECTURE  
                
<leftmark>   ::= LEFTBRACKET            
 
<rightmark>   ::= RIGHTBRACKET             
 
<architect_style> ::= ARCHSTYLE <stylechoice>                   
 
<stylechoice> ::= PROGRAM | OBJECT | PIPELINE | LAYER                        
  
<archname>   ::= ID              
 
<partslist>   ::= COMPLIST <leftmark> <compbreakdown> <rightmark>      
 
<connslist>   ::= CONNLIST <leftmark> <connbreakdown> <rightmark>                      
 
<compbreakdown>   ::= NULL | <compbreakdown> <middlemark> 
                 
<middlemark> ::= COMPONENT <compname> COMPTYPE <comptype> <semimark>  

    <proplist> <intlist>                                                 
              
<proplist>   ::= PROPERTIES COLON <propdetails>            
 
<propdetails>   ::= <component_role> <child_of> <layer_no> <process_def> 
 
<component_role>  ::= COMPROLE COLON <comp_selection> <semimark> 
 
<comp_selection> ::= INPUT | OUTPUT | ROOT | CMPPRODUCER | CMPCONSUMER 
                                                                                           
<child_of>      ::= CHILDOF COLON <child_selection> <semimark> 
               
<child_selection> ::= NULL | <child_id>                                    
                   
<layer_no>    ::= LAYER COLON <layer_selection> <semimark> 
             
<layer_selection> ::= NULL | LINPUT | LOUTPUT | <layer_id> 
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<layer_id>    ::= ID                
 
<process_def> ::= PROCESS COLON <process_selection> <semimark> 
               
<process_selection> ::= NULL | SIGMA | THRESHOLD 
                                                                                           
<child_id>  ::= ID              
 
<intlist>    ::= INTERLIST COLON <interbreakdown>            
 
<interbreakdown> ::= NULL | <interbreakdown> <middleinter> 
                                                    
<middleinter> ::= INTERFACE <inter_direct> <intername> <semimark> 

    <leftmark> INTERFACEROLE COLON 
    <inter_role_choice> <semimark> <rightmark>                

                  
<inter_direct> ::= TOP | BOTTOM | LEFT | RIGHT | FRONT | BACK 
                                                               
<inter_role_choice> ::= PRODUCER | CONSUMER 
                                                            
<connbreakdown> ::= NULL | <connbreakdown> <connmiddle> 
                                                    
<comptype>   ::= CMPPE | CMPPROGRAM | CMPCONCEPT  

    | CMPOBJECT | CMPDATA                                   
                                                                        

<connmiddle>  ::= CONNECTOR <connname> CONNTYPE <connecttype>  
    <connectdirect> <semimark> <connend>                                 

              
<semimark>   ::= SEMICOLON            
 
<compname>   ::= ID   
 
<connname>   ::= ID   
 
<connecttype>   ::= DATAFLOW | CONTROLFLOW | ASSOCIATES                      
                                           
<connectdirect>   ::= UNIDIRECT | BIDIRECT     
                                                                   
<connend>    ::= CONNECT LEFTPARENS <interface1> COMMA  

    <interface2> RIGHTPARENS <semimark>                            
 
<interface1>   ::= ID                                
 
<interface2>   ::= ID  
                               
<intername>   ::= ID                                           
 
<viewpart>   ::= VIEWLIST <leftmark> <mainview>  

    <userviews> <rightmark> 
                        
<mainview>   ::= VIEWMAIN <leftmark> <vmainbody> <rightmark>                         
               
<vmainbody>   ::= NULL | <useArchSection> <vmainbody>            
 
<useArchSection> ::= <leftmark> <usePart> <useProp> <rightmark>                           
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<usePart>    ::= USEARCH <useArchID> <semimark>           
 
<useProp>   ::= <leftmark> <CompConn> <HyperPart> <rightmark>           
 
<useArchID>   ::= ID  
 
<CompConn>   ::= <CompSelects> <ConnSelects>             
 
<CompSelects>   ::= COMPONENTS <CompOptions> <semimark>              
 
<CompOptions>   ::= ALL | <CompOptList>               
 
<CompOptList>   ::= NULL | <CompNext> <CompOptList>               
 
<CompNext>      ::= ID   
 
<ConnSelects>  ::= CONNECTIONS <ConnOptions> <semimark>              
 
<ConnOptions> ::= ALL | <ConnOptList>               
 
<ConnOptList> ::= NULL | <ConnNext> <ConnOptList>               
 
<ConnNext>  ::= ID                                                   
 
<HyperPart>  ::= NULL | <Hypercase> <HyperPart>              
 
<Hypercase>   ::= HYPERLINKON <HypConnComp>  

    TOFILE <Filename> <semimark>             
 
<HypConnComp>   ::= ID   
 
<Filename>   ::= ID | QSTRING  
 
<userviews>   ::= NULL | <Viewdef> <userviews> 
                          
<Viewdef>    ::= VIEW <viewname> <leftmark> <vmainbody> <rightmark>                   
 
<viewname>   ::= ID 
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Lex Specification for VTADL 
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Lex Specification for VTADL 
 

(Visually Translatable Architecture Description Language) 
 
 
%{ 
 
#include "y.tab.h" 
#include <string.h> 
 
%} 
 
id        [a-zA-Z][a-zA-Z0-9]* 
qstring   \"[^\"\n]*[\"\n] 
 
%% 
 
\n      ; 
[\t ]+  ; 
 
Architecture     { return ARCHITECTURE; }  
"{"              { return LEFTBRACKET; }  
"}"              { return RIGHTBRACKET; }  
"("              { return LEFTPARENS; }  
")"              { return RIGHTPARENS; }  
";"              { return SEMICOLON; }  
","              { return COMMA; }  
":"              { return COLON; }  
Input   { return INPUT; }  
Output  { return OUTPUT; }  
Root    { return ROOT; } 
Producer { return PRODUCER; }  
Consumer { return CONSUMER; }  
CompProducer  { return CMPPRODUCER; } 
CompConsumer  { return CMPCONSUMER; } 
Left     { return LEFT; }  
Right    { return RIGHT; }  
Front    { return FRONT; }  
Back     { return BACK; } 
Top      { return TOP; }  
Bottom   { return BOTTOM; }  
Component    { return COMPONENT; } 
Properties   { return PROPERTIES; } 
CompRole     { return COMPROLE; }  
ChildOf      { return CHILDOF; }  
Connector    { return CONNECTOR; }  
NA       { return NA; } 
Style       { return ARCHSTYLE; }  
Program      { return PROGRAM; } 
Object       { return OBJECT; }  
Pipeline     { return PIPELINE; }  
Layer     { return LAYER; } 
LayerInput { return LINPUT; }  
LayerOutput { return LOUTPUT; }  
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ComponentList    { return COMPLIST; } 
ConnectionList  { return CONNLIST; }  
ComponentType  { return COMPTYPE; }  
ConnectType  { return CONNTYPE; }  
PE     { return CMPPE; } 
Cprogram { return CMPPROGRAM; }  
Cconcept { return CMPCONCEPT; }  
Cobject  { return CMPOBJECT; } 
Dataflow   { return DATAFLOW; }  
Controlflow  { return CONTROLFLOW; }  
Associates  { return ASSOCIATES; }  
Unidirect    { return UNIDIRECT; }  
Bidirect     { return BIDIRECT; } 
 
Interface   { return INTERFACE; } 
InterfaceList  { return INTERLIST; } 
InterfaceRole  { return INTERFACEROLE; }  
 
Connect        { return CONNECT; } 
 
Process    { return PROCESS; }  
Sigma  { return SIGMA; }  
Threshold { return THRESHOLD; }  
ViewList  { return VIEWLIST; } 
ViewMain  { return VIEWMAIN; } 
UsingArch { return USEARCH; } 
All { return ALL; } 
Components  { return COMPONENTS; } 
Connections { return CONNECTIONS; } 
 
HyperLinkOn  { return  HYPERLINKON; }  
ToFile  { return TOFILE; } 
View   { return VIEW; } 
 
{id}         { yylval.string = strdup(yytext);  
               return ID;  
             } 
 
{qstring}    {  yylval.string = strdup(yytext+1);  /* skip open quote */ 
                if(yylval.string[yyleng-2] != '"') 
                  printf("/nUnterminated character string/n"); 
                else  /* remove close quote */ 
                  yylval.string[yyleng-2] = '\0'; 
                 return QSTRING; 
             } 
 
"$"  { return 0; }  
 
%% 
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Appendix C 
 

Yacc Specification for VTADL Parser Shell 
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Yacc Specification for VTADL Parser Shell 
 

(without routines for Geometric Modeler and VRML Generator) 
 

 
For the complete Yacc specification with all subroutines, see Appendix F. 

 
 
 
vtadl:    archmain viewpart   
          ;       
 
archmain:  /* empty */   
 
           | archmain archdef 
           ;  
            
archdef:   architecture archname architect_style leftmark  

partslist connslist rightmark              
           ; 
 
architecture:  ARCHITECTURE  
               ;  
 
leftmark:  LEFTBRACKET 
           ; 
 
rightmark:  RIGHTBRACKET 
            ; 
 
architect_style:  ARCHSTYLE stylechoice 
                  ; 
 
stylechoice:  PROGRAM    
              |  
              OBJECT                           
              |  
              PIPELINE                                                       
              | 
              LAYER                                
              ; 
               
archname:  ID                                    
           ; 
 
 
partslist:  COMPLIST leftmark compbreakdown rightmark      

;  
 
connslist:  CONNLIST leftmark connbreakdown rightmark                 
            ; 
 
compbreakdown:  /*  empty  */ 
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                |  
                compbreakdown middlemark                      
                ;  
 
 
middlemark:  COMPONENT compname COMPTYPE comptype semimark proplist intlist                
             ; 
 
proplist:  PROPERTIES COLON propdetails 
           ; 
 
propdetails:   component_role child_of layer_no process_def 
   ; 
 
component_role:   COMPROLE COLON comp_selection semimark 
   ; 
 
comp_selection:   INPUT  
                  |  
                  OUTPUT 
                  | 
                  ROOT 
                  | 
                  CMPPRODUCER 
                  | 
                  CMPCONSUMER 
                  ; 
 
child_of:     CHILDOF COLON child_selection semimark 
              ; 
 
child_selection:  /* Empty */ 
                  |  
                  child_id 
                  ; 
 
layer_no:   LAYER COLON layer_selection semimark 
            ; 
 
layer_selection:  /* Empty */ 
                  | 
                  LINPUT 
                  |  
                  LOUTPUT 
                  | 
                  layer_id 
                  ; 
 
layer_id:   ID  { $$ = $1; } 
             ; 
 
process_def:  PROCESS COLON process_selection semimark 
              ; 
 
process_selection:  /* Empty */ 
                    | 
                    SIGMA  
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                    | 
                    THRESHOLD              
                    ; 
 
child_id:    ID    { $$ = $1; } 
             ; 
 
intlist:  INTERLIST COLON interbreakdown 
           ; 
 
interbreakdown:  /* empty */ 
                 | 
                 interbreakdown middleinter 
                 ; 
 
middleinter:      INTERFACE inter_direct intername semimark 
                  leftmark INTERFACEROLE COLON  

inter_role_choice semimark rightmark                
                  ; 
 
inter_direct:  TOP 
               |  
               BOTTOM 
               |  
               LEFT 
               | 
               RIGHT 
               |  
               FRONT 
               | 
               BACK 
               ; 
 
inter_role_choice:  PRODUCER 
                    |  
                    CONSUMER 
                    ; 
 
connbreakdown:   /* empty */ 
                 |  
                 connbreakdown connmiddle 
                 ; 
 
comptype: CMPPE               
          |  
          CMPPROGRAM       
       |  
          CMPCONCEPT     
          |  
          CMPOBJECT        
          | 
          CMPDATA         
     ;  
 
                      
connmiddle:   CONNECTOR connname CONNTYPE connecttype  

connectdirect semimark connend                                           
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              ; 
              
semimark:  SEMICOLON 
           ;  
 
compname:  ID                                      
           ; 
 
connname:  ID   
           ; 
 
connecttype:  DATAFLOW       
              |  
              CONTROLFLOW    
              |  
              ASSOCIATES    
              ; 
 
connectdirect:  UNIDIRECT     
                | 
                BIDIRECT      
                ; 
 
 
                                    
connend:  CONNECT LEFTPARENS interface1 COMMA interface2 RIGHTPARENS 
                  semimark                  
          ; 
 
interface1:  ID 
             ; 
 
interface2:  ID        
             ; 
 
intername:  ID  
            ; 
 
viewpart:   VIEWLIST leftmark mainview userviews rightmark               
            ; 
 
mainview:   VIEWMAIN leftmark vmainbody rightmark                          

; 
 
vmainbody:  /* NULL */ 
            | 
            useArchSection vmainbody 
            ; 
 
useArchSection:  leftmark usePart useProp rightmark                 
             ; 
 
usePart:  USEARCH useArchID semimark 
          ; 
 
useProp: leftmark CompConn HyperPart rightmark 
          ; 
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useArchID:  ID   
            ; 
 
CompConn:  CompSelects ConnSelects 
            ; 
 
CompSelects:  COMPONENTS CompOptions semimark 
             ; 
 
CompOptions:  ALL    
              |  
              CompOptList 
              ; 
 
CompOptList:  /* NULL */ 
              |  
              CompNext CompOptList 
              ; 
 
CompNext:     ID                   
              ; 
 
ConnSelects: CONNECTIONS ConnOptions semimark 
             ; 
 
ConnOptions:  ALL 
              |  
              ConnOptList 
              ; 
 
ConnOptList:  /* NULL */ 
              | 
              ConnNext ConnOptList 
              ; 
 
ConnNext:    ID                   
             ;                                       
 
HyperPart:  /* NULL */ 
            |  
            Hypercase HyperPart 
             ; 
 
Hypercase:   HYPERLINKON HypConnComp TOFILE Filename semimark 
             ; 
 
HypConnComp: ID  
              ; 
 
Filename:  ID   
 
               | QSTRING                   
              ;               
 
userviews:  /* NULL */ 
            | 
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            Viewdef userviews 
            ; 
 
Viewdef:  VIEW viewname leftmark vmainbody rightmark  
          ; 
 
viewname:  ID   
           ; 
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Subroutine Design: Data Structures and Algorithms for Geometric Modeler 
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Subroutine Design: Data Structures and Algorithms for Geometric Modeler 
 
 
 This section provides the pseudo-code description of the subroutines referred to by Chapter 3 
(Methodology).  The subroutines are used by Phase One and Phase Two of the section titled, 
"Description of Geometric Algorithms on Data Structures." 
 
/* Subroutines follow */ 
 
/*  The following subroutine uses the architecture descriptive arrays and variables   */ 
/*  and inserts them into the linked list representing the architecture list.                   */ 
/*  The first parameter is a pointer to the current node; the second parameter is the   */ 
/*  architecture name; the third is the arch. style; the fourth is the component array;   */ 
/*  the fifth is the connector array; the sixth is an array representing connectivity;      */ 
/*  the last two parameters are the number of components and number of connectors. */ 
 
Insert_Arch_Node (with parameters:  pointer to current arch-node, in_arch_ID,  
 style, comp_array, conn_array, from_to array, no_comps, no_conns) 
 
 If current node is NULL, the list is empty. 
  Create a new node and move parameters to corresponding storage  
  locations in the arch node.  A temporary array containing connectivity  
  information, "from_to" array, is read into Topology matrix in the arch node. 
 
  Using the style variable and Topology matrix, we calculate the relative  
  positions of components and connectors using subroutine: 
 
  Calculate_Arch_Positions (arch node pointer). 
 
  Since arch node is first node, set archlink, the pointer to next node, to NULL. 
 
  Return from subroutine. 
 
 If current node is NOT NULL, the list is not empty. 
  We traverse the arch linked list to the very end, checking as we go along that 
  the arch ID is not already contained in the linked list.  We insert the new  
  node at the end of the linked list: 
 
  Let curr_node point to first node. 
 
  While curr_node.archlink NOT NULL 
   Compare curr_node.arch_ID to in_arch_ID.   
   If they are the same, generate ERROR and exit.  Otherwise, proceed. 
   Get the next node in linked list: 
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   Let curr_node = curr_node.archlink. 
  End While curr_node.archlink is NOT NULL  
 
  At this point, we have reached the end of the linked list without duplicates. 
  We also assume that curr_node.archlink is NULL. 
 
  Create a new node, new_archnode. 
  Move the subroutine parameters to the corresponding locations in the new  
  node.  I.e., in_arch_ID is moved to the new node's architecture name,  
  component and connector arrays are moved to new node's arrays, from_to  
  array is moved to new node's Topology matrix, and so on. 
 
  Using the style variable and Topology matrix, we calculate the relative  
  positions of components and connectors using subroutine: 
 
  Calculate_Arch_Positions (arch node pointer). 
 
  Let curr_node.archlink = new_archnode.  We add new node to the linked list. 
 
  Return from subroutine. 
 
End Insert_Arch_Node. 
 
 
/*  The following subroutine uses the connector, component and Topology matrices        */ 
/*  of the arch-node to calculate the relative positions of each component and connection. */ 
/*  The arrays of the arch-node representing the connector and component positions are    */ 
/*  updated with the calculated positions.  We assume a Call-and-Return architectural       */ 
/*  style (a tree hierarchy with root and no cycles).   */ 
 
/*  Additional Note:  We traverse the tree using a depth-first traversal; a queue is used     */ 
/*  to store the index of the component nodes as we traverse the tree.                                 */ 
/*  The row number of the Topology matrix (from 0 to number-of-components - 1) represents  */ 
/*  the index of the current root; the column numbers represent the indices of the children  */ 
/*  for the row index, ONLY when Topology[row][column] does not contain (-1).            */ 
 
/*  The value contained in Topology[row][column], when not (-1), represents the            */ 
/*  index of the connector attaching the source component (row index) to the destination */ 
/*  component (col index).  */ 
 
/*  The effect of the depth-first traversal using the queue is to access the rows in the      */ 
/*  order based on the queue, and to access the columns in order from 0 to max_cols.   */ 
 
Calculate_Arch_Position (pointer to arch_node) 
 
 If the arch_node is NULL, return (-1).  Otherwise, proceed. 
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 /* Note:  curr_root is index of current root.   
 Set curr_root to 0, the index of the root node. 
 
 Initialize position arrays:  Arch_CompPosition, Arch_ConnPosition 
 Initialize queue. 
 
 Insert very first root (curr_root = 0) into queue. 
 
 While queue is NOT EMPTY: 
  Remove item from queue. 
  Let curr_root = item removed from queue. 
 
  /* Count the number of children of curr_root using the columns  */ 
  /* of Topology matrix.  */ 
 
  Set number_of_children to 0. 
  For column = 0 to (Number_of_Components - 1) 
   If Topology[curr_root][column] NOT (-1) 
    Add 1 to number_of_children 
    /* We determine level of child node */ 
    If Arch_CompPosition[column][3] contains a (-1),  
     Arch_CompPosition[column][3] =  
     Arch_CompPosition[curr_root][3] + 1      
  End For column = 0 to (Number_of_Components - 1) 
   
  /* We use the number_of_children count to determine delta_theta,                  */ 
  /*  the number of degrees rotation around y-axis in a right-handed coordinate  */ 
  /*  system.  For example, if there are three children, delta_theta = 2*PI /3.       */ 
 
  /* First get the existing positions (x,y,z) from arch-node */ 
 
  root_x = Arch_CompPosition[curr_root][0] 
  root_y = Arch_CompPosition[curr_root][1] 
  root_z = Arch_CompPosition[curr_root][2] 
 
  If  number_of_children >= 1 
   delta_theta = (2.0 * PI)  / (number_of_children) 
  Otherwise 
   delta_theta = 0.0. 
 
  As we record the accumulated rotation of each child along y-axis, we use  
  delta_sum, where delta_sum = delta_theta * (current_child - 1). 
 
  /* Initialize current_child counter */ 
  current_child = 0 
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  For i = 0 to (Number_of_Components - 1) 
   If Topology[curr_root][i] NOT = (-1) 
    Add 1 to current_child 
    delta_sum = delta_theta * (current_child - 1) 
    /* Get the current level */ 
    Level = Arch_CompPosition[curr_root][3] 
    Set the Connector_Height and Sphere_Radius based on Level. 
    The higher the level, the smaller the Connector_Height and  
    smaller the Sphere_Radius. 
 
    /* Displace component along y based on Connector_Height */ 
    orig_x = 0.0 
    orig_y = 0.0 - Connector_Height 
    orig_z = 0.0 
 
    /* Now rotate new center around z-axis by 60 degrees (-PI/3.0)  */ 
    child_x = (-orig_y) * sin(-PI/3.0) 
    child_y = orig_y * cos(-PI/3.0) 
    child_z = orig_z 
 
    /* Now rotate around y-axis by delta_sum */ 
    old_child_x = child_x 
    old_child_y = child_y 
    old_child_z = child_z 
 
    child_x = old_child_z * sin(delta_sum) + old_child_x * cos(delta_sum) 
    child_y = old_child_y 
    child_z = old_child_z * cos(delta_sum) - old_child_x * sin(delta_sum) 
 
    /* Translate back to position under original root */ 
    child_x = child_x + root_x 
    child_y = child_y + root_y 
    child_z = child_z + root_z 
 
    /* Store the calculated positions to arch-node position array */ 
    Arch_CompPosition[i][0] = child_x 
    Arch_CompPosition[i][1] = child_y 
    Arch_CompPosition[i][2] = child_z 
 
    /* Now we establish connection positions given root position and */ 
    /* child position.  */ 
 
    /* First translate back to the origin */ 
    conn_orig_x = 0.0 
    conn_orig_y = (0.0 - Connector_Height) / 2.0 
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    conn_orig_z = 0.0 
 
    /* First rotate the leg (cylinder) center-point around z-axis */ 
    conn_x = 0.0 * cos(-PI/3.0) - conn_orig_y * sin(-PI/3.0) 
    conn_y = 0.0 * sin(-PI/3.0) + conn_orig_y * cos(-PI/3.0) 
    conn_z = conn_orig_z 
 
    /* We are ready to rotate leg center-point around y-axis by delta_sum */ 
    /*  We have calculated the delta_sum for this rotation;                         */ 
    /*  However, the actual rotation of the cylinder will be performed       */ 
    /*  by the VRML Generator from this current position.                        */ 
    old_conn_x = conn_x 
    old_conn_y = conn_y 
    old_conn_z = conn_z 
 
    /* First translate back to location under current root node */ 
    conn_x = conn_x + root_x 
    conn_y = conn_y + root_y 
    conn_z = conn_z + root_z 
         
    /* Get the connector name */ 
    conn_id = Topology[curr_root][i] 
 
    /* Store the positions, along with delta_sum, to connector position array */ 
    Arch_ConnPosition[conn_id][0] = conn_x 
    Arch_ConnPosition[conn_id][1] = conn_y 
    Arch_ConnPosition[conn_id][2] = conn_z 
    Arch_ConnPosition[conn_id][3] = delta_sum 
 
    /* Insert the child, i, into queue */ 
    Insert_queue_item(i)         
            
  End For i = 0 to (Number_of_Components - 1)       
 
 End While queue is NOT EMPTY. 
   
 Return from subroutine. 
 
End Calculate_Arch_Position. 

  



160 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix E 
 

Example of VTADL Source File:  "Example.txt" 
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Appendix E 
 
 

Example of a VTADL Source file:  "Example.txt" 
 
 

Architecture ExampleProgram 
Style Program 
   { 
        ComponentList 
           { 
                   Component Alpha 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom AlphaSocket; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component Beta 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top BetaSocket; 
                          { InterfaceRole: Producer;  }                           
                           
                    Component Gamma 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top GammaSocket; 
                          { InterfaceRole: Producer; } 
 
                    Component Delta 
                     ComponentType Cprogram; 
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                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top DeltaSocket; 
                          { InterfaceRole: Producer; }                                                   
              } 
 
        ConnectionList 
              {  
                  Connector Call1 
                     ConnectType Controlflow Unidirect; 
                     Connect(AlphaSocket, BetaSocket); 
                  Connector Call2 
                     ConnectType Controlflow Unidirect; 
                     Connect(AlphaSocket, GammaSocket); 
                  Connector Call3 
                     ConnectType Controlflow Unidirect; 
                     Connect(AlphaSocket, DeltaSocket); 
              }   
  } 
 
Architecture ExampleLayer 
Style Layer 
 { 
    ComponentList 
      { 
        Component LevelOne 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: L1; 
           Process: ; 
          InterfaceList: 
            Interface Bottom Level1Socket; 
               { InterfaceRole: Producer; } 
 
         Component LevelTwo 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: L2; 
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          Process: ; 
          InterfaceList: 
            Interface Top Level2Socket;  
               { InterfaceRole: Consumer; } 
 
         Component LevelThree 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: L3; 
          Process: ; 
          InterfaceList: 
            Interface Top Level3Socket;  
               { InterfaceRole: Consumer; } 
 
          Component LevelFour 
           ComponentType Cprogram; 
           Properties: 
            CompRole: CompConsumer; 
            ChildOf: ; 
            Layer: L4; 
            Process: ; 
            InterfaceList: 
              Interface Top Level4Socket;  
                 { InterfaceRole: Consumer; } 
      } 
      ConnectionList 
       {  
         Connector Service1 
           ConnectType Dataflow Unidirect; 
           Connect(Level1Socket,Level2Socket); 
 
         Connector Service2 
           ConnectType Dataflow Unidirect; 
           Connect(Level2Socket,Level3Socket); 
 
         Connector Service3 
           ConnectType Dataflow Unidirect; 
           Connect(Level3Socket,Level4Socket); 
       } 
 } 
  
     ViewList 
         { 
           ViewMain  { { UsingArch ExampleProgram; 
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                                 { Components All; 
                                        Connections All;  
   HyperLinkOn Alpha  

                 ToFile "Example.txt"; } } 
 { UsingArch ExampleLayer; 
 {  Components All; 
                                             Connections All; 
         HyperLinkOn LevelFour  

              ToFile SecondView;  }  } 
 }      

                       
 
           View SecondView {  

{ UsingArch ExampleLayer; 
                               { Components LevelOne LevelTwo; 
                                          Connections All;  
          HyperLinkOn LevelOne ToFile Main; 
                  HyperLinkOn LevelTwo 
            ToFile "Example.txt"; } } 
  { UsingArch ExampleLayer; 
         { Components LevelOne LevelThree LevelFour; 
            Connections All; } } 
   { UsingArch ExampleLayer; 
        { Components All; 
          Connections All; } }         
                             }  
    } 
$ 
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Appendix F 
 
 

Complete Yacc Specification for VTADL Parser Shell 
 

(includes routines for Geometric Model and VRML Generator) 
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Complete Yacc Specification for VTADL Parser Shell 
 

(includes routines for Geometric Modeler and VRML Generator) 
 
 
%{ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 
#include <math.h> 
 
#define MAX_QUEUE_POSITION 120 
 
int comp_count = 0; 
int conn_count = 0; 
int arch_count = 0; 
int inter_count = 0; 
int curr_row_count = 0; 
int curr_view_index = 0;  /* Index of view names, for view_names_array */ 
int curr_arch_index = 0; 
char arch_name[25] = " "; 
char comp_name[25] = " "; 
char conn_name[25] = " "; 
char interface_name[25] = " "; 
int interface_comp[25];   /* Component for Interface */ 
char first_conn_name[25] = " "; 
char comp_name_array[25][25];  
char test_string[25];  /* Temp string for testing */ 
char conn_name_array[25][25];  
char inter_name_array[25][25]; 
char view_name[25] = " "; 
char view_names_array[25][25]; 
char tmp_arch_ID[25][25]; 
int tmp_all_comps[25]; 
int tmp_all_conns[25]; 
int tmp_view_comps[25][25]; 
int tmp_view_conns[25][25]; 
char tmp_hyper_comps[625][25]; 
char tmp_hyper_conns[625][25]; 
char stop_var[10]; 
char use_arch_name[25] = " ";  /* Use arch name for usearch nodes */ 
 
char style_char[2]; 
int style_var = 1; 
int test_result;    /* General variable used for test results */ 
int test_comp;      /* Check for component index */ 
int test_conn;      /* Check for conn index */ 
int i; /* Subscript for array */ 
int j; /* Subscript for array */ 
float Conn_Height = 5.0; 
float Sphere_Radius = 0.5; 
float Cylinder_Radius = 0.1; 
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float PI = 3.14159; 
 
/* from_to[0] is connection 
/* from_to[1] is index of source component 
/* from_to[2] is index of destination component */ 
int from_to[25][3]; 
 
/* ===============================================    */ 
/* USED FOR TOPOLOGY MATRIX TRAVERSAL:                */ 
/*                                                    */ 
int curr_root;   /* Current root of node traversal */ 
int node_count;  /* Count of nonempty nodes in row of Topology matrix */ 
int no_components; /* Number of components */ 
int child_count; /* Count of child nodes for curr root row of Top matrix */ 
int queue_empty_flag;  /* Queue empty? 1 = true, 0=false */ 
int conn_node;  /* connection node index */ 
float root_x;   /* xyz coordinate positions of root node */ 
float root_y; 
float root_z; 
float child_x; 
float child_y; 
float child_z; 
float orig_x; 
float orig_y; 
float orig_z; 
float conn_orig_x; 
float conn_orig_y; 
float conn_orig_z; 
float old_child_x; 
float old_child_y; 
float old_child_z; 
float old_conn_x; 
float old_conn_y; 
float old_conn_z; 
float temp_child_x; 
float temp_child_y; 
float temp_child_z; 
float conn_x; 
float conn_y; 
float conn_z; 
float delta_sum = 0.0;     /* Angular sum for rotation */ 
float delta_theta = 0.0;   /* Angle (radians) for rotation */ 
 
double rads60degree; 
float conn_level; 
int conn_id; 
 
/*==================================================== */ 
 
/* Arch-list Node */ 
typedef struct arch_node 
 {  
  int Style;    /* Architecture Style, 1-4 */ 
  char Arch_ID[25];   /* Architecture Name */ 
  char Arch_CompID[25][25];  /* Max 25 comp names, 25 chars each */ 
  double Arch_CompPosition[25][4]; /* Comp. position, x,y,z,level; */ 
  char Arch_ConnID[25][25];  /* Max 25 conn. names, 25 chars each */ 
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  double Arch_ConnPosition[25][4];  /* Conn. Position  */ 
  int Topology[25][25];        /* Indices by comp row, col */ 
           /* Determines connector at (row,col) */ 
  int No_Comps;         /* No. of comps in architecture */ 
  int No_Conns;    /* No. of connects in architecture */ 
  struct arch_node *archlink;  /* link to next arch_node in list */ 
 } ANODE; 
  
/* View-list Node */ 
/* Now includes multiple arch. array instead of usearch. 
/* Also includes View_Comps, View_Conns, and Hyperlinks    */ 
  typedef struct viewnode 
  { 
   char View_ID[25];                 /* Name of View */ 
   int no_archs;                     /* No of Archs in View */ 
   char arch_ID[25][25];             /* 25 Possible Archs Max */ 
   int all_comps[25];                /* All components flag for each arch */ 
   int all_conns[25];                /* All connectors flag for each arch */ 
   int view_comps[25][25];           /* View tags for each arch and comp */ 
   int view_conns[25][25];          /* View tags for each arch and connector */ 
   char Hyperlinks_Comps[625][25];  /* Each arch uses 25 rows, cols */ 
   char Hyperlinks_Conns[625][25];  /* Each arch uses 25 rows, cols across */ 
                          /* Index of arch is calculated (n-1)*25 +  
      /* comp or component index */    
   struct viewnode *viewlink;       /* Link to next viewnode */   
  } VNODE; 
 
 
/* Define node for linked lists */ 
typedef struct node  
 { 
   char data[25]; 
   struct node *link; 
 } LNODE; 
 
/* Queue variables */ 
int queue[MAX_QUEUE_POSITION]; 
int front_of_queue = MAX_QUEUE_POSITION - 1; 
int rear_of_queue = MAX_QUEUE_POSITION - 1; 
int queue_empty_flag; 
 
 ANODE *r1 = NULL;   /* Arch node list empty */ 
 VNODE *r2 = NULL;   /* View Node list empty */ 
 ANODE *r3 = NULL;   /* Temp ref node for arch */ 
 
/* Subroutine declarations */ 
 
%} 
 
%union {  
     char *string;    /* string buffer for various names */ 
} 
 
%token <string> ID QSTRING 
%token ARCHITECTURE LEFTBRACKET RIGHTBRACKET COMPONENT CONNECTOR 
%token SEMICOLON ARCHSTYLE PROGRAM OBJECT PIPELINE LAYER COMPLIST 
%token CONNLIST COMPTYPE CONNTYPE CMPPE CMPPROGRAM CMPCONCEPT CMPOBJECT  
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%token CMPDATA DATAFLOW CONTROLFLOW ASSOCIATES UNIDIRECT BIDIRECT 
%token INTERLIST INTERFACE INTERFACEROLE CONNECT LEFTPARENS RIGHTPARENS COMMA 
%token PROPERTIES COMPROLE CHILDOF NA COLON PROCESS SIGMA THRESHOLD  
%token INPUT OUTPUT ROOT PRODUCER CONSUMER LEFT RIGHT FRONT BACK TOP BOTTOM 
%token CMPPRODUCER CMPCONSUMER LINPUT LOUTPUT VIEWLIST VIEWMAIN USEARCH 
%token VIEW COMPONENTS CONNECTIONS HYPERLINKON ALL TOFILE 
 
%type <string> archname compname connname interface1 interface2 intername 
layer_id child_id useArchID  
%type <string> CompNext ConnNext HypConnComp Filename viewname 
 
 
%% 
 
vtadl:    archmain viewpart 
          { printf("\n Generating view files... \n"); 
            generate_view_files(r1,r2);  
            printf("\n Tasks are complete! \n"); } 
          ;  
 
archmain:  /* empty */   
    
             { show_arch_nodes(r1);      /* Show archs diagnostics */ 
               strcpy(view_name,"Main"); /* Store Main view */ 
               arch_count = 0;           /* Main arch count is 0 */ 
               curr_view_index = 0;      /* Init view count */ 
               for(i=0; i<=24; i++) 
               { 
                strcpy(tmp_arch_ID[i]," "); /* Init view */ 
                tmp_all_comps[i] = 0;       /* All comps */ 
                tmp_all_conns[i] = 0;       /* All conns */                
                for(j=0; j<=24; j++) 
                { 
                 tmp_view_comps[i][j] = 0; /* View comps */ 
                 tmp_view_conns[i][j] = 0; /* View conns */  
                 view_names_array[i][j] = ' '; 
                }                 
               } 
               for(i=0; i<=624; i++)   /* Init hyperlink arrays */ 
                { 
                 strcpy(tmp_hyper_comps[i]," "); 
                 strcpy(tmp_hyper_conns[i]," "); 
                } 
             }                                            
 
           | archmain archdef 
           ;  
            
archdef:  architecture archname architect_style leftmark  

    partslist connslist rightmark   
           { insert_arch_node(&r1, arch_name, style_var, comp_name_array, 
              conn_name_array, from_to, comp_count, conn_count); } 
          ; 
 
architecture:  ARCHITECTURE  
               ;  
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leftmark:  LEFTBRACKET 
           ; 
 
rightmark:  RIGHTBRACKET 
            ; 
 
architect_style:  ARCHSTYLE stylechoice 
                  ; 
 
stylechoice:  PROGRAM  { style_var = 1; }                          
              |  
              OBJECT  { style_var = 4; }                         
              |  
              PIPELINE { style_var = 3; }                                                  
              | 
              LAYER    { style_var = 2; }                             
              ; 
               
archname:  ID  { comp_count = 0; 
                 conn_count = 0; 
                 inter_count = 0; 
                  
                  
                 for(i=0; i<=24; i++) 
                  { 
                   from_to[i][0] = 0; 
                   from_to[i][1] = 0; 
                   from_to[i][2] = 0; 
                   interface_comp[i] = 0; 
                   for(j=0; j<=24; j++) 
                    { 
                    comp_name_array[i][j] = ' '; 
                    conn_name_array[i][j] = ' '; 
                    inter_name_array[i][j] = ' ';                     
                    } 
                  } 
                strcpy(arch_name,$1);                  
                } 
           ; 
 
 
partslist:  COMPLIST leftmark compbreakdown rightmark      
                { printf("\n Comp List as Follows: \n"); 
                  for(i=0; i<= comp_count-1; i++) 
                    { 
                     printf("\n Component : %s \n",comp_name_array[i]); 
                    }        
                  printf("\n Interface List as Follows: \n"); 
                  for(i=0; i<= inter_count-1; i++) 
                   { 
                     printf("\n Interface: %s ",inter_name_array[i]); 

   printf("   for Comp No: %6d Comp Name: %s \n", 
   interface_comp[i], 

                     comp_name_array[interface_comp[i]]); 
                    }                           
                } 
            ;  
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connslist:  CONNLIST leftmark connbreakdown rightmark  
               { printf("\n ==================================="); 
               printf("\n *** Connection List as Follows: ***");                
               for(i=0; i<= conn_count-1; i++) 
               { 
                printf("\n Conn No: %6d Conn Name: %s  From: %s To: %s \n", 
                       from_to[i][0], conn_name_array[i], 
                       comp_name_array[from_to[i][1]], 
                       comp_name_array[from_to[i][2]]);              
               } 
 
               } 
            ; 
 
compbreakdown:  /*  empty  */ 
                |  
                compbreakdown middlemark                      
                ;  
 
middlemark:  COMPONENT compname COMPTYPE comptype semimark  

 proplist intlist                                                              
             ; 
 
proplist:  PROPERTIES COLON propdetails 
           ; 
 
propdetails:  component_role child_of layer_no process_def 
 
component_role:  COMPROLE COLON comp_selection semimark 
 
comp_selection:  INPUT  
                 |  
                 OUTPUT 
                 | 
                 ROOT 
                 | 
                 CMPPRODUCER 
                 | 
                 CMPCONSUMER 
                 ; 
 
child_of:     CHILDOF COLON child_selection semimark 
              ; 
 
child_selection:  /* Empty */ 
                  |  
                  child_id 
                  ; 
 
layer_no:   LAYER COLON layer_selection semimark 
            ; 
 
layer_selection:  /* Empty */ 
                  | 
                  LINPUT 
                  |  
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                  LOUTPUT 
                  | 
                  layer_id 
                    ; 
 
layer_id:   ID  { $$ = $1; } 
             ; 
 
process_def:  PROCESS COLON process_selection semimark 
              ; 
 
process_selection:  /* Empty */ 
                    | 
                    SIGMA  
                    | 
                    THRESHOLD              
                    ; 
 
child_id:    ID    { $$ = $1; } 
             ; 
 
intlist:  INTERLIST COLON interbreakdown 
           ; 
 
interbreakdown:  /* empty */ 
                 | 
                 interbreakdown middleinter 
                 ; 
 
middleinter:     INTERFACE inter_direct intername semimark 
                 leftmark INTERFACEROLE COLON  

     inter_role_choice semimark rightmark                
                 ; 
 
inter_direct:  TOP 
               |  
               BOTTOM 
               |  
               LEFT 
               | 
               RIGHT 
               |  
               FRONT 
               | 
               BACK 
               ; 
 
inter_role_choice:  PRODUCER 
                    |  
                    CONSUMER 
                    ; 
 
connbreakdown:   /* empty */ 
                 |  
                 connbreakdown connmiddle 
                 ; 
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comptype: CMPPE               
          |  
          CMPPROGRAM       
       |  
          CMPCONCEPT     
          |  
          CMPOBJECT        
          | 
          CMPDATA         
     ;  
                      
connmiddle:  CONNECTOR connname CONNTYPE connecttype  

 connectdirect semimark connend                                                
             ; 
              
semimark:  SEMICOLON 
           ;  
 
compname:  ID  { strcpy(comp_name,$1);  
                 strcpy(comp_name_array[comp_count], comp_name); 
                 comp_count = comp_count + 1;                
                }                      
           ; 
 
connname:  ID  { strcpy(conn_name,$1); 
                 strcpy(conn_name_array[conn_count], conn_name);  
                 from_to[conn_count][0] = conn_count; 
                 conn_count = conn_count + 1; 
               } 
           ; 
 
connecttype:  DATAFLOW       
              |  
              CONTROLFLOW    
              |  
              ASSOCIATES    
              ; 
 
connectdirect:  UNIDIRECT     
                | 
                BIDIRECT      
                ; 
                        
connend:  CONNECT LEFTPARENS interface1 COMMA interface2 RIGHTPARENS 
                  semimark                  
          ; 
 
interface1:  ID {test_result =  

     find_interface_comp(inter_name_array, $1, interface_comp,  
                 inter_count); 
                 if(test_result >= 0) 
                  {                  
                     from_to[conn_count-1][1] = test_result; 
                  } 
                 else 
                  { 
                   printf("\n Error! Interface does not exist! \n"); 
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                   exit(0); 
                  } 
                 }   
             ; 
 
interface2:  ID { test_result =  

find_interface_comp(inter_name_array, $1, interface_comp, 
                  inter_count); 
 
                   if(test_result >= 0) 
                  {                  
                    from_to[conn_count-1][2] = test_result; 
                  } 
                 else 
                  { 
                   printf("\n Error! Interface does not exist! \n"); 
                   exit(0); 
                  } 
 
                 }   
             ; 
 
intername:  ID { strcpy(interface_name,$1);                  
                 strcpy(inter_name_array[inter_count], interface_name);  
                 interface_comp[inter_count] = comp_count - 1; 
                 inter_count = inter_count + 1; 
               } 
            ; 
 
viewpart:  VIEWLIST leftmark mainview userviews rightmark 
              { printf(" \n View List successful... \n ");  
                printf(" \n curr_view_index:  
                %d indexed views \n",curr_view_index); 
                printf(" \n List as follows: "); 
                for(i=0; i<=curr_view_index-1; i++) 
                   { 
                    printf("\n %s ",view_names_array[i]); 
                   } 
              } 
           ; 
 
mainview:  VIEWMAIN leftmark vmainbody rightmark                          
              { /* Check if view_name is duplicate */ 
                test_result = search_view_list(r2, view_name); 
 
                if(test_result == 1) 
                  { 
                   printf("\n *** Error: View already exists! \n"); 
                   exit(0); 
                  } 
 
                strcpy(view_names_array[curr_view_index],view_name); 
 
                curr_view_index = curr_view_index + 1; 
 
                /* Insert Main Node! */ 
                insert_view_node(&r2,view_name,tmp_arch_ID,  
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                               tmp_all_comps,tmp_all_conns, 
                               tmp_view_comps,tmp_view_conns, 
                               tmp_hyper_comps, tmp_hyper_conns, 
                               arch_count); 
 
              printf("\n *** Main Node inserted *** \n"); 
              for(i=0; i<=arch_count-1; i++) 
               { 
                printf("\ntmp_arch_ID[%d] %s \n",i,tmp_arch_ID[i]); 
               } 
              /* above: insert view with parameters */                         
 
             /* reinitialize arrays, increment view counters */              
 
               strcpy(view_name," "); /* Clear view name */ 
               arch_count = 0; /* Init arch count */ 
                
               for(i=0; i<=24; i++) 
               { 
                strcpy(tmp_arch_ID[i]," "); /* Init arch array */ 
                tmp_all_comps[i] = 0;       /* All comps */ 
                tmp_all_conns[i] = 0;       /* All conns */                
                for(j=0; j<=24; j++) 
                { 
                 tmp_view_comps[i][j] = 0; /* View comps */ 
                 tmp_view_conns[i][j] = 0; /* View conns */                  
                }                 
               } 
               for(i=0; i<=624; i++)   /* Init hyperlink arrays */ 
                { 
                 strcpy(tmp_hyper_comps[i]," "); 
                 strcpy(tmp_hyper_conns[i]," "); 
                }            
 
               } 
              ; 
 
vmainbody:  /* NULL */ 
           | 
           useArchSection vmainbody 
           ; 
 
useArchSection: leftmark usePart useProp rightmark 
                 { test_result = calculate_arch_position(&r3);                    
                   if(test_result == -1) 
                   { 
                    printf("\n calc failed! \n");                    
                   } 
                 } 
           ; 
 
usePart:  USEARCH useArchID semimark 
          ; 
 
useProp: leftmark CompConn HyperPart rightmark 
          ; 
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useArchID:  ID  {  strcpy(use_arch_name, $1); 
                   r3 = r1;  /* r3 is temp arch node for ref */ 
                    
                   /* search r3 for arch ID; use r3 as ref */ 
                   if(r3 == NULL) 
                    { 
                     printf("\nArch list is empty! Exiting... \n"); 
                     exit(0);  
                    }   
                   if(r3 != NULL) 
                   { 
                     item_found = 0; 
                     do 
                      { 
                        strcpy(teststring,r3->Arch_ID); 
                        if(strncmp(teststring,use_arch_name, 
                           strlen(use_arch_name)) == 0) 
                        { 
                         item_found = 1;                          
      } 
      else 
      { 
       r3 = r3->archlink; 
      } 
     } while( (r3 != NULL) && (item_found != 1) ); 
     
    }  /* end if r3 not NULL */ 
 
       if(r3 == NULL) 
    { 
     printf("\n ERROR! *** Arch ID not found!  EXITING... \n"); 
     exit(0); 
    } 
            
               
             /* Assume valid arch node...proceed!  */ 
              arch_count = arch_count + 1; 
              curr_arch_index = arch_count - 1; 
              strcpy(tmp_arch_ID[curr_arch_index],use_arch_name); 
                                                         
             } 
            ; 
 
CompConn:  CompSelects ConnSelects 
            ; 
 
CompSelects:  COMPONENTS CompOptions semimark 
             ; 
 
CompOptions:  ALL   { tmp_all_comps[curr_arch_index] = 1; } 
              |  
              CompOptList 
              ; 
 
CompOptList:  /* NULL */ 
              |  
              CompNext CompOptList 
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              ; 
 
CompNext:     ID  { strcpy(comp_name,$1); 
                    /* Check if comp in architecture */ 
                    test_result =  
                     find_comp_index(comp_name,r3->Arch_CompID,  
                                               r3->No_Comps); 
                    if(test_result == -1) 
                    { 
                      printf("\n ERROR! Invalid component in architecture!\n"); 
                      exit(0); 
                    } 
 
                    tmp_view_comps[curr_arch_index][test_result] = 1;                      
                  } 
              ; 
 
 
ConnSelects: CONNECTIONS ConnOptions semimark 
             ; 
 
ConnOptions:  ALL { tmp_all_conns[curr_arch_index] = 1; } 
              |  
              ConnOptList 
              ; 
 
ConnOptList:  /* NULL */ 
              | 
              ConnNext ConnOptList 
              ; 
 
ConnNext:    ID  { strcpy(conn_name,$1); 
                   test_result = find_conn_index(conn_name,r3->Arch_ConnID, 
                                 r3->No_Conns); 
                   if(test_result == -1) 
                    { 
                     printf("\n ERROR! Invalid connector in architecture!\n"); 
                     exit(0); 
                    } 
                   tmp_view_conns[curr_arch_index][test_result] = 1; 
                } 
             ;                                       
 
HyperPart:  /* NULL */ 
            |  
            Hypercase HyperPart 
             ; 
 
Hypercase:  HYPERLINKON HypConnComp TOFILE Filename semimark 
            ; 
 
HypConnComp:  ID  {   strcpy(test_string, $1); 
                      test_comp = find_comp_index(test_string, r3->Arch_CompID,  
                                  r3->No_Comps); 
                      test_conn = find_conn_index(test_string, r3->Arch_ConnID, 
                                  r3->No_Conns); 
                      if( (test_comp == -1) && (test_conn == -1) ) 
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                         { 
                           printf("\n ERROR! Invalid comp or  

conn in hyperlink!\n"); 
                           exit(0); 
                         } 
                      if(test_comp != -1)  /* Hyperlink on Component */ 
                       { 
                         hyperlink_index = 25*(curr_arch_index) + test_comp; 
                       } 
                      if(test_conn != -1)  /* Hyperlink on Connector */ 
                       { 
                         hyperlink_index = 25*(curr_arch_index) + test_conn;   
                       } 
       
                    }  
             ; 
 
Filename:    ID  {  strcpy(filename,$1); 
                    strcat(filename,".wrl"); 
                     if(test_comp != -1) 
                     {                                             
                       strcpy(tmp_hyper_comps[hyperlink_index],filename); 
                     } 
                    if(test_conn != -1) 
                     {                       
                       strcpy(tmp_hyper_conns[hyperlink_index],filename); 
                     } 
                  } 
              | QSTRING 
                  { strcpy(filename,$1); 
                    if(test_comp != -1) 
                     {                                             
                       strcpy(tmp_hyper_comps[hyperlink_index],filename); 
                     } 
                    if(test_conn != -1) 
                     {                       
                       strcpy(tmp_hyper_conns[hyperlink_index],filename); 
                     } 
                   } 
 
             ;               
 
userviews:  /* NULL */ 
            | 
            Viewdef userviews 
            ; 
 
Viewdef:  VIEW viewname leftmark vmainbody rightmark 
           {  insert_view_node(&r2,view_name,tmp_arch_ID,  
                               tmp_all_comps,tmp_all_conns, 
                               tmp_view_comps,tmp_view_conns, 
                               tmp_hyper_comps, tmp_hyper_conns, 
                               arch_count); 
              /* above: insert view with parameters */ 
              /* Get ready for next view node */ 
              /* Fix: curr_view_index already increment by viewname */ 
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             /* reinitialize arrays, increment view counters */              
 
               strcpy(view_name," "); /* Clear view name */ 
               arch_count = 0; /* Init arch count */ 
                
               for(i=0; i<=24; i++) 
               { 
                strcpy(tmp_arch_ID[i]," "); /* Init arch array */ 
                tmp_all_comps[i] = 0;       /* All comps */ 
                tmp_all_conns[i] = 0;       /* All conns */                
                for(j=0; j<=24; j++) 
                { 
                 tmp_view_comps[i][j] = 0; /* View comps */ 
                 tmp_view_conns[i][j] = 0; /* View conns */                  
                }                 
               } 
               for(i=0; i<=624; i++)   /* Init hyperlink arrays */ 
                { 
                 strcpy(tmp_hyper_comps[i]," "); 
                 strcpy(tmp_hyper_conns[i]," "); 
                } 
             }                                                       
          ; 
 
viewname:  ID  { strcpy(view_name,$1); 
 
                 /* Check for duplicate view */ 
                 test_result = search_view_list(r2, view_name); 
 
                 if(test_result == 1) 
                   { 
                    printf("\n *** Error: View already exists! \n"); 
                    exit(0); 
                   } 
                 strcpy(view_names_array[curr_view_index],view_name); 
                 curr_view_index = curr_view_index + 1;                
               } 
           ; 
 
%% 
 
    LNODE *n1 = NULL; 
 
    /*  ANODE *r1 = NULL;  Arch Node list empty */ 
   /*  VNODE  *r2 = NULL;  View Node list empty */ 
   /*  ANODE  *r3 = NULL;  Temp ref node for arch */ 
 
    int i,j; 
    int from_index; 
    int item_found;  /* 1 = found, 0 = not found */ 
    int to_index; 
    int test_result; 
    int hyperlink_index; 
    char filename[25];   /* Hyperlink to filename */ 
    char teststring[25]; /* String to compare */ 
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main() 
  {   
     do  
       { 
     yyparse(); 
       } 
        while(!EOF);          
  } 
 
show_list(LNODE *ptr) 
 { 
  int counter = 0; 
  printf("\n"); 
 
  while(ptr != NULL) 
  { 
   printf("Next node: %s",ptr->data); 
   ptr = ptr->link; 
   counter = counter + 1; 
   printf("\n"); 
  } 
  printf("\n"); 
  printf("Counter is %d",counter); 
 
 } 
 
 count_layers(LNODE *ptr) 
 { 
  int layer_count = 0; 
 
  while(ptr != NULL) 
  { 
   ptr = ptr->link; 
   layer_count = layer_count + 1; 
  } 
 
  return(layer_count); 
 } 
 
 add_layer_component(LNODE **ptr, char new_layer[25]) 
 { 
    LNODE *p1, *p2; 
 char teststring[25]; 
 
 p1 = *ptr; 
 
 if(p1 == NULL)   /* if list is empty */ 
 { 
  p1 = malloc(sizeof(LNODE)); 
  if(p1 != NULL)  
     { 
      strcpy(p1->data,new_layer); 
      p1->link = NULL; 
      *ptr = p1; 
     } 
 } 
 else    /* if list is not empty */ 
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 { 
        while(p1->link != NULL) 
  { 
      strcpy(teststring,p1->data); 
      if(strncmp(teststring,new_layer,strlen(new_layer)) != 0) 
   { 
    p1 = p1->link; 
   } 
      else 
   { 
      printf("\n Error -- duplicate layer name \n");                
      exit(0); 
   } 
  } 
  p2 = malloc(sizeof(LNODE)); 
  if(p2 != NULL) 
  { 
   strcpy(p2->data,new_layer); 
   p2->link = NULL; 
   p1->link = p2;    
  } 
 } 
} 
 
/* Returns index of component corresponding to interface name */ 
find_interface_comp(char in_inter_array[25][25], char in_test_intername[25], 
                    int in_inter_comp[25], int in_no_of_inters) 
 { 
   int i; 
   int result_index; 
 
   result_index = -1; 
 
   for(i=0; i<=(in_no_of_inters-1); i++) 
   { 
       if(strncmp(in_inter_array[i],in_test_intername, 
                  strlen(in_test_intername)) == 0) 
           result_index = i; 
   }  
 
       if(result_index >= 0) 
         return( in_inter_comp[result_index] ); /* Give index of component of 
interface */ 
 
       if(result_index < 0)   /* Case where interface not found */ 
         return(-1);        
 } 
 
/* Initialize queue */ 
/* Example of correct usage:   
/*  init_queue(test_queue);  */ 
  
 init_queue() 
 { 
  int i; 
 
  for(i=0; i<= (MAX_QUEUE_POSITION - 1); i++) 
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  { 
     queue[i] = -1; 
  } 
 } 
  
 /* returns 0 if queue is not empty, 1 if queue is empty */ 
 /* Note that an array content of -1 means value is NULL */ 
 is_queue_empty() 
 { 
   if( (queue[front_of_queue] == -1) && (front_of_queue == rear_of_queue) ) 
    return(1); 
   else 
       return(0);    
 } 
 
void show_queue() 
 { 
  int i; 
 
  printf("\n "); 
  for(i=0; i<= (MAX_QUEUE_POSITION - 1); i++) 
  { 
   printf("  %4d  ",queue[i]); 
  } 
  printf("\n "); 
 } 
 
 insert_queue_item(int insert_item) 
 { 
   int switchvar; 
 
  /*  Do case 
 /*   
 /*  Check case where in_rear == in_front */ 
 /*  WHERE CASE IS TRUE, in_rear == in_front: 
 /*    Conceptually, two things are possible in this case: 
 /*        Either the queue is empty or we are at the very first entry! 
 /* 
 /*    If in_rear == in_front AND queue[in_rear] is empty (-1) 
 /*     then set both current in_rear, in_front to MAX_QUEUE_POSITION (199)   
 /*        Place item at current location of in_rear 
 /*           queue[in_rear] = insert_item 

/*     else 
/*        if in_rear == in_front and queue[in_rear] is NOT empty 
/*         then check if in_rear = 0  
/*               if in_rear is 0, generate ERROR message ("OUT OF MEMORY") 
/*               if in_rear is NOT 0,  
/*                 then in_rear = in_rear - 1   
/*                 Place item at new location of in_rear 
/*                   queue[in_rear] = insert_item 
/* 
/*  Check case where in_rear != in_front  
/*  WHERE CASE IS TRUE, in_rear NOT EQUAL in_front:          
/*      If in_rear != in_front  
/*       { 
/*          If in_rear > 0  
/*             in_rear = in_rear - 1 
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/*             Place item at new in_rear value 
/*             queue[in_rear] = insert_item 
/*          else 
/*             if in_rear = 0 
/*                Place item at 0 position with warning 
/*                queue[in_rear] = insert_item 
/*                Print "Warning!  Memory out!" 
/*       } 
/*                                                */ 

 
   
  if(  (rear_of_queue == front_of_queue) && (queue[rear_of_queue] == -1) ) 
   switchvar = 1;  /* Flags equal and empty contents */ 
 
  if( (rear_of_queue == front_of_queue) && (queue[rear_of_queue] != -1)) 
   switchvar = 2;  /* Flags equal but contents not empty */ 
 
  if(rear_of_queue != front_of_queue) 
   switchvar = 3;  /* Flags not equal */ 
 
  switch(switchvar) 
  { 
  case 1: 
   { 
    printf("\n Case 1... \n"); 
    rear_of_queue = MAX_QUEUE_POSITION - 1; 
    front_of_queue = MAX_QUEUE_POSITION - 1; 
          queue[rear_of_queue] = insert_item;    
    break; 
   } 
     case 2: 
   { 
    printf("\n Case 2... \n"); 
    if(rear_of_queue == 0)  {  
     printf("\n OUT OF MEMORY! \n"); 
        return(-1); 
     break;  } 
    else  { 
     rear_of_queue = rear_of_queue - 1; 
     queue[rear_of_queue] = insert_item; 
     } 
      break; 
   } 
  case 3: 
   { 
             printf("\n Case 3... \n"); 
    if(rear_of_queue > 0) { 
     rear_of_queue = rear_of_queue - 1; 
     queue[rear_of_queue] = insert_item;  } 
    else 
    { queue[rear_of_queue] = insert_item; 
      printf("\n Out of Memory! "); 
      return(-1); 
    } 
      break; 
         } 
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      return(1); 
 
  }  /* End of Switch */ 
 
   
 }  /* End of insert_queue_item */ 
 
 
 remove_queue_item() 
 { 
  int switchvar; 
  int queue_item; 
 
 /* Example of Use:   
 /*      curr_item = remove_queue_item(queue, current_front, current_rear); 
 /*         where queue is the array representing queue,  
 /*               current_front is front of queue,  
 /*               current_rear is rear of queue. 
 /* 
 
 /* DO CASE  switch(type)    
 /* 
 /*    Case where in_front == in_rear 
 /*         When CASE is TRUE, in_front == in_rear 
 /*         If queue[in_front] = -1 
 /*             return (-1), a NULL 
 /*         Else 
 /*            If queue[in_front] != -1 
 /*              queue_item = queue[in_front] 
 /*               queue[in_front] = -1; 
 /*            EndIf 
 /*         EndIf 
 /*      break 
 /*    Case where in_front != in_rear 
 /*        When CASE is TRUE, in_front NOT EQUAL in_rear... 
 /*           If queue[in_front] = -1 
 /*             return (-1), a NULL 
 /*           Else 
 /*             If queue[in_front] != -1 
 /*                queue_item = queue[in_front] 
 /*                queue[in_front] = -1 
 /*                If in_front > 0  
 /*                   in_front = in_front - 1 
 /*                EndIf 
 /*             EndIf 
 /*           EndIf 
 /*     
 /*              
 /*             
 /*      
 /*                            */ 
 
     if( (front_of_queue == rear_of_queue) && (queue[front_of_queue] == -1)) 
   switchvar = 1;  /* If front and rear are same and queue is empty */ 
 

if( (front_of_queue == rear_of_queue) && (queue[front_of_queue] != -1)) 
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   switchvar = 2;  /* If front = rear and queue is NOT EMPTY */ 
 
 if( (front_of_queue != rear_of_queue) && (queue[front_of_queue] == -1)) 
   switchvar = 3;  /* front != rear and queue empty */ 
 
 if( (front_of_queue != rear_of_queue) && (queue[front_of_queue] != -1)) 
   switchvar = 4; /* front NOT EQ rear and queue NOT EMPMTY */ 
 
     switch(switchvar)  
  { 
 
      case 1: 
    { 
                return(-1); 
    break; 
    } 
      case 2: 
    { 
                queue_item = queue[front_of_queue]; 
    queue[front_of_queue] = -1; 
                return(queue_item); 
    break; 
    } 
 
      case 3: 
    { 
     return(-1); 
     printf("\n Error condition... \n"); 
     break; 
    } 
      case 4: 
    { 
                 queue_item = queue[front_of_queue]; 
     queue[front_of_queue] = -1; 
     if(front_of_queue > 0) 
      front_of_queue = front_of_queue - 1; 
                 return(queue_item); 
     break; 
             } 
  } /* End switch */ 
 
 return(queue_item); 
 
 }  /* End of remove queue function */ 
 
  /* Diagnostic: Show view nodes in view list */ 
  show_view_nodes(VNODE *vptr) 
  { 
  int view_counter = 0; 
  int row = 0; 
  int col = 0;   
  char output_filename[25] = "viewout.txt"; 
  FILE *file_pointer;   /* File pointer.   */ 
     
  printf("\n"); 
       printf("\n Opening file: viewout.txt \n"); 
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  file_pointer = fopen(output_filename,"w"); 
 
  while(vptr != NULL) 
  { 
 fprintf(file_pointer,"\n******** Next View ****** \n");    
 fprintf(file_pointer,"\n View ID: %15s",vptr->View_ID); 
 fprintf(file_pointer,"\n Number of Archs: %4d",vptr->no_archs); 
 fprintf(file_pointer,"\n ====== Architecture List =========\n"); 
    
 for(row=0; row<=4; row++) 
 {         
 fprintf(file_pointer,"\n Arch ID:...%2d : %25s", 
 row,vptr->arch_ID[row]);  
 }               
 vptr = vptr->viewlink; 
 view_counter = view_counter + 1; 
 printf("\n"); 
     } 
  fprintf(file_pointer,"\n No of Views: %d",view_counter); 
  printf("\n -- File Done! Closing File! -- \n "); 
       fclose(file_pointer); 
 } 
 
 
/* Inserts new arch_node of type ANODE in arch_node list. */ 
insert_arch_node(ANODE **ptr, char in_arch_id[25], int in_arch_style,  
                 char in_comp_array[25][25],  
                      char in_conn_array[25][25],   
                      int in_from_to[25][3],  
                      int in_no_comps, int in_no_conns)     
   { 
    ANODE *p1, *p2; 
 char teststring[25]; 
 int row; 
 int col; 
 int test_flag; 
  
 p1 = *ptr; 
 
 if(p1 == NULL)   /* if list is empty */ 
 { 
  p1 = malloc(sizeof(ANODE)); 
  if(p1 != NULL)  
     { 
      strcpy(p1->Arch_ID,in_arch_id); 
      p1->Style = in_arch_style; 
      p1->No_Comps = in_no_comps; 
      p1->No_Conns = in_no_conns; 
 
     /* Initialize the Topology Matrix */ 
               for(row=0; row<=24; row++) 
      { 
                 for(col=0; col<=24; col++) 
        { 
               p1->Topology[row][col] = -1; 
    } 
      } 
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    /* Initialize the Comp and Conn matrices */ 
    for(row=0; row<= in_no_comps-1; row++) 
     { 
       strcpy(p1->Arch_CompID[row]," "); 
       strcpy(p1->Arch_ConnID[row]," "); 
     } 
 
        /* Initialize Arch comp, connector Position matrices */ 
      for(row=0; row<= 24; row++) 
      { 
       p1->Arch_CompPosition[row][0] =  0.00; /* x pos */ 
       p1->Arch_CompPosition[row][1] =  0.00; /* y  */ 
       p1->Arch_CompPosition[row][2] =  0.00; /* z  */ 
       p1->Arch_CompPosition[row][3] = -1.00; /* level */ 
       p1->Arch_ConnPosition[row][0] = 0.00;  /* x  */ 
       p1->Arch_ConnPosition[row][1] = 0.00;  /* y pos */ 
       p1->Arch_ConnPosition[row][2] = 0.00;  /* z posit */ 
       p1->Arch_ConnPosition[row][3] = 0.00;   /* delta */ 
      } 
       
                       /* Load the Component and Connector matrices */ 
      for(row=0; row<= in_no_comps-1; row++) 
      { 
        strcpy(p1->Arch_CompID[row],in_comp_array[row]); 
                           } 
 
      for(row=0; row <= in_no_conns-1; row++) 
      { 
        strcpy(p1->Arch_ConnID[row],in_conn_array[row]); 
      } 
 
      /* Now determine the topology matrix */ 
      /* Topology(row,col) contains index of connector */ 
      /* Topology(row,col) defines connection. */ 
      /* row=index of source comp, col=index of dest */ 
 
      for(row=0; row <= in_no_conns-1; row++) 
       p1->Topology[in_from_to[row][1]][in_from_to[row][2]] 
                               = in_from_to[row][0]; 
      
   /* Now we generate the comp and conn positions! */ 
 
                  /* For Call and Return architectural style */ 
      if(in_arch_style == 1)    
      { 
                            /* curr_root = 0;   */ 
        /* Store x = 0, y = 0, z = 0  
        /* For curr comp row, use indices of non-0 conns; 
        /* Insert_queue_item(connector_index); 
        /*   When row is complete:  */ 
 
        /* Set the component and connector positions */ 
        test_flag = calculate_arch_position(&p1); 
 
        if(test_flag == -1) 
     { 
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     printf("\nERROR CALCULATING POSITION! Exit!\n"); 
          exit(0); 
     } 
                  } 
 
        p1->archlink = NULL; 
      *ptr = p1; 
        } 
 } 
 else    /* if list is not empty */ 
 { 
 /* Scan to end of existing list for available spot to insert */ 
        while(p1->archlink != NULL) 
  { 
  /* First check if any duplicates... */ 
  strcpy(teststring,p1->Arch_ID); 
     if(strncmp(teststring,in_arch_id,strlen(in_arch_id)) != 0) 
   { 
      p1 = p1->archlink; 
   } 
      else 
   { 
      printf("\n Error -- duplicate component identifier \n");              
      exit(0); 
   } 
  } 
 
  /* Create a brand new node for insertion */ 
  p2 = malloc(sizeof(ANODE)); 
  if(p2 != NULL) 
  {    
               strcpy(p2->Arch_ID,in_arch_id); 
      p2->Style = in_arch_style; 
      p2->No_Comps = in_no_comps; 
      p2->No_Conns = in_no_conns; 
 
    /* Initialize the Topology Matrix */ 
               for(row=0; row<=24; row++) 
      { 
                 for(col=0; col<=24; col++) 
     { 
                 p2->Topology[row][col] = -1; 
     } 
      } 
 
       /* Initialize the Comp and Conn matrices */ 
      for(row=0; row<= in_no_comps-1; row++) 
      { 
       strcpy(p2->Arch_CompID[row]," "); 
       strcpy(p2->Arch_ConnID[row]," "); 
      } 
 
 
  /* Initialize the Arch component and connector Position matrices */ 
  for(row=0; row<= 24; row++) 
  { 
  p2->Arch_CompPosition[row][0] =  0.00;  /* x position */ 
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  p2->Arch_CompPosition[row][1] =  0.00;  /* y position */ 
  p2->Arch_CompPosition[row][2] =  0.00;  /* z position */ 
  p2->Arch_CompPosition[row][3] = -1.00;  /* level number */ 
  p2->Arch_ConnPosition[row][0] = 0.00;   /* x position */ 
  p2->Arch_ConnPosition[row][1] = 0.00;   /* y position */ 
  p2->Arch_ConnPosition[row][2] = 0.00;   /* z position */ 
  p2->Arch_ConnPosition[row][3] = 0.00;   /* delta sum radians */ 
  } 
       
            /* Load the Component and Connector matrices */ 
     for(row=0; row<= in_no_comps-1; row++) 
     { 
      strcpy(p2->Arch_CompID[row],in_comp_array[row]); 
                         } 
 
      for(row=0; row <= in_no_conns-1; row++) 
      { 
       strcpy(p2->Arch_ConnID[row],in_conn_array[row]); 
      } 
 
     /* Now determine the topology matrix */ 
     /* Topology(row,col) contains index of connector */ 
     for(row=0; row <= in_no_conns-1; row++) 
       p2->Topology[in_from_to[row][1]][in_from_to[row][2]] 

   = in_from_to[row][0];      
 
                  /*  ==== x,y,z and delta_theta POSITIONS AND ANGLES ==== */ 
   /*  Determine positions of components, connectors */  
   /* curr_root = in_from_to[0][1];   

/* Get the very first component in Topology Matrix  */ 
 
      /* p2->Arch_CompPosition[curr_root][1] = 0.00;  */ 
      /* p2->Arch_CompPosition[curr_root][2] = 0.00; 
      /* p2->Arch_CompPosition[curr_root][3] = 0.00; 
 
      /* p2->Arch_ConnPosition[curr_root][1] = 0.0; 
      /* p2->Arch_ConnPosition[curr_root][2] =  

  /*  -Conn_Height; 
      /* p2->Arch_ConnPosition[curr_root][3] = 0.0; 
      /* p2->Arch_ConnPosition[curr_root][4] = 0.0;                    
      /*                  
      /*  Calculate current Comp and Conn positions; */ 
       
    test_flag = calculate_arch_position(&p2); 
 
    if(test_flag == -1) 
    { 
     printf("\nERROR CALCULATING POSITION! Exiting...\n"); 
       exit(0); 
      } 
                   
            /* New node points to null; last node points to new node */ 
   p2->archlink = NULL; 
   p1->archlink = p2;    
  } 
 } 
 } 
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/* This routine generates positions for arch comps and conns for 
/* call-and-return-style */ 
/* We use arch_node for architecture info and view_node for hiding/showing and  
/* hyperlink info.  */ 
 
  int calculate_arch_position(ANODE **tempptr) 
  { 
   ANODE *archptr;  /* pointer to arch node */ 
 
   int i;  /* For loop matrix */ 
   int level;  
   
   archptr = *tempptr; 
 
   if(archptr == NULL)   
    return(-1); 
 
 
   curr_root = 0; 
   rads60degree = PI/3; 
   Conn_Height = 15.0; 
 
   archptr->Arch_CompPosition[curr_root][0] = 0.0; 
   archptr->Arch_CompPosition[curr_root][1] = 0.0;  
   archptr->Arch_CompPosition[curr_root][2] = 0.0; 
   /* Level of first root node follows: */ 
   archptr->Arch_CompPosition[curr_root][3] = 0.0; 
 
   init_queue();  /* Initialize queue used for traversal */ 
 
   /* Insert very first root into queue */ 
      insert_queue_item(curr_root); 
 
   queue_empty_flag = is_queue_empty(); 
 
   /* While the queue is not empty, proceed... */ 
      while(queue_empty_flag != 1) 
   { 
         curr_root = remove_queue_item(); 
   node_count = 0; 
 
   /* Count Number of children of current root in 
   /* order to determine delta_theta */ 
 
   no_components = archptr->No_Comps; 
 
   for(i=0; i<= (no_components - 1); i++) 
   { 
    if(archptr->Topology[curr_root][i] != (-1) ) 
    { 
     node_count = node_count + 1; 
 
        /* Set the level of the node, where root is 0 */ 
        if(archptr->Arch_CompPosition[i][3] = -1) 
     { 
     /* Determine level */ 
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          archptr->Arch_CompPosition[i][3] =  
                           archptr->Arch_CompPosition[curr_root][3] +1; 
     } 
    } 
   }         
    
   printf("\n Current node count is: %3d ",node_count); 
   printf("\n"); 
 
   root_x = archptr->Arch_CompPosition[curr_root][0]; 
   root_y = archptr->Arch_CompPosition[curr_root][1]; 
   root_z = archptr->Arch_CompPosition[curr_root][2]; 
 
   if(node_count >= 1)  
    delta_theta = 2.0 * PI / node_count; 
    
   if(node_count == 0) 
    delta_theta = 0.0; 
 
   /* Scan through child nodes of curr_root */ 
   child_count = 0; 
   delta_sum = 0.0; 
 
   for(i=0; i<= (no_components-1); i++) 
   { 
    if(archptr->Topology[curr_root][i] != (-1) ) 
    { 
     child_count = child_count + 1; 
 
     delta_sum = delta_theta * (child_count - 1); 
     level = archptr->Arch_CompPosition[curr_root][3]; 
 
     if(level == 0) 
     { 
      Conn_Height = 15.0; 
         Sphere_Radius = 0.6; 
     } 
     if(level == 1) 
     { 
      Conn_Height = 7.5; 
         Sphere_Radius = 0.6; 
     } 
     if(level == 2) 
     { 
      Conn_Height = 3.75; 
         Sphere_Radius = 0.5; 
     } 
     if(level == 3) 
     { 
      Conn_Height = 2.9; 
         Sphere_Radius = 0.4; 
     } 
     if(level == 4) 
     { 
      Conn_Height = 1.5; 
         Sphere_Radius = 0.4; 
     } 



192 
 

 

     if(level == 5) 
     { 
      Conn_Height = 1.5; 
         Sphere_Radius = 0.35; 
     } 
     if(level >= 6) 
     { 
      Conn_Height = 1.0; 
         Sphere_Radius = 0.3; 
     }                  
 
  
     /* Point at origin */ 
     orig_x = 0.0; 
 /*   orig_y = 0.0 - 0.5 times Sphere_Radius - Conn_Height;  */ 
     orig_y = 0.0 - Conn_Height; 
     orig_z = 0.0; 
 
 /* Rotate around z as follows:  */ 
 /* 1. Assume rotation occurs for object of  
      /*    height Conn_height + Sphere Radius 
 /* 2. After rotation with height occurs around z,  
      /*    we rotate around y by delta_sum */ 
 
   child_x = (0)*(cos(-rads60degree)) -  

(orig_y)*(sin(-rads60degree)); 
   child_y = (0)*(sin(-rads60degree)) +  

(orig_y)*(cos(-rads60degree)); 
   child_z = orig_z;         
                           
   /* Rotate around y by delta_sum */    
 
   old_child_x = child_x; 
   old_child_y = child_y; 
   old_child_z = child_z; 
 
   child_z = old_child_z * cos(delta_sum)  

- old_child_x * sin(delta_sum);  
                  child_x = old_child_z * sin(delta_sum)  

+ old_child_x * cos(delta_sum);   
   child_y = old_child_y; 
 
       /* Translate back to position UNDER THE ORIGINAL ROOT */ 
                    child_x = child_x + root_x; 
     child_y = child_y + root_y; 
     child_z = child_z + root_z; 
 
   /* Store Arch Positions and Level */                      
      
      archptr->Arch_CompPosition[i][0] = child_x; 
      archptr->Arch_CompPosition[i][1] = child_y; 
      archptr->Arch_CompPosition[i][2] = child_z; 
            
   /* Now establish connection given the root position and the  
   /* child position */ 
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   /* First Translate to the origin */ 
       conn_orig_x = 0.0; 
   /*   conn_orig_y = (0.0 -Conn_Height)/2.0-Sphere_Radius;  */ 
        conn_orig_y = (0.0 - Conn_Height)/2.0; 
        conn_orig_z = 0.0; 
 
   /* First Rotate the leg center-point around z-axis */ 
         conn_x = (0) * (cos(-rads60degree)) -  

         (conn_orig_y)*(sin(-rads60degree)); 
     conn_y = (0) * (sin(-rads60degree)) +  

          (conn_orig_y)*(cos(-rads60degree)); 
     conn_z = conn_orig_z; 
 
   /* Now rotate the leg center-point around the y-axis */ 
   /* Rotate around y by delta_sum */    
 
     old_conn_x = conn_x; 
     old_conn_y = conn_y; 
     old_conn_z = conn_z; 
 
   /* Translate back to location under current root node */ 
     conn_x = conn_x + root_x; 
     conn_y = conn_y + root_y; 
     conn_z = conn_z + root_z; 
                        
     conn_id = archptr->Topology[curr_root][i]; 
 
     archptr->Arch_ConnPosition[conn_id][0] = conn_x; 
     archptr->Arch_ConnPosition[conn_id][1] = conn_y; 
     archptr->Arch_ConnPosition[conn_id][2] = conn_z; 
    /* rotate around z */ 
     archptr->Arch_ConnPosition[conn_id][3] = delta_sum;  
 
     insert_queue_item(i); 
 
    }  /* end if Topology not -1 */ 
 
   }  /* end for i <= no_comps */ 
 
    queue_empty_flag = is_queue_empty(); 
                                    
   }  /* end while queue not empty */ 
                     
  }   /* end calculate_arch_position */ 
 
 
  /* This routine is used for diagnostic purposes;  
  /* It prints the selected contents of each arch_node */ 
 
 show_arch_nodes(ANODE *ptr) 
 { 
  int arch_counter = 0; 
  int row = 0; 
  int col = 0; 
  printf("\n"); 
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  while(ptr != NULL) 
  { 
   printf("******* Next Architecture ********* \n"); 
   printf("Arch ID: %s",ptr->Arch_ID); 
   printf("\n ====== Style: %d",ptr->Style); 
   printf("\n ====== No_Comps: %d",ptr->No_Comps); 
   printf("\n ====== No_Conns: %d",ptr->No_Conns); 
   printf("\n ====== Component List ========="); 
    
   for(row=0; row<=8; row++) 
   {         
     printf("\n........%d : %s",row,ptr->Arch_CompID[row]); 
   } 
 
   printf("\n ====== Connectors ============="); 
 
   for(row=0; row<=7; row++) 
   { 
     printf("\n........%d : %s",row,ptr->Arch_ConnID[row]); 
   } 
 
   printf("\n ====== (TOPOLOGY) ============="); 
 
         for(row=0; row<=8; row++) 
   { 
   printf("\n"); 
   for(col=0; col<=8; col++) 
   { 
      printf(" %d ",ptr->Topology[row][col]); 
   } 
   } 
 
   ptr = ptr->archlink; 
   arch_counter = arch_counter + 1; 
   printf("\n"); 
     } 
  printf("\n No of Archs: %d",arch_counter); 
 } 
 
 /* Search for a view node; return 1 if found, 0 if not found */ 
  int search_view_list(VNODE *vvptr, char in_view_id[25]) 
  { 
   char teststring[25]; 
 
   if(vvptr == NULL) 
    return(0); 
   else 
   { 
     do 
     { 
      strcpy(teststring,vvptr->View_ID); 
      if(strncmp(teststring,in_view_id,strlen(in_view_id)) == 0) 
       return(1); 
      vvptr = vvptr->viewlink; 
     } while(vvptr != NULL); 
     return(0); 
   } 
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  } 
 
   /*  Insert the view Node into View-List */ 
 
  void insert_view_node(VNODE **vptr, char in_view_id[25],  
                         char in_arch_id[25][25], int in_all_comps[25],  
                         int in_all_conns[25], int in_viewcomps[25][25],  
          int in_viewconns[25][25], char 
in_hyper_comps[625][25],  
          char in_hyper_conns[625][25], int in_no_archs)   
         
   { 
    VNODE *vp1, *vp2; 
 char teststring[25]; 
 int row; 
 int col; 
  
 vp1 = *vptr; 
 
 if(vp1 == NULL)   /* if list is empty */ 
 { 
  vp1 = malloc(sizeof(VNODE)); 
  if(vp1 != NULL)  
  { 
   strcpy(vp1->View_ID,in_view_id); 
               
   /* Initialize the various arrays: */ 
             vp1->no_archs = 0;          
    
 
        for(row=0; row<=24; row++) 
    { 
     vp1->all_comps[row] = 0;    /* All comps flags to 0 */ 
     vp1->all_conns[row] = 0;    /* All conns flags to 0 */ 
      
     strcpy(vp1->arch_ID[row],"         "); 
 
          for(col=0; col<=24; col++) 
      { 
   /* strcpy(vp1->arch_ID[row][col]," "); */ 
                  vp1->view_comps[row][col] = 0; 
   vp1->view_conns[row][col] = 0;                  
      } 
    } 
 
    /* Initialize the Hyperlink arrays */ 
              for(col=0; col<=624; col++) 
    { 
      strcpy(vp1->Hyperlinks_Comps[col]," "); 
      strcpy(vp1->Hyperlinks_Conns[col]," "); 
    } 
 
                   
    vp1->no_archs = in_no_archs;       
                       
    for(col=0; col<=24; col++) 
    { 
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     strcpy(vp1->arch_ID[col],in_arch_id[col]); 
     vp1->all_comps[col] = in_all_comps[col]; 
     vp1->all_conns[col] = in_all_conns[col]; 
 
   for(row=0; row<=24; row++) 
   { 
     vp1->view_comps[col][row] = in_viewcomps[col][row]; 
     vp1->view_conns[col][row] = in_viewconns[col][row]; 
   }        
     } 
 
    for(row=0; row<=624; row++) 
    { 
            for(col=0; col<=24; col++) 
       { 

        vp1->Hyperlinks_Comps[row][col] =  
in_hyper_comps[row][col]; 

         vp1->Hyperlinks_Conns[row][col] =  
in_hyper_conns[row][col]; 

        } 
    } 
                                           
   vp1->viewlink = NULL; 
   *vptr = vp1; 
  } 
 } 
 else    /* if list is not empty */ 
 { 
   /* Scan to end of existing list for available spot to insert */ 
        while(vp1->viewlink != NULL) 
  { 
      /* First check if any duplicates... */ 
      strcpy(teststring,vp1->View_ID); 
      if(strncmp(teststring,in_view_id,strlen(in_view_id)) != 0) 
   { 
     vp1 = vp1->viewlink; 
   } 
      else 
   { 
      printf("\n Error -- duplicate component identifier \n");              
      exit(0); 
   } 
  } 
 
  /* Create a brand new node for insertion */ 
  vp2 = malloc(sizeof(VNODE)); 
  if(vp2 != NULL) 
  {    
               strcpy(vp2->View_ID,in_view_id); 
 
               /* Initialize the variables and arrays */ 
      vp2->no_archs = 0; 
 
      for(row=0; row<=24; row++) 
      { 
       vp2->all_comps[row] = 0;  /* All comps flags to 0 */ 
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       vp2->all_conns[row] = 0;  /* All conns flags to 0 */
        
       strcpy(vp2->arch_ID[row],"           "); 
 
       for(col=0; col<=24; col++) 
       {         
           /* strcpy(vp2->arch_ID[row][col]," "); */ 
        vp2->view_comps[row][col] = 0; 
        vp2->view_conns[row][col] = 0; 
       } 
      } 
 
      /* Initialize the Hyperlink arrays */ 
      for(col=0; col<=624; col++) 
      { 
      strcpy(vp2->Hyperlinks_Comps[col]," "); 
      strcpy(vp2->Hyperlinks_Conns[col]," "); 
      } 
 
      vp2->no_archs = in_no_archs; 
 
      for(col=0; col<=24; col++) 
      { 
       strcpy(vp2->arch_ID[col], in_arch_id[col]); 
       vp2->all_comps[col] = in_all_comps[col]; 
       vp2->all_conns[col] = in_all_conns[col]; 
 
       for(row=0; row<=24; row++) 
       { 
     vp2->view_comps[col][row] =  

in_viewcomps[col][row]; 
     vp2->view_conns[col][row] =  

in_viewconns[col][row]; 
       } 
      } 
 
      for(row=0; row<=624; row++) 
      { 
       for(col=0; col<=24; col++) 
       { 
         vp2->Hyperlinks_Comps[row][col] =  

in_hyper_comps[row][col]; 
         vp2->Hyperlinks_Conns[row][col] =  

in_hyper_conns[row][col]; 
       } 
      } 
                                               
            /* New node points to null; last node points to new node */ 
   vp2->viewlink = NULL; 
   vp1->viewlink = vp2;    
  } 
 } 
 } 
 
 
 find_comp_index( char test_comp[25], char in_comp_array[25][25], int 
number_of_comps) 
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 { 
   int i; 
   int result_index; 
 
   result_index = -1; 
 
   for(i=0; i<=(number_of_comps -1); i++) 
   { 
       if(strncmp(in_comp_array[i],test_comp,strlen(test_comp)) == 0) 
           result_index = i; 
   }  
 
       return(result_index); 
 
 } 
 
 
 find_conn_index( char test_conn[25], char in_conn_array[25][25], int 
number_of_conns) 
 { 
   int i; 
   int result_index; 
 
   result_index = -1; 
 
   for(i=0; i<=(number_of_conns -1); i++) 
   { 
       if(strncmp(in_conn_array[i],test_conn,strlen(test_conn)) == 0) 
           result_index = i; 
   }  
       return(result_index); 
 } 
 
  
 
  /* The following routine generates the VRML view file for each view.   
  /* It is the target file for the view description in each node. 
  /* That is, each view node contains one or more architectures  
  /* which are rendered in the VRML file. 
  /* 
  /* Sample call:   generate_view_files(ANODE in_arch, VNODE in_view);   
  /*                                       
  /*  1.  The viewlist VNODES are traversed, from first to last view node; 
  /*  2.  For each view node: 
  /*      Prepare file by first preparing the navigation toolbar 
  /*      Establish anchor nodes for ALL OTHER views using  
  /*      visual navigation icon. 
  /*      The navigation icon consists of a sphere for all wrl files,  
  /*      excluding the current view. 
  /*      Use the view_nodes array for the list of nodes other  
  /*      than current view node. 
  /*      Generate the VRML codes for anchor nodes, translate  
  /*      to the lower portion below the architectures. 
  /*         View Name = View Name + ".wrl" extension. 
  /* 
  /*     3.  For the current view node: 
  /*          
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  /*         3A.  Read the architecture array for arch ID 
  /*         3B.  Search the arch list for arch node. 
  /*         3C.  Determine height, H, of the arch from root to longest leaf.   
  /*         3D.  Translate the architecture according to the algorithm: 
  /*              If architecture 1, Z-Center is at 0.0.  Render. 
  /*              If architecture > 1: 
  /*                 If architecture number is even: 
  /*                  new Z-Center is at old Z-Center -  
  /*                  (1/2)* height of current arch n. 
  /*                  new y-center is old y-center +  
  /*                  (1/2) * height of earlier arch. 
  /*                   Rotate architecture by 90 degrees around x-axis. 
  /*                 If architecture number is odd: 
  /*                 new Z-Center is at old Z-Center -  
  /*                  (1/2) * height previous arch. 
  /*                 new y-center is old y-center + (1/2) * height current 
arch.   
  /*                     Do not rotate around x-axis.   
  /*                 NOTE:  In this fashion we create a  
  /*                 staircase, orthogonal representation of multiple    
  /*                 architectures within one view. 
  /*     
  /*    4.   For each arch node within the current view node: 
  /*         Access the topological matrix and begin traversal  
  /*         for call-and-return style. 
  /*          
  /*      Use traversal technique used earlier in calculate_arch_position( ). 
  /*          
/*         For the component: 
/*            Get the position of the component. 
/*          If All_flag, prepare-to-render is true. 
/*          If not All_flag, but view_comps set to 1, prepare-to-render is 
true. 
/*            If prepare-to-render is true: 
/*                Check hyperlink_comp array for component-id. 
/*                    If found:  Render component at position as Anchor Node. 
/*                    If not found: Render component as transform node sphere. 
/*            If prepare-to-render is false, ignore, continue to next 
component. 
/*         For the connection: 
/*             Get the position of the component. 
/*             Rotate around z by -45 degrees. 
/*             Rotate around y by delta_sum given. 
/*             If All_flag, prepare-to-render is true. 
/*             If not All_flag, but view_conns set to 1,  
/*             prepare-to-render is true. 
/*             If prepare-to-render is true: 
/*                Check hyperlink_conn array for connector-id. 
/*                 If found: Reander connector at position as Anchor Node. 
/*                 If not found: Render connector as transform node cylinder. 
/*             If prepare-to-render is false, ignore,  
/*              continue to next connector. 
/* 
/*          Repeat for each arch node. 
/*          Generate the full VRML file. 
/*      
/*   
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/*     
/*     5.  Get the next view node and repeat for the view list until empty. 
/*  
/* 
/*       */ 
 
  generate_view_files(ANODE *inarchptr, VNODE *inviewptr) 
  { 
 
   int prepare_to_render = 1;    /* Flag for rendering; 1=true, 0=false; 
*/ 
   int search_result = 1; 
   int number_of_archs = 0; 
   int i; 
   int item_located; 
   float layer_height = 0.0; 
   int number_of_layers; 
   int row; 
   int col; 
   int level;  
   int temp_arch_style; 
   int temp_view_pointer = 0;  /* used as view_names_array index */ 
 
   float scale_value = 0.0;    /* variable used for VRML scale command */ 
   float position_value = 0.0; /* variable used for VRML cone position */ 
   float title_value = 0.0;    /* variable used for VRML title position */ 
   char quotemark = '"'; 
 
   float font_size = 0.0; 
   float z_arch_displace = 0.0; 
   float x_arch_displace = 0.0; 
   float y_arch_displace = 0.0; 
   float temp_y_legend = 0.0; /* used for legend title placement along y 
*/ 
   float view_x;  /* viewpoint x position */ 
   float view_y;  /* viewpoint y position */ 
   float view_z;  /* viewpoint z position */ 
 
   char output_filename[25]; 
   char output_extension[25]; 
   char arch_test_string[25]; 
   char temp_view_name[25]; 
 
      /* print_view_string used for printing text string in  
      /* Text node of VRML. */ 
      /* Contains a quote, text, quote */ 
   char print_view_string[27];  /* String contains quote View_ID quote */ 
 
   char temp_arch_id[25]; 
   char temp_view_id[25];   
 
    FILE *file_pointer;   /* File pointer.   */ 
 
   ANODE *rtemp;         /* Reference node for architecture */ 
       
   /* Traverse the viewnodes from start */ 
   while(inviewptr != NULL) 
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   { 
       strcpy(output_filename," "); 
  strcpy(output_extension,".wrl"); 
  strcpy(output_filename,inviewptr->View_ID); 
  strcat(output_filename,output_extension); 
  file_pointer = fopen(output_filename,"w"); 
  
  number_of_archs = inviewptr->no_archs;  
  
  x_arch_displace = 0.0;  /* Init arch displacement within view */ 
  y_arch_displace = 0.0; 
  z_arch_displace = 0.0; 
 
            printf("\n Writing file: %s \n",output_filename); 
 
        /***    Print View File VRML Heading   ***/  
        fprintf(file_pointer,"#VRML V2.0 utf8"); 
        fprintf(file_pointer,"\n#Viewpoint of Architectures"); 
        fprintf(file_pointer,"\n#Generated by VTADL Version 1.0");        
 
   fprintf(file_pointer,"\nBackground {"); 
   fprintf(file_pointer,"\n    skyColor ["); 
   fprintf(file_pointer,"\n       0.0 0.2 0.91,"); 
   fprintf(file_pointer,"\n       0.0 0.3 1.0,"); 
   fprintf(file_pointer,"\n       0.3 0.2 0.85"); 
   fprintf(file_pointer,"\n    ]"); 
   fprintf(file_pointer,"\nskyAngle [ 1.309, 1.571 ]"); 
   fprintf(file_pointer,"\n}"); 
 
        printf("\n Wrote Background... \n"); 
 
        fprintf(file_pointer,"\nGroup {"); 
        fprintf(file_pointer,"\nchildren [");     
 
   /* Print the View Title at Top of wrl file */ 
   fprintf(file_pointer,"\n Transform { "); 
   fprintf(file_pointer,"\n    translation 0.0 4.00 0.0"); 
   fprintf(file_pointer,"\n    children ["); 
   fprintf(file_pointer,"\n      Shape {"); 
   fprintf(file_pointer,"\n       appearance Appearance {"); 
   fprintf(file_pointer,"\n        material  
          Material { diffuseColor 1.0 1.0 0.0 }"); 
   fprintf(file_pointer,"\n        }"); 
   fprintf(file_pointer,"\n        geometry Text {");  
   fprintf(file_pointer,"\n          string \"%s\" ",inviewptr->View_ID); 
   fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
   fprintf(file_pointer,"\n             style \"BOLD\" "); 
   fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
   fprintf(file_pointer,"\n             size 0.94"); 
   fprintf(file_pointer,"\n } } } ] },");       
 
   /* Generate the view legend to the right of the first arch */ 
   fprintf(file_pointer,"\n Transform { "); 
   fprintf(file_pointer,"\n   translation 27.1 6.5 0.0"); 
   fprintf(file_pointer,"\n    children["); 
   fprintf(file_pointer,"\n      Shape {"); 
   fprintf(file_pointer,"\n       appearance Appearance {"); 
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   fprintf(file_pointer,"\n        material  
          Material { diffuseColor 1.0 1.0 0.0 }"); 
   fprintf(file_pointer,"\n        }"); 
   fprintf(file_pointer,"\n        geometry Text {");  
   fprintf(file_pointer,"\n          string \" LEGEND \" "); 
   fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
   fprintf(file_pointer,"\n             style \"BOLD\" "); 
   fprintf(file_pointer,"\n             justify \"BEGIN\" "); 
   fprintf(file_pointer,"\n             size 0.94"); 
   fprintf(file_pointer,"\n } } } ] },");  
   
   /* Generate the legend viewpoint for VRML view list */ 
   fprintf(file_pointer,"\nViewpoint {"); 
   fprintf(file_pointer,"\ndescription \"Legend\" "); 
   fprintf(file_pointer,"\nposition 25.4 4.75 21.5 }");  
 
  for(temp_view_pointer=0;  
        temp_view_pointer<= (curr_view_index-1); temp_view_pointer++) 
   { 
         printf("\n temp_view_pointer %d \n",temp_view_pointer); 
    fprintf(file_pointer,"\n Transform { "); 
    temp_y_legend = 4.0 - 1.95*temp_view_pointer; 
    fprintf(file_pointer, 
          "\n    translation 20.0 %6.3f 0.0 ",temp_y_legend); 
    fprintf(file_pointer,"\n    children ["); 
    fprintf(file_pointer,"\n      Shape {"); 
    fprintf(file_pointer,"\n       appearance Appearance {"); 
    fprintf(file_pointer, 
           "\n        material Material { diffuseColor 1.0 1.0 0.0 }"); 
    fprintf(file_pointer,"\n        }"); 
    fprintf(file_pointer,"\n        geometry Text {");  
    fprintf(file_pointer, 
            "\n          string \"%s\" ",view_names_array[temp_view_pointer]); 
    fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
    fprintf(file_pointer,"\n             style \"BOLD\" "); 
    fprintf(file_pointer,"\n             justify \"BEGIN\" "); 
    fprintf(file_pointer,"\n             size 0.94"); 
    fprintf(file_pointer,"\n } } } ] },");  
 
    fprintf(file_pointer,"\n Transform { "); 
    /* fprintf(file_pointer,"\n    translation 15.0 4.00 0.0");  */ 
  
    temp_y_legend = temp_y_legend + 0.35; 
    fprintf(file_pointer, 
          "\n    translation 29.2 %6.3f 0.0 ",temp_y_legend); 
    fprintf(file_pointer,"\n    children [");     
     
 
    if(strncmp(view_names_array[temp_view_pointer],inviewptr->View_ID, 
            strlen(inviewptr->View_ID)) != 0) 
  { 
  strcpy(temp_view_name,view_names_array[temp_view_pointer]); 
  strcat(temp_view_name,".wrl");   
  fprintf(file_pointer,"\nAnchor {"); 
  fprintf(file_pointer,"\nurl \"%s\" ",temp_view_name); 
  fprintf(file_pointer,"\n children ["); 
  fprintf(file_pointer,"\n    Shape  {"); 
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  fprintf(file_pointer,"\n    appearance Appearance {"); 
  fprintf(file_pointer,"\n     material Material {"); 
  fprintf(file_pointer,"\n       diffuseColor 1.0 1.0 0.0"); 
  fprintf(file_pointer,"\n          }"); 
  fprintf(file_pointer,"\n    }"); 
  fprintf(file_pointer,"\n        geometry Sphere { "); 
  fprintf(file_pointer,"\n        radius 0.62"); 
  fprintf(file_pointer,"\n       }"); 
  fprintf(file_pointer,"\n  }");  
  fprintf(file_pointer,"\n  ]"); 
  fprintf(file_pointer,"\n  }"); 
  }   
          fprintf(file_pointer,"\n ] },"); 
     
   }  /* end for */ 
 
   for(i=0; i<= (number_of_archs - 1); i++) 
   { 
     strcpy(temp_arch_id,inviewptr->arch_ID[i]); 
  
          /* Get the architecture node from arch list */ 
          rtemp = inarchptr; 
                      
          /* search rtemp arch list node for arch ID. */ 
     if(rtemp == NULL) 
     { 
  fprintf(file_pointer,"\n Arch list empty!  ERROR...exiting... \n"); 
       exit(0); 
     } 
 
          if(rtemp != NULL) 
      { 
  item_located = 0; 
 
  do 
  { 
  strcpy(arch_test_string,rtemp->Arch_ID); 
  if(strncmp(arch_test_string,temp_arch_id,strlen(temp_arch_id))==0) 
  { 
  item_located = 1; 
 
    /* Print the Architectural Heading */ 
 
    if(i > 0) 
    { 
     x_arch_displace = x_arch_displace - 25.5; 
     z_arch_displace = z_arch_displace - 50.0; 
     y_arch_displace = y_arch_displace + 15.0;    
              
     fprintf(file_pointer,"\n Transform { "); 
     fprintf(file_pointer,"\n   translation %6.3f %6.3f %6.3f ", 
                       x_arch_displace,y_arch_displace,z_arch_displace); 
     fprintf(file_pointer,"\n   children ["); 
     fprintf(file_pointer,"\n   Group {"); 
     fprintf(file_pointer,"\n   children [");    
    
    } 
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     fprintf(file_pointer,"\n Transform { "); 
     fprintf(file_pointer,"\n    translation 0.0 3.00 0.0"); 
     fprintf(file_pointer,"\n    children ["); 
 
     /* Generate the  viewport description for VRML view list */ 
     fprintf(file_pointer,"\nViewpoint {"); 
     fprintf(file_pointer,"\ndescription \"%s\" ",rtemp->Arch_ID); 
     fprintf(file_pointer,"\nposition 0.0 -5.0 21.5 },");  
 
     fprintf(file_pointer,"\n      Shape {"); 
     fprintf(file_pointer,"\n       appearance Appearance {"); 
     fprintf(file_pointer,"\n        material  
                Material { diffuseColor 1.0 1.0 0.0 }"); 
     fprintf(file_pointer,"\n        }"); 
     fprintf(file_pointer,"\n        geometry Text {");  
     fprintf(file_pointer, 
                "\n          string \" Architecture %s\" ",rtemp->Arch_ID); 
     fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
     fprintf(file_pointer,"\n             style \"BOLD\" "); 
     fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
     fprintf(file_pointer,"\n             size 0.65"); 
     fprintf(file_pointer,"\n } } } ] },"); 
        
               /* Check for Layered Style */ 
     if(rtemp->Style == 2) 
     { 
      number_of_layers = rtemp->No_Comps; 
      layer_height = (0.6)*(2.0*number_of_layers-1.0)*4.0 + 1.5; 
         
      fprintf(file_pointer,"\nTransform {"); 
      fprintf(file_pointer,"\n  scale 0.5 0.5 0.5 "); 
      fprintf(file_pointer, 
                 "\n  translation 0.0 %6.3f -6.0",-layer_height);    
                fprintf(file_pointer,"\n    children ["); 
      fprintf(file_pointer,"\nGroup {"); 
      fprintf(file_pointer,"\n    children ["); 
     } 
                               
              /* Traverse the nodes from root */ 
  
               curr_root = 0;   /* Start with the very first row */ 
 
     init_queue();    /* Initialize queue for node traversal */ 
 
     insert_queue_item(curr_root);   /* start with very first root */ 
 
     queue_empty_flag = is_queue_empty(); 
 
     /* Loop for non empty queue */ 
 
     while( queue_empty_flag != 1)  
     { 
      curr_root = remove_queue_item();   /* Get next root */  
      
      /* Get x,y,z coordinate position of current node */ 
      root_x = rtemp->Arch_CompPosition[curr_root][0];  
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      root_y = rtemp->Arch_CompPosition[curr_root][1]; 
      root_z = rtemp->Arch_CompPosition[curr_root][2]; 
      level = rtemp->Arch_CompPosition[curr_root][3]; 
 
      temp_arch_style = rtemp->Style; 
      number_of_layers = rtemp->No_Comps; 
 
      /* Now Generate Comp Nodes using positions */   
       
      /* If arch style is Call and return */ 
                if(temp_arch_style == 1)    
       { 
       /* Print Initial Transform Heading for Comp  */   
                
       fprintf(file_pointer,"\nTransform {"); 
       fprintf(file_pointer,"\n  translation %6.3f %6.3f %6.3f", 
                         root_x,root_y,root_z); 
                 fprintf(file_pointer,"\n    children ["); 
 
      if(level == 0)   /* If node is the root */ 
                {   
       Sphere_Radius = 0.60;                                                     
                 
      /* Check to see if Component is viewed at all... */ 
      if((inviewptr->all_comps[i]==1) ||  
                   (inviewptr->all_comps[i]==0 &&  
                    inviewptr->view_comps[i][curr_root]==1))  
      { 
          
       /* If viewed, then handle the case of hyperlink url */ 
       if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                   + curr_root])," ",1) != 0) 
   { 
    fprintf(file_pointer,"\nAnchor {"); 
    fprintf(file_pointer,"\nurl \"%s\"  ", 
                    inviewptr->Hyperlinks_Comps[25*i + curr_root]); 
    fprintf(file_pointer,"\n children ["); 
   } 
 
       }  /* End if: check for comp to be viewed */ 
 
    fprintf(file_pointer,"\n    DEF Root_Node_Type Shape  {"); 
    fprintf(file_pointer,"\n    appearance Appearance {"); 
    fprintf(file_pointer,"\n     material Material {"); 
    fprintf(file_pointer,"\n       diffuseColor 0.1 0.99 0.99"); 
 
                  /* Check if component is visible or not... */ 
          
    if((inviewptr->all_comps[i]==1) ||  
                     (inviewptr->all_comps[i]==0  
                     && inviewptr->view_comps[i][curr_root]==1)) 
    { 
     fprintf(file_pointer,"\n      transparency 0.0 }"); 
    } 
     else 
    { 
                    fprintf(file_pointer,"\n      transparency 1.0 }"); 
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    }          
     fprintf(file_pointer,"\n    }"); 
     fprintf(file_pointer,"\n        geometry Sphere { "); 
     fprintf(file_pointer, 
                     "\n        radius %6.3f ",Sphere_Radius); 
     fprintf(file_pointer,"\n       }"); 
     /* fprintf(file_pointer,"\n    },"); */ 
 
     /* Check if Hyperlink was viewed for tail */ 
     if((inviewptr->all_comps[i]==1) ||  
                      (inviewptr->all_comps[i]==0  
                      && inviewptr->view_comps[i][curr_root]==1))  
     { 
 
     /* Handle alternate tails in case of hyperlink */ 
     if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                    + curr_root])," ",1) != 0) 
     { 
      fprintf(file_pointer,"\n     }"); 
      fprintf(file_pointer,"\n ]"); 
      fprintf(file_pointer,"\n },");  
      } 
       else 
      { 
       fprintf(file_pointer,"\n     }, "); 
      } 
 
   }  
 
   else  /* if hyperlink not viewed */ 
   { 
   fprintf(file_pointer,"\n     }, "); 
   } /* End check if viewed hyperlink */ 
 
         fprintf(file_pointer,"\n      Transform { "); 
        fprintf(file_pointer,"\n        translation -0.55 0.75 0.0"); 
        fprintf(file_pointer,"\n        children ["); 
        fprintf(file_pointer,"\n        Shape {"); 
        fprintf(file_pointer,"\n       appearance Appearance {"); 
        fprintf(file_pointer,"\n        material  
                   Material { diffuseColor 1.0 1.0 0.0 "); 
 
   /* Check if text is viewed */ 
   if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1)) 
   { 
    fprintf(file_pointer, 
                   "\n                           transparency 0.0 }"); 
   } 
    else 
   { 
                   fprintf(file_pointer, 
                   "\n                            transparency 1.0 }"); 
   } 
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       fprintf(file_pointer,"\n        }"); 
       fprintf(file_pointer,"\n      geometry Text {");  
       fprintf(file_pointer,"\n        string \"%s\" ", 
                  rtemp->Arch_CompID[curr_root]); 
       fprintf(file_pointer,"\n        fontStyle FontStyle {"); 
       fprintf(file_pointer,"\n             style \"BOLD\" "); 
       fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
       fprintf(file_pointer,"\n             size 0.6"); 
       fprintf(file_pointer,"\n } } } ] }");       
       fprintf(file_pointer,"\n ]"); 
       fprintf(file_pointer,"\n },"); 
       }   
 
 
       if(level == 1)  /* If node is first level */ 
       { 
        Sphere_Radius = 0.6;          
          
       /* Check to see if Component is viewed at all... */ 
       if((inviewptr->all_comps[i]==1) ||  
                 (inviewptr->all_comps[i]==0 &&  
                 inviewptr->view_comps[i][curr_root]==1)) 
       { 
          
        /* If viewed, then handle the case of hyperlink url */ 
        if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                  + curr_root])," ",1) != 0) 
   { 
   fprintf(file_pointer,"\nAnchor {"); 
   fprintf(file_pointer,"\nurl \"%s\"  ", 
                  inviewptr->Hyperlinks_Comps[25*i + curr_root]); 
   fprintf(file_pointer,"\n children ["); 
   } 
 
       }  /* End if: check for comp to be viewed */ 
         
   fprintf(file_pointer,"\n    Shape  {"); 
   fprintf(file_pointer,"\n    appearance Appearance {"); 
   fprintf(file_pointer,"\n     material Material {"); 
   fprintf(file_pointer,"\n       diffuseColor 1.0 0.0 0.0"); 
 
   /* Check if component is visible or not... */ 
        if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1)) 
   { 
    fprintf(file_pointer,"\n      transparency 0.0 }"); 
   } 
    else 
   { 
                   fprintf(file_pointer,"\n      transparency 1.0 }"); 
   } 
         
    fprintf(file_pointer,"\n    }");   /* end Appearance */ 
    fprintf(file_pointer,"\n        geometry Sphere { "); 
    fprintf(file_pointer,"\n        radius  
                    %6.3f ",Sphere_Radius); 
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    fprintf(file_pointer,"\n       }"); 
   /* fprintf(file_pointer,"\n  },"); */ 
 
   /* Check if Hyperlink was viewed for tail */ 
   if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                   inviewptr->view_comps[i][curr_root]==1))  
   { 
 
    /* Handle alternate tails in case of hyperlink */ 
    if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                   + curr_root])," ",1) != 0) 
    { 
     fprintf(file_pointer,"\n     }"); 
     fprintf(file_pointer,"\n ]"); 
     fprintf(file_pointer,"\n },");  
    } 
     else 
    { 
     fprintf(file_pointer,"\n     }, "); 
    } 
 
   }  
   else  /* if hyperlink not viewed */ 
   { 
   fprintf(file_pointer,"\n     }, "); 
   } /* End check if viewed hyperlink */    
      
 
   fprintf(file_pointer,"\n      Transform { "); 
        fprintf(file_pointer,"\n        translation -0.55 0.65 0.6"); 
        fprintf(file_pointer,"\n        children ["); 
             fprintf(file_pointer,"\n        Shape {"); 
        fprintf(file_pointer,"\n       appearance Appearance {"); 
        fprintf(file_pointer,"\n        material  
                   Material { diffuseColor 1.0 1.0 0.0 "); 
 
   /* Check if text is viewed */ 
   if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                   inviewptr->view_comps[i][curr_root]==1))     
   { 
    fprintf(file_pointer, 
                    "\n                            transparency 0.0 }"); 
   } 
    else 
   { 
                   fprintf(file_pointer, 
                     "\n                            transparency 1.0 }"); 
   } 
 
         fprintf(file_pointer,"\n        }"); 
         fprintf(file_pointer,"\n        geometry Text {");  
         fprintf(file_pointer,"\n          string \"%s\" ", 
                    rtemp->Arch_CompID[curr_root]); 
         fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
         fprintf(file_pointer,"\n             style \"BOLD\" "); 



209 
 

 

         fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
         fprintf(file_pointer,"\n             size 0.43"); 
         fprintf(file_pointer,"\n } } } ] }");       
         fprintf(file_pointer,"\n ]"); 
         fprintf(file_pointer,"\n },"); 
   }  
 
 
                  if(level == 2)  /* If node is second level */ 
   { 
   Sphere_Radius = 0.5;          
                 
   /* Check to see if Component is viewed at all... */ 
   if((inviewptr->all_comps[i]==1) ||  
                   (inviewptr->all_comps[i]==0 &&  
                   inviewptr->view_comps[i][curr_root]==1))      
   { 
          
   /* If viewed, then handle the case of hyperlink url */ 
   if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                   + curr_root])," ",1) != 0) 
   { 
    fprintf(file_pointer,"\nAnchor {"); 
    fprintf(file_pointer,"\nurl \"%s\"  ", 
                    inviewptr->Hyperlinks_Comps[25*i + curr_root]); 
    fprintf(file_pointer,"\n children ["); 
   } 
          
   }  /* End if check for comp to view */ 
 
    fprintf(file_pointer,"\n    Shape  {"); 
    fprintf(file_pointer,"\n    appearance Appearance {"); 
    fprintf(file_pointer,"\n     material Material {"); 
    fprintf(file_pointer,"\n       diffuseColor 0.0 1.0 0.0"); 
          
   /* Check if component is visible or not... */ 
   if((inviewptr->all_comps[i]==1) ||  
                   (inviewptr->all_comps[i]==0 &&  
                    inviewptr->view_comps[i][curr_root]==1))       
   { 
    fprintf(file_pointer,"\n      transparency 0.0 }"); 
   } 
    else 
   { 
                   fprintf(file_pointer,"\n      transparency 1.0 }"); 
   } 
 
    fprintf(file_pointer,"\n    }");  /* end Appearance */ 
    fprintf(file_pointer,"\n        geometry Sphere { "); 
    fprintf(file_pointer,"\n        radius  
                    %6.3f ",Sphere_Radius); 
    fprintf(file_pointer,"\n       }"); 
    /* fprintf(file_pointer,"\n  },"); */ 
 
    /* Check if Hyperlink was viewed for tail */ 
    if((inviewptr->all_comps[i]==1) ||  
                   (inviewptr->all_comps[i]==0 &&  
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                    inviewptr->view_comps[i][curr_root]==1))  
    { 
 
     /* Handle alternate tails in case of hyperlink */ 
     if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                    + curr_root])," ",1) != 0) 
     { 
      fprintf(file_pointer,"\n     }"); 
      fprintf(file_pointer,"\n ]"); 
      fprintf(file_pointer,"\n },");  
     } 
      else 
     { 
      fprintf(file_pointer,"\n     }, "); 
     } 
 
   }  
 
   else  /* if hyperlink not viewed */ 
      { 
   fprintf(file_pointer,"\n     }, "); 
      } /* End check if viewed hyperlink */ 
          
 
   fprintf(file_pointer,"\n      Transform { "); 
        fprintf(file_pointer,"\n        translation -0.55 0.55 0.5"); 
        fprintf(file_pointer,"\n        children ["); 
        fprintf(file_pointer,"\n        Shape {"); 
        fprintf(file_pointer,"\n       appearance Appearance {"); 
        fprintf(file_pointer,"\n        material  
                   Material { diffuseColor 1.0 1.0 0.0"); 
 
                /* Check if text is viewed */ 
      if((inviewptr->all_comps[i]==1) ||  
                 (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1)) 
      { 
       fprintf(file_pointer, 
                 "\n                            transparency 0.0 }"); 
      } 
       else 
      { 
                 fprintf(file_pointer, 
                 "\n                            transparency 1.0 }"); 
      } 
 
      fprintf(file_pointer,"\n        }");  /* end Appearance */ 
      fprintf(file_pointer,"\n        geometry Text {");  
      fprintf(file_pointer,"\n          string \"%s\" ", 
                rtemp->Arch_CompID[curr_root]); 
      fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
      fprintf(file_pointer,"\n             style \"BOLD\" "); 
      fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
      fprintf(file_pointer,"\n             size 0.33"); 
      fprintf(file_pointer,"\n } } } ] }");       
      fprintf(file_pointer,"\n ]"); 
      fprintf(file_pointer,"\n },"); 
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     }  
 
/* Levels 3 to 9 were removed here; code follows similar pattern   
/* to earlier code, with difference that Sphere_Radius and node  
/* color are different for each level */ 
/* ..... */ 
/* ....  */ 
/* ....  */ 
/ *   We continue with level 10 */ 
     
    if(level == 10)  /* If node is tenth level */ 
     { 
      Sphere_Radius  = 0.25;         
          
          /* Check to see if Component is viewed at all... */ 
     if((inviewptr->all_comps[i]==1) ||  
                      (inviewptr->all_comps[i]==0 &&  
                       inviewptr->view_comps[i][curr_root]==1)) 
     { 
          
     /* If viewed, then handle the case of hyperlink url */ 
     if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                     + curr_root])," ",1) != 0) 
     { 
     fprintf(file_pointer,"\nAnchor {"); 
     fprintf(file_pointer,"\nurl \"%s\"  ", 
                     inviewptr->Hyperlinks_Comps[25*i+curr_root]); 
     fprintf(file_pointer,"\n children ["); 
     } 
          
   }  /* End if check for comp to view */     
                   
        fprintf(file_pointer,"\n    Shape  {"); 
   fprintf(file_pointer,"\n    appearance Appearance {"); 
        fprintf(file_pointer,"\n     material Material {"); 
        fprintf(file_pointer,"\n       diffuseColor 0.0 1.0 0.0"); 
 
   /* Check if Sphere is viewed */ 
   if((inviewptr->all_comps[i]==1) ||  
                   (inviewptr->all_comps[i]==0 &&  
                    inviewptr->view_comps[i][curr_root]==1))  
        { 
    fprintf(file_pointer, 
                    "\n                            transparency 0.0 }"); 
   } 
   else 
   { 
                   fprintf(file_pointer, 
                    "\n                            transparency 1.0 }"); 
    } 
       
   fprintf(file_pointer,"\n    }"); /* end Appearance */ 
   fprintf(file_pointer,"\n        geometry Sphere { "); 
   fprintf(file_pointer,"\n        radius  
                  %6.3f ",Sphere_Radius); 
   fprintf(file_pointer,"\n       }"); 
   /* fprintf(file_pointer,"\n  },"); */ 
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   /* Check if Hyperlink was viewed for tail */ 
        if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                   inviewptr->view_comps[i][curr_root]==1))  
   { 
 
   /* Handle alternate tails in case of hyperlink */ 
   if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                   + curr_root])," ",1) != 0) 
   { 
    fprintf(file_pointer,"\n     }"); 
    fprintf(file_pointer,"\n ]"); 
    fprintf(file_pointer,"\n },");  
   } 
    else 
   { 
    fprintf(file_pointer,"\n     }, "); 
    } 
 
   }  
 
   else  /* if hyperlink not viewed */ 
   { 
   fprintf(file_pointer,"\n     }, "); 
   } /* End check if viewed hyperlink */ 
         
   fprintf(file_pointer,"\n      Transform { "); 
        fprintf(file_pointer,"\n        translation -0.5 0.35 0.25"); 
        fprintf(file_pointer,"\n        children ["); 
        fprintf(file_pointer,"\n        Shape {"); 
                  fprintf(file_pointer,"\n       appearance Appearance {"); 
        fprintf(file_pointer,"\n       material  
                    Material { diffuseColor 1.0 1.0 0.0 "); 
 
   /* Check if text is viewed */ 
       if((inviewptr->all_comps[i]==1) ||  
                 (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1)) 
   { 
         fprintf(file_pointer, 
                   "\n                      transparency 0.0 }"); 
   } 
   else 
   { 
                   fprintf(file_pointer, 
                   "\n                            transparency 1.0 }"); 
    } 
 
         fprintf(file_pointer,"\n        }");  /* end Appearance */ 
         fprintf(file_pointer,"\n        geometry Text {");  
         fprintf(file_pointer,"\n          string \"%s\" ", 
                   rtemp->Arch_CompID[curr_root]); 
         fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
         fprintf(file_pointer,"\n             style \"BOLD\" "); 
         fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
         fprintf(file_pointer,"\n             size 0.23"); 
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         fprintf(file_pointer,"\n } } } ] }");  
    fprintf(file_pointer,"\n ]"); 
    fprintf(file_pointer,"\n },"); 
    }  
          
   if(level > 10 && level < 25)  /* If node level > 10 */ 
   { 
   Sphere_Radius = 0.25; 
                   
   /* Check to see if Component is viewed at all... */ 
       if((inviewptr->all_comps[i]==1) ||  
                 (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1))  
   { 
          
   /* If viewed, then handle the case of hyperlink url */ 
   if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                  + curr_root])," ",1) != 0) 
   { 
   fprintf(file_pointer,"\nAnchor {"); 
   fprintf(file_pointer,"\nurl \"%s\"  ", 
                  inviewptr->Hyperlinks_Comps[25*i + curr_root]); 
   fprintf(file_pointer,"\n children ["); 
        } 
          
       }  /* End if check for comp to view */    
            
   fprintf(file_pointer,"\n    Shape  {"); 
   fprintf(file_pointer,"\n    appearance Appearance {"); 
   fprintf(file_pointer,"\n     material Material {"); 
   fprintf(file_pointer,"\n       diffuseColor 0.0 0.0 1.0"); 
 
   /* Check if Sphere is viewed */ 
   if((inviewptr->all_comps[i]==1) ||  
                  (inviewptr->all_comps[i]==0 &&  
                   inviewptr->view_comps[i][curr_root]==1)) 
   { 
   fprintf(file_pointer, 
                  "\n                            transparency 0.0 }"); 
        } 
   else 
   { 
                   fprintf(file_pointer, 
                   "\n                            transparency 1.0 }"); 
        } 
         
   fprintf(file_pointer,"\n    }");  /* end Appearance */ 
        fprintf(file_pointer,"\n        geometry Sphere { "); 
        fprintf(file_pointer,"\n        radius  
                  %6.3f ",Sphere_Radius); 
        fprintf(file_pointer,"\n       }"); 
         /* fprintf(file_pointer,"\n  },"); */ 
 
      /* Check if Hyperlink was viewed for tail */ 
     if((inviewptr->all_comps[i]==1) ||  
               (inviewptr->all_comps[i]==0 &&  
                inviewptr->view_comps[i][curr_root]==1)) 
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     { 
     /* Handle alternate tails in case of hyperlink */ 
     if(strncmp( (inviewptr->Hyperlinks_Comps[25*i +  
               curr_root])," ",1) != 0) 
      { 
       fprintf(file_pointer,"\n     }"); 
       fprintf(file_pointer,"\n ]"); 
       fprintf(file_pointer,"\n },");  
      } 
     else 
      { 
       fprintf(file_pointer,"\n     }, "); 
      } 
     }  
 
     else  /* if hyperlink not viewed */ 
     { 
     fprintf(file_pointer,"\n     }, "); 
     } /* End check if viewed hyperlink */ 
         
     fprintf(file_pointer,"\n      Transform { "); 
               fprintf(file_pointer,"\n        translation -0.5 0.35 0.25"); 
     fprintf(file_pointer,"\n        children ["); 
     fprintf(file_pointer,"\n        Shape {"); 
               fprintf(file_pointer,"\n    appearance Appearance {"); 
               fprintf(file_pointer,"\n   material  
                Material { diffuseColor 1.0 1.0 0.0 "); 
 
     /* Check if text is viewed */ 
     if((inviewptr->all_comps[i]==1) ||  
               (inviewptr->all_comps[i]==0 &&  
                inviewptr->view_comps[i][curr_root]==1)) 
     { 
      fprintf(file_pointer, 
                "\n                            transparency 0.0 }"); 
     } 
      else 
      { 
                 fprintf(file_pointer, 
                 "\n                            transparency 1.0 }"); 
      } 
 
       fprintf(file_pointer,"\n      }");  /* end Appearance */ 
       fprintf(file_pointer,"\n      geometry Text {");  
       fprintf(file_pointer,"\n      string \"%s\" ", 
                 rtemp->Arch_CompID[curr_root]); 
       fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
       fprintf(file_pointer,"\n             style \"BOLD\" "); 
       fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
       fprintf(file_pointer,"\n             size 0.23"); 
       fprintf(file_pointer,"\n } } } ] }");  
       fprintf(file_pointer,"\n ]"); 
       fprintf(file_pointer,"\n },"); 
     }              
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               for(col=0; col<= (rtemp->No_Comps - 1); col++) 
     { 
      conn_node = rtemp->Topology[curr_root][col]; 
      if(conn_node != -1) 
      { 
       conn_x = rtemp->Arch_ConnPosition[conn_node][0]; 
       conn_y = rtemp->Arch_ConnPosition[conn_node][1]; 
       conn_z = rtemp->Arch_ConnPosition[conn_node][2]; 
       delta_sum = rtemp->Arch_ConnPosition[conn_node][3]; 
       conn_level = rtemp->Arch_CompPosition[curr_root][3]; 
       strcpy(conn_name, rtemp->Arch_ConnID[conn_node]); 
       conn_x = rtemp->Arch_ConnPosition[conn_node][0]; 
       conn_y = rtemp->Arch_ConnPosition[conn_node][1]; 
       conn_z = rtemp->Arch_ConnPosition[conn_node][2]; 
           
       if(conn_level == 0.0) 
   Conn_Height = 15.0; 
 
       if(conn_level == 1.0) 
   Conn_Height = 7.5; 
 
       if(conn_level == 2.0) 
   Conn_Height = 3.75; 
 
       if(conn_level == 3.0) 
   Conn_Height = 2.9; 
 
       if(conn_level == 4.0) 
   Conn_Height = 1.5; 
 
       if(conn_level == 5.0) 
   Conn_Height = 1.5; 
 
       if(conn_level >= 6.0) 
   Conn_Height = 1.0; 
 
  /* Generate VRML Connector here */   
                
       
  fprintf(file_pointer,"\n");       
            
 
  if(delta_sum >= 0.0) 
  {            
  fprintf(file_pointer,"\n Transform {"); 
  fprintf(file_pointer,"\n rotation 0.0 1.0 0.0 %6.3f ",delta_sum); 
  fprintf(file_pointer,"\n center  
            %6.3f %6.3f %6.3f ",root_x,root_y,root_z); 
  fprintf(file_pointer,"\n    children ["); 
  /* Check to see if Connector is viewed at all... */ 
  if((inviewptr->all_conns[i]==1) ||  
            (inviewptr->all_conns[i]==0 &&  
             inviewptr->view_conns[i][conn_node]==1)) 
   {          
  /* If viewed, then handle the case of hyperlink url */ 
             if(strncmp( (inviewptr->Hyperlinks_Conns[25*i  
             + conn_node])," ",1) != 0) 
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  { 
  fprintf(file_pointer,"\nAnchor {"); 
  fprintf(file_pointer,"\nurl \"%s\"  ", 
            inviewptr->Hyperlinks_Conns[25*i + conn_node]); 
  fprintf(file_pointer,"\n children ["); 
       } 
          
            }  /* End if check for comp to view */    
 
               
               
  fprintf(file_pointer,"\n Transform {");  
       fprintf(file_pointer,"\n  translation  
            %6.3f %6.3f %6.3f",conn_x,conn_y,conn_z); 
  fprintf(file_pointer,"\n  rotation 0.0 0.0 1.0 -1.047"); 
  fprintf(file_pointer,"\n    children ["); 
  fprintf(file_pointer,"\n    Shape  {"); 
       fprintf(file_pointer,"\n    appearance Appearance {"); 
  fprintf(file_pointer,"\n     material Material {"); 
            fprintf(file_pointer,"\n       diffuseColor 1.0 0.95 0.85"); 
  /* Check if Cylinder is viewed */ 
  if((inviewptr->all_conns[i]==1) ||  
            (inviewptr->all_conns[i]==0 &&  
             inviewptr->view_conns[i][conn_node]==1))  
  { 
  fprintf(file_pointer, 
            "\n                            transparency 0.0 }"); 
  } 
  else 
  { 
            fprintf(file_pointer, 
            "\n                            transparency 1.0 }"); 
  } 
  fprintf(file_pointer,"\n    }"); /* end Appearance */ 
  fprintf(file_pointer,"\n        geometry Cylinder { "); 
            fprintf(file_pointer,"\n        radius %6.3f ",Cylinder_Radius); 
  fprintf(file_pointer,"\n        height %6.3f ",Conn_Height); 
  fprintf(file_pointer,"\n       }"); 
  fprintf(file_pointer,"\n  }");  /* end Shape */    
        
  fprintf(file_pointer,"\n ]"); 
            /* fprintf(file_pointer,"\n }"); */ 
 
  /* Check if Hyperlink was viewed for tail */ 
       if((inviewptr->all_conns[i]==1) ||  
            (inviewptr->all_conns[i]==0 &&  
            inviewptr->view_conns[i][conn_node]==1))  
  { 
              /* Handle alternate tails in case of hyperlink */ 
    if(strncmp( (inviewptr->Hyperlinks_Conns[25*i  
              + conn_node])," ",1) != 0) 
    { 
     fprintf(file_pointer,"\n     }"); 
     fprintf(file_pointer,"\n ]"); 
     fprintf(file_pointer,"\n },");  
     } 
          else 
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     { 
     fprintf(file_pointer,"\n     }, "); 
     } 
 
    }  
     else  /* if hyperlink not viewed */ 
    { 
     fprintf(file_pointer,"\n     }, "); 
     } /* End check if viewed hyperlink */ 
               
          
     fprintf(file_pointer,"\n   Transform { "); 
     fprintf(file_pointer,"\n   translation  
               %6.3f %6.3f %6.3f",conn_x,conn_y,conn_z); 
    /* fprintf(file_pointer,"\n   rotation 0.0 0.0 1.0 -1.047"); */ 
     fprintf(file_pointer,"\n     children ["); 
     fprintf(file_pointer,"\n       Transform { "); 
 
     if( (conn_level >= 0.0) && (conn_level <= 1.0) ) 
     { fprintf(file_pointer,"\n          translation -1.1 0.0 0.0"); 
       font_size = 0.33;  
     } 
            
   if( conn_level == 2.0 )  
   { 
   fprintf(file_pointer,"\n          translation -1.0 1.0 0.0"); 
   font_size = 0.3; 
   } 
 
   if( conn_level >= 3.0 ) 
   { 
   fprintf(file_pointer, 
                  "\n          translation -0.80 0.75 0.0"); 
   font_size = 0.25; 
   } 
   
      fprintf(file_pointer,"\n          rotation 0.0 1.0 0.0  
                %6.3f",-delta_sum); 
      fprintf(file_pointer,"\n          children ["); 
      fprintf(file_pointer,"\n        Shape {"); 
      fprintf(file_pointer,"\n       appearance Appearance {"); 
      fprintf(file_pointer,"\n        material  
                 Material { diffuseColor 1.0 1.0 0.0 "); 
 
      /* Check if text is viewed */ 
      if((inviewptr->all_conns[i]==1) ||  
                (inviewptr->all_conns[i]==0 &&  
                 inviewptr->view_conns[i][conn_node]==1)) 
      { 
       fprintf(file_pointer, 
                 "\n                            transparency 0.0 }"); 
      } 
       else 
      { 
                 fprintf(file_pointer, 
                 "\n                            transparency 1.0 }"); 
      } 
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       fprintf(file_pointer,"\n        }");  /* end Appearance */ 
       fprintf(file_pointer,"\n        geometry Text {");  
       fprintf(file_pointer,"\n          string \"%s\" ",conn_name); 
       fprintf(file_pointer,"\n          fontStyle FontStyle {"); 
       fprintf(file_pointer,"\n             style \"BOLD\" "); 
       fprintf(file_pointer,"\n             justify \"MIDDLE\" "); 
       fprintf(file_pointer,"\n             size %6.3f ",font_size);
                                             
                 fprintf(file_pointer,"\n } } } ] } ] },");  
 
                 fprintf(file_pointer,"\n             ]"); 
       fprintf(file_pointer," \n }, "); 
 
       }  /* end delta_sum >= 0 */                  
                                           
                                           
    
                /* Place component index, col, into queue */ 
      insert_queue_item(col);   
      } 
   }  /* end FOR loop */ 
 
     } /* END if temp_arch_style == 1 Call and Return */ 
 
 
     if(temp_arch_style == 2)   /* if the LAYERED style */ 
     { 
      /* Render Layer Here */ 
          scale_value = (4*curr_root) + (curr_root*(curr_root-1)/2.0); 
          position_value = scale_value; 
     title_value = (4*(curr_root+1)) + (((curr_root+1)*curr_root)/2.0); 
       
         
     /* Translation for next layer component */ 
     fprintf(file_pointer,"\n"); 
     fprintf(file_pointer,"Transform  { \n"); 
     fprintf(file_pointer,"   scale 0.70 0.70 0.70 \n"); 
     fprintf(file_pointer,"   translation 0.0 "); 
     fprintf(file_pointer,"%4.2f",position_value); 
     fprintf(file_pointer," 0.0 \n"); 
     fprintf(file_pointer,"   children  [ \n"); 
     fprintf(file_pointer,"  Transform { \n");    
     fprintf(file_pointer,"    translation "); 
     fprintf(file_pointer,"                %4.2f 2.0 0.0 \n",title_value); 
     fprintf(file_pointer,"    children [ \n"); 
     fprintf(file_pointer,"      Shape { \n"); 
     fprintf(file_pointer,"      appearance Appearance { \n"); 
     fprintf(file_pointer,"        material  
           Material  {diffuseColor 1.0 1.0 0.0 \n"); 
 
     /* Check if Layer-Title is viewed */ 
     if((inviewptr->all_comps[i]==1) ||  
          (inviewptr->all_comps[i]==0 &&  
           inviewptr->view_comps[i][curr_root]==1))  
      { 
  fprintf(file_pointer, 
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             "\n                       transparency 0.0 }"); 
  } 
  else 
  { 
            fprintf(file_pointer, 
             "\n                       transparency 1.0 }"); 
  } 
 
       fprintf(file_pointer,"           } \n");  /* end Appearance */ 
  fprintf(file_pointer,"        geometry Text  {  \n"); 
            fprintf(file_pointer,"        string [%c",quotemark); 
  fprintf(file_pointer,"%s",rtemp->Arch_CompID[curr_root]); 
  fprintf(file_pointer,"%c",quotemark); 
  fprintf(file_pointer,"] \n"); 
            fprintf(file_pointer,"         fontStyle  
             FontStyle { size 2.0 } \n");                          
       fprintf(file_pointer,"        } \n"); 
  fprintf(file_pointer,"       } \n"); 
            fprintf(file_pointer,"      ] \n"); 
            fprintf(file_pointer,"      },");                          
            fprintf(file_pointer," \n"); 
 
  /* Check to see if Layer-Component is viewed at all... */ 
  if((inviewptr->all_comps[i]==1) ||  
              (inviewptr->all_comps[i]==0 &&  
               inviewptr->view_comps[i][curr_root]==1))      
  {         
  /* If viewed, then handle the case of hyperlink url */ 
     if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
               + curr_root])," ",1) != 0) 
   { 
     fprintf(file_pointer,"\nAnchor {"); 
     fprintf(file_pointer,"\nurl \"%s\"  ", 
               inviewptr->Hyperlinks_Comps[25*i + curr_root]); 
     fprintf(file_pointer,"\n children ["); 
   }          
 
       }  /* End if check for layer to view */    
 
            /* Generate extrusion node for layer */ 
               fprintf(file_pointer,"Shape { \n"); 
               fprintf(file_pointer,"   appearance Appearance { \n"); 
          fprintf(file_pointer,"      material Material { \n"); 
 
     /* If even layer, use separate color than odd layer */ 
 
     /* Also check for visibility: yes or no */ 
 
     if((inviewptr->all_comps[i]==1) ||  
                 (inviewptr->all_comps[i]==0 &&  
                  inviewptr->view_comps[i][curr_root]==1))  
     { 
     /* Handle the case where visible */ 
               if( (curr_root>0) && (curr_root%2)!=0)    
       fprintf(file_pointer,"      diffuseColor 1.0 0.0 1.0 \n"); 
     else         
       fprintf(file_pointer,"      diffuseColor 1.0 1.0 0.0 \n"); 
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      } 
       else 
      { 
       fprintf(file_pointer,"      diffuseColor 0.0 0.0 0.0 \n");   
       fprintf(file_pointer, 
                 "\n                            transparency 1.0"); 
      } 
 
                 fprintf(file_pointer,"      } \n"); 
       fprintf(file_pointer,"   } \n"); 
                 fprintf(file_pointer,"   geometry Extrusion { \n"); 
                 fprintf(file_pointer,"       creaseAngle 1.57 \n"); 
       fprintf(file_pointer,"       endCap TRUE \n"); 
       fprintf(file_pointer,"       solid TRUE  \n"); 
       fprintf(file_pointer,"       crossSection [ \n"); 
       fprintf(file_pointer,"       # Circle \n"); 
                 fprintf(file_pointer,"        1.00  0.00,   0.90 -0.38,  \n"); 
                 fprintf(file_pointer,"        0.70 -0.70,   0.38 -0.90,  \n"); 
                 fprintf(file_pointer,"        0.00 -1.00,  -0.38 -0.90,  \n"); 
                 fprintf(file_pointer,"       -0.70 -0.70,  -0.91 -0.38,  \n"); 
                 fprintf(file_pointer,"       -1.00 -0.00,  -0.91  0.38,  \n"); 
                 fprintf(file_pointer,"       -0.70  0.70,  -0.38  0.90,  \n"); 
                 fprintf(file_pointer,"        0.00  1.00,   0.38  0.90,  \n"); 
                 fprintf(file_pointer,"        0.70  0.70,   0.90  0.38,  \n"); 
                 fprintf(file_pointer,"        1.00  0.00  \n"); 
       fprintf(file_pointer,"        ] \n"); 
                 fprintf(file_pointer,"        spine [ \n"); 
                 fprintf(file_pointer,"        # Straight-line \n");        
                 fprintf(file_pointer, 
                 "          0.0 0.0 0.0,  0.0 0.4 0.0,  \n"); 
                 fprintf(file_pointer, 
                 "          0.0 0.8 0.0,  0.0 1.2 0.0,  \n"); 
                 fprintf(file_pointer, 
                 "          0.0 1.6 0.0,  0.0 2.0 0.0,  \n"); 
                 fprintf(file_pointer, 
                 "          0.0 2.4 0.0,  0.0 2.8 0.0,  \n"); 
                 fprintf(file_pointer, 
                 "          0.0 3.2 0.0,  0.0 3.6 0.0   \n"); 
                 fprintf(file_pointer,"          0.0 4.0 0.0  \n"); 
                 fprintf(file_pointer,"        ]  \n");    
                 fprintf(file_pointer,"        scale [ \n"); 
                 fprintf(file_pointer,"        %4.2f",scale_value +0.0); 
            fprintf(file_pointer," %4.2f",scale_value + 0.0); 
       fprintf(file_pointer,", "); 
       fprintf(file_pointer," %4.2f",scale_value + 0.40); 
                 fprintf(file_pointer," %4.2f",scale_value + 0.40); 
                 fprintf(file_pointer,", \n"); 
       fprintf(file_pointer,"        %4.2f",scale_value + 0.80); 
       fprintf(file_pointer," %4.2f",scale_value + 0.80); 
       fprintf(file_pointer,", "); 
                 fprintf(file_pointer," %4.2f",scale_value + 1.2); 
       fprintf(file_pointer," %4.2f",scale_value + 1.2); 
       fprintf(file_pointer,", \n"); 
                 fprintf(file_pointer,"        %4.2f",scale_value + 1.6); 
       fprintf(file_pointer," %4.2f",scale_value + 1.6); 
            fprintf(file_pointer,", "); 
            fprintf(file_pointer," %4.2f",scale_value + 2.0); 
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                 fprintf(file_pointer," %4.2f",scale_value + 2.0); 
       fprintf(file_pointer,", \n"); 
                 fprintf(file_pointer,"        %4.2f",scale_value + 2.4); 
       fprintf(file_pointer," %4.2f",scale_value + 2.4); 
            fprintf(file_pointer,", "); 
       fprintf(file_pointer," %4.2f",scale_value + 2.8); 
       fprintf(file_pointer," %4.2f",scale_value + 2.8); 
       fprintf(file_pointer,", \n"); 
                 fprintf(file_pointer,"        %4.2f",scale_value + 3.2); 
       fprintf(file_pointer," %4.2f",scale_value + 3.2); 
       fprintf(file_pointer,", "); 
                 fprintf(file_pointer," %4.2f",scale_value + 3.6); 
       fprintf(file_pointer," %4.2f",scale_value + 3.6); 
       fprintf(file_pointer,", \n"); 
                 fprintf(file_pointer,"        %4.2f",scale_value + 4.0); 
       fprintf(file_pointer," %4.2f",scale_value + 4.0); 
       fprintf(file_pointer," \n"); 
       fprintf(file_pointer,"        ] \n"); 
       fprintf(file_pointer,"        } \n"); 
                 fprintf(file_pointer,"} \n"); 
            fprintf(file_pointer,"] \n"); 
       /* fprintf(file_pointer,"},");    */ 
          
      /* Check if Hyperlink was viewed for tail */ 
      if((inviewptr->all_comps[i]==1) ||  
                (inviewptr->all_comps[i]==0  

&& inviewptr->view_comps[i][curr_root]==1))       
      { 
 
       /* Handle alternate tails in case of hyperlink */ 
       if(strncmp( (inviewptr->Hyperlinks_Comps[25*i  
                 + curr_root])," ",1) != 0) 
       { 
   fprintf(file_pointer,"\n     }"); 
   fprintf(file_pointer,"\n ]"); 
   fprintf(file_pointer,"\n },");  
   } 
   else 
   { 
   fprintf(file_pointer,"\n     }, "); 
   } 
   }  
   else  /* if hyperlink not viewed */ 
       { 
   fprintf(file_pointer,"\n     }, "); 
       } /* End check if viewed hyperlink */ 
        
                 /* Get the next layer component, store in queue */ 
       for(col=0; col<= (rtemp->No_Comps - 1); col++) 
   { 
   conn_node = rtemp->Topology[curr_root][col]; 
   if(conn_node != -1) 
   {            
        
   conn_level = rtemp->Arch_CompPosition[curr_root][3]; 
   strcpy(conn_name, rtemp->Arch_ConnID[conn_node]); 
   insert_queue_item(col);  /* insert next component */ 
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                  } 
 
   }    /* end for */ 
 
     }   /* end if LAYERED style */ 
 
       queue_empty_flag = is_queue_empty(); 
 
 }  /* end WHILE */ 
 
 if(rtemp->Style == 2) 
 { 
 fprintf(file_pointer,"\n ]");  /* end of Group */ 
 fprintf(file_pointer,"\n }"); 
 fprintf(file_pointer,"\n ] }"); /* end of Transform */ 
 } 
 
 /* Print Footer for architecture */ 
 fprintf(file_pointer,"\n ]"); 
      fprintf(file_pointer,"\n }"); 
      fprintf(file_pointer,"\n");        
 
 if(i > 0) 
 { 
  fprintf(file_pointer,"\n ]"); 
  fprintf(file_pointer,"\n }"); 
 } 
     } 
 else 
 { 
  rtemp = rtemp->archlink; 
 } 
   }    while( (rtemp != NULL) && (item_located != 1) ); 
 
   }     /* end if rtemp not NULL */               
                                    
   }  /* end for i loop for arch_ID of view */ 
   
        fclose(file_pointer); 
        inviewptr = inviewptr->viewlink; 
   } /* End while inviewptr not NULL */ 
  } 
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Test Cases 

 
 
 
 Numerous implementation tests were conducted on the VTADL-to-VRML compiler. A 

representative sample of two tests will be used to demonstrate that the compiler is working 

according to requirements. 

 The Case Study Report Template will be used for each test case. 
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Test Case One 
 

Case Study Report 
 
 

 
1. Name of Case Study:  Test Case One 
 
2. On-Line Posting (if any): None. Testing purposes only. 
 
3. Brief Description of the Purpose and Background of the Case Study: 

 
 This test was designed to show that multiple architectures (of both call-and-return and 
layered styles) could be rendered within a view.  The test includes different versions of the same 
layered architecture, selectively hidden or displayed components, and hyperlinks to other views and 
external files.    

The VTADL source file, "Example.txt,” defines two architectures:  "ExampleProgram" and 
"ExampleLayer."  ExampleProgram is a hierarchical structure in the call-and-return style.  
ExampleProgram has a root and three children (four components and three connectors).  
ExampleLayer has four components in the layered architectural style. 
 The Main view contains both architectures, using all components and connections in each 
architecture.  A hyperlink exists from the root in ExampleProgram to the source VTADL file 
(Example.txt).   Another hyperlink is established from the top layer of ExampleLayer to a view 
named "SecondView." 
 SecondView contains three versions of ExampleLayer.  Version one uses the first and 
second layers only, hiding the other layers; version two uses the first, third and fourth layers; and 
version three uses all four layers.  The first layer of version one contains a hyperlink to the Main 
view; the second layer of version one contains a hyperlink to the source VTADL file, Example.txt. 

  
 
 
4. Name of VTADL Source File(s):   
 
 
Source File  View Files   Hyperlinked Files (Referenced) 
Example.txt  Main.wrl   Example.txt 
   SecondView.wrl  Main.wrl 
       SecondView.wrl 
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5. VTADL Source Code Listing ("Example.txt") 
 
 The VTADL source code for Example.txt was listed in full in Appendix E.   
 
 
6. VRML Target Code:   Main.wrl 
 
 The generated VRML code for Main.wrl is provided as a sample.  The VRML code for 
SecondView.wrl is not provided for sake of brevity. 
 
 
 

Generated VRML Code:  Main.wrl 
 
#VRML V2.0 utf8 
#Viewpoint of Architectures 
#Generated by VTADL Version 1.0 
Background { 
    skyColor [ 
       0.0 0.2 0.91, 
       0.0 0.3 1.0, 
       0.3 0.2 0.85 
    ] 
skyAngle [ 1.309, 1.571 ] 
} 
Group { 
children [ 
 Transform {  
    translation 0.0 4.00 0.0 
    children [ 
      Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string "Main"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.94 
 } } } ] }, 
 Transform {  
   translation 27.1 6.5 0.0 
    children[ 
      Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string " LEGEND "  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "BEGIN"  
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             size 0.94 
 } } } ] }, 
Viewpoint { 
description "Legend"  
position 25.4 4.75 21.5 } 
 Transform {  
    translation 20.0  4.000 0.0  
    children [ 
      Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string "Main"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "BEGIN"  
             size 0.94 
 } } } ] }, 
 Transform {  
    translation 29.2  4.350 0.0  
    children [ 
 ] }, 
 Transform {  
    translation 20.0  2.050 0.0  
    children [ 
      Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string "SecondView"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "BEGIN"  
             size 0.94 
 } } } ] }, 
 Transform {  
    translation 29.2  2.400 0.0  
    children [ 
Anchor { 
url "SecondView.wrl"  
 children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 1.0 0.0 
          } 
    } 
        geometry Sphere {  
        radius 0.62 
       } 
  } 
  ] 
  } 
 ] }, 
 Transform {  
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    translation 0.0 3.00 0.0 
    children [ 
Viewpoint { 
description "ExampleProgram"  
position 0.0 -5.0 21.5 }, 
      Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string " Architecture ExampleProgram"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.65 
 } } } ] }, 
Transform { 
  translation  0.000  0.000  0.000 
    children [ 
Anchor { 
url "Example.txt"   
 children [ 
    DEF Root_Node_Type Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 0.1 0.99 0.99 
      transparency 0.0 } 
    } 
        geometry Sphere {  
        radius  0.600  
       } 
     } 
 ] 
 }, 
      Transform {  
        translation -0.55 0.75 0.0 
        children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
      geometry Text { 
        string "Alpha"  
        fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.6 
 } } } ] } 
 ] 
 }, 
 
 Transform { 
 rotation 0.0 1.0 0.0  0.000  
 center  0.000  0.000  0.000  
    children [ 
 Transform { 
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  translation -6.495 -3.750  0.000 
  rotation 0.0 0.0 1.0 -1.047 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.95 0.85 
                            transparency 0.0 } 
    } 
        geometry Cylinder {  
        radius  0.100  
        height 15.000  
       } 
  } 
 ] 
     },  
   Transform {  
   translation -6.495 -3.750  0.000 
     children [ 
       Transform {  
          translation -1.1 0.0 0.0 
          rotation 0.0 1.0 0.0 -0.000 
          children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
        geometry Text { 
          string "Call1"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size  0.330  
 } } } ] } ] }, 
             ]  
 },  
 
 Transform { 
 rotation 0.0 1.0 0.0  2.094  
 center  0.000  0.000  0.000  
    children [ 
 Transform { 
  translation -6.495 -3.750  0.000 
  rotation 0.0 0.0 1.0 -1.047 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.95 0.85 
                            transparency 0.0 } 
    } 
        geometry Cylinder {  
        radius  0.100  
        height 15.000  
       } 
  } 
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 ] 
     },  
   Transform {  
   translation -6.495 -3.750  0.000 
     children [ 
       Transform {  
          translation -1.1 0.0 0.0 
          rotation 0.0 1.0 0.0 -2.094 
          children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
        geometry Text { 
          string "Call2"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size  0.330  
 } } } ] } ] }, 
             ]  
 },  
 
 Transform { 
 rotation 0.0 1.0 0.0  4.189  
 center  0.000  0.000  0.000  
    children [ 
 Transform { 
  translation -6.495 -3.750  0.000 
  rotation 0.0 0.0 1.0 -1.047 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.95 0.85 
                            transparency 0.0 } 
    } 
        geometry Cylinder {  
        radius  0.100  
        height 15.000  
       } 
  } 
 ] 
     },  
   Transform {  
   translation -6.495 -3.750  0.000 
     children [ 
       Transform {  
          translation -1.1 0.0 0.0 
          rotation 0.0 1.0 0.0 -4.189 
          children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
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        geometry Text { 
          string "Call3"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size  0.330  
 } } } ] } ] }, 
             ]  
 },  
Transform { 
  translation -12.990 -7.500  0.000 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.0 0.0 
      transparency 0.0 } 
    } 
        geometry Sphere {  
        radius  0.600  
       } 
     },  
      Transform {  
        translation -0.55 0.65 0.6 
        children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
        geometry Text { 
          string "Beta"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.43 
 } } } ] } 
 ] 
 }, 
Transform { 
  translation  6.495 -7.500 11.250 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.0 0.0 
      transparency 0.0 } 
    } 
        geometry Sphere {  
        radius  0.600  
       } 
     },  
      Transform {  
        translation -0.55 0.65 0.6 
        children [ 
        Shape { 
       appearance Appearance { 
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        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
        geometry Text { 
          string "Gamma"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.43 
 } } } ] } 
 ] 
 }, 
Transform { 
  translation  6.495 -7.500 -11.250 
    children [ 
    Shape  { 
    appearance Appearance { 
     material Material { 
       diffuseColor 1.0 0.0 0.0 
      transparency 0.0 } 
    } 
        geometry Sphere {  
        radius  0.600  
       } 
     },  
      Transform {  
        translation -0.55 0.65 0.6 
        children [ 
        Shape { 
       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0  
                            transparency 0.0 } 
        } 
        geometry Text { 
          string "Delta"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.43 
 } } } ] } 
 ] 
 }, 
 ] 
 } 
 
 Transform {  
   translation -25.500 15.000 -50.000  
   children [ 
   Group { 
   children [ 
 Transform {  
    translation 0.0 3.00 0.0 
    children [ 
Viewpoint { 
description "ExampleLayer"  
position 0.0 -5.0 21.5 }, 
      Shape { 
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       appearance Appearance { 
        material Material { diffuseColor 1.0 1.0 0.0 } 
        } 
        geometry Text { 
          string " Architecture ExampleLayer"  
          fontStyle FontStyle { 
             style "BOLD"  
             justify "MIDDLE"  
             size 0.65 
 } } } ] }, 
Transform { 
  scale 0.5 0.5 0.5  
  translation 0.0 -18.300 -6.0 
    children [ 
Group { 
    children [ 
Transform  {  
   scale 0.70 0.70 0.70  
   translation 0.0 0.00 0.0  
   children  [  
  Transform {  
    translation                 4.00 2.0 0.0  
    children [  
      Shape {  
      appearance Appearance {  
        material Material  {diffuseColor 1.0 1.0 0.0  
 
                       transparency 0.0 }           }  
        geometry Text  {   
        string ["LevelOne"]  
         fontStyle FontStyle { size 2.0 }  
        }  
       }  
      ]  
      },  
Shape {  
   appearance Appearance {  
      material Material {  
      diffuseColor 1.0 1.0 0.0  
      }  
   }  
   geometry Extrusion {  
       creaseAngle 1.57  
       endCap TRUE  
       solid TRUE   
       crossSection [  
       # Circle  
        1.00  0.00,   0.90 -0.38,   
        0.70 -0.70,   0.38 -0.90,   
        0.00 -1.00,  -0.38 -0.90,   
       -0.70 -0.70,  -0.91 -0.38,   
       -1.00 -0.00,  -0.91  0.38,   
       -0.70  0.70,  -0.38  0.90,   
        0.00  1.00,   0.38  0.90,   
        0.70  0.70,   0.90  0.38,   
        1.00  0.00   
        ]  
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        spine [  
        # Straight-line  
          0.0 0.0 0.0,  0.0 0.4 0.0,   
          0.0 0.8 0.0,  0.0 1.2 0.0,   
          0.0 1.6 0.0,  0.0 2.0 0.0,   
          0.0 2.4 0.0,  0.0 2.8 0.0,   
          0.0 3.2 0.0,  0.0 3.6 0.0    
          0.0 4.0 0.0   
        ]   
        scale [  
        0.00 0.00,  0.40 0.40,  
        0.80 0.80,  1.20 1.20,  
        1.60 1.60,  2.00 2.00,  
        2.40 2.40,  2.80 2.80,  
        3.20 3.20,  3.60 3.60,  
        4.00 4.00  
        ]  
        }  
}  
]  
 
     },  
Transform  {  
   scale 0.70 0.70 0.70  
   translation 0.0 4.00 0.0  
   children  [  
  Transform {  
    translation                 9.00 2.0 0.0  
    children [  
      Shape {  
      appearance Appearance {  
        material Material  {diffuseColor 1.0 1.0 0.0  
 
                       transparency 0.0 }           }  
        geometry Text  {   
        string ["LevelTwo"]  
         fontStyle FontStyle { size 2.0 }  
        }  
       }  
      ]  
      },  
Shape {  
   appearance Appearance {  
      material Material {  
      diffuseColor 1.0 0.0 1.0  
      }  
   }  
   geometry Extrusion {  
       creaseAngle 1.57  
       endCap TRUE  
       solid TRUE   
       crossSection [  
       # Circle  
        1.00  0.00,   0.90 -0.38,   
        0.70 -0.70,   0.38 -0.90,   
        0.00 -1.00,  -0.38 -0.90,   
       -0.70 -0.70,  -0.91 -0.38,   
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       -1.00 -0.00,  -0.91  0.38,   
       -0.70  0.70,  -0.38  0.90,   
        0.00  1.00,   0.38  0.90,   
        0.70  0.70,   0.90  0.38,   
        1.00  0.00   
        ]  
        spine [  
        # Straight-line  
          0.0 0.0 0.0,  0.0 0.4 0.0,   
          0.0 0.8 0.0,  0.0 1.2 0.0,   
          0.0 1.6 0.0,  0.0 2.0 0.0,   
          0.0 2.4 0.0,  0.0 2.8 0.0,   
          0.0 3.2 0.0,  0.0 3.6 0.0    
          0.0 4.0 0.0   
        ]   
        scale [  
        4.00 4.00,  4.40 4.40,  
        4.80 4.80,  5.20 5.20,  
        5.60 5.60,  6.00 6.00,  
        6.40 6.40,  6.80 6.80,  
        7.20 7.20,  7.60 7.60,  
        8.00 8.00  
        ]  
        }  
}  
]  
 
     },  
Transform  {  
   scale 0.70 0.70 0.70  
   translation 0.0 9.00 0.0  
   children  [  
  Transform {  
    translation                 15.00 2.0 0.0  
    children [  
      Shape {  
      appearance Appearance {  
        material Material  {diffuseColor 1.0 1.0 0.0  
 
                       transparency 0.0 }           }  
        geometry Text  {   
        string ["LevelThree"]  
         fontStyle FontStyle { size 2.0 }  
        }  
       }  
      ]  
      },  
Shape {  
   appearance Appearance {  
      material Material {  
      diffuseColor 1.0 1.0 0.0  
      }  
   }  
   geometry Extrusion {  
       creaseAngle 1.57  
       endCap TRUE  
       solid TRUE   
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       crossSection [  
       # Circle  
        1.00  0.00,   0.90 -0.38,   
        0.70 -0.70,   0.38 -0.90,   
        0.00 -1.00,  -0.38 -0.90,   
       -0.70 -0.70,  -0.91 -0.38,   
       -1.00 -0.00,  -0.91  0.38,   
       -0.70  0.70,  -0.38  0.90,   
        0.00  1.00,   0.38  0.90,   
        0.70  0.70,   0.90  0.38,   
        1.00  0.00   
        ]  
        spine [  
        # Straight-line  
          0.0 0.0 0.0,  0.0 0.4 0.0,   
          0.0 0.8 0.0,  0.0 1.2 0.0,   
          0.0 1.6 0.0,  0.0 2.0 0.0,   
          0.0 2.4 0.0,  0.0 2.8 0.0,   
          0.0 3.2 0.0,  0.0 3.6 0.0    
          0.0 4.0 0.0   
        ]   
        scale [  
        9.00 9.00,  9.40 9.40,  
        9.80 9.80,  10.20 10.20,  
        10.60 10.60,  11.00 11.00,  
        11.40 11.40,  11.80 11.80,  
        12.20 12.20,  12.60 12.60,  
        13.00 13.00  
        ]  
        }  
}  
]  
 
     },  
Transform  {  
   scale 0.70 0.70 0.70  
   translation 0.0 15.00 0.0  
   children  [  
  Transform {  
    translation                 22.00 2.0 0.0  
    children [  
      Shape {  
      appearance Appearance {  
        material Material  {diffuseColor 1.0 1.0 0.0  
 
                       transparency 0.0 }           }  
        geometry Text  {   
        string ["LevelFour"]  
         fontStyle FontStyle { size 2.0 }  
        }  
       }  
      ]  
      },  
 
Anchor { 
url "SecondView.wrl"   
 children [Shape {  
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   appearance Appearance {  
      material Material {  
      diffuseColor 1.0 0.0 1.0  
      }  
   }  
   geometry Extrusion {  
       creaseAngle 1.57  
       endCap TRUE  
       solid TRUE   
       crossSection [  
       # Circle  
        1.00  0.00,   0.90 -0.38,   
        0.70 -0.70,   0.38 -0.90,   
        0.00 -1.00,  -0.38 -0.90,   
       -0.70 -0.70,  -0.91 -0.38,   
       -1.00 -0.00,  -0.91  0.38,   
       -0.70  0.70,  -0.38  0.90,   
        0.00  1.00,   0.38  0.90,   
        0.70  0.70,   0.90  0.38,   
        1.00  0.00   
        ]  
        spine [  
        # Straight-line  
          0.0 0.0 0.0,  0.0 0.4 0.0,   
          0.0 0.8 0.0,  0.0 1.2 0.0,   
          0.0 1.6 0.0,  0.0 2.0 0.0,   
          0.0 2.4 0.0,  0.0 2.8 0.0,   
          0.0 3.2 0.0,  0.0 3.6 0.0    
          0.0 4.0 0.0   
        ]   
        scale [  
        15.00 15.00,  15.40 15.40,  
        15.80 15.80,  16.20 16.20,  
        16.60 16.60,  17.00 17.00,  
        17.40 17.40,  17.80 17.80,  
        18.20 18.20,  18.60 18.60,  
        19.00 19.00  
        ]  
        }  
}  
]  
 
     } 
 ] 
 }, 
 ] 
 } 
 ] } 
 ] 
 } 
 
 ] 
 } 
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Generated VRML Code:  SecondView.wrl 
 

(Note: The generated VRML code for SecondView.wrl has been excluded from this listing for sake 
of brevity).  It is hoped that the VRML code for Main.wrl will give the reader a representative 
glimpse of the VRML target code. 
 
 
7. Screen Snapshots of VRML Images  
 
 The VTADL source file, Example.txt, generates two views:  Main.wrl and 
SecondView.wrl.  The following screen is the legend portion of the Main view, implemented in file 
Main.wrl. 
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 The following screen shows the first architecture in the Main view, ExampleProgram, 
rendered in the call-and-return style.  There are four components and three connectors, with a root 
named “Alpha.”  Alpha contains a hyperlink to the VTADL source file, Example.txt.  Visible in the 
background is the second layered architecture, ExampleLayer. 
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 The next screen focuses on the second architecture (ExampleLayer) of the Main view.  The 
fourth layer, labeled “LevelFour,” contains a hyperlink to the VRML file, SecondView. 
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 In the second view (SecondView), the same layered architecture is used in three different 
versions.   The first version uses only the first two layers; the second version omits the second 
layer, while the third version uses all four layers.   
 The first version contains a hyperlink from the first layer to the Main view, and a hyperlink 
from the second layer to the source VTADL file, Example.txt. 
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Test Case Two  

 
 Case Study Report  

 
 

1. Name of Case Study: Test Case Two 
 
2. On-Line Posting (if any): None. Testing purposes only. 
 
3. Brief Description of the Purpose and Background of the Case Study: 

 
VTADL source file, "Test2.txt,” contains two architectures, but with more intricate 

components and connections than the first test.  We aim, in this test, to selectively show or hide 
components and connectors, to insure that single or multiple architectures can be displayed in a 
view, that multiple versions of the same architecture can be established in a view, and that 
hyperlinks from elements of an architecture can be established either to other views or to external 
files.   

The Main view contains two architectures, "TestArch1" (a call-and-return style with 
thirteen components) and  "TestArch2" (a layered style with six layers).  TestArch1 contains a 
hyperlink to the source file, "Test2.txt,” from the root. TestArch1 also contains a hyperlink from 
one of the children (component "D") to a view, “TestView1.”  TestArch2 contains a hyperlink to 
the view, “TestView2,” from the fourth layer.   

The second view, TestView2, contains only one architecture (TestArch1) but with selected 
components shown and others hidden.  TestView2 contains a hyperlink from the root to 
“TestView3.”   

TestView1 contains only one architecture, TestArch2, with the third and fourth layers 
hidden from view.  A hyperlink exists from the top layer to the view, TestView2. 

TestView3 contains four architectural structures:  three versions of TestArch1 (with 
different components and connectors kept hidden in each version), and one version of TestArch2.  
The version of TestArch2 has the second and fourth layers hidden, and the other layers visible. 

 
  

 
4. Name of VTADL Source File(s):   
 
 
Source File  View Files  Hyperlinked Files (Referenced) 
Test2.txt  Main.wrl  Test2.txt 
   TestView1.wrl  TestView1.wrl 
   TestView2.wrl  TestView2.wrl 
   TestView3.wrl  TestView3.wrl 
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5. VTADL Source Code Listing 
 
 The VTADL source file, Test2.txt, is listed below: 
 
 
Architecture TestArch1 
Style Program 
   { 
        ComponentList 
           { 
                   Component A 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom ASocket; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component B 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top BSocket; 
                          { InterfaceRole: Producer;  }                           
                           
                    Component C 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top CSocket; 
                          { InterfaceRole: Producer; } 
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                    Component D 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top DSocket; 
                          { InterfaceRole: Producer; }  
 
       
                    Component E 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top ESocket; 
                          { InterfaceRole: Producer; }  
 
        
                    Component F 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top FSocket; 
                          { InterfaceRole: Producer; }      
 
        Component G 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top GSocket; 
                          { InterfaceRole: Producer; }  
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        Component H 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top HSocket; 
                          { InterfaceRole: Producer; }             
 
        Component I 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top ISocket; 
                          { InterfaceRole: Producer; }       
 
         Component J 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top JSocket; 
                          { InterfaceRole: Producer; }       
 
        Component K 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top KSocket; 
                          { InterfaceRole: Producer; }       
 
        Component L 
                     ComponentType Cprogram; 
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                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top LSocket; 
                          { InterfaceRole: Producer; }       
 
        Component M 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top MSocket; 
                          { InterfaceRole: Producer; }                                                                  
              } 
 
        ConnectionList 
              {  
                  Connector BCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(ASocket, BSocket); 
                  Connector CCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(ASocket, CSocket); 
                  Connector DCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(ASocket, DSocket); 
    Connector ECall 
                     ConnectType Controlflow Unidirect; 
                     Connect(BSocket, ESocket); 
                  Connector FCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(BSocket, FSocket); 
                  Connector GCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(BSocket, GSocket); 
    Connector HCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(DSocket, HSocket); 
                  Connector ICall 
                     ConnectType Controlflow Unidirect; 
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                     Connect(DSocket, ISocket); 
                  Connector JCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(DSocket, JSocket); 
      Connector KCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(DSocket, KSocket); 
                  Connector LCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(KSocket, LSocket); 
                  Connector MCall 
                     ConnectType Controlflow Unidirect; 
                     Connect(KSocket, MSocket); 
            } 
    
  } 
 
Architecture TestArch2 
Style Layer 
 { 
    ComponentList 
      { 
        Component One 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: L1; 
           Process: ; 
          InterfaceList: 
            Interface Bottom Level1Socket; 
               { InterfaceRole: Producer; } 
 
         Component Two 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: L2; 
          Process: ; 
          InterfaceList: 
            Interface Top Level2Socket;  
               { InterfaceRole: Consumer; } 
 
         Component Three 
          ComponentType Cprogram; 
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          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: L3; 
          Process: ; 
          InterfaceList: 
            Interface Top Level3Socket;  
               { InterfaceRole: Consumer; } 
 
          Component Four 
           ComponentType Cprogram; 
           Properties: 
            CompRole: CompConsumer; 
            ChildOf: ; 
            Layer: L4; 
            Process: ; 
            InterfaceList: 
              Interface Top Level4Socket;  
                 { InterfaceRole: Consumer; } 
 
         Component Five 
           ComponentType Cprogram; 
           Properties: 
            CompRole: CompConsumer; 
            ChildOf: ; 
            Layer: L4; 
            Process: ; 
            InterfaceList: 
              Interface Top Level5Socket;  
                 { InterfaceRole: Consumer; } 
 
         Component Six 
           ComponentType Cprogram; 
           Properties: 
            CompRole: CompConsumer; 
            ChildOf: ; 
            Layer: L4; 
            Process: ; 
            InterfaceList: 
              Interface Top Level6Socket;  
                 { InterfaceRole: Consumer; } 
      } 
      ConnectionList 
       {  
         Connector Service1 
           ConnectType Dataflow Unidirect; 
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           Connect(Level1Socket,Level2Socket); 
 
         Connector Service2 
           ConnectType Dataflow Unidirect; 
           Connect(Level2Socket,Level3Socket); 
 
         Connector Service3 
           ConnectType Dataflow Unidirect; 
           Connect(Level3Socket,Level4Socket); 
 
  Connector Service4 
    ConnectType Dataflow Unidirect; 
    Connect(Level4Socket,Level5Socket); 
 
  Connector Service5 
    ConnectType Dataflow Unidirect; 
    Connect(Level5Socket,Level6Socket); 
 
          } 
 } 
  
     ViewList 
         { 
           ViewMain  {  { UsingArch TestArch1; 
                              { Components All; 
                                Connections All;  
                                HyperLinkOn A 
    ToFile "Test2.txt";  
                                HyperLinkOn D  
    ToFile TestView1; }} 
   { UsingArch TestArch2; 
    {  Components All; 
       Connections All; 
       HyperLinkOn Four  
                                                   ToFile TestView2; }} 
        }                                                        
                           
 
    View TestView1 {  { UsingArch TestArch2; 
                               { Components One Two Five Six; 
                                 Connections All; 
     HyperLinkOn Six ToFile TestView2; }} 
                          } 
 
 
            View TestView2 { { UsingArch TestArch1; 



250 

 

                              { Components A B C D E F K L M; 
                                Connections BCall CCall DCall ECall 
                                  FCall KCall LCall MCall; 
                                HyperLinkOn A 
                                   ToFile TestView3; }}                                             
                          }  
 
 
           View TestView3 {   
                             { UsingArch TestArch1; 
                               { Components A C D K L M; 
                                 Connections CCall DCall  
                                  KCall LCall MCall; }} 
                             { UsingArch TestArch1; 
                               { Components A B C D; 
                                 Connections BCall CCall; }}  
                             { UsingArch TestArch1; 
                               { Components A B D G H I J;  
                                 Connections BCall GCall HCall 
                                  ICall JCall; }}                                 
                             { UsingArch TestArch2; 
                                { Components One Three Five Six; 
                                  Connections All; }} 
                          }                                              
         } 
$ 
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6. VRML Target Code 
 

(Not included for sake of brevity). 
 
 
7. Screen Snapshots of VRML Images 
 

Test2 contains four views.  The legend from the Main view is given below: 
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The following screen shows the Main view, with architecture TestArch1 in the foreground, 
and the six-layered architecture, TestArch2, in the background.  The root of TestArch1 
contains a hyperlink to the source VTADL file, Test2.txt.  A hyperlink is also established 
from the component D to the view, TestView1. 
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 The focus of the following screen is the second architecture in the Main view, TestArch2.  
The fourth layer of the architecture contains a hyperlink to TestView2. 
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 The next view, TestView1, contains the layered architecture, TestArch2.  However, layers 
three and four are hidden.  A hyperlink is established from layer six to TestView2. 
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 The view, TestView2, contains a modified version of TestArch1.  Several nodes on the left 
and right subtrees of architecture TestArch1 are omitted.  Only nodes A, B, C, D, E, F, K, L, and M 
are shown.  A hyperlink is established from the root (node A) to TestView3.   
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 TestView3 is a view that contains three versions of TestArch1 (the call-and-return 
architecture), and a single version of TestArch2 (the layered architecture).  This view demonstrates 
multiple versions of the same architecture with both components and connections kept hidden.  
 The following screen snapshot displays a version of TestArch1 in the foreground, with the 
three other structures in the background.  The version of TestArch1 in the foreground uses only 
components A, C, D, K, L, and M, but with the pertinent connectors displayed. 
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 For the second version of TestArch1, nodes A, B, C, and D are shown, but the connector 
between A and D is hidden.  Node D is isolated as an “orphan” component in the distance. 
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 The third version of architecture TestArch1 consists of nodes A, B, G, D, H, I, and J.  
However, the connector between A and D is eliminated, resulting in two sub-architectures.  The 
first sub-architecture consists of nodes A, B, and G; the second sub-architecture consists of nodes 
D, H, I, and J, shown as follows: 
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 The layered architecture of TestArch2 is shown.  The second and fourth layers are hidden: 
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Appendix H 
 

 
 Case Study Report Template 
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Case Study Report Template 
 

 
1. Name of Case Study:  (Supply title of case study here) 
 
 
2. On-Line Posting (if any):  (Indicate url of any posting) 
 
 
3. Brief Description of the Purpose and Background of the Case Study: 
 

(Describe what the case study was about, any previous history in two-dimensional form, 
etc.) 

 
 
4. Name of VTADL Source File(s):   
 
 
Source File  View Files  Hyperlinked Files (Referenced) 
 
(VTADL)  (VRML)  (if any) 
 
 
 
5. VTADL Source Code Listing 
 
 (Attach when applicable).  
 
 
6. VRML Target Code  
 
 (Optional; used when necessary) 
 
 
7. Screen Snapshots of VRML Images 
 

(Provide representative screen shots). 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix I 
 
 
 

Case Studies
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Case Study One:  Views on a Mobile Robot Architecture 
 

Case Study Report 
 
 

 
1. Name of Case Study:  Views on a Mobile Robot Architecture 
 
2. On-Line Posting (if any): 

http://www.nova.edu/~inouyej/Dissertation/CaseStudies. 
 
3. Brief Description of the Purpose and Background of the Case Study: 

 
 This case study re-represents three different solutions to the problem of modeling 
the software architecture to control a mobile robot.  Each solution is represented in 
VTADL, then translated to the views in VRML.   
 The requirements for a mobile robot were described on page 43 in Software 
Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996].  We 
encapsulate the requirements here.  The architecture of the mobile robot must be designed 
so that the robot can successfully respond to stimuli from the environment while yet 
taking actions towards a goal.  The architecture must allow for uncertainty in 
information, danger to the system (e.g., lowered power supply), and design flexibility for 
future requirements. 
 Solution 1, as described by Shaw and Garlan, used a control loop architecture.  
Feedback from the environment was fed to a sensor component, which supplied data to a 
controller.  Based on the sensor data, the controller would direct action of the mobile 
robot by means of an actuator component; the actuator component would direct action of 
the mobile robot within the environment (thus completing the feedback loop).   The 
fundamental benefit of Solution 1 was its simplicity, capturing the essence of the robot's 
interaction with the environment.  The disadvantage to the control loop was the failure to 
model tasks requiring complex decomposition. 
 Solution 2 used a layered architecture.  The architecture, in the words of the 
authors, "nicely organizes the components needed to coordinate the robot's operation.”  
The disadvantage was that information often did not truly pass between adjacent layers as 
the layered model would imply.  
 Solution 3 used an implicit invocation architecture called TCA (for Task-Control 
Architecture).  By “implicit invocation” was meant that a process could be invoked by 
the occurrence of an event, with the constraint that the invoked processes do not interact 
with one another.  TCA instantiated a hierarchy of tasks called a task tree. TCA had the 
capability to reconfigure task trees during execution in response to changing robot states 
and environment.   The advantage to this model was that the model provided a clear-cut 
separation of action; replacement of components in such a modularized architecture was 
straightforward.  However, the drawback to this architecture was that the architecture did 
not model how the robot would handle uncertain conditions in the environment.   
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 Solution 4 used a blackboard architecture, but we did not model this architecture 
since the blackboard architectural style was not implemented in the compiler. 
 The three solutions (Solution 1, 2, and 3) were first represented using VTADL 
prior to visualization.  The VTADL representation was then translated into one or more 
VRML files using the compiler tool developed by this dissertation. 
 
 
4. Name of VTADL Source File(s):   
 
 
Source File  View Files   Hyperlinked Files (Referenced) 
MobileRobot.txt Main.wrl   ActUponEnviron.html 

 Solution1.wrl   Main.wrl 
   Solution2.wrl   MobileRobot.txt 
   Solution3.wrl   MobileRobotHTML.html 
       RunActuator.html 
       SenseData.html 
       Solution1.wrl 
       Solution2.wrl 
       Solution3.wrl 
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5. VTADL Source Code Listing ("MobileRobot.txt") 
 
 The VTADL source code for the Mobile Robot case study is provided below. 
 
Architecture LayerSolutionOne 
Style Layer 
   { 
        ComponentList 
              { 
                   Component Environment 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf: ; 
                        Layer: e1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Top EnviroData; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component ActiveComponent 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: e2; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Bottom LoopFromEnviron; 
                          { InterfaceRole: Consumer;  }                                                     
                           
                    Component Controller 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom ControlData; 
                          { InterfaceRole: Consumer; }                           
              } 
        ConnectionList 
              {  
                  Connector SensorData 
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                     ConnectType Dataflow Bidirect; 
                     Connect(EnviroData, LoopFromEnviron); 
                  Connector DataControl 
                     ConnectType Dataflow Bidirect; 
                     Connect(LoopFromEnviron, ControlData); 
              } 
  } 
 
Architecture SenseSolutionOne 
Style Program 
   { 
        ComponentList 
              { 
                   Component ActiveComponent 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf:  ; 
                        Layer: x1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom ActiveSocket; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component Actuators 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: x2; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top ConnActuator; 
                          { InterfaceRole: Producer;  }                                                     
                           
                    Component Sensors 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf: ; 
                          Layer: x3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top SocketSense; 
                          { InterfaceRole: Consumer; }           
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                   Component Environment 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf: ; 
                          Layer: x4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top EnvConn; 
                          { InterfaceRole: Consumer; }                                               
              } 
 
        ConnectionList 
              {  
                  Connector RunActuator 
                     ConnectType Dataflow Unidirect; 
                     Connect(ActiveSocket, ConnActuator); 
                  Connector SenseData 
                     ConnectType Dataflow Unidirect; 
                     Connect(ActiveSocket, SocketSense); 
                  Connector DetectEnv 
                     ConnectType Dataflow Unidirect; 
                     Connect(SocketSense, EnvConn); 
              } 
  } 
 
Architecture ActSolutionOne 
Style Program 
   { 
        ComponentList 
              { 
                   Component ActiveComponent 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf:  ; 
                        Layer: p1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom ActiveSocket; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component Actuators 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
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                          ChildOf: ;  
                          Layer: p2; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top ConnActuator; 
                          { InterfaceRole: Producer;  }                                                     
                           
                    Component Sensors 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf: ; 
                          Layer: p3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top SocketSense; 
                          { InterfaceRole: Consumer; }           
 
                   Component Environment 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top EnvConn; 
                          { InterfaceRole: Consumer; }                                               
              } 
 
        ConnectionList 
              {  
                  Connector RunActuator 
                     ConnectType Dataflow Unidirect; 
                     Connect(ActiveSocket, ConnActuator); 
                  Connector SenseData 
                     ConnectType Dataflow Unidirect; 
                     Connect(ActiveSocket, SocketSense); 
                  Connector ActUponEnviron 
                     ConnectType Dataflow Unidirect; 
                     Connect(ConnActuator, EnvConn); 
              } 
  } 
 
Architecture SolutionTwo 
Style Layer 
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   { 
        ComponentList 
              { 
                   Component Environment 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf: ; 
                        Layer: e1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Top EN1; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component RobotControl 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: e2; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Bottom RC2; 
                          { InterfaceRole: Consumer;  }                                                     
                           
                    Component SensorInterpret 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom SR3; 
                          { InterfaceRole: Consumer; }    
 
                   Component SenseIntegrate 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom SI4; 
                          { InterfaceRole: Consumer; }                                                  
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                    Component RealWorldModel 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom Real5; 
                          { InterfaceRole: Consumer; }                           
 
                    Component Navigation 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom Nav6; 
                          { InterfaceRole: Consumer; }                           
 
                   Component GlobalPlan 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom GlobalSocket; 
                          { InterfaceRole: Consumer; } 
   
                    Component Supervisor 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: e3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Bottom SupSocket; 
                          { InterfaceRole: Consumer; }                                            
              } 
        ConnectionList 
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              {  
                  Connector OneConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(EN1,RC2); 
                  Connector TwoConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(RC2,SR3); 
                   Connector ThreeConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(SR3,SI4); 
                  Connector FourConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(SI4,Real5); 
                  Connector FiveConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(Real5, Nav6); 
                  Connector SixConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(Nav6,GlobalSocket); 
                  Connector SevenConn 
                     ConnectType Dataflow Bidirect; 
                     Connect(GlobalSocket,SupSock); 
              } 
  } 
 
Architecture ImplicitInvoke 
Style Program 
   { 
        ComponentList 
              { 
                   Component Task 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf:  ; 
                        Layer: p1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom TaskSocket; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component ExceptTask 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
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                          Layer: p2; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top ExceptSocket; 
                          { InterfaceRole: Producer;  }                                                     
                           
                    Component Ether 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf: ; 
                          Layer: p3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top EthSocket; 
                          { InterfaceRole: Consumer; }           
 
                   Component DispatchTask 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top DispSocket; 
                          { InterfaceRole: Consumer; }           
 
                   Component WiredTask 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top WiretapSocket; 
                          { InterfaceRole: Consumer; }                                               
 
                   Component TappedTask 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
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                          InterfaceList: 
                          Interface Top TapSocket; 
                          { InterfaceRole: Consumer; }                                                                                                     
              } 
        ConnectionList 
              {  
                  Connector Exception 
                     ConnectType Dataflow Unidirect; 
                     Connect(TaskSocket, ExceptSocket); 
                  Connector Message 
                     ConnectType Dataflow Unidirect; 
                     Connect(TaskSocket, EthSocket); 
                  Connector Dispatched 
                     ConnectType Dataflow Unidirect; 
                     Connect(EthSocket, DispSocket); 
                   Connector Tapped 
                     ConnectType Dataflow Unidirect; 
                     Connect(EthSocket, TapSocket); 
                   Connector WireTapped 
                     ConnectType Dataflow Unidirect; 
                     Connect(EthSocket, WiretapSocket); 
              } 
  } 
 
Architecture TaskTree 
Style Program 
   { 
        ComponentList 
              { 
                   Component GatherRock 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompProducer; 
                        ChildOf:  ; 
                        Layer: p1; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom GatherSocket; 
                          { InterfaceRole: Producer;  }                                              
 
                   Component GotoPosition 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: p2; 
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                          Process:  ; 
                          InterfaceList: 
                          Interface Top PositionSocket; 
                          { InterfaceRole: Producer;  }                                                     
                           
                    Component GrabRock 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf: ; 
                          Layer: p3; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top GrbSocket; 
                          { InterfaceRole: Consumer; }           
 
                   Component LiftRock 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top LiftSocket; 
                          { InterfaceRole: Consumer; }           
 
                   Component MoveLeft 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top LeftMoveSocket; 
                          { InterfaceRole: Consumer; }                                               
 
                   Component MoveForward 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompConsumer; 
                          ChildOf:  ; 
                          Layer: p4; 
                          Process: ;  
                          InterfaceList: 
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                          Interface Top FwdMoveSocket; 
                          { InterfaceRole: Consumer; }                                                                                                    
              } 
        ConnectionList 
              {  
                  Connector PositCall 
                     ConnectType Dataflow Unidirect; 
                     Connect(GatherSocket, PositionSocket); 
                  Connector GrabCall 
                     ConnectType Dataflow Unidirect; 
                     Connect(GatherSocket, GrbSocket); 
                  Connector LiftCall 
                     ConnectType Dataflow Unidirect; 
                     Connect(GatherSocket, LiftSocket); 
                   Connector LeftCallMove 
                     ConnectType Dataflow Unidirect; 
                     Connect(PositionSocket, LeftMoveSocket); 
                   Connector FwdMoveSocket 
                     ConnectType Dataflow Unidirect; 
                     Connect(PositionSocket, FwdMoveSocket); 
              } 
  } 
 
 
     ViewList 
         { 
           ViewMain  {  { UsingArch LayerSolutionOne; 
                                   { Components All;                                                      
                                      Connections All;  
       HyperLinkOn Controller ToFile "MobileRobotHTML.html";  
                                      HyperLinkOn ActiveComponent ToFile Solution1; }} 
                              } 
 
            View Solution1     
                            {   { UsingArch SenseSolutionOne; 
                                     { Components ActiveComponent Actuators Sensors; 
                                        Connections RunActuator SenseData; 
                                        HyperLinkOn ActiveComponent ToFile "MobileRobot.txt"; }} 
                              
                                   { UsingArch SenseSolutionOne; 
                                    { Components All; 
                                       Connections All; }}                                                    
 
                                  { UsingArch ActSolutionOne; 
                                    { Components All; 
                                       Connections All; 
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     HyperLinkOn ActiveComponent ToFile "MobileRobot.txt";  
                           HyperLinkOn RunActuator ToFile "RunActuator.html"; 
                           HyperLinkOn SenseData ToFile "SenseData.html";  
                           HyperLinkOn ActUponEnviron ToFile "ActUponEnviron.html";  }}                                 
                              }    
               
            View Solution2 
                              {  { UsingArch SolutionTwo; 
                                     { Components Navigation GlobalPlan Supervisor; 
                                        Connections All; 
                                        HyperLinkOn Supervisor ToFile "MobileRobotHTML.html"; }} 
 
                                  { UsingArch SolutionTwo; 
                                     { Components Environment RobotControl SensorInterpret  
                                        SenseIntegrate; 
                                        Connections All;  }} 
 
                 { UsingArch SolutionTwo; 
                                     { Components SenseIntegrate RealWorldModel Navigation; 
                                        Connections All; }} 
                                       
                                  { UsingArch SolutionTwo; 
                                     { Components All; 
                                        Connections All; }} 
                               }        
 
            View Solution3 
                              {  { UsingArch ImplicitInvoke; 
                                     { Components All; 
                                        Connections All; }}                       
                                  { UsingArch TaskTree; 
                                     { Components All; 
                                        Connections All; }} 
                               } 
         } 
 
$ 
 
 
 
 
6. VRML Target Code:   Main.wrl 
 
 The generated VRML code is not included here for sake of brevity.   
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7. Screen Snapshots of VRML Images: 
 
 The legend within the main view is provided below.  In addition to the main view, 
three other views are provided:  Solution1, Solution2, and Solution3. 
 

 
 
 The layered architecture, "LayerSolutionOne," is also contained within the main 
view.  LayerSolutionOne has three layers which represent the environment, a generic 
active component of the robot architecture, and the controller.  A hyperlink exists from 
the controller layer to an html file (an html file that describes the architecture, 
"MobileRobotHTML.html").  A hyperlink from ActiveComponent serves as a portal to 
the next view, "Solution1." 
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 The next view, “Solution1,” contains two architectures, “SenseSolutionOne” and 
“ActSolutionOne.”  Two renditions are made of SenseSolutionOne. The architecture 
SenseSolutionOne is pictured below as a call-and-return architecture representing a 
generic active component’s control over actuators and sensors in the mobile robot (the 
other rendition can be seen in the background, along with ActSolutionOne).  In the 
snapshot, only three components and two connectors are visualized, with other 
architectural elements hidden. 
 A hyperlink exists from the root, ActiveComponent, to the source VTADL file, 
“MobileRobot.txt.” 
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 The second rendition of SenseSolutionOne (also contained within view Solution1) 
displays all components and connections, as seen below: 
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 Architecture “ActSolutionOne” is the second architecture within view file 
Solution1.  All components and connectors are shown.  Several hyperlinks were 
established:  from “ActiveComponent” to the source VTADL file, MobileRobot.txt; from 
the connector, “RunActuator” to an html file, “RunActuator.html”; from the connector, 
“SenseData” to the file, “SenseData.html”; and from connector “ActUponEnviron” to the 
html file, “ActUponEnviron.html.” 
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 As a demonstration of the hyperlink, the html file referenced by connector 
RunActuator (“RunActuator.html”) is provided below as a screen snapshot: 
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 The view, “Solution2,” contains four different renditions of the same layered 
architecture, “SolutionTwo.”   
 In the snapshot below, the first rendition of SolutionTwo is seen in the 
foreground.  The top three layers of the architecture are shown, and the remaining five 
layers are kept hidden.  A hyperlink is established from the Supervisor layer to the file, 
MobileRobotHTML.html.  The other renditions of the architecture are visible in the 
background: 
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 A second rendition of architecture SolutionTwo shows only the lower three 
layers, while the third rendition shows the middle three layers.  The fourth rendition 
displays all layers. 
 We show only one other rendition of architecture SolutionTwo.  The fourth 
rendition below shows all eight layers of the architecture: 
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 The view, “Solution3,” contains two architectures.  The first, “ImplicitInvoke,” 
implements the implicit invocation solution to the mobile robot architecture (consult the 
text describing the original case study [Shaw and Garlan, 1996] for full details).  The 
second architecture, “TaskTree,” represents an instantiation for the task of moving to a 
rock and picking it up. 
 The architecture ImplicitInvoke is shown in the foreground in the following 
screen snapshot: 
 

 
 
 
 
 In the ImplicitInvoke architecture, a parent task generates an exception event, 
resulting in a child exception task (“ExceptTask”).  A parent task may also generate a 
message through the ether by various methods (dispatch, wiretapping, or tapping), 
resulting in the actualization of a child task. 
 Architecture TaskTree shows how the task of gathering a rock is instantiated: 
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The parent task of gathering a rock consists of the mobile robot first moving to the rock 
(represented by the component, “GoToPosition,” and the children of GoToPosition); then 
grabbing the rock (represented by “Grab Rock”); and finally lifting the rock (represented 
by component “LiftRock”).  The connectors to these subtasks represent the calls to the 
child tasks. 
 



287 

 

Case Study Two:  Visualization of the Linux Conceptual and Concrete 
Architectures 

 
Case Study Report 

 
 
 
1. Name of Case Study:  Visualization of Linux Conceptual and Concrete 

Architectures. 
 
2. On-Line Posting (if any):  

http://www.nova.edu/~inouyej/Dissertation/CaseStudies. 
 
3. Brief Description of the Purpose and Background of the Case Study: 

 
 This case study modifies the original visualization in the plane of the Linux 
operating system architecture [Bowman et al., 1998].  Viewpoints on the conceptual and 
concrete architectures are re-modeled in VTADL, then compiled into several visualized, 
three-dimensional worlds (viewpoints) in VRML. 
  
 
  
 
4. Name of VTADL Source File(s):   
 
 
Source File  View Files   Hyperlinked Files (Referenced) 
ArchConcrete.txt Main.wrl   ArchConcept.txt 
ArchConcept.txt IPCSubsystem.wrl  ConceptVirtualFile.wrl 
   ConceptVirtualFile.wrl ConceptIPC.wrl 
   ConceptNetwork.wrl  IPCSubsystem.wrl 
   ConceptMemoryMgr.wrl  
   ConceptIPC.wrl 
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5. VTADL Source Code Listing  
 
 Two source code files were used instead of one.  The first VTADL file was 
“ArchConcrete.txt,” containing architectures and viewpoints on the concrete architecture 
of the Linux IPC (Interprocess Controller) subsystem.  The second VTADL file was 
“ArchConcept.txt,” containing architectures and viewpoints on the high-level, conceptual 
architecture of the Linux operating system.  The viewpoints (VRML files) were 
integrated through hyperlinks within the architectural structures. 
 The file, ArchConcrete.txt, generated the VRML files “Main.wrl” and 
“IPCSubsystem.wrl.”  The main file generated by ArchConcrete.txt was not used in the 
final visualization.  Instead, Main.wrl was overwritten by the Main.wrl file generated by 
VTADL file, ArchConcept.txt.   
 Thus, ArchConcrete.txt was compiled first.  ArchConcept.txt was compiled 
second, overwriting the main file generated by ArchConcrete.txt. 

File ArchConcept.txt generated the final “main.wrl” file used, along with VRML 
files “ConceptVirtualFile” (representing the conceptual architecture of the Virtual File 
subsystem), “ConceptNetwork” (representing the conceptual architecture of the Network 
subsystem), “ConceptMemoryMgr” (representing the conceptual architecture of the 
Memory Manager), and “ConceptIPC” (representing the conceptual architecture of the 
Interprocess Controller, which references via hyperlink the concrete architecture, 
“IPCSubsystem”). 
 The VTADL source code for ArchConcrete.txt and ArchConcept.txt are provided 
below. 
 

(The following code is from ArchConcept.txt and represents the conceptual 
architecture of the Linux operating system kernel).  
 
Architecture ConceptualProcess 
Style Program 
   { 
        ComponentList 
              { 
 
                   Component ProcessSched 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom ProcessSocket; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component VirtualFileSystem 
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                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top FSSocket; 
                          { InterfaceRole: Producer;  }                           
                           
                    Component Network 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top NetSocket; 
                          { InterfaceRole: Producer; } 
 
                    Component MemoryMgr 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top MMSocket; 
                          { InterfaceRole: Producer; } 
                                                   
                   Component IPC 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top IPCSocket; 
                          { InterfaceRole: Producer; } 
                                                                           
              } 
 
        ConnectionList 
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              {  
                  Connector CallVfs 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, FSSocket); 
                  Connector CallNet 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, NetSocket); 
                  Connector CallMemMgr 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, MMSocket); 
                  Connector CallIPC 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, IPCSocket); 
              } 
    
  } 
 
Architecture ConcreteProcess 
Style Program 
   { 
        ComponentList 
              { 
 
                   Component sched 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom ProcessSocket; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component fs 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top FSSocket; 
                          { InterfaceRole: Producer;  }                           
                           
                    Component net 
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                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top NetSocket; 
                          { InterfaceRole: Producer; } 
 
                    Component mm 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top MMSocket; 
                          { InterfaceRole: Producer; } 
                                                   
                   Component ipc 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top IPCSocket; 
                          { InterfaceRole: Producer; } 
                                                                           
              } 
 
        ConnectionList 
              {  
                  Connector Callfs 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, FSSocket); 
                  Connector Callnet 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, NetSocket); 
                  Connector Callmm 
                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, MMSocket); 
                  Connector Callipc 
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                     ConnectType Dataflow Unidirect; 
                     Connect(ProcessSocket, IPCSocket); 
              } 
    
  } 
 
Architecture NetLayers 
Style Layer 
 { 
    ComponentList 
      { 
        Component HWDrivers 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: hw1; 
           Process: ; 
          InterfaceList: 
            Interface Top HWService1; 
               { InterfaceRole: Producer; } 
 
         Component NetProtocols 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: proto1; 
          Process: ; 
          InterfaceList: 
            Interface Bottom ReceiveHW1;  
               { InterfaceRole: Consumer; } 
 
         Component Network 
           ComponentType Cprogram; 
           Properties: 
           CompRole: CompConsumer; 
           ChildOf: ; 
           Layer: Network; 
           Process: ; 
           InterfaceList: 
             Interface Bottom ReceiveNet1; 
                { InterfaceRole: Consumer; } 
  
      } 
      ConnectionList 
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       {  
         Connector NetService 
           ConnectType Dataflow Unidirect; 
           Connect(HWService1,ReceiveHW1); 
         Connector NetProto 
           ConnectType Dataflow Unidirect; 
           Connect(ReceiveHW1,ReceiveNet1); 
       } 
 } 
 
Architecture VirtualFileLayers 
Style Layer 
 { 
    ComponentList 
      { 
        Component HWDrivers 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: hw1; 
           Process: ; 
          InterfaceList: 
            Interface Top HWService1; 
               { InterfaceRole: Producer; } 
 
         Component LogicFileSystem 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: LogicFile; 
          Process: ; 
          InterfaceList: 
            Interface Bottom ReceiveHW1;  
               { InterfaceRole: Consumer; } 
 
         Component VirtualFileSystem 
           ComponentType Cprogram; 
           Properties: 
           CompRole: CompConsumer; 
           ChildOf: ; 
           Layer: VF; 
           Process: ; 
           InterfaceList: 
             Interface Bottom ReceiveVF1; 
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                { InterfaceRole: Consumer; } 
  
      } 
      ConnectionList 
       {  
         Connector FileService 
           ConnectType Dataflow Unidirect; 
           Connect(HWService1,ReceiveHW1); 
         Connector FileSystem 
           ConnectType Dataflow Unidirect; 
           Connect(ReceiveHW1,ReceiveVF1); 
       } 
 } 
 
Architecture MemoryLayers 
Style Layer 
 { 
    ComponentList 
      { 
        Component HWDependent 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: HWDep; 
           Process: ; 
          InterfaceList: 
            Interface Top HWService1; 
               { InterfaceRole: Producer; } 
 
          Component HWIndependent 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: HWIndep; 
          Process: ; 
          InterfaceList: 
            Interface Bottom ReceiveHW1;  
               { InterfaceRole: Consumer; } 
 
         Component MemoryMgr 
           ComponentType Cprogram; 
           Properties: 
           CompRole: CompConsumer; 
           ChildOf: ; 
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           Layer: MMMgr; 
           Process: ; 
           InterfaceList: 
             Interface Bottom ReceiveMem1; 
                { InterfaceRole: Consumer; } 
  
      } 
      ConnectionList 
       {  
         Connector HWDepService 
           ConnectType Dataflow Unidirect; 
           Connect(HWService1,ReceiveHW1); 
         Connector HWIndepService 
           ConnectType Dataflow Unidirect; 
           Connect(ReceiveHW1,ReceiveMem1); 
       } 
 } 
 
Architecture IPC 
Style Layer 
 { 
    ComponentList 
      { 
        Component IPCCallInterface 
          ComponentType Cprogram; 
          Properties: 
           CompRole:  CompProducer; 
           ChildOf: ; 
           Layer: ; 
           Process: ; 
          InterfaceList: 
            Interface Bottom SystemCall; 
               { InterfaceRole: Consumer; } 
 
         Component SystemVIPC 
          ComponentType Cprogram; 
          Properties: 
          CompRole: CompConsumer; 
          ChildOf: ; 
          Layer: ; 
          Process: ; 
          InterfaceList: 
            Interface Top SystemVSocket;  
               { InterfaceRole: Producer; } 
  
      } 
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      ConnectionList 
       {  
         Connector SystemCallInterface 
           ConnectType Dataflow Unidirect; 
           Connect(SystemCall,SystemVSocket); 
       } 
 } 
 
 
     ViewList 
         { 
           ViewMain  {  { UsingArch ConceptualProcess; 
                              { Components All;                                 
                                Connections All; 
                                HyperLinkOn VirtualFileSystem ToFile ConceptVirtualFile; 
                                HyperLinkOn CallIPC ToFile ConceptIPC; 
                                HyperLinkOn ProcessSched ToFile "archConcept.txt"; }}                                                  
                        { UsingArch IPC; 
                              { Components All; 
                                Connections All; }} 
                        { UsingArch ConcreteProcess; 
                              { Components All; 
                                Connections All; }}                                   
                     }  
 
            View ConceptVirtualFile  
                     {  { UsingArch VirtualFileLayers; 
                            { Components All; 
                              Connections All; }} 
                     } 
 
            View ConceptNetwork 
                     {  { UsingArch NetLayers; 
                            { Components All; 
                              Connections All; }} 
 
                     } 
 
            View ConceptMemoryMgr 
                     {  { UsingArch MemoryLayers; 
                            { Components All; 
                              Connections All; }} 
                     } 
 
            View ConceptIPC 
                     {  { UsingArch IPC; 
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                           { Components All; 
                             Connections All;  
                             HyperLinkOn IPCCallInterface ToFile IPCSubsystem; }} 
                     } 
  
                                            
         } 
 
$ 
 
(The following code is from ArchConcrete.txt and represents the concrete architecture of 
the Linux kernel): 
 
Architecture IPCSubsystem 
Style Program 
   { 
        ComponentList 
              { 
 
                   Component SystemCallInterface 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom SysCallSocket; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component NetIPC 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top NetIPCSocket; 
                          { InterfaceRole: Producer;  }     
                          Interface Bottom NetDomainSocket; 
                          { InterfaceRole: Consumer; } 
 
                    Component SystemVIPC 
                     ComponentType Cprogram; 
                     Properties: 
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                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top SystemVSocket; 
                          { InterfaceRole: Producer;  }                                                                
                          Interface Bottom SystemVLower; 
                          { InterfaceRole: Consumer; } 
 
                    Component FileIPC 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top FileSocket; 
                          { InterfaceRole: Producer;  } 
                          Interface Bottom FileLower; 
                          { InterfaceRole: Consumer; }               
                           
                    Component DomainSockets 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top DomainPlug; 
                          { InterfaceRole: Producer; } 
 
                    Component MessageQueues 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top MsgSocket; 
                          { InterfaceRole: Producer; } 
 
                    Component SharedMemory 
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                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top SharedSocket; 
                          { InterfaceRole: Producer;  }               
                                                   
                   Component KernelIPC 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ; 
                          Layer: ; 
                          Process: ;  
                          InterfaceList: 
                          Interface Top KernelSocket; 
                          { InterfaceRole: Producer; } 
 
                    Component Semaphores 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top SemaSocket; 
                          { InterfaceRole: Producer;  }               
 
                    Component fifo 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top fifoSocket; 
                          { InterfaceRole: Producer;  }               
 
                    Component pipes 
                     ComponentType Cprogram; 
                     Properties: 
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                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top pipesSocket; 
                          { InterfaceRole: Producer;  }    
            
                    Component WaitQueues 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top WaitQSocket; 
                          { InterfaceRole: Producer;  }               
 
                    Component Signals 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top SignalsSocket; 
                          { InterfaceRole: Producer;  }                                                                                         
              } 
 
        ConnectionList 
              {  
                  Connector CallNetIPC 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysCallSocket, NetIPCSocket); 
                  Connector CallSysVIPC 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysCallSocket, SystemVSocket); 
                  Connector CallFileIPC 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysCallSocket, FileSocket); 
                  Connector CallDomain 
                     ConnectType Dataflow Unidirect; 
                     Connect(NetDomainSocket, DomainPlug); 
                  Connector CallMessage 
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                     ConnectType Dataflow Unidirect; 
                     Connect(SystemVLower,MsgSocket); 
                  Connector CallSharedMem 
                     ConnectType Dataflow Unidirect; 
                     Connect(SystemVLower, SharedSocket); 
                  Connector CallKernelIPC 
                     ConnectType Dataflow Unidirect; 
                     Connect(SystemVLower, KernelSocket);        
                  Connector CallSemaphores 
                     ConnectType Dataflow Unidirect; 
                     Connect(SystemVLower, SemaSocket);               
                  Connector Callfifo 
                     ConnectType Dataflow Unidirect; 
                     Connect(FileLower,fifoSocket); 
                  Connector Callpipes 
                     ConnectType Dataflow Unidirect; 
                     Connect(FileLower,pipesSocket);                    
                  Connector CallWaitQ 
                     ConnectType Dataflow Unidirect; 
                     Connect(KernelSocket, WaitQSocket); 
                  Connector CallSignals 
                     ConnectType Dataflow Unidirect; 
                     Connect(KernelSocket, SignalsSocket); 
              }           
    
  } 
 
 
Architecture IPCDepends 
Style Program 
   { 
        ComponentList 
              { 
 
                   Component IPC 
                     ComponentType Cprogram; 
                     Properties: 
                        CompRole:  CompConsumer; 
                        ChildOf: ; 
                        Layer: ; 
                        Process: ; 
                     InterfaceList: 
                       Interface Bottom SysDepends; 
                          { InterfaceRole: Consumer;  }                        
 
                   Component ProcessScheduler 
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                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top ProcSocket; 
                          { InterfaceRole: Producer;  }     
 
                    Component MemoryMgr 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top MemSocket; 
                          { InterfaceRole: Producer;  }                                                                                               
 
                    Component FileSystem 
                     ComponentType Cprogram; 
                     Properties: 
                          CompRole: CompProducer; 
                          ChildOf: ;  
                          Layer: ; 
                          Process:  ; 
                          InterfaceList: 
                          Interface Top FileSysSocket; 
                          { InterfaceRole: Producer;  }                                                                                               
            
              } 
 
        ConnectionList 
              {  
                  Connector CallProcessSched 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysDepends, ProcSocket); 
                  Connector CallMemMgr 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysDepends, MemSocket); 
                  Connector CallFileSys 
                     ConnectType Dataflow Unidirect; 
                     Connect(SysDepends, FileSysSocket); 
              }           
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  } 
                                                                           
 
     ViewList 
         { 
           ViewMain  {  { UsingArch IPCSubsystem; 
                              { Components All;                                 
                                Connections All; 
                                HyperLinkOn NetIPC ToFile "Testref.txt"; }} 
                     } 
                                                                           
           View IPCSubsystem {  { UsingArch IPCSubsystem; 
                                 { Components All; 
                                   Connections All; }} 
                               { UsingArch IPCDepends; 
                                 { Components All; 
                                   Connections All; }}                       
                            }  
                  
         } 
 
$ 
 
 
 
 
 
6. VRML Target Code:   Main.wrl 
 
 The generated VRML code for this visualization is not provided for sake of 
brevity. 
 



304 

 

 
7. Screen Snapshots of VRML Images: 
 
 The legend in the main view of the Linux visualization is provided in the screen 
snapshot below.   
 

 
 
 
 



305 

 

 
 
 In the screen shot below, the first architecture (of three architectures within the 
main view) is visualized.  The architecture in the foreground within the main view is 
“ConceptualProcess,” representing the highest level of the conceptual architecture of the 
Linux kernel.  The view of ConceptualProcess is from the vantage point of the Process 
Scheduler (component “ProcessSched” at the root).  The children of ProcessSched 
represent the conceptual modules called by the Process Scheduler.  The Process 
Scheduler may call the Virtual File System, Memory Manager, Network, or IPC. 
 A hyperlink is established on the component VirtualFileSystem to the 
ConceptVirtualFile view.  A hyperlink is also established on component CallIPC to the 
view file, ConceptIPC.  Finally, a hyperlink exists from the root (ProcessSched) to the 
VTADL source file, “ArchConcept.txt.” 
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 The second architecture within the main view is the conceptual IPC architecture, 
represented by a layered structure with two layers:  the IPC Call Interface and the System 
V IPC controller.   
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 The snapshot below provides the third architecture in the main view, a 
representation of the Concrete Process of the Linux system architecture.  The scheduler is 
represented as a root (“sched”) of a three-dimensional tree, with children labeled “fs” 
(file system module), “net” (the network drivers), “mm” (the memory management 
routine), and “ipc” (for the interprocess control module). 
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 In the next view, “ConceptVirtualFile,” emphasis is placed on the conceptual 
virtual file manager architecture.  A single architecture, “VirtualFileLayers,” is 
represented within ConceptVirtualFile.  This single architecture consists of three layers: 
“HW Drivers” (or the layer representing hardware drivers), “LogicFileSystem” (the 
logical file system layer), and “VirtualFileSystem” (the layer representing the virtual file 
system of the Linux kernel).   
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 The view, “ConceptNetwork,” represents the conceptual architecture of the 
network system.  The network architecture is visualized as a layered cone, with hardware 
drivers at the base, network protocols in the center, and the network layer itself at the top: 
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 The view of the conceptual memory manager, “ConceptMemoryMgr,” consists of 
a single layered architecture, “MemoryLayers,” as seen below: 
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 The view, “ConceptIPC,” is comprised of a single layered architecture called 
“IPC.”  The layered architecture (shown below) represents the conceptual architecture of 
the Linux kernel Interprocess Controller.  The top layer represents the System V IPC, 
while the bottom layer represents the IPC Call Interface.  The bottom layer contains a 
very important hyperlink to the detailed view of the concrete IPC Subsystem.  The view 
file referenced is “IPCSubsystem.wrl.” 
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 The view, “IPCSubsystem,” describes the concrete architecture of the IPC 
subsystem to the lowest level of detail.  IPCSubsystem consists of two call-and-return 
style architectures, “IPCSubsystem” and “IPCDepends.”  IPCSubsystem is in the 
foreground in the screen snapshot provided below (the IPCDepends architecture is visible 
in the left background).   
 At the root of the IPCSubsystem architecture is a node representing the system 
call interface of the interprocess controller.  The system call interface may make calls to 
the network IPC, the file IPC, or the System V IPC.  The network IPC may call domain 
sockets; the file IPC may, in turn, call fifo (first-in, first-out) data structures or pipes.  The 
System V IPC may call message queues to support interprocess messaging.  The System 
V IPC may also call semaphores, shared memory, or data structures available to the 
kernel IPC (waitqueues or signals).  Thus, the hierarchy of control within the IPC 
architecture is visualized in the VRML medium. 
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 In our final snapshot, the architecture, “IPCDepends,” is brought to the 
foreground.  This architecture describes the dependencies between a generic IPC process 
and the process scheduler, memory manager, and file system. 
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