
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2002

A Technique for Visualizing Software Architectures
Jon M. Inouye
Nova Southeastern University

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Jon M. Inouye. 2002. A Technique for Visualizing Software Architectures. Doctoral dissertation. Nova Southeastern University. Retrieved
from NSUWorks, Graduate School of Computer and Information Sciences. (603)
https://nsuworks.nova.edu/gscis_etd/603.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Technique for Visualizing Software Architectures

by

Jon M. Inouye

A Final Dissertation Report
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Graduate School of Computer and Information Sciences
Nova Southeastern University

2002

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Technique for Visualizing Software Architectures

by
Jon M. Inouye

March 2002

Software architecture appeared in the early 1990s as a distinct discipline within
software engineering. Models based on software architecture attempt to reduce the
complexity of software by providing relatively coarse-grained structures for representing
different aspects of software development. A software architecture typically consists of
various components and connections arranged in a specific topology. Elements of the
topology can serve as abstractions on (for example) modules, objects, protocols or
interfaces. The meaning of the topology depends on viewpoint.

Software architectures can be described using an architecture description
language (ADL). The key goals of ADLs are to communicate alternate designs to the
different individuals involved in software development (such individuals are referred to
as "stakeholders"), to detect reusable structures, and to record design decisions.

A major problem in software architecture has been the difficulty of creating
different representations of an architecture to accommodate differing viewpoints of
stakeholders. Ideally, different viewpoints would be conveyed in a way that is both
comprehensive enough for specialists but consistent enough for generalists. The
representation problem has been one of reconciling and integrating different viewpoints.

This dissertation provided a solution to the representation problem by creating a
tool for three-dimensional visualization of software architectures using the Virtual
Reality Modeling Language (VRML). Different architectural viewpoints were first
defined in an ADL called the Visually Translatable Architecture Description Language
(VTADL). When VTADL was translated into VRML, software architectures were
embodied within three-dimensional "worlds" through which stakeholders may navigate.
Each viewpoint was a separate VRML world. A viewpoint could be related to other
viewpoints, representing different facets of software architectures, to reflect different
stakeholder requirements. Traceability from design to requirements was possible through
VRML hyperlinks from the visualized architecture.

The goal of the dissertation was to develop a prototype for demonstrating the
visualization technique. Based on the successful results of two visualization case studies,
we concluded that the goal was achieved.

Refinement of the prototype into a polished visualization tool was recommended.
In future research, the refined version should be used for realistic evaluation of the
technique in an actual software development environment.

Acknowledgements

The completion of this dissertation signified a major transition in my life, an
endeavor requiring far more concerted thought and effort than originally anticipated. I
am grateful to the faculty, staff, colleagues, family, and friends who supported me
throughout this endeavor.

I am honored that Dr. Michael J. Laszlo consented to be my dissertation advisor,
and deeply thankful for his patience and guidance. Gratitude is extended to committee
members Dr. Sumitra Mukherjee and Dr. Matthew He, for their guidance and support; to
undergraduate faculty members and colleagues Raisa Szabo, Terrell Manyak, Karen
O’Brock, and Tim Margush for their poignant observations and advice; to staff members
Barbara Edge, Dr. Diane King, Candy Fish, Will Ferri, Sharon Brown, and Mark Powell,
who each encouraged and supported me in their own way. Classmates and fellow Ph.D.
candidates Larry Shaffer and Peter Raethe supplied invaluable moral support during
moments when I began doubting myself. I am very lucky to have two wonderful parents,
Dr. and Mrs. Mitsuo Inouye; their encouragement also fueled the completion of the
process.

A special thanks is extended to the Dean of the Graduate School of Computer and
Information Sciences, Dr. Edward Lieblein, for his academic advice and unwavering
assistance; to Dr. Naomi D’Alessio, Director of the Department of Math, Science and
Technology; and Dean Norma Goonan, Ph.D., of the Farquhar Undergraduate Center, for
providing a stimulating and intellectual environment in which I could pursue my
educational goals.

Finally, I am grateful to the late Dr. Rollin S. Guild, who lent his creativity,
insight, and good humor above and beyond the call of duty. This dissertation is dedicated
to the memory of Rollin Guild.

And to those I may have unintentionally omitted, let me issue a blanket apology
and justify the omission as a case of architectural data hiding!

v

Table of Contents

 Signature (Approval) ii
 Abstract iii
 Acknowledgments iv
 List of Tables vii
 List of Figures viii

 Chapters

 I. Introduction
 Introduction 1
 Problem Statement 4
 Goal 10
 Relevance and Significance 12
 Barriers and Issues 18
 Limitations of the Research 24
 Research Questions 27
 Definition of Terms 29
 Summary 40

 II. Review of Literature
 History and Foundation of Software Architecture 42
 Software Architecture in the Software
 Development Process 53
 Software Architecture and Design Patterns 56
 Software Architecture Description Languages 58
 Software Architectural Viewpoints 64
 Visualization of Software Architectures 68
 General References 75
 Summary of Knowns and Unknowns 77
 Contribution to the Field of Software
 Architecture (Software Engineering) 79

vi

 III. Methodology
 Research Methods
 Overview of Procedures to be Employed 81
 Specific Procedures to be Employed 85
 Description of Procedures
 Procedure Step One 86
 Procedure Step Two 100
 Procedure Step Three 119
 Procedure Step Four 121
 Procedure Step Five 122
 Formats for Presenting Results 124
 Projected Outcomes 124
 Resource Requirements 125
 Reliability and Validity 125
 Summary 126

 IV. Results
 Analysis 127
 Findings 129
 Summary of Results 130

V. Conclusions, Implications, Recommendations
 and Summary
 Conclusions 132
 Implications 133
 Recommendations 134
 Summary 135

 Appendices
 A. BNF Specification for VTADL 140
 B. Lex Specification for VTADL 144
 C. Yacc Specification for VTADL Parser Shell 147
 D. Subroutine Design: Data Structures and
 Algorithms for Geometric Modeler 154
 E. Example of a VTADL Source File 160
 F. Complete Yacc Specification for
 VTADL Parser Shell 165
 G. Test Cases 223
 H. Case Study Report Template 260
 I. Case Studies 262

 Reference List 314

vii

List of Tables

Tables

1. Summary of Case Studies 123

viii

List of Figures

Figures

1. VTADL-To-VRML Translation 89

2. Architecture Definition (Template) 90

3. Properties of the Component 92

4. Template for a Connection List 95

5. View-List Template of a VTADL File 96

6. Basic VTADL-To-VRML Compilation Process 100

7. Node in Architecture Linked List 102

8. View List Node Definition 106

Chapter I

Introduction

Introduction

The emerging field of software architecture, within the broader context of

software engineering, capitalizes on the proclivity of human beings to draw simplified,

highly abstracted "first sketches" of a system prior to detailed design [Perry & Wolf,

1992; Shaw & Garlan, 1996]. Rather than dismissing these first sketches as informal

exercises, software architects have classified and analyzed the preliminary abstractions.

Software architects have even formalized the representation of architectures by using

formal languages [Allen, 1998; Abowd et al., 1995].

Software architecture focuses on the structure and interrelationships between

software components. The architectural approach describes the components and

connections with relatively coarse granularity, hiding design details to achieve simplicity.

An architecture tries to capture the essence of the software system, so that those involved

in the development process (referred to as "stakeholders") may readily comprehend the

system's purpose. The approach is a way to regain intellectual control over the growing

complexity of software.

2

Software architecture allows stakeholders to evaluate alternate designs at an early

stage, in order to make informed decisions about the later phases of software

development.

Thus, software architecture serves as a framework, or "architectural baseline"

[Jacobson et al., 1999], to develop a more detailed design. The process of defining a

software architecture traditionally followed the requirements specification, but preceded

the detailed design and implementation phases of the software life cycle.

In recent years, the concept of software architecture has grown to encompass the

entire software development life cycle [Abowd et al., 1997; Jacobson, Booch, &

Rumbaugh, 1999]. Software architecture is now seen as a reference model that evolves

along with software development. The reference model ideally reflects changes to the

software architecture over time. Through spotting inconsistencies in architectural design,

detecting invalid interfaces between software components, or discovering other mistakes

in the software architectural reference model (such mistakes are referred to as

"architectural mismatches"), software errors can be detected and eliminated as early as

possible. Architectural design errors, if caught early in the software development life

cycle, can result in substantial savings in the development cost, since such errors caught

later in development (during implementation or maintenance) are many orders of

magnitude more expensive to fix.

Software architectures are represented in textual form using an Architectural

Description Language (ADL). The motivation behind an ADL is to facilitate

communication on the overall structure to stakeholders [Bass et al., 1998]. Ideally, ADLs

represent the different viewpoints of several stakeholders in order to increase joint

3

understanding and agreement on the overall design. However, as Hofmeister, Nord, &

Soni of Siemens Corporation have observed, software architects "…can't yet succinctly

describe which design details are important over all domains and system sizes"

[Hofmeister, Nord, & Soni, 2001].

The textual ADL may not be understandable to all stakeholders in a problem

domain. For instance, nontechnical management in the organization may not readily

grasp the structure merely by perusing the ADL even when the ADL is accompanied by

natural language descriptions. As the structural complexity increases, so does the need

for an effective architectural representation.

Stakeholders desire that specialized viewpoints communicate effectively to the

intended audience. On the other hand, stakeholders require that the viewpoints be

consistent with one another (that is, elements of one view can be mapped to one or more

elements of another view), and do not diverge to such an extent that the views can no

longer be integrated or comprehended by a nonspecialist. These apparently contradictory

demands on an architectural representation can lead to problems when using an ADL as a

medium of communication.

Thus, representation of a software architecture in a form that is readily grasped by

stakeholders continues to be a fundamental problem in software engineering [Bass,

Clements, & Kazman, 1998; Egyed, 1999].

Another important goal of the ADL is to standardize the structural representation

in a language independent of system implementation, so that knowledge of abstract

patterns can be detected, reused, and transferred to future projects. An effective ADL

4

can even be used for training purposes, dramatically reducing the learning curve for new

project members.

Good architectural designs allow the completed software system to be maintained

without degrading the performance of the system. In other words, our architecture

description should be unambiguous and consistent so that we can change or replace

components without having adverse or unforeseen impacts on other parts of the system

[Jacobson, Booch, & Rumbaugh, 1999].

Any architectural description must incorporate not only the topology, but also the

correspondence between software requirements and elements of the structure [Shaw et

al., 1995]. Thus, the original reasoning behind aspects of the architecture can be traced.

When linked to original requirements, an ADL file can serve as an archive of design

decisions, design rationale, and reusable patterns.

Problem Statement

This research focused on the problem of representing and communicating the

software architecture to different stakeholders involved in the software development

process. Ideally, different viewpoints on the software architecture would be conveyed in

a way that is both comprehensive enough for specialists and general enough to

stakeholders trying to consolidate the different views (e.g., project managers or

executives). In reality, as the software system becomes more complex and the

viewpoints on the system become numerous, difficulties in integrating viewpoints begin

to emerge.

5

Based on the desired stakeholder viewpoint, the components and links in the

software topology would be represented differently.

An analogy may be drawn with the architectural viewpoints to the structure of a

physical building. The building contractor, architect, electrician, interior designer,

landscaper, plumber, and occupants will all have different views of the same building.

Each person needs to view separate components and relationships, requiring different

spatial, hierarchical, textural, and qualitative views. When taken together, the different

views comprise the building's entire architecture. In like fashion, each viewpoint of the

software architecture requires a different combination of component/connection topology

and spatial displacement. The elements of each abstraction will be interpreted

differently; each interpretation is modified based on the particular nomenclature and

mindset of the stakeholder. In other words, an architectural viewpoint must be

distinctive and separable enough to do justice to the specialist, yet consistent enough so

that the view may be integrated with other views without incompatibility errors in the

modeling.

Incompatibility between views is referred to as "viewpoint mismatch" [Egyed,

1999; Egyed & Medvidovic, 1999]. For an example of viewpoint mismatch, consider

the blueprint of the physical architecture of a five-story building. The electrician's view

is comprised of the wiring and electrical outlets; only the general outline of the building

is provided for reference. The plumber's view, on the other hand, consists of pipes and

pumping motors along with the general building outline; a cursory view of electrical

power generators is provided to the plumber as a safety measure. Let us suppose that,

when integrating the electrician's and plumber's view, it is found that the plumber's view

6

consists of electrical power generators that are not found in the electrician's view. Or that

the electrician's view inadvertently contains the outline of doors and corridors which do

not exist. These viewpoint mismatches may lead to serious design flaws and expensive

fixes during construction of the actual building.

A view may contain more than one software architecture. Incompatibilities

between software architectures within a view may also occur and are called "architectural

mismatches" [Garlan, Allen, & Ockerbloom, 1994]. For instance, a view may consist of

a software architecture modeling a process with two inputs and a single output, and

another architecture modeling a process with three inputs and five outputs. One of the

outputs of the first architecture is directed as input into the second architecture.

However, the second architecture requires all three inputs in order to function at all.

Here, then, is an incompatibility between the two architectures. Visualization of both

software architectures will assist us in detecting such mismatches.

This dissertation proposed a solution to the representational problem by allowing

interaction with a three-dimensional, virtual reality "world" modeling the software

architecture. The research began by designing an ADL capable of representing different

viewpoints, then provided a compiler which translated the ADL into a three dimensional

representation in VRML (Virtual Reality Modeling Language).

The presence of three dimensions in a complicated representation, accompanied

by the capacity for user-directed movement in a three-dimensional medium, have been

shown empirically to enhance comprehension of complex structures [Ware & Franck,

2000].

7

The stakeholder can navigate (move about) through the software structure,

examining patterns and relationships not readily discernible from the original ADL.

Other research in software visualization indicates that visual identification of software

flaws and even the discovery of reusable design patterns are often possible from the 3D

representation of software structures [Feijs & de Jong, 1998]. Furthermore, as Dutch

researchers Feijs and de Jong enthusiastically point out, "...walking through or rotating a

complex design is exciting, almost like having the design in your hands."

 The use of different viewpoints to explore requirements and design specifications

is nothing new [De Michelis et al., 1998]. However, the virtual reality visualization of

software structures from different qualitative as well as spatial viewpoints had not been

fully explored.

Different viewpoints may occupy different initial positions in a relational

hierarchy of software components. That is, based upon the viewpoint, certain objects

and relationships will be emphasized and other objects/relationships kept hidden. For

example, software quality assurance testers may need portions of the full hierarchy, from

high-level requirements components down to code-level modules, in order to trace

compliance with code to requirements. Marketing managers or vice-presidents, however,

would probably be interested only in a high-level perspective on the architecture; such

stakeholders desire to observe how the finished product may function, and thus only a

few high-level components need to be rendered, with lower-level code modules kept

hidden. Computer programmers would need to view only select low-level code

modules; irrelevant higher-level components would be kept hidden. Code modules

8

unrelated to the computer programmer's current activity would not be rendered from the

programmer's viewpoint.

Based on the desired viewpoint, stakeholders will visually navigate through the

portion of the "world" which represents their application domain. However, the

stakeholder (based on security clearances) would have access to an expanded

representation beyond his or her immediate domain. Certain visual icons may represent

portals, or entranceways, to other branches of the world not yet visible to the person

navigating through the world. The portal may be an entranceway either to another

portion of the architecture at the same level of hierarchy or to a lower-level portion of the

architecture with a more detailed viewpoint of the software complexity (previously kept

hidden in order to maintain a higher level of abstraction). Conversely, the portal may be

an entrance to a higher-level world, with several components in the virtual world kept

hidden in order to represent a higher level of abstraction.

For example, when the visual portal (such as a three-dimensional sphere) is

selected by a pick device (a mouse), another branch of the world will be entered. A

department manager, viewing higher-level components in the software structure, may for

whatever reason desire to navigate to lower-level portions of the "world,” closer perhaps

to the code modules normally viewed by programmers.

Furthermore, the objects in the world may represent hyperlinks to real-world

requirements documents, design documents, audio recordings of design conferences or

management interviews, video snapshots, and so on.

It should be noted that recently, an important distinction has been made between

the definitions of "view" and "viewpoint" by the Institute of Electrical and Electronic

9

Engineers [IEEE, 2000]. A view is defined by IEEE Standard 1471-2000 as an

abstraction on a particular model, based on the concerns of a particular stakeholder or

group of stakeholders. A viewpoint is the template or specified format for describing the

abstraction. The viewpoint would specify, for example, how the elements of the notation

are interpreted and configured, in concurrence with the mode of thinking and semantics

of the stakeholder. The viewpoint would also specify data hiding and decomposition –

what data is to be emphasized at a higher level, and which details of the data are to be

kept hidden for a lower level.

Thus, a view is the instantiation of a viewpoint (using the IEEE definition) in the

same way that an object in the object-oriented model is the instantiation of a class.

10

Goal

 The goal of this research was to devise algorithms for converting an ADL into

effective VRML representations based on the desired viewpoint. The VRML

representations were intended to enhance comprehension on the overall design and to

improve communications between diverse stakeholders. In other words, the tangible goal

was to allow for visualization of more than one viewpoint, and to allow the stakeholder to

toggle between multiple viewpoints within a participatory medium. Using hyperlinks

from certain aspects of the architecture, stakeholders may trace the rationale behind

certain designs or may verify the correctness (or flaw) of architectural elements. More

importantly, the ADL, along with the ADL's visualization in virtual reality, may serve as

a repository for reusable patterns in future projects.

 As far as the constraints of this research were concerned, the goal was obtained

when we developed a tool consisting of an ADL capable of representing multiple

architectural viewpoints, a translator from the ADL to VRML representation, and a

successfully translated VRML representation from the architecture originally described

by the ADL. Aspects of the VRML representation were required to be traceable (using

hyperlinks) back to the requirements documentation.

 Several case studies of different representations in more than one architectural

style were conducted to demonstrate the viability of the approach. Among the case

studies was a representation of a structured program topology ("Program Call-and-

Return") and a Linux conceptual and concrete view.

11

The actual use of the tool in a commercial development environment was not

explored and was considered a topic for future research.

12

Relevance and Significance

 David Garlan and Dewayne Perry provided a comprehensive overview of key

research areas in software architecture [Garlan & Perry, 1995]. As will be elaborated in

the literature review, these research areas have only intensified within the past six years.

Perhaps one of the most significant trends in software engineering since the late

1990s has been the ascent of the Unified Modeling Language (UML) into an industry

standard for object-oriented design, analysis, and specification.

UML was originally not a true language, but actually a graphical notation for

representing object-oriented models (classes, objects, relations, methods, state charts to

model behavior, etc.). UML was standardized by the Object Management Group into a

semiformal language [Egyed & Medvidovic, 1999]. Prior to UML, three methodologies

were in widespread use in the object-oriented programming community: OMT (invented

by James Rumbaugh), the Booch methodology (by Grady Booch), and OOSE (by Ivar

Jacobson).

Each method had strengths and weaknesses. OMT emphasized the design phase

but was poor in analysis; OOSE was strong in modeling behavior but weak in other areas;

and Booch's method was strong in design but weak in the analysis phase [Quatrani,

2000]. The three competing methodologies were unified when all three software

engineers (Booch, Jacobson, and Rumbaugh) joined forces at the Rational Corporation

during the mid-1990s. They unified their methodologies and combined the strengths of

each methodology into the Unified Modeling Language [Booch, Rumbaugh, & Jacobson,

1999].

13

Because the Unified Modeling Language has become the de facto standard in

software design, UML has been proposed by numerous authors as a standard tool for

software architecture description [Egyed, 1999; Medvidovic, Rosenblum, Robbins, &

Redmiles, 2000; Jacobson, Booch, & Rumbaugh, 1999]. However, UML is a visual

language, not a textual one, and was originally intended for object-oriented design rather

than exclusively architecture description. The UML notation in its current form does not

model configurations of architectures explicitly; the explicit modeling of configurations

is one of the criteria for defining an ADL [Medvidovic & Taylor, 2000]. Furthermore,

UML does not adequately describe the details of connector or component attributes to the

extent of dedicated ADLs such as UniCon or Wright. Typically, architecture descriptions

are implemented in UML using extensions to the language [Medvidovic, Rosenblum,

Robbins, & Redmiles, 2000; Selic, 2001]. However, the problem is that these extensions

are not standard to the native UML and, hence, the argument for a dedicated architecture

description language appears to have merit.

UML has other weaknesses in modeling software architectures. As Alexander

Egyed pointed out, UML is not formal or complete in integrating different views [Egyed,

1999]. That is, UML's ability to define views may be ambiguous, and the capability for

defining interrelationships between views does not exist. Medvidovic and Taylor of the

University of Southern California's Center for Software Engineering [Medvidovic &

Taylor, 2000] have also pointed out that an ADL has a formal semantic theory with

respect to the architectural domain, an underlying framework to the language. Since

UML was originally intended to assist in the modeling of design classes and not software

components or connectors, the separation of object-related concerns from architectural

14

concerns would complicate rather than simplify the design task. In other words, using

UML for software architecture would make architectural design more difficult, not less

complex.

Some authors have suggested that UML and ADL can complement rather than

compete with one another [Gomma & Wijesekera, 2001; Medvidovic, Rosenblum,

Robbins, & Redmiles, 2000]. UML can serve as the object-oriented and analysis tool,

with ADLs focusing in a complementary way on the architectural views. These same

researchers are also striving to incorporate architecture description language capabilities

in the next version of UML (UML 2.0).

While three-dimensional visualization of UML notation remains a distinct

possibility for future research, this dissertation had decided to use a dedicated ADL as the

preliminary definition for an architecture description. The reason was due to the original

purpose of UML: UML was invented as an object-oriented design tool and does not, in its

current form, explicitly define software architectures with the versatility of ADLs.

Architecture description languages have so far been relegated to research

environments and have not succeeded commercially, despite the potential of the

languages to assist in software development [Jazayeri, Ran, & van der Linden, 2000].

 Other active research areas include formal methods for software architectures,

architectural analysis techniques, architectural recovery for legacy systems, architectural

codification, and the recording of architectural expertise for future use. Most importantly

(from the standpoint of this dissertation), Garlan and Perry discussed the need for more

research in architectural tools and environments. This need was echoed by Shaw and

15

Garlan [Shaw & Garlan, 1996] at the very beginning of the software architecture

discipline.

 Very few tools existed for the flexible, and three-dimensional, visualization of

multiple views on software architecture. This research noticed the powerful capability of

VRML to model worlds containing a variety of user-defined structures [Ames et al.,

1997]. A natural association was made by the author of this dissertation between the

world-modeling capabilities of the virtual reality paradigm and the nature of a software

architecture viewpoint. A major component of the tool developed in this dissertation

was to map a viewpoint definition contained in an architecture description language to a

VRML world.

Feijs and de Jong [Feijs & de Jong, 1998] are one of the few software engineers to

visualize software architecture using VRML. They emphasized the need for flexible

architecture visualizations with multiple viewpoints and software traceability:

"Although helping remember complex structures and making appealing images

are alone not strong reasons for pursuing 3D, making design objects consistent with an

object's intended role, choosing new viewpoints, and identifying new design metaphors

are serious motivation and should be investigated."

While Feijs and de Jong did use VRML as the medium for representing software

architecture, they based their visualization on a relational database containing

connectivity information.

To the best knowledge of this research, no compiler had been created which

directly translated a dedicated architecture description language into VRML.

Furthermore, very little or no research had been done on the representation of interrelated

16

architectural viewpoints in a three-dimensional, virtual reality medium. This research

allowed the definition of separate but integrated viewpoints within an ADL, and also

translated the architecture description to a corresponding visualization in VRML. Each

viewpoint was represented as a self-contained, separate world (a separate reality),

hopefully reflecting the stakeholder's concerns in an interactive, exploratory medium that

would enhance understanding about the stakeholder's world. The viewpoints were

integrated through hyperlinks (experienced by stakeholders as portals), as though

entering the door to a separate room in an office building.

Perhaps the maxim that the specialist lived in his or her own world can be taken

literally in this visual representation. But now the specialist's world was visible for all to

see, in three-dimensional color, movement, and with realistic lighting, appearing literally

in the midst of a clear blue sky. So perhaps the excuse that the stakeholder could hide in

his or her own world no longer applied.

This dissertation contributed to the field of software architecture by providing a

three-dimensional visualization tool to represent multiple viewpoints of a software

architecture. The visualization attempted to make the software architecture more

comprehensible by immersing the stakeholder in a virtual world representing that

architecture. User-directed movement, along with three dimensions, had been shown to

increase comprehension of complex structures. The tool also provided traceability from

objects in the visualized architecture to source documentation, so that stakeholders may

trace aspects of the architecture back to the rationale behind the design.

This research was significant since very little effort had been made to visualize

viewpoints on software architectures using VRML. This research also attempted to

17

integrate viewpoints using the techniques of virtual reality.

18

Barriers and Issues

Software architects such as Philippe Kruchten [Kruchten, 1995], Alexander

Egyed [Egyed, 1999; Egyed, 2000], Christine Hofmeister [Hofmeister, Nord, & Soni,

2000] and Rich Hilliard [Hilliard, 2001] have discussed at length the problems of

modeling different viewpoints on the software architecture. These authors presented

different solutions on the viewpoint representation problem.

Philippe Kruchten tried to solve the viewpoint representation problem by

decomposing the architecture description process into four main views: the logical,

process, development, and physical views.1 The logical view dealt with the concerns of

stakeholders involved with the object-oriented development. The process view dealt with

process synchronization and concurrency issues, while the development view represented

the static organization of the software (what we would call the static software

architecture), and is perhaps closest to the software architectural representation discussed

in this dissertation. Kruchten's physical view represented the physical configuration of

the hardware and mapped the software onto the hardware components. A fifth "view"

established the possible use case scenarios to model the system behavior.

Hofmeister, Nord and Soni also divided a system under development into

independent views, yet their views did not exactly coincide with Kruchten. Hofmeister et

al. proposed the code, module, execution and conceptual views. The code view dealt

with implementation code, while the module view was a slightly higher-level abstraction,

where components represented modules. The execution view dealt with mapping

1 Please Note: The terms view and viewpoint were not necessarily differentiated in earlier literature until
IEEE Std. 1471-2000, the first standard for architecture description.

19

modules into the runtime view of the software architecture. The conceptual view

consisted of high-level conceptual designs and how they interrelated.

Rich Hilliard discussed modeling views and software architectures using UML.

Alexander Egyed, using UML as a modeling tool, discussed the modeling of viewpoints

in a much broader, more universal sense. Egyed crystallized many of the problems that

exist in viewpoint modeling, and suggested future research in the area of viewpoint

modeling.

"This deficiency (in viewpoint modeling) would not exist," Egyed wrote, "if we

could have a few perfect views that could be used by all stakeholders...which were

precise enough but still easy enough to use. These views, unfortunately, do not exist.

Instead, we are confronted with a number of loosely coupled, sometimes quite

independent views. This is not really what we want. Nuseibeh wrote that 'multiple views

often lead to inconsistencies between these views -- particularly if these views represent,

say, different stakeholder perspectives or alternative design solutions.' "

In order to develop a tool for representing different viewpoints on one or more

software architectures, we first had to clarify exactly how we wanted to represent a view

and the associated semantics of our particular research model behind the view, and how

we wanted to represent one or more software architectures within that view.

In other words, the barrier we first had to overcome was how to represent the

view in the ADL. Second, we had to decide how we wanted to map the view defined in

the ADL to the Virtual Reality Modeling Language (VRML). Different software

architectures for different aspects of the system were defined in the ADL. These

software architectures had one or more architectural styles. Given the architectures, a

20

given viewpoint may contain one or more architectures, or even parts of architectures,

within the view. Certain styles of architectures determined a particular rendering of the

objects in VRML. That is, there was a distinct mapping from the ADL to VRML objects

(spheres, cones, etc.) based on architectural style.

 The exact appearance of the VRML objects was an aesthetic consideration. This

research intended to make the aesthetics as palatable as possible but left the polished,

professional graphics to a future version. In a future version of the compiler, some

allowances may even be made for the viewer to customize the objects. Once again, the

aim of this research was to build a prototype to demonstrate the workability of the

visualization technique rather than seek aesthetic perfection.

Alexander Egyed and his colleagues mentioned the need for view integration

tools to automatically check for errors during the composition of views. While a view

integration tool that can check for viewpoint mismatch would be a valuable one, this

research did not intentionally follow this road of development.

Ultimately, the actual view integration was left to the stakeholder or software

architect. The tool developed by this dissertation intended to make the task of view

integration easier by translating each view into a virtual reality world.

The development of an architecture description language capable of being

translated into VRML resulted in the Visually Translatable Architecture Description

Language (VTADL) and was loosely based on ASDL [Eixelsberger & Gall, 1998]. The

motivation for creating VTADL was to obtain a relatively simple language for defining

essential architectural information (i.e., components, connectors, interfaces, and style).

VTADL allowed the software architect to ignore details about the interface behavior of

21

components and to concentrate on architectural structure. Language features were added

to VTADL both to constrain the structural topology and to make explicit certain visual

attributes of an architecture within VRML.

VTADL was formally defined using BNF (see Appendix A). The BNF

specification was used as input to the parser generator called yacc (yet another compiler

compiler), which generated the compiler for a Unix environment. The resulting parser

was a program shell capable of recognizing the VTADL language, but not yet capable of

generating code in the target language (VRML). Final code generation into VRML

depended upon the implementation of an effective geometric model representing each

architectural style. The geometric model was implemented using abstract data types and

associated operations on the data types. The intermediate geometric model was the

medium through which the architectural structure defined by VTADL was mapped to the

visual objects within VRML. Hence, the implementation of the intermediate geometric

model was a major barrier to overcome.

In considering the geometric model, we also considered the concept of an

architectural style [Shaw & Clements, 1997]. Architectural styles in software

architecture are analogous to the various styles in building architecture (e.g., Gothic,

Victorian, Modern, etc.). An architectural style defines how the components and

connectors of the architecture may be used, with constraints on the topology and

instantiation. Examples of the better-known styles are the program call-and-return,

pipelined, and layered styles.

 Two possible architectural styles were represented in VRML: the call-and-return

and the layered architectural styles. The components and connections of the call-and-

22

return architectural style were represented using an n-ary tree; component attributes were

stored in the fields associated with the vertices, and connections were defined by tree

edges. The layered style used linear arrays. Pertinent architectural information was

stored in each cell of a given array.

As the compiler scanned and parsed the source language, component/connector

identifiers and attributes were stored in the appropriate data structure based on the style

(the parser knew the style at the very beginning of the parse, since the style was declared

at the start of the architectural description). When all the components, connectors and

views were inserted into the data structure, the code generation phase of the compiler

program then traversed the data structure and used logic about the topological constraints

of the style to generate VRML commands. The VRML commands defined the

geometric shape, position, scaling, color, and other visual attributes of the objects in

three-dimensional space.

 In other words, using the intermediate data structure for the given architectural

style, the code generation phase mapped the ADL components and connectors into an

appropriate VRML representation.

 VRML as a target language has numerous advantages in the representation of

software architectures. VRML could represent a number of diverse objects in a user-

defined three-dimensional world. Texture-mapped and reflective surfaces, multiple light

sources, shading, and object animation are but a few examples of the capabilities of this

virtual reality paradigm [Ames et al., 1997]. VRML is an immersive medium, in the

sense that the user (stakeholder) is considered to be occupying a position in the world,

and may be surrounded by a visually rich environment (including interactive

23

representations of other stakeholders who may be seen as avatars). The user is capable of

navigating through the world, viewing objects interactively and from a variety of

positions (including inside the object itself). The virtual reality worlds definable by

VRML were used to represent viewpoints; each viewpoint defined in the architecture

description language was mapped to a separate VRML file by the VTADL-to-VRML

compiler.

 While VRML as a medium for user interaction and visualization had numerous

advantages, the VRML medium also had disadvantages which should be mentioned.

Chief among them was the often inconsistent rendering qualities of many VRML add-

ons. Visual qualities such as shading, motion and lighting would vary from add-on to

add-on. This dissertation used (and recommended) the VRML add-on called Cortona for

Windows environments (95, NT, 2000).

 Another disadvantage was the need for add-ons at all. Recent advances in XML

technology [Web3D, 2001] intend to incorporate the functionality of VRML as tags

within XML. The use of XML tags for virtual reality visualization of software

architectures will eliminate the need for separate add-ons, and is a recommended avenue

for future research.

24

Limitations of the Research

 The communicative quality and aesthetic appeal of the visualized architectures

were major considerations. It was anticipated that the visual appearance could be

"tweaked" as needed, by adjusting cosmetic attributes (component colors, shapes, etc.) of

the VRML rendering of the architecture. However, it was understood that "degree of

communication" and "aesthetic appeal" were highly subjective in nature. This research

conducted no stakeholder survey to determine the psychological appeal of different

renditions of the same software architecture.

 The following constraints were based on the fact that a prototype, rather than a

full commercial product, was developed:

 1. Static, rather than dynamic, architectures were visualized. This

dissertation focused on static software architectures, and the associated views of the static

architectures. The task of representing static architectures alone was a challenging one;

representing dynamic architectures (such as state-based architectures modeling behavior)

was reserved for future research.

 2. Not all properties of each architecture were visualized. For example,

although components and connections were visualized, explicit interfaces defined in the

ADL were not shown as separate entities. Directionality (bidirectional or unidirectional)

was ignored; only the presence of a connector itself, with no arrows, indicated a relation.

 3. Only two architectural styles, the program call-and-return style and the

layered style, were visualized. Although an arbitrary network and pipelined architectural

25

styles were definable in the ADL, only the call-and-return and the layered styles were

visualized.

 4. Software architecture topologies were acyclic (without cycles) and coarse-

grained. Again, the motive was to demonstrate a "proof of concept" behind the

visualization of software architectures in VRML. A given software architecture was

limited to twenty-five components and twenty-four connectors. A given architecture

requiring more detail than twenty-five components could be decomposed into smaller

sub-architectures; each sub-architecture could be referenced either in the same view, or in

another view (as defined by the architecture in the original VTADL file). In addition, a

maximum of twenty-five architectures were allowed in a given view.

 While research into visualizing complex, three-dimensional structures with

tremendous numbers of components had taken place [Parker, Franck, & Ware, 2000],

software architectures typically were coarse-grained. In other words, it did not benefit

the software architect to incorporate tremendous numbers (on the order of hundreds or

thousands) of components and connectors in a representation, even if paging techniques

were used. This would defeat the premise of software architecture – simplicity.

Therefore decomposition into other architectural views would take place long before the

limit of twenty-five components or twenty-four connectors was reached. In such a

manner, hundreds or thousands (or more) components could be represented by

decomposing them into simpler but interrelated architectures and architectural views. In

fact, the classic empirical studies on human comprehensibility by Miller [Miller, 1956]

had shown that human beings were comfortable grasping no more than seven or so

entities at a time.

26

 5. The VTADL-to-VRML visualization tool was a prototype only.

The effectiveness of the VTADL visualization tool in a real-world development

environment was not explored in this dissertation and is an avenue for future research.

Case studies were conducted, however, in order to demonstrate the workability and future

potential of the prototype of the VTADL-to-VRML compiler.

27

Research Questions

 This research provided a solution to the representation problem (as described in

the first section) by developing an architecture description language and a language

translator to visualize the architecture in VRML. The resulting tool was intended as a

"proof of concept" rather than a full-scale commercial project.

 Although no user survey was conducted and no formal software engineering

quality metric study was performed to determine how well the tool contributed to

reducing long-term software development costs (this is an avenue for possible future

funding and research), the initial question for which the tool was devised is an important

one:

How can one effectively represent different viewpoints on software architectures

so that they are more comprehensible and more engaging? This research proceeded on

the assumption that three-dimensional movement in a realistic, virtual world assisted in

the comprehension of complex structures [Ware & Franck, 2000]. VRML was

determined to be an excellent medium for immersing the stakeholder's views, allowing

user-controlled, three-dimensional navigation and participation (see the “Barriers and

Issues” section). The technique for visualization, as described in detail in Chapter Three

(Methodology), devised an architecture description language called VTADL for

specifying the architectures and viewpoints on the architectures, a compiler for mapping

the specifications into an intermediate geometric model, and an algorithm for

instantiating the contents of the geometric model into VRML files.

 A second question was intimately related to the first one:

28

 Since each view addresses the specialized concerns of different stakeholders, how

does one consistently integrate the separate views in a way that addresses the more

general concerns of broader stakeholders, yet avoid the pitfalls of viewpoint mismatch

(i.e., flaws uncovered in relating the viewpoints)? Integrating viewpoints and the

discovery of viewpoint mismatch during view integration were discussed at length by

Egyed [Egyed, 1999; Egyed, 2000].

 This dissertation addressed these research questions by providing a visualization

tool to represent software architectures and the integrated viewpoints on software

architectures. However, the VTADL compiler did not attempt to automatically detect

viewpoint or architectural mismatches; the mismatches were left for the stakeholder to

detect manually (or rather, visually!) through observation of the visual representation.

29

Definition of Terms

Architecture Mismatch: The incompatibility between elements of different architectural

structures, often caused by invalid assumptions about the architecture. Architecture

mismatch may occur when component reuse is attempted; the reused component may not

interface properly with a new architecture due to erroneous assumptions about how the

component connected to other elements in the architecture.

ADL: See Architecture Description Language.

Architecture: See Software Architecture.

Architecture Description Language: A language intended to specify the structure of a

system by describing the system's architecture; the description includes specifying the

components, interconnection between components, and the constraints on the topology.

Also included in the language would be the capability to describe the rationale behind

elements of the architecture, and the behavior of the architecture under specified

conditions.

Architectural Framework: (from Hofmeister et al., 1998) A specification or template for

the architectural structure and flow of control/data. Part of the specification would be in

the form of a partial implementation, ready for use in a specific problem domain.

30

Architectural Style: A definition of how the components and connectors of an

architecture can be used, with constraints on the topology and instantiation. Typical

architectural styles are the program call-and-return, pipelined, layered, and event-based

styles.

BNF: Backus-Naur Form, a formal language for defining the syntax and grammar of a

language.

Call-and-Return Architectural Style: (Also "Main-program-and-subroutine”) The

classical programming paradigm. Each component represents a program or subroutine;

each link represents a call (control flow) to a lower-level routine. The decomposition of a

program is thus represented hierarchically.

Class: A set of elements having common characteristics; the domain which defines an

object. An object is an instantiation of a class.

Component: An encapsulated part or unit; a fundamental element of a software

architecture. In a graphical representation of the software architecture, a component is

represented as a node which, depending on the viewpoint, can be interpreted as a module,

process, chunk of code, workflow, etc.

Compiler: A computer program for translating statements from a source language to a

target language. Often the source language is a higher-level language (such as C, C++,

31

Fortran, etc.) and the target language is an object language such as machine code. For

this dissertation, the source language is a text-based architecture description language

called VTADL, and the target language is the Virtual Reality Modeling Language

(VRML).

Connector: (also referred to as "connection") A link between software components.

Based upon the viewpoint, the link may be defined as a relation, an association, data

flow, control flow, inheritance, etc.

Control Flow: In the parlance of an architecture description, control flow refers to the

flow of control from one component to another. A connection may typically be defined

as the flow of control from a server to a client.

CORBA: Common Object-Oriented Request Broker Architecture. A specification

(established by the Object Management Group) to allow distributed objects to request

services from one another, independent of system or locale.

Data Flow: An architectural style where the system is viewed as a series of

transformations on input data. Data is seen to flow along a connector to a component,

undergoing transformation within the component, and emerging from the component in

altered form. Data flow may also simply refer to the flow of data along a connector from

one component to another (as compared to a control flow).

32

Design Pattern: (from Gamma, Helm, Johnson, & Vlissides, 1995). Patterns are

"descriptions of communicating objects and classes that are customized to solve a general

design problem in a particular context. A design pattern names, abstracts, and identifies

the key aspects of a common design structure that make it useful for creating a reusable

object-oriented design."

Formal Language: A language generated from an alphabet using a set of production

rules. The advantage to a formal language is that it is defined mathematically and, hence,

mathematical techniques can be used to prove the correctness of the assertions made in

the formal language. Ambiguity and incompleteness are eliminated in a correct formal

language description. Formal specifications in software engineering use a formal

language to describe the requirements of the system; formal specifications can also be

proved to be correct using mathematical techniques.

4+1 View: The four views (and the fifth "view", the use case modeling) of software

architecture as proposed by Philippe Kruchten of the Rational Corporation. These views

included the logical view (the object model), process view (architecture at execution

time), physical view (implementation onto hardware), and the development view (static

software architecture within the development environment).

Geometric Model: An intermediate representation of the geometry of a graphical object

for later display in a visual medium. The geometric model may consist of data structures

33

such as arrays, stacks, queues, matrices, etc., used for representing the geometric

properties of objects.

IEEE: The Institute of Electrical and Electronics Engineers. A nonprofit, international

organization involved with topics of interest to electrical or electronics engineering or

related professions (such as applied physics and computer science). IEEE is widely

recognized for setting standards and for publication of research.

IEEE Standard 1471-2000: A standard established by the Institute of Electrical and

Electronic Engineers for the recommended practice of describing software architectures.

This standard is perhaps the first major standard by a recognized standards body dealing

with software architecture. It attempted to establish definitions for what was meant by a

software architecture, a software architecture description, a software view and viewpoint,

and so on, by establishing a broad consensus among many practitioners and academicians

in software engineering.

Interface: In a general sense, an interface is the common face (or surface) shared by

intersecting objects. In software architecture, the interface is the point at which a

connection touches a component, analogous to a wall socket; the manner in which a

component deals with a connector. An interface is typically assigned a role defining how

the component and connector interact.

34

Layered Architectural Style: An architectural style in which components are seen as

hierarchical layers; a lower layer provides a service to a higher layer. Connections

between layers are kept hidden. The OSI Seven-Layer Network is an outstanding

example of the layered style.

Legacy System: An existing system for which documentation may be minimal, missing

or nonexistent. A software architecture may be extracted from a legacy system as a

means of comprehending the older system.

Lex: For "lexical generator" or "scanner generator." Lex is a popular program that

generates lexical analyzers. Lex is normally used in conjunction with yacc.

Lexical Analyzer: Also referred to as "lexer" or "scanner". The part of a compiler

program that reads through the source program, establishing the valid tokens (such as

keywords, operators, and variables or labels) in the language, and building a symbol table

for later reference. Invalid strings are noted as errors by the lexical analyzer.

Model: A representation of a system, showing only those features of interest in order to

reduce complexity; an abstraction.

Object: A member of a class which has existence (occupies space, persists through time,

etc.). The instantiation of a class.

35

OMG: Object Management Group. An international consortium intended to set

standards. OMG is most widely known for creating the CORBA standards for distributed

object services.

Parser: Sometimes called "syntax analyzer." A phase of the compiler which accepts

tokens from the lexer and, based on the grammar and the symbol table, determines

whether or not the token's appearance is valid in the language. The parser creates a

"parse tree" representing the source code statement; the parse tree is later traversed to

generate the target code.

Regular Expression: A string from an alphabet generated by production rules defining

the grammar of the language. Many programming languages are generated by regular

expressions.

Regular Language: A language consisting entirely of valid regular expressions.

Scenario: A description of a possible sequence of events between actors, thus describing

the behavior of a system. Scenarios are instantiated by use cases.

Semantics: The meaning of words or phrases, as opposed to their order (syntax).

Software Architecture: A discipline within software engineering that attempts to simplify

the complexity of a software system by describing the overall system in terms of coarse-

36

grained structures, such as components, connections between components, and

configurations of components and connections.

Software Homeostasis: The propensity of a software system to automatically "restore to

normal or desired or equilibrium state when something occurs to upset or disturb that

state" (from M. Shaw, Sufficient Correctness and Homeostatis in Open Resource

Coalitions).

Software Traceability: (sometimes also called "requirements traceability"). The

capability of tracing a path from a component in the requirements phase of a software life

cycle model to one or more components in the later phases of software development

(such as design, coding, and testing); also, the capability of tracing a path backwards

from a component in a later phase, such as design, to a particular requirement. Software

traceability is a technique for insuring conformance of design to requirements and

insuring software quality control during maintenance.

Stakeholder: An individual or group with a "stake" (interest) in the success of the

software development project. A stakeholder may be the client, manager, user,

developer, or anyone else with an interest in the success of the software development

project.

Style: See "Architectural Style".

37

Sufficient Correctness: (from M. Shaw): "The degree to which the system developer

aspires to establish that the system meets its specifications, given constraints of time,

cost, and limited knowledge."

Syntax: A description of the allowed order of words in a language; the form of words in

the language.

Token: A string of characters from a valid alphabet in the language that form the

building blocks of the language. Examples of tokens may be keywords, an arithmetic

operator, a variable name, integer, and so on.

Topology: A description of the way components of the architecture are connected,

implemented by a connectivity matrix.

Traceability: See software traceability.

UML: "Unified Modeling Language,” a visual language for modeling various aspects of

software development (especially analysis and object-oriented design). UML was a

unification of the earlier object-oriented modeling techniques by Booch, Rumbaugh, and

Jacobson. Modifications to UML have been proposed to make the language an

architecture description language.

38

Use-Case: A software development technique intended to describe behavior of a system.

A use-case is an instantiation of a particular scenario (see "scenario").

View: (from Egyed, 1999): "A piece of the model (used to represent some aspect of the

real world) which is still small enough for us to comprehend and which also contains

relevant information about a particular concern." A view is an abstraction on a model,

hiding details which would make the model more complex, but revealing only those

details of concern to us from a certain perspective.

Viewpoint: A template specifying a view on one or more software architectures. The

viewpoint tells us the format for how a view is described. A viewpoint is to a view in

much the same way as a class (in object-oriented programming) is to an object.

Viewpoint mismatch: An inconsistency in the way viewpoints are modeled. For

example, suppose viewpoints are supposed to have a one-to-one mapping between

components in their representations. If one viewpoint has many more components than

the other, there is a mismatch.

Virtual Reality: A term referring to techniques for the realistic simulation of reality,

typically using advanced three-dimensional computer graphics. Virtual reality is a

paradigm that defines an entire world through which certain rules (navigational,

movement, lighting, etc.) logically apply. Simulation is based on the assumption that a

39

viewer is immersed in this world and is considered to occupy a particular viewpoint

within the world.

VRML: Virtual Reality Modeling Language. A versatile language intended to model

worlds in three dimensions, using the virtual reality paradigm. VRML is designed to

display its results on the Internet by means of an Internet browser; hence, VRML is

platform independent.

Yacc: For "yet another compiler-compiler." Yacc is a popular program for generating

compilers based on a grammar with semantic actions.

Z (Pronounced "Zed"): A formal language used for system specifications. It has been

used to formalize architectural descriptions.

40

Summary

Software architecture is an emerging discipline within software engineering.

Models based on software architecture attempt to reduce the complexity of a software

system by representing the system with coarse-grained structures. A software structure

could be represented by components and connections arranged in a specific topology.

An architectural style defines the constraints on the topology and instantiation of the

structure during run-time. Depending on the stakeholder viewpoint, elements of the

topology are interpreted differently; a component, for example, may be an abstraction

representing a program module, object, concept, or database.

Software architectures may be described using a text-based architecture

description language (ADL). The key goals of an ADL are to communicate alternate

designs between different stakeholders, to detect reusable structures, and to record design

decisions. ADLs serve as tools to assist in analytical reasoning about the preliminary

software design, to insure software quality early in software development.

A major problem in software architecture has been the difficulty of creating

different representations to accommodate the contrasting viewpoints of stakeholders. A

set of viewpoints should be conveyed in a way that is both comprehensive enough for

specialists but understandable to generalists. The representation problem has been one of

integrating different viewpoints without losing consistency (viewpoint mismatch) and

without errors in relating architectural structures (architectural mismatch).

This dissertation provided a solution to the representation problem by creating a

tool for three-dimensional representation of architectural viewpoints.

41

The tool consisted of an architecture description language (VTADL) to first

describe the software architectures and viewpoints on the architectures; and a VTADL-

to-VRML compiler to translate each viewpoint into a separate virtual reality world.

This research was significant since no compiler existed to translate a dedicated

architecture description language into VRML. To the best knowledge of the dissertation

author, very little or no research had been conducted on representing software

architectural viewpoints in virtual reality.

 An additional benefit of the VTADL-to-VRML compiler was the support for

software traceability, the capability of tracing a path from elements of the architecture to

associated requirements documentation. Using the VRML visualization, a stakeholder

could trace the rationale behind the design using hyperlinks from elements of the

visualization to source documents.

Chapter II

Review of Literature

History and Foundation of Software Architecture

The motivation of software architecture as a discipline within software

engineering was the need to manage complexity by reducing complex structures to

smaller, simpler parts. At the most fundamental level, a software architecture consists of

discrete components and connections between the components, a form of decomposition

of a system into coarse-grained parts.

For example, a complex system may be broken down into smaller pieces, perhaps

four or five subsystems at the next level. Each of the four or five subsystems would, in

turn, be broken down. At any given node in this hierarchy, no more than seven or so

subsystems would lie directly beneath the parent. Traversing the tree structure, one could

confront and manage a small number of subsystems at a given level. This decomposition

process would continue until the leaves are reached, at which point we have reached the

lowest level of detail.

The instinctive need for human beings to handle complexity by breaking the

complexity down into a manageable number of pieces was empirically confirmed by

psychologist George Miller [Miller, 1956] in his influential paper, The Magic Number

Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information.

43

Miller discovered that the average human being can handle no more than seven or so

discrete entities of information at a given moment.

One of the earliest software engineers to note the advantages of decomposition

was Edgar Dijkstra [Dijkstra, 1968]. Dijkstra was involved with the "THE" project, an

operating system developed in the Netherlands. By using a "separation of concerns"

during development of the operating system, the implementation and testing phase

became less cumbersome, with the resultant savings in development time.

David Parnas's classic paper, On the Criteria to be Used in Decomposing Systems

into Modules [Parnas, 1972] studied the criteria for breaking a larger software module

into smaller modules. Among the criteria that Parnas used were the modifiability of

independent modules, comprehensibility, and reduced development time (since

independent modules could be developed in parallel by more than one software

development team). Depending on the priorities of the developer, a software module

could be decomposed in vastly different ways. Parnas's paper was one of the earliest

papers to mention the benefits of information hiding – when decomposition is performed,

the details below the current module are suppressed.

Hierarchical, modular decomposition with the use of data hiding of lower-level

details set the stage for the emergence of software architecture. A precursor to software

architecture description languages were the module interconnection languages (MILs),

which were in vogue during the 1980s [Prieto-Diaz & Neighbors, 1986]. MILs focused

on describing the interface between software components (or modules). The

concentration on describing module interfaces was intended to assist in detecting errors in

44

integrating modules (which in software architecture is referred to as "architectural

mismatch"), or to assist in reusing modules.

 The paper by Perry and Wolfe [Perry & Wolfe, 1992] served as the catalyst for

the emergence of the architectural approach. Earlier approaches akin to the architectural

approach (representation of the key components and connections of a software system)

were performed in an ad hoc manner. Perry and Wolfe analyzed these "first sketches"

not as throwaway "rough drafts," but as important, albeit coarse-grained, designs. Their

early model of software architecture consisted of elements (components), forms

(connectors), and rationale (the reason behind the topology, based on system

requirements). With software architecture now defined and acknowledged as a powerful

new method of abstraction, other researchers refined and elaborated on the technique.

David Garlan and Mary Shaw [Garlan & Shaw, 1993] wrote a paper summarizing

many of the key concepts of the new field. The same authors wrote the first highly

influential book on software architecture [Shaw & Garlan, 1996], covering the gamut of

software architectural concepts and methods. The authors emphasized the classification

of architectures into different styles.

Architectural styles in software architecture are equivalent to the various styles

used in the architecture of physical structures (e.g., Gothic, Victorian, Modern, etc.).

Architectural styles were defined by the authors as the set of design rules which govern

the types of components and connectors used, and the relational constraints between

components and connectors. Garlan and Shaw provided several case studies

demonstrating the use of architectural styles in software architecture. One of these case

studies, based on Parnas's KWIC (Key Word in Context), has become a well-known

45

standard to demonstrate the idea of "decomposition." A future case study in architectural

visualization may visualize the KWIC decomposition.

A novel architectural description language (ADL) called UniCon was also

introduced and discussed by the authors. UniCon was capable of representing

interconnection properties (protocols, messages, etc.) as well as components.

 Shaw and her colleagues at the Software Engineering Institute at Carnegie Mellon

University further developed UniCon and implemented it as one of the first workable

architectural description languages [Shaw et al., 1995]. The focus was on developing

tools to describe various architectural styles, with the profound hope that software

architecture could help elevate software engineering into a "science of software" on a par

with more traditional engineering disciplines.

With both foresight and confidence in the new approach, Shaw and Garlan

proposed the educational curriculum for software architects (as a branch of software

engineering).

 Mary Shaw and Paul Clements further explored the idea of architectural styles in

A Field Guide to Boxology [Shaw & Clements, 1997]. In this important paper, the

authors provided one of the first comprehensive classifications of the different

architectural styles. Prior to A Field Guide to Boxology, architectural styles were defined

in an informal fashion. The styles were classified into the data-flow (based on the

movement of data through components and connectors), call-and-return (such as a main

program which calls subroutines), independent processes, data-centered repository

(database or client/server), data sharing, and hierarchical styles (such as the Java virtual

machine). What is most significant about this paper, however, is that the authors

46

described the criteria for applying each style to a particular problem. For example, if the

problem involved transformations on continuous data streams, the pipelined architectural

style was recommended.

 In Comparing Architectural Design Styles [Shaw, 1995], Mary Shaw studied

eleven different designs of the same automobile cruise-control system. She discovered

that all eleven designs fell into one of four generic architectural styles: object-oriented,

state-based, feedback-control or real-time styles. Each of the different styles focused on

different aspects of the problem. In other words, the presence of different viewpoints was

noted within each design. A given viewpoint would emphasize certain components and

relations, and suppress other components/relations.

 After analyzing the manner in which design styles were selected to model the

solution, Shaw concluded that a systematic means was needed to establish the relations

between multiple viewpoints (and to ensure consistency between viewpoints). Also

needed were techniques to evaluate which architectural style would be most appropriate

to the problem.

 David Garlan was instrumental in developing an object-oriented architectural

design tool called Aesop, as described in the paper, Exploiting Style in Architectural

Design Environments [Garlan, Allen, & Ockerbloom, 1994]. Aesop was a generic

architectural model capable of being instantiated into the desired architectural style; i.e.,

instantiated into a pipelined, call-and-return, or event-based style. Using a generic

approach, rather than a style-specific architectural model, had several advantages – one

was not limited to just one style and thus had more design versatility. The disadvantage

47

was that the stylistic constraints had to be incorporated into the methods of instantiated

objects. The use of methods tended to obscure invariant properties of certain styles.

 Software architectural techniques were compared to object-oriented design and

design patterns [Monroe, Kompanek, Melton, & Garlan, 1997]. The strengths of

architectural design – enhanced comprehensibility through data hiding, ability to

communicate design decisions to different stakeholders, etc. – have been covered in the

other literature and repeated here.

 Noteworthy was the authors' discussion on the weakness of architectural design.

The weakness was evident when one system used one architectural style, but another

system used a different architectural style. Reusability between systems, or even

compatibility between systems, was made more difficult by differing styles. The authors

concluded that the three models were complementary; one model does not subsume the

other.

 Alexander Egyed and his co-authors discussed the idea of architectural families,

in which a generic software architecture could be reused by many different software

products [Egyed, Nikunj, & Medvidovic, 1999]. The idea of architectural families was to

accelerate reuse of designs, dramatically reducing development time. Traditional

architectural families were defined around software components; Egyed and his co-

authors presented a method to design around software connectors. A taxonomy of

software connectors was used to define and constrain the software families.

 The difficulties of reusing software components were discussed in Architectural

Mismatch: Why Reuse is So Hard [Garlan, Allen, & Ockerbloom, 1994]. The authors

defined "architectural mismatch" as the incompatibility between software components.

48

Architectural mismatch may occur when off-the-shelf components are used to build a

system, and the components cannot communicate with each other. Garlen, Allen and

Ockerbloom related their experiences with architectural mismatch while developing the

Aesop system, a tool for experimenting with software environments. They found that

incorrect assumptions about the architecture, or miscommunication in the architectural

description, were primary causes of mismatch.

The authors proposed several solutions to the architectural mismatch problem.

One proposed solution was to devise techniques that make the assumptions about the

architecture explicit, leaving no room for ambiguity. Another proposed solution was to

construct the software components from "orthogonal subcomponents"; i.e., from

independent modules. The authors recommended developing tools to guide the design

process, and developing techniques for surmounting mismatches once the mismatches

occur.

 Within the past few years, the use of formal methods in software architecture has

come to the fore. Formal methods make the assumptions about architectures explicit,

eliminate ambiguities, and allow for logical reasoning about the architecture. With

formal methods we can prove the "correctness" of an architecture (if our initial

assumptions are valid). The disadvantages to formal methods lie in the costs to produce a

formal description. The skilled personnel involved in writing a formal description must

be knowledgeable in discrete mathematics as well as in the problem domain; such

personnel must either be trained (a costly investment) or hired from the ranks of trained

mathematicians or computer scientists (also a costly investment).

49

 Formalizing Style to Understand Descriptions of Software Architecture [Abowd,

Allen, & Garlan, 1995] applied the Z formal language to describe the components,

connections and properties of software architectures. Significantly, the authors

mathematically formalized the idea of an architectural style.

 The authors presented the argument that the cost of producing a formal

architectural description for a product family is worthwhile. The investment is in

producing a family of systems, rather than an individual system. Formalization of the

properties and styles of product families would be applicable to a wide spectrum of

products.

 The advantages and disadvantages of Z notation to software architectures are also

explored by the dissertation work of one of the co-authors of the above paper, Robert J.

Allen [Allen, 1997].

Since the inception of software architecture in the early 1990s, the initial flurry of

activity defining the nature of this new discipline has given rise to books about the

applications of software architecture to large-scale development projects. Noteworthy

among the recent "applications" books is Software Architecture in Practice [Bass,

Clements, & Kazman, 1998]. The authors were software engineers with the Software

Engineering Institute (SEI) of Carnegie Mellon University. The process of developing

and refining a software architecture was viewed as an iterative process that must be

integrated throughout the software life cycle. This application-oriented model was

referred to as the "architecture business cycle." Software architectures were evaluated

from the standpoint of software quality assurance and the degree of reusability.

50

Applications of software architecture to real-world projects were described

through numerous case studies. The A-7E Avionics System used software architecture to

simplify the overall structure of the system and insure reusability. Most interesting was a

case study on the architecture of the World Wide Web, and the impact that this

architecture had on the organization that designed it (the Web’s structure far outgrew its

anticipated size). The architecture of the CORBA (Common Object Request Broker

Architecture), designed by the Object Management Group to achieve interoperability

between different software products, was also examined in light of the goals of the

businesses that supported the standard.

Other case studies included an air traffic control system, a flight simulator, and a

corporation (CelsiusTech) that implemented a product line based on reusable software

architecture.

 In a similar vein, but taking a more European perspective, Software Architecture

for Product Families [Jazayeri, Ran, & van der Linden, 2000] described the work of

ARES (Architectural Reasoning for Embedded Systems). The ARES project was funded

by the European Commission and lasted from December 1995 to February 1999; it

involved six European partners, three industrial and three academic.

 Each research group reported on their successes or failures in the use of software

architecture. The emphasis of the research was architecture-centric software

development. Software architectures were developed with reusability in mind;

specifically, the ability to create entire product families based on similar architectures.

 Software architecture as a distinguishable branch of study within software

engineering has matured to the point where the Institute of Electrical and Electronics

51

Engineers have released their first standard, the IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems, IEEE Std. 1471-2000 [IEEE,

2000]. IEEE Standard 1471-2000 is significant in that it is the first standard by a major

organization to address software architecture explicitly. A consensus on various

definitions and practices (such as on software architecture, views, viewpoints,

architecture description, and so on) was reached by a standards committee, the

Architecture Working Group, comprised of influential members of the software

architecture community from both industry and academia. IEEE Standard 1471-2000

was as generic as possible in advising how architectures should be described; no one

architecture description language was recommended over another. Instead, a

standardized template containing the necessary properties of an architecture (components,

connectors, configuration, etc.) was provided.

 The standard was not without its critics. Rich Hilliard, a member of the original

Architecture Working Group which established IEEE Standard 1471-2000, stated in his

position paper, IEEE Standard 1471 and Beyond, that too much emphasis was placed on

conceptual modeling while lacking a "larger context needed in most practical, industrial-

strength applications" [Hilliard, 2001]. However, Hilliard admitted that the standard was

"worth appreciating relative to current work in architectural research and practice."

In 1995, David Garlan and Dewayne Perry, among the pioneers (along with Mary

Shaw) of software architecture, summarized several active areas of research [Garlan &

Perry, 1995]. The areas of research they pinpointed were architectural description

languages (i.e., the problems associated with representing different viewpoints), formal

software architecture, architectural analysis techniques, architectural development

52

methods, architectural archeology, architectural codification and guidance, and

architectural tools and environments. Most of these areas of research have accelerated

since 1995.

Though this dissertation research focused primarily on software architecture

representation (textually and visually), the research itself may be classified into three of

the topics mentioned by Garlan and Perry. This dissertation can be considered an

architectural tool, and the resulting description and visualization can be considered

architectural description languages and architectural guidance. The resulting tool can,

arguably, be used to derive and visualize legacy code, placing the research into a fourth

research topic as well (software archeology).

53

Software Architecture in the Software Development Process

 As mentioned in Chapter I, software architecture has grown to encompass the

entire software development life cycle, incorporating elements of the requirements,

design, implementation and maintenance phases into the architectural framework.

The works of object-oriented pioneers Grady Booch, Ivar Jacobson, and James

Rumbaugh are highly significant to software architecture. Their most recent work, The

Unified Software Development Process [Jacobson, Booch, & Rumbaugh, 1999],

described an object-oriented and architecture-centric software development process.

Their visual modeling language for representing software design, called the Unified

Modeling Language (UML), combined the earlier methods of the authors into a single

method. UML has rapidly become an industry standard in the modeling of software

design. The UML User Guide [Booch, Rumbaugh, & Jacobson, 1999] gives specific

details on how UML is used to model object-oriented development using an iterative,

evolutionary life cycle model.

 The earlier work by object-oriented pioneer Grady Booch [Booch, 1994]

supplements the unified method book. Booch's overall discussion on the nature of

modularity, hierarchy, and the object-oriented view of the world is outstanding and

should be read for its own sake. Booch's classified bibliography is highly comprehensive

(as of the early to mid-1990s).

 Assuring the quality of the software architecture as it evolves along with the

software development life cycle is of paramount important. Abowd et al. discussed

techniques for evaluating software architectures in Recommended Best Industrial

Practice for Software Architecture Evaluation [Abowd et al., 1997]. Prior to this paper,

54

scant research was focused on insuring the quality of software architectures during the

development process.

 Len Bass, Paul Clements and Rick Kazman of the Software Engineering Institute

at Carnegie Mellon wrote the seminal work on incorporating software architecture in

real-world applications. Software Architecture in Practice [Bass, Clements, & Kazman,

1998] discussed in depth how the architecture may be incorporated into the business

cycle of development. Significantly, the authors incorporated numerous case studies

from actual development environments: the development of the World Wide Web,

CORBA, and an air traffic control system were explored from an architectural

perspective. Successful cases where reusability was achieved through software

architecture were discussed.

In Taming Architectural Evolution, authors van der Hoek et al. described a novel

architectural evolution environment called Mae [van der Hoek, Rakic, Roshandel, &

Medvidovic, 2000]. Mae modeled changes to the software architecture in a way

analogous to more established configuration management techniques. This paper is of

interest because the authors described how changes to software architecture could be

modeled as the overall system evolves. There is a possibility that the visualization

techniques developed by this dissertation could be used to model software evolution.

 Software architecture is increasingly used to model legacy systems, especially

when minimal or no documentation exists. Jazayeri et al. [Jazayeri, Ran, & van der

Linden, 2000] provided several case studies in "software architecture recovery," also

known as software archeology. The overriding theme of the authors was the derivation

55

or recovery of general architectural properties, so that the software architecture could

describe an entire product family.

Ivan Bowman performed a notable architectural recovery on the Linux operating

system. In Conceptual Architecture of the Linux Kernel [Bowman, 1998] and Concrete

Architecture of the Linux Kernel [Bowman, Siddiqi, & Tanuah, 1998], Ivan Bowman

created two-dimensional visualizations of the conceptual and concrete software

architectures of the Linux operating system kernel. The software architectures were

formulated with only minimal or nonexistent references.

Software architectural recovery is a form of reverse engineering. Ted Biggerstaff

of Microsoft Corporation [Biggerstaff et al., 1993] called the problem of deriving the

human concepts behind computer code the "concept assignment problem" in

understanding existing program code. In other words, aspects of the program code are

mapped to the conceptual model. In software architectural terms, this is equivalent to

deriving the conceptual view from the implementation model.

 Biggerstaff isolated two types of concepts – human-oriented concepts and

program-oriented concepts. While program-oriented concepts tend to be more precise

and are logically recognizable by an automated parser, human-oriented concepts are

fuzzier and more ambiguous. The authors developed a program understanding assistant

called DESIRE (for "Design Recovery"). The DESIRE reasoning system provided a

domain-specific, a priori knowledge base to allow inference of formal information types

from informal information types, and vice versa.

The authors believed that a completely automated design recovery system would

not be possible, due to instances of incomplete, contradictory or nonexistent knowledge

56

about the program code. But the authors did conclude that a recovery assistant such as

DESIRE could greatly accelerate and simplify the manual derivation of concepts from

legacy code.

 The Internet has affected how software architectures evolve, and how we may

judge the correctness of software architectures. Traditional software architectures were

relatively static. In a technical report published by Carnegie Mellon university, entitled

Sufficient Correctness and Homeostasis in Open Resource Coalitions: How Much Can

you Trust your Software System?, Mary Shaw pointed out that software architectures on

the Internet are dynamic and constantly evolving, demanding an updated criteria on how

we gauge the correctness of software architectures [Shaw, 2000].

 Dr. Shaw proposed the idea of "sufficient correctness" when dealing with the time

constraints and limited information of the Internet. Distributed software systems could

automatically monitor and correct their own behavior when a deviation from a norm is

detected, much like an air conditioning system uses a thermostat to maintain a

sufficiently correct temperature. The monitoring and correction of dynamically evolving

architecture was called "software homeostasis" by the author. She argued that software

homeostasis could be used to verify software architectural quality with the sufficient

correctness of a fuzzy system.

Software Architecture and Design Patterns

 Design Patterns: Elements of Reusable Object-Oriented Software [Gamma, Helm,

Johnson, & Vlissides, 1995] is a compendium of design patterns intended for reuse by

object-oriented developers. It is a "bible" of known object-oriented design patterns and

57

represents an effort to standardize reusable patterns within the object-oriented software

design community.

 Many of the ideas behind design patterns are pertinent to software architecture.

However, Hofmeister et al. point out [Hofmeister, Nord, & Soni, 2000] that design

patterns may be relevant to architecture or they may be relevant only to detailed design.

Design patterns may be considered architectures when the design patterns describe

interactions between architectural elements. Design patterns are relevant only to detailed

design (and not architecture) when the design patterns describe interactions within

architectural elements. In other words, when the design patterns describe detail more

fine-grained than the architectural elements, they are no longer part of software

architecture.

Christopher Alexander [Alexander et al., 1979; Alexander, Ishikawa, &

Silverstein, 1977], in a two-volume work about using patterns in the construction of

buildings (The Timeless Way of Building and A Pattern Language) influenced an

analogous pattern language movement in object-oriented programming. Alexander et al.

take an almost Taoist approach to defining patterns for architectural construction; they

indicate that the best and most universal patterns come from the inner knowledge locked

within the human being, flowing naturally from the essence of the requirements. Since

the architecture of physical artifacts consists of relating components to one another, and

the overall philosophy of reusing patterns to build successful structures is such a natural

and eloquent one, it was inevitable that software engineers would see the analogy to the

development of software components.

58

Software Architecture Description Languages

 The architecture description language defined by this dissertation research,

VTADL (Visually Translatable Architecture Description Language) was patterned after a

language called ASDL (for Architecture Structure Description Language). ASDL was

originally developed to assist in architecture recovery from legacy systems; the language

was intended to convey basic architectural properties (configuration, basic components,

information interchange), while ignoring properties such as interface behavior

[Eixelsberger & Gall, 1998].

 Elements defined by the language seemed unambiguous and straightforward to

visualize. However, the language did not extend to defining viewpoints. Additional

language syntax was needed to allow different architectural styles and explicit positions

(e.g., left, right, top, bottom) when positioning could be ambiguous. Thus, a new

language was devised (VTADL) and is defined in more detail in Chapter Three and the

Appendix.

 Though mentioned in the History and Foundation section of this literature review,

the 1995 paper by Shaw et al. was seminal in the field of software architecture

description languages and is worth repeating here. Abstractions for Software

Architecture and the Tools to Support Them [Shaw, DeLine, Klein, Ross, Young, &

Zelesnik, 1995] was one of the first papers to discuss the idea of software architecture

description languages for describing different architectural styles, and also for

implementing the architecture beyond the design. One of the first ADLs, called UniCon,

was presented. The authors expressed the hope that ADLs, along with other software

59

architectural tools, could lead to a science of large-scale systems, just as there is a science

of algorithms.

 By the late 1990s, enough ADLs had been created to merit a classification of the

languages based on various criteria. In two important papers, Nenad Medvidovic and his

co-authors provided such a classification.

Domains of Concern in Software Architectures and Architecture Description

Languages [Medvidovic & Rosenblum, 1997] classified the architectural domains of

architecture description languages. For example, refinement and simulation were two

different application domains. The ADL called "C2" was used to represent simulation

and event filtering, while Darwin was used for hierarchical views on the architecture.

The ADL called "MetaH" was ideal for static analysis of a parser or for security analysis

of an architecture.

In A Classification and Comparison Framework for ADLs [Medvidovic & Taylor,

2000], the authors classified architecture description languages according to key criteria.

According to the criteria, an ADL must be capable of describing (to varying degrees) the

components, connectors, and configuration of an architecture. An ADL must also have

tool support. Furthermore, each type of description must possess, to greater or lesser

extent, key features such as interfacing capability, typing, semantics, constraints,

evolution, and non-functional descriptive capability. Using this classification scheme,

the authors compared languages such as ACME, C2, Aesop, Darwin, Metcalf, Rapide,

SADL, UniCon, Weaves, and Wright.

 The use of formal languages for architecture description appeared almost at the

very beginning of software architecture as a discipline. The dissertation by R.J. Allen, A

60

Formal Approach to Software Architecture [Allen, 1997], and the paper by Abowd et al.

[Abowd, Allen, & Garlan, 1995] were discussed at length in the History and Foundation

section of this literature review.

 However, a fascinating formal language using a chemical model to describe

software architectures was discussed by Inverardi and Wolf. In Formal Specification and

Analysis of Software Architectures Using the Chemical Abstract Machine Model

[Inverardi & Wolf, 1995], the authors reported on their research with CHAM, the

Chemical Abstract Machine Model, a formal language based on chemical reactions.

Since CHAM was a formal language, it could be used to reason and prove the correctness

of architectures; CHAM could also be used to formalize the idea of architectural styles.

The authors concluded that CHAM might be "...one useful tool in the software architect's

chest of useful tools," since no one formal language could be all things to all

architectures.

 Using an architecture description language to describe and visualize a neural

network was discussed by Inouye in An Architecture Description Language for

Visualizing Neural Network Designs [Inouye, 2001]. The style used for the neural net

description was not implemented in this dissertation.

Rapide was an architecture description language intended for event-driven and

concurrent systems [Luckham, Kenney, Augustin, Vera, Bryan, & Mann, 1995].

Components were viewed as states and connectors were interpreted as transition arcs

between the states.

61

By describing architectural families instead of single architectural structures,

software development time could be significantly reduced. In Software Connectors and

Refinement in Family Architectures [Egyed, Nikunj, & Medvidovic, 1999], the authors

expanded upon the idea of architectural families by including generic software

connectors (traditional architectural families were defined using software components).

The idea of architectural families is to accelerate reuse of designs and to dramatically

reduce overall development time. Egyed et al. presented a taxonomy of software

connectors to define and constrain the architectural families. The authors presented a

case where using software connectors could increase the flexibility of product families

and allow for the automation of architecture refinement. They mentioned the

development of automated tools to detect architectural mismatch and to ensure

consistency between architectures.

 With the wide number of versatile ADLs available by the late 1990s, some

software engineers began to consider ways of integrating the various languages. The idea

of a canonical "ADL toolkit" was proposed by Garlan et al. in Towards an ADL Toolkit

[Garlan, Ockerbloom, & Wile, 1998]. The ADL toolkit used an ACME language

environment. ADL translators were capable of translating ACME to UML, ACME to

MetaH, C2 to ACME, and so on. Using ACME as the intermediary, several ADLs could

be translated to one another. However, the idea of translating an ADL to ACME, and

ACME to VRML, has not been explored and would involve geometric and computer

graphics issues. The translation of an ADL to VRML was, of course, the topic of this

dissertation.

62

 A very recent and interesting trend has been the idea of representing a known

ADL using the Extensible Markup Language (XML). The authors at the University of

Southern California's Center for Software Engineering represented several ADLs,

including ACME, C2, SADL, and Darwin, using XML tags [Dincel, Roshandel, &

Medvidovic, 2000]. The authors expressed the goal of making ADLs interact with one

another through connectors in the XML environment.

 The reasoning and philosophy preceding IEEE Standard 1471-2000 (the first

standard on software architecture from a recognized organization) was discussed in

Toward a Recommended Practice for Architecture Description [Ellis, Hilliard, Poon,

Rayford, Saunders, Sherlund, & Wade, 1996]. The authors reported on the work of their

Architecture Planning Group (chartered by the IEEE) to standardize the practice of

software architectural descriptions. The IEEE standard was ultimately finalized and

released four years later (in 2000) as IEEE Std. 1471-2000.

 The Recommended Practice for Architectural Description of Software-Intensive

Systems [IEEE, 2000] stands as an important milestone in software architecture

description. A consensus on the definition of software architecture, view, viewpoint, on

what information constituted an architecture description, and so on, was reached by

members from both industry and academia in the field of software engineering.

 Like any standard, some of the definitions or explanations in the standard – no

matter how rigorously described – could still be open to interpretation. The IEEE Std.

1471 Frequently Asked Questions (FAQ) [Maier, Emery, & Hilliard, 2001] document was

one attempt to correct this. The authors pointed out that the standard was non-restrictive,

not enforcing a particular ADL or viewpoint template. The standard simply set

63

guidelines for what should be included in an architectural description: common sense

items such as identification of stakeholders, definition and selection of viewpoints,

documentation standards for viewpoints, recording viewpoint inconsistencies, and

recording rationale behind the architectural decisions.

Rich Hilliard's position paper, IEEE Std. 1471 and Beyond [Hilliard, 2001]

discussed the ramifications and use of the new standard, attempting to dispel many of the

misconceptions.

64

Software Architectural Viewpoints

 Phillipe Kruchten, of the Rational Corporation, defined software architecture in

terms of different views on the software development process [Kruchten, 1995].

Krutchen's views were developed in response to the problem of representing software

architectures for the different stakeholders involved in the development process. He

claimed that any view of the software architecture could be folded into one of four

possible classifications of software viewpoints. The logical view describes an object

model of the environment when object-oriented design methods are used; as an

alternative, the logical view can be represented by an entity-relationship diagram in

traditional structured programming. The process view describes the architecture at

execution time, covering aspects such as concurrency and synchronization. The physical

view describes the mapping of software implementation onto the hardware, whereas the

development view describes the static software components during development time.

 Each of the four views can be illustrated using a fifth view, the use case scenarios

where the interrelationships between components of the view are instantiated.

An equally effective but alternate set of views was developed by Soni, Nord and

Hofmeister of the Siemens Corporation and described in their paper, Software

Architecture in Industrial Applications [Soni, Nord, & Hofmeister, 1995]. The authors

studied several software systems built by the Siemens Corporation and discovered that

multiple architectural views were desirable. They classified the views into conceptual

architectures, module interconnection architectures, execution architectures, and code

architectures. These views differed from the 4+1 View Model as proposed by Kruchten,

65

and arguably could not be folded into one of Kruchten's views. The contribution of this

paper was to show that alternate view models beyond the 4+1 View Model were viable.

Christine Hofmeister, Robert Nord and Dilip Soni applied their model of software

architectural views to actual products at the Siemens Corporation as described in Applied

Software Architecture [Hofmeister, Nord, & Soni, 2000]. It was interesting and highly

informative to see how the authors abstracted the general software architecture of each

commercial product into their defined views.

In A Three-Faceted View of Information Systems, authors Giorgio de Michelis et

al. [de Michelis, Dubois, Jarke, Matthes, Mylopoulos, Schmidt, Woo, & Yu, 1998] do not

refer specifically to software architecture, but to managing software change in general.

Software change is managed through the use of software traceability, the capability of

following a path between requirements documentation and software components

established later in the development process. This paper was included in the literature

review due to the classification of software change into three major sources: system-

related views, group collaborative views, and organizational views. Since the visualized

architectural structures of this dissertation (represented within VRML worlds) were

hyperlinked to requirements, organizational, or other documents, the three viewpoints

mentioned by these authors were of note.

 In Integrating Architectural Views in UML [Egyed, 1999], Alexander Egyed

examined the nature of views in software architecture and how architectural views could

be implemented in the Unified Modeling Language (UML). Egyed presented the

argument that views should be both independent and related to one another from the

standpoint of a consistent model of software. When different views within a model are

66

inconsistent (e.g., cardinality within the different views are inconsistent, components

mean different things, etc.), we have what is called viewpoint mismatch, a more general

form of architectural mismatch. Egyed discussed the generic types of viewpoint

mismatch based on different possible views and proposed methods to detect and correct

them. The possibility of automating the task of detecting viewpoint mismatch was

proposed as a major benefit to software architecture.

 Because UML alone was limited in representing architectural views, Egyed and

Medvidovic proposed that architectural description languages such as C2 and Wright be

integrated into UML using extensions [Egyed & Medvidovic, 1999]. While this solution

was notable, their more general insights were of greater value.

Egyed and Medvidovic argued that three things were necessary for successful

view integration: mapping, transformation, and differentiation between the views.

"When we talk about the need to integrate views," the authors wrote, "we are really

talking about the need of having a system model integrated with its views."

Dr. Egyed described a technique to integrate views using architectural patterns

[Egyed, 2000]. Architectural patterns were used to map existing views to one another, or

to transform one view into a separate view. The author also demonstrated how

architectural patterns could be used to evaluate the correctness of architectural views.

In Viewpoint Modeling [Hilliard, 2001], the author proposed that a view should

first be defined in a given viewpoint language, and then translated or conformed to UML.

Hilliard (one of the committee members instrumental in forming IEEE Standard 1471-

2000, the standard for architectural description discussed in detail in the section on

67

architectural description languages) proposed a standard template for modeling

architectural views.

In this dissertation, however, views were first described in VTADL and then

translated into VRML.

68

Visualization of Software Architectures

 The focus on techniques to visualize software architecture is relatively recent,

having begun in earnest in 1997.

The paper The Artistry of Software Architecture [Boasson, 1998], along with the

paper 3D Visualization of Software Architectures [Feijs & de Jong, 1998], served as

catalysts for this research.

 Boasson pointed out the aesthetics inherent in software architecture. Software

design is similar to artistic design in the sense that designers are producing complex

structures that may have appeal to our sense of form; a great masterpiece of software

design, the author argued, is no less valuable than other works of art that have appeared

in cultural history. Another similarity between software design and artistic design is that

designers are not limited by physical constraints. However, software designers are

limited by utilitarian constraints (just like physical architecture and other engineering

disciplines). Boasson emphasized the need for formal mathematical methods to analyze

software representations in order to reduce the chaos of large-scale system development.

 The paper by Loe Feijs and Roel de Jong of the Phillips Corporation discussed a

visualization tool which converted an architectural representation (stored in a relational

database) into a VRML file. The authors expressed the need for a tool to generate not

only a 3D visualization of a software architecture, but also hyperlinks from the visualized

components to relevant multimedia documents. This dissertation intended to develop a

tool to allow traceability from aspects of the visualization to hyperlinked multimedia

documents.

69

 In another paper, Loe Feijs and his co-authors at the Phillips Corporation used

mathematical relations as the basis to represent software architecture [Feijs, Krikhaar, &

van Ommering, 1998]. Tools were developed to extract relations from the structural

information contained in source code and documentation. The extracted relations were

stored in a Microsoft Access database and visualized as graphs with a visualization tool

called TEDDY. However, in this paper and the one mentioned earlier, Feijs et al. did not

visualize an architecture directly from an architecture description language but, rather,

from a relational database.

Though the papers by Boasson and Feijs et al. served as the inspiration to the

author of this dissertation, the motivation behind architectural visualization can be traced

to earlier work.

David Harel presented a strong argument that complicated computer systems

could be better understood by visualizing the systems using a small number of graphical

elements that are topological, rather than geometric, in nature [Harel, 1988]. He referred

to the diagrams as "visual formalisms," and provided an example of a visual formalism

called a higraph. A higraph combines the idea of a Venn diagram (which represents sets)

with the idea of a hypergraph (for representing relations that are not always binary). The

resulting visualization was quite versatile when visualizing concepts such as the

Cartesian product and finite-state machines.

Harel believed that the formalisms would encourage more visual modes of

thinking in managing the intricacies of complex software.

R. C. Holt discussed the use of directed graphs to represent software architectures

[Holt, 1996]. The directed graphs are "typed" (or "colored") in the sense that the graphs

70

may have more than one type of edge. Holt then used binary relational algebra to

formalize the idea of architectural styles. This paper is important (but not necessarily

seminal) from the standpoint that the paper demonstrated how the mathematics of binary

relations can be used to formalize a description of the architecture of a system. In the

words of the Holt: "These visual formalisms provide the advantage that they bring the

mathematical formalism close to the mental images that many people visualize."

The stated goal of the authors of Architectures with Pictures [Buhr & Casselman,

1992] was to reconcile different ways of conceptualizing software architectures. Buhr

and Casselman provided a preview on many of the motivations for visualizing software

architecture; their prescient work appeared before the emergence of software architecture

as a distinct branch of study.

The authors visualized software architecture using a two-dimensional notation.

The visual notation was comprised of "wired" and "wireless" models. With wired

architectures, the relations between components were represented as static wires; with

wireless architectures the relations between components were seen as dynamically linked.

The authors demonstrated how more intricate interrelationships between components

could be represented by factoring the wiring diagrams into simpler diagrams (a form of

visual decomposition).

The wired and wireless models were viewed in terms of contracts (establishing

how independent objects interact to accomplish tasks), roles (the job that the components

play when entering and leaving contracts), wires, softlinks (the dynamic link in wireless

models), and timethreads (a time-based path through an architectural design intended to

offer a behavioral trace).

71

Hence, this versatile and early model of software architecture visualization

provided not only topological information, but software traceability to the rationale

behind the design.

 An architectural visualization of the Linux operating system [Bowman, 1998;

Bowman, Siddiqi, & Tanuah, 1998], available on the Internet, was studied as an example

of how an architecture could be visualized in the plane. This dissertation research

intended to use a portion of the planar Linux visualization and project various

components and connections into a three-dimensional, virtual world using VRML.

 The empirical studies of Colin Ware and Glenn Franck on the effectiveness of

three dimensions in visualizing software architecture are of great significance to this

dissertation. In Visualizing Object Oriented Software in Three Dimensions [Ware, Hui,

& Franck, 1993], the authors compared the human comprehension (among several human

subjects) of a complex structure visualized in two dimensions to the same structure

visualized in three dimensions. It was found that the three-dimensional visualization

substantially reduced the error rates in the comprehension of the complex structure.

 The same authors refined their experimental studies on three-dimensional

visualization in Evaluating Stereo and Motion Cues for Visualizing Information Nets in

Three Dimensions [Ware & Franck, 2000]. Experiments were conducted on a number of

human subjects to measure how well the subjects could trace a path through a complex

two-dimensional and three-dimensional graph. The error rate of tracing the path was

significantly reduced (by a factor of three) when using three dimensions. Furthermore,

allowing the subject to rotate his or her head relative to the three-dimensional structure

resulted in dramatically increased comprehension of that structure.

72

 Visualization of Large Nested Graphs in 3D: Navigation and Interaction [Parker,

Franck, & Ware, 2000] is a remarkable paper that discussed the techniques for

visualizing very large graphs.

When viewing large graphs with a tremendous number of nodes and arcs (at least

thirty or more), the images become muddled and complex. The authors defined the

generic "focus-context" problem with large graphs: it is desirable for information to be

provided for the overall large structure, yet important to be able to view arbitrarily small

details. The traditional techniques for solving the focus-context problem were discussed

(rapid zooming, distortion techniques, component hiding, multiple windows, and three-

dimensional visualization). The authors were partial to three-dimensional visualization,

and described a system called NV3D that allowed visualization of very large graphs with

nested structures. Visualization of dynamic behavior was achieved using a "snake," the

animation of arc behavior over time to allow tracing of execution threads. Snake

animation could be superimposed over the larger static structure to attract user attention

and provide an execution history of the behavior.

NV3D was being applied to a commercial environment at Nortel Corporation,

with applications to software training (visualization of software architectures to

indoctrinate new programmers), code management, and visualization of execution paths

through the program structure.

While the NV3D software may resemble the research of this dissertation, it is

important to point out the differences: this dissertation used an architecture description

language as a starting point and mapped elements described in the ADL to elements of

the architectural structure in VRML based on the architectural style. One viewpoint

73

defined in the ADL was mapped to one world defined by a separate VRML file. The

VRML worlds may be linked to one another, and elements within each architecture may

be hyperlinked to source documentation. The intention of this dissertation was to map

the architectural description language to a virtual-reality environment using the VRML

language, and not to serve as a sophisticated 3D visualizer of large-scale graphs. The

dissertation took a purely software architectural approach and operated on the assumption

that the graphs would be relatively coarse-grained at the outset, with details kept hidden.

Lower-level details in a potentially large structure would be unveiled only as needed (the

traditional "component hiding" approach was taken). Furthermore, the VTADL-to-

VRML compiler was intended as a relatively inexpensive application capable of being

viewed on the Internet.

Algorithms for the effective modeling of hierarchical graphs in three dimensions

were discussed by Sugiyama, Tagawa and Toda in Methods for Visual Understanding of

Hierarchical System Structures [Sugiyama, Tagawa, & Toda, 1981]. The algorithms

provided here were of special interest to the visualization of software architectures.

Sugiyama et al. emphasized algorithms which would make graphs more "readable." The

authors defined several criteria for determining a readable graph. A hierarchical graph

was considered readable if it had a minimal number of crossed edges per level (since

crossed edges make for a more complicated graph), if the graph's long span edges were

straight, if the layout of edges was balanced, and if the layout of nodes in the graph were

close to one another. Sugiyama et al. provided both theoretical and heuristic methods to

insure that their criteria for readability could be met.

74

The research of this dissertation did not use the algorithms by Sugiyama et al.,

since the VTADL-to-VRML geometric algorithms were already implemented prior to

reading the paper. However, the algorithms provided in the paper may be of use in future

research where large number of nodes and more arbitrary hierarchical structures are

encountered.

Papakostas and Tollis provided two algorithms for drawing orthogonal graphs in

three dimensions in which edges do not cross, fulfilling a criterion for graph readability

as defined by Sugiyama et al. [Papakostas & Tollis, 1999]. The algorithms were

analyzed for time complexity based on graph size and were shown to be linear-time in

efficiency. This dissertation did not use their algorithms but the existence of this

fundamental and graph theoretic research was noted for future versions of the VTADL-

to-VRML intermediate geometric model.

A standard reference on VRML is the VRML 2.0 Sourcebook [Ames, Nadeau, &

Moreland, 1997]. This book discussed the virtual reality paradigm, VRML in the context

of the Internet, and provided detailed syntax and examples on the language itself.

The wider literature on the target language of this dissertation research, VRML, is

relatively informal. The Web3D Consortium Home Page is the definitive source of up-

to-the-minute information on VRML and related technologies [Web3D Consortium,

2001]. The Web3D Consortium is a non-profit trade association consisting of both

corporations and individuals involved with modeling three-dimensional graphics on the

Internet (some of the larger corporations include Sony and Phillips). The Web3D

Consortium inherited the standardization and specification tasks from the San Diego

Supercomputer Center in the late 1990s. The Web3D site is comprehensive, providing

75

the original specification for VRML 1.0 and the most recent version, VRML 2.0 (referred

to as "VRML 97"). In 2001, the functionality of VRML was incorporated into the

Extensible Markup Language (XML) using a new standard defined by the Web3D

Consortium, X3D. X3D is intended as a successor to VRML, since X3D can be run

directly on an Internet browser without a VRML add-on. Existing VRML applications,

however, will remain compatible to X3D. The X3D standard was released on May,

2001; a specification update was released on November 25, 2001.

General References

Key references used in the development of the ADL-to-VRML compiler include

the classic compiler text widely known as the "dragon book" [Aho, Sethi, & Ullman,

1986], an outstanding reference on lex and yacc [Levine, Mason, & Brown, 1992], and

the "bible" of VRML, the VRML 2.0 Sourcebook [Ames, Nadeau, & Moreland, 1997].

 The compiler text by Aho et al. was used to gain a better understanding of the

ADL-to-VRML translation. The book lex and yacc by Levine et al. was invaluable when

implementing the shell of the actual compiler for the ADL. The VRML 2.0 Sourcebook

by Ames et al. was invaluable for understanding the target language, VRML, and the

visualization capabilities of the target language.

 The widely read text by Hearn and Baker, Computer Graphics [Hearn & Baker,

1986] was used for quick references on matrix algorithms for geometric translations and

transformations, and for geometric modeling for computer graphics.

 While programming the data structures and subroutines using the C language, a

textbook by J. Antonakos and K.C. Mansfield, Practical Data Structures Using C/C++

76

[Antonakos & Mansfield, 1999] provided excellent description on standard algorithms

and abstract data types, greatly assisting in the implementation of the intermediate

geometric model and VRML code generator.

During research into architecture descriptions with UML, two reference works

were used outside of academic literature. Pierre-Alain Muller's Instant UML [Muller,

1997] served as a handy reference when studying UML tools and concepts; and Terry

Quatrani's Visual Modeling with Rational Rose 2000 and UML [Quatrani, 2000] provided

a vendor-specific reference on the popular Rational Rose implementation of UML.

77

Summary of Knowns and Unknowns

 Architecture description languages (ADLs) may be text-based or graphical and

are used explicitly for the purpose of representing software architectures. Different

ADLs place emphasis on different aspects of software architecture. UniCon focused

more on connectivity, for example, than ADLs that preceded it [Shaw et al., 1995].

Rapide [Luckham et al., 1995] was an ADL for event-driven and concurrent system

architectures, while Wright was one of the first formal architecture description languages.

 The Unified Modeling Language (UML), a graphical notation for representing

object-oriented designs and behavioral analysis (such as scenarios and use cases), has

become a de facto standard in the software development industry for modeling software

development. However, UML is not considered an ADL since UML does not model

configurations of architectures explicitly, one of the criteria for defining an ADL

[Medvidovic & Taylor, 1999]. UML does not adequately describe the details of

connector or component attributes to the extent of dedicated ADLs. Attempts to model

components or connectors with UML have been made through using extensions to UML,

but these architectural extensions are not native to the language. UML has no capability

for modeling relationships between views.

 Hence, there continues to be a need for ADLs, at least until UML 2.0 contains the

capability for explicit and intentional architectural descriptions. However, even UML 2.0

will still be a two-dimensional representation. It will still be designed with object-

oriented, notational design in mind, rather than as a virtual medium inviting exploration

of three-dimensional structures.

78

 Feijs & de Jong claimed (from a subjective standpoint) that visualizing software

architectures with VRML can make the representation of software architectures more

engaging and more comprehensible, perhaps even assisting in detecting reusable patterns

in the architecture. However, the authors did not visualize an ADL explicitly; rather,

they defined the software architecture through a relational database and translated the

connections into VRML.

Parker et al. presented strong, empirical evidence that using three-dimensional

visualizations, along with user-directed movement within the three dimensions, greatly

enhanced the user's comprehension of complex structures in comparison to planar

representations [Parker, Franck, & Ware, 2000]. This evidence, along with related

research [Ware, Hui, & Franck, 1993; Feijs & De Jong, 1998] form the basis for

translating an ADL into the VRML format.

 The inherent capability of VRML in representing distinct worlds using the virtual

reality paradigm is a powerful yet natural medium for modeling different stakeholder

viewpoints [Ames et al., 1998]. VRML is designed for rendering on an Internet browser,

and so is platform-independent and available at minimal cost.

Surprisingly, only a handful of researchers have used VRML to represent

software architectures [Feijs & de Jong, 1998]. To the best knowledge of this researcher,

no research has yet focused on using VRML as a medium to explicitly create viewpoint

models on software architectures. The inherent capability of VRML to represent a

distinct world using the virtual reality paradigm is a prime advantage, along with

VRML's availability on the Internet. A world can easily be interpreted as a viewpoint

79

containing multiple structures. Each structure could be readily understood to be software

architectures contained within the world representing the view.

Furthermore, to the best knowledge of this research, no compilers existed which

directly translated an ADL to VRML.

The ability to represent viewpoints using three-dimensional interaction, along

with traditional decomposition techniques, can lead to easily comprehended and

aesthetically engaging software architectures.

Contribution to the Field of Software Architecture (Software Engineering)

 With the shortcomings of UML in mind, and the continuing need for research in

architecture description languages, this research contributed to the field of software

architecture by creating a new ADL (called VTADL, for Visually Translatable

Architecture Description Language) capable of representing separate but integrated

viewpoints on software architectures. VTADL allowed a flexible and relatively simple

description of one or more viewpoints, and one or more architectures within each

viewpoint. VTADL allowed the selective hiding or revealing of elements of an

architecture, allowed for the representing of multiple architectural styles, and allowed for

hyperlinks of any element of any architecture within a view, either to another view or to a

desired file external to VTADL.

 This research also contributed to the field of software architecture by translating

the views and architectures defined by VTADL into a visual medium, VRML. Each view

defined in VTADL was translated into a separate VRML file; the views (and the

associated VRML files) were related to one another by the VTADL definitions.

80

 Any relatively complex architectures defined in the architecture description file

could be made more interesting and hopefully more comprehensible by visualizing them

in three-dimensional, colorful worlds, rendered using the virtual reality paradigm.

Although the visualizations were of static software architectures, the stakeholder was

free to navigate through the visual representation, able to glance at the structures from

different perspectives; the stakeholder was also able to navigate through other viewpoints

not necessarily his own as easily as clicking a mouse, perhaps exploring alternate worlds

and gaining a better understanding of the whole.

Chapter III

Methodology

Research Methods

Overview of Procedures Employed

 In Chapter I, the stated goal of this research was to develop a new technique for

software architecture visualization using virtual reality. Ware and Franck demonstrated

that the presence of three dimensions in the visualization of complex structures, when

accompanied by user-directed movement, increased the comprehension of those

structures [Ware & Franck, 1993]. VRML is a highly flexible medium, intended for

representing realistic worlds in three-dimensional space. When the VRML file is

instantiated, a viewer may navigate through an engaging world, exploring objects from a

variety of locations.

A natural association was made by the author of this dissertation between the

virtual reality worlds modeled by VRML and the representation of a viewpoint. It was

determined that each VRML file would be a separate view (abstraction) containing one or

more software architectures. The views (and the architectures within each view) were

defined by the software architect through means of an architecture description language.

The overall strategy of this research was to first develop an architecture

description language; second, to develop a compiler capable of translating the

architecture description language into VRML; and third, to run case studies

demonstrating the visualization. The developed software was a prototype demonstrating

the "proof of concept" and not a polished, commercial product.

82

 The strategy was realized in five major steps (or phases). The procedures behind

each step are described as follows:

Procedure Step One defined a simple yet effective architecture description

language, capable of being visualized. The language was capable of describing software

components, connectors, configurations, and architectural styles; the language could also

allow for the definition of multiple views on one or more architectural structures,

conforming as much as possible to the architecture description standards defined by IEEE

1471-2000 [IEEE, 2000]. The language could allow for hyperlinks from elements of an

architecture to external files, so that the rationale behind the architecture could be traced

to source documentation.

The reasoning behind features of the language was documented within the context

of current research in the field of architecture description languages. The result of

Procedure Step One was a formal description of the language in BNF (Backus-Naur

Form).

 Procedure Step Two began once the grammar of the architecture description

language was defined. This step was the design phase of a compiler that ultimately

translated the regular expressions in the source ADL to visualized objects in VRML. In

Procedure Step Two, a mapping was defined between the objects (such as architectural

components or connectors) in the ADL to the objects within VRML. This mapping was

achieved by a geometric model, which defined the topology of an architecture using a

connectivity matrix.

83

The mapping from ADL architecture to the geometric model was determined by

the architectural style as defined in the ADL (with the types of style as described

originally by Shaw and Garlan [Shaw & Garlan, 1996]).

 Procedure Step Two also defined the overall data structures required to implement

the geometric model, and the basic algorithms needed to traverse the data structures to

generate VRML code.

 The BNF for the source ADL was used as input to a parser generator, yacc

(acronym for "yet another compiler-compiler"). The tokens of the source language were

defined and fed into lex (a lexical analyzer generator). The end result of Step Two, then,

was a parser shell capable of recognizing the source language, and a lexer capable of

accepting tokens and feeding them to the parser. In other words, the syntax of the source

language was defined, but the full semantics had yet to be implemented as C code in the

form of functions and subroutines embedded in the parser shell.

 Step Three involved coding and initial testing of the subroutines that operated on

the data structures representing the geometric model. These subroutines comprised the

semantics of the compiler. After the subroutines were tested, they were integrated into

the parser shell.

 The subroutines for traversing the data structures and generating VRML code

were successfully integrated into the compiler; the compiler was then fully implemented

and was ready for acceptance testing.

 Step Four performed acceptance testing of the compiler on a number of ADL test

files.

84

 Step Five conducted actual case studies, starting with the rudimentary and

progressing into more intricate cases. Step Five represented the culmination of this

research into software architecture visualization, and resulted in a prototype capable of

translating an architecture description language into a three-dimensional visualization in

the Virtual Reality Modeling Language.

 As mentioned in Chapter I, this research proceeded only as far as the development

of a prototype. The actual effectiveness of the visualization software in a real software

development environment was left as a topic for future study.

85

Specific Procedures to be Employed

For each test or case study, the following items of documentation were provided:

(1) Documentation on the purpose, background, and pertinent details of the test or

case study;

(2) The VTADL source file(s);

(3) The actual visualizations by means of a color screen printout. An
explanation of the view and architectures within the view were provided.

 These items were incorporated in the template in Appendix H.

86

Description of Procedures

Procedure Step One

 The purpose of Step One was to specify a general architecture description

language, capable of meeting the basic requirements of an ADL as specified in the IEEE

Recommended Practice for Architectural Descriptions [IEEE, 2000]. The ADL was also

required to fulfill the fundamental criteria as specified by the key literature [Bass,

Clements, Kazman, 1998; Jazayeri, Ran, & van der Linden, 2000; Medvidovic & Taylor,

2000; Shaw & Garlan, 1996]. Fundamentally, an ADL described the overall coarse-

grained structure of software. The language had to be capable of describing components,

connections between components, and configurations of topologies. General properties

of components (such as role, associated process, interfaces, etc.) or connectors (relation

type, weight, directionality, connectivity definition, etc.) also had to be specified in the

language.

We desired the capability to describe architectural styles. An architectural style

defined how the components and connectors were used, with constraints on the topology

and instantiation. Examples of the better-known styles were the pipelined, main-program-

and-subroutine, object-oriented, layered, and state-based styles. Though VTADL

allowed for several different styles, only two were visualized in VRML for this

dissertation: program-call-and-return and the layered styles.

It was possible to combine styles using a "heterogeneous" style, where elements

of an architecture may consist of more than one style (e.g., a component in a program

call-and-return style could represent a pipeline). Heterogeneity had the drawback that, by

87

combining too many styles, the original reason for software architecture – simplicity –

was lost. VTADL did not allow for direct representation of heterogeneous styles;

however, architectures of more than one style could be visualized in a view, juxtaposed in

proximity to one another for easy comparison.

 Another important goal of an ADL was to standardize the structural

representation into a language independent of system implementation, so that knowledge

of successfully applied patterns could be detected, reused, and transferred to future

projects. Bass, Clements and Kazman [Bass et al., 1998] reasoned that ADLs shared

features of requirements, programming and modeling languages, yet were distinct from

all three. Requirements languages were rooted in the problem domain, while ADLs

concentrated on the solution space. Programming languages mapped all architectural

components to the execution space, while ADLs attempted to hide the execution and

concentrate on structure. Finally, modeling languages referred to the behavior of the

whole system, rather than the parts. ADLs concentrated on component structure and

connections.

We modified the ADL criteria by adding a further constraint: that the language be

translatable into visual form in a way that lucidly and unambiguously communicated the

architectural descriptions to the stakeholders.

 It was intended that the ADL not be domain-specific. In other words, the

language was required to be generic in nature; the language was required to be relatively

easy for a non-specialist to understand, and was required to contain non-ambiguous

structures capable of being visualized. For example, if a structural hierarchy was present,

88

the language must have explicitly stated whether one component was a child of another

component, to the left or right of another component, etc.

 The ADL was required to focus on the static representation of a software

architecture, rather than the state-based notations modeling the dynamic behavior.

Finally, the ADL was required to allow for rapid and simple description of an

architecture.

An existing architecture description language called ASDL, for "Architecture

Structure Description Language" [Eixelsberger & Gall, 1998] was used as a model in the

design of the ADL for this dissertation. ASDL emphasized important static structural

properties, while hiding many behavioral details, a key feature in the design of our own

language. Although ASDL was originally intended for architectural recovery from

legacy systems, the authors pointed out that ASDL had general use to a wide variety of

domains.

However, the capability for representing different views on one or more software

architectures was needed, per the stated goals of this dissertation. Other features, such as

the ability to define hyperlinks on selected elements, the ability to selectively show or

hide elements of an already defined architecture, and the ability to show multiple

architectures within the same view were also be required. Using ASDL as a starting

point, a new language incorporating the additional features was developed.

With the aforementioned language characteristics in mind, a new language was

defined on May, 2001. The new architectural description language visualized by this

dissertation was called VTADL, an acronym for Visually Translatable Architectural

Description Language. The unique feature of VTADL was that it allowed for a flexible

89

description of both views and architectures within views. VTADL was a regular

language whose expressions were recursively generated from the grammatical production

rules in an LR (left-to-right) derivation. VTADL was translated into VRML by an LR

parser (see Figure 1).

Appendix A contains the full grammatical specification of VTADL in BNF

(Backus-Naur Form).

Figure 1: VTADL-To-VRML Translation

To reiterate the definition of a view: a view is an abstraction of a model (in this

case, an architectural structure), based upon the concerns and interests of a stakeholder.

The analogy of a physical building architecture to a software architecture noted in

Chapter I is worth repeating here, but with the caveat that the analogy is not meant to be

taken too literally. Often, software may be far more untenable than a physical structure

since software itself is fundamentally an immaterial abstraction, which may be changed

at the whim of stakeholders.

If we were to provide a blueprint of an electrician's view of the building, the

diagram would probably hide most of the physical details except for the overall

dimensions of the walls, doors, etc. The electricians' diagram would emphasize the

wiring, power sources, and overall cable circuitry. A plumber's view would contain

VTADL

FILE

TRANSLATOR

VRML

90

details about the piping, while suppressing most if not all information about the wiring

circuitry (except in isolated cases where intersection with electrical wiring would present

a potential hazard to the plumber).

The VTADL source file consisted of two parts: the architecture list, which listed

all architectures, and the view list, which listed the views on one or more of the

architectures. A view may have used one or more architectures from the architecture list;

however, a view may not have used an architecture not defined in the architecture list.

See Figure 2 for the body of an architecture definition.

Figure 2. Architecture Definition (Template)

Architecture <Arch-Name>
type <Style>
{
 ComponentList
 {
 Component <Name-1>;
 .
 .
 Component <Name-n>;
 }
 ConnectionList
 {
 Connection <ConnName-1>
 .
 .
 Connection <ConnName-n>
 }
}

Note that the reserved words in the language are in bold font.

91

An architecture definition was assigned a unique name, and an architectural style

was assigned for the entire structure that followed. The architectural styles available in

VTADL were:

 1. The program call-and-return style (PROGRAM selection), where
 components represent program modules and connections represent
 calls to subroutines;

2. The object-oriented style (OBJECT selection), where components
 represent classes or objects, and connections represent an association or
 relation;

3. The pipelined style (PIPELINE selection), where a component
 represents a transformation on data flow, and a connection represents a
 flow of data;

4. The layered style (LAYER selection), where components represent
 a service to a higher layer, and connections are hidden. The highest
 layer represents a service to the overall system.

Of the four style selections, only two were implemented in the VTADL-to-VRML

compiler: the program call-and-return and the layered style.

The architectural style determined how the components and connections were

visualized. In other words, the style mapped the architectural structure to a particular

geometric model which was, in turn, rendered in VRML. The architecture definition itself

consisted of a component list, defining the components in the topological order that they

should appear in, and a connection list, which established the connectors between the

defined components. Each component in the component list had a set of properties,

depending on the architectural style constraints; each connector also had a set of

properties.

92

A component in a component list was first given a unique component name. The

component name had to be unique only within the component list. Following the name,

the component was assigned a component type. The component type may have been

defined as a Processing Element, a Program Component, a Conceptual Component, an

Object Component, or a Data Repository Component. For the present implementation, a

Program Component was used (for the program call-and-return or layered styles).

Component properties were defined using the following template (see Figure 3):

Figure 3: Properties of the Component

Component <Comp-Name>
ComponentType <Type-of-Component>;
Properties:
 CompRole: <Role-of-Component>;
 ChildOf: <Component-Parent>;
 Layer: <Layer-Name>;
 Process: <Process-Name>;
 InterfaceList:
 Interface <Relative-Position> <Interface-Name-1>;
 { InterfaceRole: <Role-Selection>; }
 .
 .
 Interface <Relative-Position> <Interface-Name-n>;
 { InterfaceRole: <Role-Selection>; }

 Following the reserved word, Properties, the component attributes were defined.

CompRole defined the Component Role, or the role that the component played in any

interaction with another component. The component may have served roles as Input (an

input node to a network), Output (an output node to a network), Root (root node of a

hierarchy), CmpProducer (producer in a client server relation), or CmpConsumer

93

(consumer in a client-server relation). A component role must always have been

indicated.

 The ChildOf property need not have been indicated, however. The ChildOf

property was defined when a component was a child to another component in a hierarchy

(such as a program call-and-return or layered relation). If the component was a child,

then the name of the parent component was provided.

 The Layer property was used to define an additional identifier for the component

when the component was used as a service in the layered style, or when the component

occupied a defined layer of nodes in the network style (the network style will be

implemented in a future version of VTADL). The layer definition was optional, but may

be defined as Linput (for layer input node in a network), Loutput (for layer output

node), or may be assigned an alphanumeric name.

 In the Process property (optional), a component may be assigned a process type.

The process types were for use with neural network nodes; the process type selections

were Sigma (for summation node) or Threshold (for the threshold function of a

processing element).

 A component had one or more interfaces defined for the component. Connections

to that component must have been instantiated through an interface name. In other

words, the interface name was the medium between the component and a connection to

the outside world. An interface name was analogous to an electrical "socket" which

accepts attachments from electrical plugs.

 At the end of the component properties section, the InterfaceList was defined.

The interface list contained the definitions of interface names and interface properties.

94

An interface in the interface list was defined using the reserved word, Interface,

followed by the relative interface position and the interface name.

The relative interface position must have been selected from one of six possible

locations: Top, Bottom, Left, Right, Front, Back. The component was visualized as

occupying a position within a cube; the interface was at the center of one of the six faces

of the cube. For instance, the Top position could be considered to occupy the center of

the top face, and so on. A maximum of 25 interface names were allowed for any given

component. However, in the current implementation of the VTADL-to-VRML compiler,

the interfaces were not visualized as separate objects in VRML.

For each interface, an interface role was defined. The interface role determined

how the interface was used by the component with respect to the connection. In the

current version of VTADL, there were only two possible interface roles: Producer and

Consumer. An interface was a producer if it supplied data or sent control signals to the

connection; an interface was a consumer if it received data from the connection or

received control signals.

Once the components were defined within the component list, a connection list

was used to define the connections between the previously defined components. The

connection list must always have followed the component list, since the connections were

defined using the interface names from the component properties.

Figure 4 gives the template for the connection list of a software architecture.

95

Figure 4: Template for a Connection List

ConnectionList
 {
 Connector <Connect-Name-1>
 ConnectType <Connect-Type> <Connect-Direction>;
 Connect(<From-Interface-Name> , <To-Interface-Name>);
 .
 .
 Connector <Connect-Name-n>
 ConnectType <Connect-Type> <Connect-Direction>;
 Connect(<From-Interface-Name> , <To-Interface-Name>);
 }

A given connection was defined using the Connector reserved word, followed by

the connector name. After the connector name, the connector type was specified as one

of three options: DataFlow (meaning that the connection was used to transport data),

ControlFlow (the connection was used for control purposes), or Associates (meaning

that the connection was used to establish a relation in the conceptual model or object-

oriented model). Following the connector type, the directionality of the connector was

established as either Unidirect (the connection was unidirectional, flowing in one

direction) or Bidirect (the connection was bidirectional, flowing in either direction).

The actual connection was established using the Connect reserved word. Within

the parenthesis of the Connect clause, the From-Interface-Name was the name of the

interface from which the connector originated, and the To-Interface-Name was the name

of the interface which served as the destination for the connector.

96

It should be noted that an interface name within an architecture should be unique.

That is, an interface name should be associated with only one component, otherwise an

error condition may result.

A given architecture was not instantiated unless it was incorporated within a given

view. In the second section of a VTADL file, a View-List was built, defining one or

more views. A main view was always required, even though the main view may have

been empty (the trivial case). Within a given view, preferably one or more architectures

could be used. If more than one architecture was used by the view, the first architecture

specified in the ordering within the view-list was rendered first; the second, third, and nth

architectures were displaced into the background in successively more distant and step-

wise fashion.

Figure 5 gives the template of the view-list section of a VTADL file.

Figure 5. View-List Template of a VTADL File

ViewList
 {
 ViewMain
 {
 { UsingArch <Arch-Name-1>; }
 .
 .
 { UsingArch <Arch-Name-n>; }
 .
 .
 }
 .
 .
 View <View-Name-1>
 {
 { UsingArch <Arch-Name-1>; }
 .
 .

97

 { UsingArch <Arch-Name-n>; }
 }

 View <View-Name-n>
 {
 { UsingArch <Arch-Name-1>; }
 .
 .
 { UsingArch <Arch-Name-n>; }
 }
 }

 The main view was defined using the ViewMain reserved word. If the view was

not the main view, the reserved word View was used, followed by the view name. The

architectures within a view were defined with the UsingArch reserved word, followed by

the name of the architecture. The name of the architecture must have been previously

defined in the architecture list section of the VTADL file, otherwise an error condition

was generated by the compiler. The same architecture name could be used more than

once within a view; different versions of the same architecture could represent different

aspects of the same structure. When several architectures were used within a view, the

architectures were successively translated further into the distance in a step-wise fashion.

 For any architecture specified within the view, components and connections could

be selectively displayed or hidden. Hyperlinks could also be established from specified

components or connections to external files.

 After the UsingArch clause and architecture name, the hyperlinks and show/hide

clauses were established within a pair of brackets { ... } for the architecture being used.

The referenced component or connection identifiers must have been valid for the

architecture.

98

 For the architecture being used, the Components reserved word indicated which

components were to be shown. If the word All was used, all components were shown;

however, if individual component names were listed, only the listed component names

were shown. The component names were listed with one or more spaces between them.

The word Connections was used to indicate the desired connections to be shown. If the

word All followed Connections, then all connections were shown. However, if one or

more individual connection names were listed, only those connections were shown (and

the remainder kept hidden).

 If a given component or connection was selected for display, a hyperlink could be

established from that component or connection to a file. The following statement was

used whenever a hyperlink was desired:

 HyperLinkOn <Component-or-Connection> ToFile <File-Name>;

 A hyperlink may be only established once for any component or connection in the

architecture. The hyperlink may be either to a view file or to an external file name. If the

hyperlink was to a view file, the view file name may be used without quotes; if an

external file name was desired, the file name must have been defined as a literal, with url

or directory path included if the file name resided in a location other than the default

location.

 Each view in the view-list generated a separate VRML file, using the view name

as file name, followed by the extension, "wrl." The main view always generated the file,

"Main.wrl."

99

So far, we have defined a VTADL file as consisting of the architecture list, which

defined each architecture using a style, components, connectors, and a topology; and a

view-list, which listed the main view and user-defined views, with each view using one

or more architectures. We have shown how each architecture specified within a view

may have components or connectors selectively shown or hidden, with hyperlinks on

elements in each architecture to either other views or to external files.

 Appendix E provided a simple example of a VTADL file which defined two

architectures: ExampleProgram, a hierarchical structure with a root and three children,

(four components and three connections) in the call-and-return style; and ExampleLayer,

with four components in the layered style.

 The main view contained both architectures, using all components and

connections. A hyperlink existed from the root in ExampleProgram to the source

VTADL file (a text file named "Example.txt"). Another hyperlink was established from

the top layer of ExampleLayer to a view named "SecondView."

 SecondView contained three versions of ExampleLayer. Version one used the

first and second layers, hiding the other layers; version two used the first, third and fourth

layers; and version three used all four layers. The first layer of version one contained a

hyperlink to the main view; the second layer of version one contained a hyperlink to the

source VTADL file, Example.txt.

 Example.txt was used as one of several test cases to demonstrate that the program

was working according to requirements. The resulting VRML target files, and the

accompanying visualizations, were described in Appendix G.

100

Procedure Step Two: Design of Geometric Model (Data Structures and Algorithms)

 Figure 1 illustrated the general translation process from VTADL source file to

VRML target file. Figure 6 decomposes the translation process into the well-known

subdivisions of a compiler [Aho, Sethi, & Ullman, 1986]. Since the text-based source

file was translated into a graphical language, an intermediate geometric model was

included to map the architectural structures defined in the source language to VRML

objects. At an even higher level of abstraction, the intermediate geometric model

mapped each view defined in the VTADL source file to a separate world defined by a

separate VRML file. That is, one VRML file was generated for each view defined in the

VTADL source file.

Figure 6. Basic VTADL-to-VRML Compilation Process

 The VTADL source file was required to be a text file. The VTADL file was

scanned by a lexical analyzer (or "lexer"), which built the symbol table, detected tokens,

and passed the tokens to the parser. If any symbol or string was invalid (not allowed in

the string specifications of the language) the lexer generated an error message for the

VTADL Source file ===> Lexical Analyzer ===> Tokens ===> Parser

Parser ===> Geometric Modeler ==> VRML Generator

VRML Generator ===> VRML View ===> Visualization of Views

101

symbol. If the symbol or string was valid, the token was passed to the parsing program

(or "parser").

 The parser builds a parse tree during the first pass of the parsing process; during a

second pass, the parse tree is traversed to validate the syntax of the grammar. If the

syntax is invalid (e.g., a token existed in an order where the token violated the grammar

of the language), an error message is generated indicating the parsing is unsuccessful.

 If the parse is successful, the statements in the source file are grammatically

correct. However, the semantics of the statements must also be generated. By semantics

is meant the corresponding actions taken by the target language, VRML, for the source

language statement (Appendix C shows the parser shell, the yacc specification of

VTADL without the semantic actions to generate VRML code).

 The corresponding actions (statements) in VRML were generated by various

subroutines which were called as semantic responses to VTADL statements. The

subroutines called in response to VTADL statements served two basic tasks: first, they

stored properties of components and connections defined in the source language to an

intermediate geometric model; second, the subroutines traversed the intermediate

geometric model, performed space-related calculations, and generated the corresponding

VRML code.

 The intermediate geometric model was implemented as data structures in the C

programming language. What we have referred to as the "geometric model" was in

reality a collection of abstract data types such as multidimensional arrays, pointer

variables, and linked lists. In this section, we defined these abstract data types and

described the algorithms that would later operate on the data structures.

102

 The first section of the VTADL source file was the architecture list. The list of

architectures was represented as a linearly linked list, with each node representing one

architecture. An architecture described in VTADL was stored in an architecture node;

the architecture node was inserted into the linked list in the order that the architecture

appeared in the architecture list of the VTADL file.

 A given architectural node contained information that identified the name of the

architecture and defined the style, components, connectors, and topology (connectivity).

A count of the number of components and connectors in the architecture was also

included in the architecture node. Figure 7 illustrates a node in an architecture linked

list.

Figure 7: Node in Architecture Linked List

Arch-List Node

Style
Arch_ID[25]
Arch_CompID [25] [25]

Arch_CompPosition[25][4]
Arch_ConnID[25][25]

Arch_ConnPosition[25][4]
Topology[25][25]

No_Comps
No_Conns

archlink: Pointer to next node

103

For each architecture, the architectural style determined how the components and

connectors were rendered in VRML. In a program call-and-return style, components

were rendered as spheres and connectors were rendered as cylinders. The enforced

topology of the call-and-return style was a three-dimensional tree, with child components

under a parent rotated around the y-axis in an imaginary circle. All spheres at a given

level (height) in the tree hierarchy were given the same color and radius. Spheres at

higher level numbers were assigned successively smaller radii and different colors.

 For the layered style, components were rendered in VRML as successively larger

cones with successively more space between each layer beyond the base layer. Even-

numbered layers (with the base layer being 0) were assigned one color, while odd-

numbered layers were assigned a second color. Since the layered style hid information

about connections, the connection information defined in VTADL for layered styles was

not rendered in VRML.

 The algorithms for rendering the two styles will be given later in this section.

 Referring again to Figure 7, Arch_ID is the 25 character name of the architecture

defined in the architecture list node. No_Comps is a counter variable telling how many

components were used in the architecture. No_Conns is a counter variable telling how

many connectors were used in the architecture.

Arch_CompID[25][25] was a two-dimensional array containing the identifying

names of components. Each component could be a maximum of 25 characters. There

could be a maximum of 25 components in the architecture. To access the name of the

first component, an index of 0 was used: Arch_CompID[0]. To access the name of the

last component, an index of No_Comps - 1 was used, or Arch_CompID[No_Comps-1].

104

 In likewise fashion, Arch_ConnID[25][25] was a two-dimensional array

containing the identifying names of connectors.

 Topology[25][25] was a two-dimensional, 25 x 25 array of integers. The

Topology matrix was used to represent the connectivity between components, and

provided the index of the connector used for connecting one component to another. A

row number of Topology represented the index of the component from which the

connection originated; a column number of Topology represented the index of the

destination component to which the connection terminated. Specified at the row and

column intersection was an integer representing the index of the connector that linked the

originating component (row) to the destination component (column). If no connector

existed at the row and column intersection, a negative one (-1) was placed at that

location.

 Arch_CompPosition[25][4] was a matrix storing the relative coordinate positions

and level of a component in a hierarchy. The row number was the index (an integer from

0 to 24) identifying the component within the architecture. The column numbers

indicated the x, y, and z positions relative to the top of the architecture itself, and the

level number within the hierarchy. The root was assigned the level number 0, the

immediate children of the root were assigned the level number 1, and so on. For

example, Arch_CompPosition[0][0] would be the relative x-position of the root (which

had the component index of 0); Arch_CompPosition[0][1] would be the relative y-

position of the root; Arch_CompPosition[0][2] would be the relative z-position. Finally,

Arch_CompPosition[0][3] would be the level number of the root, in this case 0.

105

 We mentioned coordinate positions relative to the top of the architecture. For

each architecture, the origin (or top) of the architecture was considered to be the center of

the root node.

 Arch_ConnPosition[24][4] was a matrix storing the relative coordinate positions

of a connector. The x, y and z coordinates specified the coordinates for the center of a

cylinder representing the connector.

 As an example, Arch_ConnPosition[0][0] would specify the x-position for a

connector with the identifying index of 0. Arch_ConnPosition[0][1] would specify the y-

position for the connector. Arch_ConnPosition[0][2] would specify the z-position.

 Arch_ConnPosition[0][3] would specify the rotation (in radians) of the cylindrical

connector around the y-axis. This value would place the connector in its correct position

as a child to a parent. The algorithms for connector rotation and position calculations

will be given later in this section.

 The arrays and matrices contained in the architecture node defined only a single

architecture from the architecture list of the VTADL file. A pointer variable, Archlink,

pointed to the next node in the linked list of architecture nodes. If there were no

successor nodes, Archlink was set to null.

 The second part of the VTADL file was the view-list. The view-list was required

to contain the main view ("ViewMain") and could contain one or more user-defined

views. The view-list was implemented as a linear linked list. Each node of the linked list

represented one view. The first node in the linked list was the required main node,

followed by any user-defined view nodes. The views in the linked list were inserted in

the order that they appeared in the VTADL source file.

106

A view could use one or more architectures from the arch-list defined at the

beginning of the file. It should be noted that a view could contain no architecture, but

this was considered the trivial case. All the properties of a single view were included in a

node of the view-list. Figure 8 describes the properties of a view-list node.

Figure 8: View List Node Definition

 A view was represented as a world in VRML. Each architecture within a view

containing multiple architectures must be related in some way for the view to make

logical sense. The view could be effective or ineffective depending on how well the user

defined the original VTADL file. The process of eliminating ambiguity or viewpoint

mismatch was a manual and not an automated process in the current implementation.

View-List Node

View_ID[25]

No_Archs
Arch_ID[25] [25]

All_Comps[25]
All_Conns[25]
View_Comps[25][25]
View_Conns[25][25]

Hyperlinks_Comps[625][25]
Hyperlinks_Conns[625][25]

Viewlink: pointer to next View node

107

 View_ID was a character array that identified the view name of the node.

No_archs was a count of the number of architectures contained within the view.

 A software architecture was instantiated by being included within a view by the

UsingArch <ArchID> statement. The architecture names defined by each UsingArch

statement were successively stored in the Arch_ID[25][25] array. Arch_ID was a two-

dimensional array that contained a maximum of 25 architecture names; each name could

be a maximum of 25 characters. The row index of Arch_ID indicated the architecture,

while the columns indicated the character positions of the name itself.

 Each architecture identified in the Arch_ID could have a maximum of 25

components or connectors. Any component or connector in an architecture used within a

view may be selectively shown or hidden. The array All_Comps[25] was used to

indicate whether a given architecture (identified by an index ranging from 0 to 24) would

display all components. For example, if All_Comps[5] was set to 1, then all components

of the architecture whose index was 5 would be displayed; otherwise, if All_Comps[5]

was set to 0, only selected components would be shown. In likewise fashion, the array

All_Conns[25] was used to indicate whether all connectors would be shown for the

architecture.

 If selected components were desired for display, the View_Comps[25][25] array

was used. The row number of View_Comps was the index of the architecture, and the

column number was the index of the component of the architecture to be viewed. If the

array element specified by the row and column contained a 1, the component was

rendered in VRML; if the array element specified by the row and column contained a 0,

however, the component was kept invisible.

108

 A similar scheme was used to display or hide selected connectors. The

View_Conns[25][25] array was used, with the row number being the index of the

architecture, and column number being the index of the connector. If the array element at

the intersection of row and column was 1, the connector was viewed; otherwise the

connector was hidden.

 Hyperlinks could be specified from any component or connector in an

architecture to another view file, or to an external file.

 The array, Hyperlinks_Comps[625][25] allowed for a hyperlink from a specified

component in an architecture to a file name. An architecture within Hyperlinks_Comps

was accessed by means of an index, which may range from 0 to 24. A component within

that architecture may also be accessed by an index (0 to 24). Since there were a

maximum of 25 architectures and a maximum of 25 components per architecture,

Hyperlinks_Comps contained a maximum of 625 rows. Given the architecture index and

component index, we could calculate the row index of Hyperlinks_Comps by using the

hashing formula described by Equation 1:

Row index = (index of architecture)*25 + (index of component) (1)

 The resulting row index was an integer in the range from 0 to 624.

 As an example, to access the tenth component (component index = 9) of the

architecture whose identifying index was 4, the row index = (4) * 25 + 9 = 109. The

hyperlink file name was accessed at row index 109 of Hyperlinks_Comps.

109

 Once the row had been located (which represented the architecture and

component within that architecture), the 25 columns allowed for a file name with a

maximum of 25 characters. If a file name was used without quote marks and without an

extension, the compiler assumed that a view file was being hyperlinked, and stored a

VRML file name with the extension, ".wrl." However, if the file name was used with

quote marks around it, a literal string was assumed, and the file name was stored as a

literal at the calculated row number. The file name would be the destination of the

hyperlink from that component.

 Hyperlinks_Conns[625][25] was the array for establishing hyperlinks from

connectors, and followed a similar scheme described for components. See Equation 2 for

the calculation scheme for the row of Hyperlinks_Conns:

Row index = (index of architecture)*25 + (index of connector) (2)

 The pointer variable, "Viewlink," pointed to the next view node (if any) in the

linked list. Viewlink was set to "null" if there was no succeeding view node.

110

Description of Geometric Algorithms on Data Structures

 At the highest level, the algorithms that operate on the intermediate geometric

model have two main phases:

1. Build Geometry Phase. Parse the VTADL source file and build the
architecture list and view list data structures;

2. Code Generation Phase. Traverse the view list from first to last node,
using the architectures specified for each view. While generating a view,
search the architecture list for arch-node details. Render the architectures
within the view. Generate a separate VRML file for each view.

The algorithms for Phase One and Phase Two are briefly described (in pseudo-code) as

follows:

Phase One: Algorithm for the "Build Geometry Phase"

Parse the source file using the parser.

While the End of File ("$") symbol is NOT encountered:

/* Read through the architecture list */

While the architecture list has another architecture defined in it:
 Store the architecture name in Arch_ID.
 Store the style in style_var
 Initialize component, connection, interface counts and arrays.

 For each component in component list:
 Store component name to comp_name_array.
 For each interface name in properties section:
 Store interface name to interface_name_array.
 Store component ID associated with interface name to interface_comp.

111

 End For each interface name.
 Add 1 to comp_index, the component counter.
 End For each component in component list.

 For each connector in the connector list:
 Store connector name to conn_name_array.
 Define connection using interface1 to interface2:
 Find component index for interface1:
 Search array interface_comp for interface1.
 If component index found, use component index
 as source component in the connection,
 else generate ERROR and EXIT.
 Find component index for interface2:
 Search array interface_comp for interface2.
 If component index found, use component index
 as destination component in the connection,
 else generate ERROR and EXIT.

 Place source component index ("from_index") and destination
 component index ("to_index"), along with connector index,
 in a temporary array, "from_to[conn_index][3]".

 from_to[conn_index][0] = index of connection name.
 from_to[conn_index][1] = index of originating component.
 from_to[conn_index][2] = index of destination component.

 Add 1 to conn_index.

 End for each connector.

 /* Call subroutine to create new arch-node and insert in linked list */
 /* Note: Details of Insert_arch_node are provided in Appendix D. */

 Insert_arch_node(component, connector, and connectivity arrays).
 This subroutine moves the architectural values into the node values.
 The routine also generates the component and connector positions for
 an architecture relative to the topmost component, whose center is
 viewed as the origin (0.0, 0.0, 0.0) of the architecture.

End While arch list has another architecture.

112

/* For view-list section of VTADL, create view linked list */

While view-list has another view defined in it:
 Store view name in View_ID.
 (Note constraint: The very first view must be called "ViewMain").
 Initialize temporary view component, view connection, and hyperlink
 arrays.

 Search the view-list for View_ID.
 If View_ID already exists, generate an ERROR and EXIT.

 Store view name in a global view name array called View_Names.
 View_Names array will be used to generate a legend of views in each
 VRML file during VRML code generation.

 For each architecture specified in the "Using Architecture" command:
 Search for Arch_ID from architecture linked list.
 If architecture NOT found (-1), generate ERROR and EXIT.
 If architecture found, proceed:

 Components Show or Hide Section:
 If user specified "ALL" components:
 Set All_Comps array to 1 for the current architecture.
 If user specified selected components:
 Set All_Comps array to 0 for the current architecture.
 For each selected component specified for viewing:
 Search for the specified component in the component array
 of the current architecture node.
 If component not found, generate ERROR and EXIT.
 If component found:
 Set temporary array, view_comps[curr_arch_index][comp_index]
 to 1 for the architecture index and component index.
 End for each selected component.

 Connectors Show or Hide Section:
 If user specified "ALL" connectors:
 Set All_Conns array to 1 for the current architecture.
 If user specified selected connectors:
 Set All_Conns array to 0 for the current architecture.
 For each selected connector specified for viewing:
 Search for the specified connector in the connector array
 of the current architecture node.
 If connector NOT found, generate ERROR and EXIT.
 If connector found:
 Set temporary array, view_conns[curr_arch_index][conn_index]

113

 to 1 for the architecture index and connector index.
 End for each selected connector.

 Hyperlinks section:
 For each selected element specified for a hyperlink:
 Set the element ID to test_string.
 Search the component array using test_string.
 If found, the element is a component.
 If NOT found:
 Search the connector array using test_string.
 If NOT found, ERROR and EXIT.
 If found, the element is a connector.

 /* At this point, the element was determined as a comp or conn */

 If element was a component:

Set hyperlink index to access the hyperlink component array using
Equation 1:

 Row index of Hyperlinks_Comps is:
 (index of architecture)*25 + (index of component)

 If the file name was specified without quotes, we assume the
 file name is a view file and add the extension ".wrl".
 If the file name was specified within quotes, we use the string
 as a literal and assume that an extension was given.

 Store the file name for hyperlink in the array of
 hyperlinked components, Hyperlinks_Comps[row index][].

 If the element was a connector:
 Set hyperlink index to hyperlink connector array using Equation 2:
 Row index of Hyperlinks_Conns is:
 (index of architecture)*25 + (index of connector)

 If the file name was specified without quotes, we assume the
 file name is a view file and add the extension ".wrl".
 If the file name was specified within quotes, we use the string
 as a literal and assume that an extension was given.

 Store the file name for hyperlink in the array of
 hyperlinked connectors, Hyperlinks_Conns[row index][].

 End for each selected element specified for a hyperlink.

 End for each architecture specified in the "Using Architecture" command.

114

 /* Call subroutine to Insert View into view linked list */
 Insert_View_Node (view_name, architecture_array, all_comps, all_conns,
 view_comps array, view_conns array, hyperlink_comps, hyperlink_conns,
 count of architectures)

 Add 1 to number of views.

End While view-list has another view.

End While End-of-file NOT encountered.

115

Phase Two: Code Generation Phase (Generate VRML Files)

/* At this point, the parse of VTADL file has been completed. */
/* Data structures representing architectures and views have been built. */
/* The view list must be traversed from first to last node, architectures within */
/* each view must be rendered, and the VRML output file(s) will be generated. */

/* Note: Each view occupies one VRML file. */

/* Traverse the View linked list; generate one VRML file per node. */

While there are more view nodes in the view linked list:
 Store the view name as VRML file name with extension ".wrl".
 Get the number of architectures count from the view node data.
 Generate the VRML heading.
 Headings include View Name and VRML legend.
 Use global View_Names array to generate legend.
 Legend includes listing of all view file names with highlighted spheres
 next to each view name. No sphere is drawn near the view name
 that is the current view file.

 For each view name:
 Establish hyperlink from the sphere for that view name
 to the VRML file.
 End for each view name.

 For each architecture in the "used-architecture" array of view node:
 Using the Arch_ID, get the arch node from arch list.
 If unable to get the arch node, generate ERROR and EXIT.
 Using the origin of the architecture (call-and-return or layered),
 set the x, y, and z displacements for the architecture:
 x_displacement = old_x_displacement - 25.5;
 y_displacement = old_y_displacement + 15.0;
 z_displacement = old_z_displacement - 50.0.

The effect of these displacements is to display each successive architecture in
a given view as being farther back, moved farther to the left, and slightly
raised.

Write VRML architecture header using displacements.
Traverse Topology matrix in breadth-first fashion, using a
queue, as follows:
Initialize queue for node traversal.
Start with the very first row of Topology matrix:
 Curr_root = 0, set the current component index to 0.

116

 Insert Curr_root into queue.
 While queue is NOT empty:
 Remove item from queue (item is component index).
 Store item into Curr_root.
 Using Curr_root as index, get positions from
 Arch_CompPosition:
 root_x = Arch_CompPosition[Curr_root][0].
 root_y = Arch_CompPosition[Curr_root][1].
 root_z = Arch_CompPosition[Curr_root][2].
 Level = Arch_CompPosition[Curr_root][3].

 If the Style of the current architecture is "Call-and-Return":
 We assume an acyclic, tree-like structure.
 We do not assume that Topology matrix contains solely diagonal
 elements.

 Based on the level (0, 1, 2, ... etc.), set
 the spherical color of VRML component.

 Based on the level, set the radius of the sphere. The lower
 levels (higher level numbers) have successively smaller radii.

 If all_comps array set to 1 for component,
 render the sphere at the position root_x, root_y, root_z.

 If all_comps array set to 0 for component,
 check view_comps array for component:
 If view_comps set to 1, render sphere at position
 (root_x, root_y, root_z) in VRML;
 otherwise, do not render sphere.

 If the component was rendered in VRML, check for a
 hyperlink at that component. If there is a hyperlink,
 generate the VRML command for a hyperlink to the
 file name.

 /* Next we render the connection found in the row, column */
 /* intersection of Topology matrix */

 Using Curr_root value as the row:
 For all columns of Topology matrix for that row:
 If Topology[Curr_root][column] NOT (-1)
 Column represents component index of child of curr_root.
 Store Topology[Curr_root][column] to Conn_index.
 /* Column represents destination component index */
 /* and Topology(Row, Column) is index of connector. */

117

 /* Each Column NOT -1 is therefore a child of Curr_root. */
Using Conn_index as index, and the connector position array
from the arch node, set connector positions:

 Conn_x = Arch_ConnPosition[Conn_index][0]
 Conn_y = Arch_ConnPosition[Conn_index][1]
 Conn_z = Arch_ConnPosition[Conn_index][2]
 /* Delta_sum contains rotation for cylinders */
 Delta_sum = Arch_ConnPosition[Conn_index][3]

 If all_conns array set to 1 for connector,

set height of connector based on level number;
rotate around y-axis by delta_sum * (no_children – 1);
render the cylinder at position conn_x, conn_y, conn_z.

 If all_conns array set to 0 for connector,
 check view_conns array for connector:
 If view_conns set to 1,
 set height of connector based on level;
 rotate around y-axis by delta_sum * (no_children -1);
 render cylinder at position.
 otherwise, do not render connector.

 If the connector was rendered in VRML, check for a
 hyperlink at that connector. If there is a hyperlink,
 generate the VRML command for a hyperlink to the
 file name.

 If the Style of the Architecture is “Layered," we assume components
 are rendered as cone-like objects using VRML extrusion nodes.
 Traversal of Topology matrix is diagonal since we assume a layered
 architecture. If not diagonal, we generate an error.

 For the component represented by curr_root, we first check all_comps
 to see if the component is rendered.

 If all_comps is set to 1, render the component as an extrusion node,
 scaled and colored for the level;
 otherwise if all_comps is set to 0:
 If view_comps is set to 1, render the component as an extrusion
 node with proper scaling and coloring for the level.

If view_comps is set to 0, do not render and hide the
component.

 If the component was rendered, check for hyperlinks and
 establish the hyperlink in VRML code.

118

 Insert the column index representing the child component
 into the queue.

 End For all columns of Topology matrix for that row:

 End While queue is NOT empty.

 End for each architecture in "used architecture" array of view node.

End While there are more view nodes.

119

Procedure Step Three: Coding and Code Testing

 The routines for translating VTADL to VRML were incorporated in the yacc file,

"vtadlv1.y." The complete yacc specification was listed in Appendix F. The

corresponding lex file which fed tokens to the parser was "vtadlv1.l," and was listed in

Appendix B.

 The parser was generated by using the following command in a Unix

environment:

% yacc -d vtadlv1.y

 This command generated the default file, "y.tab.c" and a header file, "y.tab.h."

The file "y.tab.c" was the C source code for the parser.

The lexer was generated by using the command:

% lex vtadlv1.l

The lex command generated the default file, "lex.yy.c," the C file for the lexer.

After the C code files representing the parser (y.tab.c) and the lexer (lex.yy.c) were

generated, the two C files were compiled using the gcc compiler command:

% gcc -o vtadl_run y.tab.c lex.yy.c -lm -ll -ly

 The lexer and parser C programs were compiled and linked into an executable

object file, "vtadl_run."

120

 The vtadl_run program represented the actual compiler and must be executed in a

Unix environment, but the VRML files that vtadl_run generates may be run on any

platform that has a VRML 97 add-on to an Internet browser.

 The vtadl compiler may be executed as follows:

% vtadl_run < datafile.txt

 The example command line above uses a VTADL source file named "datafile.txt"

as input to the compiler. One or more VRML files may be generated as a result of the

VTADL-to-VRML compilation process.

 The VTADL-to-VRML compiler was validated and passed the preliminary testing

phase. Procedures Step Four and Five will discuss the testing and case studies in more

detail.

121

Procedure Step Four: Acceptance Testing of ADL Files

 More intricate testing was conducted using the Case Study Report Template, with

results given in Appendix G.

122

Procedure Step Five: Case Studies

Two case studies were conducted to demonstrate the workability of the VTADL-

to-VRML visualization tool. Table 1 provides a summary of the two case studies. Each

case study first documented the background of the case study, described the VTADL

interpretation of the architecture(s), and provided the VRML visualization of the VTADL

source file.

Case Study One used a case study originally discussed by Shaw and Garlan in

Software Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996].

Several solutions were offered to the problem of designing an architecture to control a

mobile robot. Two of the solutions involved a layered style and a call-and-return style.

These solutions were translated into VTADL representation, and then compiled into one

or more VRML files.

Case Study Two was the most complex of the case studies and could be

considered the capstone of this dissertation. The Linux operating system kernel was

visualized using VRML. The views on the Linux kernel were established by two

VTADL files, which were translated into the corresponding VRML visualizations. Case

Study Two was based on the work of Bowman et al., who performed a software

architecture recovery of Linux with minimal documentation [Bowman, 1998; Bowman,

Siddiqi, & Tanuah, 1998]. Bowman's visualization was conducted in the plane in a static

medium. This dissertation used Bowman's planar visualizations, redefined the

architectures using VTADL, and then translated the views into separate VRML worlds

representing the Linux kernel.

123

Results and analyses of the case studies were provided in Chapter IV and

Appendix I.

Table 1. Summary of Case Studies

Case Study Name Description
Case Study One: Mobile Robot
Architecture

Multiple views of the architectures for a
mobile robot included both layered and
program call-and-return styles. Case study
originally from Shaw and Garlan [1996],
re-visualized in VRML.

Case Study Two: Linux OS Case study visualizing Linux operating
system using VRML; based on original
work by Bowman [1998].

124

Formats for Presenting Results

 A report template for conducting the case studies was provided in Appendix H.

 The format for presenting results included a documented description on the goals

and stakeholder requirements for the case study, the VTADL source file, a representative

sample of translated VRML files (due to the length of VRML files, not every file was

included), and screen printouts of key views for each visualized VRML file. Sample files

referenced by the architecture (through hyperlinks) were also selectively shown.

Projected Outcomes

 The goal of this research was attained when the architectures and viewpoints

defined by the ADL were automatically translated into VRML. Two case studies were

conducted to demonstrate that the goal had been reached.

 It was anticipated that the visualization tool would greatly assist stakeholders in

comprehending different aspects of a software system. However, a human factors survey

on the impact of VRML visualization on various stakeholders, and the effectiveness of

the tool on an actual development project or environment, were not explored in this

research.

125

Resource Requirements

 A VTADL source file must be compiled in a Unix environment using the

compiler program, vtadl_run. The compiler may create one or more VRML files, with

each file having the extension "wrl."

 In order to view the VRML files, the local computer system should have an

Internet browser (either Internet Explorer or Netscape Navigator). A VRML add-on to

the Internet browser is also required. Parallelgraphic's Cortona is recommended for

Windows 95, Windows NT, or Windows 2000 environments.

Reliability and Validity

 The validity of the VTADL-to-VRML compiler was confirmed during the test

and integration procedures.

 Source VTADL files were created for both trivial and more complex software

architectures, in two architectural styles (call-and-return and layered). The visualization

of components, connectors, and the topology of the styles were required to accurately

reflect the source VTADL files. The capability to selectively show or hide architectural

elements or to establish hyperlinks was also verified. Reliability of the visualizations was

confirmed by checking the architectures in each view against the VTADL specifications.

 Appendix G provided a representative sample of two test cases.

126

Summary

This chapter discussed the methodology by which the research in visualization of

software architectures was conducted.

The first part of this research created an architecture description language capable

of being visualized in three dimensions. The grammar of the language was specified in

BNF.

The second part of this research used compiler generation tools (yacc and lex) to

create a parser shell based on the BNF specification. The parser shell was capable of

recognizing the language but did not generate VRML code. The second part of the

research also designed data structures and algorithms capable of representing an

intermediate geometric model of the software architecture. Using an architectural style,

the architectural elements defined in the source file were mapped to the appropriate

geometric model. Code generating algorithms were designed to traverse the geometric

model and create the corresponding objects in VRML.

The third part of the research coded the algorithms and data structures defined in

the second part, and integrated the coded subroutines within the compiler shell. The

result of the third part was a completed compiler program.

The fourth part performed acceptance testing of the completed compiler, while the

fifth part conducted case studies to demonstrate the workability of the prototype. The test

cases were documented in Appendix G, while the case studies were documented in

Appendix I.

Chapter IV

Results

Analysis

 This chapter presents the results of two case studies using the VTADL-to-VRML

visualization tool. In earlier literature, the software architectures for a mobile robot and

the Linux operating system kernel were modeled in the plane (and without using

architecture description languages) by the original authors.

 In this dissertation research, both case studies were first represented using an

architectural description language (VTADL), then translated into VRML using the

visualization techniques developed by this dissertation. Each viewpoint was ultimately

represented as a three-dimensional, virtual world.

Case Study One was performed originally in Software Architecture: Perspectives

on an Emerging Discipline [Shaw & Garlan, 1996]. Four alternate architectural

approaches were provided by Shaw and Garlan to model the control mechanism of a

mobile robot: a control loop, layered, implicit invocation, and blackboard architecture. In

this dissertation, the first three solutions were represented in VTADL using the call-and-

return and layered styles; however, the fourth solution (blackboard architecture) was

ignored, since the blackboard data repository style was not implemented in the compiler.

 Case Study Two used the visualization study of the Linux kernel conducted by

Bowman et al [Bowman, Siddiqi, & Tanuan, 1998]. The authors originally visualized the

Linux kernel in the plane using a tool called the Portable Bookshelf. This dissertation

research visualized the Linux kernel using both call-and-return and layered styles within

128

VRML worlds. However, only the IPC (Interprocess Control) module of Linux was

visualized to the lowest level of detail.

 The goal of this dissertation was to develop a prototype to demonstrate the “proof

of concept” of this visualization technique; namely, to demonstrate that viewpoints on a

software architecture could be visualized in three dimensions using the interactive

medium of virtual reality. The software architecture, and the viewpoints on the

architecture, were first represented in a new software architecture description language

presented by this dissertation (VTADL); the architectural viewpoints described by the

language were translated into virtual worlds, with each viewpoint defined by a separate

VRML file. The separate views were integrated using hyperlinks between the VRML

worlds. Traceability to requirements was also demonstrated using hyperlinks from

elements of the VRML representation to source documentation (both text and HTML).

 The visualized case studies were documented in Appendix I.

 Although the prototype worked according to the specifications stated at the

beginning of this research, not all aspects of the architecture description language

(VTADL) were implemented in the target visualization language. For example,

interfaces were not visualized in VRML.

Only the layered and call-and-return architectural styles were implemented in the

compiler. Important styles such as the pipelined and data repository styles were ignored

in the current version. Heterogeneous styles, while desirable for more complex

architectures, were not implemented in the prototype.

 Each architectural style was translated into VRML using only a small number of

visualized objects. The call-and-return style used different sphere colors and sphere sizes

129

to represent program modules (a size and color were assigned for each level in the call-

and-return tree). Cylinders were used to represent the connectors. The layered style used

cone-like extrusions to represent components in a layered architecture. While the limited

object set served the purposes of the prototype, a more diverse object set would be

desired in any visualization tool beyond the prototype.

Findings

 A prototype was developed to translate a software architecture (and the

viewpoints on the architecture) described in an ADL into VRML. Details of the

prototype and its development were included in the appendices. Appendix G

demonstrates the functional correctness of the prototype, while Appendix I demonstrates

the application of the prototype to well-known or existing software systems.

This dissertation demonstrated that software architectures could be represented in

VTADL; that the VTADL-to-VRML compiler could be successfully used to translate

architectural viewpoints described in VTADL into the target VRML files; and that the

VRML files could be viewed using a standard Internet browser and a VRML add-on to

the browser.

 Based on the case studies described in Appendix I, the stated goals of this

dissertation were achieved.

130

Summary of Results

 In Chapter I, a fundamental problem in software architecture was pinpointed:

how does one represent different viewpoints on the software architecture in a way that is

detailed enough for a stakeholder who is a specialist, but comprehensive enough for a

generalist? A ramification of this problem was to integrate the different viewpoints in a

consistent way, avoiding the pitfalls of viewpoint and architectural mismatch.

 This dissertation proposed a solution to the representational problem by

developing a visualization tool to allow interaction with a three-dimensional, virtual

reality world modeling the software architecture. The research began by designing an

ADL capable of representing different architectural viewpoints. A compiler was then

developed to translate the ADL into one or more VRML files representing the

corresponding viewpoints on the software architecture.

 The stated goal was to develop a prototype to demonstrate a "proof of concept" of

the visualization tool. Aesthetic concerns, the user response to the visualization, or the

impact of the visualization tool on software productivity were not explored in this

dissertation. The latter issues will be the topic for future research.

 The test cases of Appendix G demonstrate the functional correctness of the

prototype. The two case studies of Appendix I demonstrate that the prototype could be

used to visualize the software architectures of well-known or existing systems (namely,

the software architecture of a mobile robot and the architecture of the Linux operating

system kernel).

131

 Based on the narrow constraints established at the beginning of this dissertation

research (Chapter I), the results of the test cases (Appendix G), and the two case studies

(Appendix I), we concluded that the stated goals of this dissertation were achieved.

 While the limited number of architectural styles and visualized objects served the

purposes of a prototype, more visualization capabilities would be required for a truly

versatile tool. It was recommended that the refined version of the visualization tool be

tested and evaluated in an actual software development environment.

Chapter V

Conclusions, Implications, Recommendations, and Summary

Conclusions

Based upon the analysis of results in the fourth chapter, we conclude that the

prototype does indeed fulfill the role of serving as a "proof of concept" of the

visualization technique. The immediate goals of this dissertation were achieved.

 From a purely subjective standpoint, the three-dimensional visualizations in the

case studies appeared to be more engaging than the original static visualizations in the

plane. The claim that the VRML visualizations are more engaging to stakeholders can be

supported by subjective, anecdotal evidence, but cannot be conclusively proved without

objective, empirical evidence. A secondary claim that the visualization tool could

increase software development productivity (through improving communication between

stakeholders) must also be validated by a controlled experiment, measuring the impact of

the tool in a software development environment. As specified at the very beginning of

this dissertation, the actual impact of the visualization tool on users in a software

development environment should be addressed in future research.

133

Implications

Few tools exist for the three-dimensional visualization of software architecture.

To the best knowledge of this research, no compiler existed prior to this dissertation to

translate an architecture description language into VRML. Furthermore, the

representation of integrated viewpoints on a software architecture using virtual reality

had not been previously explored. The prototype developed by this research

demonstrated that an ADL could model several viewpoints on a software architecture,

and that the viewpoints could be translated from the ADL into VRML based upon the

architectural style specified in the ADL. The resulting tool is an inexpensive, three-

dimensional technique to visualize software architectures.

An additional contribution that the tool made to software architecture was to

allow software traceability from the three-dimensional visual representation to the

original design rationale. This capability was made possible using hyperlinks from

elements in the virtual reality representation to requirements documentation.

 The translation of architectural views into VRML was offered as a creative

solution to the broader problem of representing contrasting viewpoints on the software

architecture. The solution was intended to enhance communication among stakeholders

who were specialists in different domains and stakeholders who were generalists.

Stakeholders who were generalists, for example, could be managers with an interest in

coordinating the different specialties.

134

Recommendations

The limitations of the prototype should be noted. The current version of the

visualization tool needs to be developed beyond a prototype in order for the effectiveness

of the tool to be gauged in a software development or training environment.

In the prototype, only two architectural styles were implemented; each style used

a limited number of visualized objects. The small number of styles and lack of

diversified objects limited the scope of software architectures that could be visualized.

Heterogeneous styles were not implemented. Component interfaces, connector

directionality, and a greater diversity of visualized objects within each architectural style

should be incorporated within the visualization tool.

At present, the visualization technique models only static architectures. Dynamic

architectures should be represented using event-based architectural styles. VRML has the

capability to animate objects; this capability should be utilized to animate the evolution

of software architectures over time, or to animate dynamic relationships between

architectural elements.

The resulting visualizations from the compiler are intuitively more engaging than

images sketched in a plane. Using VRML, the user can navigate through a three-

dimensional world, with the sensation of exploring or manipulating different objects

within the world.

However, the actual impact on stakeholders must be examined in a consistent and

scientific manner. The effectiveness as a training tool could be determined through

analysis of user surveys. The effectiveness of the tool in modeling real-world software

architectures could be determined through quantifying software productivity

135

improvements, improvements in architectural comprehension, and enhanced stakeholder

communication.

Summary

Software architecture is an emerging discipline within software engineering.

Models based on software architecture attempt to reduce the complexity of a software

system by representing the system with coarse-grained structures. A software structure

could be represented by components and connections arranged in a specific topology.

An architectural style defines the constraints on the topology and instantiation of the

structure during run-time. Depending on the stakeholder viewpoint, elements of the

topology are interpreted differently; a component, for example, may be an abstraction

representing a program module, object, concept, or database.

Software architectures may be described using a graphical or text-based

architecture description language (ADL). The key goals of an ADL are to communicate

alternate designs between different stakeholders, to detect reusable structures, and to

record design decisions. ADLs serve as tools to assist in analytical reasoning about the

preliminary software design, to insure software quality early in software development.

A major problem in software architecture has been the difficulty in creating

different representations to accommodate the contrasting viewpoints of stakeholders. A

set of viewpoints should be conveyed in a way that is both comprehensive enough for

specialists but understandable to generalists. The representation problem has been one of

integrating different viewpoints without losing consistency (viewpoint mismatch) and

without errors in relating architectural structures (architectural mismatch).

136

This dissertation provided a solution to the representation problem by creating a

tool for three-dimensional representation of architectural viewpoints.

The tool consisted of an architecture description language (VTADL) to first

describe the software architectures and viewpoints on the architectures; and a VTADL-

to-VRML compiler to translate each viewpoint into a separate virtual reality world.

This research was significant since no compiler existed (prior to this dissertation)

to translate a dedicated architecture description language into VRML. To the best

knowledge of the dissertation author, very little or no research was being conducted on

representing software architectural viewpoints in virtual reality.

This research noticed the powerful capability of VRML to model worlds

containing a variety of user-defined structures [Ames et al., 1997]. A natural association

was made by the author of this dissertation between the world-modeling capabilities of

the virtual reality paradigm and the nature of a software architecture viewpoint. A major

component of the tool developed in this dissertation was to map a viewpoint definition

contained in an architecture description language to a VRML world. Furthermore,

VRML offered an inexpensive, easily accessible means (via the Internet) of presenting

software architectural visualizations.

 An additional benefit of the VTADL-to-VRML compiler was the allowance for

software traceability, the capability of tracing a path from elements of the architecture to

associated requirements documentation. Using the VRML visualization, a stakeholder

could trace the rationale behind the design using hyperlinks from elements of the

visualization to source documents.

137

 The goal of the dissertation was to devise algorithms for translating an ADL into

effective VRML representations based on the desired viewpoint. The VRML

representations were intended to enhance comprehension on the overall design and to

improve communications between diverse stakeholders. In other words, the tangible goal

was to allow for visualization of more than one viewpoint, and to allow the stakeholder to

toggle between multiple viewpoints within a participatory medium. The ADL, along

with the ADL's visualization in virtual reality, would serve as a repository for reusable

patterns in future projects.

 As far as the constraints of this research were concerned, the goal was considered

to be reached when we accomplished the following:

1. Developed a prototype consisting of an ADL capable of representing multiple

architectural viewpoints;

2. Developed a translator from the ADL to VRML representation;

3. Demonstrated the successfully translated VRML representation from the

architecture originally described by the ADL;

4. Demonstrated software traceability (using hyperlinks) from aspects of the
VRML representation back to the requirements documentation.

In addition, two architectural styles (the layered and call-and-return) were

implemented in the compiler. Visualization of heterogeneous styles, connector

directionality, component interfaces, and dynamic architectures were not implemented in

the current version of the compiler.

 The development and validation of the prototype consisted of five phases.

 The first phase of the research was to create an architecture description language

capable of being visualized in three dimensions. The new language was called VTADL

138

(Visually Translatable Architecture Description Language). The full grammar of the new

language was specified in Backus-Naur Form (BNF).

 The second phase used compiler generation tools (yacc and lex) in a Unix

environment to create a parser shell based on the BNF specification. The parser shell at

this stage was only capable of recognizing the syntax of the language, and could not

generate target VRML code. The second phase also involved the preliminary design of

data structures and algorithms representing the intermediate geometric model of the

software architecture. Using an architectural style, the architectural elements defined in

the source file were mapped to the appropriate geometric model. Code generating

algorithms were designed to traverse the geometric model and create the corresponding

objects in VRML.

 The third phase of the research implemented the algorithms and data structures

(defined in the second phase) in the C programming language. Coded subroutines were

integrated and tested within the compiler shell, resulting in a completed compiler

program.

 The fourth phase performed acceptance testing of the completed compiler

program (documented in Appendix G), while the fifth phase performed case studies using

the final visualization tool (documented in Appendix I).

 Case Study One modeled the software architecture for an autonomous mobile

robot. Several different solutions were extracted from earlier literature, and re-

represented in VTADL. The VTADL-to-VRML compiler was used to generate a VRML

file for each view of the architecture.

139

 Case Study Two modeled the software architecture for the Linux operating

system kernel in VTADL. Using the compiler, VTADL was translated into several

VRML files representing a hierarchy of integrated views on the kernel. Although all

modules of the Linux kernel were represented at a high level of abstraction, only the IPC

(Interprocess Control) module was visualized to the lowest level of detail.

 Hyperlinks to source documentation were used in both case studies, and all views

were integrated through the use of VRML portals.

 Based on the test cases and two case studies, the prototype demonstrated that the

viewpoints on a software architecture could be represented in an architecture description

language, then visualized in three dimensions using the techniques of virtual reality

(VRML). Further, the prototype demonstrated that the viewpoints could be integrated

using hyperlinks, and that software traceability could be established between elements in

the virtual world to source documentation.

 We concluded that the goals of the dissertation were achieved, but emphasized the

limitations of the prototype and constraints placed on the research. The foremost

constraint was that no study was undertaken to measure the effectiveness of the

visualization tool.

 The prototype should be developed into a more polished, versatile tool suitable

for use by software developers or trainers. The effectiveness of the refined visualization

tool could then be realistically evaluated in an actual software development environment.

140

Appendix A

BNF Specification for VTADL

(Visually Translatable Architecture Description Language)

141

BNF Specification for VTADL

(Visually Translatable Architecture Description Language)

Please Note: Terminal tokens are capitalized in bold.

<vtadl> ::= <archmain> <viewpart>

<archmain> ::= NULL | <archmain> <archdef>

<archdef> ::= <architecture> <archname> <architect_style>

 <leftmark> <partslist> <connslist> <rightmark>

<architecture> ::= ARCHITECTURE

<leftmark> ::= LEFTBRACKET

<rightmark> ::= RIGHTBRACKET

<architect_style> ::= ARCHSTYLE <stylechoice>

<stylechoice> ::= PROGRAM | OBJECT | PIPELINE | LAYER

<archname> ::= ID

<partslist> ::= COMPLIST <leftmark> <compbreakdown> <rightmark>

<connslist> ::= CONNLIST <leftmark> <connbreakdown> <rightmark>

<compbreakdown> ::= NULL | <compbreakdown> <middlemark>

<middlemark> ::= COMPONENT <compname> COMPTYPE <comptype> <semimark>

 <proplist> <intlist>

<proplist> ::= PROPERTIES COLON <propdetails>

<propdetails> ::= <component_role> <child_of> <layer_no> <process_def>

<component_role> ::= COMPROLE COLON <comp_selection> <semimark>

<comp_selection> ::= INPUT | OUTPUT | ROOT | CMPPRODUCER | CMPCONSUMER

<child_of> ::= CHILDOF COLON <child_selection> <semimark>

<child_selection> ::= NULL | <child_id>

<layer_no> ::= LAYER COLON <layer_selection> <semimark>

<layer_selection> ::= NULL | LINPUT | LOUTPUT | <layer_id>

142

<layer_id> ::= ID

<process_def> ::= PROCESS COLON <process_selection> <semimark>

<process_selection> ::= NULL | SIGMA | THRESHOLD

<child_id> ::= ID

<intlist> ::= INTERLIST COLON <interbreakdown>

<interbreakdown> ::= NULL | <interbreakdown> <middleinter>

<middleinter> ::= INTERFACE <inter_direct> <intername> <semimark>

 <leftmark> INTERFACEROLE COLON
 <inter_role_choice> <semimark> <rightmark>

<inter_direct> ::= TOP | BOTTOM | LEFT | RIGHT | FRONT | BACK

<inter_role_choice> ::= PRODUCER | CONSUMER

<connbreakdown> ::= NULL | <connbreakdown> <connmiddle>

<comptype> ::= CMPPE | CMPPROGRAM | CMPCONCEPT

 | CMPOBJECT | CMPDATA

<connmiddle> ::= CONNECTOR <connname> CONNTYPE <connecttype>
 <connectdirect> <semimark> <connend>

<semimark> ::= SEMICOLON

<compname> ::= ID

<connname> ::= ID

<connecttype> ::= DATAFLOW | CONTROLFLOW | ASSOCIATES

<connectdirect> ::= UNIDIRECT | BIDIRECT

<connend> ::= CONNECT LEFTPARENS <interface1> COMMA

 <interface2> RIGHTPARENS <semimark>

<interface1> ::= ID

<interface2> ::= ID

<intername> ::= ID

<viewpart> ::= VIEWLIST <leftmark> <mainview>

 <userviews> <rightmark>

<mainview> ::= VIEWMAIN <leftmark> <vmainbody> <rightmark>

<vmainbody> ::= NULL | <useArchSection> <vmainbody>

<useArchSection> ::= <leftmark> <usePart> <useProp> <rightmark>

143

<usePart> ::= USEARCH <useArchID> <semimark>

<useProp> ::= <leftmark> <CompConn> <HyperPart> <rightmark>

<useArchID> ::= ID

<CompConn> ::= <CompSelects> <ConnSelects>

<CompSelects> ::= COMPONENTS <CompOptions> <semimark>

<CompOptions> ::= ALL | <CompOptList>

<CompOptList> ::= NULL | <CompNext> <CompOptList>

<CompNext> ::= ID

<ConnSelects> ::= CONNECTIONS <ConnOptions> <semimark>

<ConnOptions> ::= ALL | <ConnOptList>

<ConnOptList> ::= NULL | <ConnNext> <ConnOptList>

<ConnNext> ::= ID

<HyperPart> ::= NULL | <Hypercase> <HyperPart>

<Hypercase> ::= HYPERLINKON <HypConnComp>

 TOFILE <Filename> <semimark>

<HypConnComp> ::= ID

<Filename> ::= ID | QSTRING

<userviews> ::= NULL | <Viewdef> <userviews>

<Viewdef> ::= VIEW <viewname> <leftmark> <vmainbody> <rightmark>

<viewname> ::= ID

144

Appendix B

Lex Specification for VTADL

145

Lex Specification for VTADL

(Visually Translatable Architecture Description Language)

%{

#include "y.tab.h"
#include <string.h>

%}

id [a-zA-Z][a-zA-Z0-9]*
qstring \"[^\"\n]*[\"\n]

%%

\n ;
[\t]+ ;

Architecture { return ARCHITECTURE; }
"{" { return LEFTBRACKET; }
"}" { return RIGHTBRACKET; }
"(" { return LEFTPARENS; }
")" { return RIGHTPARENS; }
";" { return SEMICOLON; }
"," { return COMMA; }
":" { return COLON; }
Input { return INPUT; }
Output { return OUTPUT; }
Root { return ROOT; }
Producer { return PRODUCER; }
Consumer { return CONSUMER; }
CompProducer { return CMPPRODUCER; }
CompConsumer { return CMPCONSUMER; }
Left { return LEFT; }
Right { return RIGHT; }
Front { return FRONT; }
Back { return BACK; }
Top { return TOP; }
Bottom { return BOTTOM; }
Component { return COMPONENT; }
Properties { return PROPERTIES; }
CompRole { return COMPROLE; }
ChildOf { return CHILDOF; }
Connector { return CONNECTOR; }
NA { return NA; }
Style { return ARCHSTYLE; }
Program { return PROGRAM; }
Object { return OBJECT; }
Pipeline { return PIPELINE; }
Layer { return LAYER; }
LayerInput { return LINPUT; }
LayerOutput { return LOUTPUT; }

146

ComponentList { return COMPLIST; }
ConnectionList { return CONNLIST; }
ComponentType { return COMPTYPE; }
ConnectType { return CONNTYPE; }
PE { return CMPPE; }
Cprogram { return CMPPROGRAM; }
Cconcept { return CMPCONCEPT; }
Cobject { return CMPOBJECT; }
Dataflow { return DATAFLOW; }
Controlflow { return CONTROLFLOW; }
Associates { return ASSOCIATES; }
Unidirect { return UNIDIRECT; }
Bidirect { return BIDIRECT; }

Interface { return INTERFACE; }
InterfaceList { return INTERLIST; }
InterfaceRole { return INTERFACEROLE; }

Connect { return CONNECT; }

Process { return PROCESS; }
Sigma { return SIGMA; }
Threshold { return THRESHOLD; }
ViewList { return VIEWLIST; }
ViewMain { return VIEWMAIN; }
UsingArch { return USEARCH; }
All { return ALL; }
Components { return COMPONENTS; }
Connections { return CONNECTIONS; }

HyperLinkOn { return HYPERLINKON; }
ToFile { return TOFILE; }
View { return VIEW; }

{id} { yylval.string = strdup(yytext);
 return ID;
 }

{qstring} { yylval.string = strdup(yytext+1); /* skip open quote */
 if(yylval.string[yyleng-2] != '"')
 printf("/nUnterminated character string/n");
 else /* remove close quote */
 yylval.string[yyleng-2] = '\0';
 return QSTRING;
 }

"$" { return 0; }

%%

147

Appendix C

Yacc Specification for VTADL Parser Shell

148

Yacc Specification for VTADL Parser Shell

(without routines for Geometric Modeler and VRML Generator)

For the complete Yacc specification with all subroutines, see Appendix F.

vtadl: archmain viewpart
 ;

archmain: /* empty */

 | archmain archdef
 ;

archdef: architecture archname architect_style leftmark

partslist connslist rightmark
 ;

architecture: ARCHITECTURE
 ;

leftmark: LEFTBRACKET
 ;

rightmark: RIGHTBRACKET
 ;

architect_style: ARCHSTYLE stylechoice
 ;

stylechoice: PROGRAM
 |
 OBJECT
 |
 PIPELINE
 |
 LAYER
 ;

archname: ID
 ;

partslist: COMPLIST leftmark compbreakdown rightmark

;

connslist: CONNLIST leftmark connbreakdown rightmark
 ;

compbreakdown: /* empty */

149

 |
 compbreakdown middlemark
 ;

middlemark: COMPONENT compname COMPTYPE comptype semimark proplist intlist
 ;

proplist: PROPERTIES COLON propdetails
 ;

propdetails: component_role child_of layer_no process_def
 ;

component_role: COMPROLE COLON comp_selection semimark
 ;

comp_selection: INPUT
 |
 OUTPUT
 |
 ROOT
 |
 CMPPRODUCER
 |
 CMPCONSUMER
 ;

child_of: CHILDOF COLON child_selection semimark
 ;

child_selection: /* Empty */
 |
 child_id
 ;

layer_no: LAYER COLON layer_selection semimark
 ;

layer_selection: /* Empty */
 |
 LINPUT
 |
 LOUTPUT
 |
 layer_id
 ;

layer_id: ID { $$ = $1; }
 ;

process_def: PROCESS COLON process_selection semimark
 ;

process_selection: /* Empty */
 |
 SIGMA

150

 |
 THRESHOLD
 ;

child_id: ID { $$ = $1; }
 ;

intlist: INTERLIST COLON interbreakdown
 ;

interbreakdown: /* empty */
 |
 interbreakdown middleinter
 ;

middleinter: INTERFACE inter_direct intername semimark
 leftmark INTERFACEROLE COLON

inter_role_choice semimark rightmark
 ;

inter_direct: TOP
 |
 BOTTOM
 |
 LEFT
 |
 RIGHT
 |
 FRONT
 |
 BACK
 ;

inter_role_choice: PRODUCER
 |
 CONSUMER
 ;

connbreakdown: /* empty */
 |
 connbreakdown connmiddle
 ;

comptype: CMPPE
 |
 CMPPROGRAM
 |
 CMPCONCEPT
 |
 CMPOBJECT
 |
 CMPDATA
 ;

connmiddle: CONNECTOR connname CONNTYPE connecttype

connectdirect semimark connend

151

 ;

semimark: SEMICOLON
 ;

compname: ID
 ;

connname: ID
 ;

connecttype: DATAFLOW
 |
 CONTROLFLOW
 |
 ASSOCIATES
 ;

connectdirect: UNIDIRECT
 |
 BIDIRECT
 ;

connend: CONNECT LEFTPARENS interface1 COMMA interface2 RIGHTPARENS
 semimark
 ;

interface1: ID
 ;

interface2: ID
 ;

intername: ID
 ;

viewpart: VIEWLIST leftmark mainview userviews rightmark
 ;

mainview: VIEWMAIN leftmark vmainbody rightmark

;

vmainbody: /* NULL */
 |
 useArchSection vmainbody
 ;

useArchSection: leftmark usePart useProp rightmark
 ;

usePart: USEARCH useArchID semimark
 ;

useProp: leftmark CompConn HyperPart rightmark
 ;

152

useArchID: ID
 ;

CompConn: CompSelects ConnSelects
 ;

CompSelects: COMPONENTS CompOptions semimark
 ;

CompOptions: ALL
 |
 CompOptList
 ;

CompOptList: /* NULL */
 |
 CompNext CompOptList
 ;

CompNext: ID
 ;

ConnSelects: CONNECTIONS ConnOptions semimark
 ;

ConnOptions: ALL
 |
 ConnOptList
 ;

ConnOptList: /* NULL */
 |
 ConnNext ConnOptList
 ;

ConnNext: ID
 ;

HyperPart: /* NULL */
 |
 Hypercase HyperPart
 ;

Hypercase: HYPERLINKON HypConnComp TOFILE Filename semimark
 ;

HypConnComp: ID
 ;

Filename: ID

 | QSTRING
 ;

userviews: /* NULL */
 |

153

 Viewdef userviews
 ;

Viewdef: VIEW viewname leftmark vmainbody rightmark
 ;

viewname: ID
 ;

154

Appendix D

Subroutine Design: Data Structures and Algorithms for Geometric Modeler

155

Subroutine Design: Data Structures and Algorithms for Geometric Modeler

 This section provides the pseudo-code description of the subroutines referred to by Chapter 3
(Methodology). The subroutines are used by Phase One and Phase Two of the section titled,
"Description of Geometric Algorithms on Data Structures."

/* Subroutines follow */

/* The following subroutine uses the architecture descriptive arrays and variables */
/* and inserts them into the linked list representing the architecture list. */
/* The first parameter is a pointer to the current node; the second parameter is the */
/* architecture name; the third is the arch. style; the fourth is the component array; */
/* the fifth is the connector array; the sixth is an array representing connectivity; */
/* the last two parameters are the number of components and number of connectors. */

Insert_Arch_Node (with parameters: pointer to current arch-node, in_arch_ID,
 style, comp_array, conn_array, from_to array, no_comps, no_conns)

 If current node is NULL, the list is empty.
 Create a new node and move parameters to corresponding storage
 locations in the arch node. A temporary array containing connectivity
 information, "from_to" array, is read into Topology matrix in the arch node.

 Using the style variable and Topology matrix, we calculate the relative
 positions of components and connectors using subroutine:

 Calculate_Arch_Positions (arch node pointer).

 Since arch node is first node, set archlink, the pointer to next node, to NULL.

 Return from subroutine.

 If current node is NOT NULL, the list is not empty.
 We traverse the arch linked list to the very end, checking as we go along that
 the arch ID is not already contained in the linked list. We insert the new
 node at the end of the linked list:

 Let curr_node point to first node.

 While curr_node.archlink NOT NULL
 Compare curr_node.arch_ID to in_arch_ID.
 If they are the same, generate ERROR and exit. Otherwise, proceed.
 Get the next node in linked list:

156

 Let curr_node = curr_node.archlink.
 End While curr_node.archlink is NOT NULL

 At this point, we have reached the end of the linked list without duplicates.
 We also assume that curr_node.archlink is NULL.

 Create a new node, new_archnode.
 Move the subroutine parameters to the corresponding locations in the new
 node. I.e., in_arch_ID is moved to the new node's architecture name,
 component and connector arrays are moved to new node's arrays, from_to
 array is moved to new node's Topology matrix, and so on.

 Using the style variable and Topology matrix, we calculate the relative
 positions of components and connectors using subroutine:

 Calculate_Arch_Positions (arch node pointer).

 Let curr_node.archlink = new_archnode. We add new node to the linked list.

 Return from subroutine.

End Insert_Arch_Node.

/* The following subroutine uses the connector, component and Topology matrices */
/* of the arch-node to calculate the relative positions of each component and connection. */
/* The arrays of the arch-node representing the connector and component positions are */
/* updated with the calculated positions. We assume a Call-and-Return architectural */
/* style (a tree hierarchy with root and no cycles). */

/* Additional Note: We traverse the tree using a depth-first traversal; a queue is used */
/* to store the index of the component nodes as we traverse the tree. */
/* The row number of the Topology matrix (from 0 to number-of-components - 1) represents */
/* the index of the current root; the column numbers represent the indices of the children */
/* for the row index, ONLY when Topology[row][column] does not contain (-1). */

/* The value contained in Topology[row][column], when not (-1), represents the */
/* index of the connector attaching the source component (row index) to the destination */
/* component (col index). */

/* The effect of the depth-first traversal using the queue is to access the rows in the */
/* order based on the queue, and to access the columns in order from 0 to max_cols. */

Calculate_Arch_Position (pointer to arch_node)

 If the arch_node is NULL, return (-1). Otherwise, proceed.

157

 /* Note: curr_root is index of current root.
 Set curr_root to 0, the index of the root node.

 Initialize position arrays: Arch_CompPosition, Arch_ConnPosition
 Initialize queue.

 Insert very first root (curr_root = 0) into queue.

 While queue is NOT EMPTY:
 Remove item from queue.
 Let curr_root = item removed from queue.

 /* Count the number of children of curr_root using the columns */
 /* of Topology matrix. */

 Set number_of_children to 0.
 For column = 0 to (Number_of_Components - 1)
 If Topology[curr_root][column] NOT (-1)
 Add 1 to number_of_children
 /* We determine level of child node */
 If Arch_CompPosition[column][3] contains a (-1),
 Arch_CompPosition[column][3] =
 Arch_CompPosition[curr_root][3] + 1
 End For column = 0 to (Number_of_Components - 1)

 /* We use the number_of_children count to determine delta_theta, */
 /* the number of degrees rotation around y-axis in a right-handed coordinate */
 /* system. For example, if there are three children, delta_theta = 2*PI /3. */

 /* First get the existing positions (x,y,z) from arch-node */

 root_x = Arch_CompPosition[curr_root][0]
 root_y = Arch_CompPosition[curr_root][1]
 root_z = Arch_CompPosition[curr_root][2]

 If number_of_children >= 1
 delta_theta = (2.0 * PI) / (number_of_children)
 Otherwise
 delta_theta = 0.0.

 As we record the accumulated rotation of each child along y-axis, we use
 delta_sum, where delta_sum = delta_theta * (current_child - 1).

 /* Initialize current_child counter */
 current_child = 0

158

 For i = 0 to (Number_of_Components - 1)
 If Topology[curr_root][i] NOT = (-1)
 Add 1 to current_child
 delta_sum = delta_theta * (current_child - 1)
 /* Get the current level */
 Level = Arch_CompPosition[curr_root][3]
 Set the Connector_Height and Sphere_Radius based on Level.
 The higher the level, the smaller the Connector_Height and
 smaller the Sphere_Radius.

 /* Displace component along y based on Connector_Height */
 orig_x = 0.0
 orig_y = 0.0 - Connector_Height
 orig_z = 0.0

 /* Now rotate new center around z-axis by 60 degrees (-PI/3.0) */
 child_x = (-orig_y) * sin(-PI/3.0)
 child_y = orig_y * cos(-PI/3.0)
 child_z = orig_z

 /* Now rotate around y-axis by delta_sum */
 old_child_x = child_x
 old_child_y = child_y
 old_child_z = child_z

 child_x = old_child_z * sin(delta_sum) + old_child_x * cos(delta_sum)
 child_y = old_child_y
 child_z = old_child_z * cos(delta_sum) - old_child_x * sin(delta_sum)

 /* Translate back to position under original root */
 child_x = child_x + root_x
 child_y = child_y + root_y
 child_z = child_z + root_z

 /* Store the calculated positions to arch-node position array */
 Arch_CompPosition[i][0] = child_x
 Arch_CompPosition[i][1] = child_y
 Arch_CompPosition[i][2] = child_z

 /* Now we establish connection positions given root position and */
 /* child position. */

 /* First translate back to the origin */
 conn_orig_x = 0.0
 conn_orig_y = (0.0 - Connector_Height) / 2.0

159

 conn_orig_z = 0.0

 /* First rotate the leg (cylinder) center-point around z-axis */
 conn_x = 0.0 * cos(-PI/3.0) - conn_orig_y * sin(-PI/3.0)
 conn_y = 0.0 * sin(-PI/3.0) + conn_orig_y * cos(-PI/3.0)
 conn_z = conn_orig_z

 /* We are ready to rotate leg center-point around y-axis by delta_sum */
 /* We have calculated the delta_sum for this rotation; */
 /* However, the actual rotation of the cylinder will be performed */
 /* by the VRML Generator from this current position. */
 old_conn_x = conn_x
 old_conn_y = conn_y
 old_conn_z = conn_z

 /* First translate back to location under current root node */
 conn_x = conn_x + root_x
 conn_y = conn_y + root_y
 conn_z = conn_z + root_z

 /* Get the connector name */
 conn_id = Topology[curr_root][i]

 /* Store the positions, along with delta_sum, to connector position array */
 Arch_ConnPosition[conn_id][0] = conn_x
 Arch_ConnPosition[conn_id][1] = conn_y
 Arch_ConnPosition[conn_id][2] = conn_z
 Arch_ConnPosition[conn_id][3] = delta_sum

 /* Insert the child, i, into queue */
 Insert_queue_item(i)

 End For i = 0 to (Number_of_Components - 1)

 End While queue is NOT EMPTY.

 Return from subroutine.

End Calculate_Arch_Position.

160

Appendix E

Example of VTADL Source File: "Example.txt"

161

Appendix E

Example of a VTADL Source file: "Example.txt"

Architecture ExampleProgram
Style Program
 {
 ComponentList
 {
 Component Alpha
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom AlphaSocket;
 { InterfaceRole: Consumer; }

 Component Beta
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top BetaSocket;
 { InterfaceRole: Producer; }

 Component Gamma
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top GammaSocket;
 { InterfaceRole: Producer; }

 Component Delta
 ComponentType Cprogram;

162

 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top DeltaSocket;
 { InterfaceRole: Producer; }
 }

 ConnectionList
 {
 Connector Call1
 ConnectType Controlflow Unidirect;
 Connect(AlphaSocket, BetaSocket);
 Connector Call2
 ConnectType Controlflow Unidirect;
 Connect(AlphaSocket, GammaSocket);
 Connector Call3
 ConnectType Controlflow Unidirect;
 Connect(AlphaSocket, DeltaSocket);
 }
 }

Architecture ExampleLayer
Style Layer
 {
 ComponentList
 {
 Component LevelOne
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: L1;
 Process: ;
 InterfaceList:
 Interface Bottom Level1Socket;
 { InterfaceRole: Producer; }

 Component LevelTwo
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L2;

163

 Process: ;
 InterfaceList:
 Interface Top Level2Socket;
 { InterfaceRole: Consumer; }

 Component LevelThree
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L3;
 Process: ;
 InterfaceList:
 Interface Top Level3Socket;
 { InterfaceRole: Consumer; }

 Component LevelFour
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L4;
 Process: ;
 InterfaceList:
 Interface Top Level4Socket;
 { InterfaceRole: Consumer; }
 }
 ConnectionList
 {
 Connector Service1
 ConnectType Dataflow Unidirect;
 Connect(Level1Socket,Level2Socket);

 Connector Service2
 ConnectType Dataflow Unidirect;
 Connect(Level2Socket,Level3Socket);

 Connector Service3
 ConnectType Dataflow Unidirect;
 Connect(Level3Socket,Level4Socket);
 }
 }

 ViewList
 {
 ViewMain { { UsingArch ExampleProgram;

164

 { Components All;
 Connections All;
 HyperLinkOn Alpha

 ToFile "Example.txt"; } }
 { UsingArch ExampleLayer;
 { Components All;
 Connections All;
 HyperLinkOn LevelFour

 ToFile SecondView; } }
 }

 View SecondView {

{ UsingArch ExampleLayer;
 { Components LevelOne LevelTwo;
 Connections All;
 HyperLinkOn LevelOne ToFile Main;
 HyperLinkOn LevelTwo
 ToFile "Example.txt"; } }
 { UsingArch ExampleLayer;
 { Components LevelOne LevelThree LevelFour;
 Connections All; } }
 { UsingArch ExampleLayer;
 { Components All;
 Connections All; } }
 }
 }
$

165

Appendix F

Complete Yacc Specification for VTADL Parser Shell

(includes routines for Geometric Model and VRML Generator)

166

Complete Yacc Specification for VTADL Parser Shell

(includes routines for Geometric Modeler and VRML Generator)

%{
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <math.h>

#define MAX_QUEUE_POSITION 120

int comp_count = 0;
int conn_count = 0;
int arch_count = 0;
int inter_count = 0;
int curr_row_count = 0;
int curr_view_index = 0; /* Index of view names, for view_names_array */
int curr_arch_index = 0;
char arch_name[25] = " ";
char comp_name[25] = " ";
char conn_name[25] = " ";
char interface_name[25] = " ";
int interface_comp[25]; /* Component for Interface */
char first_conn_name[25] = " ";
char comp_name_array[25][25];
char test_string[25]; /* Temp string for testing */
char conn_name_array[25][25];
char inter_name_array[25][25];
char view_name[25] = " ";
char view_names_array[25][25];
char tmp_arch_ID[25][25];
int tmp_all_comps[25];
int tmp_all_conns[25];
int tmp_view_comps[25][25];
int tmp_view_conns[25][25];
char tmp_hyper_comps[625][25];
char tmp_hyper_conns[625][25];
char stop_var[10];
char use_arch_name[25] = " "; /* Use arch name for usearch nodes */

char style_char[2];
int style_var = 1;
int test_result; /* General variable used for test results */
int test_comp; /* Check for component index */
int test_conn; /* Check for conn index */
int i; /* Subscript for array */
int j; /* Subscript for array */
float Conn_Height = 5.0;
float Sphere_Radius = 0.5;
float Cylinder_Radius = 0.1;

167

float PI = 3.14159;

/* from_to[0] is connection
/* from_to[1] is index of source component
/* from_to[2] is index of destination component */
int from_to[25][3];

/* === */
/* USED FOR TOPOLOGY MATRIX TRAVERSAL: */
/* */
int curr_root; /* Current root of node traversal */
int node_count; /* Count of nonempty nodes in row of Topology matrix */
int no_components; /* Number of components */
int child_count; /* Count of child nodes for curr root row of Top matrix */
int queue_empty_flag; /* Queue empty? 1 = true, 0=false */
int conn_node; /* connection node index */
float root_x; /* xyz coordinate positions of root node */
float root_y;
float root_z;
float child_x;
float child_y;
float child_z;
float orig_x;
float orig_y;
float orig_z;
float conn_orig_x;
float conn_orig_y;
float conn_orig_z;
float old_child_x;
float old_child_y;
float old_child_z;
float old_conn_x;
float old_conn_y;
float old_conn_z;
float temp_child_x;
float temp_child_y;
float temp_child_z;
float conn_x;
float conn_y;
float conn_z;
float delta_sum = 0.0; /* Angular sum for rotation */
float delta_theta = 0.0; /* Angle (radians) for rotation */

double rads60degree;
float conn_level;
int conn_id;

/*== */

/* Arch-list Node */
typedef struct arch_node
 {
 int Style; /* Architecture Style, 1-4 */
 char Arch_ID[25]; /* Architecture Name */
 char Arch_CompID[25][25]; /* Max 25 comp names, 25 chars each */
 double Arch_CompPosition[25][4]; /* Comp. position, x,y,z,level; */
 char Arch_ConnID[25][25]; /* Max 25 conn. names, 25 chars each */

168

 double Arch_ConnPosition[25][4]; /* Conn. Position */
 int Topology[25][25]; /* Indices by comp row, col */
 /* Determines connector at (row,col) */
 int No_Comps; /* No. of comps in architecture */
 int No_Conns; /* No. of connects in architecture */
 struct arch_node *archlink; /* link to next arch_node in list */
 } ANODE;

/* View-list Node */
/* Now includes multiple arch. array instead of usearch.
/* Also includes View_Comps, View_Conns, and Hyperlinks */
 typedef struct viewnode
 {
 char View_ID[25]; /* Name of View */
 int no_archs; /* No of Archs in View */
 char arch_ID[25][25]; /* 25 Possible Archs Max */
 int all_comps[25]; /* All components flag for each arch */
 int all_conns[25]; /* All connectors flag for each arch */
 int view_comps[25][25]; /* View tags for each arch and comp */
 int view_conns[25][25]; /* View tags for each arch and connector */
 char Hyperlinks_Comps[625][25]; /* Each arch uses 25 rows, cols */
 char Hyperlinks_Conns[625][25]; /* Each arch uses 25 rows, cols across */
 /* Index of arch is calculated (n-1)*25 +
 /* comp or component index */
 struct viewnode *viewlink; /* Link to next viewnode */
 } VNODE;

/* Define node for linked lists */
typedef struct node
 {
 char data[25];
 struct node *link;
 } LNODE;

/* Queue variables */
int queue[MAX_QUEUE_POSITION];
int front_of_queue = MAX_QUEUE_POSITION - 1;
int rear_of_queue = MAX_QUEUE_POSITION - 1;
int queue_empty_flag;

 ANODE *r1 = NULL; /* Arch node list empty */
 VNODE *r2 = NULL; /* View Node list empty */
 ANODE *r3 = NULL; /* Temp ref node for arch */

/* Subroutine declarations */

%}

%union {
 char *string; /* string buffer for various names */
}

%token <string> ID QSTRING
%token ARCHITECTURE LEFTBRACKET RIGHTBRACKET COMPONENT CONNECTOR
%token SEMICOLON ARCHSTYLE PROGRAM OBJECT PIPELINE LAYER COMPLIST
%token CONNLIST COMPTYPE CONNTYPE CMPPE CMPPROGRAM CMPCONCEPT CMPOBJECT

169

%token CMPDATA DATAFLOW CONTROLFLOW ASSOCIATES UNIDIRECT BIDIRECT
%token INTERLIST INTERFACE INTERFACEROLE CONNECT LEFTPARENS RIGHTPARENS COMMA
%token PROPERTIES COMPROLE CHILDOF NA COLON PROCESS SIGMA THRESHOLD
%token INPUT OUTPUT ROOT PRODUCER CONSUMER LEFT RIGHT FRONT BACK TOP BOTTOM
%token CMPPRODUCER CMPCONSUMER LINPUT LOUTPUT VIEWLIST VIEWMAIN USEARCH
%token VIEW COMPONENTS CONNECTIONS HYPERLINKON ALL TOFILE

%type <string> archname compname connname interface1 interface2 intername
layer_id child_id useArchID
%type <string> CompNext ConnNext HypConnComp Filename viewname

%%

vtadl: archmain viewpart
 { printf("\n Generating view files... \n");
 generate_view_files(r1,r2);
 printf("\n Tasks are complete! \n"); }
 ;

archmain: /* empty */

 { show_arch_nodes(r1); /* Show archs diagnostics */
 strcpy(view_name,"Main"); /* Store Main view */
 arch_count = 0; /* Main arch count is 0 */
 curr_view_index = 0; /* Init view count */
 for(i=0; i<=24; i++)
 {
 strcpy(tmp_arch_ID[i]," "); /* Init view */
 tmp_all_comps[i] = 0; /* All comps */
 tmp_all_conns[i] = 0; /* All conns */
 for(j=0; j<=24; j++)
 {
 tmp_view_comps[i][j] = 0; /* View comps */
 tmp_view_conns[i][j] = 0; /* View conns */
 view_names_array[i][j] = ' ';
 }
 }
 for(i=0; i<=624; i++) /* Init hyperlink arrays */
 {
 strcpy(tmp_hyper_comps[i]," ");
 strcpy(tmp_hyper_conns[i]," ");
 }
 }

 | archmain archdef
 ;

archdef: architecture archname architect_style leftmark

 partslist connslist rightmark
 { insert_arch_node(&r1, arch_name, style_var, comp_name_array,
 conn_name_array, from_to, comp_count, conn_count); }
 ;

architecture: ARCHITECTURE
 ;

170

leftmark: LEFTBRACKET
 ;

rightmark: RIGHTBRACKET
 ;

architect_style: ARCHSTYLE stylechoice
 ;

stylechoice: PROGRAM { style_var = 1; }
 |
 OBJECT { style_var = 4; }
 |
 PIPELINE { style_var = 3; }
 |
 LAYER { style_var = 2; }
 ;

archname: ID { comp_count = 0;
 conn_count = 0;
 inter_count = 0;

 for(i=0; i<=24; i++)
 {
 from_to[i][0] = 0;
 from_to[i][1] = 0;
 from_to[i][2] = 0;
 interface_comp[i] = 0;
 for(j=0; j<=24; j++)
 {
 comp_name_array[i][j] = ' ';
 conn_name_array[i][j] = ' ';
 inter_name_array[i][j] = ' ';
 }
 }
 strcpy(arch_name,$1);
 }
 ;

partslist: COMPLIST leftmark compbreakdown rightmark
 { printf("\n Comp List as Follows: \n");
 for(i=0; i<= comp_count-1; i++)
 {
 printf("\n Component : %s \n",comp_name_array[i]);
 }
 printf("\n Interface List as Follows: \n");
 for(i=0; i<= inter_count-1; i++)
 {
 printf("\n Interface: %s ",inter_name_array[i]);

 printf(" for Comp No: %6d Comp Name: %s \n",
 interface_comp[i],

 comp_name_array[interface_comp[i]]);
 }
 }
 ;

171

connslist: CONNLIST leftmark connbreakdown rightmark
 { printf("\n ===================================");
 printf("\n *** Connection List as Follows: ***");
 for(i=0; i<= conn_count-1; i++)
 {
 printf("\n Conn No: %6d Conn Name: %s From: %s To: %s \n",
 from_to[i][0], conn_name_array[i],
 comp_name_array[from_to[i][1]],
 comp_name_array[from_to[i][2]]);
 }

 }
 ;

compbreakdown: /* empty */
 |
 compbreakdown middlemark
 ;

middlemark: COMPONENT compname COMPTYPE comptype semimark

 proplist intlist
 ;

proplist: PROPERTIES COLON propdetails
 ;

propdetails: component_role child_of layer_no process_def

component_role: COMPROLE COLON comp_selection semimark

comp_selection: INPUT
 |
 OUTPUT
 |
 ROOT
 |
 CMPPRODUCER
 |
 CMPCONSUMER
 ;

child_of: CHILDOF COLON child_selection semimark
 ;

child_selection: /* Empty */
 |
 child_id
 ;

layer_no: LAYER COLON layer_selection semimark
 ;

layer_selection: /* Empty */
 |
 LINPUT
 |

172

 LOUTPUT
 |
 layer_id
 ;

layer_id: ID { $$ = $1; }
 ;

process_def: PROCESS COLON process_selection semimark
 ;

process_selection: /* Empty */
 |
 SIGMA
 |
 THRESHOLD
 ;

child_id: ID { $$ = $1; }
 ;

intlist: INTERLIST COLON interbreakdown
 ;

interbreakdown: /* empty */
 |
 interbreakdown middleinter
 ;

middleinter: INTERFACE inter_direct intername semimark
 leftmark INTERFACEROLE COLON

 inter_role_choice semimark rightmark
 ;

inter_direct: TOP
 |
 BOTTOM
 |
 LEFT
 |
 RIGHT
 |
 FRONT
 |
 BACK
 ;

inter_role_choice: PRODUCER
 |
 CONSUMER
 ;

connbreakdown: /* empty */
 |
 connbreakdown connmiddle
 ;

173

comptype: CMPPE
 |
 CMPPROGRAM
 |
 CMPCONCEPT
 |
 CMPOBJECT
 |
 CMPDATA
 ;

connmiddle: CONNECTOR connname CONNTYPE connecttype

 connectdirect semimark connend
 ;

semimark: SEMICOLON
 ;

compname: ID { strcpy(comp_name,$1);
 strcpy(comp_name_array[comp_count], comp_name);
 comp_count = comp_count + 1;
 }
 ;

connname: ID { strcpy(conn_name,$1);
 strcpy(conn_name_array[conn_count], conn_name);
 from_to[conn_count][0] = conn_count;
 conn_count = conn_count + 1;
 }
 ;

connecttype: DATAFLOW
 |
 CONTROLFLOW
 |
 ASSOCIATES
 ;

connectdirect: UNIDIRECT
 |
 BIDIRECT
 ;

connend: CONNECT LEFTPARENS interface1 COMMA interface2 RIGHTPARENS
 semimark
 ;

interface1: ID {test_result =

 find_interface_comp(inter_name_array, $1, interface_comp,
 inter_count);
 if(test_result >= 0)
 {
 from_to[conn_count-1][1] = test_result;
 }
 else
 {
 printf("\n Error! Interface does not exist! \n");

174

 exit(0);
 }
 }
 ;

interface2: ID { test_result =

find_interface_comp(inter_name_array, $1, interface_comp,
 inter_count);

 if(test_result >= 0)
 {
 from_to[conn_count-1][2] = test_result;
 }
 else
 {
 printf("\n Error! Interface does not exist! \n");
 exit(0);
 }

 }
 ;

intername: ID { strcpy(interface_name,$1);
 strcpy(inter_name_array[inter_count], interface_name);
 interface_comp[inter_count] = comp_count - 1;
 inter_count = inter_count + 1;
 }
 ;

viewpart: VIEWLIST leftmark mainview userviews rightmark
 { printf(" \n View List successful... \n ");
 printf(" \n curr_view_index:
 %d indexed views \n",curr_view_index);
 printf(" \n List as follows: ");
 for(i=0; i<=curr_view_index-1; i++)
 {
 printf("\n %s ",view_names_array[i]);
 }
 }
 ;

mainview: VIEWMAIN leftmark vmainbody rightmark
 { /* Check if view_name is duplicate */
 test_result = search_view_list(r2, view_name);

 if(test_result == 1)
 {
 printf("\n *** Error: View already exists! \n");
 exit(0);
 }

 strcpy(view_names_array[curr_view_index],view_name);

 curr_view_index = curr_view_index + 1;

 /* Insert Main Node! */
 insert_view_node(&r2,view_name,tmp_arch_ID,

175

 tmp_all_comps,tmp_all_conns,
 tmp_view_comps,tmp_view_conns,
 tmp_hyper_comps, tmp_hyper_conns,
 arch_count);

 printf("\n *** Main Node inserted *** \n");
 for(i=0; i<=arch_count-1; i++)
 {
 printf("\ntmp_arch_ID[%d] %s \n",i,tmp_arch_ID[i]);
 }
 /* above: insert view with parameters */

 /* reinitialize arrays, increment view counters */

 strcpy(view_name," "); /* Clear view name */
 arch_count = 0; /* Init arch count */

 for(i=0; i<=24; i++)
 {
 strcpy(tmp_arch_ID[i]," "); /* Init arch array */
 tmp_all_comps[i] = 0; /* All comps */
 tmp_all_conns[i] = 0; /* All conns */
 for(j=0; j<=24; j++)
 {
 tmp_view_comps[i][j] = 0; /* View comps */
 tmp_view_conns[i][j] = 0; /* View conns */
 }
 }
 for(i=0; i<=624; i++) /* Init hyperlink arrays */
 {
 strcpy(tmp_hyper_comps[i]," ");
 strcpy(tmp_hyper_conns[i]," ");
 }

 }
 ;

vmainbody: /* NULL */
 |
 useArchSection vmainbody
 ;

useArchSection: leftmark usePart useProp rightmark
 { test_result = calculate_arch_position(&r3);
 if(test_result == -1)
 {
 printf("\n calc failed! \n");
 }
 }
 ;

usePart: USEARCH useArchID semimark
 ;

useProp: leftmark CompConn HyperPart rightmark
 ;

176

useArchID: ID { strcpy(use_arch_name, $1);
 r3 = r1; /* r3 is temp arch node for ref */

 /* search r3 for arch ID; use r3 as ref */
 if(r3 == NULL)
 {
 printf("\nArch list is empty! Exiting... \n");
 exit(0);
 }
 if(r3 != NULL)
 {
 item_found = 0;
 do
 {
 strcpy(teststring,r3->Arch_ID);
 if(strncmp(teststring,use_arch_name,
 strlen(use_arch_name)) == 0)
 {
 item_found = 1;
 }
 else
 {
 r3 = r3->archlink;
 }
 } while((r3 != NULL) && (item_found != 1));

 } /* end if r3 not NULL */

 if(r3 == NULL)
 {
 printf("\n ERROR! *** Arch ID not found! EXITING... \n");
 exit(0);
 }

 /* Assume valid arch node...proceed! */
 arch_count = arch_count + 1;
 curr_arch_index = arch_count - 1;
 strcpy(tmp_arch_ID[curr_arch_index],use_arch_name);

 }
 ;

CompConn: CompSelects ConnSelects
 ;

CompSelects: COMPONENTS CompOptions semimark
 ;

CompOptions: ALL { tmp_all_comps[curr_arch_index] = 1; }
 |
 CompOptList
 ;

CompOptList: /* NULL */
 |
 CompNext CompOptList

177

 ;

CompNext: ID { strcpy(comp_name,$1);
 /* Check if comp in architecture */
 test_result =
 find_comp_index(comp_name,r3->Arch_CompID,
 r3->No_Comps);
 if(test_result == -1)
 {
 printf("\n ERROR! Invalid component in architecture!\n");
 exit(0);
 }

 tmp_view_comps[curr_arch_index][test_result] = 1;
 }
 ;

ConnSelects: CONNECTIONS ConnOptions semimark
 ;

ConnOptions: ALL { tmp_all_conns[curr_arch_index] = 1; }
 |
 ConnOptList
 ;

ConnOptList: /* NULL */
 |
 ConnNext ConnOptList
 ;

ConnNext: ID { strcpy(conn_name,$1);
 test_result = find_conn_index(conn_name,r3->Arch_ConnID,
 r3->No_Conns);
 if(test_result == -1)
 {
 printf("\n ERROR! Invalid connector in architecture!\n");
 exit(0);
 }
 tmp_view_conns[curr_arch_index][test_result] = 1;
 }
 ;

HyperPart: /* NULL */
 |
 Hypercase HyperPart
 ;

Hypercase: HYPERLINKON HypConnComp TOFILE Filename semimark
 ;

HypConnComp: ID { strcpy(test_string, $1);
 test_comp = find_comp_index(test_string, r3->Arch_CompID,
 r3->No_Comps);
 test_conn = find_conn_index(test_string, r3->Arch_ConnID,
 r3->No_Conns);
 if((test_comp == -1) && (test_conn == -1))

178

 {
 printf("\n ERROR! Invalid comp or

conn in hyperlink!\n");
 exit(0);
 }
 if(test_comp != -1) /* Hyperlink on Component */
 {
 hyperlink_index = 25*(curr_arch_index) + test_comp;
 }
 if(test_conn != -1) /* Hyperlink on Connector */
 {
 hyperlink_index = 25*(curr_arch_index) + test_conn;
 }

 }
 ;

Filename: ID { strcpy(filename,$1);
 strcat(filename,".wrl");
 if(test_comp != -1)
 {
 strcpy(tmp_hyper_comps[hyperlink_index],filename);
 }
 if(test_conn != -1)
 {
 strcpy(tmp_hyper_conns[hyperlink_index],filename);
 }
 }
 | QSTRING
 { strcpy(filename,$1);
 if(test_comp != -1)
 {
 strcpy(tmp_hyper_comps[hyperlink_index],filename);
 }
 if(test_conn != -1)
 {
 strcpy(tmp_hyper_conns[hyperlink_index],filename);
 }
 }

 ;

userviews: /* NULL */
 |
 Viewdef userviews
 ;

Viewdef: VIEW viewname leftmark vmainbody rightmark
 { insert_view_node(&r2,view_name,tmp_arch_ID,
 tmp_all_comps,tmp_all_conns,
 tmp_view_comps,tmp_view_conns,
 tmp_hyper_comps, tmp_hyper_conns,
 arch_count);
 /* above: insert view with parameters */
 /* Get ready for next view node */
 /* Fix: curr_view_index already increment by viewname */

179

 /* reinitialize arrays, increment view counters */

 strcpy(view_name," "); /* Clear view name */
 arch_count = 0; /* Init arch count */

 for(i=0; i<=24; i++)
 {
 strcpy(tmp_arch_ID[i]," "); /* Init arch array */
 tmp_all_comps[i] = 0; /* All comps */
 tmp_all_conns[i] = 0; /* All conns */
 for(j=0; j<=24; j++)
 {
 tmp_view_comps[i][j] = 0; /* View comps */
 tmp_view_conns[i][j] = 0; /* View conns */
 }
 }
 for(i=0; i<=624; i++) /* Init hyperlink arrays */
 {
 strcpy(tmp_hyper_comps[i]," ");
 strcpy(tmp_hyper_conns[i]," ");
 }
 }
 ;

viewname: ID { strcpy(view_name,$1);

 /* Check for duplicate view */
 test_result = search_view_list(r2, view_name);

 if(test_result == 1)
 {
 printf("\n *** Error: View already exists! \n");
 exit(0);
 }
 strcpy(view_names_array[curr_view_index],view_name);
 curr_view_index = curr_view_index + 1;
 }
 ;

%%

 LNODE *n1 = NULL;

 /* ANODE *r1 = NULL; Arch Node list empty */
 /* VNODE *r2 = NULL; View Node list empty */
 /* ANODE *r3 = NULL; Temp ref node for arch */

 int i,j;
 int from_index;
 int item_found; /* 1 = found, 0 = not found */
 int to_index;
 int test_result;
 int hyperlink_index;
 char filename[25]; /* Hyperlink to filename */
 char teststring[25]; /* String to compare */

180

main()
 {
 do
 {
 yyparse();
 }
 while(!EOF);
 }

show_list(LNODE *ptr)
 {
 int counter = 0;
 printf("\n");

 while(ptr != NULL)
 {
 printf("Next node: %s",ptr->data);
 ptr = ptr->link;
 counter = counter + 1;
 printf("\n");
 }
 printf("\n");
 printf("Counter is %d",counter);

 }

 count_layers(LNODE *ptr)
 {
 int layer_count = 0;

 while(ptr != NULL)
 {
 ptr = ptr->link;
 layer_count = layer_count + 1;
 }

 return(layer_count);
 }

 add_layer_component(LNODE **ptr, char new_layer[25])
 {
 LNODE *p1, *p2;
 char teststring[25];

 p1 = *ptr;

 if(p1 == NULL) /* if list is empty */
 {
 p1 = malloc(sizeof(LNODE));
 if(p1 != NULL)
 {
 strcpy(p1->data,new_layer);
 p1->link = NULL;
 *ptr = p1;
 }
 }
 else /* if list is not empty */

181

 {
 while(p1->link != NULL)
 {
 strcpy(teststring,p1->data);
 if(strncmp(teststring,new_layer,strlen(new_layer)) != 0)
 {
 p1 = p1->link;
 }
 else
 {
 printf("\n Error -- duplicate layer name \n");
 exit(0);
 }
 }
 p2 = malloc(sizeof(LNODE));
 if(p2 != NULL)
 {
 strcpy(p2->data,new_layer);
 p2->link = NULL;
 p1->link = p2;
 }
 }
}

/* Returns index of component corresponding to interface name */
find_interface_comp(char in_inter_array[25][25], char in_test_intername[25],
 int in_inter_comp[25], int in_no_of_inters)
 {
 int i;
 int result_index;

 result_index = -1;

 for(i=0; i<=(in_no_of_inters-1); i++)
 {
 if(strncmp(in_inter_array[i],in_test_intername,
 strlen(in_test_intername)) == 0)
 result_index = i;
 }

 if(result_index >= 0)
 return(in_inter_comp[result_index]); /* Give index of component of
interface */

 if(result_index < 0) /* Case where interface not found */
 return(-1);
 }

/* Initialize queue */
/* Example of correct usage:
/* init_queue(test_queue); */

 init_queue()
 {
 int i;

 for(i=0; i<= (MAX_QUEUE_POSITION - 1); i++)

182

 {
 queue[i] = -1;
 }
 }

 /* returns 0 if queue is not empty, 1 if queue is empty */
 /* Note that an array content of -1 means value is NULL */
 is_queue_empty()
 {
 if((queue[front_of_queue] == -1) && (front_of_queue == rear_of_queue))
 return(1);
 else
 return(0);
 }

void show_queue()
 {
 int i;

 printf("\n ");
 for(i=0; i<= (MAX_QUEUE_POSITION - 1); i++)
 {
 printf(" %4d ",queue[i]);
 }
 printf("\n ");
 }

 insert_queue_item(int insert_item)
 {
 int switchvar;

 /* Do case
 /*
 /* Check case where in_rear == in_front */
 /* WHERE CASE IS TRUE, in_rear == in_front:
 /* Conceptually, two things are possible in this case:
 /* Either the queue is empty or we are at the very first entry!
 /*
 /* If in_rear == in_front AND queue[in_rear] is empty (-1)
 /* then set both current in_rear, in_front to MAX_QUEUE_POSITION (199)
 /* Place item at current location of in_rear
 /* queue[in_rear] = insert_item

/* else
/* if in_rear == in_front and queue[in_rear] is NOT empty
/* then check if in_rear = 0
/* if in_rear is 0, generate ERROR message ("OUT OF MEMORY")
/* if in_rear is NOT 0,
/* then in_rear = in_rear - 1
/* Place item at new location of in_rear
/* queue[in_rear] = insert_item
/*
/* Check case where in_rear != in_front
/* WHERE CASE IS TRUE, in_rear NOT EQUAL in_front:
/* If in_rear != in_front
/* {
/* If in_rear > 0
/* in_rear = in_rear - 1

183

/* Place item at new in_rear value
/* queue[in_rear] = insert_item
/* else
/* if in_rear = 0
/* Place item at 0 position with warning
/* queue[in_rear] = insert_item
/* Print "Warning! Memory out!"
/* }
/* */

 if((rear_of_queue == front_of_queue) && (queue[rear_of_queue] == -1))
 switchvar = 1; /* Flags equal and empty contents */

 if((rear_of_queue == front_of_queue) && (queue[rear_of_queue] != -1))
 switchvar = 2; /* Flags equal but contents not empty */

 if(rear_of_queue != front_of_queue)
 switchvar = 3; /* Flags not equal */

 switch(switchvar)
 {
 case 1:
 {
 printf("\n Case 1... \n");
 rear_of_queue = MAX_QUEUE_POSITION - 1;
 front_of_queue = MAX_QUEUE_POSITION - 1;
 queue[rear_of_queue] = insert_item;
 break;
 }
 case 2:
 {
 printf("\n Case 2... \n");
 if(rear_of_queue == 0) {
 printf("\n OUT OF MEMORY! \n");
 return(-1);
 break; }
 else {
 rear_of_queue = rear_of_queue - 1;
 queue[rear_of_queue] = insert_item;
 }
 break;
 }
 case 3:
 {
 printf("\n Case 3... \n");
 if(rear_of_queue > 0) {
 rear_of_queue = rear_of_queue - 1;
 queue[rear_of_queue] = insert_item; }
 else
 { queue[rear_of_queue] = insert_item;
 printf("\n Out of Memory! ");
 return(-1);
 }
 break;
 }

184

 return(1);

 } /* End of Switch */

 } /* End of insert_queue_item */

 remove_queue_item()
 {
 int switchvar;
 int queue_item;

 /* Example of Use:
 /* curr_item = remove_queue_item(queue, current_front, current_rear);
 /* where queue is the array representing queue,
 /* current_front is front of queue,
 /* current_rear is rear of queue.
 /*

 /* DO CASE switch(type)
 /*
 /* Case where in_front == in_rear
 /* When CASE is TRUE, in_front == in_rear
 /* If queue[in_front] = -1
 /* return (-1), a NULL
 /* Else
 /* If queue[in_front] != -1
 /* queue_item = queue[in_front]
 /* queue[in_front] = -1;
 /* EndIf
 /* EndIf
 /* break
 /* Case where in_front != in_rear
 /* When CASE is TRUE, in_front NOT EQUAL in_rear...
 /* If queue[in_front] = -1
 /* return (-1), a NULL
 /* Else
 /* If queue[in_front] != -1
 /* queue_item = queue[in_front]
 /* queue[in_front] = -1
 /* If in_front > 0
 /* in_front = in_front - 1
 /* EndIf
 /* EndIf
 /* EndIf
 /*
 /*
 /*
 /*
 /* */

 if((front_of_queue == rear_of_queue) && (queue[front_of_queue] == -1))
 switchvar = 1; /* If front and rear are same and queue is empty */

if((front_of_queue == rear_of_queue) && (queue[front_of_queue] != -1))

185

 switchvar = 2; /* If front = rear and queue is NOT EMPTY */

 if((front_of_queue != rear_of_queue) && (queue[front_of_queue] == -1))
 switchvar = 3; /* front != rear and queue empty */

 if((front_of_queue != rear_of_queue) && (queue[front_of_queue] != -1))
 switchvar = 4; /* front NOT EQ rear and queue NOT EMPMTY */

 switch(switchvar)
 {

 case 1:
 {
 return(-1);
 break;
 }
 case 2:
 {
 queue_item = queue[front_of_queue];
 queue[front_of_queue] = -1;
 return(queue_item);
 break;
 }

 case 3:
 {
 return(-1);
 printf("\n Error condition... \n");
 break;
 }
 case 4:
 {
 queue_item = queue[front_of_queue];
 queue[front_of_queue] = -1;
 if(front_of_queue > 0)
 front_of_queue = front_of_queue - 1;
 return(queue_item);
 break;
 }
 } /* End switch */

 return(queue_item);

 } /* End of remove queue function */

 /* Diagnostic: Show view nodes in view list */
 show_view_nodes(VNODE *vptr)
 {
 int view_counter = 0;
 int row = 0;
 int col = 0;
 char output_filename[25] = "viewout.txt";
 FILE *file_pointer; /* File pointer. */

 printf("\n");
 printf("\n Opening file: viewout.txt \n");

186

 file_pointer = fopen(output_filename,"w");

 while(vptr != NULL)
 {
 fprintf(file_pointer,"\n******** Next View ****** \n");
 fprintf(file_pointer,"\n View ID: %15s",vptr->View_ID);
 fprintf(file_pointer,"\n Number of Archs: %4d",vptr->no_archs);
 fprintf(file_pointer,"\n ====== Architecture List =========\n");

 for(row=0; row<=4; row++)
 {
 fprintf(file_pointer,"\n Arch ID:...%2d : %25s",
 row,vptr->arch_ID[row]);
 }
 vptr = vptr->viewlink;
 view_counter = view_counter + 1;
 printf("\n");
 }
 fprintf(file_pointer,"\n No of Views: %d",view_counter);
 printf("\n -- File Done! Closing File! -- \n ");
 fclose(file_pointer);
 }

/* Inserts new arch_node of type ANODE in arch_node list. */
insert_arch_node(ANODE **ptr, char in_arch_id[25], int in_arch_style,
 char in_comp_array[25][25],
 char in_conn_array[25][25],
 int in_from_to[25][3],
 int in_no_comps, int in_no_conns)
 {
 ANODE *p1, *p2;
 char teststring[25];
 int row;
 int col;
 int test_flag;

 p1 = *ptr;

 if(p1 == NULL) /* if list is empty */
 {
 p1 = malloc(sizeof(ANODE));
 if(p1 != NULL)
 {
 strcpy(p1->Arch_ID,in_arch_id);
 p1->Style = in_arch_style;
 p1->No_Comps = in_no_comps;
 p1->No_Conns = in_no_conns;

 /* Initialize the Topology Matrix */
 for(row=0; row<=24; row++)
 {
 for(col=0; col<=24; col++)
 {
 p1->Topology[row][col] = -1;
 }
 }

187

 /* Initialize the Comp and Conn matrices */
 for(row=0; row<= in_no_comps-1; row++)
 {
 strcpy(p1->Arch_CompID[row]," ");
 strcpy(p1->Arch_ConnID[row]," ");
 }

 /* Initialize Arch comp, connector Position matrices */
 for(row=0; row<= 24; row++)
 {
 p1->Arch_CompPosition[row][0] = 0.00; /* x pos */
 p1->Arch_CompPosition[row][1] = 0.00; /* y */
 p1->Arch_CompPosition[row][2] = 0.00; /* z */
 p1->Arch_CompPosition[row][3] = -1.00; /* level */
 p1->Arch_ConnPosition[row][0] = 0.00; /* x */
 p1->Arch_ConnPosition[row][1] = 0.00; /* y pos */
 p1->Arch_ConnPosition[row][2] = 0.00; /* z posit */
 p1->Arch_ConnPosition[row][3] = 0.00; /* delta */
 }

 /* Load the Component and Connector matrices */
 for(row=0; row<= in_no_comps-1; row++)
 {
 strcpy(p1->Arch_CompID[row],in_comp_array[row]);
 }

 for(row=0; row <= in_no_conns-1; row++)
 {
 strcpy(p1->Arch_ConnID[row],in_conn_array[row]);
 }

 /* Now determine the topology matrix */
 /* Topology(row,col) contains index of connector */
 /* Topology(row,col) defines connection. */
 /* row=index of source comp, col=index of dest */

 for(row=0; row <= in_no_conns-1; row++)
 p1->Topology[in_from_to[row][1]][in_from_to[row][2]]
 = in_from_to[row][0];

 /* Now we generate the comp and conn positions! */

 /* For Call and Return architectural style */
 if(in_arch_style == 1)
 {
 /* curr_root = 0; */
 /* Store x = 0, y = 0, z = 0
 /* For curr comp row, use indices of non-0 conns;
 /* Insert_queue_item(connector_index);
 /* When row is complete: */

 /* Set the component and connector positions */
 test_flag = calculate_arch_position(&p1);

 if(test_flag == -1)
 {

188

 printf("\nERROR CALCULATING POSITION! Exit!\n");
 exit(0);
 }
 }

 p1->archlink = NULL;
 *ptr = p1;
 }
 }
 else /* if list is not empty */
 {
 /* Scan to end of existing list for available spot to insert */
 while(p1->archlink != NULL)
 {
 /* First check if any duplicates... */
 strcpy(teststring,p1->Arch_ID);
 if(strncmp(teststring,in_arch_id,strlen(in_arch_id)) != 0)
 {
 p1 = p1->archlink;
 }
 else
 {
 printf("\n Error -- duplicate component identifier \n");
 exit(0);
 }
 }

 /* Create a brand new node for insertion */
 p2 = malloc(sizeof(ANODE));
 if(p2 != NULL)
 {
 strcpy(p2->Arch_ID,in_arch_id);
 p2->Style = in_arch_style;
 p2->No_Comps = in_no_comps;
 p2->No_Conns = in_no_conns;

 /* Initialize the Topology Matrix */
 for(row=0; row<=24; row++)
 {
 for(col=0; col<=24; col++)
 {
 p2->Topology[row][col] = -1;
 }
 }

 /* Initialize the Comp and Conn matrices */
 for(row=0; row<= in_no_comps-1; row++)
 {
 strcpy(p2->Arch_CompID[row]," ");
 strcpy(p2->Arch_ConnID[row]," ");
 }

 /* Initialize the Arch component and connector Position matrices */
 for(row=0; row<= 24; row++)
 {
 p2->Arch_CompPosition[row][0] = 0.00; /* x position */

189

 p2->Arch_CompPosition[row][1] = 0.00; /* y position */
 p2->Arch_CompPosition[row][2] = 0.00; /* z position */
 p2->Arch_CompPosition[row][3] = -1.00; /* level number */
 p2->Arch_ConnPosition[row][0] = 0.00; /* x position */
 p2->Arch_ConnPosition[row][1] = 0.00; /* y position */
 p2->Arch_ConnPosition[row][2] = 0.00; /* z position */
 p2->Arch_ConnPosition[row][3] = 0.00; /* delta sum radians */
 }

 /* Load the Component and Connector matrices */
 for(row=0; row<= in_no_comps-1; row++)
 {
 strcpy(p2->Arch_CompID[row],in_comp_array[row]);
 }

 for(row=0; row <= in_no_conns-1; row++)
 {
 strcpy(p2->Arch_ConnID[row],in_conn_array[row]);
 }

 /* Now determine the topology matrix */
 /* Topology(row,col) contains index of connector */
 for(row=0; row <= in_no_conns-1; row++)
 p2->Topology[in_from_to[row][1]][in_from_to[row][2]]

 = in_from_to[row][0];

 /* ==== x,y,z and delta_theta POSITIONS AND ANGLES ==== */
 /* Determine positions of components, connectors */
 /* curr_root = in_from_to[0][1];

/* Get the very first component in Topology Matrix */

 /* p2->Arch_CompPosition[curr_root][1] = 0.00; */
 /* p2->Arch_CompPosition[curr_root][2] = 0.00;
 /* p2->Arch_CompPosition[curr_root][3] = 0.00;

 /* p2->Arch_ConnPosition[curr_root][1] = 0.0;
 /* p2->Arch_ConnPosition[curr_root][2] =

 /* -Conn_Height;
 /* p2->Arch_ConnPosition[curr_root][3] = 0.0;
 /* p2->Arch_ConnPosition[curr_root][4] = 0.0;
 /*
 /* Calculate current Comp and Conn positions; */

 test_flag = calculate_arch_position(&p2);

 if(test_flag == -1)
 {
 printf("\nERROR CALCULATING POSITION! Exiting...\n");
 exit(0);
 }

 /* New node points to null; last node points to new node */
 p2->archlink = NULL;
 p1->archlink = p2;
 }
 }
 }

190

/* This routine generates positions for arch comps and conns for
/* call-and-return-style */
/* We use arch_node for architecture info and view_node for hiding/showing and
/* hyperlink info. */

 int calculate_arch_position(ANODE **tempptr)
 {
 ANODE *archptr; /* pointer to arch node */

 int i; /* For loop matrix */
 int level;

 archptr = *tempptr;

 if(archptr == NULL)
 return(-1);

 curr_root = 0;
 rads60degree = PI/3;
 Conn_Height = 15.0;

 archptr->Arch_CompPosition[curr_root][0] = 0.0;
 archptr->Arch_CompPosition[curr_root][1] = 0.0;
 archptr->Arch_CompPosition[curr_root][2] = 0.0;
 /* Level of first root node follows: */
 archptr->Arch_CompPosition[curr_root][3] = 0.0;

 init_queue(); /* Initialize queue used for traversal */

 /* Insert very first root into queue */
 insert_queue_item(curr_root);

 queue_empty_flag = is_queue_empty();

 /* While the queue is not empty, proceed... */
 while(queue_empty_flag != 1)
 {
 curr_root = remove_queue_item();
 node_count = 0;

 /* Count Number of children of current root in
 /* order to determine delta_theta */

 no_components = archptr->No_Comps;

 for(i=0; i<= (no_components - 1); i++)
 {
 if(archptr->Topology[curr_root][i] != (-1))
 {
 node_count = node_count + 1;

 /* Set the level of the node, where root is 0 */
 if(archptr->Arch_CompPosition[i][3] = -1)
 {
 /* Determine level */

191

 archptr->Arch_CompPosition[i][3] =
 archptr->Arch_CompPosition[curr_root][3] +1;
 }
 }
 }

 printf("\n Current node count is: %3d ",node_count);
 printf("\n");

 root_x = archptr->Arch_CompPosition[curr_root][0];
 root_y = archptr->Arch_CompPosition[curr_root][1];
 root_z = archptr->Arch_CompPosition[curr_root][2];

 if(node_count >= 1)
 delta_theta = 2.0 * PI / node_count;

 if(node_count == 0)
 delta_theta = 0.0;

 /* Scan through child nodes of curr_root */
 child_count = 0;
 delta_sum = 0.0;

 for(i=0; i<= (no_components-1); i++)
 {
 if(archptr->Topology[curr_root][i] != (-1))
 {
 child_count = child_count + 1;

 delta_sum = delta_theta * (child_count - 1);
 level = archptr->Arch_CompPosition[curr_root][3];

 if(level == 0)
 {
 Conn_Height = 15.0;
 Sphere_Radius = 0.6;
 }
 if(level == 1)
 {
 Conn_Height = 7.5;
 Sphere_Radius = 0.6;
 }
 if(level == 2)
 {
 Conn_Height = 3.75;
 Sphere_Radius = 0.5;
 }
 if(level == 3)
 {
 Conn_Height = 2.9;
 Sphere_Radius = 0.4;
 }
 if(level == 4)
 {
 Conn_Height = 1.5;
 Sphere_Radius = 0.4;
 }

192

 if(level == 5)
 {
 Conn_Height = 1.5;
 Sphere_Radius = 0.35;
 }
 if(level >= 6)
 {
 Conn_Height = 1.0;
 Sphere_Radius = 0.3;
 }

 /* Point at origin */
 orig_x = 0.0;
 /* orig_y = 0.0 - 0.5 times Sphere_Radius - Conn_Height; */
 orig_y = 0.0 - Conn_Height;
 orig_z = 0.0;

 /* Rotate around z as follows: */
 /* 1. Assume rotation occurs for object of
 /* height Conn_height + Sphere Radius
 /* 2. After rotation with height occurs around z,
 /* we rotate around y by delta_sum */

 child_x = (0)*(cos(-rads60degree)) -

(orig_y)*(sin(-rads60degree));
 child_y = (0)*(sin(-rads60degree)) +

(orig_y)*(cos(-rads60degree));
 child_z = orig_z;

 /* Rotate around y by delta_sum */

 old_child_x = child_x;
 old_child_y = child_y;
 old_child_z = child_z;

 child_z = old_child_z * cos(delta_sum)

- old_child_x * sin(delta_sum);
 child_x = old_child_z * sin(delta_sum)

+ old_child_x * cos(delta_sum);
 child_y = old_child_y;

 /* Translate back to position UNDER THE ORIGINAL ROOT */
 child_x = child_x + root_x;
 child_y = child_y + root_y;
 child_z = child_z + root_z;

 /* Store Arch Positions and Level */

 archptr->Arch_CompPosition[i][0] = child_x;
 archptr->Arch_CompPosition[i][1] = child_y;
 archptr->Arch_CompPosition[i][2] = child_z;

 /* Now establish connection given the root position and the
 /* child position */

193

 /* First Translate to the origin */
 conn_orig_x = 0.0;
 /* conn_orig_y = (0.0 -Conn_Height)/2.0-Sphere_Radius; */
 conn_orig_y = (0.0 - Conn_Height)/2.0;
 conn_orig_z = 0.0;

 /* First Rotate the leg center-point around z-axis */
 conn_x = (0) * (cos(-rads60degree)) -

 (conn_orig_y)*(sin(-rads60degree));
 conn_y = (0) * (sin(-rads60degree)) +

 (conn_orig_y)*(cos(-rads60degree));
 conn_z = conn_orig_z;

 /* Now rotate the leg center-point around the y-axis */
 /* Rotate around y by delta_sum */

 old_conn_x = conn_x;
 old_conn_y = conn_y;
 old_conn_z = conn_z;

 /* Translate back to location under current root node */
 conn_x = conn_x + root_x;
 conn_y = conn_y + root_y;
 conn_z = conn_z + root_z;

 conn_id = archptr->Topology[curr_root][i];

 archptr->Arch_ConnPosition[conn_id][0] = conn_x;
 archptr->Arch_ConnPosition[conn_id][1] = conn_y;
 archptr->Arch_ConnPosition[conn_id][2] = conn_z;
 /* rotate around z */
 archptr->Arch_ConnPosition[conn_id][3] = delta_sum;

 insert_queue_item(i);

 } /* end if Topology not -1 */

 } /* end for i <= no_comps */

 queue_empty_flag = is_queue_empty();

 } /* end while queue not empty */

 } /* end calculate_arch_position */

 /* This routine is used for diagnostic purposes;
 /* It prints the selected contents of each arch_node */

 show_arch_nodes(ANODE *ptr)
 {
 int arch_counter = 0;
 int row = 0;
 int col = 0;
 printf("\n");

194

 while(ptr != NULL)
 {
 printf("******* Next Architecture ********* \n");
 printf("Arch ID: %s",ptr->Arch_ID);
 printf("\n ====== Style: %d",ptr->Style);
 printf("\n ====== No_Comps: %d",ptr->No_Comps);
 printf("\n ====== No_Conns: %d",ptr->No_Conns);
 printf("\n ====== Component List =========");

 for(row=0; row<=8; row++)
 {
 printf("\n........%d : %s",row,ptr->Arch_CompID[row]);
 }

 printf("\n ====== Connectors =============");

 for(row=0; row<=7; row++)
 {
 printf("\n........%d : %s",row,ptr->Arch_ConnID[row]);
 }

 printf("\n ====== (TOPOLOGY) =============");

 for(row=0; row<=8; row++)
 {
 printf("\n");
 for(col=0; col<=8; col++)
 {
 printf(" %d ",ptr->Topology[row][col]);
 }
 }

 ptr = ptr->archlink;
 arch_counter = arch_counter + 1;
 printf("\n");
 }
 printf("\n No of Archs: %d",arch_counter);
 }

 /* Search for a view node; return 1 if found, 0 if not found */
 int search_view_list(VNODE *vvptr, char in_view_id[25])
 {
 char teststring[25];

 if(vvptr == NULL)
 return(0);
 else
 {
 do
 {
 strcpy(teststring,vvptr->View_ID);
 if(strncmp(teststring,in_view_id,strlen(in_view_id)) == 0)
 return(1);
 vvptr = vvptr->viewlink;
 } while(vvptr != NULL);
 return(0);
 }

195

 }

 /* Insert the view Node into View-List */

 void insert_view_node(VNODE **vptr, char in_view_id[25],
 char in_arch_id[25][25], int in_all_comps[25],
 int in_all_conns[25], int in_viewcomps[25][25],
 int in_viewconns[25][25], char
in_hyper_comps[625][25],
 char in_hyper_conns[625][25], int in_no_archs)

 {
 VNODE *vp1, *vp2;
 char teststring[25];
 int row;
 int col;

 vp1 = *vptr;

 if(vp1 == NULL) /* if list is empty */
 {
 vp1 = malloc(sizeof(VNODE));
 if(vp1 != NULL)
 {
 strcpy(vp1->View_ID,in_view_id);

 /* Initialize the various arrays: */
 vp1->no_archs = 0;

 for(row=0; row<=24; row++)
 {
 vp1->all_comps[row] = 0; /* All comps flags to 0 */
 vp1->all_conns[row] = 0; /* All conns flags to 0 */

 strcpy(vp1->arch_ID[row]," ");

 for(col=0; col<=24; col++)
 {
 /* strcpy(vp1->arch_ID[row][col]," "); */
 vp1->view_comps[row][col] = 0;
 vp1->view_conns[row][col] = 0;
 }
 }

 /* Initialize the Hyperlink arrays */
 for(col=0; col<=624; col++)
 {
 strcpy(vp1->Hyperlinks_Comps[col]," ");
 strcpy(vp1->Hyperlinks_Conns[col]," ");
 }

 vp1->no_archs = in_no_archs;

 for(col=0; col<=24; col++)
 {

196

 strcpy(vp1->arch_ID[col],in_arch_id[col]);
 vp1->all_comps[col] = in_all_comps[col];
 vp1->all_conns[col] = in_all_conns[col];

 for(row=0; row<=24; row++)
 {
 vp1->view_comps[col][row] = in_viewcomps[col][row];
 vp1->view_conns[col][row] = in_viewconns[col][row];
 }
 }

 for(row=0; row<=624; row++)
 {
 for(col=0; col<=24; col++)
 {

 vp1->Hyperlinks_Comps[row][col] =
in_hyper_comps[row][col];

 vp1->Hyperlinks_Conns[row][col] =
in_hyper_conns[row][col];

 }
 }

 vp1->viewlink = NULL;
 *vptr = vp1;
 }
 }
 else /* if list is not empty */
 {
 /* Scan to end of existing list for available spot to insert */
 while(vp1->viewlink != NULL)
 {
 /* First check if any duplicates... */
 strcpy(teststring,vp1->View_ID);
 if(strncmp(teststring,in_view_id,strlen(in_view_id)) != 0)
 {
 vp1 = vp1->viewlink;
 }
 else
 {
 printf("\n Error -- duplicate component identifier \n");
 exit(0);
 }
 }

 /* Create a brand new node for insertion */
 vp2 = malloc(sizeof(VNODE));
 if(vp2 != NULL)
 {
 strcpy(vp2->View_ID,in_view_id);

 /* Initialize the variables and arrays */
 vp2->no_archs = 0;

 for(row=0; row<=24; row++)
 {
 vp2->all_comps[row] = 0; /* All comps flags to 0 */

197

 vp2->all_conns[row] = 0; /* All conns flags to 0 */

 strcpy(vp2->arch_ID[row]," ");

 for(col=0; col<=24; col++)
 {
 /* strcpy(vp2->arch_ID[row][col]," "); */
 vp2->view_comps[row][col] = 0;
 vp2->view_conns[row][col] = 0;
 }
 }

 /* Initialize the Hyperlink arrays */
 for(col=0; col<=624; col++)
 {
 strcpy(vp2->Hyperlinks_Comps[col]," ");
 strcpy(vp2->Hyperlinks_Conns[col]," ");
 }

 vp2->no_archs = in_no_archs;

 for(col=0; col<=24; col++)
 {
 strcpy(vp2->arch_ID[col], in_arch_id[col]);
 vp2->all_comps[col] = in_all_comps[col];
 vp2->all_conns[col] = in_all_conns[col];

 for(row=0; row<=24; row++)
 {
 vp2->view_comps[col][row] =

in_viewcomps[col][row];
 vp2->view_conns[col][row] =

in_viewconns[col][row];
 }
 }

 for(row=0; row<=624; row++)
 {
 for(col=0; col<=24; col++)
 {
 vp2->Hyperlinks_Comps[row][col] =

in_hyper_comps[row][col];
 vp2->Hyperlinks_Conns[row][col] =

in_hyper_conns[row][col];
 }
 }

 /* New node points to null; last node points to new node */
 vp2->viewlink = NULL;
 vp1->viewlink = vp2;
 }
 }
 }

 find_comp_index(char test_comp[25], char in_comp_array[25][25], int
number_of_comps)

198

 {
 int i;
 int result_index;

 result_index = -1;

 for(i=0; i<=(number_of_comps -1); i++)
 {
 if(strncmp(in_comp_array[i],test_comp,strlen(test_comp)) == 0)
 result_index = i;
 }

 return(result_index);

 }

 find_conn_index(char test_conn[25], char in_conn_array[25][25], int
number_of_conns)
 {
 int i;
 int result_index;

 result_index = -1;

 for(i=0; i<=(number_of_conns -1); i++)
 {
 if(strncmp(in_conn_array[i],test_conn,strlen(test_conn)) == 0)
 result_index = i;
 }
 return(result_index);
 }

 /* The following routine generates the VRML view file for each view.
 /* It is the target file for the view description in each node.
 /* That is, each view node contains one or more architectures
 /* which are rendered in the VRML file.
 /*
 /* Sample call: generate_view_files(ANODE in_arch, VNODE in_view);
 /*
 /* 1. The viewlist VNODES are traversed, from first to last view node;
 /* 2. For each view node:
 /* Prepare file by first preparing the navigation toolbar
 /* Establish anchor nodes for ALL OTHER views using
 /* visual navigation icon.
 /* The navigation icon consists of a sphere for all wrl files,
 /* excluding the current view.
 /* Use the view_nodes array for the list of nodes other
 /* than current view node.
 /* Generate the VRML codes for anchor nodes, translate
 /* to the lower portion below the architectures.
 /* View Name = View Name + ".wrl" extension.
 /*
 /* 3. For the current view node:
 /*

199

 /* 3A. Read the architecture array for arch ID
 /* 3B. Search the arch list for arch node.
 /* 3C. Determine height, H, of the arch from root to longest leaf.
 /* 3D. Translate the architecture according to the algorithm:
 /* If architecture 1, Z-Center is at 0.0. Render.
 /* If architecture > 1:
 /* If architecture number is even:
 /* new Z-Center is at old Z-Center -
 /* (1/2)* height of current arch n.
 /* new y-center is old y-center +
 /* (1/2) * height of earlier arch.
 /* Rotate architecture by 90 degrees around x-axis.
 /* If architecture number is odd:
 /* new Z-Center is at old Z-Center -
 /* (1/2) * height previous arch.
 /* new y-center is old y-center + (1/2) * height current
arch.
 /* Do not rotate around x-axis.
 /* NOTE: In this fashion we create a
 /* staircase, orthogonal representation of multiple
 /* architectures within one view.
 /*
 /* 4. For each arch node within the current view node:
 /* Access the topological matrix and begin traversal
 /* for call-and-return style.
 /*
 /* Use traversal technique used earlier in calculate_arch_position().
 /*
/* For the component:
/* Get the position of the component.
/* If All_flag, prepare-to-render is true.
/* If not All_flag, but view_comps set to 1, prepare-to-render is
true.
/* If prepare-to-render is true:
/* Check hyperlink_comp array for component-id.
/* If found: Render component at position as Anchor Node.
/* If not found: Render component as transform node sphere.
/* If prepare-to-render is false, ignore, continue to next
component.
/* For the connection:
/* Get the position of the component.
/* Rotate around z by -45 degrees.
/* Rotate around y by delta_sum given.
/* If All_flag, prepare-to-render is true.
/* If not All_flag, but view_conns set to 1,
/* prepare-to-render is true.
/* If prepare-to-render is true:
/* Check hyperlink_conn array for connector-id.
/* If found: Reander connector at position as Anchor Node.
/* If not found: Render connector as transform node cylinder.
/* If prepare-to-render is false, ignore,
/* continue to next connector.
/*
/* Repeat for each arch node.
/* Generate the full VRML file.
/*
/*

200

/*
/* 5. Get the next view node and repeat for the view list until empty.
/*
/*
/* */

 generate_view_files(ANODE *inarchptr, VNODE *inviewptr)
 {

 int prepare_to_render = 1; /* Flag for rendering; 1=true, 0=false;
*/
 int search_result = 1;
 int number_of_archs = 0;
 int i;
 int item_located;
 float layer_height = 0.0;
 int number_of_layers;
 int row;
 int col;
 int level;
 int temp_arch_style;
 int temp_view_pointer = 0; /* used as view_names_array index */

 float scale_value = 0.0; /* variable used for VRML scale command */
 float position_value = 0.0; /* variable used for VRML cone position */
 float title_value = 0.0; /* variable used for VRML title position */
 char quotemark = '"';

 float font_size = 0.0;
 float z_arch_displace = 0.0;
 float x_arch_displace = 0.0;
 float y_arch_displace = 0.0;
 float temp_y_legend = 0.0; /* used for legend title placement along y
*/
 float view_x; /* viewpoint x position */
 float view_y; /* viewpoint y position */
 float view_z; /* viewpoint z position */

 char output_filename[25];
 char output_extension[25];
 char arch_test_string[25];
 char temp_view_name[25];

 /* print_view_string used for printing text string in
 /* Text node of VRML. */
 /* Contains a quote, text, quote */
 char print_view_string[27]; /* String contains quote View_ID quote */

 char temp_arch_id[25];
 char temp_view_id[25];

 FILE *file_pointer; /* File pointer. */

 ANODE *rtemp; /* Reference node for architecture */

 /* Traverse the viewnodes from start */
 while(inviewptr != NULL)

201

 {
 strcpy(output_filename," ");
 strcpy(output_extension,".wrl");
 strcpy(output_filename,inviewptr->View_ID);
 strcat(output_filename,output_extension);
 file_pointer = fopen(output_filename,"w");

 number_of_archs = inviewptr->no_archs;

 x_arch_displace = 0.0; /* Init arch displacement within view */
 y_arch_displace = 0.0;
 z_arch_displace = 0.0;

 printf("\n Writing file: %s \n",output_filename);

 /*** Print View File VRML Heading ***/
 fprintf(file_pointer,"#VRML V2.0 utf8");
 fprintf(file_pointer,"\n#Viewpoint of Architectures");
 fprintf(file_pointer,"\n#Generated by VTADL Version 1.0");

 fprintf(file_pointer,"\nBackground {");
 fprintf(file_pointer,"\n skyColor [");
 fprintf(file_pointer,"\n 0.0 0.2 0.91,");
 fprintf(file_pointer,"\n 0.0 0.3 1.0,");
 fprintf(file_pointer,"\n 0.3 0.2 0.85");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\nskyAngle [1.309, 1.571]");
 fprintf(file_pointer,"\n}");

 printf("\n Wrote Background... \n");

 fprintf(file_pointer,"\nGroup {");
 fprintf(file_pointer,"\nchildren [");

 /* Print the View Title at Top of wrl file */
 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation 0.0 4.00 0.0");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",inviewptr->View_ID);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.94");
 fprintf(file_pointer,"\n } } }] },");

 /* Generate the view legend to the right of the first arch */
 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation 27.1 6.5 0.0");
 fprintf(file_pointer,"\n children[");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");

202

 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \" LEGEND \" ");
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"BEGIN\" ");
 fprintf(file_pointer,"\n size 0.94");
 fprintf(file_pointer,"\n } } }] },");

 /* Generate the legend viewpoint for VRML view list */
 fprintf(file_pointer,"\nViewpoint {");
 fprintf(file_pointer,"\ndescription \"Legend\" ");
 fprintf(file_pointer,"\nposition 25.4 4.75 21.5 }");

 for(temp_view_pointer=0;
 temp_view_pointer<= (curr_view_index-1); temp_view_pointer++)
 {
 printf("\n temp_view_pointer %d \n",temp_view_pointer);
 fprintf(file_pointer,"\n Transform { ");
 temp_y_legend = 4.0 - 1.95*temp_view_pointer;
 fprintf(file_pointer,
 "\n translation 20.0 %6.3f 0.0 ",temp_y_legend);
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,
 "\n material Material { diffuseColor 1.0 1.0 0.0 }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,
 "\n string \"%s\" ",view_names_array[temp_view_pointer]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"BEGIN\" ");
 fprintf(file_pointer,"\n size 0.94");
 fprintf(file_pointer,"\n } } }] },");

 fprintf(file_pointer,"\n Transform { ");
 /* fprintf(file_pointer,"\n translation 15.0 4.00 0.0"); */

 temp_y_legend = temp_y_legend + 0.35;
 fprintf(file_pointer,
 "\n translation 29.2 %6.3f 0.0 ",temp_y_legend);
 fprintf(file_pointer,"\n children [");

 if(strncmp(view_names_array[temp_view_pointer],inviewptr->View_ID,
 strlen(inviewptr->View_ID)) != 0)
 {
 strcpy(temp_view_name,view_names_array[temp_view_pointer]);
 strcat(temp_view_name,".wrl");
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",temp_view_name);
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");

203

 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 1.0 1.0 0.0");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,"\n radius 0.62");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n }");
 }
 fprintf(file_pointer,"\n] },");

 } /* end for */

 for(i=0; i<= (number_of_archs - 1); i++)
 {
 strcpy(temp_arch_id,inviewptr->arch_ID[i]);

 /* Get the architecture node from arch list */
 rtemp = inarchptr;

 /* search rtemp arch list node for arch ID. */
 if(rtemp == NULL)
 {
 fprintf(file_pointer,"\n Arch list empty! ERROR...exiting... \n");
 exit(0);
 }

 if(rtemp != NULL)
 {
 item_located = 0;

 do
 {
 strcpy(arch_test_string,rtemp->Arch_ID);
 if(strncmp(arch_test_string,temp_arch_id,strlen(temp_arch_id))==0)
 {
 item_located = 1;

 /* Print the Architectural Heading */

 if(i > 0)
 {
 x_arch_displace = x_arch_displace - 25.5;
 z_arch_displace = z_arch_displace - 50.0;
 y_arch_displace = y_arch_displace + 15.0;

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation %6.3f %6.3f %6.3f ",
 x_arch_displace,y_arch_displace,z_arch_displace);
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Group {");
 fprintf(file_pointer,"\n children [");

 }

204

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation 0.0 3.00 0.0");
 fprintf(file_pointer,"\n children [");

 /* Generate the viewport description for VRML view list */
 fprintf(file_pointer,"\nViewpoint {");
 fprintf(file_pointer,"\ndescription \"%s\" ",rtemp->Arch_ID);
 fprintf(file_pointer,"\nposition 0.0 -5.0 21.5 },");

 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 }");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,
 "\n string \" Architecture %s\" ",rtemp->Arch_ID);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.65");
 fprintf(file_pointer,"\n } } }] },");

 /* Check for Layered Style */
 if(rtemp->Style == 2)
 {
 number_of_layers = rtemp->No_Comps;
 layer_height = (0.6)*(2.0*number_of_layers-1.0)*4.0 + 1.5;

 fprintf(file_pointer,"\nTransform {");
 fprintf(file_pointer,"\n scale 0.5 0.5 0.5 ");
 fprintf(file_pointer,
 "\n translation 0.0 %6.3f -6.0",-layer_height);
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\nGroup {");
 fprintf(file_pointer,"\n children [");
 }

 /* Traverse the nodes from root */

 curr_root = 0; /* Start with the very first row */

 init_queue(); /* Initialize queue for node traversal */

 insert_queue_item(curr_root); /* start with very first root */

 queue_empty_flag = is_queue_empty();

 /* Loop for non empty queue */

 while(queue_empty_flag != 1)
 {
 curr_root = remove_queue_item(); /* Get next root */

 /* Get x,y,z coordinate position of current node */
 root_x = rtemp->Arch_CompPosition[curr_root][0];

205

 root_y = rtemp->Arch_CompPosition[curr_root][1];
 root_z = rtemp->Arch_CompPosition[curr_root][2];
 level = rtemp->Arch_CompPosition[curr_root][3];

 temp_arch_style = rtemp->Style;
 number_of_layers = rtemp->No_Comps;

 /* Now Generate Comp Nodes using positions */

 /* If arch style is Call and return */
 if(temp_arch_style == 1)
 {
 /* Print Initial Transform Heading for Comp */

 fprintf(file_pointer,"\nTransform {");
 fprintf(file_pointer,"\n translation %6.3f %6.3f %6.3f",
 root_x,root_y,root_z);
 fprintf(file_pointer,"\n children [");

 if(level == 0) /* If node is the root */
 {
 Sphere_Radius = 0.60;

 /* Check to see if Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i + curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if: check for comp to be viewed */

 fprintf(file_pointer,"\n DEF Root_Node_Type Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 0.1 0.99 0.99");

 /* Check if component is visible or not... */

 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0
 && inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,"\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,"\n transparency 1.0 }");

206

 }
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,
 "\n radius %6.3f ",Sphere_Radius);
 fprintf(file_pointer,"\n }");
 /* fprintf(file_pointer,"\n },"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0
 && inviewptr->view_comps[i][curr_root]==1))
 {

 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }

 }

 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation -0.55 0.75 0.0");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 ");

 /* Check if text is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

207

 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",
 rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.6");
 fprintf(file_pointer,"\n } } }] }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }

 if(level == 1) /* If node is first level */
 {
 Sphere_Radius = 0.6;

 /* Check to see if Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i + curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if: check for comp to be viewed */

 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 1.0 0.0 0.0");

 /* Check if component is visible or not... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,"\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,"\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,"\n radius
 %6.3f ",Sphere_Radius);

208

 fprintf(file_pointer,"\n }");
 /* fprintf(file_pointer,"\n },"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }

 }
 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation -0.55 0.65 0.6");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 ");

 /* Check if text is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",
 rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");

209

 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.43");
 fprintf(file_pointer,"\n } } }] }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }

 if(level == 2) /* If node is second level */
 {
 Sphere_Radius = 0.5;

 /* Check to see if Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i + curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if check for comp to view */

 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 0.0 1.0 0.0");

 /* Check if component is visible or not... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,"\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,"\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,"\n radius
 %6.3f ",Sphere_Radius);
 fprintf(file_pointer,"\n }");
 /* fprintf(file_pointer,"\n },"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&

210

 inviewptr->view_comps[i][curr_root]==1))
 {

 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }

 }

 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation -0.55 0.55 0.5");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0");

 /* Check if text is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",
 rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.33");
 fprintf(file_pointer,"\n } } }] }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");

211

 }

/* Levels 3 to 9 were removed here; code follows similar pattern
/* to earlier code, with difference that Sphere_Radius and node
/* color are different for each level */
/* */
/* */
/* */
/ * We continue with level 10 */

 if(level == 10) /* If node is tenth level */
 {
 Sphere_Radius = 0.25;

 /* Check to see if Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i+curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if check for comp to view */

 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 0.0 1.0 0.0");

 /* Check if Sphere is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,"\n radius
 %6.3f ",Sphere_Radius);
 fprintf(file_pointer,"\n }");
 /* fprintf(file_pointer,"\n },"); */

212

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }

 }

 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation -0.5 0.35 0.25");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 ");

 /* Check if text is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",
 rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.23");

213

 fprintf(file_pointer,"\n } } }] }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }

 if(level > 10 && level < 25) /* If node level > 10 */
 {
 Sphere_Radius = 0.25;

 /* Check to see if Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {

 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i + curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if check for comp to view */

 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 0.0 0.0 1.0");

 /* Check if Sphere is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Sphere { ");
 fprintf(file_pointer,"\n radius
 %6.3f ",Sphere_Radius);
 fprintf(file_pointer,"\n }");
 /* fprintf(file_pointer,"\n },"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))

214

 {
 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i +
 curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }
 }

 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation -0.5 0.35 0.25");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 ");

 /* Check if text is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",
 rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size 0.23");
 fprintf(file_pointer,"\n } } }] }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }

215

 for(col=0; col<= (rtemp->No_Comps - 1); col++)
 {
 conn_node = rtemp->Topology[curr_root][col];
 if(conn_node != -1)
 {
 conn_x = rtemp->Arch_ConnPosition[conn_node][0];
 conn_y = rtemp->Arch_ConnPosition[conn_node][1];
 conn_z = rtemp->Arch_ConnPosition[conn_node][2];
 delta_sum = rtemp->Arch_ConnPosition[conn_node][3];
 conn_level = rtemp->Arch_CompPosition[curr_root][3];
 strcpy(conn_name, rtemp->Arch_ConnID[conn_node]);
 conn_x = rtemp->Arch_ConnPosition[conn_node][0];
 conn_y = rtemp->Arch_ConnPosition[conn_node][1];
 conn_z = rtemp->Arch_ConnPosition[conn_node][2];

 if(conn_level == 0.0)
 Conn_Height = 15.0;

 if(conn_level == 1.0)
 Conn_Height = 7.5;

 if(conn_level == 2.0)
 Conn_Height = 3.75;

 if(conn_level == 3.0)
 Conn_Height = 2.9;

 if(conn_level == 4.0)
 Conn_Height = 1.5;

 if(conn_level == 5.0)
 Conn_Height = 1.5;

 if(conn_level >= 6.0)
 Conn_Height = 1.0;

 /* Generate VRML Connector here */

 fprintf(file_pointer,"\n");

 if(delta_sum >= 0.0)
 {
 fprintf(file_pointer,"\n Transform {");
 fprintf(file_pointer,"\n rotation 0.0 1.0 0.0 %6.3f ",delta_sum);
 fprintf(file_pointer,"\n center
 %6.3f %6.3f %6.3f ",root_x,root_y,root_z);
 fprintf(file_pointer,"\n children [");
 /* Check to see if Connector is viewed at all... */
 if((inviewptr->all_conns[i]==1) ||
 (inviewptr->all_conns[i]==0 &&
 inviewptr->view_conns[i][conn_node]==1))
 {
 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Conns[25*i
 + conn_node])," ",1) != 0)

216

 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Conns[25*i + conn_node]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if check for comp to view */

 fprintf(file_pointer,"\n Transform {");
 fprintf(file_pointer,"\n translation
 %6.3f %6.3f %6.3f",conn_x,conn_y,conn_z);
 fprintf(file_pointer,"\n rotation 0.0 0.0 1.0 -1.047");
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material Material {");
 fprintf(file_pointer,"\n diffuseColor 1.0 0.95 0.85");
 /* Check if Cylinder is viewed */
 if((inviewptr->all_conns[i]==1) ||
 (inviewptr->all_conns[i]==0 &&
 inviewptr->view_conns[i][conn_node]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }
 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Cylinder { ");
 fprintf(file_pointer,"\n radius %6.3f ",Cylinder_Radius);
 fprintf(file_pointer,"\n height %6.3f ",Conn_Height);
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n }"); /* end Shape */

 fprintf(file_pointer,"\n]");
 /* fprintf(file_pointer,"\n }"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_conns[i]==1) ||
 (inviewptr->all_conns[i]==0 &&
 inviewptr->view_conns[i][conn_node]==1))
 {
 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Conns[25*i
 + conn_node])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else

217

 {
 fprintf(file_pointer,"\n }, ");
 }

 }
 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 fprintf(file_pointer,"\n Transform { ");
 fprintf(file_pointer,"\n translation
 %6.3f %6.3f %6.3f",conn_x,conn_y,conn_z);
 /* fprintf(file_pointer,"\n rotation 0.0 0.0 1.0 -1.047"); */
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Transform { ");

 if((conn_level >= 0.0) && (conn_level <= 1.0))
 { fprintf(file_pointer,"\n translation -1.1 0.0 0.0");
 font_size = 0.33;
 }

 if(conn_level == 2.0)
 {
 fprintf(file_pointer,"\n translation -1.0 1.0 0.0");
 font_size = 0.3;
 }

 if(conn_level >= 3.0)
 {
 fprintf(file_pointer,
 "\n translation -0.80 0.75 0.0");
 font_size = 0.25;
 }

 fprintf(file_pointer,"\n rotation 0.0 1.0 0.0
 %6.3f",-delta_sum);
 fprintf(file_pointer,"\n children [");
 fprintf(file_pointer,"\n Shape {");
 fprintf(file_pointer,"\n appearance Appearance {");
 fprintf(file_pointer,"\n material
 Material { diffuseColor 1.0 1.0 0.0 ");

 /* Check if text is viewed */
 if((inviewptr->all_conns[i]==1) ||
 (inviewptr->all_conns[i]==0 &&
 inviewptr->view_conns[i][conn_node]==1))
 {
 fprintf(file_pointer,
 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

218

 fprintf(file_pointer,"\n }"); /* end Appearance */
 fprintf(file_pointer,"\n geometry Text {");
 fprintf(file_pointer,"\n string \"%s\" ",conn_name);
 fprintf(file_pointer,"\n fontStyle FontStyle {");
 fprintf(file_pointer,"\n style \"BOLD\" ");
 fprintf(file_pointer,"\n justify \"MIDDLE\" ");
 fprintf(file_pointer,"\n size %6.3f ",font_size);

 fprintf(file_pointer,"\n } } }] }] },");

 fprintf(file_pointer,"\n]");
 fprintf(file_pointer," \n }, ");

 } /* end delta_sum >= 0 */

 /* Place component index, col, into queue */
 insert_queue_item(col);
 }
 } /* end FOR loop */

 } /* END if temp_arch_style == 1 Call and Return */

 if(temp_arch_style == 2) /* if the LAYERED style */
 {
 /* Render Layer Here */
 scale_value = (4*curr_root) + (curr_root*(curr_root-1)/2.0);
 position_value = scale_value;
 title_value = (4*(curr_root+1)) + (((curr_root+1)*curr_root)/2.0);

 /* Translation for next layer component */
 fprintf(file_pointer,"\n");
 fprintf(file_pointer,"Transform { \n");
 fprintf(file_pointer," scale 0.70 0.70 0.70 \n");
 fprintf(file_pointer," translation 0.0 ");
 fprintf(file_pointer,"%4.2f",position_value);
 fprintf(file_pointer," 0.0 \n");
 fprintf(file_pointer," children [\n");
 fprintf(file_pointer," Transform { \n");
 fprintf(file_pointer," translation ");
 fprintf(file_pointer," %4.2f 2.0 0.0 \n",title_value);
 fprintf(file_pointer," children [\n");
 fprintf(file_pointer," Shape { \n");
 fprintf(file_pointer," appearance Appearance { \n");
 fprintf(file_pointer," material
 Material {diffuseColor 1.0 1.0 0.0 \n");

 /* Check if Layer-Title is viewed */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 fprintf(file_pointer,

219

 "\n transparency 0.0 }");
 }
 else
 {
 fprintf(file_pointer,
 "\n transparency 1.0 }");
 }

 fprintf(file_pointer," } \n"); /* end Appearance */
 fprintf(file_pointer," geometry Text { \n");
 fprintf(file_pointer," string [%c",quotemark);
 fprintf(file_pointer,"%s",rtemp->Arch_CompID[curr_root]);
 fprintf(file_pointer,"%c",quotemark);
 fprintf(file_pointer,"] \n");
 fprintf(file_pointer," fontStyle
 FontStyle { size 2.0 } \n");
 fprintf(file_pointer," } \n");
 fprintf(file_pointer," } \n");
 fprintf(file_pointer,"] \n");
 fprintf(file_pointer," },");
 fprintf(file_pointer," \n");

 /* Check to see if Layer-Component is viewed at all... */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 /* If viewed, then handle the case of hyperlink url */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\nAnchor {");
 fprintf(file_pointer,"\nurl \"%s\" ",
 inviewptr->Hyperlinks_Comps[25*i + curr_root]);
 fprintf(file_pointer,"\n children [");
 }

 } /* End if check for layer to view */

 /* Generate extrusion node for layer */
 fprintf(file_pointer,"Shape { \n");
 fprintf(file_pointer," appearance Appearance { \n");
 fprintf(file_pointer," material Material { \n");

 /* If even layer, use separate color than odd layer */

 /* Also check for visibility: yes or no */

 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0 &&
 inviewptr->view_comps[i][curr_root]==1))
 {
 /* Handle the case where visible */
 if((curr_root>0) && (curr_root%2)!=0)
 fprintf(file_pointer," diffuseColor 1.0 0.0 1.0 \n");
 else
 fprintf(file_pointer," diffuseColor 1.0 1.0 0.0 \n");

220

 }
 else
 {
 fprintf(file_pointer," diffuseColor 0.0 0.0 0.0 \n");
 fprintf(file_pointer,
 "\n transparency 1.0");
 }

 fprintf(file_pointer," } \n");
 fprintf(file_pointer," } \n");
 fprintf(file_pointer," geometry Extrusion { \n");
 fprintf(file_pointer," creaseAngle 1.57 \n");
 fprintf(file_pointer," endCap TRUE \n");
 fprintf(file_pointer," solid TRUE \n");
 fprintf(file_pointer," crossSection [\n");
 fprintf(file_pointer," # Circle \n");
 fprintf(file_pointer," 1.00 0.00, 0.90 -0.38, \n");
 fprintf(file_pointer," 0.70 -0.70, 0.38 -0.90, \n");
 fprintf(file_pointer," 0.00 -1.00, -0.38 -0.90, \n");
 fprintf(file_pointer," -0.70 -0.70, -0.91 -0.38, \n");
 fprintf(file_pointer," -1.00 -0.00, -0.91 0.38, \n");
 fprintf(file_pointer," -0.70 0.70, -0.38 0.90, \n");
 fprintf(file_pointer," 0.00 1.00, 0.38 0.90, \n");
 fprintf(file_pointer," 0.70 0.70, 0.90 0.38, \n");
 fprintf(file_pointer," 1.00 0.00 \n");
 fprintf(file_pointer,"] \n");
 fprintf(file_pointer," spine [\n");
 fprintf(file_pointer," # Straight-line \n");
 fprintf(file_pointer,
 " 0.0 0.0 0.0, 0.0 0.4 0.0, \n");
 fprintf(file_pointer,
 " 0.0 0.8 0.0, 0.0 1.2 0.0, \n");
 fprintf(file_pointer,
 " 0.0 1.6 0.0, 0.0 2.0 0.0, \n");
 fprintf(file_pointer,
 " 0.0 2.4 0.0, 0.0 2.8 0.0, \n");
 fprintf(file_pointer,
 " 0.0 3.2 0.0, 0.0 3.6 0.0 \n");
 fprintf(file_pointer," 0.0 4.0 0.0 \n");
 fprintf(file_pointer,"] \n");
 fprintf(file_pointer," scale [\n");
 fprintf(file_pointer," %4.2f",scale_value +0.0);
 fprintf(file_pointer," %4.2f",scale_value + 0.0);
 fprintf(file_pointer,", ");
 fprintf(file_pointer," %4.2f",scale_value + 0.40);
 fprintf(file_pointer," %4.2f",scale_value + 0.40);
 fprintf(file_pointer,", \n");
 fprintf(file_pointer," %4.2f",scale_value + 0.80);
 fprintf(file_pointer," %4.2f",scale_value + 0.80);
 fprintf(file_pointer,", ");
 fprintf(file_pointer," %4.2f",scale_value + 1.2);
 fprintf(file_pointer," %4.2f",scale_value + 1.2);
 fprintf(file_pointer,", \n");
 fprintf(file_pointer," %4.2f",scale_value + 1.6);
 fprintf(file_pointer," %4.2f",scale_value + 1.6);
 fprintf(file_pointer,", ");
 fprintf(file_pointer," %4.2f",scale_value + 2.0);

221

 fprintf(file_pointer," %4.2f",scale_value + 2.0);
 fprintf(file_pointer,", \n");
 fprintf(file_pointer," %4.2f",scale_value + 2.4);
 fprintf(file_pointer," %4.2f",scale_value + 2.4);
 fprintf(file_pointer,", ");
 fprintf(file_pointer," %4.2f",scale_value + 2.8);
 fprintf(file_pointer," %4.2f",scale_value + 2.8);
 fprintf(file_pointer,", \n");
 fprintf(file_pointer," %4.2f",scale_value + 3.2);
 fprintf(file_pointer," %4.2f",scale_value + 3.2);
 fprintf(file_pointer,", ");
 fprintf(file_pointer," %4.2f",scale_value + 3.6);
 fprintf(file_pointer," %4.2f",scale_value + 3.6);
 fprintf(file_pointer,", \n");
 fprintf(file_pointer," %4.2f",scale_value + 4.0);
 fprintf(file_pointer," %4.2f",scale_value + 4.0);
 fprintf(file_pointer," \n");
 fprintf(file_pointer,"] \n");
 fprintf(file_pointer," } \n");
 fprintf(file_pointer,"} \n");
 fprintf(file_pointer,"] \n");
 /* fprintf(file_pointer,"},"); */

 /* Check if Hyperlink was viewed for tail */
 if((inviewptr->all_comps[i]==1) ||
 (inviewptr->all_comps[i]==0

&& inviewptr->view_comps[i][curr_root]==1))
 {

 /* Handle alternate tails in case of hyperlink */
 if(strncmp((inviewptr->Hyperlinks_Comps[25*i
 + curr_root])," ",1) != 0)
 {
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n },");
 }
 else
 {
 fprintf(file_pointer,"\n }, ");
 }
 }
 else /* if hyperlink not viewed */
 {
 fprintf(file_pointer,"\n }, ");
 } /* End check if viewed hyperlink */

 /* Get the next layer component, store in queue */
 for(col=0; col<= (rtemp->No_Comps - 1); col++)
 {
 conn_node = rtemp->Topology[curr_root][col];
 if(conn_node != -1)
 {

 conn_level = rtemp->Arch_CompPosition[curr_root][3];
 strcpy(conn_name, rtemp->Arch_ConnID[conn_node]);
 insert_queue_item(col); /* insert next component */

222

 }

 } /* end for */

 } /* end if LAYERED style */

 queue_empty_flag = is_queue_empty();

 } /* end WHILE */

 if(rtemp->Style == 2)
 {
 fprintf(file_pointer,"\n]"); /* end of Group */
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n] }"); /* end of Transform */
 }

 /* Print Footer for architecture */
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n }");
 fprintf(file_pointer,"\n");

 if(i > 0)
 {
 fprintf(file_pointer,"\n]");
 fprintf(file_pointer,"\n }");
 }
 }
 else
 {
 rtemp = rtemp->archlink;
 }
 } while((rtemp != NULL) && (item_located != 1));

 } /* end if rtemp not NULL */

 } /* end for i loop for arch_ID of view */

 fclose(file_pointer);
 inviewptr = inviewptr->viewlink;
 } /* End while inviewptr not NULL */
 }

223

Appendix G

Test Cases

224

Test Cases

 Numerous implementation tests were conducted on the VTADL-to-VRML compiler. A

representative sample of two tests will be used to demonstrate that the compiler is working

according to requirements.

 The Case Study Report Template will be used for each test case.

225

Test Case One

Case Study Report

1. Name of Case Study: Test Case One

2. On-Line Posting (if any): None. Testing purposes only.

3. Brief Description of the Purpose and Background of the Case Study:

 This test was designed to show that multiple architectures (of both call-and-return and
layered styles) could be rendered within a view. The test includes different versions of the same
layered architecture, selectively hidden or displayed components, and hyperlinks to other views and
external files.

The VTADL source file, "Example.txt,” defines two architectures: "ExampleProgram" and
"ExampleLayer." ExampleProgram is a hierarchical structure in the call-and-return style.
ExampleProgram has a root and three children (four components and three connectors).
ExampleLayer has four components in the layered architectural style.
 The Main view contains both architectures, using all components and connections in each
architecture. A hyperlink exists from the root in ExampleProgram to the source VTADL file
(Example.txt). Another hyperlink is established from the top layer of ExampleLayer to a view
named "SecondView."
 SecondView contains three versions of ExampleLayer. Version one uses the first and
second layers only, hiding the other layers; version two uses the first, third and fourth layers; and
version three uses all four layers. The first layer of version one contains a hyperlink to the Main
view; the second layer of version one contains a hyperlink to the source VTADL file, Example.txt.

4. Name of VTADL Source File(s):

Source File View Files Hyperlinked Files (Referenced)
Example.txt Main.wrl Example.txt
 SecondView.wrl Main.wrl
 SecondView.wrl

226

5. VTADL Source Code Listing ("Example.txt")

 The VTADL source code for Example.txt was listed in full in Appendix E.

6. VRML Target Code: Main.wrl

 The generated VRML code for Main.wrl is provided as a sample. The VRML code for
SecondView.wrl is not provided for sake of brevity.

Generated VRML Code: Main.wrl

#VRML V2.0 utf8
#Viewpoint of Architectures
#Generated by VTADL Version 1.0
Background {
 skyColor [
 0.0 0.2 0.91,
 0.0 0.3 1.0,
 0.3 0.2 0.85
]
skyAngle [1.309, 1.571]
}
Group {
children [
 Transform {
 translation 0.0 4.00 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string "Main"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.94
 } } }] },
 Transform {
 translation 27.1 6.5 0.0
 children[
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string " LEGEND "
 fontStyle FontStyle {
 style "BOLD"
 justify "BEGIN"

227

 size 0.94
 } } }] },
Viewpoint {
description "Legend"
position 25.4 4.75 21.5 }
 Transform {
 translation 20.0 4.000 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string "Main"
 fontStyle FontStyle {
 style "BOLD"
 justify "BEGIN"
 size 0.94
 } } }] },
 Transform {
 translation 29.2 4.350 0.0
 children [
] },
 Transform {
 translation 20.0 2.050 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string "SecondView"
 fontStyle FontStyle {
 style "BOLD"
 justify "BEGIN"
 size 0.94
 } } }] },
 Transform {
 translation 29.2 2.400 0.0
 children [
Anchor {
url "SecondView.wrl"
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 0.0
 }
 }
 geometry Sphere {
 radius 0.62
 }
 }
]
 }
] },
 Transform {

228

 translation 0.0 3.00 0.0
 children [
Viewpoint {
description "ExampleProgram"
position 0.0 -5.0 21.5 },
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string " Architecture ExampleProgram"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.65
 } } }] },
Transform {
 translation 0.000 0.000 0.000
 children [
Anchor {
url "Example.txt"
 children [
 DEF Root_Node_Type Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.1 0.99 0.99
 transparency 0.0 }
 }
 geometry Sphere {
 radius 0.600
 }
 }
]
 },
 Transform {
 translation -0.55 0.75 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Alpha"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.6
 } } }] }
]
 },

 Transform {
 rotation 0.0 1.0 0.0 0.000
 center 0.000 0.000 0.000
 children [
 Transform {

229

 translation -6.495 -3.750 0.000
 rotation 0.0 0.0 1.0 -1.047
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.95 0.85
 transparency 0.0 }
 }
 geometry Cylinder {
 radius 0.100
 height 15.000
 }
 }
]
 },
 Transform {
 translation -6.495 -3.750 0.000
 children [
 Transform {
 translation -1.1 0.0 0.0
 rotation 0.0 1.0 0.0 -0.000
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Call1"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.330
 } } }] }] },
]
 },

 Transform {
 rotation 0.0 1.0 0.0 2.094
 center 0.000 0.000 0.000
 children [
 Transform {
 translation -6.495 -3.750 0.000
 rotation 0.0 0.0 1.0 -1.047
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.95 0.85
 transparency 0.0 }
 }
 geometry Cylinder {
 radius 0.100
 height 15.000
 }
 }

230

]
 },
 Transform {
 translation -6.495 -3.750 0.000
 children [
 Transform {
 translation -1.1 0.0 0.0
 rotation 0.0 1.0 0.0 -2.094
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Call2"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.330
 } } }] }] },
]
 },

 Transform {
 rotation 0.0 1.0 0.0 4.189
 center 0.000 0.000 0.000
 children [
 Transform {
 translation -6.495 -3.750 0.000
 rotation 0.0 0.0 1.0 -1.047
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.95 0.85
 transparency 0.0 }
 }
 geometry Cylinder {
 radius 0.100
 height 15.000
 }
 }
]
 },
 Transform {
 translation -6.495 -3.750 0.000
 children [
 Transform {
 translation -1.1 0.0 0.0
 rotation 0.0 1.0 0.0 -4.189
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }

231

 geometry Text {
 string "Call3"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.330
 } } }] }] },
]
 },
Transform {
 translation -12.990 -7.500 0.000
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 transparency 0.0 }
 }
 geometry Sphere {
 radius 0.600
 }
 },
 Transform {
 translation -0.55 0.65 0.6
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Beta"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.43
 } } }] }
]
 },
Transform {
 translation 6.495 -7.500 11.250
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 transparency 0.0 }
 }
 geometry Sphere {
 radius 0.600
 }
 },
 Transform {
 translation -0.55 0.65 0.6
 children [
 Shape {
 appearance Appearance {

232

 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Gamma"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.43
 } } }] }
]
 },
Transform {
 translation 6.495 -7.500 -11.250
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 transparency 0.0 }
 }
 geometry Sphere {
 radius 0.600
 }
 },
 Transform {
 translation -0.55 0.65 0.6
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0
 transparency 0.0 }
 }
 geometry Text {
 string "Delta"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.43
 } } }] }
]
 },
]
 }

 Transform {
 translation -25.500 15.000 -50.000
 children [
 Group {
 children [
 Transform {
 translation 0.0 3.00 0.0
 children [
Viewpoint {
description "ExampleLayer"
position 0.0 -5.0 21.5 },
 Shape {

233

 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Text {
 string " Architecture ExampleLayer"
 fontStyle FontStyle {
 style "BOLD"
 justify "MIDDLE"
 size 0.65
 } } }] },
Transform {
 scale 0.5 0.5 0.5
 translation 0.0 -18.300 -6.0
 children [
Group {
 children [
Transform {
 scale 0.70 0.70 0.70
 translation 0.0 0.00 0.0
 children [
 Transform {
 translation 4.00 2.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {diffuseColor 1.0 1.0 0.0

 transparency 0.0 } }
 geometry Text {
 string ["LevelOne"]
 fontStyle FontStyle { size 2.0 }
 }
 }
]
 },
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 0.0
 }
 }
 geometry Extrusion {
 creaseAngle 1.57
 endCap TRUE
 solid TRUE
 crossSection [
 # Circle
 1.00 0.00, 0.90 -0.38,
 0.70 -0.70, 0.38 -0.90,
 0.00 -1.00, -0.38 -0.90,
 -0.70 -0.70, -0.91 -0.38,
 -1.00 -0.00, -0.91 0.38,
 -0.70 0.70, -0.38 0.90,
 0.00 1.00, 0.38 0.90,
 0.70 0.70, 0.90 0.38,
 1.00 0.00
]

234

 spine [
 # Straight-line
 0.0 0.0 0.0, 0.0 0.4 0.0,
 0.0 0.8 0.0, 0.0 1.2 0.0,
 0.0 1.6 0.0, 0.0 2.0 0.0,
 0.0 2.4 0.0, 0.0 2.8 0.0,
 0.0 3.2 0.0, 0.0 3.6 0.0
 0.0 4.0 0.0
]
 scale [
 0.00 0.00, 0.40 0.40,
 0.80 0.80, 1.20 1.20,
 1.60 1.60, 2.00 2.00,
 2.40 2.40, 2.80 2.80,
 3.20 3.20, 3.60 3.60,
 4.00 4.00
]
 }
}
]

 },
Transform {
 scale 0.70 0.70 0.70
 translation 0.0 4.00 0.0
 children [
 Transform {
 translation 9.00 2.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {diffuseColor 1.0 1.0 0.0

 transparency 0.0 } }
 geometry Text {
 string ["LevelTwo"]
 fontStyle FontStyle { size 2.0 }
 }
 }
]
 },
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 1.0
 }
 }
 geometry Extrusion {
 creaseAngle 1.57
 endCap TRUE
 solid TRUE
 crossSection [
 # Circle
 1.00 0.00, 0.90 -0.38,
 0.70 -0.70, 0.38 -0.90,
 0.00 -1.00, -0.38 -0.90,
 -0.70 -0.70, -0.91 -0.38,

235

 -1.00 -0.00, -0.91 0.38,
 -0.70 0.70, -0.38 0.90,
 0.00 1.00, 0.38 0.90,
 0.70 0.70, 0.90 0.38,
 1.00 0.00
]
 spine [
 # Straight-line
 0.0 0.0 0.0, 0.0 0.4 0.0,
 0.0 0.8 0.0, 0.0 1.2 0.0,
 0.0 1.6 0.0, 0.0 2.0 0.0,
 0.0 2.4 0.0, 0.0 2.8 0.0,
 0.0 3.2 0.0, 0.0 3.6 0.0
 0.0 4.0 0.0
]
 scale [
 4.00 4.00, 4.40 4.40,
 4.80 4.80, 5.20 5.20,
 5.60 5.60, 6.00 6.00,
 6.40 6.40, 6.80 6.80,
 7.20 7.20, 7.60 7.60,
 8.00 8.00
]
 }
}
]

 },
Transform {
 scale 0.70 0.70 0.70
 translation 0.0 9.00 0.0
 children [
 Transform {
 translation 15.00 2.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {diffuseColor 1.0 1.0 0.0

 transparency 0.0 } }
 geometry Text {
 string ["LevelThree"]
 fontStyle FontStyle { size 2.0 }
 }
 }
]
 },
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 0.0
 }
 }
 geometry Extrusion {
 creaseAngle 1.57
 endCap TRUE
 solid TRUE

236

 crossSection [
 # Circle
 1.00 0.00, 0.90 -0.38,
 0.70 -0.70, 0.38 -0.90,
 0.00 -1.00, -0.38 -0.90,
 -0.70 -0.70, -0.91 -0.38,
 -1.00 -0.00, -0.91 0.38,
 -0.70 0.70, -0.38 0.90,
 0.00 1.00, 0.38 0.90,
 0.70 0.70, 0.90 0.38,
 1.00 0.00
]
 spine [
 # Straight-line
 0.0 0.0 0.0, 0.0 0.4 0.0,
 0.0 0.8 0.0, 0.0 1.2 0.0,
 0.0 1.6 0.0, 0.0 2.0 0.0,
 0.0 2.4 0.0, 0.0 2.8 0.0,
 0.0 3.2 0.0, 0.0 3.6 0.0
 0.0 4.0 0.0
]
 scale [
 9.00 9.00, 9.40 9.40,
 9.80 9.80, 10.20 10.20,
 10.60 10.60, 11.00 11.00,
 11.40 11.40, 11.80 11.80,
 12.20 12.20, 12.60 12.60,
 13.00 13.00
]
 }
}
]

 },
Transform {
 scale 0.70 0.70 0.70
 translation 0.0 15.00 0.0
 children [
 Transform {
 translation 22.00 2.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {diffuseColor 1.0 1.0 0.0

 transparency 0.0 } }
 geometry Text {
 string ["LevelFour"]
 fontStyle FontStyle { size 2.0 }
 }
 }
]
 },

Anchor {
url "SecondView.wrl"
 children [Shape {

237

 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 1.0
 }
 }
 geometry Extrusion {
 creaseAngle 1.57
 endCap TRUE
 solid TRUE
 crossSection [
 # Circle
 1.00 0.00, 0.90 -0.38,
 0.70 -0.70, 0.38 -0.90,
 0.00 -1.00, -0.38 -0.90,
 -0.70 -0.70, -0.91 -0.38,
 -1.00 -0.00, -0.91 0.38,
 -0.70 0.70, -0.38 0.90,
 0.00 1.00, 0.38 0.90,
 0.70 0.70, 0.90 0.38,
 1.00 0.00
]
 spine [
 # Straight-line
 0.0 0.0 0.0, 0.0 0.4 0.0,
 0.0 0.8 0.0, 0.0 1.2 0.0,
 0.0 1.6 0.0, 0.0 2.0 0.0,
 0.0 2.4 0.0, 0.0 2.8 0.0,
 0.0 3.2 0.0, 0.0 3.6 0.0
 0.0 4.0 0.0
]
 scale [
 15.00 15.00, 15.40 15.40,
 15.80 15.80, 16.20 16.20,
 16.60 16.60, 17.00 17.00,
 17.40 17.40, 17.80 17.80,
 18.20 18.20, 18.60 18.60,
 19.00 19.00
]
 }
}
]

 }
]
 },
]
 }
] }
]
 }

]
 }

238

Generated VRML Code: SecondView.wrl

(Note: The generated VRML code for SecondView.wrl has been excluded from this listing for sake
of brevity). It is hoped that the VRML code for Main.wrl will give the reader a representative
glimpse of the VRML target code.

7. Screen Snapshots of VRML Images

 The VTADL source file, Example.txt, generates two views: Main.wrl and
SecondView.wrl. The following screen is the legend portion of the Main view, implemented in file
Main.wrl.

239

 The following screen shows the first architecture in the Main view, ExampleProgram,
rendered in the call-and-return style. There are four components and three connectors, with a root
named “Alpha.” Alpha contains a hyperlink to the VTADL source file, Example.txt. Visible in the
background is the second layered architecture, ExampleLayer.

240

 The next screen focuses on the second architecture (ExampleLayer) of the Main view. The
fourth layer, labeled “LevelFour,” contains a hyperlink to the VRML file, SecondView.

241

 In the second view (SecondView), the same layered architecture is used in three different
versions. The first version uses only the first two layers; the second version omits the second
layer, while the third version uses all four layers.
 The first version contains a hyperlink from the first layer to the Main view, and a hyperlink
from the second layer to the source VTADL file, Example.txt.

242

Test Case Two

 Case Study Report

1. Name of Case Study: Test Case Two

2. On-Line Posting (if any): None. Testing purposes only.

3. Brief Description of the Purpose and Background of the Case Study:

VTADL source file, "Test2.txt,” contains two architectures, but with more intricate

components and connections than the first test. We aim, in this test, to selectively show or hide
components and connectors, to insure that single or multiple architectures can be displayed in a
view, that multiple versions of the same architecture can be established in a view, and that
hyperlinks from elements of an architecture can be established either to other views or to external
files.

The Main view contains two architectures, "TestArch1" (a call-and-return style with
thirteen components) and "TestArch2" (a layered style with six layers). TestArch1 contains a
hyperlink to the source file, "Test2.txt,” from the root. TestArch1 also contains a hyperlink from
one of the children (component "D") to a view, “TestView1.” TestArch2 contains a hyperlink to
the view, “TestView2,” from the fourth layer.

The second view, TestView2, contains only one architecture (TestArch1) but with selected
components shown and others hidden. TestView2 contains a hyperlink from the root to
“TestView3.”

TestView1 contains only one architecture, TestArch2, with the third and fourth layers
hidden from view. A hyperlink exists from the top layer to the view, TestView2.

TestView3 contains four architectural structures: three versions of TestArch1 (with
different components and connectors kept hidden in each version), and one version of TestArch2.
The version of TestArch2 has the second and fourth layers hidden, and the other layers visible.

4. Name of VTADL Source File(s):

Source File View Files Hyperlinked Files (Referenced)
Test2.txt Main.wrl Test2.txt
 TestView1.wrl TestView1.wrl
 TestView2.wrl TestView2.wrl
 TestView3.wrl TestView3.wrl

243

5. VTADL Source Code Listing

 The VTADL source file, Test2.txt, is listed below:

Architecture TestArch1
Style Program
 {
 ComponentList
 {
 Component A
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom ASocket;
 { InterfaceRole: Consumer; }

 Component B
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top BSocket;
 { InterfaceRole: Producer; }

 Component C
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top CSocket;
 { InterfaceRole: Producer; }

244

 Component D
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top DSocket;
 { InterfaceRole: Producer; }

 Component E
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top ESocket;
 { InterfaceRole: Producer; }

 Component F
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top FSocket;
 { InterfaceRole: Producer; }

 Component G
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top GSocket;
 { InterfaceRole: Producer; }

245

 Component H
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top HSocket;
 { InterfaceRole: Producer; }

 Component I
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top ISocket;
 { InterfaceRole: Producer; }

 Component J
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top JSocket;
 { InterfaceRole: Producer; }

 Component K
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top KSocket;
 { InterfaceRole: Producer; }

 Component L
 ComponentType Cprogram;

246

 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top LSocket;
 { InterfaceRole: Producer; }

 Component M
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top MSocket;
 { InterfaceRole: Producer; }
 }

 ConnectionList
 {
 Connector BCall
 ConnectType Controlflow Unidirect;
 Connect(ASocket, BSocket);
 Connector CCall
 ConnectType Controlflow Unidirect;
 Connect(ASocket, CSocket);
 Connector DCall
 ConnectType Controlflow Unidirect;
 Connect(ASocket, DSocket);
 Connector ECall
 ConnectType Controlflow Unidirect;
 Connect(BSocket, ESocket);
 Connector FCall
 ConnectType Controlflow Unidirect;
 Connect(BSocket, FSocket);
 Connector GCall
 ConnectType Controlflow Unidirect;
 Connect(BSocket, GSocket);
 Connector HCall
 ConnectType Controlflow Unidirect;
 Connect(DSocket, HSocket);
 Connector ICall
 ConnectType Controlflow Unidirect;

247

 Connect(DSocket, ISocket);
 Connector JCall
 ConnectType Controlflow Unidirect;
 Connect(DSocket, JSocket);
 Connector KCall
 ConnectType Controlflow Unidirect;
 Connect(DSocket, KSocket);
 Connector LCall
 ConnectType Controlflow Unidirect;
 Connect(KSocket, LSocket);
 Connector MCall
 ConnectType Controlflow Unidirect;
 Connect(KSocket, MSocket);
 }

 }

Architecture TestArch2
Style Layer
 {
 ComponentList
 {
 Component One
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: L1;
 Process: ;
 InterfaceList:
 Interface Bottom Level1Socket;
 { InterfaceRole: Producer; }

 Component Two
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L2;
 Process: ;
 InterfaceList:
 Interface Top Level2Socket;
 { InterfaceRole: Consumer; }

 Component Three
 ComponentType Cprogram;

248

 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L3;
 Process: ;
 InterfaceList:
 Interface Top Level3Socket;
 { InterfaceRole: Consumer; }

 Component Four
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L4;
 Process: ;
 InterfaceList:
 Interface Top Level4Socket;
 { InterfaceRole: Consumer; }

 Component Five
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L4;
 Process: ;
 InterfaceList:
 Interface Top Level5Socket;
 { InterfaceRole: Consumer; }

 Component Six
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: L4;
 Process: ;
 InterfaceList:
 Interface Top Level6Socket;
 { InterfaceRole: Consumer; }
 }
 ConnectionList
 {
 Connector Service1
 ConnectType Dataflow Unidirect;

249

 Connect(Level1Socket,Level2Socket);

 Connector Service2
 ConnectType Dataflow Unidirect;
 Connect(Level2Socket,Level3Socket);

 Connector Service3
 ConnectType Dataflow Unidirect;
 Connect(Level3Socket,Level4Socket);

 Connector Service4
 ConnectType Dataflow Unidirect;
 Connect(Level4Socket,Level5Socket);

 Connector Service5
 ConnectType Dataflow Unidirect;
 Connect(Level5Socket,Level6Socket);

 }
 }

 ViewList
 {
 ViewMain { { UsingArch TestArch1;
 { Components All;
 Connections All;
 HyperLinkOn A
 ToFile "Test2.txt";
 HyperLinkOn D
 ToFile TestView1; }}
 { UsingArch TestArch2;
 { Components All;
 Connections All;
 HyperLinkOn Four
 ToFile TestView2; }}
 }

 View TestView1 { { UsingArch TestArch2;
 { Components One Two Five Six;
 Connections All;
 HyperLinkOn Six ToFile TestView2; }}
 }

 View TestView2 { { UsingArch TestArch1;

250

 { Components A B C D E F K L M;
 Connections BCall CCall DCall ECall
 FCall KCall LCall MCall;
 HyperLinkOn A
 ToFile TestView3; }}
 }

 View TestView3 {
 { UsingArch TestArch1;
 { Components A C D K L M;
 Connections CCall DCall
 KCall LCall MCall; }}
 { UsingArch TestArch1;
 { Components A B C D;
 Connections BCall CCall; }}
 { UsingArch TestArch1;
 { Components A B D G H I J;
 Connections BCall GCall HCall
 ICall JCall; }}
 { UsingArch TestArch2;
 { Components One Three Five Six;
 Connections All; }}
 }
 }
$

251

6. VRML Target Code

(Not included for sake of brevity).

7. Screen Snapshots of VRML Images

Test2 contains four views. The legend from the Main view is given below:

252

The following screen shows the Main view, with architecture TestArch1 in the foreground,
and the six-layered architecture, TestArch2, in the background. The root of TestArch1
contains a hyperlink to the source VTADL file, Test2.txt. A hyperlink is also established
from the component D to the view, TestView1.

253

 The focus of the following screen is the second architecture in the Main view, TestArch2.
The fourth layer of the architecture contains a hyperlink to TestView2.

254

 The next view, TestView1, contains the layered architecture, TestArch2. However, layers
three and four are hidden. A hyperlink is established from layer six to TestView2.

255

 The view, TestView2, contains a modified version of TestArch1. Several nodes on the left
and right subtrees of architecture TestArch1 are omitted. Only nodes A, B, C, D, E, F, K, L, and M
are shown. A hyperlink is established from the root (node A) to TestView3.

256

 TestView3 is a view that contains three versions of TestArch1 (the call-and-return
architecture), and a single version of TestArch2 (the layered architecture). This view demonstrates
multiple versions of the same architecture with both components and connections kept hidden.
 The following screen snapshot displays a version of TestArch1 in the foreground, with the
three other structures in the background. The version of TestArch1 in the foreground uses only
components A, C, D, K, L, and M, but with the pertinent connectors displayed.

257

 For the second version of TestArch1, nodes A, B, C, and D are shown, but the connector
between A and D is hidden. Node D is isolated as an “orphan” component in the distance.

258

 The third version of architecture TestArch1 consists of nodes A, B, G, D, H, I, and J.
However, the connector between A and D is eliminated, resulting in two sub-architectures. The
first sub-architecture consists of nodes A, B, and G; the second sub-architecture consists of nodes
D, H, I, and J, shown as follows:

259

 The layered architecture of TestArch2 is shown. The second and fourth layers are hidden:

260

Appendix H

 Case Study Report Template

261

Case Study Report Template

1. Name of Case Study: (Supply title of case study here)

2. On-Line Posting (if any): (Indicate url of any posting)

3. Brief Description of the Purpose and Background of the Case Study:

(Describe what the case study was about, any previous history in two-dimensional form,
etc.)

4. Name of VTADL Source File(s):

Source File View Files Hyperlinked Files (Referenced)

(VTADL) (VRML) (if any)

5. VTADL Source Code Listing

 (Attach when applicable).

6. VRML Target Code

 (Optional; used when necessary)

7. Screen Snapshots of VRML Images

(Provide representative screen shots).

Appendix I

Case Studies

263

Case Study One: Views on a Mobile Robot Architecture

Case Study Report

1. Name of Case Study: Views on a Mobile Robot Architecture

2. On-Line Posting (if any):

http://www.nova.edu/~inouyej/Dissertation/CaseStudies.

3. Brief Description of the Purpose and Background of the Case Study:

 This case study re-represents three different solutions to the problem of modeling
the software architecture to control a mobile robot. Each solution is represented in
VTADL, then translated to the views in VRML.
 The requirements for a mobile robot were described on page 43 in Software
Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996]. We
encapsulate the requirements here. The architecture of the mobile robot must be designed
so that the robot can successfully respond to stimuli from the environment while yet
taking actions towards a goal. The architecture must allow for uncertainty in
information, danger to the system (e.g., lowered power supply), and design flexibility for
future requirements.
 Solution 1, as described by Shaw and Garlan, used a control loop architecture.
Feedback from the environment was fed to a sensor component, which supplied data to a
controller. Based on the sensor data, the controller would direct action of the mobile
robot by means of an actuator component; the actuator component would direct action of
the mobile robot within the environment (thus completing the feedback loop). The
fundamental benefit of Solution 1 was its simplicity, capturing the essence of the robot's
interaction with the environment. The disadvantage to the control loop was the failure to
model tasks requiring complex decomposition.
 Solution 2 used a layered architecture. The architecture, in the words of the
authors, "nicely organizes the components needed to coordinate the robot's operation.”
The disadvantage was that information often did not truly pass between adjacent layers as
the layered model would imply.
 Solution 3 used an implicit invocation architecture called TCA (for Task-Control
Architecture). By “implicit invocation” was meant that a process could be invoked by
the occurrence of an event, with the constraint that the invoked processes do not interact
with one another. TCA instantiated a hierarchy of tasks called a task tree. TCA had the
capability to reconfigure task trees during execution in response to changing robot states
and environment. The advantage to this model was that the model provided a clear-cut
separation of action; replacement of components in such a modularized architecture was
straightforward. However, the drawback to this architecture was that the architecture did
not model how the robot would handle uncertain conditions in the environment.

264

 Solution 4 used a blackboard architecture, but we did not model this architecture
since the blackboard architectural style was not implemented in the compiler.
 The three solutions (Solution 1, 2, and 3) were first represented using VTADL
prior to visualization. The VTADL representation was then translated into one or more
VRML files using the compiler tool developed by this dissertation.

4. Name of VTADL Source File(s):

Source File View Files Hyperlinked Files (Referenced)
MobileRobot.txt Main.wrl ActUponEnviron.html

 Solution1.wrl Main.wrl
 Solution2.wrl MobileRobot.txt
 Solution3.wrl MobileRobotHTML.html
 RunActuator.html
 SenseData.html
 Solution1.wrl
 Solution2.wrl
 Solution3.wrl

265

5. VTADL Source Code Listing ("MobileRobot.txt")

 The VTADL source code for the Mobile Robot case study is provided below.

Architecture LayerSolutionOne
Style Layer
 {
 ComponentList
 {
 Component Environment
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e1;
 Process: ;
 InterfaceList:
 Interface Top EnviroData;
 { InterfaceRole: Producer; }

 Component ActiveComponent
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e2;
 Process: ;
 InterfaceList:
 Interface Bottom LoopFromEnviron;
 { InterfaceRole: Consumer; }

 Component Controller
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom ControlData;
 { InterfaceRole: Consumer; }
 }
 ConnectionList
 {
 Connector SensorData

266

 ConnectType Dataflow Bidirect;
 Connect(EnviroData, LoopFromEnviron);
 Connector DataControl
 ConnectType Dataflow Bidirect;
 Connect(LoopFromEnviron, ControlData);
 }
 }

Architecture SenseSolutionOne
Style Program
 {
 ComponentList
 {
 Component ActiveComponent
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: x1;
 Process: ;
 InterfaceList:
 Interface Bottom ActiveSocket;
 { InterfaceRole: Producer; }

 Component Actuators
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: x2;
 Process: ;
 InterfaceList:
 Interface Top ConnActuator;
 { InterfaceRole: Producer; }

 Component Sensors
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: x3;
 Process: ;
 InterfaceList:
 Interface Top SocketSense;
 { InterfaceRole: Consumer; }

267

 Component Environment
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: x4;
 Process: ;
 InterfaceList:
 Interface Top EnvConn;
 { InterfaceRole: Consumer; }
 }

 ConnectionList
 {
 Connector RunActuator
 ConnectType Dataflow Unidirect;
 Connect(ActiveSocket, ConnActuator);
 Connector SenseData
 ConnectType Dataflow Unidirect;
 Connect(ActiveSocket, SocketSense);
 Connector DetectEnv
 ConnectType Dataflow Unidirect;
 Connect(SocketSense, EnvConn);
 }
 }

Architecture ActSolutionOne
Style Program
 {
 ComponentList
 {
 Component ActiveComponent
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: p1;
 Process: ;
 InterfaceList:
 Interface Bottom ActiveSocket;
 { InterfaceRole: Producer; }

 Component Actuators
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;

268

 ChildOf: ;
 Layer: p2;
 Process: ;
 InterfaceList:
 Interface Top ConnActuator;
 { InterfaceRole: Producer; }

 Component Sensors
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p3;
 Process: ;
 InterfaceList:
 Interface Top SocketSense;
 { InterfaceRole: Consumer; }

 Component Environment
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:
 Interface Top EnvConn;
 { InterfaceRole: Consumer; }
 }

 ConnectionList
 {
 Connector RunActuator
 ConnectType Dataflow Unidirect;
 Connect(ActiveSocket, ConnActuator);
 Connector SenseData
 ConnectType Dataflow Unidirect;
 Connect(ActiveSocket, SocketSense);
 Connector ActUponEnviron
 ConnectType Dataflow Unidirect;
 Connect(ConnActuator, EnvConn);
 }
 }

Architecture SolutionTwo
Style Layer

269

 {
 ComponentList
 {
 Component Environment
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e1;
 Process: ;
 InterfaceList:
 Interface Top EN1;
 { InterfaceRole: Producer; }

 Component RobotControl
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e2;
 Process: ;
 InterfaceList:
 Interface Bottom RC2;
 { InterfaceRole: Consumer; }

 Component SensorInterpret
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom SR3;
 { InterfaceRole: Consumer; }

 Component SenseIntegrate
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom SI4;
 { InterfaceRole: Consumer; }

270

 Component RealWorldModel
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom Real5;
 { InterfaceRole: Consumer; }

 Component Navigation
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom Nav6;
 { InterfaceRole: Consumer; }

 Component GlobalPlan
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom GlobalSocket;
 { InterfaceRole: Consumer; }

 Component Supervisor
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: e3;
 Process: ;
 InterfaceList:
 Interface Bottom SupSocket;
 { InterfaceRole: Consumer; }
 }
 ConnectionList

271

 {
 Connector OneConn
 ConnectType Dataflow Bidirect;
 Connect(EN1,RC2);
 Connector TwoConn
 ConnectType Dataflow Bidirect;
 Connect(RC2,SR3);
 Connector ThreeConn
 ConnectType Dataflow Bidirect;
 Connect(SR3,SI4);
 Connector FourConn
 ConnectType Dataflow Bidirect;
 Connect(SI4,Real5);
 Connector FiveConn
 ConnectType Dataflow Bidirect;
 Connect(Real5, Nav6);
 Connector SixConn
 ConnectType Dataflow Bidirect;
 Connect(Nav6,GlobalSocket);
 Connector SevenConn
 ConnectType Dataflow Bidirect;
 Connect(GlobalSocket,SupSock);
 }
 }

Architecture ImplicitInvoke
Style Program
 {
 ComponentList
 {
 Component Task
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: p1;
 Process: ;
 InterfaceList:
 Interface Bottom TaskSocket;
 { InterfaceRole: Producer; }

 Component ExceptTask
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;

272

 Layer: p2;
 Process: ;
 InterfaceList:
 Interface Top ExceptSocket;
 { InterfaceRole: Producer; }

 Component Ether
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p3;
 Process: ;
 InterfaceList:
 Interface Top EthSocket;
 { InterfaceRole: Consumer; }

 Component DispatchTask
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:
 Interface Top DispSocket;
 { InterfaceRole: Consumer; }

 Component WiredTask
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:
 Interface Top WiretapSocket;
 { InterfaceRole: Consumer; }

 Component TappedTask
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;

273

 InterfaceList:
 Interface Top TapSocket;
 { InterfaceRole: Consumer; }
 }
 ConnectionList
 {
 Connector Exception
 ConnectType Dataflow Unidirect;
 Connect(TaskSocket, ExceptSocket);
 Connector Message
 ConnectType Dataflow Unidirect;
 Connect(TaskSocket, EthSocket);
 Connector Dispatched
 ConnectType Dataflow Unidirect;
 Connect(EthSocket, DispSocket);
 Connector Tapped
 ConnectType Dataflow Unidirect;
 Connect(EthSocket, TapSocket);
 Connector WireTapped
 ConnectType Dataflow Unidirect;
 Connect(EthSocket, WiretapSocket);
 }
 }

Architecture TaskTree
Style Program
 {
 ComponentList
 {
 Component GatherRock
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: p1;
 Process: ;
 InterfaceList:
 Interface Bottom GatherSocket;
 { InterfaceRole: Producer; }

 Component GotoPosition
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: p2;

274

 Process: ;
 InterfaceList:
 Interface Top PositionSocket;
 { InterfaceRole: Producer; }

 Component GrabRock
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p3;
 Process: ;
 InterfaceList:
 Interface Top GrbSocket;
 { InterfaceRole: Consumer; }

 Component LiftRock
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:
 Interface Top LiftSocket;
 { InterfaceRole: Consumer; }

 Component MoveLeft
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:
 Interface Top LeftMoveSocket;
 { InterfaceRole: Consumer; }

 Component MoveForward
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: p4;
 Process: ;
 InterfaceList:

275

 Interface Top FwdMoveSocket;
 { InterfaceRole: Consumer; }
 }
 ConnectionList
 {
 Connector PositCall
 ConnectType Dataflow Unidirect;
 Connect(GatherSocket, PositionSocket);
 Connector GrabCall
 ConnectType Dataflow Unidirect;
 Connect(GatherSocket, GrbSocket);
 Connector LiftCall
 ConnectType Dataflow Unidirect;
 Connect(GatherSocket, LiftSocket);
 Connector LeftCallMove
 ConnectType Dataflow Unidirect;
 Connect(PositionSocket, LeftMoveSocket);
 Connector FwdMoveSocket
 ConnectType Dataflow Unidirect;
 Connect(PositionSocket, FwdMoveSocket);
 }
 }

 ViewList
 {
 ViewMain { { UsingArch LayerSolutionOne;
 { Components All;
 Connections All;
 HyperLinkOn Controller ToFile "MobileRobotHTML.html";
 HyperLinkOn ActiveComponent ToFile Solution1; }}
 }

 View Solution1
 { { UsingArch SenseSolutionOne;
 { Components ActiveComponent Actuators Sensors;
 Connections RunActuator SenseData;
 HyperLinkOn ActiveComponent ToFile "MobileRobot.txt"; }}

 { UsingArch SenseSolutionOne;
 { Components All;
 Connections All; }}

 { UsingArch ActSolutionOne;
 { Components All;
 Connections All;

276

 HyperLinkOn ActiveComponent ToFile "MobileRobot.txt";
 HyperLinkOn RunActuator ToFile "RunActuator.html";
 HyperLinkOn SenseData ToFile "SenseData.html";
 HyperLinkOn ActUponEnviron ToFile "ActUponEnviron.html"; }}
 }

 View Solution2
 { { UsingArch SolutionTwo;
 { Components Navigation GlobalPlan Supervisor;
 Connections All;
 HyperLinkOn Supervisor ToFile "MobileRobotHTML.html"; }}

 { UsingArch SolutionTwo;
 { Components Environment RobotControl SensorInterpret
 SenseIntegrate;
 Connections All; }}

 { UsingArch SolutionTwo;
 { Components SenseIntegrate RealWorldModel Navigation;
 Connections All; }}

 { UsingArch SolutionTwo;
 { Components All;
 Connections All; }}
 }

 View Solution3
 { { UsingArch ImplicitInvoke;
 { Components All;
 Connections All; }}
 { UsingArch TaskTree;
 { Components All;
 Connections All; }}
 }
 }

$

6. VRML Target Code: Main.wrl

 The generated VRML code is not included here for sake of brevity.

277

7. Screen Snapshots of VRML Images:

 The legend within the main view is provided below. In addition to the main view,
three other views are provided: Solution1, Solution2, and Solution3.

 The layered architecture, "LayerSolutionOne," is also contained within the main
view. LayerSolutionOne has three layers which represent the environment, a generic
active component of the robot architecture, and the controller. A hyperlink exists from
the controller layer to an html file (an html file that describes the architecture,
"MobileRobotHTML.html"). A hyperlink from ActiveComponent serves as a portal to
the next view, "Solution1."

278

279

 The next view, “Solution1,” contains two architectures, “SenseSolutionOne” and
“ActSolutionOne.” Two renditions are made of SenseSolutionOne. The architecture
SenseSolutionOne is pictured below as a call-and-return architecture representing a
generic active component’s control over actuators and sensors in the mobile robot (the
other rendition can be seen in the background, along with ActSolutionOne). In the
snapshot, only three components and two connectors are visualized, with other
architectural elements hidden.
 A hyperlink exists from the root, ActiveComponent, to the source VTADL file,
“MobileRobot.txt.”

280

 The second rendition of SenseSolutionOne (also contained within view Solution1)
displays all components and connections, as seen below:

281

 Architecture “ActSolutionOne” is the second architecture within view file
Solution1. All components and connectors are shown. Several hyperlinks were
established: from “ActiveComponent” to the source VTADL file, MobileRobot.txt; from
the connector, “RunActuator” to an html file, “RunActuator.html”; from the connector,
“SenseData” to the file, “SenseData.html”; and from connector “ActUponEnviron” to the
html file, “ActUponEnviron.html.”

282

 As a demonstration of the hyperlink, the html file referenced by connector
RunActuator (“RunActuator.html”) is provided below as a screen snapshot:

283

 The view, “Solution2,” contains four different renditions of the same layered
architecture, “SolutionTwo.”
 In the snapshot below, the first rendition of SolutionTwo is seen in the
foreground. The top three layers of the architecture are shown, and the remaining five
layers are kept hidden. A hyperlink is established from the Supervisor layer to the file,
MobileRobotHTML.html. The other renditions of the architecture are visible in the
background:

284

 A second rendition of architecture SolutionTwo shows only the lower three
layers, while the third rendition shows the middle three layers. The fourth rendition
displays all layers.
 We show only one other rendition of architecture SolutionTwo. The fourth
rendition below shows all eight layers of the architecture:

285

 The view, “Solution3,” contains two architectures. The first, “ImplicitInvoke,”
implements the implicit invocation solution to the mobile robot architecture (consult the
text describing the original case study [Shaw and Garlan, 1996] for full details). The
second architecture, “TaskTree,” represents an instantiation for the task of moving to a
rock and picking it up.
 The architecture ImplicitInvoke is shown in the foreground in the following
screen snapshot:

 In the ImplicitInvoke architecture, a parent task generates an exception event,
resulting in a child exception task (“ExceptTask”). A parent task may also generate a
message through the ether by various methods (dispatch, wiretapping, or tapping),
resulting in the actualization of a child task.
 Architecture TaskTree shows how the task of gathering a rock is instantiated:

286

The parent task of gathering a rock consists of the mobile robot first moving to the rock
(represented by the component, “GoToPosition,” and the children of GoToPosition); then
grabbing the rock (represented by “Grab Rock”); and finally lifting the rock (represented
by component “LiftRock”). The connectors to these subtasks represent the calls to the
child tasks.

287

Case Study Two: Visualization of the Linux Conceptual and Concrete
Architectures

Case Study Report

1. Name of Case Study: Visualization of Linux Conceptual and Concrete

Architectures.

2. On-Line Posting (if any):

http://www.nova.edu/~inouyej/Dissertation/CaseStudies.

3. Brief Description of the Purpose and Background of the Case Study:

 This case study modifies the original visualization in the plane of the Linux
operating system architecture [Bowman et al., 1998]. Viewpoints on the conceptual and
concrete architectures are re-modeled in VTADL, then compiled into several visualized,
three-dimensional worlds (viewpoints) in VRML.

4. Name of VTADL Source File(s):

Source File View Files Hyperlinked Files (Referenced)
ArchConcrete.txt Main.wrl ArchConcept.txt
ArchConcept.txt IPCSubsystem.wrl ConceptVirtualFile.wrl
 ConceptVirtualFile.wrl ConceptIPC.wrl
 ConceptNetwork.wrl IPCSubsystem.wrl
 ConceptMemoryMgr.wrl
 ConceptIPC.wrl

288

5. VTADL Source Code Listing

 Two source code files were used instead of one. The first VTADL file was
“ArchConcrete.txt,” containing architectures and viewpoints on the concrete architecture
of the Linux IPC (Interprocess Controller) subsystem. The second VTADL file was
“ArchConcept.txt,” containing architectures and viewpoints on the high-level, conceptual
architecture of the Linux operating system. The viewpoints (VRML files) were
integrated through hyperlinks within the architectural structures.
 The file, ArchConcrete.txt, generated the VRML files “Main.wrl” and
“IPCSubsystem.wrl.” The main file generated by ArchConcrete.txt was not used in the
final visualization. Instead, Main.wrl was overwritten by the Main.wrl file generated by
VTADL file, ArchConcept.txt.
 Thus, ArchConcrete.txt was compiled first. ArchConcept.txt was compiled
second, overwriting the main file generated by ArchConcrete.txt.

File ArchConcept.txt generated the final “main.wrl” file used, along with VRML
files “ConceptVirtualFile” (representing the conceptual architecture of the Virtual File
subsystem), “ConceptNetwork” (representing the conceptual architecture of the Network
subsystem), “ConceptMemoryMgr” (representing the conceptual architecture of the
Memory Manager), and “ConceptIPC” (representing the conceptual architecture of the
Interprocess Controller, which references via hyperlink the concrete architecture,
“IPCSubsystem”).
 The VTADL source code for ArchConcrete.txt and ArchConcept.txt are provided
below.

(The following code is from ArchConcept.txt and represents the conceptual
architecture of the Linux operating system kernel).

Architecture ConceptualProcess
Style Program
 {
 ComponentList
 {

 Component ProcessSched
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom ProcessSocket;
 { InterfaceRole: Consumer; }

 Component VirtualFileSystem

289

 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top FSSocket;
 { InterfaceRole: Producer; }

 Component Network
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top NetSocket;
 { InterfaceRole: Producer; }

 Component MemoryMgr
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top MMSocket;
 { InterfaceRole: Producer; }

 Component IPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top IPCSocket;
 { InterfaceRole: Producer; }

 }

 ConnectionList

290

 {
 Connector CallVfs
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, FSSocket);
 Connector CallNet
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, NetSocket);
 Connector CallMemMgr
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, MMSocket);
 Connector CallIPC
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, IPCSocket);
 }

 }

Architecture ConcreteProcess
Style Program
 {
 ComponentList
 {

 Component sched
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom ProcessSocket;
 { InterfaceRole: Consumer; }

 Component fs
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top FSSocket;
 { InterfaceRole: Producer; }

 Component net

291

 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top NetSocket;
 { InterfaceRole: Producer; }

 Component mm
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top MMSocket;
 { InterfaceRole: Producer; }

 Component ipc
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top IPCSocket;
 { InterfaceRole: Producer; }

 }

 ConnectionList
 {
 Connector Callfs
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, FSSocket);
 Connector Callnet
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, NetSocket);
 Connector Callmm
 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, MMSocket);
 Connector Callipc

292

 ConnectType Dataflow Unidirect;
 Connect(ProcessSocket, IPCSocket);
 }

 }

Architecture NetLayers
Style Layer
 {
 ComponentList
 {
 Component HWDrivers
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: hw1;
 Process: ;
 InterfaceList:
 Interface Top HWService1;
 { InterfaceRole: Producer; }

 Component NetProtocols
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: proto1;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveHW1;
 { InterfaceRole: Consumer; }

 Component Network
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: Network;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveNet1;
 { InterfaceRole: Consumer; }

 }
 ConnectionList

293

 {
 Connector NetService
 ConnectType Dataflow Unidirect;
 Connect(HWService1,ReceiveHW1);
 Connector NetProto
 ConnectType Dataflow Unidirect;
 Connect(ReceiveHW1,ReceiveNet1);
 }
 }

Architecture VirtualFileLayers
Style Layer
 {
 ComponentList
 {
 Component HWDrivers
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: hw1;
 Process: ;
 InterfaceList:
 Interface Top HWService1;
 { InterfaceRole: Producer; }

 Component LogicFileSystem
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: LogicFile;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveHW1;
 { InterfaceRole: Consumer; }

 Component VirtualFileSystem
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: VF;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveVF1;

294

 { InterfaceRole: Consumer; }

 }
 ConnectionList
 {
 Connector FileService
 ConnectType Dataflow Unidirect;
 Connect(HWService1,ReceiveHW1);
 Connector FileSystem
 ConnectType Dataflow Unidirect;
 Connect(ReceiveHW1,ReceiveVF1);
 }
 }

Architecture MemoryLayers
Style Layer
 {
 ComponentList
 {
 Component HWDependent
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: HWDep;
 Process: ;
 InterfaceList:
 Interface Top HWService1;
 { InterfaceRole: Producer; }

 Component HWIndependent
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: HWIndep;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveHW1;
 { InterfaceRole: Consumer; }

 Component MemoryMgr
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;

295

 Layer: MMMgr;
 Process: ;
 InterfaceList:
 Interface Bottom ReceiveMem1;
 { InterfaceRole: Consumer; }

 }
 ConnectionList
 {
 Connector HWDepService
 ConnectType Dataflow Unidirect;
 Connect(HWService1,ReceiveHW1);
 Connector HWIndepService
 ConnectType Dataflow Unidirect;
 Connect(ReceiveHW1,ReceiveMem1);
 }
 }

Architecture IPC
Style Layer
 {
 ComponentList
 {
 Component IPCCallInterface
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom SystemCall;
 { InterfaceRole: Consumer; }

 Component SystemVIPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top SystemVSocket;
 { InterfaceRole: Producer; }

 }

296

 ConnectionList
 {
 Connector SystemCallInterface
 ConnectType Dataflow Unidirect;
 Connect(SystemCall,SystemVSocket);
 }
 }

 ViewList
 {
 ViewMain { { UsingArch ConceptualProcess;
 { Components All;
 Connections All;
 HyperLinkOn VirtualFileSystem ToFile ConceptVirtualFile;
 HyperLinkOn CallIPC ToFile ConceptIPC;
 HyperLinkOn ProcessSched ToFile "archConcept.txt"; }}
 { UsingArch IPC;
 { Components All;
 Connections All; }}
 { UsingArch ConcreteProcess;
 { Components All;
 Connections All; }}
 }

 View ConceptVirtualFile
 { { UsingArch VirtualFileLayers;
 { Components All;
 Connections All; }}
 }

 View ConceptNetwork
 { { UsingArch NetLayers;
 { Components All;
 Connections All; }}

 }

 View ConceptMemoryMgr
 { { UsingArch MemoryLayers;
 { Components All;
 Connections All; }}
 }

 View ConceptIPC
 { { UsingArch IPC;

297

 { Components All;
 Connections All;
 HyperLinkOn IPCCallInterface ToFile IPCSubsystem; }}
 }

 }

$

(The following code is from ArchConcrete.txt and represents the concrete architecture of
the Linux kernel):

Architecture IPCSubsystem
Style Program
 {
 ComponentList
 {

 Component SystemCallInterface
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom SysCallSocket;
 { InterfaceRole: Consumer; }

 Component NetIPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top NetIPCSocket;
 { InterfaceRole: Producer; }
 Interface Bottom NetDomainSocket;
 { InterfaceRole: Consumer; }

 Component SystemVIPC
 ComponentType Cprogram;
 Properties:

298

 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top SystemVSocket;
 { InterfaceRole: Producer; }
 Interface Bottom SystemVLower;
 { InterfaceRole: Consumer; }

 Component FileIPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top FileSocket;
 { InterfaceRole: Producer; }
 Interface Bottom FileLower;
 { InterfaceRole: Consumer; }

 Component DomainSockets
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top DomainPlug;
 { InterfaceRole: Producer; }

 Component MessageQueues
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top MsgSocket;
 { InterfaceRole: Producer; }

 Component SharedMemory

299

 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top SharedSocket;
 { InterfaceRole: Producer; }

 Component KernelIPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top KernelSocket;
 { InterfaceRole: Producer; }

 Component Semaphores
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top SemaSocket;
 { InterfaceRole: Producer; }

 Component fifo
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top fifoSocket;
 { InterfaceRole: Producer; }

 Component pipes
 ComponentType Cprogram;
 Properties:

300

 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top pipesSocket;
 { InterfaceRole: Producer; }

 Component WaitQueues
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top WaitQSocket;
 { InterfaceRole: Producer; }

 Component Signals
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top SignalsSocket;
 { InterfaceRole: Producer; }
 }

 ConnectionList
 {
 Connector CallNetIPC
 ConnectType Dataflow Unidirect;
 Connect(SysCallSocket, NetIPCSocket);
 Connector CallSysVIPC
 ConnectType Dataflow Unidirect;
 Connect(SysCallSocket, SystemVSocket);
 Connector CallFileIPC
 ConnectType Dataflow Unidirect;
 Connect(SysCallSocket, FileSocket);
 Connector CallDomain
 ConnectType Dataflow Unidirect;
 Connect(NetDomainSocket, DomainPlug);
 Connector CallMessage

301

 ConnectType Dataflow Unidirect;
 Connect(SystemVLower,MsgSocket);
 Connector CallSharedMem
 ConnectType Dataflow Unidirect;
 Connect(SystemVLower, SharedSocket);
 Connector CallKernelIPC
 ConnectType Dataflow Unidirect;
 Connect(SystemVLower, KernelSocket);
 Connector CallSemaphores
 ConnectType Dataflow Unidirect;
 Connect(SystemVLower, SemaSocket);
 Connector Callfifo
 ConnectType Dataflow Unidirect;
 Connect(FileLower,fifoSocket);
 Connector Callpipes
 ConnectType Dataflow Unidirect;
 Connect(FileLower,pipesSocket);
 Connector CallWaitQ
 ConnectType Dataflow Unidirect;
 Connect(KernelSocket, WaitQSocket);
 Connector CallSignals
 ConnectType Dataflow Unidirect;
 Connect(KernelSocket, SignalsSocket);
 }

 }

Architecture IPCDepends
Style Program
 {
 ComponentList
 {

 Component IPC
 ComponentType Cprogram;
 Properties:
 CompRole: CompConsumer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Bottom SysDepends;
 { InterfaceRole: Consumer; }

 Component ProcessScheduler

302

 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top ProcSocket;
 { InterfaceRole: Producer; }

 Component MemoryMgr
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top MemSocket;
 { InterfaceRole: Producer; }

 Component FileSystem
 ComponentType Cprogram;
 Properties:
 CompRole: CompProducer;
 ChildOf: ;
 Layer: ;
 Process: ;
 InterfaceList:
 Interface Top FileSysSocket;
 { InterfaceRole: Producer; }

 }

 ConnectionList
 {
 Connector CallProcessSched
 ConnectType Dataflow Unidirect;
 Connect(SysDepends, ProcSocket);
 Connector CallMemMgr
 ConnectType Dataflow Unidirect;
 Connect(SysDepends, MemSocket);
 Connector CallFileSys
 ConnectType Dataflow Unidirect;
 Connect(SysDepends, FileSysSocket);
 }

303

 }

 ViewList
 {
 ViewMain { { UsingArch IPCSubsystem;
 { Components All;
 Connections All;
 HyperLinkOn NetIPC ToFile "Testref.txt"; }}
 }

 View IPCSubsystem { { UsingArch IPCSubsystem;
 { Components All;
 Connections All; }}
 { UsingArch IPCDepends;
 { Components All;
 Connections All; }}
 }

 }

$

6. VRML Target Code: Main.wrl

 The generated VRML code for this visualization is not provided for sake of
brevity.

304

7. Screen Snapshots of VRML Images:

 The legend in the main view of the Linux visualization is provided in the screen
snapshot below.

305

 In the screen shot below, the first architecture (of three architectures within the
main view) is visualized. The architecture in the foreground within the main view is
“ConceptualProcess,” representing the highest level of the conceptual architecture of the
Linux kernel. The view of ConceptualProcess is from the vantage point of the Process
Scheduler (component “ProcessSched” at the root). The children of ProcessSched
represent the conceptual modules called by the Process Scheduler. The Process
Scheduler may call the Virtual File System, Memory Manager, Network, or IPC.
 A hyperlink is established on the component VirtualFileSystem to the
ConceptVirtualFile view. A hyperlink is also established on component CallIPC to the
view file, ConceptIPC. Finally, a hyperlink exists from the root (ProcessSched) to the
VTADL source file, “ArchConcept.txt.”

306

 The second architecture within the main view is the conceptual IPC architecture,
represented by a layered structure with two layers: the IPC Call Interface and the System
V IPC controller.

307

 The snapshot below provides the third architecture in the main view, a
representation of the Concrete Process of the Linux system architecture. The scheduler is
represented as a root (“sched”) of a three-dimensional tree, with children labeled “fs”
(file system module), “net” (the network drivers), “mm” (the memory management
routine), and “ipc” (for the interprocess control module).

308

 In the next view, “ConceptVirtualFile,” emphasis is placed on the conceptual
virtual file manager architecture. A single architecture, “VirtualFileLayers,” is
represented within ConceptVirtualFile. This single architecture consists of three layers:
“HW Drivers” (or the layer representing hardware drivers), “LogicFileSystem” (the
logical file system layer), and “VirtualFileSystem” (the layer representing the virtual file
system of the Linux kernel).

309

 The view, “ConceptNetwork,” represents the conceptual architecture of the
network system. The network architecture is visualized as a layered cone, with hardware
drivers at the base, network protocols in the center, and the network layer itself at the top:

310

 The view of the conceptual memory manager, “ConceptMemoryMgr,” consists of
a single layered architecture, “MemoryLayers,” as seen below:

311

 The view, “ConceptIPC,” is comprised of a single layered architecture called
“IPC.” The layered architecture (shown below) represents the conceptual architecture of
the Linux kernel Interprocess Controller. The top layer represents the System V IPC,
while the bottom layer represents the IPC Call Interface. The bottom layer contains a
very important hyperlink to the detailed view of the concrete IPC Subsystem. The view
file referenced is “IPCSubsystem.wrl.”

312

 The view, “IPCSubsystem,” describes the concrete architecture of the IPC
subsystem to the lowest level of detail. IPCSubsystem consists of two call-and-return
style architectures, “IPCSubsystem” and “IPCDepends.” IPCSubsystem is in the
foreground in the screen snapshot provided below (the IPCDepends architecture is visible
in the left background).
 At the root of the IPCSubsystem architecture is a node representing the system
call interface of the interprocess controller. The system call interface may make calls to
the network IPC, the file IPC, or the System V IPC. The network IPC may call domain
sockets; the file IPC may, in turn, call fifo (first-in, first-out) data structures or pipes. The
System V IPC may call message queues to support interprocess messaging. The System
V IPC may also call semaphores, shared memory, or data structures available to the
kernel IPC (waitqueues or signals). Thus, the hierarchy of control within the IPC
architecture is visualized in the VRML medium.

313

 In our final snapshot, the architecture, “IPCDepends,” is brought to the
foreground. This architecture describes the dependencies between a generic IPC process
and the process scheduler, memory manager, and file system.

314

Reference List

Abowd, G.D., Allen, R., & Garlan, D. (1995). Formalizing Style to Understand
Descriptions of Software Architecture. ACM Transactions on Software
Engineering and Methodology, 4(4), 319-364.

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., & Zaremski, A.
(1997). Recommended Best Industrial Practice for Software Architecture
Evaluation. Technical Report, Software Engineering Institute, Carnegie Mellon
University. CMU/SEI-96-TR-025, January, 1997.

Aho, A.V., Sethi, R., & Ullman, J.D. (1986). Compilers: Principles, Techniques,
and Tools. Reading: Addison-Wesley.

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford
University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language.
New York: Oxford University Press.

Allen, R.J. (1997). A Formal Approach to Software Architecture. PhD
Dissertation, CMU-CS-97-144. Pittsburgh: Carnegie Mellon University.

Ames, A.L., Nadeau, D.R., & Moreland, J.L. (1997). VRML 2.0 Sourcebook.
New York: John Wiley & Sons, Inc.

Antonakos, J.L. & Mansfield, K.C. Jr. (1999). Practical Data Structures Using
C/C+ +. Upper Saddle River: Prentice Hall.

Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice.
Reading: Addison-Wesley.

Biggerstaff, T.J., Mitbander, B.G., & Webster, D. (1993). The Concept
Assignment Problem in Program Understanding. In Proceedings of the 15th
International Conference on Software Engineering, ICSE '93 (pp. 483-498). Los
Alamitos: IEEE Computer Society Press.

Boasson, M. (1995). The artistry of software architecture. IEEE Software,
12(6), 13-16.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications.
Reading: Addison-Wesley.

315

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling
Language User Guide. Boston: Addison-Wesley.

Bowman, I.T. (1998). Conceptual Architecture of the Linux Kernel.
http://plg.uwaterloo.ca/~itbowman/CS746G/a2. Published under the auspices of
the University of Waterloo, Canada. Online publication: February 12, 1998.
Date of last access: February 10, 2001.

Bowman, I.T., Siddiqi, S., & Tanuah, M.C. (1998). Concrete Architecture of the
Linux Kernel. http://plg.uwaterloo.ca/~itbowman/CS746G/a1. Published under
the auspices of the University of Waterloo, Canada. Online publication: January,
1998. Date of last access: February 10, 2001.

Buhr, R.J.A. & Casselman, R.S. (1992). Architectures With Pictures. In
Conference Proceedings, OOPSLA '92 (Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 466-483). New York:
ACM Press.

De Michelis, G., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Schmidt,
J.W., Woo, C., & Yu, E. (1998). A Three-Faceted View of Information Systems.
Communications of the ACM, 41(12), 64-70.

Dincel, E., Roshandel, R., & Medvidovic, N. (2000). ADL Independent
Architectural Representation in XML. Technical Report, Center for Software
Engineering, University of Southern California. USC-CSE-2000-519.

Dijkstra, E. (1968). The Structure of the "THE"-Multiprogramming System.
Communications of the ACM, 11(5), 341-346.

Egyed, A. (1999). Integrating Architectural Views in UML. Technical Report,
Center for Software Engineering, University of Southern California. USC-CSE-
99-TR-514.

Egyed, A. (2000). Using Patterns to Integrate UML Views. Technical Report,
Center for Software Engineering, University of Southern California. USC-CSE-
2000-519.

Egyed, A. & Medvidovic, N. (1999). Extending Architectural Representation in
UML with View Integration. Technical Report, Center for Software Engineering,
University of Southern California. USC-CSE-99-519.

Egyed, A., Nikunj, M., & Medvidovic, N. (1999). Software Connectors and
Refinement in Family Architectures. Technical Report, Center for Software
Engineering, University of Southern California. USC-CSE-99-527.

316

Eixelsberger, W. & Gall, H. (1998). Describing Software Architectures by
System Structure and Properties. In Proceedings of the 22nd Computer Software
and Applications Conference, COMSAC '98 (pp. 106-11). Los Alamitos: IEEE
Computer Society Press.

Ellis, W.J., Hilliard, R.F., Poon, P.T., Rayford, D., Saunders, T.F., Sherlund, B.,
& Wade, R.L. (1996). Toward a Recommended Practice for Architectural
Description. In Proceedings of the Second IEEE International Conference on
Engineering of Complex Computer Systems, Montreal. Los Alamitos: IEEE
Computer Society Press.

Feijs, L. & de Jong, R. (1998). 3D Visualization of Software Architectures.
Communications of the ACM, 41(12), 73-78.

Feijs, L., Krikhaar, R., & van Ommering, R. (1998). A Relational Approach to
Support Software Architecture Analysis. Software Practice and Experience,
28(4), 371-400.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Reading: Addison-Wesley.

Garlan, D., Allen, R., & Ockerbloom, J. (1994). Architectural Mismatch: Why
Reuse is So Hard. IEEE Software, 12(6), 17-26.

Garlan, D., Allen, R., & Ockerbloom, J. (1994). Exploiting Style in Architectural
Design Environments. Software Engineering Notes, 19(5): 175-88.

Garlan, D., Ockerbloom, J., & Wile, D. (1998). Towards an ADL Toolkit, EDCS
Architecture and Generation Cluster,
http://www.cs.cmu.edu/~spok/adl/index.html. Date Posted: December, 1998.
Date of Last Access: November 13, 2001.

Garlan, D. & Perry, D.E. (1995). Introduction to the Special Issue on Software
Architecture. IEEE Transactions on Software Engineering, 21(4), 269-274.

Garlan, D. & Shaw, M. (1993). An Introduction to Software Architecture.
In Ambriola, V. and Tortora, G. (Eds.), Advances in Software Engineering and
Knowledge Engineering, Vol. I. Singapore: World Scientific Publishing
Company.

Gomaa, H. & Wijesekera, D. (2001). The Role of UML, OCL and ADLs in
Software Architecture. In International Conference on Software Engineering
(ICSE 2001): First Workshop on Describing Software Architecture with UML,
Toronto, Canada. Available from Rational Corporation Site:
http://www.rational.com/events/ICSE2001/ICSEwkshop/index.jsp.

317

Harel, D. (1988). On Visual Formalisms. Communications of the ACM, 31(5),
514-530.

Hearn, D. & Baker, M.P. (1986). Computer Graphics. Englewood Cliffs:
Prentice-Hall.

Hilliard, R. (2001). Viewpoint Modeling. In International Conference on
Software Engineering (ICSE 2001): First Workshop on Describing Software
Architecture with UML, Toronto, Canada. Available from Rational Corporation
Site: http://www.rational.com/events/ICSE2001/ICSEwkshop/index.jsp.

Hilliard, R. (2001). IEEE Std. 1471 and Beyond. Position Paper, Software
Engineering Institute Workshop on Software Architecture Representation,
Carnegie Mellon University Special Report, CMU/SEI-2001-SR-010, pp. 27-32.

Hofmeister, C., Nord, R., & Soni, D. (2000). Applied Software Architecture.
Reading: Addison Wesley Longman, Inc.

Holt, R.C. (1996). Binary Relational Algebra Applied to Software Architecture,
CSRI Technical Report 345, University of Toronto, Canada.

Inouye, J.M. (2001). An Architecture Description Language for Visualizing
Neural Network Designs. Proceedings of the Fifth Multiworld Conference on
Systemics, Cybernetics, and Infomatics (SCI 2001), Orlando, Florida.

Institute of Electrical and Electronic Engineers, IEEE. (2000). Recommended
Practice for Architectural Description of Software-Intensive Systems, IEEE Std.
1471-2000. New York: Institute of Electrical and Electronics Engineers, Inc.

Inverardi, P. & Wolf, A.L. (1995). Formal Specification and Analysis of
Software Architectures Using the Chemical Abstract Machine Model. IEEE
Transactions on Software Engineering, 21(4), 373-386.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The United Software
Development Process. Reading: Addison-Wesley.

Jazayeri, M., Ran, A., & van der Linden, F. (2000). Software Architecture for
Product Families: Principles and Practice. Boston: Addison-Wesley.

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software,
12(6): 42-50.

Levine, J.R., Mason, T., & Brown, D. (1992). lex & yacc. Beijing: O'Reilly &
Associates, Inc.

318

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., & Mann, W.
(1995). Specification and Analysis of System Architecture Using Rapide. IEEE
Transactions on Software Engineering, 21(4), 336-355.

Maier, M., Emery, D., & Hilliard, R. (2001). IEEE Std. 1471 Frequently Asked
Questions (FAQ). Version 3.0. http://www.pithecanthropus.com/~awg/ieee-
1471-faq.html. Online publication: February 28, 2001. Date of last access: July
15, 2001.

Medvidovic, N. & Rosenblum, D.S. (1997). Domains of concern in Software
Architectures and Architecture Description Languages. In Proceedings of the
USENIX Conference on Domain Specific Languages, Santa Barbara, California,
pp. 199-212.

Medvidovic, N., Rosenblum, D.S., Robbins, J.E., & Redmiles, D.F. (2000).
Modeling Software Architectures in the Unified Modeling Language. Technical
Report, Center for Software Engineering, University of Southern California,
USC-CSE-2000-512.

Medvidovic, N. & Taylor, R.N. (2000). A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1), pp. 70-93.

Miller, G. (1956). The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information. The Psychological Review,
63(2), 81-97.

Monroe, R.T., Kompanek, A., Melton, R., & Garlan, D. (1997). Architectural
Styles, Design Patterns, and Objects. IEEE Software, 14(1): 43-52.

Muller, P. (1997). Instant UML. Acocks Green (United Kingdom): Wrox Press
Ltd.

Papakostas, A. & Tollis, I.G. (1999). Algorithms for Incremental Orthogonal
Graph Drawing in Three Dimensions. Journal of Graph Algorithms and
Applications, 3(4), 81-115.

Parker, G., Franck, G., & Ware, C. (2000). Visualization of Large Nested
Graphs in 3D: Navigation and Interaction. Journal of Visual Language and
Computing, Special Issue on Visual Navigation: Methods and Tools, 9(3), 299-
317.

Parnas, D. (1972). On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12), 1053-1058.

http://www.pithecanthropus.com/~awg/ieee-1471-faq.html
http://www.pithecanthropus.com/~awg/ieee-1471-faq.html

319

Perry, D.E. & Wolf, A.L. (1992). Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4), 40-52.

Prieto-Diaz, R. & Neighbors, J.M. (1986). Module Interconnection Languages.
The Journal of Systems and Software, 6(4), 307-334.

Quatrani, T. (2000). Visual Modeling with Rational Rose 2000 and UML.
Boston: Addison-Wesley.

Selic, B. (2001). On Modeling Architectural Structures with UML. In
International Conference on Software Engineering (ICSE 2001): First Workshop
on Describing Software Architecture with UML, Toronto, Canada. Available
from Rational Corporation Site:
http://www.rational.com/events/ICSE2001/ICSEwkshop/index.jsp.

Shaw, M. (1995). Comparing Architectural Design Styles. IEEE Software,
12(6), 27-41.

Shaw, M. (2000). Sufficient Correctness and Homeostasis in Open Resource
Coalitions: How Much Can You Trust Your Software System? In Proceedings of
the Fourth International Software Architecture Workshop (ISAW-4), affiliated
with the Twenty-Second International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland, June, 2000, pp. 46-50. Also available from
Composable Software Systems Research Group, Carnegie Mellon University,
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/vit/www/paper_abstracts/isaw4-
fin.html.

Shaw, M. & Clements, P. (1997). A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems. In Proceedings of the
21st Annual International Computer Software and Applications Conference,
COMPSAC '97 (pp. 6-13). Los Alamitos: IEEE Computer Society Press.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., & Zelesnik, G.
(1995). Abstractions for Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineeering, 21(4), 314-335.

Shaw, M. & Garlan, D. (1996). Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River: Prentice Hall.

Soni, D., Nord, R., & Hofmeister, C. (1995). Software Architecture in Industrial
Applications. In Proceedings of the 17th International Conference on Software
Engineering (pp. 196-207). Los Alamitos: IEEE Computer Society Press.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for Visual
Understanding of Hierarchical System Structures. IEEE Transactions on Systems,
Man and Cybernetics, SMC-11(2), 108-125.

320

Van der Hoek, A., Rakic, M., Roshandel, R., & Medvidovic, N. (2000). Taming
Architectural Evolution. Technical Report, Center for Software Engineering,
University of Southern California, USC-CSE-2000-523.

Ware, C. & Franck, G. (2000). Evaluating Stereo and Motion Cues for
Visualizing Information Nets in Three Dimensions. ACM Transactions on
Graphics, 15(2), 121-139.

Ware, C., Hui, D., & Franck, G. (1993). Visualizing Object Oriented Software in
Three Dimensions. In Proceedings of the Centre for Advanced Studies
Conference, CASCON '93 (pp. 612-620). Toronto: IBM Canada Ltd.

Web3D Consortium. (2001). The Web3D Consortium Home Page.
http://www.web3d.org. Date last modified: December 14, 2001. Date of last
access: December 14, 2001.

	Nova Southeastern University
	NSUWorks
	2002

	A Technique for Visualizing Software Architectures
	Jon M. Inouye
	Share Feedback About This Item
	NSUWorks Citation

