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Abstract 

 Counterillumination, the mechanism by which pelagic species produce bioluminescence 

to replace the light blocked by their bodies to hide their silhouettes, has been known for over 100 

years. However, little is known about how these animals are able to so precisely replicate the 

intensity of downwelling light. The recent discovery of opsins in photophores (Bracken-Grissom 

et al. 2020) suggests that these autogenic organs (i.e. non-bacterial) may be sensitive to light, in 

addition to their function of emitting visible light. The study presented here is 1) the first 

ultrastructural assessment of photophores in species Systellaspis debilis, Janicella spinicauda, 

Parasergestes armatus, and Allosergestes sargassi and 2) the first study to examine 

ultrastructural changes in photophore organelles in response to light. The results of this study, 

demonstrate that photophore organelles exhibit changes in response to light similar to that seen 

in crustacean photoreceptors, and provides strong support for the hypothesis that the photophores 

themselves are sensitive to light.  

 

 

Key words: Mesopelagic, Oplophoridae, Sergestidae, Photophores, Counterillumination, 

Ultrastructure  
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INTRODUCTION 

 

Light in the Deep Sea 

When light penetrates a seawater medium, long wavelengths of light such as those at the 

red end of the spectrum (600-700 nm) are rapidly absorbed, while ultraviolet (UV) wavelengths 

(300-400 nm) are rapidly scattered (Atkins and Poole 1952, Jerlov 1976). Therefore, only blue 

light remains below 200 m depth and most deep-sea species have a single, blue sensitive visual 

pigment to maximize sensitivity to the available light (Clarke and James 1939; Douglas and 

Partridge 1997; Marshall et al. 2003; reviewed in Warrant and Locket 2004).  

In the clearest ocean water, there is enough downwelling light for vision to the bottom of 

the mesopelagic zone (200-1000 m) (reviewed in Warrant and Locket 2004). The lack of any 

substrate in which to hide behind in the mesopelagic zone makes it difficult for prey to avoid 

detection from predators that hunt from below using large eyes and sometimes sophisticated 

visual systems (reviewed in Haddock et al. 2010). To avoid detection, some pelagic species 

utilize a mechanism of camouflage called counterillumination. This involves ventrally, laterally, 

or internally positioned light organs that produce a bioluminescent emission that mimics the 

wavelength, intensity, and angular distribution of ambient light blocked by the body (Latz and 

Case 1982; Herring 2001). Consequently, since blue wavelengths dominate in the mesopelagic 

zone, almost all marine bioluminescence is blue (reviewed in Haddock et al. 2010). 

 

Bioluminescence 

Bioluminescence is found throughout terrestrial and aquatic environments, may have 

independently evolved more than 50 times, and is represented in 700 genera, of which – 80% are 

marine (reviewed in Haddock et al. 2010, Widder 2010). Mesopelagic inhabitants are especially 

dependent on bioluminescence to search for food, attract prey, reproduce, and avoid predation 

(Douglas 2001, reviewed in Haddock et al. 2010). Visible bioluminescent light is produced by 

means of chemical reactions always involving the oxidation of a luciferin, the light-emitting 

molecule, and catalyzed by a luciferase enzyme (reviewed in Haddock et al. 2010). Some 

bioluminescence uses a photoprotein, a protein that requires a specific ion to trigger light 

production, in addition to luciferin and luciferase. In the mesopelagic zone bioluminescent 
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emissions are typically between 470-550 nm, but this varies between species and the type of 

emission, i.e. a spew, a slime, a simple light organ, or a complex light organ(s) (Herring 1983, 

1985; Latz et al. 1988; reviewed in Widder 2010). Complex light organs, also known as 

photophores, are common in fish, crustaceans, and cephalopods (reviewed in Haddock et al. 

2010).  

 

Photophores 

Photophores are of two types – bacteriogenic or autogenic (reviewed in Haddock et al. 

2010). Bacteriogenic light organs are simple cell clusters that require symbiotic bacteria to 

produce bioluminescence. In contrast, autogenic light organs do not contain bacteria, but contain 

chemicals that mix to produce light (luciferin and luciferase) and one or all of the following 

structures; light producing cells (photocytes), optical structures (reflectors and lenses), and 

associated components (paracrystalline bodies and screening pigments) (Dennell 1940; Arnold 

and Young 1974; Herring 1981, 1985; Denton et al. 1972, 1985; Nowel et al. 1998). These 

structures, along with accompanying organelles, participate in modifying the direction, intensity, 

angular distribution, refraction, and reflection of emitted bioluminescent light. The three known 

types of autogenic photophores are 1) dermal, 2) cuticular, and 3) internal organs of Pesta 

(Burkenroad 1937; Vereshchaka 1994; Poore 2004). 

 

Photophore Structure 

Cuticular and Dermal Photophores 

The two oplophorid species in this study, Systellaspis debilis and Janicella spinicauda, 

possess several pigmented cuticular and dermal photophores over the entire body (Fig. 1A). 

Cuticular photophores are distinguished from dermal by a concavo-convex lens that is visibly 

raised when viewed laterally (Kemp 1910; Dennell 1940; Nowel et al. 1998; Poore 2004). 

Dermal photophores may have a lens (Poore 2004) but are continuous with the epidermis (pers. 

obs.). Most studied in oplophorids and the photophore of interest in the current study is the 

cuticular pleopod photophore. Ventrally positioned on the coxal segment of the pleopod, these 

photophores face downwards (Fig. 1A, arrows) and are covered by a trilaminar concavo-convex 

lens that is colored deep blue in S. debilis (Denton et al. 1985) and red/orange in J. spinicauda 
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(pers. obs.). Attached to the cuticular lens are large membrane-bound, photogenic cells known as 

photocytes. The structure of fully-developed photocytes includes a large distal nucleus, central 

clear area, granular material, apical membrane-bound paracrystalline bodies (that may aid in 

light production), and a proximal reflecting pigment cap (Fig. 1B, Nowel et al. 1998). Laterally 

surrounding photocytes are sheath cells composed of electron dense, absorbing pigments that 

prevent lateral leakage of bioluminescent light. New photocytes form outside of the carotenoid 

pigment sheath and migrate to the center as they mature (Nowel et al. 1998). Beyond sheath cells 

is granulated cytoplasm that houses vesicles, mitochondria, endoplasmic reticulum (ER), Golgi, 

and lipids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A. Light micrograph of Systellaspis debilis autogenic photophores. Cuticular and 

dermal photophores are present on the midsection (Arrows indicate cuticular pleopod 

photophores and circles dermal photophores). B. From Nowel et al. 1998. Light micrograph 

of Oplophorus spinosus cuticular pleopod photophore. The concavo-convex shaped 
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cuticular lens distinguishes cuticular photophores from dermal photophores (CL cuticular 

lens, BC granulated basal cytoplasm, PN mature photocyte nuclei, G granulated material, 

CA clear area, C paracrystalline bodies, R reflecting pigment, a anterior, do dorsal). 

 

 

Internal Organs of Pesta  

Organs of Pesta were first described by Pesta (1918) in species of Sergestes (now revised 

to Allosergestes, Deosergestes, Eusergestes, Neosergestes, and Parasergestes – Judkins and 

Kensley 2008; Vereshchaka 2009) and are found in the cephalothorax (Fig. 2A) of these slightly 

pigmented, semi-transparent deep-sea shrimp (Burkenroad 1937). Also referred to as internal or 

hepatic photophores, organs of Pesta evolved from the hepatopancreas, gastrohepatic glands, or 

specialized liver tubules, and although they are sometimes embedded in liver tubules, they 

remain distinct from digestive glands (Burkenroad 1937; Dennell 1940). Internal photophores 

have a species specific arrangement of anterolateral and posterolateral pairs that are sometimes 

associated with medial organs (Fig. 2B, Foxton 1979). Each organ is composed of several 

individual translucent tubules that are divided into proximal, medial, and distal regions (Dennell 

1940; Herring 1981, reviewed in Latz 1995). Each tubule is capped by the proximal region 

which is composed of lipids that function as a diffuse reflector, as well as some carotenoid 

screening pigments that predominantly border tubules on their lateral sides (Fig. 2C). This 

arrangement gives internal photophores their parabolic shape and directly influences ventrally 

emitted bioluminescent light. The medial region is thought to be the photogenic area due to the 

abundance of Golgi, rough and smooth endoplasmic reticulum (RER, SER, respectively), 

mitochondria, lipids, and paracrystalline platelets, where platelets are presumed to be directly 

associated with luminescence (Smalley et al. 1980; Herring 1981; reviewed in Renwart 2005). 

Blue distal tips aid to filter bioluminescent light and is composed of amorphous cytoplasm, 

nuclei, mitochondria, and ER. The tubules are lined by a single layer of columnar epithelial cells 

comprised of a distal microvilli brush border that surrounds a central lumen (Dennell 1940; 

Herring 1981, reviewed in Latz 1995). Based on organ location and species, tubules can vary in 

quantity, shape, size, pigmentation, organelle placement or content (Burkenroad 1937; Dennell 

1940; Foxton 1972; Herring 1981, reviewed in Latz 1995). 
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Figure 2. A. Internal photophores in the sergestid specie Allosergestes sargassi. 

Anterolateral organs can be seen from lateral positions while posterolateral and medial 

organs are best seen from a dorsal view (Green arrows indicate anterolateral organ, black 

arrows posterolateral organs, and orange arrow posteromedial organ). B. From Foxton 

1972. Schematic drawing of internal photophore arrangement in the sergestid specie 

Allosergestes sargassi. Colored dots coordinate with arrows used in image 2A. C. From 

Denton et al. 1985. Schematic drawing of tubule structure in hepatic photophores (CPB 

carotenoid pigment border, L diffuse lipid layer, PH photogenic region, DF distal light 

filter, arrows direction of emitted bioluminescent light). 

 

 

Counterillumination 

Species utilize bioluminescence for various (some hypothesized) biological functions 

such as mating, conspecific communication, attracting prey, escaping predators, or 

counterillumination (Clarke 1963; Herring 1976, 1981; reviewed in Herring 2000, Haddock et al. 

2010). Counterillumination is especially valuable to mesopelagic organisms as their environment 

lacks substrate to hide behind and as their bodies block incoming downwelling light, resulting in 

a silhouette that is easily seen by predators that hunt from below using sophisticated vision and 

dorsally placed eyes. Counterillumination uses ventral, lateral, or internal photophores to emit 

bioluminescent light downward that exactly matches the physical characteristics, i.e., 

wavelength, intensity, and angular distribution, of ambient light (reviewed in Warrant and 

Locket 2004, Haddock et al. 2010). This mechanism is triggered by an animal’s detection of 

downward-directed visible light and its efficacy is affected by 1) water clarity and depth 

(Johnsen et al. 2004), 2) unpredictable characteristics of incoming light, 3) surface light intensity 

based on the time of day, 4) the vision and location of both predators (Munz 1976) and 
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counterilluminating species in the water column (Johnsen et al. 2004), 5) body tilt of 

counterilluminating species (Latz and Case 1982), and 6) the number of photophores used for 

counterillumination.  

A counterilluminating species must 1) use a photoreceptive organ to accurately interpret 

ambient light levels (Young et al. 1979), 2) possess photophores that can replicate and respond 

to varying spectral characteristics of downwelling light (Warner et al. 1979; Young et al. 1980; 

Latz and Case 1982; Johnsen et al. 2004; Jones and Nishiguichi 2004; Claes et al. 2010), and 3) 

maintain luminescence for prolonged periods. The production and emission of bioluminescence 

is a slow and complicated process because it is linked to hormonal and neural functions 

(reviewed in Haddock et al. 2010), so incoming light must remain constant for 

counterillumination to occur (reviewed in Latz 1995; Jones and Nishiguchi 2004). Despite its 

importance, little else is known about the mechanism for counterillumination (Latz and Case 

1992). However, the recent discovery of visual opsin proteins in the photophores of decapod 

crustaceans belonging to the family Oplophoridae has led to the hypothesis that photophores 

themselves might be light-sensitive (Bracken-Grissom et al. 2020). While photosensitivity has 

been demonstrated in a bacteriogenic light organ in the squid Euprymna scolopes (Tong et al. 

2009), it has never been demonstrated in an autogenic light organ. Determining if there is 

ultrastructural evidence of photosensitivity in an autogenic light organ, by assessment of the 

effects of light on photoreceptor organelles (in eyes) as the standard for comparison, is the 

primary goal of this thesis. 

 

Photosensitive Structures in Photoreceptors 

Photoreceptor membrane turnover has been extensively documented in the 

photoreceptors of many crustacean species. It is a cellular process that removes degraded, aged, 

or photodamaged photosensitive structures during the onset of light and synthesizes new 

structures during dark adaptation (Eguchi and Waterman 1967; Itaya 1976; Stowe 1980; 

Schwemer 1989; Gaten 2013). However, photoreceptors adapted to low-light environments (i.e. 

night active or deep-sea) have a maximum light-absorption level that, if exceeded, will disrupt 

photoreceptor membrane turnover and result in cellular damage (Loew 1976; Nilsson and 

Lindström 1983; Chamberlain et al. 1986; Meyer-Rochow 1994). The cellular components 

known to be involved in the turnover process inclue, but are not limited to, mitochondria, 
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microvilli, lysosomes, nuclei, ER, and Golgi, and many of these organelles are also found in 

photophores (Arnold and Young 1974; Herring 1981; Nowel et al. 1998). Therefore, if 

photophores are indeed sensitive to light, then light exposure should elicit cellular responses and 

organelle morphologies that are similar to those documented in photoreceptors. The research 

presented here focuses on carotenoid and ommochrome absorbing pigments, basal cytoplasm, 

mitochondria, microvilli, nuclei, endoplasmic reticulum, Golgi, and lipids, all of which 

demonstrate light induced changes in position and/or structure in photoreceptors. 

 

METHODS 

 

Sample collection and maintenance 

Samples were collected in the Florida Straits during the 2016 (I) and 2017 (II) 

Bioluminescence and Vision research missions aboard the R/V Walton Smith. Specimens were 

obtained using a 9𝑚2 Tucker Trawl equipped with a light tight, thermally insulated, cod-end that 

closes at depth, to ensure animals are brought to the surface without damage caused by surface 

light levels or temperatures (Meyer-Rochow and Tiang 1979; Frank and Case 1988). Once on 

deck, the closed cod-end was detached, taken into a dark room, and specimens were transferred 

into maintenance containers under dim red light, as previous experiments have demonstrated 

virtually no sensitivity to dim red light (Frank and Case 1988; Frank and Widder 1999). Inside 

Koolatrons ©, species were maintained in black, light tight, aerated, 6.5L maintenance containers 

held at temperatures equivalent to their ambient daytime depths, between 9°C and 10°C, as 

temperatures warmer than these have demonstrated membrane breakdown and organelle 

deformities in mesopelagic crustaceans (Meyer-Rochow and Tiang 1979). Pressure changes are 

generally not harmful for animals living shallower than 2000 m (reviewed in Brown and Thatie 

2013) who are not equipped with air-filled spaces (i.e., any animal without a swim bladder or air-

filled float), and therefore temperature and light exposure are the major parameters that need to 

be controlled. 
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Species Utilized in Study 

 The focus of this study was cuticular pleopod photophores found in Oplophoridae species 

Systellaspis debilis and Janicella spinicauda and internal organs of Pesta found in Sergestidae 

species Parasergestes armatus, and Allosergestes sargassi. Species were chosen based on their 

abundance in the Straits of Florida. 

 

Experimental procedure 

On board the R/V Walton Smith, oplophorids were divided into a control group that was 

kept in the dark and two experimental groups that were exposed to two different irradiances: 1) 

dim white light at 1 µ𝑊 𝑐𝑚−2 and 2) bright white light at 16 µ𝑊 𝑐𝑚−2 (fluorescent bulb room 

lighting), henceforth referred to as either dark/control, dim, or bright. Irradiance was measured 

using a portable optometer (Gamma Scientific Model S471 with a Nidek 247 Sensor Head). 

Oplophorid experimental (i.e. non-control) groups underwent one of the two aforementioned 

light exposures, for either 30 minutes or 60 minutes. Due to a smaller sample size, sergestids 

were divided into a control group and one experimental group at the bright light exposure, for 

one timed interval at 60 minutes. Light levels and timed intervals were chosen based on a study 

from Latz and Case (1992) that demonstrated that dark-acclimated sergestids Eusergestes similis, 

subsequently exposed to a light intensity of 1 𝑥 10−3 µ𝑊 𝑐𝑚−2, took a minimum of two minutes 

to counterilluminate and 25 minutes to reach a constant maximum bioluminescent output that 

matched the experimental illumination level. Light levels considered “dim” mimicked the light 

levels used by Latz and Case (1992) and bright light levels were chosen with the intention to 

damage any photosensitive tissues as shown in dim-light adapted crustacean photoreceptors (see 

discussion).  

Before experiments began, dim red light was used to move species from maintenance 

containers to a sorting tray inside Koolatrons. Species spent 20 minutes acclimating back to the 

dark (Latz and Case 1992) before the Koolatron lid was opened for dim or bright light exposures. 

For dim exposures, blocking filters (layers of white mesh) placed over opened Koolatrons were 

used to achieve the appropriate light intensity, whereas bright light exposures did not use 

blocking filters and animals were subjected to the intensity of fluorescent bulb room lighting. 

Control specimens remained in dark, light-tight containers during each timed interval to serve as 
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the control to validate that it was not collection or maintenance techniques causing any potential 

organelle disruption. At the end of timed trials, animals were transferred into a 2% 

glutaraldehyde, 0.05M sodium cacodylate buffered, filtered seawater fixative. Samples spent a 

minimum of seven days in fixative held at 2° C, to better penetrate and harden tissues to prevent 

photophores from falling apart during dissection and electron microscopy fixation.  

 

Transmission Electron Microscopy (TEM) Fixation 

Animals fixed in 2% glutaraldehyde in sodium cacodylate buffered seawater were 

removed from the fixative and photophores from the coxal segment in oplophorids and from the 

cephalothorax in sergestids were dissected out, washed with 0.05M sodium cacodylate buffered 

filtered seawater for three 15 minute changes, post-fixed in 1% osmium tetroxide in buffer for 60 

minutes. Specimens were then rinsed for three changes of the buffer, dehydrated in three changes 

each of a graded series of ethanol (20%, 50%, 70%), maintained in 70% ethanol for a minimum 

of 48 hours. Specimens were then further dehydrated in three changes of ethanol (95%, 100%), 

infiltrated with three changes of Spurr embedding resin, and placed into a VWR drying oven at 

60° C for a minimum of 72 hours. After trimming, sections of tissue were cut off Spurr resin 

blocks using a Sorvall Porter-Blum MT2-B ultramicrotome fitted with a DKD-diamond knife. 

Thin sections (90 nm gold) were transferred to formvar/carbon coated 200 mesh grids and 

viewed with a Phillips CM300 TEM scope at NSUOC. Since the NSUOC scope does not have 

digital image capture capabilities, micrographs were taken at the TEM Core, University of 

Miami, Miller School of Medicine, using a Phillips CM10 or a Joel 1400 transmission electron 

microscope, under the direction of Dr. Patricia Blackwelder.  

 

DATA ANALYSIS 

 

Photophore photosensitivity 

To identify photophore photosensitivity in oplophorids and sergestids, organelles from 

the same regions of dark controls and light exposed tissues were measured, observed, and 

compared. In oplophorids, changes in the area of basal cytoplasm, vacuolated area within the 

basal cytoplasm, sheath cell widths, and pigment granule diameters were quantified. In addition, 
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changes in the Golgi apparatus and endoplasmic reticulum (ER) size (µm), level of vesiculation, 

and fragmentation, were also observed. In sergestids, the formation of cytoplasmic organelles 

identical to those formed during photoreceptor membrane turnover and lipid to organelle contact 

sites were identified, and lipid diameters in medial and distal tubule regions were also measured 

along their major axis and compared between the controls and bright light exposed tissues. If a 

Shapiro-Wilk test determined the data were normally distributed and if a Bartlett test showed that 

variances were homogeneous, then a One-Way ANOVA was used to analyze organelle 

measurements and determine if significant differences were present. If data were not normally 

distributed and/or if variances were not homogeneous, then a non-parametric Kruskal-Wallis test 

was used for statistical analysis. Images were uploaded into the free software ImageJ (Schneider 

et al. 2012) and measurements were taken three times and averaged to minimize human error. 

All statistical analyses were performed in the statistical software R and test statistics were 

considered significantly different at p ≤ 0.05.  

 

RESULTS 

 

Oplophorids 

Basal Cytoplasm 

Data for 30 and 60 minute groups was combined for Systellaspis debilis and Janicella 

spinicauda to obtain a larger sample size since only cuticular pleopod photophores were 

analyzed and results from individual species were consistent. The organelles of interest in 

pleopod photophores includes the basal cytoplasm, vacuoles in the basal cytoplasm, sheath cells, 

endoplasmic reticulum (ER), and Golgi. The basal cytoplasm is composed of electron dense 

granular material, mitochondria, and ER. The area of basal cytoplasm included any cytoplasm 

located between the cuticle, photocyte nuclei, and sheath cells. Basal cytoplasm area was 

measured to determine if light caused an expansion or reduction of cytoplasm and the vacuolated 

area in the basal cytoplasm was also measured to determine if light caused variability in the area 

of vacuolated basal cytoplasm.  

Observed was an increase in the area of basal cytoplasm and vacuolation in 30 minute 

groups in dim and bright light exposures compared to the controls, but these differences were not 
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significantly different between tissues (Table 1, 2). The area of basal cytoplasm was significantly 

greater in 60 minute dim light and bright light exposures compared to the controls, but in 60 

minute dim-light exposures, vacuolation significantly decreased compared to the controls (Table 

3, 4; Fig. 3A, B, C). However, exposure to bright light for 60 minutes significantly increased 

vacuolation compared to control tissue. In these specimens, exposure to bright light for 60 

minutes resulted in the greatest expansion and vacuolation of the basal cytoplasm area. 

 

Sheath Cells 

Sheath cell widths were measured to determine if light exposures influenced sheath cell 

size or arrangement. Observed was a significant increase in sheath cell widths in 30 and 60 

minute groups in dim and bright light exposures compared to the controls (Table 1-4; Fig. 3D, E. 

F). Sheath cells in light exposed tissues had broad and robust arrangements compared to the thin 

linear arrangements seen in the controls. In these specimens, exposure to bright light for 60 

minutes resulted in the widest sheath cell widths. 

Sheath cells from all tissue types predominately surround exterior photocyte nuclei that 

are tightly bordered by microtubule channels that sometimes contain sheath cells or other 

organelles such as mitochondria (Fig. 4) or lipids. Occasionally, control tissues displayed 

electron lucent granules migrating from photocyte nuclei centers to bordering microtubules (Fig. 

5). Additionally, lipids were often seen in close proximity to sheath cells and sometimes within a 

sheath cell (Fig. 6). 

 

Table 1. Organelle characteristics from oplophorids J. spinicauda and S. debilis exposed to 

low intensity light for 30 minutes. The control group (dark) was not exposed to light. 

Sample size (n) refers to the number of photophores that were analyzed. 

 

 

 

Basal Cytoplasm Area 254.44 ± 45.16 473.99 ± 212.83 One-Way ANOVA p =0.06

Vacuole Area 45.12 ± 10.10 54.98 ± 14.94 One-Way ANOVA p =0.13

Sheath Cell Width 0.81 ± 0.02 1.01 ± 0.01 Kruskal-Wallis, p <0.001

µm ± S.E.

Photophore Organelle Test/p value

                  Light Level                                            

Dark (n=14)             Dim (n=6)   
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Table 2. Organelle characteristics from oplophorids J. spinicauda and S. debilis exposed to 

high intensity light for 30 minutes. The control group (dark) was not exposed to light. 

Sample size (n) refers to the number of photophores that were analyzed. 

 

 

Table 3. Organelle characteristics from oplophorids J. spinicauda and S. debilis exposed to 

low intensity light for 60 minutes. The control group (dark) was not exposed to light. 

Sample size (n) refers to the number of photophores that were analyzed. 

 

Table 4. Organelle characteristics from oplophorids J. spinicauda and S. debilis exposed to 

high intensity light for 60 minutes. The control group (dark) was not exposed to light. 

Sample size (n) refers to the number of photophores that were analyzed. 

 

 

 

 

 

 

Basal Cytoplasm Area 254.44 ± 45.16 710.60 ± 98.22 One-Way ANOVA p =0.06

Vacuole Area 45.12 ± 10.10 76.47 ± 16.45 One-Way ANOVA p =0.13

Sheath Cell Width 0.81 ± 0.02 1.52 ± 0.03 Kruskal-Wallis p  <0.001

µm ± S.E.

Photophore Organelle Test/p value

                  Light Level                                            

Dark (n=14)          Bright (n=14)   

Basal Cytoplasm Area 297.2 ± 31.2 317.0 ± 85.6 One-way ANOVA, p  =0.82

Vacuole Area 76.4 ± 11.4 45.4 ± 12.5 One-way ANOVA, p  <0.001

Sheath Cell Width 0.85 ± 0.03 1.1 ± 0.07 Kruskal-Wallis, p <0.001

                  Light Level                                            

Dark (n=14)             Dim (n=6)   
µm ± S.E.

Test/p valuePhotophore Organelle

Basal Cytoplasm Area 297.2 ± 31.2 1518.9 ± 273.5 One-way ANOVA, p  =0

Vacuole Area 76.4 ± 11.4 548.5 ± 192.5 One-way ANOVA, p  <0.001

Sheath Cell Width 0.85 ± 0.03 1.8 ± 0.04 Kruskal-Wallis, p <0.001

Test/p valuePhotophore Organelle

                  Light Level                                            

Dark (n=14)          Bright (n=14)   
µm ± S.E.
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Figure 3. Cellular characteristics analyzed in oplophorid tissues from 60 minute groups. 

Basal (bracket) and vacuolated (outlined in pink) basal cytoplasm in (A) control (1,950X), 

(B) dim light (1,950X), and (C) bright light (1,450X) exposed tissues. Sheath cells (outlined 

in pink) in (D) control (2,500X), (E) dim light (4,000X), and (F) bright light (2,600X) 

exposed tissues (C cuticle, V vacuole, BC basal cytoplasm, PN photocyte nuclei, SC pigment 

sheath cell).  
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Figure 4. Microtubules in 60 minute oplophorid control tissue. Microtubule channels 

border photocyte nuclei and can contain sheath cells and mitochondria (15,000X) (MT 

microtubules, PN photocyte nuclei, SC sheath cells, M mitochondria). 

Figure 5. A, B. Oplophorid 60 minute control tissue. Translucent granules found migrating 

from the center of photocyte nuclei into surrounding microtubule channels (7,900X; 

15,000X) (G granules, PN photocyte nuclei, MT microtubules). 
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Figure 6. Lipids were found in proximity to sheath cells in all tissue types. A. Lipids in 60 

minute control tissue are seen adjacent to sheath cells and in close contact with the 

endoplasmic reticulum (13,500X). B. Lipids in 60 minute bright light exposed tissue are 

seen within sheath cells (19,000X) (PN photocyte nuclei, SC sheath cell, ER endoplasmic 

reticulum, L lipid). 

 

 

Golgi and Endoplasmic Reticulum (ER) 

Golgi and ER organelles increased in number and size in tissues exposed to light. Non-

vesiculated, small (0.5 µm) Golgi bodies were seen in control tissues, were slightly larger (1 µm) 

with vesiculated edges in dim light exposed tissues and were the largest (2 µm) and most 

severely vesiculated in bright light exposed tissues (Fig. 7A, B, C). Golgi were found in the 

cytoplasm surrounding photocytes, but ER was ubiquitous throughout the photophore, found in 

various portions of cytoplasm and throughout areas of photocyte nuclei. The controls had dense 
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patches of ER that made it hard to distinguish smooth ER from rough ER and this was also the 

case in bright light exposed tissues but due to loosened and fragmented ER morphology (Fig. 

7D, F). ER in dim light exposures was the most organized, well-defined, and prominent (Fig. 

7E).  

Figure 7. Cellular characteristics analyzed in oplophorid tissues from 60 minute groups. 

Golgi bodies (outlined in pink) in (A) control (8,000X), (B) dim light (25,000X), and (C) 

bright light (10,500X) exposed tissues. Golgi bodies were largest and most vesiculated 

(white arrowheads) in bright light exposed tissues. Endoplasmic reticulum (ER) (pink 

shading) in (D) control (4,600X), (E) dim light (5800X), and (F) bright light (5,800X) 

exposed tissues. Prominent and well-organized ER in dim light exposed tissues suggests an 

increase in cellular activity and efficient cellular function (PN photocyte nuclei, G Golgi, V 

vesicle, SC sheath cell, white arrowheads vesicles). 

  

 

Pigment Granules 

 

Due to the fact that pleopod photophores in oplophorid species used in this experiment 

are different colors, blue in S. debilis and red/orange in J. spinicauda, pigment granule diameters 

were measured and compared between species to determine if pigment granules differed in size. 
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Pigment granule diameters were significantly larger in S. debilis (n=15, mean=0.190 µm) than J. 

spinicauda (n=15, mean=0.096 µm; Mann-Whitney Wilcoxon, W=24200, p <0.001; Fig. 8A, B).  

 Figure 8. A, B. Pigment granule diameters in sheath cells from oplophorid control tissues. 

Pigment granules in (A) Systellaspis debilis were significantly larger than  pigment granules 

in (B) Janicella spinicauda (19,000X) (PN Photocyte nuclei, SC sheath cell, MT 

microtubule). 

 

 

Sergestids 

Cytoplasmic Organelles 

Due to the fact that only internal photophores were analyzed and findings were identical 

between organs and species, the data from Parasergestes armatus and Allosergestes sargassi 

were combined for this analysis. Organs of Pesta are composed of translucent tubules that 

contain epithelial cells, mitochondria, ER, Golgi, nuclei, lipids, microvilli, and microtubule 

channels that run parallel along tubule exteriors (Fig. 9). In all tissue types, amorphous material 

was occasionally present in central tubule lumens (Fig. 10). Only found in bright light exposed 

tissues were the presence of cytoplasmic organelles identical to those formed during 

photoreceptor membrane turnover in compound eyes of species from dim light environments. 

These organelles were also not found in proximal regions, and therefore only medial and distal 

regions are included in this analysis.  
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Microvilli brush borders in bright light exposed tissues produced a substantial amount of 

pinocytotic vesicles (Fig. 11A) that were associated with mitochondria and dense lipids. 

Pinocytotic vesicles were internalized into single membrane multivesicular bodies (MVBs, Fig. 

11B), that ranged in size between 0.2–3 µm. MVBs were concentrated near microvilli sites but 

could be found throughout tubule cytoplasm. Secondary lysosomes known as multilamellar 

bodies (MLBs) were less common than MVBs and ranged in sized between 0.5-10 µm. Small 

MLBs (0.5 µm) were found in all tissue types but were associated with amorphous and dense 

bodies in bright light exposed tissues (Fig. 12A, B). Additionally, only bright light exposed 

tissues contained large MLBs (5-10 µm) found in tubule lumens between the lipid diffuse layer 

and paracrystalline bodies (Fig. 13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A thin strand of pigments can sometimes be found adjacent to microtubules that 

border translucent tubule exteriors (13,500X) (P pigment, T tubule, M mitochondria, MT 

microtubule). 
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Figure 10. Vacuolar material was often seen in tubule central lumens. Dense lipids are seen 

within the nuclear envelope and nucleoplasm in an epithelial cell nucleus (7,900X) (MV 

microvilli, ELC lipids with an electron dense border and an electron lucent core, DL dense 

lipid, N nucleus, LU central lumen, asterisks vacuolar material).  

Figure 11. Cytoplasmic organelles formed in 60 minute bright light exposed organs of 

Pesta. A. Sites of pinocytotic vesicle formation at microvilli brush borders also contained 

abundant mitochondria and dense lipids (20,000X). B. Two MVBs are surrounded by dense 
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lipids and some small pinocytotic vesicles. Vesicles in the smaller MVB are more compact 

than in the larger MVB (20,000X) (M mitochondria, MV microvilli, DL dense lipid, MVB 

multivesicular body, asterisks pinocytotic vesicles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Small multilamellar structures. A. A multilamellar structure attached to 

membrane-enclosed pigment granules is seen between two tubules in control tissue 

(15,000X). B. Small multilamellar structures in bright light exposed tissues were associated 

with amorphous and dense bodies (presumably DLs) adjacent to the carotenoid pigment 

border (13,500X) (ML multilamellar structure, A amorphous body, DL dense lipid, T 

translucent tubule, MT microtubule, CPB carotenoid pigment border). 
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Figure 13. Large multilamellar bodies in the medial region of a bright light exposed 

sergestid photophore. Multilamellar bodies formed in the central lumen of translucent 

tubules. To the left of the white outline, multilamellar bodies are surrounded by a mixture 

of lipids (dense lipids and lipids with an electron dense border and an electron lucent core) 

and are surrounded by paracrystalline platelets to the right. Insert details multilamellar 

membranes and amorphous material in MLBs (2,600X) (MLB multilamellar body, PP 

paracrystalline platelet, DL dense lipid, ELC lipid with an electron dense border and an 

electron lucent core). 

 

Lipids 

In all tissue types lipids were the most common organelle found throughout tubules and the 

only organelle to come in contact with several structures including microvilli, mitochondria, 

tubule nuclei, ER, and Golgi. Due to morphological variations, lipids were grouped and analyzed 

according to electron density and will henceforth be referred to as either 1) dense lipids (DLs), 2) 
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lipids with an electron dense phospholipid layer and an electron lucent core (ELCs), or 3) 

electron lucent lipids (LLs) (Fig. 14). Lipid diameters were measured in control and bright light 

exposed tissues and were analyzed between medial and distal tubule regions.  

 

Figure 14. A rare occurrence of all three lipid types was seen in the distal region of bright 

light exposed tissue. This accurately depicts the abundance of lipid types where DLs were 

the most abundant, ELCs were moderately abundant, and LLs were the least abundant 

(2,000X) (DL dense lipid, ELC lipid with an electron dense border and an electron lucent 

core, LL electron lucent lipid). 

 

 

Electron dense lipids (DLs) 

DLs were the most ubiquitous and diversely shaped, being either circular, oblong, or 

amoeboid. DL diameters were significantly larger in bright light exposed medial and distal 

regions, compared to the controls (Table 5, 6). DL diameters were consistent in tubule regions as 

more than 90% of DLs in medial regions had diameters smaller than 1.0 µm and about half of the 

DLs in distal regions had diameters greater than 1.0 µm. The largest measured DL diameter (15 

µm) was found in the distal region of bright light exposed tissue surrounded by other large DLs 

that appeared to be sharing electron dense material (Fig 15).  
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Table 5. Diameters (µm) of dense lipid (DL) droplets in control and bright light exposed 

medial tissue regions in the sergestids P. armatus and A. sargassi. Sample size (n) is the 

number of photophores that were analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Diameters (µm) of dense lipid (DL) droplets in control and bright light exposed 

distal tissue regions in the sergestids P. armatus and A. sargassi. Sample size (n) is the 

number of photophores that were analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diameter ( µm) Percent (%) Diameter (µm) Percent (%)

0.06-0.1 6.3 0.06-0.1 22.5

0.2-0.6 65.3 0.2-0.6 61.9

0.7-1.0 21.1 0.7-1.0 8.2

≥1.1 7.3 ≥1.1 7.4

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.1-0.5 50 0.1-0.5 38.9

0.6-1.0 44.7 0.6-1.0 34.1

1.1-1.5 5.1 1.1-1.5 15.5

≥1.6 0.2 ≥1.6 11.5

DLs - Medial Region

Mann-Whitney Wilcoxon, W = 78544, p  < 0.001 *

Dark (n=4) Bright (n=9)

Mean (µm) = 0.549 Mean (µm) = 0.770

DLs - Distal Region

Mann-Whitney Wilcoxon, W = 141850, p  < 0.001 *

Dark (n=4) Bright (n=9)

Mean (µm) = 0.630 Mean (µm) = 1.174

Diameter ( µm) Percent (%) Diameter (µm) Percent (%)

0.06-0.1 6.3 0.06-0.1 22.5

0.2-0.6 65.3 0.2-0.6 61.9

0.7-1.0 21.1 0.7-1.0 8.2

≥1.1 7.3 ≥1.1 7.4

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.1-0.5 50 0.1-0.5 38.9

0.6-1.0 44.7 0.6-1.0 34.1

1.1-1.5 5.1 1.1-1.5 15.5

≥1.6 0.2 ≥1.6 11.5

DLs - Medial Region

Mann-Whitney Wilcoxon, W = 78544, p  < 0.001 *

Dark (n=4) Bright (n=9)

Mean (µm) = 0.549 Mean (µm) = 0.770

DLs - Distal Region

Mann-Whitney Wilcoxon, W = 141850, p  < 0.001 *

Dark (n=4) Bright (n=9)

Mean (µm) = 0.630 Mean (µm) = 1.174
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Figure 15. DLs in the distal region from bright light exposed tissue appear to be sharing 

electron dense material with other dense lipids. A lipid in the bottom left appears to be 

sharing this electron dense material with a tubule nucleus (2,000X) (DL dense lipid, ML 

multilamellar structure, N nucleus, red arrows electron dense material). 

 

 

 Lipids were abundant throughout hepatic photophores in both the controls and bright 

light exposures, but only in bright light exposed tissues were lipids, mainly DLs, seen in contact 

with other organelles. Cellular membranes from mitochondria, microvilli, ER, Golgi, and tubule 

nuclei were sometimes undulated, concentric, or fragmented when in contiguity with DLs. DLs 

interacted with microvilli and mitochondria at sites of pinocytotic vesicle formation (Fig. 16). 

DLs in contact with ER displayed vesicles on the phospholipid layer, but it is unclear if vesicles 

were forming and pinching off into the surrounding cytoplasm or if they were coming from the 

cytoplasm and attaching onto DL exteriors (Fig. 17). The greatest numbers of Golgi bodies were 
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seen when found with DLs, although some appeared to be fragmented (Fig. 18). Finally, DLs 

were also seen surrounding the nuclear envelope and entering the nucleoplasm of tubule nuclei 

(Fig. 19). In these instances, nuclear membranes were undulated and broken. 

 

Figure 16. Cellular interaction between DLs and other organelles in the medial region of a 

bright light exposed sergestid photophore. A. Sites of pinocytotic vesicles are surrounded 

by substantial numbers of mitochondria and dense lipids. Yellow boxes represent insets (B, 

C). B. A dense lipid in direct contact with mitochondria. C. A dense lipid is in direct 

contact with microvilli and mitochondria (8000X) (PV pinocytotic vesicles, MV microvilli, 

DL dense lipid, M mitochondria). 
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Figure 17. Distal Tubule region in a bright light exposed sergestid photophore. ER 

networks are arranged in membrane whorls (5,000X). Insert details vesicles seen on lipid 

exteriors (ER endoplasmic reticulum, DL electron dense lipids, arrows vesicles). 
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Figure 18. Tubule medial region in bright light exposed sergestid tissue. Golgi are in direct 

contact with large dense lipids. The surrounding cytoplasm contains some fragmented 

Golgi, mitochondria, and a nucleus (5,000X) (G Golgi, M mitochondria, DL dense lipid, N 

nucleus, asterisk fragmented Golgi). 
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Figure 19. Tubule medial region in sergestid tissue exposed to bright light. A nucleus is 

surrounded by dense lipids, is in contact with dense lipids at the nuclear envelope and 

contains dense lipids in the nucleoplasm (20,000X). (DL dense lipid, NE nuclear envelope, 

NP nucleoplasm). 

 

 

Lipids with an electron dense phospholipid layer and an electron lucent core (ELCs) 

ELCs were found throughout translucent tubules or within the lumen and displayed a 

mostly ameboid and fluid morphology. ELC diameters in medial regions were significantly 

greater in bright light exposed tissue compared to the controls but diameters in distal regions 

were not significantly different between tissues (Table 6-7). More than 50% of ELC diameters in 

distal regions were larger than 1 µm. Despite distal ELC diameters not being significantly 

different between control and bright light exposed tissues in distal regions, they were smaller 

than 5 µm in the controls and could measure up to 15 µm in bright light exposed tissues.  

 Like DLs, ELCs could be seen surrounding tubule nuclei, but this interaction was never 

seen causing undulated or fragmented membranes and ELCs were never found within the 

nucleoplasm. However, in bright light exposed tissues, ELCs were often seen replacing dense 

tubule tissue (Fig. 20). 
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Table 7. Diameters (µm) of lipid droplets with an electron dense phospholipid layer and an 

electron lucent core (ELC) in control and bright light exposed medial tissue regions in the 

sergestids P. armatus and A. sargassi. Sample size (n) refers to the number of photophores 

that were analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Diameters (µm) of lipid droplets with an electron dense phospholipid layer and an 

electron lucent core (ELC) in control and bright light exposed distal tissue regions in the 

sergestids P. armatus and A. sargassi. Sample size (n) refers to the number of photophores 

that were analyzed. 

 

 

 

 

 

 

 

Electron Lucent Lipids (LLs) 

LLs were exclusively located in distal tubule regions, had the largest measured lipid 

diameters in this study, and were significantly larger in tissues exposed to bright light than in 

control tissues (Table 9). LL diameters in the controls were less than or equal to 1.7 µm and 

nearly half of LL diameters in bright light exposures measured greater than 5 µm, with the 

largest diameter measuring at 25 µm.  

 

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.7-1.9 35.2 0.7-1.9 13.8

2.0-2.9 34.3 2.0-2.9 32.1

3.0-3.9 17.2 3.0-3.9 23.4

≥4.0 13.3 ≥4.0 30.7

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.1-1.0 49.2 0.1-1.0 50.2

1.1-2.0 37.3 1.1-2.0 22.9

2.1-3.9 11.7 2.1-3.9 19.8

≥4.0 1.8 ≥4.0 7.1

Mean (µm) = 1.372

Mean (µm) = 2.707 Mean (µm) = 3.616

Mean (µm) = 1.776

ELCs - Medial Region

ELCs - Distal Region

T-test, t = 8.148, p  < 0.001 *

Mann-Whitney Wilcoxon, W = 66063, p  = 0.3163

Dark (n=4) Bright (n=9)

Dark (n=4) Bright (n=9)

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.7-1.9 35.2 0.7-1.9 13.8

2.0-2.9 34.3 2.0-2.9 32.1

3.0-3.9 17.2 3.0-3.9 23.4

≥4.0 13.3 ≥4.0 30.7

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.1-1.0 49.2 0.1-1.0 50.2

1.1-2.0 37.3 1.1-2.0 22.9

2.1-3.9 11.7 2.1-3.9 19.8

≥4.0 1.8 ≥4.0 7.1

Mean (µm) = 1.372

Mean (µm) = 2.707 Mean (µm) = 3.616

Mean (µm) = 1.776

ELCs - Medial Region

ELCs - Distal Region

T-test, t = 8.148, p  < 0.001 *

Mann-Whitney Wilcoxon, W = 66063, p  = 0.3163

Dark (n=4) Bright (n=9)

Dark (n=4) Bright (n=9)
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Table 9. Diameters (µm) of electron lucent lipid (LL) droplets in control and bright light 

exposed distal regions in the sergestids P. armatus and A. sargassi. Sample size (n) refers to 

the number of photophores that were analyzed. 

 

 

 

 

 

 

 Figure 20. Outlined in red are two partial tubules from bright light exposed tissues that 

contained abundant lipids with an electron dense border and an electron lucent core in 

place of tubule tissue. Between these two tubules and an additional tubule at the top, there 

are pigments and dense lipids enclosed in a membrane structure. The nuclei in this image 

Diameter (µm) Percent (%) Diameter (µm) Percent (%)

0.1-0.6 37.8 0.1-0.6 0.8

0.7-1.0 46.4 0.7-1.0 2.3

1.1-1.6 15.3 1.1-1.6 11.4

≥1.6 0.5 ≥1.6 85.5

Bright (n=9)Dark (n=4)

Mann-Whitney Wilcoxon, W = 18987, p  < 0.001 *

LLs - Distal Region

Mean (µm) = 5.880Mean (µm) = 0.830
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may have belonged to epithelial cells if lipids are indeed replacing tubule tissue (1450X) 

(ELC lipids with an electron dense border and an electron lucent core, T/red arrows tubule, 

P/white arrowheads pigments, DL/black arrows dense lipids, LL electron lucent lipids, N 

nuclei, LU tubule lumen). 

 

 

DISCUSSION 

 

Evidence of Photophore Photosensitivity in Cuticular Pleopod Photophores 

 Basal Cytoplasm Area and Vacuolation 

The basal cytoplasm and vacuolated areas were not significantly different between 30 

minute control and dim light exposed tissues, but vacuolation significantly decreased in 60 

minute dim light exposed tissues compared to the controls. It has been suggested that an increase 

in vacuolation during dark adaptation is a mechanism cells use to store materials needed during 

the onset of light (Eguchi and Waterman 1967). This may explain why vacuolated area decreased 

significantly under dim light adaptation. The basal cytoplasm and vacuolated areas were also not 

significantly different between the controls and bright light exposed tissues in 30 minute groups, 

while tissues exposed to bright light for 60 minutes had a significant increase in both areas 

compared to the controls. This is similar to what has been found in the retinular cytoplasm of 

Libinia emarginata (Eguchi and Waterman 1967), Cirolana borealis (Nilsson and Lindström 

1983) and Jasus edwardsii (Meyer-Rochow and Tiang 1984), where vacuolation was greatest in 

tissues exposed to high-intensity light. Greater vacuolation in 60 minute bright light exposed 

tissues could indicate a depletion of resources or cellular stress. Exposure to bright light for 30 

minutes did not cause any significant changes in the area of basal cytoplasm or vacuolated area, 

suggesting that 30 minutes is not enough time to disrupt the basal cytoplasm. This is important to 

note because in a study conducted on a sergestid shrimp, a minimum of 25 minutes of dim light 

exposure (of the same intensity used in the current study for “dim” light exposures) was required 

to reach a maximum bioluminescent output during counterillumination (Latz and Case 1992). An 

expansion of retinular cytoplasm has been documented in Libinia emarginata (Meyer-Rochow 

and Tiang 1984), but the authors do not discuss the relevance of this. Since the optical properties 

of the basal cytoplasm in photophores remains inconclusive, there is little discussion that can be 
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made at this time concerning the significance of the expansion of basal cytoplasm in tissues 

exposed to high-intensity light for 60 minutes.  

 

Sheath cells 

Sheath cell widths were significantly wider in all light exposed pleopod photophores than 

in the controls, regardless of exposure time. Sheath cells are composed of ommochrome and 

carotenoid pigments (Nowel et al. 1998), the same light absorbing pigments found in crustacean 

retinas. Migration of absorbing pigments is a well-known indicator of photosensitivity since they 

readily respond to changes in illumination during photoreceptor membrane turnover. In 

photoreceptors, pigments promptly respond to the onset of light to regulate visual input and 

protect photosensitive structures from photodamage, photo-oxidation, and lipid peroxidation 

(Kleinholz 1966; Eguchi and Waterman 1967; Frixione et al.1979; Stavenga 1989; Rao 1985; 

Meyer-Rochow and Eguchi 1986; Shelton et al. 1986; reviewed in Hallberg and Elofsson 1989; 

Dontsov et al. 1999; Meyer-Rochow 2001; reviewed in Gruszecki and Strzalka 2005). Absorbing 

pigment granules in photophores likely use microtubules as their main method of transportation 

into sheath cells as they were consistently seen in, or adjacent to, microtubules that border all 

photocyte nuclei. Microtubules are an accepted mode of transportation for several cellular 

structures, including photoreceptor pigments that must be mobile to adjust their proximity to 

photosensitive structures (Frixione et al. 1979; Schliwa and Euteneuer 1983; Meyer-Rochow and 

Eguchi 1986).  

Electron lucent granules sometimes seen migrating from photocyte nuclei centers to 

exterior microtubule channels may indicate a possible pathway for pigment granule or 

photoprotein synthesis. The endoplasmic reticulum (ER) is crucial for pigment granule 

production and photoprotein synthesis (White and Sundeen 1967; Behrens and Krebs 1976; Itaya 

1976; Meyer-Rochow and Lindström 1988; Schwemer 1989), which possibly explains its 

prominence across photocyte nuclei. The proteins and enzymes used to synthesize these 

components may vary between species as this study raises the possibility that oplophorids may 

possess several different types of screening pigments. This supposition is based on 1) different 

colored cuticular lenses, i.e. dark blue/violet in Systellaspis debilis and orange/red in Janicella 

spinicauda and 2) significantly larger and various sized pigment granules in S. debilis. 

Additionally, carotenoids are a diverse secretory granule with over 750 different types (reviewed 
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in Gruszecki and Strzalka 2005) that vary between antioxidant properties, photodamage 

protection, photon wavelength absorption, and cellular responses to light (Dontsov et al. 1999).  

Lipids remained in proximity to sheath cells in all tissue types. Like carotenoids, lipids 

also display incredible diversity as over 1,000 different lipid types exist in eukaryotic cells 

(reviewed in Helle et al. 2013). In addition to the ER, lipids may also influence the production of 

pigments or photoproteins since lipids and carotenoids have morphological similarities which 

include a hydrophobic core surrounded by a phospholipid layer. The phospholipid layer can 

contain any number or assortment of proteins and enzymes (reviewed in Murphy and Vance 

1999, Yang et al. 2012) which profoundly influences the synthesis and regulation of cellular 

membranes (reviewed in Gruszecki and Strzalka 2005, Schuldiner and Bohnert 2017). 

Identifying the impact of lipids on cellular processes, gene expression in lipids and pigments, and 

how proteins and enzymes are signaled to bind to phospholipid layers, may identify cellular 

pathways and contribute to the mechanism of counterillumination. 

 

Golgi apparatus and Endoplasmic Reticulum (ER) 

Golgi bodies were present in all tissue types. However, they became larger and more 

vesiculated as light intensity and exposure time increased. Also seen in all tissue types was ER 

that ranged in morphology from dense aggregations in the controls, to well-organized and well-

defined in dim light exposed tissues, to swollen, fragmented, and loosely arranged in tissues 

exposed to bright light. Golgi and ER typically multiply during the onset of light in 

photoreceptors due to elevated levels of cellular activity and energy requirements (White and 

Sundeen 1967; Behrens and Krebs 1976; Itaya 1976; Blest and Day 1978; Blest et al. 1980; 

Nilsson and Lindström 1983; Shelton et al. 1986; Meyer-Rochow and Lindström 1988) to 

synthesize membranes, lipids (Thiam 2017), visual pigments, and proteins (Eguchi and 

Waterman 1967; Itaya 1976; Stowe 1980; Meyer-Rochow and Lindström 1988; Schwemer 1989; 

Meyer-Rochow 2001). However, vesiculated Golgi, fragmented ER, and hypertrophy of both 

organelles, as seen in 60 minute bright light exposed tissues, indicates disrupted cellular 

processes likely due to damaging levels of light exposure (Nilsson and Lindström 1983).  
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Evidence of Photophore Photosensitivity in Internal Organs of Pesta 

 Complex Cytoplasmic Organelles 

Pigments outside the proximal region border external tubules through the medial region 

on their lateral sides but provided no evidence of change in pigment distribution or production in 

any tissue. Pigments were consistently arranged as unilateral strands that were not continuous 

along tubules, but rather sporadically placed. Contrary to pigment distributions, lipids were 

ubiquitous and diverse throughout tubules, suggesting that hepatic photophores may heavily 

depend on the production and distribution of lipids rather than pigments. While organs of Pesta 

did not show any indication of pigment migration, the presence of complex cytoplasmic 

organelles found only in bright light exposed tissues are morphologically identical to those 

formed during photoreceptor membrane turnover in visual systems, as discussed below.  

Microvilli brush borders at tubule centers produced a substantial number of pinocytotic 

vesicles in bright light exposed tissues. These sites had an abundance of associated organelles 

such as mitochondria, dense lipids, and multivesicular bodies (MVBs). In crustacean retinas, 

exhausted photosensitive membranes composed of microvilli break down into pinocytotic 

vesicles, enter the retinular cytoplasm, and are taken up by MVBs via secondary endocytosis 

(Eguchi and Waterman 1976; Blest et al. 1980; Cronin and Goldsmith 1982). Photosensitive 

membranes continue to break down in MVBs with the help of degrative enzymes. Once MVBs 

acquire lysosomal enzymes derived from the ER and Golgi, multilamellar bodies (MLBs) form 

(Eguchi and Waterman 1967, 1976; Blest 1978; Blest et al. 1980; Hafner et al. 1980; Stowe 

1980; Nilsson and Lindström 1983; Schraermeyer and Stieve 1991). The formation of MVBs and 

MLBs in bright light exposed hepatic photophores suggests that microvilli brush borders may 

contain photosensitive proteins. 

Two types of multilamellar structures were seen in organs of Pesta: 1) small MLBs (0.5 

µm), found in tubule cytoplasm in all tissues, that had less than four lamellar inclusions and a 

virtually empty center and 2) large MLBs (5–10 µm) that were exclusively seen in bright light 

exposed tissues, located in tubule centers between the diffuse lipid layer and paracrystalline 

platelets, contained several lamellar inclusions and electron lucent material. In photoreceptor 

retinas, MLBs further degrade photosensitive membranes using a series of enzymes (Blest et al. 

1980), but evidence also suggests that they aid in photopigment synthesis, i.e. ommochromes 
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used in photoregeneration of metarhodopsins back to rhodopsins (Eguchi and Waterman 1967; 

Meyer-Rochow 1985; Schraermeyer and Stieve 1991), and energy storage (Meyer-Rochow 

1985), which may explain the presence of MLBs in control tissues. In the late stages of 

degradative membrane turnover, additional enzymes in MLBs accumulate, condense, and 

undergo a series of electron dense reactions to form amorphous and dense bodies (Eguchi and 

Waterman 1967; Itaya 1976; Blest et al. 1980; Hafner et al. 1980; Stowe 1983; Doughtie and 

Rao 1984). This same sequence was found in internal photophores exposed to bright light. The 

true nature of these ‘dense bodies’ has been hypothesized to be either lipids or lipofuscin 

granules (Schraermeyer and Stieve 1991) but this has yet to be confirmed. The complex 

cytoplasmic organelles formed in bright light exposed internal organs are identical to those 

formed during photoreceptor membrane turnover and provide ultrastructural evidence of 

photosensitivity in internal photophores. 

 

Photoreceptor Membrane Turnover 

Photoreceptor membrane turnover is a widely accepted and extensively documented 

process in dim-light adapted arthropod compound eyes. This process is initiated by shifts in 

illumination and alters ultrastructure in several ways for the purpose of protecting, removing, and 

renewing photosensitive structures (Eguchi and Waterman 1967, 1976; White and Sundeen 

1967; Behrens and Krebs 1976; Itaya 1976; Loew 1976; Blest and Day 1978; Blest et al. 1980; 

Hafner et al. 1980; Stowe 1981; Toh and Waterman 1982; Nilsson 1982; Nilsson and Lindström 

1983; Stowe 1983; Doughtie and Rao 1984; Meyer-Rochow 1985; Shelton et al. 1985; Ball et al. 

1986; Meyer-Rochow and Lindström 1988; Schwemer 1989; Stowe et al. 1990; Schraermeyer 

and Stieve 1991; Meyer-Rochow 2001). The turnover process is identified by the following 

sequential phases: 1) screening pigment migration, 2) pinocytotic vesicle formation via 

microvilli, Golgi, and ER (Novikoff et al. 1964; Blest et al. 1980), 3) secondary endocytosis of 

pinocytotic vesicles into multivesicular bodies (MVBs), 4) the accumulation of acid phosphatase 

in the late stages of MVBs to form secondary lysosomes, 5) such as combination bodies (CBs), 

and 6) multilamellar bodies (MLBs), that condense to form 7) amorphous bodies, 8) dense 

bodies, and finally, 9) lipids. This process naturally occurs in sync with an animal’s circadian 

rhythm, but high-intensity light, i.e. light levels that exceed those in an animal’s natural habitat, 

dramatically increases the formation of cytoplasmic organelles and disruption in the morphology 
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of photosensitive organelles. Cytoplasmic organelles representing those formed during 

photoreceptor membrane turnover were found in tissues exposed to bright light from 

anterolateral, posteromedial, and posterolateral organs of Pesta, but were not seen in the controls, 

and therefore provides further evidence of photosensitivity in internal photophores.  

 

Golgi and Endoplasmic Reticulum (ER) 

Golgi and ER were not prominent in the controls but were abundant in bright light 

exposed tissues. As previously mentioned, the increased quantities of Golgi and ER indicate high 

energy levels needed for cellular activity. Unlike cuticular photophores, these structures in 

hepatic photophores did not show signs of hypertrophy, vesiculation in Golgi, or fragmentation 

in the ER. However, ER in bright light exposed tissues commonly displayed membrane whorls 

which is an indicator of light-induced stress in photoreceptors (Behrens and Krebs 1976; Itaya 

1976; Loew 1976; Blest and Day 1978; Nilsson and Lindström 1983; Meyer-Rochow 1985; 

Shelton et al. 1985) linked to imbalances between membrane destruction and renewal (Behrens 

and Krebs 1976; Stowe 1981), protein and lipid synthesis, and/or the disturbance of membrane 

precursors or lysosome functions (Hafner et al. 1980). Additionally, these structures were always 

associated with dense lipids. 

 

Lipids 

Lipids were the most common and diverse organelle found throughout tubule regions in 

all tissue types. Bright light exposed tissues resulted in significantly larger lipid diameters (with 

the exception of ELCs from distal regions), an increase in the number and size of ER and Golgi 

bodies, and widespread lipid to organelle contact. Lipid diversity would allow for a greater 

refractive index of light (Meyer 1979) which may be enhanced by increasing lipid diameters 

during the onset of light (Johnsen and Widder 1999). DLs had extensive contact with organelles 

including, but not limited to, mitochondria, microvilli, tubule nuclei, ER, Golgi, and other lipids. 

Lipid to organelle associations may be physiologically important for cellular activity, as recently 

suggested in several proteomic reviews in cellular biology (reviewed in Gao and Goodman 2015, 

Schuldiner and Bohnert 2017).  
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Golgi and ER organelles were only found when they were in contact with, or in proximity 

to, dense lipids. Since the ER is the main site of lipid body formation in plants, animals, and 

microorganisms due to the enzymes and proteins produced in ER systems (reviewed in Murphy 

and Vance 1999), lipids remain in contact with the ER throughout the lipid lifecycle, for the 

purpose of lipid and protein trafficking and to respond to ER stress and ER-associated 

degradation (reviewed in Gao and Goodman 2015). Additionally, the association of Golgi and 

lipids is a known indicator of increased cellular activity (reviewed in Schuldiner and Bohnert 

2017; Thiam and Beller 2017). However, 60 minute exposures to bright light resulted in Golgi 

bodies that were partially fragmented and ER that displayed membrane whorls, morphologies 

that are both indicative of cellular stress (Nilsson and Lindström 1983) and may possibly 

indicate disturbances in either vesicular trafficking or the transport of cellular materials 

(reviewed in De Matteis and Rega 2015, Thiam and Beller 2017). Therefore, under exposure to 

high intensity light, ER and Golgi bodies may rely on lipids to carry out cellular processes. 

Vesicular trafficking relies on communication between the ER and Golgi. If interrupted 

then a non-vesicular trafficking method is initiated to continue cellular functions, i.e. organelle 

communication, material exchange, etc. (reviewed in Schuldiner and Bohnert 2017). Non-

vesicular trafficking uses lipids to establish contact sites with organelles to maintain cellular 

homeostasis, membrane biosynthesis, metabolism, and protein regulation (reviewed in Helle et 

al. 2013, De Matteis and Rega 2015, Gao and Goodman 2015, Thiam and Beller 2017) and may 

explain the vast contact between lipids and organelles in bright light exposed tissues. 

In all tissues DLs and ELCs were seen in contact with nuclear envelopes, but DLs could 

also be found within the nucleoplasm. This may be a normal occurrence since 1) this was seen in 

all tissue types, 2) the ER is continuous with the nucleus of a cell and responsible for lipid-

biogenesis, and 3) there are shared proteins between lipids and nuclei for nuclear-droplet 

communication and chromatin remodeling (reviewed in Gao and Goodman 2015, Welte 2015). 

DLs and ELCs were also in contact with mitochondria, a vital organelle for cellular function. It 

was recently discovered that despite the ability of mitochondria to synthesize most of its own 

proteins, some are only obtained through contact with the ER, vacuoles, or lipids (reviewed in 

Lahiri et al. 2016). Mitochondria may also be capable of transferring lipids to other organelles, 

such as plasma membranes, Golgi, and melanosomes, and be used as an additional source of 

non-vesicular trafficking. 
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Non-vesicular trafficking is driven by the enzymes and proteins in the phospholipid 

monolayer of lipids which directly influence 1) lipid synthesis, morphology, and size, 2) energy 

storage, 3) organelle degradation (including neutral lipid degradation), 4) the removal of 

inclusion bodies, 5) organelle transport, 6) organelle associations, 7) cellular and lipid 

metabolism, and 8) membrane synthesis (reviewed in Walther and Farese Jr. 2012, Yang et al. 

2012, Schuldiner and Bohnert 2017). Microvilli membranes in crustacean rhabdoms are 

composed of photopigment and phospholipids (Eguchi and Waterman 1976; Meyer-Rochow and 

Eguchi 1984; Meyer-Rochow 2001). When these components are stimulated by photons, they 

enable vision through interactions with proteins, such as G-proteins, and ion channels, especially 

𝐶𝑎2+-ions that are stored in visual pigments (Meyer-Rochow 2001; reviewed in Kingston and 

Cronin 2016). The phospholipid monolayer in lipids contains enzymes and up to 160 different 

types of proteins (Bartz et al. 2007) that influence lipid to organelle contact (reviewed in Walther 

and Farese Jr. 2012) and may suggest that lipids contribute to a number of cellular processes in 

hepatic photophores. 

The proposed role of lipids in photoreceptor membrane turnover has typically been that 

of membrane breakdown via lipid peroxidation (Blest et al. 1980; Doughtie and Rao 1984), but 

Kashiwagi et al. (1997) determined that the fatty acids most likely to cause lipid peroxidation 

were reduced within the first two hours of light exposure and were not responsible for long-term 

damage to photosensitive membranes. New hypotheses consider lipid peroxidation in 

photoreceptors to be a complex process influenced by a combination of factors such as the 

number of visual proteins (G-proteins), 𝐶𝑎2+ ions, and phospholipid composition in membrane-

bound organelles (Meyer-Rochow et al. 2000). Additionally, current biological research 

indicates that lipids are crucial components for cellular activity (reviewed in Schuldiner and 

Bohnert 2017), and therefore should be further investigated in autogenic photophores to better 

develop our understanding of the mechanisms of counterillumination. While lipid diameters in 

dense lipids (DLs), lipids with an electron dense phospholipid layer and an electron lucent core 

(ELCs), and electron lucent lipids (LLs) were significantly larger in tubule regions in tissues 

exposed to bright light, no conclusions can be drawn about these results without confirming the 

identity of proteins in the lipid membrane or of amino acids contained in the hydrophobic core. 

Although, most of the evidence pertaining to the effects of light on lipids in visual systems 
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remains inconclusive, the interaction of lipids with several organelles in organs of Pesta suggests 

that lipids play an important role in the function of autogenic photophores. 

 

CONCLUSION  

In both Janicella spinicauda and Systellaspis debilis, basal and vacuolated basal 

cytoplasm areas and sheath cell widths significantly increased in size in response to bright light 

exposure for 60 minutes. In addition, Golgi bodies and the endoplasmic reticulum increased in 

number and size with increasing light intensity and exposure times, but at the greatest light 

intensity and exposure time, Golgi became severely vesiculated and the endoplasmic reticulum 

was swollen and fragmented. These findings in Oplophoridae species provides strong 

ultrastructural evidence of light sensitivity in cuticular pleopod photophores. The presence of 

complex cytoplasmic organelles in bright light exposed hepatic photophores (organs of Pesta) in 

two Sergestidae species, Parasergestes armatus and Allosergestes sargassi, presents strong 

evidence of photosensitive tissue since organelles were identical to those formed at the onset of 

light during photoreceptor membrane turnover. The results of this study also indicate that organs 

of Pesta may rely on lipids for several cellular processes during light exposure, as the lipids 

moved into direct contact with several key organelles (microvilli, mitochondria, endoplasmic 

reticulum, Golgi apparatus, and tubule nuclei) during the onset of light. Further information on 

the mechanisms of counterillumination may reside in the formation, transportation, function, and 

organelle association of lipids as this structure was extensively found in all photophores 

investigated in this study. 
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