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Abstract 

Corals are frequently exposed to elevated turbidity and deposited sediment caused from coastal 

construction, dredging, and/or beach renourishment. This study addresses the effects of turbidity 

and deposited sediment on the survival and growth of newly settled and 6-week-old Orbicella 

faveolata recruits and disentangles the effects of turbidity and deposited sediment. We conducted 

two experiments in which newly settled coral recruits were reared in one of ten different 

turbidity and deposited sediment treatments for five weeks (0 NTU/ 0 mg cm-2, 3.4 NTU/ 0 mg 

cm-2, 8.2 NTU/ 0 mg cm-2, 16 NTU/ 0 mg cm-2, 29.1 NTU/ 0 mg cm-2, 0 NTU/ 0 mg cm-2, 3.4 

NTU/ 27.7 mg cm-2, 8.2 NTU/ 50 mg cm-2, 16 NTU/ 101 mg cm-2, 29.1 NTU/ 220 mg cm-2). The 

highest turbidity treatment in the absence of deposited sediment (29.1 NTU/ 0 mg cm-2) had the 

best survival, suggesting that turbidity in the absence of sediment is beneficial to coral recruits, 

as it decreases harmful light levels. However, when recruits were exposed to both turbidity and 

deposited sediment, representative of normal coastal construction conditions, high turbidity when 

coupled with deposited sediment (16 NTU/ 101 mg cm-2 and 29.1 NTU/ 220 mg cm-2) had 

negative effects on coral recruits. Based on the results from the first experiment, the experiment 

was repeated with six-week-old symbiotic recruits for two weeks to determine if the sensitivity 

to light and benefits of high turbidity were related to the presence of symbionts. Six-week-old 

recruits also had the highest survival in the highest turbidity treatment, suggesting that light 

sensitivity by coral recruits is not dependent on the presence of symbionts within the first six 

weeks post-settlement. While the low light associated with turbidity increases recruit survival, 

turbidity is a proxy for deposited sediment, which has negative effects on coral recruits. Based 

on the results from this study, regulations should prevent turbidity from exceeding 8.2 NTU to 

prevent excessive deposited sediment on coral reefs, and its deleterious effects on corals.   

Keywords: turbidity, deposited sediment, dredging, coral, recruits 
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Introduction 

Coral reefs are economically and ecologically important, providing over 30 billion dollars 

to the global economy in goods and ecosystem services (Moberg and Folke 1999; Cesar et al. 

2003). Coral reefs are home to a diverse range of species (Connell 1978). Although coral reefs 

only occupy 0.1% of all marine environments (Spalding and Grenfell 1997), they are home to 

25% of all marine fish species (Spalding et al. 2001). The biodiversity on coral reefs supports 

fisheries and tourism worldwide, providing $5.7 billion and $9.6 billion, respectively, to the 

global economy (Cesar et al. 2003). More than 100 countries border coral reefs and the tens of 

millions of people that populate coasts rely on coral reef resources for their livelihood (Sadovy 

2005). Also, along coastlines coral reefs serve as physical buffers and prevent wave action and 

coastal erosion (Kunkel et al. 2006).  In addition, scientists have discovered promising 

biochemical compounds on coral reefs for treatment of common medical ailments, such as 

cancer, AIDS, and inflammation (Proksch et al. 2002).   

Despite their importance, coral reefs are rapidly declining due to global and local 

stressors worldwide (Bellwood et al. 2004; Knowlton and Jackson 2008; Carilli et al. 2009). 

Rising greenhouse gas emissions have resulted in global ocean warming and acidification 

(Hughes et al. 2003). High sea temperatures cause corals to expel their symbiotic algae (coral 

bleaching), which decreases coral growth and reproduction, and often results in wide-spread 

coral death (Baird & Marshall, 2002; Hoegh-Guldberg et al. 2007; Hughes et al. 2018). Carbon 

dioxide in the atmosphere is absorbed by the ocean, reducing its overall pH and availability of 

carbonate ions, which decreases coral growth rates (Hoegh-Guldberg et al. 2007; Kroeker et al 

2013). In addition to these global stressors, the input of excess nutrients into coastal water causes 

eutrophication and promotes macroalgal cover on coral reefs (Bell 1992; Fabricius 2005). 

Overfishing of herbivorous fishes removes grazers from the reef, which further facilitates 

macroalgal growth (Hughes et al. 2007). Regime shifts to algal-dominated reefs ultimately 

reduces coral recruitment and survival from competition and smothering (Ogden and Lobel 

1978; Hughes et al. 2007). Coral reefs are also vulnerable to coastal construction, particularly 

dredging and beach renourishment projects. These activities increase water turbidity and 

deposited sediment, which have detrimental impacts on reefs (Erftemeijer et al. 2012). To 



maximize coral resilience to global climate change, it is imperative to control local stressors 

(Carilli et al. 2009; Fourney and Figueiredo 2017).  

Turbidity is a measure of water ‘cloudiness’, or the intensity of light scattered by 

suspended particles in the water column, and is often measured in Nephelometric Turbidity Units 

(NTU). Coral reefs are exposed to natural variations in turbidity (Jouon et al. 2008). However, 

the sediment that occurs naturally on reefs is coarse and heavy, and thus, even during severe 

storms, turbidity levels do not remain high for a very long period of time, as the coarse sediment 

quickly settles out. Contrarily, the sediment generated during coastal construction is finer and 

remains in the water column for an extended period of time due to constant particle resuspension, 

which elevates turbidity (Erftemeijer et al. 2012).  Turbidity in more pristine tropical reefs 

typically ranges from 0-3 NTU (Fichez et al. 2010; Fabricius et al. 2013). In South Florida, 

natural turbidity levels, range from 0-1 NTUs (Boyer & Briceno 2015), however, the 

Environmental Protection Agency (EPA) allows coastal construction projects to increase 

turbidity up to 29 NTU above background turbidity (U.S. EPA 1988), for the entire duration of 

the project.  

Elevated turbidity from suspended particles has been shown to negatively impact adult 

corals by reducing their access to light (Fabricius 2005; Pollock et al. 2014; Miller et al 2016). 

Corals require light because they host algal dinoflagellates, Symbiodiniaceae, that provide corals 

with energy for survival. Reduced light diminishes the ability of the Symbiodiniaceae to 

photosynthesize. As a result, elevated turbidity has been shown to reduce adult coral growth and 

calcification rates, increase respiration rates, and decrease survival (Telesnicki and Goldberg 

1995; Kleypas et al. 1999, Flores et al. 2012). The ability of corals to cope with turbid water is 

species-specific and varies across geographic locations (Anthony and Connolly 2004). Some 

species show deleterious effects of elevated turbidity within 24 h of exposure, while other 

species may not see impacts until a few days or weeks after (Kendall et al. 1983; Negri et al. 

2009). Switching from autotrophy to heterotrophy when light transmittance is low (Anthony and 

Larcombe 2000) is a common resistance mechanism. Corals living in areas where turbidity 

naturally fluctuates due to storms or runoff can better withstand turbidity caused by 

anthropogenic actions (Nieuwaal 2001). However, the constant resuspension of particles into the 



water column can increase turbidity for an extended period of time, which can eventually 

threaten even tolerant species. 

Coastal construction also increases the amount of sediment depositing onto the corals, 

blocking access to light, obstructing polyps from collecting food, and in high quantities, 

smothering them (Rogers 1990; Fabricius 2005; Erftemeijer et al. 2012). To slough off excess 

sediment from their polyps, corals can secrete mucous. However, chronic sedimentation and 

mucous production will exhaust corals and deplete their energy reserves, which may already be 

depleted by low light conditions (Riegl and Branch 1995; Fabricius and Wolanski 2000; Crabbe 

and Smith 2005; Sheridan et al. 2014). Impaired heterotrophic feeding further depletes the 

corals’ energy reserves, significantly reducing coral growth and survival (Riegl and Branch 

1995; Crabbe and Smith 2005; Fabricius 2005; Erftemeijer et al. 2012; Sheridan et al. 2014). 

When the deposited sediment has a high proportion of fine particles, particularly silt, and is 

nutrient rich, it promotes bacterial growth and creates an anoxic environment around the corals 

in which shortly leads to tissue necrosis and coral death (Weber et al. 2006). 

The detrimental effects of sediment and turbidity are even more severely felt in coral 

recruits. High sediment exposure has been shown to have negative impacts on the early life 

history stages of corals, decreasing fertilization success, larval development, and settlement 

(Jones et al. 2015). After settlement, the small size of recruits (<1 mm diameter) makes them 

more vulnerable to elevated sedimentation (Fabricius et al. 2003; Jones et al. 2015; Moeller et al. 

2017). Even low amounts of deposited sediment will be sufficient to block the coral polyps and 

thus prevent them from feeding. As recruits have very little energy reserves, they cannot 

withstand long period of starvation. Equally, their small size makes them more vulnerable to 

smothering from high deposited sediment. Natural survival rates of coral recruits are already 

very low (Smith 1992; Penin et al. 2010), thus any increase in mortality due to increased 

turbidity and sedimentation can be completely jeopardize the persistence of the population.  

While much of the damage caused by turbidity (via reduced light) and sedimentation (via 

blocked polyps) is determined by the Symbiodinacea within coral tissues, the establishment of 

this relationship is variable among coral recruits, which may lead to variability in relative 

susceptibility to these stressors for different individuals and species. For broadcast spawning 

species, recruits often acquire their algal symbionts from the water column or nearby sediment  



(i.e. horizontal transmission) within the first few weeks of settling (Adams et al. 2009). In the 

time before the acquisition of symbionts, it is possible that turbidity might be beneficial for 

recruits, as it can reduce the risk of tissue damage from dangerously high light levels (Robbins 

2018). Symbionts contain mycrosporine-like amino acids (MAAs), which can protect corals 

from high light (Yuyama and Hidaka 2004). Since newly settled aposymbiotic recruits do not yet 

possess these MAAs, they are extremely vulnerable to light, thus the light low light associated 

with turbidity might be beneficial to these recruits.  However, turbidity on reefs is always 

accompanied by an increase in deposited sediment (Pavanelli and Bigi 2005), which might 

hinder the heterotrophic abilities of pre-symbiotic recruits. Without the Symbioniacea to 

compensate for this loss of food energy, the additive effects of turbidity and deposited sediment 

will likely negatively impact pre-symbiotic recruits over all. Alternatively, in coral recruits that 

have established symbionts, the opposite might be true: high turbidity might impair the 

photosynthetic efficiency of these MAA containing symbionts, causing their residency within the 

coral tissues to become parasitic to the host and ultimately impair their survival or growth, while 

also potentially aiding in energy production (though diminished) at times of sedimentation and a 

cessation of heterotrophic feeding. Previous studies have demonstrated that newly settled coral 

recruits are more sensitive to both high deposited sediment and high light than adults (Fabricius 

2005; Abrego et al. 2012). However, it is unknown how the effects of high turbidity and/or 

deposited sediment might differ between recruits because of the presence/absence of 

Symbiodiniaceae. 

This study investigates the singular effects of turbidity and the combined effects of 

turbidity and deposited sediment on newly settled Orbicella faveolata recruits. This assessment 

is important to determine the threshold tolerance of coral recruits to elevated turbidity and the 

associated deposited sediment levels during coastal construction activities. Additionally, the 

experiments were performed on both newly settled (pre-symbiotic) and six-week-old (symbiotic) 

coral recruits to determine if the presence of Symbiodiniacea influenced the response to these 

stressors. The outcomes of this study will assist local managers to regulate allowable turbidity 

and associated deposited levels during coastal construction activities, such as dredging of ports 

or beach renourishment. For coral populations to persist in the future, it is important that 

regulations of maximum allowable turbidity levels are suitable for the survival and growth of 

both adult and coral recruits. 



Methods 
Study Species 

 Orbicella faveolata (previously named Montastraea faveolata; Fig 1 and 2), are boulder 

corals common along the Florida reef tract and throughout the Caribbean (Chiappone and 

Sullivan 1996). This species has severely declined within the past 20 years and is listed as 

endangered by the International Union for Conservation of Nature (Aronson et al. 2008) and 

threatened by the Endangered Species Act. Colonies can grow up to 10 m in diameter and 

occupy shallow habitats, 1-10 m depth (Szmant et al. 1997). It is a hermaphroditic broadcast 

spawner and typically spawns 2.5 hours after sunset 6-7 days after the full moon in August 

and/or September (Sánchez et al. 1999).  

  

Spawning and Larval Settlement 

Orbicella faveolata gametes were collected in the field on August 2, 2018 in Key Largo, 

Florida. Gamete bundles were collected by temporarily placing a mesh tent with a collection 

container attached to the top over the adult coral colonies when setting was observed. Once the 

corals released gamete bundles, which are positively buoyant, they floated to the surface and into 

the collection container. The eggs and sperm from different colonies were combined and after 

approximately 120 minutes a series of dilutions using a gravy separator were performed in order 

to prevent polyspermy. The embryos were reared to the larval stage under ambient conditions 

(29°C) in polystyrene containers at a density of <1 embryo/mL with 1m filtered, sterilized 

seawater. Water changes were performed daily. 

NOAA 

Figure 1. Six-week-old Orbicella faveolata 

recruits 

 

Figure 2. Adult Orbicella faveolata colony 



Once the larvae became competent (i.e. ready to settle and metamorphose, about 2 days 

after fertilization), settlement tiles were added to the polystyrene containers and sprinkled with 

crustose coralline algae, a known settlement cue for coral larvae. Approximately 1000 larvae 

were poured into each container, which were then placed in water baths with a heater set at 

ambient temperature (29°C) and two submersible pumps to homogenize the temperature (Fig 3). 

After 48 h, the tiles were checked for settlement and metamorphosis. Each tile was photographed 

under an Olympus stereoscope with a LC-20 Olympus camera, and the program cellSens was 

used to measure the coral surface area. The tiles were then randomly assigned to an experimental 

treatment. 

 

 

Sediment Collection and turbidity measurements 

 The sediment was collected in the Guy Harvey Oceanographic Center’s boat basin from 

the top 10-20 cm of the sediment layer via SCUBA and was placed in a drying oven at 70°C for 

a minimum of 72 h to remove moisture and kill any microscopic organisms. The sediment was 

then passed through a series of sieves and classified based on grain size composition according 

Figure 3. Polystyrene containers containing settlement tiles and 

coral larvae in a water bath. 

 



to the Udden-Wentworth Sediment Classification Scale (Wentworth 1922) and then all grain 

sizes were combined again to mimic the natural sediment composition of the boat basin. This 

assured that the sediment grain size composition was constant throughout each treatment (0.23% 

>2000 μm, 3.84% 500-2000 μm, 50.81% 180-500 μm, 37.01% 63-180 μm, 8.19% <63 μm). 

 A preliminary study was performed to determine how much sediment should be added to 

each tank in order to reach the desired turbidity level and to determine the respective deposited 

sediment. A known amount of sediment was added to a tank with two submersible pumps and 

the turbidity levels were measured hourly with a LaMotte 2020we turbidimeter in Nephelometric 

Turbidity Units for one week before and after 100% and 50% water changes due to resuspension 

of sediment. The relationship between sediment added and associated turbidity was calculated 

using a linear regression, which was used to determine the amount of sediment necessary to 

reach the desired turbidities (3.75, 7.5, 15, and 30 NTU). Once the sediment necessary for the 

desired turbidity levels was calculated, the sediment was added to a tank where turbidity was 

measured before and after water changes for 96 hours. The values obtained following the 50% 

water change at 48 hours were replicated again at 96 hours and 120 hours in order to observe 

how the turbidity changed over of the course of a week within each treatment (Fig 4a). Boxplots 

were created and the interquartile range (middle 50% of the observations) was calculated to 

determine the range of turbidity the recruits were exposed to for 50% of the week (Fig 4b). The 

low turbidity treatment had a median of 3.4 NTU, with an interquartile range of 2.16-4.7 NTU, 

intermediate turbidity had a median of 8.2 NTU, with an interquartile range of 5.55-10.67, the 

high turbidity treatment had a median turbidity of 16 NTU with an interquartile range of 12.11-

19.91, and the allowable turbidity had a median of 29.1 NTU with an interquartile range of 

24.34-33.85. To measure deposited sediment associated with each desired turbidity, sediment 

traps (i.e. petri dish) were placed into the tanks before sediment was added. Sediment was then 

added to the tanks and after 24 h, the petri dishes were removed and the sediment within each 

dish was dried and weighed to determine the amount of sediment deposited per cm2 in 24 hours. 

The average deposited sediment associated with the turbidity values were 27.7, 50, 101, 220 mg 

cm-2 for 3.4, 8.2, 16, and 29.1 NTU, respectively. 
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Figure 4. Turbidity variation in all experimental treatments (a) turbidity measured in each 

treatment over one week with one 100% water change and three 50% water changes. 

b) Boxplots of the four different turbidity treatments with the interquartile range 

representing the turbidity corals were exposed to 50% of the time. 
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Experimental Design 

 To assess the effect of turbidity and deposited sediment concentration on newly settled 

coral recruits, newly settled corals were reared under 10 different sedimentation/turbidity levels: 

0 NTU/ 0 mg cm-2, 0 NTU/ 0 mg cm-2, 3.4 NTU/ 0 mg cm-2, 3.4 NTU/ 27.7 mg cm-2, 8.2 NTU/ 0 

mg cm-2, 8.2 NTU/ 50 mg cm-2, 16 NTU/ 0 mg cm-2, 16 NTU/ 101 mg cm-2, 29.1 NTU/ 0 mg 

cm-2, 29.1 NTU/ 220 mg cm-2. Each treatment was replicated in two tanks, with 30 coral recruits 

per tank (N = 60/treatment) (Fig 5). These turbidity levels and their associated deposited 

sediment values were chosen because undisturbed reefs exposed to natural sediment have a 

turbidity of 0-1 NTU and the EPA currently allows an increase up to 29 NTU above background 

turbidity during dredging, making the total allowable turbidity ~30 NTU (U.S. EPA 1988; Boyer 

& Briceno 2015).  

 Within each tank, 30 recruits on tiles were suspended upside-down (i.e. exposed to 

turbidity only, free of deposited sediment) and 30 recruits on tiles were placed on the tank 

bottom (exposed to turbidity and deposited sediment) (Fig 6). The tiles suspended upside down 

were attached to plastic egg crates with Velcro and wires attached to the tank kept the crates 

stable. This allowed for the tiles to be suspended upside down in the water while still capable of 

removal for weekly measurements. Aqua Illumination Sol LED lights were set so that all corals 

regardless of their orientation and in the absence of sediment, were exposed to measure 20 µm 

photons.cm-2s-1, typical of crevices were larvae typically settle (Frade et al. 2008); this was 

possible because the tank used is white and the suspended egg crate tray with upside down corals 

slightly shaded the corals facing upwards. Each tank contained a heater which was set to ambient 

temperature and two SunSun JP-032 submersible pumps to mimic natural water movement and 

homogenize temperature in the tank. In addition, an adult coral fragment was placed in each tank 

in order to introduce Symbiodiniacea to the newly settled aposymbiotic recruits. Fifty percent 

water changes were implemented 3 times a week and a 100% water change was performed once 

a week. Temperature and salinity were measured daily and reverse osmosis water was added as 

needed to maintain salinity at 35 ppt. Recruits were fed rotifers ad libitum weekly. 

 



 

  

 

Figure 5. Experimental set up. Tiles with recruits on the tank bottom were exposed to 

sedimentation and turbidity, while tiles with recruits suspended upside down were 

exposed to only turbidity. 

Figure 6. Tank set up where a is the tank bottom where recruits were exposed to both 

turbidity and deposited sediment, b is the egg crate containing tiles suspended upside 

down, where recruits are exposed to turbidity and no deposited sediment, c is an adult coral 

that is expected to act as a source of Symbiodiniaceae. 



The survival and growth of the newly-settled recruits were measured weekly for 5 weeks. 

Growth was measured under an Olympus microscope using LC-20 camera and cellSens imaging 

software. When observing the recruits under the microscope, any macroalgae present was 

scrapped away as best as possible to prevent overgrowth.  

 To determine if coral recruits with established symbionts showed a different response to 

turbidity, this experiment was repeated with six-week-old recruits which contained 

Symbiodiniacea (visible through their coloration) exposed to turbidity only, free of deposited 

sediment. These recruits come from the same batch of larvae as the ones used in the first 

experiment and after settlement, were reared in a 453 L recirculating raceway containing a UV 

sterilizer, protein skimmer, bioballs, calcium reactor, and phosphate reactor. These corals recruits 

were exposed to light levels of 10 µm photons.cm-2s-1 and the raceway was maintained at 

ambient temperature. After six weeks, the recruits were randomly placed in the experimental 

tanks. The tanks were setup as mentioned previously, and survival measurements were recorded 

weekly for two weeks.  

Data Analysis 

For both newly settled and six-week-old recruits, the effect of turbidity and deposited 

sediment concentration on recruit survival was determined using Mantel-Haenszel log rank tests 

(event of interest: mortality). If the factor was determined to be significant, a post-hoc multiple 

comparisons test was performed. To determine if there was a tank effect on recruit survival, a 

two-way repeated measures ANOVA was conducted. The test the effect of deposited sediment 

and turbidity on recruit growth rates, we first determined the model that best fit the growth curve 

(exponential model). Then to test the effect of deposited sediment and turbidity on growth we 

compared a model which parameters were independent of treatment with a model with 

parameters fit to each treatment, using a log-likelihood ratio test. All data analyses were 

conducted using the statistical software R (R Core Team 2016).  

 

 

  



Results 

 Turbidity alone without deposited sediment significantly increased survival of newly 

settled recruits (p< 2x10-16) (Fig 7). Recruits in the highest turbidity (29.1 NTU) treatment had 

the best survival, with 70.5% survival after 5 weeks. There was 100% mortality by week 3 in the 

0 NTU treatment, by week 4 in the 16 NTU treatment, and by week 5 in the 3.4 NTU treatment. 

The 8.2 NTU treatment had 98% mortality by week 5, with one recruit alive by the end of the 

experiment. Survival was not dependent on tank effects (p>0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Turbidity together with deposited sediment significantly affected the survival of newly 

settled recruits (p < 2x10-16) (Fig. 8). Survival was the lowest in the absence of turbidity and 

deposited sediment (0 NTU/0 mg cm-2), with 100% mortality by week 2. Among the treatments 

with deposited sediment, the 3.4 NTU/27.7 mg cm-2 and the 8.2 NTU/50 mg cm -2 had the best 

survival at the end of the five weeks, with 33% and 32% survival, respectively; higher turbidity 

and deposited sediment led to lower survival rates (7.93% and 9.67% survival for 16 NTU/101 

mg cm-2 and 29.1 NTU/220 mg cm-2, respectively). 

Figure 7. Survival curves for the newly settled O faveolata recruits at different 

turbidities (in the absence on deposited sediment). The different colors represent 

the five median turbidity treatments, and the different letters represent 

significantly different treatments. 
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 In the treatments with the highest turbidity, survival was significantly higher when no 

sediment was deposited on top of the corals (29.1 NTU/ 0 mg cm-2) than when a large amount of 

sediment was deposited on top of the coral recruit (29.1 NTU/ 220 mg cm-2) (p=2x10-14). At 

lower levels of turbidity (3.4-16 NTU), survival was significantly higher in the treatments with 

deposited sediment (3.4 NTU/27.7 mg cm-2, 8.2 NTU/50 mg cm-2, and 16 NTU/ 101 mg cm-2) 

than in treatments without deposited sediment (3.4 NTU/0 mg cm-2, 8.2 NTU/0 mg cm-2, and 16 

NTU/0 mg cm-2) (p=3x10-9, 1x10-5, 2x10-6, respectively; Fig. 9).  

  

  

  

Figure 8. Survival curves for the newly settled recruits exposed to both turbidity 

and sedimentation. The different colors represent the five different median 

treatments, and the different letters represent significantly different treatments. 
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 Both turbidity in the absence of deposited sediment and turbidity coupled with deposited 

sediment did not significantly affect newly settled recruit growth rates (p>0.05, Fig. 10). Growth 

rates were more variable in the early weeks of the experiment with little variance in growth rates 

by the last week.  
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Figure 9. Recruit survival proportion in turbidity and the associated deposited 

treatments compared to recruit survival in turbidity in the absence of deposited 

sediment treatments. Different letters represent significantly different treatments. 
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Figure 10. Weekly growth rates (calculated as the different from one week to the previous) of 

surface area of newly settled recruits in each treatment (each row represents one turbidity, left: 

treatments without sediment; right: treatments with deposited sediment). 
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 For six-week-old recruits with Symbiodiniaceae, turbidity alone (without deposited 

sediment) significantly increased survival (p=1x10-6) (Fig. 11). The 0 NTU and 3.4 NTU 

treatments had the highest mortality, with 63% and 60% mortality by the end of the second 

week, respectively. Similar to the newly settled recruits, the 29.1 NTU treatment had the highest 

survival, with only 6.7% mortality after two weeks. 

 

Figure 11. Survival curves for the six-week-old coral recruits with Symbiodiniaceae exposed to 

different levels of turbidity (without deposited sediment) for two weeks. The different colors 

represent the five different turbidity treatments, and the different letters represent significantly 

different treatments.  
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Discussion  
 Higher turbidity alone had a positive effect on the survival of newly settled and six-week-

old Orbicella faveolata recruits, but when coupled with deposited sediment, as it had the 

opposite effect. Increased mortality at low turbidity levels suggests that both aposymbiotic and 

symbiotic recruits are sensitive to light levels. While the low light associated with turbidity was 

advantageous, turbidity coupled higher quantities of sediment deposited on top of the coral 

recruits were detrimental. However, the complete absence of deposited sediments also resulted in 

high recruit mortality; survival was optimal at low levels of deposited sediment, suggesting the 

presence of some sediment may somehow be beneficial potentially by preventing the growth of 

macroalgae that outcompete the coral recruits. Within the short time frame of this study (6 

weeks), growth rates were minimal and thus were not significantly affected by turbidity nor 

deposited sediment.  

 In the absence of deposited sediment, turbidity was beneficial to newly settled Orbicella 

faveolata recruits, likely because it reduces the amount of light reaching the light-sensitive 

recruits. The recruits were exposed to 20 mol photons m-2s-1 of light (which is already 

considerably low and typical of more shaded areas), but which was then further reduced due to 

fine grain sediment particles suspended in the water column. Therefore, in low turbidity 

treatments, corals were exposed to relatively higher light levels (closer to 20 mol photons m-2s-

1), while in high turbidity treatments corals were exposed to lower light levels. Recent studies 

suggest that coral recruits display higher survival when reared in lower light levels than those 

ideal for adults (Abrego et al. 2012, McMahon 2018). In shallow waters where light irradiance 

levels are high, coral larvae often prefer settling on the underside of tiles where light levels are 

lower (Birkeland et al. 1981, Rogers 1984, Babcock and Mundy 1996, Chamberlain et al. 2015), 

while in deeper and turbid areas larvae preferably settle facing upwards (Bak and Engel 1979; 

Harper 2017). Specifically, Orbicella faveolata larvae settle preferably on the underside of 

settling plates, which suggests that they prefer shaded areas with lower light (Szmant and Miller 

2006). In this experiment, the larvae primarily settled on the groovy side of settlement tiles, as 

opposed to the smooth side of the tile. The rugosity from the grooves provide extra shading for 

the newly settled recruits and are more similar to crevices, where larvae typically settle in the 

field. It is likely that the larvae settle in crevices where light levels are low, then as the recruits 



grow and age, they eventually grow out of the crevice, at which point they are exposed to higher 

light levels. 

 The similar mortality trends obtained in both newly settled and six-week-old recruits in 

response to high turbidity suggest that the presence of symbionts did not diminish light 

sensitivity in coral recruits up to six weeks. Six-week-old recruits exhibited the highest survival 

in the high turbidity treatment, suggesting that the reduced light caused from suspended sediment 

is beneficial to both aposymbiotic and symbiotic recruits. This is contrary to our hypothesis that 

the older six-week-old recruits with symbionts would be able to be better able to withstand the 

higher light levels in the low turbidity treatments than the aposymbiotic recruits because they 

possess protective MAAs. It is possible that in the low turbidity treatments (when the symbiotic 

recruits were experiencing higher light levels), symbionts potentially became a burden when the 

symbionts were exposed to light and the corals were not feeding heterotrophically. Symbionts 

within coral tissues undergo photosynthesis, then release fixed carbon to the coral host to use for 

energy. Then in return, corals give symbionts nutrients from metabolic waste products, which aid 

in symbiont photosynthesis. However, when symbionts are exposed to light and 

photosynthesizing, if the corals are not feeding heterotrophically, the corals likely do not have 

enough nutrients to give the symbionts. In order to give nutrients to the symbionts to help them 

photosynthesize, the corals might have to use their energy reserves in order to give nutrients to 

the symbionts. It is likely that the six-week-old symbiotic recruits still were not feeding 

heterotrophically. While they were fed once per week, the recruits still did not have fully 

developed tentacles, thus preventing them to feed. Therefore, in the low turbidity/higher light 

treatments, the symbionts likely became a burden and depleted the coral’s energy reserves, 

leading to high mortality. While turbidity is typically a negative stressor for adult corals (Rogers 

1990, Fabricius 2005, Erftemeijer et al. 2012), the lower light levels associated with high 

turbidity seem to be advantageous for newly settled and six-week-old coral recruits. However, 

recruits will require progressively higher light levels as they grow and develop (McMahon et al. 

2018), so it is likely that there will be a shift throughout their lifecycle to where high turbidity 

changes from being beneficial to harmful to coral survival. This switch will likely occur when 

recruits are able to feed heterotrophically and do not have to use, and eventually deplete, their 

energy reserves in order to give symbionts the essential nutrients needed for photosynthesis.  



 While the lower light associated with higher turbidity is beneficial for coral recruits, the 

synergistic effects of high turbidity and the associated deposited sediment are harmful to newly 

settled O. faveolata recruits. Since turbidity is always coupled with deposited sediment 

(Pavanelli and Bigi 2005), this is more representative of the real conditions coral recruits would 

be exposed to during dredging or coastal construction activities. The higher mortality in the high 

turbidity and sedimentation treatments can be attributed to the sediment smothering corals, 

clogging coral recruit feeding structures, and/or creating an anoxic environment around the 

corals from bacterial growth (Rogers 1990; Fabricius 2005; Erftemeijer et al. 2012). In order to 

protect themselves from smothering, corals can remove sediment actively and/or passively 

(Lasker 1980). In areas with strong currents and wave action, water movement can help prevent 

or remove sediment that has settled on the corals. However, larger grain sizes are more likely to 

remain settled, while the fine grain sizes become resuspended in the water column. When passive 

sediment rejection via water movement is not sufficient, corals can actively remove sediment 

through mucus secretion and tentacle movement (Hubbard and Pocock 1972). Many of the newly 

settled recruits had not yet developed tentacles, thus, sediment rejection for newly settled coral 

recruits is likely not as effective. The high mortality of the coral recruits in the high turbidity and 

deposited sediment treatments is likely due to the recruit’s inability to effectively remove 

sediment. While low levels of sediment and turbidity seem best for the survival of O. faveolata 

recruits, levels over 8.2 NTU coupled 50 mg cm-2 of deposited sediment were not compatible 

with recruit survivorship due to the smothering of coral recruits from high sediment loads.  

 The absence of sediment altogether was highly deleterious for the newly settled O. 

faveolata coral recruits, likely because sediment prevents the overgrowth of macroalgae. The 

majority of the recruits in the 0 NTU/0 mg cm-2 treatment died by the second week with 100% 

mortality by week three, suggesting that the absence of sediment is not ideal for recruits. While 

not quantified, tiles in this treatment were observed to have excessive macroalgae as opposed to 

other treatments containing sediment, which likely caused the high mortality (Fig. 12). It is 

therefore likely that low levels of sediment are necessary for recruits as a means of deterring 

excessive macroalgal growth. While macroalgae growth is harmful for all life stages of corals, 

many studies suggest that macroalgae is especially harmful for recruits because of their small 

size (Nugues and Szmant 2006; Box and Mumby 2007; Moeller et al. 2017; Johns et al. 2018; 

Robbins 2018). Excess macroalgae can impact corals by overgrowing recruits and juveniles and 



has also been shown to reduce coral growth rates (McCook 1999; McManus and Polsenberg 

2004). The macroalgae that grew on the tiles in this experiment was a “turf algae” (Fig. 12), 

while the green algae seen on the tiles found within the tile porous surface was likely non-toxic.  

On healthy, pristine reefs, herbivorous fishes and invertebrates graze on macroalgae, facilitating 

coral dominance on reefs. However, in overfished and over euthrophied reefs, macroalgae 

growth is accelerated as there are not enough herbivores to control them (Burkepile and Hay 

2010; Hoey and Bellwood 2011). The constant cycle of decreased coral recruitment and 

increased macroalgal growth can lead to a “phase shift” from a coral dominated reef to a 

macroalgae dominated reef. Sediment can likely benefit coral survival by preventing macroalgae 

growth, as increased sediment reduces algal growth and survival (Galarno 2017). Deposited 

sediment and the associated increase in turbidity may prevent macroalgae growth by reducing 

light available for photosynthesis, preventing a stable substrate for the algae to grow on, and 

smothering the algae (Umar et al 1998; McCook 1999). Since an environment with no sediment 

is not a realistic setting for coral recruits, a low amount of sediment seems to be beneficial for 

survival and algal growth prevention, especially for the early life stages of corals.  

 

 

Growth rates of newly settled recruits were not significantly different between turbidity 

and deposited sediment treatments. The recruits were fed weekly; however, their tentacles were 

not fully developed so they likely were not able to feed heterotrophically. Also, the majority of 

Figure 12. Tiles from the 29.1 NTU/ 220 mg cm-2 (left), 8.2 NTU/50 mg cm-2 

(middle) and 0 NTU/ 0 mg cm-2 (right) treatments. (all upward facing) The tile 

from the 29.1 NTU/ 220 mg cm-2 treatment has less brown macroalgae growth 

than the 0 NTU/ 0 mg cm-2 treatment.  
 



newly settled recruits never acquired symbionts. Therefore, the recruits likely were allocating 

their energy reserves solely to survival and did not have enough energy to grow and develop. In 

addition to low energy reserves, the recruits were secreting their skeleton around the deposited 

sediment surrounding them (Fig. 13). This caused their skeleton to be heightened (observed, but 

not quantified), rather than spread out over more surface area, potentially to protect themselves 

from the sediment. Their heightened skeleton may cause latent effects in the future by further 

preventing growth or inhibiting feeding. Morphological changes in response to deposited 

sediment have also been observed in adult corals, such as a more “knobby” growth form to help 

prevent deposited sediment build-up rather than flat, plate-like forms (Barnes 1972; Foster 

1980). It may be that the O. faveolata recruits are adopting a different growth form in response to 

their environment. Further research is needed to determine the latent effects of a heightened 

skeleton caused from coral recruits developing in a high turbid and deposited sediment 

environment.  

 

 

 

  

 

 

  In order to prevent additional coral mortality and sustain depleted populations, it is 

essential to prevent unnecessary stress on the early life history stages of O. faveolata corals. One 

way to alleviate further stress is by reducing local stressors, such as increased sediment and 

turbidity. For this endangered and threatened species, recruits already experience low survival in 

natural conditions (Szmant and Miller 2006). Based on these results, and in order to prevent 

excessive deposited sediment on coral recruits, the Environmental Protection Agency should 

Figure 13. a) Two-week-old coral recruit with a heightened skeleton from 

depositing its skeleton around high sediment levels. b) Two-week-old coral recruit 

with a normal deposited skeleton from low sediment levels.    

a. b. 



revisit the current allowable 29 NTU standards for the maximum allowable turbidity during 

dredging and coastal construction events. Although this study suggests that the low light 

associated with turbidity is beneficial for coral recruits, turbidity is a proxy for deposited 

sediment (Fig. 14). Therefore during coastal construction operations, high turbid waters are 

accompanied with high levels of deposited sediment which are harmful for all coral life stages. 

Since the highest survival was in the 27.7 mg cm-2 and 50 mg cm-2 deposited sediment 

treatments, the associated turbidity with these sediment values were 3.4 and 8.2 NTU, 

respectively. Therefore, to prevent large amounts of sediment deposited on coral reefs during 

coastal construction, turbidity should not exceed 8.2 NTU, as coral recruits cannot survive the 

associated deposited sediment levels higher than 50 mg cm-2. Similar turbidity and deposited 

sediment thresholds have been observed for other species. Fourney and Figueiredo (2017) 

suggest that Porites astreoides recruit survival was significantly reduced above a turbidity level 

of 7 NTU and Acropora cervicornis recruit mortality increased at turbidity levels above 5.35 

NTU (Robbins 2018). It is clearly evident that coral recruits cannot withstand the high deposited 

sediment levels associated with high turbidity, and the maximum allowable turbidity levels 

should be greatly reduced in order to prevent recruit mortality. 

 In addition to revising the maximum allowable turbidity levels during dredging and 

coastal construction, other factors should be taken into consideration during these operations. In 

this experiment, recruits were only exposed to turbidity and deposited sediment levels for five 

weeks. But in the field corals may be exposed to elevated levels for months, or even years 

(Jordan et al. 2010; Barnes et al. 2015). Therefore, we need to reduce the duration of coastal 

construction events in order to prevent the constant exposure of high sediment loads and stress 

on corals. Not only do turbidity and deposited sediment affect coral recruits as shown in this 

study, they also affect all coral life stages. Suspended sediments can interfere with gametes 

during fertilization (Gilmour 1999; Humphrey et al. 2008; Ricardo et al. 2016) and deposited 

sediment can cover available substrate or settlement cues used for coral settlement (Babcock and 

Davies 1991; Gilmour 1999; Babcock and Smith 2000; Storlazzi et al. 2015; Ricardo et al. 

2017). Coastal construction should not be allowed during and the first few months after 

spawning events in order to prevent reduced settlement success from suspended particles and 

inhibited coral recruitment from high sedimentation levels. In addition, it is likely that this study 

may still be underestimating the negative effects of deposited sediment. The coral recruits in this 



study were exposed to a realistic sediment composition excavated during dredging, however, the 

sediment used was dried in order to remove any microscopic organisms and organic matter. 

Pollutants and volatiles from runoff can be buried within sediments, which are then reintroduced 

into the environment during coastal construction activities and cause eutrophication (Todd et al. 

2010). Also, when high nutrient silt settles on top of coral polyps, this can cause microbial 

growth around the polyps and mortality of coral tissue (Weber at al. 2006). Managers should 

consider the possible impacts of nutrients within the sediment that are reintroduced to nearby 

environments during construction events. In addition to restricting deposited sediment, rules and 

regulations should be established to prevent overfishing of herbivorous fishes to inhibit 

macroalgae competition. By reducing these local stressors, managers can hopefully increase 

coral recruit survival and reef persistence in the future.  

Figure 14. The relationship between turbidity levels and the associated deposited 

sediment levels for the following sediment grain size composition: 0.23% >2000 

μm, 3.84% 500-2000 μm, 50.81% 180-500 μm, 37.01% 63-180 μm, 8.19% <63 μm. 
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