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ABSTRACT

Thomas J. Morrell: Analysis of “Observer Effect” in Logbook Reporting Accuracy for U.S.
Pelagic Longline Fishing Vessels in the Atlantic and Gulf of Mexico

Commercial pelagic longline fishers within the U.S. Atlantic, Gulf of Mexico, and Caribbean are
required to report all fishing interactions per each gear deployment to NOAA’s Vessel Logbook
Program of the Southeast Fisheries Science Center to quantify bycatch, increase conservation
efforts, and avoid jeopardizing the existence of vulnerable species listed under the Endangered
Species Act (ESA). To provide additional accuracy, the Pelagic Observer Program (POP) of the
SEFSC deploys professionally trained observers on longline vessels to produce a statistically
reliable subset of longline fisheries data. A comparison of self-reported (“unobserved’) datasets
versus observer-collected (“observed”) datasets showed a general consistency for most target
species but non-reporting or under-reporting for a number of bycatch species and “lesser-valued”
target species. These discrepancies between catch compositions and abundancies regarding
targeted species, species of bycatch concern, and species of minimum economic value can
provide insight into increased fisheries regulations, stricter requirements, or additional observer
coverage.

Keywords: catch per unit effort (CPUE), bycatch, Highly Migratory Species (HMS), tuna,
NOAA, General Additive Model (GAM)






TABLE OF CONTENTS

L INtrOAUCHION. ..o e e e 1
2. Materials and MethOds. ......oueneie e 7
2.1 Data Preparation. ... ...o.ueuiiiitt ittt et e 8

2.2 Variable Selection. ... .. ..o.uiuiiti i 15

2.2.1 Variables. . ...t e 15

2.3 RMOAEING. ..ot 18

2.3.1 gam.check Function..............ccoiiiiiiiii e 19

2.3.2 Summary FUNCtion..........ooeiiiii e 19

2.3.3 ANOVA FUNCHON. ...ttt e e eee e aaaas 19

2.3.4 Quantifying Results. ..o 24

1S3 1< 24

2.4.1 Swordfish and Tuna. ..o, 25

2.4 2 FINfiSh. ..o e 27

243 BillfiSh. ... 27

244 Sharks. ..o 28

2.4.4.1 Coastal Sharks..........coouiiiiii 30

2.4.4.2 PelagiC Sharks..........ooouiriiiiiiii e 30

2.4.5 Sea Turtles and Marine Mammals. ..., 30

2451 SeaTurtles. .....ooeiinii i 31

2.4.5.2 Marine Mammals. .........cooiiiiiiiiii e 33

B R ESUIES. e e 34
3.1 Swordfish and Tuna.........o.oiuiii 37

3.1.1 Swordfish and Tuna Annual Analyses.............coovviiiiiiiiiiiiiiiiinn, 38

3 2 FIndash. o 40

3.2.1 Finfish Annual Analyses..........ccooiiiiiiiiiii e, 41

33 BillfiSh. oo 42

3.3.1 Billfish Annual ANalyses..........c.ovviiiriii e, 43



3.4 Coastal and Pelagic Sharks...........ccooiiiiiiiii e 44

3.4.1 Coastal and Pelagic Sharks Annual Analyses..............ccoevviiiiiiinnnnn. 45

3.5 Sea Turtles and Marine Mammals.............oooiiiiiiiiiiii e 46
ot T T ) U PP 49
A1, CONCIUSION. ...t e e 52

5 REIETEINCES. . ..t 53
TN 0] 03816 e 57
| Agencies, Acts, and Programs Associated with the U.S. Pelagic Longline Fishery.......57

IT Appendix 2: Pelagic Longline Gear and Fishery Terms...............coooviiiiiiiin.n. 58

IIT Species Of INTEIest. .. ...uineiei e 60

IV R COAE. ... 61

V Logbook and POP Forms: 1992 and 2016..........c.ooviriiiiiiiiiiiieieeeee e, 63

Vi



Analysis of “observer effect” in logbook reporting accuracy for U.S. pelagic longline fishing

vessels in the Atlantic and Gulf of Mexico

1. Introduction

Under the Magnuson-Stevens Fishery Conservation and Management Act (16 U.S.C. §
1812, 2007), the U.S. National Marine Fisheries Service (NMFS), part of the National
Oceanographic and Atmospheric Administration (NOAA), is charged with managing fisheries
under its purview to an optimum yield through eliminating overfishing and rebuilding overfished
stocks. To better achieve this optimum yield goal and simultaneously evaluate the effects of
existing management efforts, NOAA monitors commercial fisheries data from both self-reported
logbook records and professional fisheries observers. Both data sources are used for
management decisions, and it is critical that interactions with targeted and by-catch species are
reported in an accurate, timely manner.

To assist in achieving an accurate account of interactions with both target and by-catch

species, the vessel logbook program (see Agencies, Acts, and Programs Associated with the U.S.

Pelagic Longline Fishery as Appendix I), implemented in 1986 by NOAA’s Southeast Fisheries

Science Center (SEFSC), created the UDP (Unified Data Processing) system (formerly Fisheries
Logbook System [FLS]) to allow fishers the opportunity to submit confidential fishing data to a
secure database within the Fishing Monitoring Branch division of the SEFSC (InPort, NMFS
Enterprise Data Management Program, 2019). Though a mandatory system requiring all
longline vessels to record set-specific data such as hook types, soak time, and total interaction
numbers, the aim of the logbook program is to provide a better overview of the U.S. domestic
commercial fishing activities and non-fishing activities being conducted in the western Atlantic
waters of the eastern U.S. coast, Gulf of Mexico, and Greater Caribbean (“Fishery Logbook
System,” n.d.). In addition to assessing population and sustainability of fish stocks and
accounting for interactions with the pelagic longline fleet (hereafter, simply “longline”), this self-
reported data is used to determine the effects of existing management policies on those who
participate within the fishery, but even with a regulatory incentive to provide accurate catch
records for future sustainable practices, there is still potential for imprecision, particularly for
bycatch and discarded species. Defined by NOAA as “discarded catch of marine species and

unobserved mortality due to a direct encounter with fishing vessels and gear,” bycatch is a major



concern for not only the longline industry, but also all fishing industries in general because of the
high rate of mortality and unavoidable injuries. Alverson et al. (2009) estimated the weight of
bycatch records at 25% of the total worldwide catch.

To provide additional accuracy and improve upon misidentification (under the authority
of the MSA and Section 7 of Endangered Species Act [ESA]), the Pelagic Observer Program
(POP) of the SEFSC — initiated in 1992 — deploys NMFS-trained fisheries observers (see Pelagic
Longline Gear and Fishery Terms as Appendix 2) on a minimum of 8% of commercial pelagic

longline vessels to produce a statistically reliable sample of Highly Migratory Species (HMS)
including (but not limited to) Swordfish Xiphias Gladius and Yellowfin Tuna Thunnus albacares
(ESA, 88.1.2.1, 2004). The POP is responsible for obtaining target and bycatch numbers for
pelagic species caught on longline gear, recording length measurements and sex for all pelagic
species brought onboard, and recording detailed gear characteristics of commercial longline
vessels. All responsibilities fall within the fishery management plan (FMP), which has
jurisdiction over all U.S. flagged pelagic longline (PLL) vessels that possess an Atlantic Tuna
Longline permit. This permit pertains to vessels in the Atlantic, Gulf of Mexico, Exclusive
Economic Zone (EEZ) of the Caribbean and even including vessels that fish outside EEZ.
Similar to self-reported data from fishers, POP fisheries observers are responsible for
environmental information associated with the gear set (deployment) and haul (retrieval), and
various information associated with weight and proper identification of pelagic fishes, mammals,
seabirds, and sea turtles, all for the ultimate use of both evaluating pelagic fish stocks and
gauging the effectiveness of management efforts.

Within the Consolidated Atlantic HMS FMP (Consolidated HMS FMP, 84.1.2, 2006),
there is “no doubt” among the two data sources (POP and HMS Logbook) of non-reporting or
under-reporting for most species, showing a lesser accuracy from logbook data compared to
observer data. Due to logistical and budgetary constraints, however, it is unrealistic to obtain
100% observer coverage for the Atlantic pelagic longline fleet, but through an accessory data
source to the self-reported fisheries logbooks — regardless of the low percentage of coverage —
the POP can provide additional accuracy to the data. With self-reported fishing data, the issue is
veracity, and with only ca. 8% of longline fishing sets being monitored annually via observers
through the POP (ESA, 88.1.2.1, 2004), there is minimal validation of the data being submitted
via logbook trip summary forms by commercial longline fishers. While it is believed that under-



reporting of catch is an issue with self-reported data, it is possible there is considerable variation
in the accuracy across species. A species-specific evaluation of self-reported and observer-
collected pelagic longline fisheries data could help inform managers on the efficacy of current
regulations regarding quotas, bycatch reduction efforts, and overall fisheries management
strategies.

In addition to documenting the total number of animals caught and their eventual
disposition, the HMS Agreements component of the International Fishery Agreements provisions
(Section 202) in the MSA also requires longline fishers to report fishing location, gear
configuration, and duration of fishing activity (16 U.S.C. 81822, 2007). Within this Section 202
of the MSA, HMS Agreement (B) specifically promotes the establishment of measures to ensure
proper conservation and biological sustainability of the industry. The effectiveness of measures
applicable to the fishery, however, relies solely on the veracity of the fisheries data being
reported and without accuracy from the fishing industry’s offshore interactions, it can be difficult
to utilize self-reported, fisheries-dependent UDP datasets to determine the effects of existing and
proposed management efforts. Stock assessments, establishment of annual catch limits, and
other fisheries management efforts — and even observer program initiatives — can all benefit from

a comparative analysis of self-reported data against observer-collected data.

Background
Within the Atlantic Ocean, the U.S. Atlantic pelagic longline fleet deploys gear, year

round, targeting commercially sellable catch, including swordfish and yellowfin tuna. Although
the U.S. fleet has some historical effort reported from the eastern North Atlantic and both eastern
and western South Atlantic, the vast majority has been in the western North Atlantic, including
the Gulf of Mexico and the Caribbean Sea; this western North Atlantic region will be the focus
of this thesis project.

As a result of a Biological Opinion, Section 7(a)(2) of the ESA (2004), U.S. Atlantic
longline fishers are required to report catches for each trip on a per set basis to quantify species
interactions, increase conservation efforts, and avoid jeopardizing the existence of species listed
under the Act (16 U.S.C. §1531, 2004). Each vessel’s self-reported data is submitted through
two forms: the Trip Summary Form and Set Form, as seen in Figures 1 and 2. At the completion

of each pelagic longline trip, defined by the Atlantic Tunas Convention Act (ATCA) as any port-
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Figure 1. Logbook Set Form for year 2016 used by the U.S. National Marine Fisheries Service for
self-reported fishing data from fisheries targeting Atlantic Highly Migratory Species. The form is
required to be completed for each “set” (deployment and retrieval) of the fishing gear.
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Figure 2. Trip Summary Form for year 2016 used by the U.S. National Marine Fisheries Service
for self-reported fishing data from fisheries targeting Atlantic Highly Migratory Species. The
form is required to be completed for each “trip” (all sets of gear during the period between

leaving and returning to port).



to-port deployment during which fish are caught or operations occur that support fishing activity
(16 U.S.C. § 971, 1975), vessels are required to submit these two forms in accordance with the
ATCA and MSA. The “Trip Summary Form,” in Figure 2, which is submitted for each trip,
involves the overall logistics of the trip (port of departure, expenses, sales, number of crew),
while the “Set Form”, Figure 1, focuses on each individual set made during said longline trip,
including any associated fishing activity (i.e., number of hooks, gear type, total catches,
interactions with protected species) (16 U.S.C. 81801, 2007).

Once collected, the self-reported data are stored and managed within the UDP logbook
system, falling within the NOAA Administrative Order (NOA) 216-100. This order regarding
the Protection of Confidential Fisheries Statistics allows NOAA to collect this information, to
protect parties involved, and prevent public disclosure of trade-related practices (50 C.F.R.
8300.220, 2016). The POP then utilizes these pelagic longline deployments and reported sets to
determine the required at-sea fisheries observer coverage. The goal of 8% observer coverage
aims to represent the entire fishery by quantifying fishing interactions on commercial longline
vessels. However, despite ca. 1,000 pelagic longline sets being observed annually by the POP
for the U.S. Atlantic fleet (Keene 2016), more than 80% of the total catch and effort data from
this fishery is being self-reported by the fishing vessel captains.

While the observer-reported POP data could be highly accurate, there is a possibility the
presence of a government fisheries observer could result in longline fishers altering their fishing
activities from their normal practice. In recent years, the observer presence on pelagic longline
fishing vessels has been referred to as an “observer bias” or “observer effect,” in which the act of
observing will influence the event being observed. In reference to commercial fishing, the
“observer effect” refers to the influence fisheries observers have on catch reporting, as Faunce
and Barbeaux (2008) described for data from a commercial groundfish fishery. Using linear
mixed-effects models on landed pounds of fish in 2008, and including whether the trip was
observed or not as part of the models’ fixed effects, Faunce and Barbeaux (2008) showed 1-in-5
examined fisheries had significant differences in total weight landed as a result of an observer
onboard during trip (four other fisheries showed no effect). By applying similar methods, an
examination of self-reported data against fisheries observer-collected data could assess whether

this “observer effect” is present in the U.S. Atlantic pelagic longline fleet.



Garrison and Stokes (2016) noted possible observer effects within the longline industry
related to bycatch estimates. Though they mention consistency between the reporting for each
program for targeted species such as swordfish, yellowfin tuna, and bigeye tuna, there are
notable gaps for species of bycatch concern. Even with other fisheries, such as tuna purse
seining in the eastern tropical Atlantic Ocean, Torres-Irineo et al. (2014) showed that lower
levels of observer coverage compared to the true scope of the fishery may not be an accurate
representation for abundance in terms of catch per unit effort (CPUE) for non-target species.

Within this analysis, fisheries interactions were emphasized through three disposition
categories: 1) retained, 2) bycatch concern, 3) minimum economic value historically, but now
retained. For species of particular bycatch concern, such as Atlantic Bluefin Tuna Thunnus
thynnus or Sandbar Shark Carcharhinus plumbeus, as well as marine mammals and sea turtles,
there is more incentive to minimize self-reported interactions and avoid subsequent penalties or
even increased regulations. Similarly, species with no economic value, such as the Pelagic
Stingray Pteroplatytrygon violacea or Lancetfish Alepisaurus spp., have the potential for under-
reporting due to minimal benefit to the fishery, despite being commonly caught on a large
percentage of longline trips. Escolar Lepidocybium flavobrunneum, which historically had been
considered of lesser or no value and thus discarded, has become part of the “normal” retained
incidental catch in recent years, thereby raising the potential for a higher level of accuracy in
self-reporting.

In this thesis, both self-reported and fisheries observer data for the U.S. Atlantic pelagic

longline fishery was analyzed to assess the putative observer effect for catches and disposition.

2. Materials and Methods
Through the SEFSC UDP logbook system and the POP fisheries observer (POP OBS)

database, a comparison of “observed” sets against “unobserved” sets was analyzed for bias in the
self-reported data. Twenty-five years of data, from 1992 until 2016, provided the datasets for
analyses. When the analysis process began, 2016 was the last full year to have completed the
internal NOAA quality assurance, quality control (QA/QC) procedure. By focusing on 40 key
species reported in both datasets, an observer effect could be examined between the two datasets.

To test the hypothesis of an observer influence on catch reporting, an examination of probability



for a given species was analyzed with a model containing multiple covariates. This model was
then applied to each species over the course of 25 years.

An overall observer effect was examined on a per-species base for each of the 40 species.
Furthermore, tests were included for a ““Year*observer effect” across the 25-year period which
allows for an examination of inter-annual variation of reporting rates and trends over time which
might change for several key bycatch species. Whether changes occurred in demand or
regulations were introduced, an annual evaluation can help provide a better understanding of

industry fluctuations over the last 25 years.

2.1 Data Preparation

Before the model could be implemented, a number of processes occurred with the
datasets. Despite both programs collecting similar types of offshore data, there were innate
differences in the data being collected, such as multiple operational and environmental variables.
Figures 1 and 2 from the logbook program and Figures 3 through 5 from the POP, emphasize
such differences, noting the variations between the forms being utilized.

From specifics of how pelagic longline vessels each configure and deploy gear at the set
level, to the individual species being reported, there were subtle contrasts between the two
datasets. Given the two datasets are stored in different databases and utilize different practices,
the data had to be restructured into a compatible format to allow for comparison. The POP
dataset includes much more detail on both the set metadata as well as the number of species
recorded, and subsequently, all data fields which were not represented in both datasets were
removed prior to any analysis. After a thorough reorganization and data cleansing of the SEFSC
UDP logbook data and POP fisheries data, both datasets were combined into one, compatible
dataset.

Each row of the dataset represented one set/haul combination, with each set/haul falling
within one vessel’s trip. Defined as any dock to dock deployment where fishing occurs, each
longline trip varies in the amount of set/haul combinations (e.g., trip 123456 had seven sets,
representing seven rows of the dataset all under one trip identifier). For this analysis, a total of
33,974 sets were included from the logbook program and 21,331 from the observer program.
Only complete sets were included within the model, i.e., any values of “NA” for any model

variable would exclude that particular set from being included. Once all incomplete sets were
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Figure 4. Longline Haul Log for 2016 (created in 2015) is used by pelagic longline fisheries
observers working for the POP. This form is required to be completed for each deployment of
pelagic longline gear set and hauled and reflects all the physical information relating to a single

set/haul fished.
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SOUTHEAST FISHERIES SCIENCE CENTER

INDIVIDUAL ANIMAL LOG
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Figure 5. Individual Animal Log for 2016 (created in 2014) is used by pelagic longline fisheries

observers working for the POP. This log records catch information on each species such as size,
sex, and including whether species was alive, dead, kept, released, and/or damaged.
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removed, the remaining sets consisted of 25,601 from the logbook program and 19,812 from the
observer program. The combined dataset consisted of 402 unique vessel identification numbers
from the logbook program and 261 from the observer program, dating from 1992 until the end of
2016 and ranging in location from the Caribbean to the western North Atlantic, including the
Gulf of Mexico. To prevent bias, each logbook record in which an observer was also present
during the set had been removed from the analysis. This removal precluded those circumstances
in which a vessel captain requested to see the observer-collected catch data to mimic the number
and character of animal interactions on the logbook set form.

Once compiled into a similar format, specific variables were predetermined as potentially
significant. Reviewing the set-specific information collected by observers (location, date, time,
sea surface temperature) along with species-related information such as number of individuals,
and then cross referencing these variables with information present in the UDP logbook data, the
following variables were initially deemed potentially important: area, time, year, season, number
of hooks, number of light sticks, bait kind, soak time, sea surface temperature and presence of an
observer. Various combinations of these variables were also considered.

Once predetermined as a model predictor, each variable was then assessed to verify all
information fell within appropriate ranges and totals. Histograms and box plots were used to
detect data anomalies. During this verification process, some errors with the original data from
both programs were discovered. For example, using Figure 7 as a reference, the number of light
sticks used during a pelagic longline set is typically used as a variable for target species and
ranges between 0 and 1650, with different vessels utilizing different patterns and configurations
to target swordfish versus targeting various species of tuna. Regardless of how many light sticks
are utilized, they are an added value to a gear configuration and typically associated with the
amount of hooks set. Being an added value to the gear eliminates the possibility for negative
values and presents the rarest of occasions to have a ratio greater than 1:1 for light sticks to
hooks. The lowest value for light sticks therefore could only be zero, an indication light sticks
were not deployed on said gear (a value of zero light sticks generally indicates the set targeted
tuna). During a value assessment for light stick totals — as seen in Figure 6 — discrepancies in the

1:1 ratio occurred, indicating issues within the original raw data.
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“LIGHT_STICKS_SET” and “HOOKS_SET” show discrepancies between the ratios of light sticks to
hooks. Typically a 1:1 ratio, these anomalies were either verified to be true, adjusted/corrected

within the databases, or removed from the analysis.
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Figure 7. Using a histogram of all available data from both logbook and POP, a range and
frequency of light sticks set [0-1650] was measured for all longline vessels. As mentioned in
Figure 6, any anomalies were verified to be true, adjusted within the databases, or removed

from the analysis until the histogram represented an accurate range.
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Though these errors represented less than three percent of the data in comparison to the
thousands of applicable rows (sets), incorrect values such as these distort the results and disrupt
the accuracy of the analyses. Each suspected error discovered was eventually verified or
adjusted within the dataset. If a suspected error occurred, but could not be disproven with
absolute certainty (such with the case of self-reported data), that information was subsequently
removed. For each variable deemed significant (soak time, area), a thorough review was
conducted for each program. Certain unverifiable errors found within the self-reported loghook

data were unable to be corrected and were removed from the analysis.

2.2 Variable Selection

Each potential predictor variable was defined prior to inclusion within the model. Based
on the definitions provided by the POP and logbook program, the following sections define each
variable and how it was applied to the model being analyzed.

2.2.1 Variables

®,

% Area Names — The variable “area names” represents the 11 geographic regions of the

western North Atlantic, Gulf of Mexico and Greater Caribbean, which are defined within
the POP as either CAR (Caribbean), GOM (Gulf of Mexico), FEC (Florida East Coast),
SAB (South Atlantic Bight), MAB (Mid Atlantic Bight), NEC (Northeast Coast), NED
(Northeast Distant), SAR (Sargasso), NCA (North Central Atlantic), TUN (Tuna North),
or TUS (Tuna South). Each area is defined via latitude and longitude and delineated by
NOAA for the U.S. domestic HMS fisheries. A majority of longline sets occur in coastal
areas such as the GOM, FEC, SAB, MAB, and NEC compared to deeper offshore areas
such as TUS, TUN, and NCA.

% Sea Surface Temperature - The variable “sea surface temperature” (in Celsius), which

was collected at the beginning of each haul, was collected in Fahrenheit and converted to
Celsius.

%+ Season — Begin set month was used to assign sets to one of four seasons, March, April,
and May were defined as “spring”; June, July, and August as “summer”’; September,

October, and November as “fall”’; and December, January, and February as “winter.”
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Figure 8. Eleven management areas of the western North Atlantic, Gulf of Mexico and Greater

Caribbean. Delineated by NOAA and used by POP to designate fishing areas for the pelagic
longline fishery (Keene et al., 2010), each area is defined as: CAR (Caribbean), GOM (Gulf of
Mexico), FEC (Florida East Coast), SAB (South Atlantic Bight), MAB (Mid Atlantic Bight), NEC

(Northeast Coast), NED (Northeast Distant), SAR (Sargasso), NCA (North Central Atlantic), TUN

(Tuna North), or TUS (Tuna South).
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Year - Utilizing “year” as a variable allowed for an annual analysis compared to one, 25-
year period.

Hooks Set - The “number of hooks set” is associated with gear configuration and is
determined based on the number of hooks deployed during a given daily set. For self-
reported data, there was a mean of 653 hooks per set against 720 hooks per set with an
observer. Within the model, a total of 16,339,585 hooks were included from the logbook
program and 14,223,079 for the observer program, with the observer program observing
ca. 46% of the total hooks set for this analysis. The total number of hooks set can be
useful in determining Catch Per Unit Effort (CPUE), traditionally characterized for the
pelagic longline fishery as catch per 1000 hooks.

Light Sticks - As mentioned above, the number of light sticks deployed in a set can be
used to retroactively determine intended target species. General deployment
characteristics for light sticks were designated in the following categories. If each hook
is associated with one light stick (100% light sticks), then soak will occur at night and
target species is swordfish. If each hook is not associated with a light stick (0% light
sticks), then soak will occur during daytime and target species is tuna. Any percentage
less than 100% (meaning light sticks were not placed on every hook), the target species is
declared as a mixture of multiple species and the time of day varies. For this analysis, the
proportion of light sticks was defined as either <0.25 | >0.25 and <0.50 | >0.50 and <0.75
| >0.75.

Soak Time - “Soak time” is defined as the time (expressed in hours) elapsed from the
deployment of the last hook during the set and the first hook removed during the
haulback. A common practice of longline vessels, “reverse haul,” is defined as, “the last
hook set is the first hook hauled.” Benefits to utilizing a reverse haul include reduction in
gasoline usage and traveling time, but is disadvantageous based on amount of time the
most recent hooks remained in the water. As with light sticks, there were anomalies
within the data for soak times, forcing a range of soak time for this analysis to be
included as zero to 50 hours. Any values beyond this range were removed from analysis.

Presence of an Observer - The final variable, presence of an observer on any given trip, is

defined as a binary of 1 (presence) or 0 (absence). Utilizing this information, in

combination with the multiple other covariates above, can provide a percentage value
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(along with 95% confidence intervals) to determine how the presence of an observer

increases or decreases the amount a particular species is kept or discarded on average.

2.3 R Modeling
General Additive Models (GAMs) were used for the CPUE analyses. Rather than using a

linear coefficient for each variable as in a GLM, a smooth function is estimated for each
predictor, resulting in a superior fit when predictors are non-linear (Hastie and Tibshirani 1986).
Initially, a GLM with a Poisson response was fit using the R package n1me, but due to the high
number of zeros in the dataset (an indication of no individuals caught during a particular set), a
different response structure was required. This was confirmed by the residual deviance, which
determines the suitability of the response distribution given the model predictors. With the
residual deviance being substantially higher relative to the degrees of freedom, it became clear
over dispersion was present within the dataset. After observing strongly non-linear relationships
between many of the predictors and responses, a GAM with a negative-binomial response
structure proved to be the most appropriate analysis method.

The GAM model (see R code as Appendix 4) was used to determine the significance of
the predictor variables for observer presence during a longline trip. Distinctive to generalized
additive models, non-parametric, unspecific functions of the predictor variables (e.g.,
temperature, soak time, or hooks set), can be used to increase the accuracy of these predictors on
smooth functions of dependent variables (Hastie and Tibshirani 1986). These GAMSs can discern
hidden patterns of significance and assist in the interpretation of relationships between years,
geographic locations, fleet demographics, catch species abundancies and discrepancies between
what is kept, discarded alive, and discarded dead. An individual GAM was applied to each
species or species group (e.g., “XHH_ALL” referred to all hammerhead shark species combined
into one variable). To account for variance in catchability between vessels, a “random effect”
for each vessel — defined as each vessel’s individual vessel identification number — was included
in the model. Written as “s(VESSEL_ID NUMBER, bs = “re”) in the R package mgcv (Wood
2011), this random effect helped ensure non-independence of vessels was accounted for by
reducing bias and allowing for a correlation between trips on the same vessel (e.g., same vessels
tend to yield more similar catches relative to other vessels). All vessels, even those which have

never been deployed with an observer, were averaged together and analyzed collectively.
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Due to model insignificance and less than 500 records of live bait (or the combination of
live and dead bait) present within the data, “bait kind” was removed as a potential predictor
variable for the analysis and extracted from the model. With “time” and “light stick proportion”
both being used as a variable for targeting species, only “light stick proportion” was included
within the model to maximize accuracy and minimize the number of variables. By utilizing
independent predictors and only including interactions if there was evidence of significance, this
helped ensure multicollinearity was not an issue. All remaining predictor variables, including

combination of temperature by season and hooks set by season were included in final model.

2.3.1 gam. check Function

Once all models successfully completed, the results were analyzed for significance. The
function gam. check (see R Code as Appendix 4), which produces diagnostic information
about the results via general information and residual plots, showed the dimension parameters (k)
to be adequate in Figure 9. If the p-value was < 0.05, or the effective degrees of freedom (edf)
value was too close to the k value, the model was rerun with a higher k parameter for that
particular covariate, adjusting each variable until it was evident there would be no substantial
gain in edf. This ensured an adequate degree of smoothing to sufficiently capture the
relationship between predictor and response.

2.3.2 Summary Function

Next, the summary function determined significance for each predictor. Referring to the
categorical variables within the “Parametric coefficients” section of the summary results in
Figure 10, any row value <0.05 is deemed significant. The most important value within this
summary, “OBSERVER.1”, determines if the presence of an observer (based on other predictors
within model), is significant. Focusing on the Pr(>|z|) column in Figure 10, a number of
predictor variables proved to be significant (<0.05). “Deviance explained = XX%”, shown in
Figure 11 within the results of the summary function, demonstrates variability in the response
variable based on the terms in the model. If the deviance explained value is low, it is an

indication other potentially influential factors are not being accounted for in the model.

2.3.3 ANOVA Function
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Figure 9. Using the number of swordfish kept as an example, here are the results of the

gam. check function. A p-value > 0.05 is an indicator “k” was an adequate fit for model. A
low p-value is an indication ‘k” was too low, especially if the columns “k” and “edf” are too
close in numerical value.
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Parametric coefficients:

Estimate std. Error z value Pr(=|z|)
(Intercept) 0.63845  0.05546 11.512 < 2e-16 ***
AREA_MNAMESFEC -0. 66584 0.03480 -19.135 <= 2e-1p ##=
AREA_NAME SGOM -0. 34799 0.03840 -9.062 <« Z2e-1lb ##=
AREA_NAMESMABE -0.49328 0.04304 -11.461 <= Ze-16 #**
AREA_NAMESNCA -0.08649 0.04632 -1.867 0.06187 .
AREA_MNAMESNEC -0, 30651 0.04365 -7.022 2.18e-12 #=¥*
AREA_NAMESMNED -0. 89217 0.66393 -1.344 0.1790Z
AREA_MNAMESSAB -0.014992 0.03496 -0.570 0.56890
AREA_NAMESSAR -0.34943  0.05026 -6.952 3.6le-12 #*=
AREA_NAMESTUN -0. 89148 0.07089 -12.576 < Z2e-1p ##=
AREA_NAMESTUS 0. 25667 0.08629 2.974 0.00294 ==
SEASONSPRING -0.15354 0.02438 -6.297 3.03e-10 #=#=
SEASONSUMMER -0. 26548 0.01823 -14.564 < Ze-16 ##*
SEASONWINTER 0.02490 0.02599 0.958 0.33796
OBSERVER. 1 -0.27748 0.01258 -22.008 <« Z2e-1b ###
LIGHT_STICK_PROPOD. 5 1.00582 0.01821 55.220 <= Ze-16 #¥*
LIGHT_STICK_PROPO.75 1.21606 0.02753 44.177 < 2e-1b ##=
LIGHT_STICK_PROP1 1.33019 0.02160 61.575 <= Z2e-16 #**

Figure 10. Using the number of bigeye tuna discarded alive as an example, the results of the
“Parametric Coefficients” portion of the Summary Function determines significance based on
whether variables have a result < 0.05 in the “Pr(>|z|)” column. Each area, season, and light
stick proportion is determined to be significant or not. For this analysis, the most important
variable, “OBSERVER.1"” has a value of 2e-16 (<0.05), determining the presence of an observer
(based on all predictors within the model) to be significant.
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5(FAHTOCEL) : SEASONWINTER 1.000e+00 1.000e+00 2.877 0.089855 .
5(VESSEL_ID_NUMBER) 1.670e+02 4.060e+02 787.306 < Ze-1f6 #**

signif. codes: 0 "#**' 0,001 ***' 0,001 **' 0,05 .7 0.1 F ' 1

Rank: 795/797
R-50.(adj) = 0.088 Deviance explained
-REML = 6000.7 scale est. =1 f

45. 5%
38385

Figure 11. Using the number of bigeye tuna discarded alive as an example, another result of the
summary function, “Deviance explained”, shows the variability in the response variable based
on the terms in the model. If the “Deviance explained” value is too low, there is an indication

other influential factors are not being accounted for in the model.
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Parametric Terms:
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Figure 12. Using all disposition categories of Bluefin tuna combined into one variable as the
example, an analysis of variance (ANOVA) was used to determine differences among groups
within a sample. Used more as an average for each group (rather that individually), an ANOVA
focuses on the significance levels as a whole for each response variable. For
“BFT ALL COMBINED”, soak time, hooks sets (spring), temperature, and temperature by

autumn, summer, and winter were all significant
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An analysis of variance (ANOVA) was used to analyze the differences or variations
among groups within a sample and determine which variables have an effect on the response.
ANOVA, as opposed to the summary function, focuses on significance levels as a whole as
opposed to levels of individual variables. Listed under the label “Parametric Terms” the

significance of each predictor variable (e.g., season, area, temperature) is assessed.

2.3.4 Quantifying Results

The “Observer Coefficient” is the percentage value quantifying the model-based observer
effect. (see R code as Appendix 4) The second group of code, the “95% Confidence Interval for
Observer Coefficient” produces the range to which the observer coefficient value falls within (to
a 95% certainty). (see R code as Appendix 4) If the percentage value for the observer
coefficient is positive, there is an indication an observer on board a vessel causes a greater
quantity of a species to be reported. If the coefficient were negative, that would be an indication
of more interactions in the absence of an observer. If the confidence interval contains zero, that
is an indication of no observer effect. After analyzing each species over the course of 25 years,
the same response variables were analyzed annually. Table 4 represents a quantified observer

effect for all species applied within the model.

2.4 Species
Using the Atlantic Highly Migratory Species Logbook form (NOAA Form 88-191, 2016)

and cross-referencing it with the 2016 Pelagic Observer Program Species Code list seen in Table
2, 40 species were analyzed to determine if the presence of an observer affected the amount of
individuals kept, discarded alive, or discarded dead. Shown in Table 1, due to changes in the
species forms over 25 years, each species was analyzed only during the time frame in which the

species were present for both programs.
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2.4.1 Swordfish and Tuna

Table 1. An “X” indicates species presence for both observer and logbook program for given
year. If box is blacked out, species was not present for one or both programs during given
year(s). Bonito, Sandbar Shark, Escolar and the three mammal species (Short-finned Pilot

Whale, Long-finned Pilot Whale, and Risso’s Dolphins) were not present during the entire 25-

year period, only being modeled during years both were present for both programs.

SWORDFISH (SW0) X
BONITO (BON),

BLUEFIN TUNA (BFT)

SKIPJACK TUNA (SKJ)
YELLOWFIN TUNA (YFT)
BLACKFIN TUNA (BLK)

ALBACORE (AL8)

BIGEYE TUNA (BET)
BLUE SHARK (BSH)

SHORTFIN MAKO SHARK (SMA)
LONGFIN MAKO SHARK (LVA)
OCEANIC WHITETIP SHARK (OCS)
PORBEAGLE SHARK (POR)

BIGEYE THRESHER SHARK (BET)

COMMON THRESHER SHARK (PTH)

BIGNOSE SHARK (SBG)

BLACKTIP SHARK (SBK)
DUSKY SHARK (DUS)

SHARK (x3) (XHH)

NIGHT SHARK (SNI)

SANDBAR SHARK (S5B)
SILKY SHARK (FAL)

SPINNER SHARK (SSP)
“TIGER SHARK (TIG)

X X
X
ESCOLAR (GEM)
COMMON DOLPHINFISH (DOL)
WAHOO (WAH)|
KING MACKEREL (KGM)
GREATER AMBERJACK (AMY)
WHITE MARLIN (WHM)
BLUE MARLIN (BUM)|
SAILFISH (SAI)|
SPEARFISH (SPG)
LOGGERHEAD TURTLE (TTL)

LEATHERBACK TURTLE (TLB)
PILOT WHALE (x2) (MPW)

< [ [ [3< [[3< < [ e 3¢ [ [ 3= [ ¢ o< [5< [ < [ | [ fox [ [ fox [ e [s< [ [ [ ¢ [5< | | < (@
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Table 2. An excerpt from the Pelagic Observer Program Species Code List, each species is
grouped together as either a billfish, shark, tuna, finfish, marine mammal, sea turtle, or sea bird.
Including the species name, scientific name, and a three-letter code used to expedite the data
collection process, this list is used as a reference by all observers working for the POP.

PELAGIC OBSERVER PROGRAM

Makaira nigricans

Istiophorus platypterus

Tetrapturus pfluegeri

T. albidus georgii

Isurus spp

Isurus paucus

Carcharhinus longimanus

Galeocerdo cuvier

Carcharhinus acronotus

Carcharhinus limbatus

Carcharhinus obscurus

Carcharhinus plumbeus

Carcharhinus brevipinna

Carcharhinus perezi

Alopias super

Sphyrnaspp.

Sphyrnalewini

Pteroplatytrygon violacea

Chelonia mydas

Caretta caretta

Dermochelys coriacea

MARLIN BLUE

SAILFISH ATLANTIC

SPEARFISH LONGBILL

WHITE MARLIN / R.S. SPEARFISH

SHARK MAKO

SHARK MAKO LONGFIN

SHARK OCEANIC WHITETIP

SHARK TIGER

SHARK BLACKNOSE

SHARK BLACKTIP

SHARK DUSKY

SHARK SANDBAR

SHARK SPINNER

SHARK REEF

SHARK THRESHER BIGEYE

SHARK HAMMERHEAD

SHARK HAMMERHEAD SCALLOPED

PELAGIC STINGRAY

SKATES/RAYS

TURTLE GREEN

TURTLE LOGGERHEAD

TURTLE LEATHERBACK

OUTHEAST FISHERIES SCIENCE CENTER

Thunnus thynnus

Thunnus atlanticus

Katsuwonus pelamis

Euthynnus allettaratus

Scomberomorus cavalla

Auxis thazard

Coryphaena spp

Lepidocybium flavobrunneum

Seriolaspp.

Sphyraena spp.

Pomatomus saltatrix

Trachipterus arcticus

Gempylus serpens

Bramadae spp.

Echeneidae spp.

Masturus lanceolatus

Megalops atlanticus

Ziphiidae spp.

Globicephalaspp.

Globicephala macrorhynchus

TUNA BLUEFIN

TUNA BLACKFIN

TUNA SKIPJACK

LITTLE TUNNY

MACKEREL KING

MACKEREL FRIGATE

DOLPHIN FISH

ESCOLAR (SMOOTH SKIN)

AMBERJACK

BARRACUDA

BLUEFISH

DEALFISH

MACKEREL SNAKE

REMORA

SUNFISH SHARPTAIL

TARPON

WHALE BEAKED

WHALE PILOT

WHALE PILOT SHORTFIN

26



Swordfish and tuna were broken down into three separate categories before analysis,
based on either being kept, discarded alive, or discarded dead. Each of the three analyses
focused on the entire 25-year period, producing one result for each disposition category.
Additionally, all three disposition categories were combined into one variable (e.g.,

“SWO _ALL”) and measured again to provide an overall result for each species.

The combined variables were then graphed together — ranked in order of most to least
affected — to show which species had the most significant observer effect. Using zero percent
difference as the baseline, any result statistically above zero (more fish were caught in the
presence of an observer) had a graphing point displayed in red. If the 95% confidence interval
contained zero, an observer effect was not present and the graphing point is green. If more
species were caught in the absence of an observer), the result would be presented beneath zero
on the graph and the graph point color would be blue.

Each combined variable (e.g., “SWO_ALL”) was then analyzed by year. The following
species of tuna and swordfish were analyzed via GAM: Swordfish, Bluefin Tuna, Yellowfin
Tuna, Bigeye Tuna, Bonito, Skipjack Tuna Katsuwonis pelamis, Blackfin Thunnus atlanticus
and Albacore Thunnus alalunga.

2.4.2 Finfish

The same procedure for tuna and swordfish was utilized for the economically valued
finfish, Escolar, Common Dolphinfish, Wahoo Acanthocybium solandri, King Mackerel
Scomberomorus cavalla, and Greater Amberjack Seriola dumerili. Based on the same
disposition categories (kept, discarded alive, discarded dead), these five species were also
combined into one variable (e.g., “DOL_ALL”) using the same color-coded criteria. An annual

analysis using the combined variable was performed for each species as well.

2.4.3 Billfishes

For istiophorid billfishes, the following four species were analyzed: Blue Marlin, White
Marlin Kajikia albidus, Sailfish Istiophorus albicans, and Roundscale Spearfish Tetrapturus
georgii. Each species was analyzed according to the same disposition categories mentioned
above (kept, discarded alive, discarded dead) and grouped together into one variable (e.g.,

“BUM_ALL”). During the analysis for billfish kept, the analysis could not be completed, thus
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eliminating the need for a graph. As with swordfish, tuna, and finfish, an annual analysis was
conducted.

Misidentification with smaller billfishes can be a persistent problem, especially between
the roundscale spearfish and white marlin. With white marlin, roundscale spearfish and sailfish
having similar body types, and the major differences occurring in either the dorsal fins or relative
position of the anus to the anal fins, it is understandable that incorrect identification could occur
during longline procedures, especially if captains and crew have not been properly trained in
identifying. For white marlin and roundscale spearfish, proper identification is nearly
impossible, as these two species of billfish are nearly indistinguishable, even considered to be
one species (white marlin) until 2007. A common method of identification (proximity of anus to
anal fin) requires removal of billfish from the water, but due to environmental restrictions,
cannot be legally performed. Because of these factors, the roundscale spearfish, white marlin,
and an unidentified marlin/spearfish variable (WHX), were combined into one variable during all
analyses and written as “WHX.” Included as a tool for observers, the spearfish/marlin variable
was added to identify billfish as one of the two, rather than just a generic “billfish.” The “WHX”
variable was included in all disposition categories (kept, discarded alive, discarded dead) so the
results for billfishes represent four species, but only three variables. As a result of domestic
regulations, all billfish species within the U.S. Atlantic pelagic longline industry cannot be

retained and are considered bycatch.

2.4.4 Sharks

For sharks, 18 species — as seen in Table 3 — were analyzed in one of two groups: coastal
or pelagic sharks, as determined by the only species pre-written on the logbook set form and also
available within POP data. Important to note, as with the billfishes, some species of sharks are
federally prohibited from retention by the U.S. Atlantic pelagic longline fishery. Within Table 3,
all species with one asterisk may not be retained or possessed in any form. All species with two
asterisks may not be retained by vessels with pelagic longline gear onboard. Porbeagle sharks,
three asterisks, must be released when swordfish, tuna or billfish are onboard. Labeled with four

asterisks, Sandbar Sharks can only be retained by vessels participating in shark research (HMS
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Table 3: Coastal and Pelagic Sharks Used in Analysis. The following species were the only pre-
written species included in both the POP and logbook data, defined as one of two groups for this
analysis based on general habitat locations.

Coastal Sharks

Bignose* Carcharhinus altimus, Blacktip Carcharhinus limbatus, Dusky*
Carcharhinus obscurus, Great Hammerhead** Sphyrna mokarran, Scalloped
Hammerhead** Sphyrna lewini, Smooth Hammerhead** Sphyrna zygaena, Night*
Carcharhinus signatus, Sandbar**** Carcharhinus plumbeus, Silky** Carcharhinus
falciformis, Spinner Carcharhinus brevipinna, Tiger Galeocerdo cuvier

Pelagic Sharks

Blue Prionace glauca, Shortfin Mako Isurus oxyrinchus, Longfin Mako* Isurus
paucus, Oceanic Whitetip** Carcharhinus longimanus, Porbeagle*** Lamna nasus,
Bigeye Thresher* Alopias superciliosus, Common Thresher Alopias vulpinus
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Compliance Guide: Commercial Fishing, 2018). Other species, such as the blacknose shark, can
only be retained in the Atlantic region south of 34° 00’ N. latitude (50 C.F.R. §635.27, 2016).

2.4.4.1 Coastal Sharks

As a result of these ambiguities, all coastal shark species were grouped together into one
variable (“COASTAL_SHARKS_ALL”) and analyzed under the same three disposition
categories (kept, discarded alive, discarded dead). Similarly, this combined variable was

analyzed annually.

In following with commonly misidentified species, all three hammerhead shark species
(great, scalloped, smooth) — including a generic hammerhead shark variable — were grouped
together into one variable (“XHH_ALL?”).

2.4.4.2 Pelagic Sharks
The same procedure for coastal sharks was applied to pelagic species. Grouped together
within the disposition categories and combined into one variable (“PELAGIC_SHARKS_ALL”),

the group was graphed together as one, 25-year period as well as annually. The results for both

the coastal sharks and pelagic sharks were then compared.

2.4.5 Sea Turtles and Marine Mammals
Under the Marine Mammal Protection Act (MMPA), the U.S. Atlantic pelagic longline
fleet is classified as a Category | (50 C.F.R. 229.36, 2016) due to interactions with marine

mammals. This fishery is also the subject of management actions under the ESA as a result of
frequent interactions with marine turtles.

The Loggerhead Sea Turtle Caretta caretta, Leatherback Sea Turtle, Pilot Whale
(including both Short-finned Globicephala macrorhynchus and Long-finned Globicephala
melas), and Risso’s Dolphin are species of bycatch concern. The analysis of these five species
offer input into the effectiveness of current management efforts, gear regulations, and observer
programs regarding marine mammal and sea turtle interactions, and multiple restrictions on gear
and area closures are aimed at reducing mortality rates for these species. Protected under either
the ESA or the MMPA, these five species are prohibited from being harassed, harmed, hunted, or

killed under any circumstances.
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For sea turtles and marine mammals — as a result of numerous safe-handling and safe
release requirements — three new disposition categories were used: uninjured, injured, and dead.
According to Title 50 of the Code of Federal Regulations (Chapter VI), “When a marine
mammal or sea turtle is hooked or entangled by pelagic longline gear, the operator of the vessel
must immediately release the animal, retrieve the pelagic longline gear, and move at least 1 nm
(2 km) from the location of the incident before resuming fishing.” Encounters however, are an
inevitable occurrence, so the goal focuses on minimizing interactions and maximizing safe

releases.

2.4.5.1 Sea Turtles
On the 2016 Atlantic HMS Logbook Set Form, loggerhead and leatherback turtles are the

only pre-written options for captains to self-report. Though the Green Sea Turtle Chelonia
mydas, Hawksbill Sea Turtle Eretmochelys imbricata, and Kemp’s Ridley Sea Turtle
Lepidochelys kempii have occasionally been caught by pelagic longline vessels (142 total
interactions), encounters are a rarity, representing roughly 0.002% of the longline catch from
1992-2016 (even including unidentified turtle species interactions). Of all 55,306 logbook and
observer sets from 1992-2016 (not just the sets included within the thesis model), sea turtle
encounters (3,267) represent 0.059% of the total catch. Those three species mentioned above
(once again including unidentified turtle species interactions) represent 0.043% of the total sea
turtle interactions.

Unfortunately, most of the variables surrounding these two species of sea turtles were
inconsistently reported, resulting in these species being unable to be included in the models. The
largest discrepancy occurred between individuals deemed “injured”; if caught, an interaction
with the gear must have occurred, but final condition at release is unknown. For loggerhead sea
turtles, 60 individuals were reported as caught uninjured according to the logbook records, while
observers reported a total of zero uninjured individuals. For injured and dead turtles, the
observer program reported 1,009 injured turtles against 488 via self-reporting and seven dead
turtles against three from logbook. Total interactions resulted in 551 Loggerhead Sea Turtles
being reported via logbooks and 1,016 via observer programs. For uninjured Leatherback Sea
Turtles, the self-reported data showed 48 interactions against zero for the observer program,

similar to loggerheads. For injured and dead individuals, the ratios were similar to loggerheads
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LONGLINE SEA TURTLE INTERACTIONS: 1992-2016

LOGGERHEAD

KEMPS RIDLEY GREEN HAWKSBILL M LOGGERHEAD M LEATHERBACK UNIDENTIFIED

Figure 13. All longline sea turtle interactions based on individual species encounter
percentages.
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as well, showing 1,048 for the observers and 398 for the logbook regarding injured and 14 for
observers and seven for logbook for total dead individuals. Total leatherback interactions
resulted in 453 for logbook and 1,062 for the observer program.

2.4.5.2 Marine Mammals
Similar to the species constituting the “WHX" and “XHH” groupings, the Short-finned

Pilot Whale and Long-finned Pilot Whale are nearly indistinguishable to species in the water. To
account for this, both species, including a generic “pilot whale” variable, were combined into
one variable called “MPW_ALL_COMBINED.”

Based on the self-reported data, zero interactions from pilot whales or Risso’s Dolphins
occurred throughout the analysis. Focusing first on pilot whales (including the generic pilot
whale variable), there were zero uninjured individuals according to both sets of data, following
the same pattern seen with sea turtles. For injured pilot whales, the observer program
documented 266 circumstances versus zero for logbook. For deaths, eight dead pilot whales
were reported by the observer program against zero for the logbook program. For comparison,
the observer data documented a total of 274 interactions with pilot whales versus zero
interactions from logbooks.

As for the Risso’s Dolphin, the analysis was conducted solely on the one dolphin species.
Neither program had any interaction for uninjured Risso’s Dolphins, but the observer data
showed 76 injured interactions against zero from the logbook data. There were no deaths
documented by the logbooks for Risso’s Dolphins, but seven were accounted for by the observer
program data. Total interactions included 83 for the observer data and zero for the self-reported
logbooks.

For Risso’s Dolphins and both the short-finned and long-finned pilot whales, the Pelagic
Longline Take Reduction Plan (PLTRP) was implemented in 2009 under the MMPA to reduce
serious injury and mortality. Fortunately, sea turtles, marine mammals, (and seabirds) represent
roughly 1% of the observed catch composition for sets and hauls made by the commercial
pelagic longliners (Keene et al. 2010). For marine mammals, the only pre-written options on the
logbook forms are pilot whales (both short-finned and long-finned) and Risso’s Dolphin.

Despite the dozens of potential marine mammals interactions, these three species represent the
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majority, with incidents of other marine mammals being caught on mainlines representing only a

small percentage of the encounters since 1992.

3. Results

For the following results, the model included 25,601 sets reported from the logbook
program and 19,812 sets from the observer program. All species of swordfish and tuna
(swordfish, Bluefin, bigeye, yellowfin, Blackfin, skipjack, albacore, bonito), finfish (escolar,
dolphinfish, king mackerel, greater amberjack, wahoo), billfish (blue marlin, sailfish, composite
of white marlin and roundscale spearfish), and sharks (both coastal and pelagic shark groupings)
were included in the model. Figure 14, Panel A, collectively graphs all target species together
for reference, while Figure 14, Panel B, collectively graphs all species of bycatch concern that

were able to be applied to the model.

With all disposition categories combined for swordfish and tuna, the comparison showed
underreporting (percent difference > 0) for skipjack, Blackfin, and Bluefin tunas (Figure 15A),
with the greatest difference occurring with skipjack. Reporting intensity showed Blackfin,
Bluefin, and skipjack to be underreported the entire 25-year period, while annual fluctuations of
interactions per set occurred for the remaining five species. For all finfish disposition categories
combined (Figure 17A), underreporting occurred with king mackerel and escolar, although both
king mackerel and greater amberjack had significantly fewer interactions in comparison to the
other three species of finfish. Reporting intensity showed interannual fluctuations for the
average interactions reported per set for all five species. For billfish, the comparison showed
logbook underreporting in all three species categories for both “all billfish interactions” (Fig
19A) and “discarded billfish” (Fig 19B) dispositions, although the differences were greatest with
sailfish. Reporting intensity across all years of the dataset similarly show underreporting, with
the model indicating an observer effect for all three species variable categories (Figs 20A-C). For
sharks, the groupings of coastal sharks discarded alive and both coastal and pelagic sharks
discarded dead showed underreporting, with the greatest discrepancy occuring in coastal sharks
discarded dead. Reporting intensity showed interannual fluctuations for the average interactions
reported per set. Table 4 showed skipjack, sailfish and the composite white marlin and

Roundscale spearfish to be the most underreported species.
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Marine mammals and sea turtles were unable to be applied to the model due to
insufficient data. Instead, the species were compared using Table 5, Panels A-D, and included
all interacted sets (33,974 from logbook and 21,331 from observer program) rather than only sets
with complete information. For total sea turtle interactions (leatherback and loggerhead), 1004
were reported from the logbook sets against 2078 from the POP sets. For marine mammal
interactions (short-finned pilot whales, long-finned pilot whales, and Risso’s dolphin), zero

interactions were reported from longline sets against 357 from the POP.
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A Observer Effect
ALL RETAINABLE SPECIES INTERACTED SETS

SKJ BLK BFT KGM AMJ GEM ALB BET SWO YFT DOL VVAH BON
Species Group

Figure 14A. Percent difference of observer effect for all retainable species from 1992-2016, ranked in order of most to least
affected. Percent difference (y-axis) quantifies observer effect (i.e. influence of observer on catch) for each species. Any result
above zero (more fish caught in presence of observer), graph point is displayed in red. If 95% confidence interval contains zero,
an observer effect was not present and graph point is green. If more species were caught in observer’s absence, result is below

zero and graph point color is blue.

Observer Effect
B BYCATCH SPECIES INTERACTED SETS

SAl WHX BUM BFT COASTAL PELAGIC
Species Group

Figure 14B. Percent difference of observer effect for all species of bycatch concern (species able to be modeled) from 1992-2016,
ranked in order of most to least affected. Percent difference (y-axis) quantifies observer effect (i.e. influence of observer on
catch) for each species. Any result above zero (more fish caught in presence of observer), graph point is displayed in red. If 95%
confidence interval contains zero, an observer effect was not present and graph point is green. If more species were caught in
observer’s absence, result is below zero and graph point color is blue.

36



Figure 15, Panels A-D: Using percent difference, all swordfish and tuna species from 1992-2016 were ranked in order of most to
least significant observer effect (confidence interval included) and analyzed according to each disposition category (kept,
discarded alive, discarded, and all categories combined). Percent difference (y-axis) quantifies observer effect (i.e. influence of
observer on catch) for each species. Any result above zero (more fish caught in presence of observer), graph point is displayed in
red. If 95% confidence interval contains zero, an observer effect was not present and graph point is green. If more species were
caught in observer’s absence, result is below zero and graph point color is blue.
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Figure 16, Panels A-H (Seen Here: A-D): Using reporting intensity, a comparison between observer and logbook data for all
swordfish and tuna interactions from 1992-2016. Reporting intensity (y-axis) is the model predicted estimate of average
number of interactions per set.
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Figure 16, Panels A-H (Seen Here: E-H): Using reporting intensity, a comparison between observer and logbook data for all

swordfish and tuna interactions from 1992-2016 Reporting intensity (y-axis) is the model predicted estimate of average number
of interactions per set.
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Figure 17, Panels A-C: Using percent difference, all finfish species from 1992-2016 were ranked in order of most to least
significant observer effect (confidence interval included) and analyzed according to the disposition categories: all combined,
discarded alive, discarded (dead). The finfish analysis for “kept” could not be completed within model, therefore no graph was
included. Percent difference (y-axis) quantifies observer effect (i.e. influence of observer on catch) for each species. Any result
above zero (more fish caught in presence of observer), graph point is displayed in red. If 95% confidence interval contains zero,
an observer effect was not present and graph point is green. If more species were caught in observer’s absence, result is below
zero and graph point color is blue.
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Figure 18, Panels A-E: Using reporting intensity, a comparison between observer and logbook data for all finfish interactions

from 1992-2016. Reporting intensity (y-axis) is the model predicted estimate of average number of interactions per set.
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Figure 19, Panels A-B: Using percent difference, all billfish species from 1992-2016 were ranked in order of most to least
significant observer effect (confidence interval included) and analyzed according to the disposition categories: all combined and
discarded (dead). The billfish analysis for “kept” and “discarded alive” could not be completed within the model, therefore no
graphs were included. Percent difference (y-axis) quantifies observer effect (i.e. influence of observer on catch) for each species.
Any result above zero (more fish caught in presence of observer), graph point is displayed in red. If 95% confidence interval
contains zero, an observer effect was not present and graph point is green. If more species were caught in observer’s absence,
result is below zero and graph point color is blue.
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19A. Percent difference of observer effect for ALL billfish species from 1992-2016. Roundscale spearfish, white marlin, and
generic “spearfish/white marlin variable” were all combined into one variable “WHX".
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19B. Percent difference of observer effect for DISCARDED (DEAD) billfish species from 1992-2016. Roundscale spearfish, white
marlin, and generic “spearfish/white marlin variable” were all combined into one variable “WHX".
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Figure 20, Panels A-C: Using reporting intensity, a comparison between observer and logbook data for all billfish interactions

from 1992-2016. Reporting intensity (y-axis) is the model predicted estimate of average number of interactions per set.
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20C. Comparison of reporting intensity between observer and logbook data for all ROUNDSCALE SPEARFISH, WHITE MARLIN,

(and including the generic spearfish/white marlin variable) interactions from 1992-2016 .
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Figure 21, Panels A-C: Using percent difference, all coastal and pelagic shark species from 1992-2016 were ranked in order of
most to least significant observer effect (confidence interval included) and analyzed according to each disposition category (kept,
discarded alive, discarded (dead). Percent difference (y-axis) quantifies observer effect (i.e. influence of observer on catch) for

each species. Any result above zero (more fish caught in presence of observer), graph point is displayed in red. If 95%

confidence interval contains zero, an observer effect was not present and graph point is green. If more species were caught in

observer’s absence, result is below zero and graph point color is blue.
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Figure 22, Panels A-B: Using reporting intensity, a comparison between observer and logbook data for all coastal and pelagic
shark species interactions from 1992-2016. Reporting intensity (y-axis) is the model predicted estimate of average number of

interactions per set.
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Table 4. Observer coefficient quantified and ranked in order of most to least affected according to observer effect, for all
applicable species. Observer coefficient translated into “likelihood” of interaction with species based on observer data
compared to logbook data, with confidence interval included. For example, Skipjack Tuna is 5.64 times more likely to be
encountered in presence of an observer on a longline vessel.

SPECIES (RANKED) OBSERVER COEFFICIENT OBSERVER INFLUENCE LIKELIHOOD ("TIMES") | CONFIDENCE INTERVAL
SKIPJACK TUNA (SKJ) 464.02 5.64 4.85 - 6.56
SAILFISH (SAl) 214.62 3.15 2.85-3.47
WHX 206.11 3.06 2.88-3.26
BLACKFIN TUNA (BLK) 197.02 2.97 2.69-3.28
BLUE MARLIN (BUM) 140.89 2.41 2.24-2.59
BLUEFIN TUNA (BFT) 81.43 1.81 1.63-2.01
KING MACKEREL (KGM) 80.37 1.80 1.09 - 2.97
COASTAL SHARKS 68.82 1.69 1.60-1.78
GREATER AMBERJACK (AMUJ) 59.83 1.60 0.78-3.28
ESCOLAR (GEM) 32.32 1.32 1.25-1.40
ALBACORE (ALB) 3.36 1.03 0.92 - 1.09
PELAGIC SHARKS -2.72 0.97 0.94-1.01
BIGEYE TUNA (BET) -2.95 0.97 0.93-1.02
SWORDFISH (SWO) -3.27 0.97 0.94 - 0.99
YELLOWFIN TUNA (YFT) -6.23 0.94 0.91-0.97
COMMON DOLPHINFISH (DOL) -8.01 0.92 0.88-0.96
WAHOO (WAH) -10.44 0.90 0.83-0.96
BONITO (BON) -36.01 0.64 0.42 - 0.98

3.5 Sea Turtles and Marine Mammals

With insufficient data to complete all sea turtle and marine mammal interactions within
the model, Table 5, Panels A-D was included for reference. Observer sets included in model:
21,331. Logbook sets included in model: 33,974. Number of Logbook Interactions/Total
Logbook Sets (Column 1/33,974) provided logbook interactions per 100 sets. Number of
Interactions/Total Observer Sets (Column 3/21,331) provided observer interactions per 100 sets.
Ratio (likelihood of interaction between logbook and observer program) is observer interactions
(per 100 sets)/logbook interactions (per 100 sets) (Column 4/Column 2 = Column 5)
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Table 5A: Uninjured Sea Turtle and Marine Mammal Interactions (Logbook and POP)

1 2 3 4 5
Uninjured | Interactions | Uninjured | Interactions Ratio:
Species (Logbook) | (Per 100 Sets) (POP) (Per 100 Sets) | (Observer/Logbook)
Loggerhead Sea Turtle 60 0.18 0 0 NA
Leatherback Sea Turtle 48 0.14 0 0 NA
Pilot Whales 0 0 0 0 NA
Risso’s Dolphin 0 0 0 0 NA

Table 5B: Injured Sea Turtle and Marine Mammal Interactions (Logbook and POP)

1 2 3 4 5
Injured | Interactions | Injured | Interactions Ratio:
Species (Logbook) | (Per 100 Sets) (POP) (Per 100 Sets) | (Observer/Logbook)
Loggerhead Sea Turtle 488 1.44 1009 473 3.28
Leatherback Sea Turtle 398 1.17 1048 4.91 4.20
Pilot Whales 0 0 266 1.25 NA
Risso’s Dolphin 0 0 76 0.36 NA

Table 5C: Dead Sea Turtle and Marine Mammal Interactions (Logbook and POP)

1 2 3 4 5
Dead Interactions Dead Interactions Ratio:
Species (Logbook) | (Per 100 Sets) (POP) (Per 100 Sets) | (Observer/Logbook)
Loggerhead Sea Turtle 3 0.009 7 0.033 3.67
Leatherback Sea Turtle 7 0.021 14 0.066 3.14
Pilot Whales 0 0 8 0.038 NA
Risso’s Dolphin 0 0 7 0.033 NA

Table 5D: Total Sea Turtle and Marine Mammal Interactions (Logbook and POP)
1 2 3 4 5
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TOTAL | Interactions | TOTAL | Interactions Ratio:
Species (Logbook) | (Per 100 Sets) (POP) (Per 100 Sets) | Observer/Logbook
Loggerhead Sea Turtle 551 1.62 1016 4.76 2.94
Leatherback Sea Turtle 453 1.33 1062 4.98 3.74
Pilot Whales 0 0 274 1.28 NA
Risso’s Dolphin 0 0 83 0.39 NA
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4. Discussion

The analyses of each species — and various grouping of species — led to one result for a
majority of bycatch species: the presence of an observer results in an increase in reported catch.
Based on the data results, the presence of an observer on longline vessels increases the accuracy
of reporting for non-targeted species, but this is assuming observer data in itself is accurate.
Though professionally trained, observer-based-identification errors are not uncommon.
Observer experience levels vary, with an observer’s first trip weighing equally against their 50th
in the data, for example. Observer programs and the fishing industry operate under the
assumption species identification is without error, but Faunce (2011) showed nearly all deliveries
[catch] examined in the Rockfish Pilot Project (RPP) in the Gulf of Alaska contained
misidentification between both the fishing industry and observers, with roughly one third of the
comparisons having a species reported by one source and absent from the other. Identification of
billfishes, sharks, marine mammals, and sea turtles for U.S. pelagic longlining requires
observations of characteristics such as fin placement, tooth shape, and body shape and NMFS-
trained pelagic fisheries observers are required to pass a species identification course during an
extensive two-week training, but mistakes do occur.

Despite the POP data not being 100% accurate, the level of accuracy for self-reported
data — in general — is lower than data collected by pelagic fisheries observers. Some vessels may
have higher reporting accuracy for reporting and identification than others, but the fleet’s
reporting (as a whole) varies depending on the species. Focusing on vessel-specific analyses
could offer a benefit into exploiting this topic, increasing overall reporting accuracy, and
emphasizing techniques and vessel-specific variables that lead to increased accuracy. For self-
reported data, attempts to increase data accuracy on non-observed trips have led to the
implementation of electronic monitoring systems (video surveillance) on U.S. Atlantic pelagic
longline vessels. Originally intended to monitor Bluefin Tuna, surveillance efforts offer
additional options to obtain accurate reporting offshore without accruing the high cost of
deploying an observer. Electronic monitoring could also assist with species not listed on the
logbook pre-printed forms, considering those species are almost certainly under-reported.
Additionally, with discrepancies in injury reporting for marine mammals and sea turtles between
the two programs, a clear definition should be established to determine what qualifies as an

injury. With more than one hundred logbook reporting of uninjured sea turtles (leatherback and
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loggerhead) versus zero uninjured reporting from the POP, the condition to what classifies an
injury must be articulated to both entities. There might be concerns from the vessels regarding
the reporting of minor injuries based on the multipliers for each injury category used to estimate
take values from the whole fishery, but formal guidance might help deconstruct the differences
in reporting on injuries upon release.

Several prior studies have similarly compared fisheries observer and self-reported data
from the pelagic longline fishery. Walsh and Garrison (2006) calculated bycatch estimates of
marine mammals and sea turtles from the U.S. Atlantic pelagic longline fleet based solely on
fishing during 2005 from the observer program and self-reported data. After obtaining an
estimated bycatch rate, it was then multiplied by the total fishing effort (number of hooks)
reported to the FLS program to obtain interaction estimates for each marine mammal and turtle
species (Ibid.). The mean and variance of these catch rates for marine mammals and sea turtles
was then calculated through a delta estimator. Forrestal et al. (2018) performed a comparison of
logbook data to observer data using a longline simulator (LLSIM) program and focusing on Blue
Marlin. This simulator, using data from the U.S. Atlantic pelagic longline fishery, simulated
catch datasets from known populations of Blue Marlin, but with the low level of coverage in
comparison to the actual amount of data, the two datasets were simulated to provide an accurate
index of abundance based on catch per unit effort.

By including a thorough year-by-year analysis focused on fishery management efforts, a
demonstration of effectiveness for years prior, or currently, can lead to the implementation of
more accurate regulations. From 1992 until 2016, there were arguably three major occurrences
which dramatically altered the Atlantic longline industry: closure of the Florida Straits in 2000,
implementation of circle hooks in 2004, and start of Individual Bluefin Tuna Quota (IBQ) in
2017. With the introduction of each, lower-producing captains were forced to leave the fishery,
leaving an increasingly small number of captains who would have all once been considered high-
liners in the fleet. These high-liner captains tend to be more knowledgeable in regards to
reporting requirements and record-keepings, thereby incurring a slight bias over time, especially
over the last few years.

By focusing on certain species or areas and determining which were affected more,
assistance in future protected areas and time-area closures could result. Effort redistributions in

the fleet from time-area closures (e.g., the DeSoto Canyon closure in the Gulf of Mexico) or the
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broad implementation of circle hook requirements in 2004 could be reviewed. Greater ratios
between logbook and observer-collected data could result in increased knowledge for area-
regulated closures. For example, the Cape Hatteras Gear Restricted Area, with Conditional
Access, limits access for pelagic longline vessels from December through April to reduce
Bluefin Tuna interactions. Theoretically, if observer data shows consistent Bluefin Tuna
interactions during this time, while self-reported data declines, it is an indication of under-
reporting and need for enhanced enforcement. Discrepancy between data collection could prove
valid for edge effects (fishing along boundaries) with specific time-area closures. The Cape
Hatteras Special Research Area was implemented to protect pilot whales and Risso’s dolphins
from pelagic longline vessels (50 C.F.R. 8229.36, 2016). The springtime seasonal Gulf of
Mexico (GOM) Gear Restricted Areas were introduced to reduce interactions with Bluefin tuna
during spawning season (50 C.F.R 8§635.21, 2016). In the NED, there are restrictions that
require vessels to use a circle hook size 18/0 or larger with an offset less than 10 degrees, as well
as limiting the bait to whole Atlantic mackerel Scomber scombrus or squid (50 C.F.R. 8635.21,
2016). Large and potentially unknown ecosystem effects could occur if management regulations
change the gear configurations such that under-reported species are caught at a higher rate.

With a consecutive, multi-decade dataset such as this, there are several avenues for
future research. Though beneficial to have multiple years of data, there are drawbacks to
analyzing such an extensive dataset. In addition to the amount of time needed for each analysis
to complete, drawbacks include number of model variables, data preparations, data cleansing,
and time frame to complete analyses. During the initial stages of the model creation, the idea
was to include as many potentially significant variables as possible. Unfortunately, while some
proved to be insignificant, other variables and variable interactions resulted in either (a) the
model failing to converge, or (b) the elapsed time for the system to complete the analysis
required multiple days. The model was adjusted to account for these variances through the
elimination of variables and the experimentation of run times and model capabilities. As
computing power continues to improve, so too can the potential for more in-depth analyses.

With so many additional variables involved in this analysis, the addition of time-area
closures (or hook implementation) into the current model may have had an effect, but would not
have been a conclusive determinant of observer effect. By focusing solely on time-area closures

in a controlled experiment, a better understanding effectiveness could result. Unfortunately,
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since the observational data being used in the current analysis encompasses 11 regions over a
multi-decade period, specific regulations and closures would have to be examined in a separate
analysis.

Future analyses on topics such as those mentioned above can prove to be all the more
important as NOAA and other management efforts shift toward an Ecosystem-Based Fishery
Management (EBFM). With unaccounted-for bycatch and under-reported mortalities of marine
species, efforts to sustainably manage fisheries becomes more difficult, and these decisions —
among others — rely on accessible, reliable, and accurate information to advance understandings
of ecosystem processes, implement plans, prioritize vulnerabilities, and explore resiliency

(“Ecosystem-Based Fishery Management”, n.d.).

6. Conclusion

Fisheries management often require trade-offs between sufficiently accurate data for
robust stock assessments and budgetary priorities. For years, NOAA monitoring of the U.S.
Atlantic pelagic longline fishery has used a combination of logbook and fisheries observer data
that reflects this trade-off. While this combination appears to be consistent for target species,
these analyses suggest significant under-reporting for catches of non-target and bycatch species.
As fisheries management transitions into ecosystem-based frameworks, better understanding of

the ecosystem effects of present and proposed regulations is essential for ensuring sustainability.
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Appendix 1: Agencies, Acts, and Programs Associated with the U.S. Pelagic Longline
Fishery

ATCA — (Atlantic Tunas Convention Act) federal law addressing the conservation of Atlantic

Tunas

Consolidated Atlantic HMS FMP — (Consolidated Atlantic Highly Migratory Species
Management Plan) Atlantic tunas, swordfish, sharks, and billfish are found throughout the
Atlantic Ocean and must be managed both domestically and internationally; as a result, NOAA

Fisheries has primary authority for developing and implementing this type of management effort

ESA — (Endangered Species Act of 1973) a key legislation for both domestic and international
conservation and aims to provide a framework to conserve and protect endangered and

threatened species and their habitats.

ICCAT - (International Commission for the Conservation of Atlantic Tunas) is an inter-
governmental fishery organization responsible for the conservation of tunas and tuna-like species

in the Atlantic Ocean and its adjacent seas

MMPA — (Marine Mammal Protection Act) passed by Congress in 1972 in response to
increasing concerns among scientists and the public regarding declines in some species of marine
mammals by human activities; established national policy to prevent marine mammal species
and population stocks from declining beyond the point where they ceased to be significant
functioning elements of the ecosystems they interact with; first legislation to mandate an

ecosystem-based approach to marine resource management

MSA — (Magnuson-Stevens Fishery Conservation and Management Act) is the primary law

governing marine fisheries management in U.S. federal waters

NMFS — (United States National Marine Fisheries Service) is an office of the National Oceanic
and Atmospheric Administration within the Department of Commerce responsible for the
stewardship of the nation's ocean resources and habitat; provides services for the nation through
productive and sustainable fisheries, recovery and conservation of protected resources, and

healthy ecosystems
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NOAA — (National Oceanic Atmospheric Administration) is a U.S. environmental intelligence
agency focusing on weather forecasts, storm warnings, climate monitoring, fisheries

management, coastal restoration and support of marine commerce

NOAA Administrative Orders - durable intra-agency directives that remain effective until
superseded or cancelled by an appropriate action; cover program matters and management
policies, procedures, requirements, and responsibilities applicable to two or more organizations;
provide NOAA-specific guidance supplementing the administrative policies and procedures

issued in the Department Administrative Order (DAO) series

POP — (Pelagic Observer Program) — based out of SEFSC in Miami, FL and starting in May
1992, the POP deploys fisheries observers on longline fishing vessels to collect data along the
eastern coast of the U.S., including GOM and Caribbean, to be used in a range of conservation

and management issues

SEFSC — (Southeast Fisheries Science Center) conducts multi-disciplinary research programs to
provide management information to support national and regional programs of NOAA's National
Marine Fisheries Service; headquartered in Miami, FL, there are multiple divisions and labs
across the southeast region of the U.S. including Beaufort, NC, Galveston, TX, Lafayette, LA,
Panama City, FL, Pascagoula, MS and Stennis, MS.

UDP — (Unified Data Processing) formerly known as the Fisheries Logbook System (FLS),
records the fishing and non-fishing activity of fishers who are required to report their fishing

activity via logbooks submitted for each trip.

Vessel Logbook Program — within the Fisheries Statistics Division of NOAA, the logbook
program manages commercial fisheries data for a number of fisheries for the Southeast region of
the U.S.

Appendix 2: Pelagic Longline Gear and Fishery Terms

Bycatch — species caught by fishers other than those intended to be sold; whether there is no
market value or the species are prohibited from being caught, bycatch can refer to marine

mammals, sea turtles, seabirds, sharks, or fish
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Circle Hook — type of hook aimed to reduce swallowing or ingestion beyond mouth, reducing

mortality of both catch and bycatch alike

CPUE — (Catch Per Unit Effort) an indirect measure of the abundance of a target species;
changes in the catch per unit effort are inferred to signify changes to the target species' true

abundance.

Exclusive Economic Zone - the zone where the U.S. and other coastal nations have jurisdiction

over natural resources

Fisheries Observer — professionally trained biological scientists and at-sea monitors who collect

data from U.S. commercial fishing and processing vessels

Float — type of floatation device made of various material used to maintain fishing gear within
the water column and prevent it from sinking; have also been referred to as daubs, bullets,

polyballs, or buoys)
Haul — the act of retrieving or “hauling” longline gear from the water to determine catch

HMS — (Highly Migratory Species) travel long distances, often cross domestic and international
boundaries and include tunas, sharks, swordfish, and billfish in U.S. Atlantic Ocean, Gulf of

Mexico, and Caribbean waters

Light Stick — small piece of plastic tube which contains chemicals that illuminate when
activated through a physical action such as bending or snapping; this chemical reactive substance
is attached near a hook and used as an attraction for swordfish, which — according to the fishery

— are attracted to light

Longline Vessel — type of vessel used in the longline fishing which uses a mainline (“longline”)

with baited hooks attached at intervals by branch lines called gangions

Mainline — line to which all hooks, floats, gangions, light sticks and bait are attached and

connected to the vessel on a spool; made of various material and varies in diameter and color
PLL — pelagic longline; referring to the commercial longline fishing industry

Set — the act of placing or “setting” longline gear in the water with associated bait and gear

configuration based on the target species
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Tuna Purse Seining — style of fishing for tuna involving a net, floats and weights and is used to
encircle schools of fish; net is enclosed using a purse line threaded through rings attached to the

bottom of the net.

Time Area Closures - tool to reduce the incidental capture of bycatch species through fisheries

regulations in certain areas of the ocean during specific times of the year

Vessel Identification Number - as defined by the USCG, Vessel Identification Numbers are 6
to 8 characters long and may contain all digits, or begin with 1 or 2 letters (A-Z) followed by 6

or 7 digits.

VMS — Vessel Monitoring System, used by a number of agencies via satellite to determine
location and course of vessel during a particular trip; can determine date and location of

departure and return and calculate vessel speed

Appendix 3: Species of Interest

Table 6: All species used during analysis

Swordfish Xiphias gladius, Bonito Sarda sarda, Bluefin Thunnus thynnus,
Swordfish and Skipjack Katsuwonus pelamis, Yellowfin Thunnus albacares, Blackfin

Tunas Thunnus atlanticus, Albacore Thunnus alalunga, Bigeye Thunnus obesus

Escolar Lepidocybium flavobrunneum, Dolphin Coryphaena hippurus, Wahoo
Finfish Acanthocybium solandri, King Mackerel Scomberomorus cavalla, Greater

Amberjack Seriola dumerili

Bignose* Carcharhinus altimus, Blacktip Carcharhinus limbatus, Dusky*
Carcharhinus obscurus, Great Hammerhead** Sphyrna mokarran, Scalloped
Coastal Sharks Hammerhead** Sphyrna lewini, Smooth Hammerhead** Sphyrna zygaena,
Night* Carcharhinus signatus, Sandbar**** Carcharhinus plumbeus, Silky**

Carcharhinus falciformis, Spinner Carcharhinus brevipinna, Tiger

Galeocerdo cuvier

Blue Prionace glauca, Shortfin Mako Isurus oxyrinchus, Longfin Mako*

Pelagic Sharks Isurus paucus, Oceanic Whitetip** Carcharhinus longimanus, Porbeagle***
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Lamna nasus, Bigeye Thresher* Alopias superciliosus, Common Thresher

Alopias vulpinus

White Marlin Kajikia albidus, Blue Marlin Makaira nigricans, Sailfish

Billfishes Istiophorus albicans, Roundscale Spearfish, Tetrapturus georgii

Sea Turtles Loggerhead Caretta caretta, Leatherback Dermochelys coriacea

Short-finned Pilot Whale Globicephala macrorhynchus, Long-finned Pilot
Marine Mammals

Whale Globicephala melas, Risso’s Dolphins Grampus griseus

Appendix 4: R Code

library(mgcv)

system.time(mod_gam_11 <- gam(BLUEFIN_TUNA_DISCARDED ~ AREA_NAMES
+ SEASON + OBSERVER. + LIGHT_STICK_PROP + s(SOAK_TIME, k =
30) + s(HOOKS_SET, k = 30) + s(HOOKS_SET, by = SEASON,
k = 30) + s(FAHtoCEL, k = 40) + s(FAHtoCEL, by =
SEASON, k =30) +
S(VESSEL_ID_NUMBER, bs = ""re""),
data = combined_data_gam,
family = ""'nb",
method = "REML",
control = list(trace = TRUE)))

# 1.) Extract Observer Coefficient

round(100 * (exp(summary(BLUEFIN_KEPT)$p.table["OBSERVER.1",
"Estimate™]) - 1), 3)

#2.) 95% Confidence Interval for Observer Coefficient

round(100 * (exp(summary(BLUEFIN_KEPT)$p.table["OBSERVER.1",
"Estimate™] + c(-1, 1)

* summary(YFT_DISC_ALIVE)$p.table["OBSERVER.1", "'Std. Error""] *
gnorm(.975)) - 1), 3)

1.) # Extract Observer Coefficient

round(100 * (exp(summary(BLUEFIN_KEPT)3$p.table["OBSERVER.1",
"Estimate™]) - 1), 3)

[1] 14.195

2.) # 95% Confidence Interval for Observer Coefficient

round(100 * (exp(summary(BLUEFIN_KEPT)$p.table["OBSERVER.1",
"Estimate™] + c(-1, 1)
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* summary(YFT_DISC_ALIVE)$p.table["OBSERVER.1", "'Std. Error™] *

gnorm(.975)) - 1), 3)
[2] -2.183 33.316

# HAMMERHEAD SHARK COMBINATION

HAMMERHEAD_ALL_KEPT <- combined_dataSHAMMERHEAD_GREAT_KEPT +

combined_dataSHAMMERHEAD_SCALLOPED_KEPT +
combined_dataSHAMMERHEAD_SMOOTH_KEPT +
combined_dataSHAMMERHEAD_KEPT
HAMMERHEAD_ALL_DISC_ALIVE <-
combined_dataSHAMMERHEAD_GREAT_DISC_ALIVE
+ combined_dataSHAMMERHEAD_SCALLOPED_ALIVE +
combined_dataSHAMMERHEAD_SMOOTH_DISC_ALIVE +
combined_dataSHAMMERHEAD_DISC_ALIVE
HAMMERHEAD_ALL_DISCARDED <-
combined_dataSHAMMERHEAD_GREAT_DISC_DEAD +
combined_dataSHAMMERHEAD_SCALLOPED_DEAD +
combined_dataSHAMMERHEAD_SMOOTH_DISC_DEAD +
combined_dataSHAMMERHEAD_DISCARDED
HAMMERHEAD_ALL <- HAMMERHEAD_ALL_KEPT +
HAMMERHEAD_ALL_DISC_ALIVE +
HAMMERHEAD_ALL_DISCARDED

SWO_ALL <- combined_data$SWORDFISH_CAUGHT +
combined_data$SWORDFISH_DISC_ALIVE +
combined_data$SWORDFISH_DISCARDED
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Appendix 5: Logbook and Pop Forms: 1992 vs 2016

Figure 23, Panels A-H, compare the forms used in 1992 and 2016 for both the POP and Logbook
Program. Forms Included: POP Animal Logs, POP Haul Logs, POP Gear Logs, and Logbook Set Forms.
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