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Although DNA repair capacity has been correlated with lifespan in terrestrial 
vertebrate species, it remains unknown how evolutionarily conserved the process is 
across all vertebrate taxa. In particular, chondrichthyan fishes have lifespans that range 
from 3-350 years and they are evolutionarily separated from modern humans Homo 
sapiens by approximately 400 million years. We hypothesized that chondrichthyan 
fishes would show significant homology in nuclear excision repair (NER) genes with 
humans, and that the expression of NER genes will correlate with the lifespan of the 
respective assessed species. For this study, DNA repair gene homology and expression 
was performed on the nurse shark Ginglymostoma cirratum (n=3) and yellow stingray 
Urobatis jamaicensis (n=3). The five main NER pathways were analyzed and 
compared to see the differences in both elasmobranch species, then compared with 
human foreskin fibroblast samples (n=3). RNA sequencing was used to determine the 
extent of gene expression in each species, comparing the read counts in each gene and 
comparing between the two species. The elephant shark Callorhinchus milii reference 
genome was used to align the nurse shark and yellow stingray samples. Homology of 
each gene of the NER pathways was assessed by the NCBI BLAST software. Results 
show that the MMR pathway has all the significant genes in higher frequencies in the 
nurse shark than in human. Within elasmobranchs in the five DNA repair pathways, 
the longer-lived species (nurse shark) has a significant higher gene expression than 
shorter-lived species (yellow stingray). Genes involved in the NER and BER pathways 
showed significantly lower expression in elasmobranch than in humans. However, 
there were significantly higher expression of more genes for the HR and MMR 
pathways in elasmobranchs than in humans. 
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Introduction  

Cancer is one of the top research topics all over the world because the disease 
affects many people. This disease is very complex and affects people in different ways. 
Not all animal species seem to experience cancer as humans do, especially aquatic 
vertebrates. Sharks and other elasmobranchs are relatively long-lived fishes, but there is 
only a minimal evidence reported of cancers on these species.  
 DNA repair mechanisms are known to be correlated with the longevity of the 
individual at the species level. It is well described in other species like mice, humans, 
naked mole rat, bats and bowhead whale. Therefore, we decided to examine the DNA 
repair mechanisms at the genetic level for whether elasmobranchs shared the same or 
similar mechanisms using two species that represent different lifespans in elasmobranch 
longevity. 
 
Chondrichthyes 
 The Class Chondrichthyes is composed of all the cartilaginous fishes, including 
skates, sharks, chimeras, and rays. Chondrichthyan fishes are divided into two subclasses: 
the Elasmobranchii, which include the sharks, rays, and skates, and the Holocephali, the 
chimeras. It is believed that there are 1207 species of chondrichthyans and almost half of 
these are found in deep waters (below 200 m) (Cotton & Grubbs, 2015). Chondrichthyan 
fishes have existed for at least 485 million years, and the the elasmobranch fishes in 
particular are separated from humans by 400 million years of evolution (Inoue et al. 
2010). The Elasmobranchii are particularly vulnerable to over-exploitation because these 
species tend to grow slowly, reach sexual maturity at a late age, have low fecundity, and 
exhibit relatively long life-spans (Stevens et al., 2000).  
 
Longevity in elasmobranchs 

Sharks and rays show a wide variety of longevity among species, with lifespans 
ranging from 3 to 500 years (Table 1). It is a challenge to monitor the longevity of sharks 
in natural oceanic habitats because of the feeding and often-complex migration patterns. 
One method of estimating longevity is to monitor captive-born animals, but many 
elasmobranchs unfortunately do not survive in captivity (Mohan et al., 2004). There are 
other methods to validate the age of elasmobranch, such as tag-recapture and radiocarbon 
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isotope dating. This last method was used in the discovery of the extreme longevity of the 
Greenland shark ( Nielsen et al., 2016). 
 

Table 1. Selected representative elasmobranch species with their average lifespan. 

Species Average Lifespan (years) Reference 

Yellow stingray 
Urobatis jamaicensis 

8 Sulikowski (1996) 

Nurse shark 
Ginglymostoma cirratum 

25 Clark (1963) 
 

Great white shark 
Carcharodon carcharias 

50 Hamady et al. (2014) 

Greenland shark 
Somniosus microcephalus 

500 Nielsen et al. (2016) 

Bull shark 
Carcharhinus leucas 

35 Wintner et al. (2002) 

Tiger Shark 
Galeocerdo cuvier 

50 Branstetter et al. (1987) 

Whale shark 
Rhincodon typus 

80 Hsu et al. (2014) 

Spiny digfish 
Squalus acanthias 

75 Cailliet et al. (2001) 

Lemon shark 
Negaprion brevirostris 

25 Smith et al. (1998) 

Bonnethead shark 
Sphyrna tiburo 

124 Carlson & Parson (1997) 

Sandbar shark 
Carcharhinus plumbeus 

34 Andrews et al. (2011) 

Blacktip shark 
Carcharhinus limbatus 

124 Compagno (1984) 
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Sharks and Cancer 
Sharks have long been harvested in part for the production of cartilage extracts, 

which are believed to be able to cure or prevent cancer. This belief has both a serious 
impact on shark populations and resulted in the delay of effective treatments for some 
cancer patients (Ostrander, 2004). The notion that sharks do not get cancer was first 
discussed by Lane in 1992 in a book titled “Sharks Don’t Get Cancer,” followed by 
another book four years later, titled “Sharks Still Don’t Get Cancer.” The premises of 
these books have been found to be false. Marine biologists who study elasmobranchs 
have discovered that sharks do indeed get cancer (Ostrander, 2004; Finkelstein, 2005). 
For example, Robbins et al. (2014) reported proliferative lesions in the white 
Carcharodon carcharias and bronze whaler Carcharhinus brachyurus sharks, including 
the possibility of tumors on both of the animals (Figure 1).  

A more recent paper by Marra et al. (2017) provides a second perspective of 
protection against cancer in sharks by immune surveillance and subsequent destruction of 
cancerous cells in the body, which could be complementing known mechanisms of 
deoxyribonucleic acid (DNA) repair. This paper compared the heart tissue of seven 
species (four elasmobranch and three teleost) using RNA sequence analysis, trying to 
identify genetic similarities. The comparisons were made by clustering the gene 
expression. The results provided the first multi-taxa, transcriptomic-based between 
teleost and elasmobranch. 

Many of the tumors in sharks appear to be malignant, but also seem to behave less 
aggressively and do not metastasize as often as in mammalian species (Martineau & 
Ferguson, 2006). A case of sarcoma in sharks was recently discovered, in which an 
Arabian carpet shark Chiliscyllium arabicum was caught with a superficial ulcerated 
mass on the left lateral trunk at the level of the second dorsal fin. There was no evidence 
of metastasis of the tumor and an unusually dark color of the liver is believed to be 
consistent with hepatocellular atrophy (Camus et al., 2017). Brunnschweiler et al. (2017) 
documented the growth progression of a proliferation through a 7-year period (2010-
2017) of a bull shark Carcharhinus leucas (Figure 3). The lesions on this shark were due 
to injuries obtained from prior interactions with fishing gear, and they appear to be 
showing proliferative gingivitis and cellulitis with necrosis, resulting in the deformation 
of the lower jaw cartilage. 
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Figure 1.  First Neoplastic Lesions Reported in Wild Sharks.  A) and B) is a white 
shark Carcharadon carcharias and C) and D) is a bronze whaler shark Carcharhinus 
brachyurus. These are the first neoplastic lesions formally reported in the scientific 
literature for wild sharks. The white shark has a neoplasm on the lower jaw, which was 
either missing teeth or the teeth were overgrown by the mass. The bronze whaler shark 
has neoplasm lesions on the top of the head and along the dorsal surface of the body 
(white circles). Source: Robbins et al. (2014). 
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Figure 2. Growth Progression of a Proliferation. Growth progression of a proliferation 
through a 7-year period. A,B Carcharhinus leucas photographed on January 10, 2010, C 
June 7, 2011, D March 24, 2013, E April 26, 2014, F June 3, 2016. The healed injury 
(broken jaw) is visible in A–F. G. Sequence showing the proliferation dangling inside the 
mouth when the shark takes a fish head from the feeder. Photographs taken on March 24, 
2013. Source: Brunnschweiler et al. (2017). 
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DNA Repair in Mammals 
A positive correlation between DNA repair gene expression and aging has been 

previously described for mammals by Kraemer et al. (1994). DNA repair genes suppress 
cancer by maintaining the integrity of the DNA code. Other studies have correlated the 
higher incidence of observed cancer to a reduced expression of various DNA repair genes 
(e.g., Garfinkel & Bailis, 2002; Broustas & Lieberman, 2014). The DNA repair 
comparison of extreme lifespan in mammals was described by MacRae et al. (2015) 
using RNA-sequencing. The comparison is between human Homo sapiens (maximum 
lifespan: 120 years), naked mole rats Heterocephalus glaber (30 years), and mice Mus 

musculus (3 years). The results show that the longer-lived human and naked mole rats 
have genomes with a higher expression of DNA repair genes. MacRae et al. (2015) 
therefore concluded that DNA repair is a system that is closely associated with lifespan 
longevity. Because elasmobranch fishes have extremely varied lifespans, the taxa 
provides additional opportunities to assess correlations between gene repair expression 
and longevity across phylogenetic divisions. 

 
DNA Repair Mechanisms 

DNA is the hereditary material in almost all organisms. The loss of DNA repair in 
mammals is caused by increased genomic instability, in which replication errors result in 
additional copies of some genes. This instability can be the results of either endogenous 
or exogenous exposure, which can cause DNA damage. Ultimately, the cell becomes 
malignant when many mutations occur and accumulate in the genetic code, including 
transient changes (including genomic imbalances) in the DNA that act like mutations. 
When the growth of cells is not controlled, a tumor occurs. There are five known 
pathways of DNA repair, which will each be addressed in turn: nucleotide excision 
repair, base excision repair, mismatch repair, homologous recombination, and non-
homologous end joining (Altieri et al., 2008).  
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Figure 3. General DNA damage pathways. When the DNA is damaged, the body has 
an efficient but complex mechanism to repair this damage, called DNA repair 
mechanisms. If this mechanism fails, it will lead to damage carried forward to subsequent 
generations of cells, the final result of which might manifest as cancer due to the 
accumulation of these mutations. Image source: Homood As Sobei, 2017. 
 
  



 
8 

Homologous recombination  
Homologous recombination (HR) is one of the main major pathways that applies 

with double-stranded DNA breaks and interstrand crosslinks caused by ionizing 
radiation. A total of 31 genes are known to be necessary for the repair of the damaged 
lesions through HR (Krejci et al., 2012). However, HR is a very efficient pathway at 
repairing double-strand breaks and is considered an error-free mechanism (Figure 4, 
Table 2). The HR pathway uses sequence homology in the undamaged sister chromatid as 
a guide to replace the sequences surrounding the breakpoint. The HR process is initiated 
is by removing a section on the 5’ end of the breakpoint and generating a 3’ end single 
strand that overhangs. This overhang looks for sequence homology on the sister 
chromatid. When the sequence is located, the single-stand overhand invades the sister 
chromatid and forms a DNA heteroduplex, called the D-loop. The 3’ end overhang is 
used in the 3’ end overhang to extend both stands. At the end, the D-loop is taken apart 
and the newly synthesized ends are brought together and religated. The original DNA 
sequence is there by restored back to double helical structure (Jasin & Rothstein, 2013).
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Table 2. Homologous Recombination Genes and Function.  Gene names in red font indicate human Homo sapiens genes 
not found in the elephant shark Callorhinchus milii genome. 

 
GENE FUNCTION HOMOLOGY 

(%) 
REFERENCES GENE FUNCTION HOMOLOGY 

(%) 
REFERENCES 

ATM Serine- protein 
kinase ATM 
Serine/threonine 
protein kinase 
which activates 
checkpoint 
signaling upon 
double strand 
breaks (DSBs), 
apoptosis and 
genotoxic 
stresses such as 
ionizing 
ultraviolet A 
light (UVA), 
thereby acting 
as a DNA 
damage sensor 

76 (Zhang et al., 
2004) 

RAD51 Double-
stranded DNA 
breaks arising 
during DNA 
replication or 
induced by 
DNA-
damaging 
agents 
 

82 (Masson et al., 2001) 

BLM Bloom 
syndrome 
protein 
ATP-dependent 
DNA helicase 
that unwinds 
single- and 
double-stranded 
DNA in a 3'-5' 
direction 

74 (Langland et al., 
2002) 

RAD51AP1 Rad51-
associated 
protein 1 
Cooperates 
with PALB2 in 
promoting of 
D-loop 
formation by 
RAD51 

81 (Kovalenko et al., 
1997) 

BRCA1 Breast cancer 
type 1 

86 (Lorick et al., 
1999) 

RAD51B DNA repair 
protein RAD51 
homolog 2 

71 (Masson et al., 2001) 
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susceptibility 
protein 
E3 ubiquitin-
protein ligase 
that specifically 
mediates the 
formation of 
'Lys-6'-linked 
polyubiquitin 
chains and plays 
a central role in 
DNA repair by 
facilitating 
cellular 
responses to 
DNA damage 

Double-
stranded DNA 
breaks arising 
during DNA 
replication or 
induced by 
DNA-
damaging 
agents 
 

BRCA2 Breast cancer 
type 2 
susceptibility 
protein 
Involved in 
double-strand 
break repair. 
Binds RAD51 
and potentiates 
recombinational 
DNA repair by 
promoting 
assembly of 
RAD51 onto 
single-stranded 
DNA (ssDNA). 

79 (Hussain et al., 
2004) 

RAD51C DNA repair 
protein RAD51 
homolog 3 
Double-
stranded DNA 
breaks arising 
during DNA 
replication or 
induced by 
DNA-
damaging 
agents. 

76 (Sage et al., 2004) 

DMC1 Meiotic 
recombination 
protein 
DMC1/LIM15 
homolog  

79 (Kinebuchi et al., 
2004) 

RAD51D DNA repair 
protein RAD51 
homolog 4 
double-
stranded DNA 
breaks arising 

73 (Masson et al., 2001) 



 

 
 11 

Meiotic 
recombination, 
specifically in 
homologous 
strand 
assimilation 

during DNA 
replication or 
induced by 
DNA-
damaging 
agents 

EME1 Crossover 
junction 
endonuclease 
EME1 
Interacts with 
MUS81 to form 
a DNA 
structure-
specific 
endonuclease 
with substrate 
preference for 
branched DNA 
structures with a 
5'-end at the 
branch 

72 (Oegruenc & 
Sancar., 2013) 

RAD52 DNA repair 
protein RAD52 
homolog 
genetic 
recombination 
and DNA 
repair by 
promoting the 
annealing of 
complementary 
single-stranded 
DNA and by 
stimulation of 
the RAD51 
recombinase 

80 (Park et al., 1996) 

FSBP Fibrinogen 
silencer-binding 
protein 
Transcriptional 
repressor that 
down-regulates 
the expression 
of the fibrinogen 
gamma chain 

65 (Lau et al., 2010) RAD54B DNA repair 
and 
recombination 
protein 
RAD54B  
Involved in 
DNA repair 
and mitotic 
recombination 

66 (Miyagawa et al., 
2002) 

MRE11A 
(MRE11) 

Double-strand 
break repair 
protein MRE11 
Double-strand 
break (DSB) 
repair, DNA 
recombination, 

70 (de Jager et al., 
2001) 

RAD54L DNA repair 
and 
recombination 
protein 
RAD54-like 
Involved in 
DNA repair 

76 (Swagemakers et al., 
1998) 
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maintenance of 
telomere 
integrity and 
meiosis 

and mitotic 
recombination 

NBN Nibrin 
cellular 
response to 
DNA damage 
and the 
maintenance of 
chromosome 
integrity.  

71 (Stiff et al.,2005) RAP1 Rap1 GTPase-
activating 
protein 1 
GTPase 
activator for 
the nuclear 
Ras-related 
regulatory 
protein RAP-
1A (KREV-1), 
converting it to 
the putatively 
inactive GDP-
bound state 

75 (Jeyaraj et al., 2012) 

POLD1 DNA 
polymerase 
delta subunit 1 
High fidelity 
genome 
replication, 
including 
lagging strand 
synthesis and 
repair. 
 

80 (Li et al., 2006) SHFM1 
(SEM1) 

26S 
proteasome 
complex 
subunit SEM1 
Maintenance of 
protein 
homeostasis by 
removing 
misfolded or 
damaged 
proteins, which 
could impair 
cellular 
functions, and 
by removing 
proteins whose 
functions are 
no longer 
required 

84 (Sone et al., 2004) 
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POLD2 DNA 
polymerase 
delta subunit 2 
High fidelity 
genome 
replication, 
including in 
lagging strand 
synthesis and 
repair 

80 (Li et al., 2006) UBE2N Ubiquiting-
conjugating 
enzyme E2 N 
Error-free 
DNA repair 
pathway and 
contributes to 
the survival of 
cells after DNA 
damage 

82 (Hofmann & Pickart, 
1999) 

POLD3 DNA 
polymerase 
delta subunit 3 
High fidelity 
genome 
replication, 
including in 
lagging strand 
synthesis, and 
repair 

76 (Li et al., 2006) XRCC2 DNA repair 
protein XRCC2 
Repair 
chromosomal 
fragmentation, 
translocations 
and deletions 

68 (Masson et al., 2001) 

RAD50 DNA repair 
protein RAD50 
Component of 
the MRN 
complex, which 
plays a central 
role in double-
strand break 
(DSB) repair, 
DNA 
recombination, 
maintenance of 
telomere 
integrity and 
meiosis 

78 (de Jager et al., 
2001) 

XRCC3 DNA repair 
protein XRCC3 
Repair 
chromosomal 
fragmentation, 
translocations 
and deletions 
 

81 (Sage et al., 2004) 

DSS1 26S proteasome 
complex subunit 
SEM1 

 (Zhang et al., 
2013) 

RAD51L1 DNA repair 
protein RAD51 
homolog 2 

 (Masson et al., 2001) 
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MMS4L Crossover 
junction 
endonuclease 
EME1 

 - RAD51L3 DNA repair 
protein RAD51 
homolog 4 

 (Masson et al., 2001) 

POLD4 DNA 
polymerase 
delta subunit 4 

 (Li et al., 2006)     
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Non-homologous end joining 
Non-homologous end joining (NHEJ) is another mechanism that repairs a break 

of double-stranded DNA. The NHEJ pathway is faster than the other pathways and does 

not require a homologous template from the sister chromatid, as does HR. However, 

NHEJ is an error-prone mechanism, which does not attempt to repair the sequence around 

the break, but rather simply repairs the break itself. The NHEJ pathway has about 20 

gene products (Figure 4, Table 3). NHEJ is initiated by recognizing the exposed end of 

double-stranded break and forming a ring-shaped structure that encircles the damaged 

area, allowing the exposed ends to be tethered to each other. The ends are then ligated by 

either removing or modifying a group of nucleotides, any existing gaps are filled with the 

new synthesized nucleotides, and the breaks are sealed (Davis & Chen, 2013; Weterings 

& Chen, 2008).
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Table 3. Non-Homologous End Joining Genes and Function. Gene names in red font indicate human Homo sapiens genes 
not found in the elephant shark Callorhinchus milii genome. 

GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES 

SLC23A3 Solute carrier 

family 23 member 

3 

Protein coding 

gene 

78 (Zhao et al., 

2010) 

POLL DNA Polymerase 

lambda 

72 (Aoufouchi et 

al., 2000) 

XRCC6BP1 
(ATP23) 

Mitochondrial 

inner membrane 

protease ATP23 

homolog 

Subunit of DNA 

dependent protein 

kinase for Double-

strand break repair 

75 (Zen et al., 

2007) 

POLA1 DNA polymerase 

alpha catalytic 

subunit 

Initiation of 

DNA replication 

 

78 (Dantzer et al., 

1998) 

APLF Aprataxin and 

PNK- like factor 

Nuclease involved 

in single-strand 

and double-strand 

DNA break repair 

 

66 (Kanno et al., 

2007) 

RAD50 DNA repair 

protein RAD50 

Component of 

the MRN 

complex, which 

plays a central 

role in double-

strand break 

78 (de Jager et al., 

2001) 
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(DSB) repair, 

DNA 

recombination, 

maintenance of 

telomere 

integrity and 

meiosis 

XRCC4 X-ray repair cross-

complementing 

protein 4 

Enhances the 

binding of LIG4 to 

DNA. The 

LIG4-XRCC4 

complex is 

responsible for the 

NHEJ ligation step 

73 (Li et al., 1995) XRCC6 X-ray repair 

cross-

complementing 

protein 6 

Single-stranded 

DNA-dependent 

ATP-dependent 

helicase, 

involved in 

chromosome 

translocation 

 

83 (Tuteja et 

al.,1994) 

LIG4 DNA ligase 4 

A ligase that is 

part of the  

LIG4-XRCC4 

complex is 

72 (Grawunder et 

al., 1998) 

PRKDC DNA-dependent 

protein kinase 

catalytic subunit 

Serine/threonine-

protein kinase 

that acts as a 

78 (Yavuzer et al., 

1998) 
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responsible for the 

NHEJ ligation step 

molecular sensor 

for DNA damage 

NHEJ1 Non-homologous 

end-joining factor 

1 

Double-strand 

break (DSB) repair 

and V(D)J 

recombination 

Bridges DNA to 

other proteins to 

aid in ligation 

 

96 (Chusseval et 

al., 2006) 

XRCC5 X-ray repair 

cross-

complementing 

protein 5 

Single-stranded 

DNA-dependent 

ATP-dependent 

helicase. Has a 

role in 

chromosome 

translocation. 

71 (Tuteja et 

al.,1994) 

DCLRE1C Protein artemis 

V(D)J 

recombination is 

initiated by the 

lymphoid specific 

RAG 

endonuclease 

complex 

76 (Mouhous et al., 

2010) 

OAZ1 Ornithine 

decarboxylase 

antizyme 1 

ATP binding  

87 (Lin et al., 

2002) 

MRE11A  
(MRE11) 

Double-strand 

break repair 

protein MRE11 

70 (de Jager et al., 

2001) 

PHF1 PHD finger 

protein 1 

 (Cao et al., 

2008) 
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Double-strand 

break (DSB) 

repair, DNA 

recombination, 

maintenance of 

telomere integrity 

and meiosis 

PNKP Bifunctional 

polynucleotide 

phosphatase/kinase 

 (Jilani et al., 

1999) 

SETMAR Histone-lysine 

N-

methyltransferase 

SETMAR 

 (Beck et al., 

2008) 

PRPF19 Pre-mRNA-

processing factor 

19 

 (Mahajan & 

Mitchell, 2003) 
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Base excision repair 
Base excision repair (BER) plays an important role in preventing mutations 

associated with 8-oxoguanine, which is a product of oxidative damage to the DNA. It 
only affects one DNA strand, this pathway recognizes and fixes the non-helical-
distortions. If the damages are not repaired, there is an increased risk of mismatching in 
DNA replication, thereby causing an integration of incorrect nucleotides and also 
mutations (Figure 4, Table 4). This pathway has about 26 active genes. The BER process 
starts with the enzymatic reactions that are controlled by DNA glycosylases. These DNA 
glycosylases recognize and replace the damaged nucleotide, and this causes abasic sites. 
The abasic sites are cleaved by apurinic/apyrimidinic endonucleases, which lead to a 
generation of a single-strand breaks. The breaks are synthesized by either the long-patch 
pathway (in which 2-10 nucleotides around the damaged nucleotide are replaced) or the 
short-patch pathway (in which only a single damaged nucleotide is replaced) (David et 
al., 2007; Zharkov, 2008). 
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Table 4. Base Excision Repair Genes and Function. Gene names in red font indicate human Homo sapiens genes not found 
in the elephant shark Callorhinchus milii genome. 

GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES 

NEIL1 Endonuclease VIII-
like DNA 
glycosylase 1 
Recognition and 
removal of damaged 

bases 
Excises oxidized 
pyrimidines 

73 (Wilson, 2017) UNG Uracil-DNA 
glycosylase 
Excises uracil 
residues from the 
DNA 

 

75 (Wilson, 2017) 

POLE2 DNA polymerase 
epsilon 2 
DNA repair and 
replication 

76 (Li et al., 1997) SMUG1 Single-strand-
selective 
monofunctional 
uracil-DNA 
glycosylase 1 

Recognition and 
initiation of base 
excision 

70 (Haushalter et 
al., 1999 & 
Wilson, 2017) 

POLB DNA polymerase 
beta 
Repair polymerase 

77 (Bennett et al., 
1997) 

POLE DNA 
polymerase 
epsilon 
DNA repair and 

replication 

86 (Post et al., 2003) 
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POLD1 DNA polymerase 
delta 1 
High fidelity genome 
replication, including 

lagging strand 
synthesis and repair. 
 

80 (Li et al., 2006) LIG3 DNA ligase 3 
Correct defective 
DNA strand-
break repair and 

sister chromatid 
exchange 
following 
treatment with 
ionizing 
radiation and 
alkylating 
agents. 

 

74 (Lakshmipathy,& 
Campbell, 1999) 

NEIL3 Endonuclease VIII-
like DNA 
glycosylase 3 
Recognition of 
lesions in ssDNA 
Excises oxidized 

purines 

73 (Wilson, 2017) POLD3 DNA 
polymerase delta 
3 
High fidelity 
genome 
replication, 

including in 
lagging strand 
synthesis, and 
repair 
 

76 (Li et al., 2006) 
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NTHL1 Endonuclease III 
Bifunctional DNA 
N-glycosylase with 
associated 

apurinic/apyrimidinic 
(AP) ligase function 
that catalyzes the 
first step of BER 
AP lyase 

72 (Aspinwall et 
al., 1997 & 
Wilson., 2017) 

MPG 3-
Methyladenine-
DNAglycosylase 
I 

Hydrolysis of the 
deoxyribose N-
glycosidic bond 
to excise 3-
methyladenine 
Methylpurine 
DNA 
glycosylase 

 

72 (Chakravarti et 
al.,1991 & 
Wilson., 2017) 

TDG Thymine DNA 
glycosylase 
Active DNA 
demethylation 

77 (Neddermann et 
al., 1996) 

POLD2 DNA 
polymerase delta 
2 
High fidelity 
genome 
replication, 

including in 
lagging strand 
synthesis and 
repair 
 

80 (Li et al., 2006) 
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POLE4 DNA polymerase 
epsilon 4 
Polymerase epsilon 
carries out 

replication and/or 
repair function. 

78 ( Li et al., 2000) PARP1 Poly(ADP-
ribose) 
polymerase 1 
Catalyzing the 

poly(ADP-
ribosyl)ation of a 
limited number 
of acceptor 
proteins involved 
in chromatin 
architecture and 
in DNA 

metabolism 

77 (Kanno et al., 
2007)  

OGG1 8-OxoG-DNA 
DNA repair enzyme 
that incises DNA at 
8-oxoG residues 

86 (Wilson., 2017) POLE3 DNA 
polymerase 
epsilon 3 
High fidelity 
genome 
replication, 

including in 
lagging strand 
synthesis and 
repair 
 

80 (Li et al., 2006) 
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APEX AP endonuclease  (Wilson, 2017) XRCC1 DNA repair 
protein xrcc1 

 (Hoch et al., 
2017) 

FEN1 5’-flap endonuclease 
1 

 (Wilson, 2017) LIG1 DNA ligase 
Leucine-rich 

repeats and 
immunoglobulin-
like domains 
protein 1 

 (Wilson, 2017) 

MIR631 Post-transcriptional 
regulation of gene 
expression in 
multicellular 

organisms by 
affecting both the 
stability and 
translation of 
mRNAs 

 (Horikawa et al., 
2008) 

NEIL2 Wxcises 
oxidized 
pyrimidines 
Endonuclease 8-

like 2 

 (Wilson, 2017) 

PCNA involved in the 
control of eukaryotic 

DNA replication by 
increasing the 
polymerase's 
processability 

 (Burkovics et 
al., 2009) 

POLD4 DNA 
polymerase delta 

subunit 4 
High fidelity 
genome 
replication and 
repair 
 

 (Li et al., 2006) 
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Mismatch repair 
Mismatch repair (MMR) is a post-replication single stand pathway. During DNA 

replication, MMR removes mis-incorporated bases that break free and DNA polymerase 
proofreads the strand. This pathway also corrects insertion or deletion loops that can 
happen during replication (Figure 4, Table 5). There are around 35 gene products that are 
involved in MMR. After replication, MMR proteins recognize the DNA mismatches 
immediately. Meanwhile the newly synthesized strand, which is the daughter strand, can 
still be distinguished. Mismatch repair can also excise several nucleotides around the 
damaged site leaving a gap. The gap is then to be filled with the newly synthesized 
segment by the parental strand as a template (Fukui, 2010; Li, 2008).
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Table 5. DNA Mismatch Repair Genes and Function. Gene names in red font indicate human Homo sapiens genes not 
found in the elephant shark Callorhinchus milii genome. 

GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES GENE FUNCTION HOMOLOGY 

(%) 

REFERENCES 

ABL1 Tyrosine-protein 
kinase ABL1 
linked to cell growth 
and survival such as 
cytoskeleton 

remodeling in response 
to extracellular stimuli, 
cell motility and 
adhesion, receptor 
endocytosis, 
autophagy, DNA 
damage response and 
apoptosis. 

81 (Yuan et al., 
1997) 

MUTYH Involved in 
oxidative 
DNA repair 
Adenine DNA 
glycosylase 

77 (Ontsubo et al., 
2000) 

AXIN2  Axin-2 
Down-regulates beta-
catenin 
 

73 (von Kries et al., 
2000) 

PMS1 PMS1 protein 
homolog 1 

78 (Leung et al., 
2000) 

BLM Bloom syndrome 
protein 
ATP-dependent DNA 

helicase that unwinds 

74 (Langland et al., 
2002) 

PMS2 Mismatch 
repair 
endonuclease 

PMS2 

80 (Kadyrov et al., 
2006) 
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single- and double-
stranded DNA in a 3'-
5' direction  
 

EXO1 Exonuclease 1 
Excise mismatch-
containing DNA tracts 
directed by strand 
breaks located 5’ or 3’ 
to mismatch 

77 (Sun et al., 
2002) 

POLD3 DNA 
polymerase 
delta subunit 3 
High fidelity 
genome 
replication, 
including in 
lagging strand 

synthesis and 
repair 
 

76 (Li et al., 2006) 

MBD4 Methyl-CpG-binding 
domain protein 4 

76 (Bellacosa et al., 
1999) 

PRKCZ Protein kinase 
C zeta type 

85  

MLH1 DNA mismatch repair 
protein Mlh1 

 

85 (Kadyrov et al., 
2006) 

RCCD1 RCC1 domain-
containing 

protein 1 
Transcriptional 
repression of 
satellite 
repeats 

70 (Marcon et al., 
2014) 
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MLH3 DNA mismatch repair 
protein Mlh3 

75 (Cannavo et al., 
2005) 

RECQL ATP-
dependent 
DNA helicase 
Q1 

Repair of 
DNA that is 
damaged by 
ultraviolet 
light or other 
mutagens 
 

78 (Puranam & 
Blackshear., 
1994) 

MRE11 Double-strand break 

repair protein MRE11 
Double-strand break 
(DSB) repair, DNA 
recombination, 
maintenance of 
telomere integrity and 
meiosis 

70 (de Jager et al., 

2001) 

RPA1 Replication 

protein A 70 
kDa DNA-
binding 
subunit 

75 (Lin et al., 

1997) 

MSH2 DNA mismatch repair 
protein Msh2 
Component of the 
post-replicative DNA 
MMR 

73 (Blackwell et 
al., 1998) 

TDG G/T mismatch-
specific 
thymine DNA 
glycosylase 
Active DNA 
demethylation 

77 (Neddermann et 
al., 1996) 
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MSH3 DNA mismatch repair 
protein Msh3 
Component of the 
post-replicative DNA 

mismatch repair 
system 

79 (Leonard et al., 
1998) 

TP73 Tumor protein 
p73 
apoptotic 
response to 

DNA damage 

72 (Kaelin., 1999) 

MSH4 DNA mismatch repair 
protein Msh4 
Involved in meiotic 
recombination. 

79 (Leonard et al., 
1998) 

YBX1 Nuclease-
sensitive 
element-
binding 
protein 1 
Mediates pre-

mRNA 
alternative 
splicing 
regulation. 
 

83 (Chen et al., 
2000) 

MSH6 DNA mismatch repair 
protein Msh6 

Component of the 
post-replicative DNA 
mismatch repair 
system 

69 (Leonard et al., 
1998) 

PMS2P4 -  - 
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ANKRD17 Ankyrin repeat 
domain-containing 
protein 17 
Plays a pivotal roles in 

cell cycle and DNA 
regulation 

 (Menning & 
Kufer., 2013) 

PMS2P5 Putative 
postmeiotic 
segregation 
increased 2-

like protein 5 

 - 

APEX1 DNA-(apurinic or 
apyrimidinic site) lyase 
apurinic/apyrimidinic 
endodeoxyribonuclease 
1 
 

 (Robson & 
Hickson., 1991) 

POLR2J2 DNA-directed 
RNA 
polymerase II 
subunit 
RPB11-b1 

 - 

MSH5 MutS protein homolog 
5 
Meiotic recombination 
processes 
 

 (Guo et al., 
2017) 

PRKCG Protein kinase 
C gamma type 

 - 

PMS2P1 Putative postmeiotic 
segregation increased 

2-like protein 1 

 - TP53 Cellular tumor 
antigen p53 

 (Lee et al., 
2018) 

PMS2P2 Putative postmeiotic 
segregation increased 
2-like protein 2 

 - TREX1 Three-prime 
repair 
exonuclease 

 (Mazur & 
Perrino., 1999) 
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PMS2P3 Putative postmeiotic 
segregation increased 
2-like protein 3 

 -     
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Nucleotide excision repair 
Nucleotide excision repair (NER) is also called long-patch repair (Latimer & 

Kelly, 2014). The NER pathway is responsible for the correction of damage in the DNA 

helix, which repairs any single-stranded bulky adduct, helix-distorting lesion. 

Specifically, UV-induced 6-4 photoproducts and cyclobutane pyrimidine dimers are 

remediated by this pathway (Figure 4, 5). There are 20 canonical genes in this pathway, 

and mutations in NER-related genes cause a rare disease called xeroderma pigmentosum. 

People with this disease die from cancer, most often from skin cancer at a very young age 

due to a defect in DNA repair. However, if they live longer, they develop and often die of 

internal cancer (de Boer & Hoeijmakers, 2000). The loss of the NER repair mechanisms 

is being examined in current cancer research since its initial discovery in breast cancer. 

(Latimer et al., 2010) 

 

NER Subpathways 

 Humans can repair with both actively transcribed and non-transcribed gene areas, 

but mice can only repair actively transcribed genes (Murad et al.,1995). There are two 

NER subpathways that humans use to deal with NER-specific DNA damages: 

transcriptional-coupled repair (TC-NER) and global genomic repair (GG-NER). These 

damages occur in the first step of the NER process, involving recognition, it is the only 

step that it is different between the two subpathways and the rest of the process is the 

same. (Figure 5) (Scharer, 2013; Spivak, 2015). 

 The TC- NER pathway repairs lesions located in actively transcribed genes, while 

the GG-NER pathway removes lesions from the rest of the genome. Transcriptional-

coupled NER is known to delete damages such as cyclobutene pyrimidine dimers more 

efficiently and in a higher rate than global genomic NER (Bohr et al., 1985). Within the 

same gene, DNA lesions were performed faster in the transcribed strand than in the non-

transcribed strand (Gao et al., 1994). Actively transcribed genes play a role in numerous 

cellular processes, might be why it is faster to remediate. The majority of the NER-

specific DNA lesions are removed by GG-NER because most of the genome is non-

transcribed. Global genomic NER can also repair damage that is in the actively 

transcribed reasoning if there is a deficit in the transcriptional-coupled NER (van Hoffen 

et al., 1995). 
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Figure 4. The 5 Major DNA Repair Pathways. Base excision repair, nucleotide excision repair, double strand break repair, 
and mismatch repair are the 5 major pathways.  Homologous end-joining and non-homologous end joining are two different 
pathways that repair double strand breaks. Adapted with permission from Jalal et al. (2011). 
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Figure 5. Mechanistic summary of nucleotide excision repair. 1. recognition of the 

damage through global genomic or transcription coupled damage recognition proteins; 2. 

unwinding the DNA around the damage to allow repair; 3. incision and excision of a 27-

29-nucleotide segment around the damage; 4. resynthesis of new nucleotides to fill the 

gap and ligation of the nicks around the newly synthesized DNA segment; and 5. DNA 

damage is fully repaired.  Image used with permission of Research & Development 

Systems Catalog. 
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Longevity and NER 

Studies have examined the connection between longevity in mammalian species 

and NER, showing a correlation between the length of an animal lifespan and the 

efficiency of NER on the total genome. It is known that humans have a robust NER, both 

transcriptional-coupled and global genomic repair (Cleaver et al., 1995& MacRae et al., 

2015 ), but few aquatic species have been evaluated with respect to DNA repair (Kienzler 

et al., 2013). Because elasmobranchs are relatively long-lived fishes, one hypothesis to 

explain their longevity could be a robust DNA repair (Kneebone, 2008; McFarlane & 

Beamish, 1987).  

 

RNA Sequencing 

This research was performed using a new technology called RNA sequencing, 

which is one of the newest next generation sequencing technology using synthesis 

methodology. This technology uses Sanger sequencing, a chain termination method of 

sequencing in combination with the restriction of the template on a glass surface or nano 

beads. Sanger sequencing allows multiple cycles of addition of nucleotides for detection 

of incorporation and the sequence of RNA (Sanger et al., 1977; Weber, 2015). Figure 6 

shows the workflow of a sequencing run.  

The process of the RNA samples for sequencing begins with library preparation. 

In the first step, the RNA is fragmented, which can be done by physical, enzymatic or 

chemical means (Head et al., 2014). Specialized methods are used for the enrichment of a 

specific RNA molecule type in the sample. The ribo-depletion method removes 

ribosomal RNA to enrich messenger RNA, transfer RNA molecules and small non-

coding RNA. Exome sequencing targets the mRNA sequence alone, using poly-A 

selection to remove any other forms of RNA (Hrdlickova et al., 2017). 

The second step of the library preparation was the conversion of the RNA to 

cDNA. This conversion can be done in different ways, including by adding adapters, 

random priming, and priming with the oligo-dTs, and is followed by amplification for 

complexity (Hrdlickova et al., 2017). The final step is creating the library. The 

fragmented RNAs are prepared and are then loaded into a glass slide of flow cells. Each 

of these cells is coated with oligonucleotides. When the samples are allowed to hybridize 

to the oligonucleotides, they go through a bridge amplification process. Bridge 
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amplification is when the reverse and forward stands are created (Dündar et al., 2015). 

Sequencing at a single base resolution is finalized by the ‘Sequencing by Synthesis’ 

technology. The reversible chain terminations let repeated cyclical addition of bases and 

their subsequent florescence-based detection (Buermans & Den Dunnen, 2014).  

The analysis of the RNA sequencing is still new and there is no standard protocol, 

but there are some recommended ways for data handling and analysis. The data from 

library preparation is received normally as FASTA or FASTQ files. Quality control is 

recommended for the raw unaligned reads to ensure the read qualities are ideal on the 

Phred scores. The Phred scores have a range of 10-60, which is the average base score at 

a position in the read; the higher the score, the better base calling, which is the process to 

select the bases to the cromatom peak, at that position. A score of 10, for example, means 

that there is 1 error base call in 10 base calls, corresponding to 10% error (Ewing et al., 

1998). After the quality control, the data are aligned to the reference genome of interest.  

There is a vast selection of aligners available to the user. They have two major 

subclasses: spliced or non-spliced. Spliced aligners can recognize intron gaps (Engstrom 

et al., 2013), while non-spliced aligners are used to align DNA sequencing runs’ output 

and cannot identify the introns from the gaps in the alignment. Therefore, verification of 

the alignment is performed by the post-alignment quality control. Depending on the 

results, it might be necessary to perform read filtering or adapter trimming prior to 

performing expression quantification and differential expression measurements (Figure 

6).  
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Figure 6. RNA Sequencing Data Analysis Workflow. 
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The goal of this study is to analyze what human genes of the five DNA repair 

pathways are conserved in elasmobranchs. With these five pathways and approximately 

300 genes, a comparison was studied between the expression of the elasmobranch NER 

genes to the expression of the human NER genes. This project is the first to examine 

NER gene expression and the other four DNA repair pathways in elasmobranchs with 

RNA sequencing. 

 

Materials and Methods  
 

Study Species 

This study included the nurse shark Ginglymostoma cirratum which has a 

longevity of ca. 25 years (Clark, 1963) and the yellow stingray Urobatis jamaicensis that 

has a shorter lifespan of ca. 7-8 years (Sulikowski, 1996). Yellow stingrays are found 

along sandy beaches and around coral reefs. They are  carnivorous, feeding on small fish, 

crabs,  polychaete worms,  and other small crustaceans, such as shrimps. Yellow  

stingrays  grow  to a maximum of 66 cm in total length and a maximum disc width of 

approximately 35.5 cm (Compagno, 1999 & Sulikowski., 1996). Nurse sharks are found 

on continental and insular shelves. They are nocturnal, solitary and can often be found 

lying on the sand bottom. They feed on bottom-dwelling invertebrates like lobsters, 

shrimp, crabs, sea urchins, and squid, as well as demersal fishes (Matott et al., 2005). 

Nurse sharks reach a maximum total length of  approximately 2.3 to 3 m (Rosa et al., 

2006). 

 

Specimen Collection 

Specimens were collected in Broward County, Florida (USA). Nurse sharks (n=3) 

were brought onto the dock and physically restrained. Aseptic techniques were performed 

to take a 0.5 cm diameter and approximately circular sample of the dermis and 

underlying musculature. Because of the species’ small size, yellow stingrays (n=3) were 

instead sampled in the laboratory after euthanasia using the same aseptic techniques. 

Samples were snap-frozen on dry ice immediately after collection. The wounds of the 

nurse sharks were swabbed with iodopovidone before the animal was released alive. 
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Figure 7. Harvesting the tissue samples of a nurse shark (left) and a yellow stingray 

(right).  
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Sampling collections occurred under Florida Fish and Wildlife Conservation 

Commission (FWC) permit SAL-17-1887-SRP to the co-PI, David Kerstetter (Halmos 

College of Natural Sciences and Oceanography). The procedures have been reviewed by 

the Nova Southeastern University Institutional Animal Care and Use Committee 

(IACUC) and occurred under approval 2017-DK1, also to the co-PI, David Kerstetter. 

Foreskin fibroblast (FF) were prepared using the Latimer lab’s process of cell 

culture  protocol. The FF tissues were obtained from newborns after circumcision, then 

converted into primary explants following the process described by Latimer et al. (2003). 

The cells were placed on uncoated chamber where they were grown with MEM 

(Minimum Essential Medium Eagle) (REF #10-010-CV) containing 10% fetal calf 

serum. The cells were grown continuously for homogeneity in culture for up to 12 

passages (a passage is the number of times the cells have been subculture). 
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Figure 8. Summary schematic of the Latimer culture system and expansion. Tissues 

are minced then plated on a coated two-chamber slides in the MWRI medium and 

incubated in the incubator at 37°C and 5% CO2. These cultures are called primary 

cultures, which are subsequently passaged into extended explants (< passage 13), then 

cell lines (> passage 13). Image from Homood (2017). 
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RNA preparation 

The miRNeasy mini kit (Qiagen; Hilden, Germany) was used to isolate total RNA 

as per the manufacturer protocol. The samples were pulse homogenized on ice (i.e., while 

still frozen) in the presence of RNAse inhibitor for 2-4 minutes with a disposable tissue 

grinder (Omi International., Inc.; Kennesaw, GA, USA) that had been autoclaved and 

cleaned of RNAses previously with diethyl pyocarbonate (DEPC). 

 

Analysis of RNA  

RNA samples (1 ug of the total RNA per specimen) were sent to the 

NSU Genomics Core Facility at Nova Southeastern University for RNA sequencing. 

RNA samples were evaluated for quality and concentration using an Agilent 

Tapestation/Bioanalyzer (Agilent Technologies; Santa Clara, CA, USA). Samples were 

subjected to Illumina TruSeq Stranded Total RNA Library Preparation (whole 

transcriptome library generation, including cyt and mt rRNA removal) and sequenced on 

a 2x150 bp paired-end run using an Illumina 300 Cycles 400M flow cell (300-cycle, 400 

million read; Illumina, Inc.; San Diego, CA, USA).  

Data were delivered as Fastq files by the Genomics Core Facility, which were 

analyzed using Partek Flow software (Partek Inc.; Chesterfield, MO, USA). Pre-

alignment QA/QC was performed, after which the raw reads for nurse shark and yellow 

stingray samples were aligned to the elephant shark reference genome, and the human 

samples to the human reference genome (hg38), using the aligner Burrows-Wheeler 

Aligner (BWA). An average of 197 million paired-end reads per sample (or 99 million 

reads/clusters per sample) was obtained. Upon confirming optimum alignment by post-

alignment QA/QC, reads were quantified by the elephant shark’s annotation model from 

National Center for Biotechnology Information (NCBI) using Partek’s E/M algorithm 

that uses RPKM scaling to give gene and transcript counts. The genes were filtered by 

each pathway list and downloaded to the .txt file (Figure 5). 

The repair expression was expressed as a percentile of human foreskin fibroblasts. 

Pairwise Student’s t-tests (significant at p<0.05) were performed for each gene 

comparing the read counts for nurse shark and yellow stingray samples, respectively, to 

the human foreskin fibroblasts.  
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Homology  

The reference genome used in this study was derived from the elephant shark 

Callorhinchus milii, also called the Australian ghostshark. While a chimaera (Subclass 

Holocephali) and thus technically not a true shark, the elephant shark is still in Class 

Chondrichthyes and remains the most closely related species with a known reference 

genome to the nurse shark and the yellow stingray (both Subclass Elasmobranchii). 

The elephant shark provides a critical reference to understand the evolution of the 

vertebrate genome evolution, which provides the whole-genome sequence and 

comparative analysis. Gene sequences from the elephant shark were obtained from 

NCBI for each NER gene in the species. Gene sequences were checked for homology 

with the human genome (hg38) by the Basic Local Alignment Tool (BLAST) in the 

NCBI website. 

 

Results 

 

NER  
Humans have twenty canonical genes that are necessary for DNA repair. Fourteen 

out of twenty of these genes (70%) are present in the elephant shark genome represented 

in Figures 7, 8, 9 and Table 1. These genes were analyzed in both the nurse shark and the 

yellow stingray. It was assumed that there was insufficient homology in the remaining six 

NER genes to allow for analysis. 

Homology was assessed in the fourteen genes found in the elephant shark genome 

that compared with the human genome. The homology ranged from 67% to 89%: 

TFIIHp34 (GTF2H3)=67%, RPA3=72%, XPF (ERCC4)=73%, RPA1=75%, XPC=76%, 

CCNH=77%, DDB1=80%, XPA=81%, XPB (ERCC3)=81%,TFIIHp44 (GTF2H2)=82%, 

CSB (ERCC6)=83%,RPA2=86%, CSA (ERCC8)=87% and CDK7=89%. The homology 

observed between elephant shark and human averaged 79% overall in the NER pathway 

in the 14 genes.  

Expression of the NER genes present in nurse shark and yellow stingray were 

compared to those found in humans. In nurse shark, eight out of the fourteen genes were 

significantly different (Figure 10). Five out of the eight genes had lower expression in 

nurse sharks than humans, and all five of these genes are involved in global genomic 
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repair: CCNH (p = 0.029), DDB1 (p = 9x10-4), TFIIH (p = 0.016), RPA3 (p = 0.002), and 

XPC (p = 0.001). In contrast, nurse shark gene expression is significantly higher in three 

genes, two of which are involved in transcription coupled repair: CSB (p = 0.015), CSA 

(p = 0.007) and XPF (p = 0.0127). In the yellow stingray, seven genes were significantly 

higher in humans than in yellow stingray: CDK7 (p = 5x10-4), DDB1 (p = 8x10-4), TFIIH 

(p = 0.012), RPA1 (p = 0.043), RPA3 (p = 0.001), XPA (p = 0.015), and XPC (p = 0.001) 

(Figure 10). 

Between nurse shark and yellow stingray, seven out of the fourteen NER genes 

showed significant differences. Six out of the seven genes were significantly higher in 

nurse sharks than in yellow stingrays. CCNH (p = 6x10-4), XPF (p = 0.016), CBS (p = 

0.035), TFIIH (p = 2x10-4), RPA1 (p = 0.009), RPA3 (p = 0.001), and XPA (p = 0.005). 

One gene was significantly lower in nurse sharks compared to yellow stingrays, CCNH 

(p = 6x10-4) (Figure 11). 

 



 

 

46 

 
Figure 9. Nucleotide Excision Repair Gene Expression Nurse Shark vs. Human. Each nurse shark and human samples have three 
biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.). Eight out of the fourteen genes were significantly 
different. Five out of the eight genes had lower expression in sharks than humans; CCNH (p = 0.029), DDB1 (p = 9x10-4), TFIIH (p = 
0.016), RPA3 (p = 0.002), and XPC (p = 0.001). Nurse shark genes expression is significantly higher in three genes; CSB (p = 0.015), 
CSA (p = 0.007) and XPF (p = 0.0127). 
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Figure 10. Nucleotide Excision Repair Gene Expression Yellow stingray vs. Human. Each yellow stingray and human samples 
have three biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.). Seven out of the fourteen genes were 
significantly higher in human than yellow stingray; CDK7 (p = 5x10-4), DDB1 (p = 8x10-4), TFIIH (p = 0.012), RPA1 (p = 0.043), 
RPA3 (p = 0.001), XPA (p = 0.015), and XPC (p = 0.001). 
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Figure 11 .Nucleotide Excision Repair Gene Expression Yellow stingray vs. Nurse Shark. Each nurse shark and yellow stingray 
samples have three biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.). Seven out fourteen genes are 
significantly different. Six out of these genes are significantly higher in nurse shark compared to yellow stingray; CCNH (p =6 x10-4), 
XPF (p = 0.016), CBS (p = 0.035), TFIIH (p = 2x10-4), RPA1p = 0.009), RPA3 (p = 0.001), and XPA (p =0.005). One gene was 
significantly higher in yellow stingray compared to nurse shark; CCNH (P = 6x10-4) 
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Table 6. Canonical NER genes, function, and their %homology between elephant 
shark and human. Genes in red are not present in the elephant shark. 

GENES FUNCTION HOMOLOGY 

CDK7 CTD kinase 89 

CSA (ERCC8) 5’ Endonuclease 87 

RPAp32 (RPA2) Repair initiation 86 

CSB (ERCC6) 5’-3 Helicase 83 

TFIIHp44 (GTF2H2) DNA unwinding 82 

XPA Initiation of repair 81 

XPB (ERCC3) 3’-5’ Helicase  81 

DDB1 Recognition (Global Genome-NER) 80 

CCNH DNA unwinding 77 

XPC Recognition (Global Genome-NER) 76 

RPAp70 (RPA1) Repair initiation 75 

XPF (ERCC4) 5’ Endonuclease 73 

RPAp14 (RPA3) Repair initiation 72 

TFIIHp34 (GTF2H3) DNA unwinding 67 

XPD (ERCC2) 5’-3’ Helicase - 

XPE Recognition - 

XPG (ERCC5) 3’ Endonuclease - 

ERCC1 5’ Endonuclease - 

hHRAD23B Recognition (Global Genome-NER) - 

TFIIHp52 (GTF2H4) DNA unwinding - 
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BER 

 Out of the twenty-eight important genes in the human BER pathway, eighteen (70 

%) were found in the elephant shark genome.  

Expressions of the BER genes present in nurse shark and yellow stingray were 

each compared to human. Eight out the eighteen genes were significantly different in 

nurse shark versus human: POLB (p = 0.043) and POLE (p = 0.035) (Figure 12). Out the 

eight genes, two were significantly higher in the nurse shark than human; the other six 

genes were significantly lower in nurse shark than human: POLE4 (p = 0.0005), OGG1 

(p = 0.0002), UNG (p = 0.0001), SMUG1 (p = 0.0001), MPG (p = 0.009) and POLD2 (p 

= 0.0005). Six out the eighteen genes were significant in the yellow stingray versus 

human (Figure 13). Five out the six genes were significantly lower in yellow stingray 

than in human: MPG (p = 0.007), OGG1 (p = 0.0001), POLD2 (p = 0.0001), POLE4 (p = 

0.001) and UNG (0.0001). Only one gene was significantly higher in yellow stingray than 

human: NTHL1 (p = 0.040).  

The comparation of the expression of the BER genes present in nurse shark and 

yellow stingray found eleven out of eighteen genes significantly different (Figure 14). 

Eight gene expressions of the eleven were significantly higher in nurse shark compared to 

the yellow stingray: MPG (p = 0.003), OGG1 (p = 0.01), POLD3 (p = 0.0004), POLE (p 

= 0.025) PARP1 (p = 0.027), POLB (p = 0.030), POLE3 (p = 0.012) and POLD2 (p = 

0.00003). Nurse shark had three significantly lower gene expressions compared to the 

yellow stingray out the eleven genes: NTHL1 (p = 0.026), POLE4 (p = 0.046) and 

SMUG1 (p = 0.049). 
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Figure 12. Base Excision Repair Gene Expression Nurse Shark vs. Human. Each nurse shark and human samples have three 
biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.) Eight out of the eighteen gene expressions are significantly 
different. Humans showed six significantly higher gene expressions compared to the nurse shark: POLE4 (p = 0.0005), OGG1 (p = 
0.0002), UNG (p = 0.0001), SMUG1 (p = 0.0001), MPG (p = 0.009) and POLD2 (p = 0.0005), while two gene expressions were 
significantly higher in nurse shark: POLB (p = 0.043) and POLE ( p = 0.035). 
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Figure 13. Base Excision Repair Gene Expression Yellow stingray vs. Human. Each yellow stingray and human samples have 
three biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.) Six out of the eighteen gene expressions are 
significantly different. Five gene expressions are significantly higher in human: MPG (p = 0.007), OGG1(p = 0.0001), POLD2 (p = 
0.0001), POLE4 (p = 0.001), and UNG (0.0001), while only one expression was significant higher in yellow stingray: NTHL1 (p = 
0.040).  
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Figure 14. Base Excision Repair Gene Expression Yellow stingray vs. Nurse Shark. Each nurse shark and yellow stingray 
samples have three biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.) Eleven out of eighteen gene 
expressions are significantly different. Eight of those genes were significantly higher in nurse shark compared with yellow stingray: 
MPG (p = 0.003), OGG1 (p = 0.01), POLD3 (p = 0.0004), POLE (p = 0.025), PARP1 (p = 0.027), POLB (p = 0.030), POLE3 (p = 
0.012), and POLD2 (p = 0.00003), while three gene expressions are significantly higher in yellow stingray: NTHL1 (p = 0.026), 
POLE4 (p = 0.046), and SMUG1 (p = 0.049). 
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MMR 

 Out of the thirty-seven important genes in the human MMR pathway, we found 

twenty-three in the elephant shark genome (66%).  

Expression of the MMR genes present in the nurse shark and the yellow stingray 

were compared to the human. In the nurse shark, eight out of the twenty-three genes were 

significantly higher than in human: MRE11 (p = 0.009), MSH3 (p = 0.019), MSH4 (p = 

0.003), MUTYH (p = 0.014), PMS1 (p = 0.013), PRKCZ (p = 0.003), TP73 (p = 0.006), 

and YBX1 (p = 0.003) (Figure 15).  

In the yellow stingray, ten out of the twenty-three gene expressions were 

significantly different. Four gene expressions were significantly lower than human: 

MBD4 (p = 0.04), MLH1 (p = 0.047), RCCD1 (p = 0.0009), and RPA1 (p = 0.043). In 

contrast, yellow stingray gene expression is significantly higher in six genes as compared 

to human: MSH3 (p = 0.049), MSH4 (p = 6.5x10-6), PMS2 (p = 0.0083), PRKCZ (p = 

0.016), TP73 (p = 0.039), and YBX1 (p = 0.001) (Figure 16). 

Between the nurse shark and the yellow stingray, eight out of twenty-three MMR 

gene expressions showed significant differences (Figure 17). Only two out of the eight 

gene expressions were significantly lower in the stingrays versus the nurse shark: MSH4 

(p = 0.0002) and PMS2 (p = 0.014). In the nurse shark, gene expressions were 

significantly higher in six out of the eight genes compared to the yellow stingray: BLM 

(p = 0.005), MLH1 (p = 0.049), MRE11 (p = 0.006), POLD3 (p = 0.0004), RCCD1 (p = 

0.006), and RPA1 (p = 0.009).
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Figure 15. DNA Mismatch Repair Gene Expression Nurse Shark vs. Human. The nurse shark and human samples have three 

biological replicates each. (Asterisk (*) indicates significance at p < 0.05 level.) Eight out the twenty-three gene expressions in the 

MMR pathway are significantly different. All the eight gene expressions are significantly higher in the nurse shark genes: MRE11 (p 

= 0.009), MSH3 (p = 0.019), MSH4 (p = 0.003), MUTYH (p = 0.014), PMS1 (p = 0.013), PRKCZ (p = 0.003), TP73 (p = 0.006), and 

YBX1 (p = 0.003). The inserted graph in the original picture represent the genes without the outlier gene results (YBX1). 
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Figure 16. DNA Mismatch Repair Gene Expression Yellow stingray vs. Human. The human and yellow stingray samples have 

three biological replicates each. (Asterisk (*) indicates significance at p < 0.05 level.) Ten out of the twenty-three gene expressions are 

significantly different in the MMR pathway between the yellow stingray and the human samples. Six of those gene expressions were 

significantly higher in yellow stingray: MSH3 (p = 0.049), MSH4 (p = 6.5x10-6), PMS2 (p = 0.0083), PRKCZ (p = 0.016), TP73 (p = 

0.039), and YBX1 (p = 0.001), while the human samples have four significantly higher gene expressions: MBD4 (p = 0.04), MLH1 (p 

= 0.047), RCCD1 (p = 0.0009), and RPA1 (p = 0.043). The inserted graph in the original picture represents the genes without the 

outlier gene results (YBX1).  
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Figure 17. DNA Mismatch Repair Gene Expression Yellow stingray vs. Nurse Shark. Each nurse shark and yellow stingray 

samples have three biological replicates. (Asterisk (*) indicates significance at p < 0.05 level.) Eight out of the twenty-three gene 

expressions were significantly different in the MMR pathway in the comparison of nurse shark and yellow stingray. Six of those gene 

expressions were significantly higher in nurse shark vs yellow stingray: BLM (p = 0.005), MLH1 (p = 0.049), MRE11 (p = 0.006), 

POLD3 (p = 0.0004), RCCD1(p = 0.006), and RPA1 (p = 0.009), while significantly lower in two genes: MSH4 (p = 0.0002) and 

PMS2 (p = 0.014). The inserted graph in the original picture represent the genes without the outlier gene results (YBX1). 
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HR 

 Out of the thirty-two genes known in the human HR pathway, we found twenty-

six in the elephant shark genome (84%).  

Expression of the HR genes present in nurse shark and yellow stingray were 

compared to human. In nurse shark, ten out the twenty-six gene expressions were 

significantly different in nurse shark versus human (Figure 18). Out the ten gene 

expressions, eight were significantly higher in the nurse shark: BRCA2 (p = 0.038), 

FSBP (p = 0.004), MRE11A (p = 0.009), RAD51B (p = 0.043), RAD54B (p = 0.002), 

RAD54L (p = 0.004), UBE2N (p = 0.024), and XRCC3 (p = 0.014). Nurse shark gene 

expressions were significantly lower in two out the ten significant genes compared to 

human: POLD2 (p = 0.0005) and RAD51D (p = 0.044). 

In yellow stingray, five out the twenty-six gene expressions were significantly 

different compared to human (Figure 19). Three gene expressions were significant lower 

in yellow stingray than in human: POLD2 (p = 0.0001), RAD51D (p = 0.004), and RPA1 

(p = 0.043). Two gene expressions were significantly higher in yellow stingray than 

human: RAD54B (p = 0.046) and SHFM1 (p = 0.012). 

Between nurse shark and yellow stingray, eleven out of twenty-six HR gene 

expressions showed significant differences (Figure 20). Nine gene expressions of those 

were significantly higher in nurse shark compared to the yellow stingray: BLM (p = 

0.005), MRE11A (p = 0.006), POLD2 (p = 2.83x10-5), POLD3 (p = 0.0004), RAD51C 

(0.004), RAD51D (p = 0.011), RAD54L (p = 0.039), RPA1 (p = 0.009), and ERCC3 (p = 

0.011). Nurse shark had two gene expressions significantly lower than in yellow stingray: 

SHFM1(p = 0.011) and XRCC2 (p = 6.8x10-5).
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Figure 18. Homologous Recombination Gene Expression Nurse Shark vs. Human. Nurse shark and human samples have three 

biological replicates each. (Asterisk (*) indicates significance at p < 0.05 level.) Ten out the twenty-six gene expressions were 

significantly different in nurse shark versus human. Out the ten genes, eight gene expressions were significantly higher in the nurse 

shark: BRCA2 (p = 0.038), FSBP (p = 0.004), MRE11A (p = 0.009), RAD51B (p = 0.043), RAD54B (p = 0.002), RAD54L (p = 

0.004), UBE2N (p = 0.024), and XRCC3 (p = 0.014), while human gene expressions were significantly higher in two out the ten 

genes: POLD2 (p = 0.0005) and RAD51D (p = 0.044). 
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Figure 19. Homologous Recombination Gene Expression Yellow stingray vs. Human. Each human and yellow stingray samples 

have three biological replicates. (Asterisk (*) indicates significance at p < 0.05.). Gene expressions for five out the twenty-six genes 

were significantly different. Three out of those gene expressions were significant higher in human than in rays: POLD2 (p = 0.0001), 

RAD51D (p = 0.004), and RPA1 (p = 0.043), while two genes were significantly higher in yellow stingray: RAD54B (p = 0.046) and 

SHFM1 (p = 0.012). 
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Figure 20. Homologous Recombination Gene Expression Yellow stingray vs. Nurse Shark. Nurse shark and yellow stingray 

samples have three biological replicates each. (Asterisk (*) indicates significance at p < 0.05.) Eleven out of twenty-six genes are 

significantly different for gene expressions. Nine genes of those are significantly higher in nurse shark compared to the yellow 

stingray: BLM (p = 0.005), MRE11A (p = 0.006), POLD2 (p = 2.83x10-5), POLD3 (p = 0.0004), RAD51C (0.004), RAD51D (p = 

0.011), RAD54L (p = 0.039), RPA1 (0.009), and ERCC3 (0.011), while yellow stingray gene expressions were significantly higher for 

two genes: SHFM1 (p = 0.011) and XRCC2 (p = 6.8x10-5).
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NHEJ 
 Out of the nineteen important genes in the human NHEJ pathway, we found 
fifteen genes in the elephant shark genome (78%).  

Expression of the NHEJ genes present in nurse shark and yellow stingray were 
compared to human. In nurse shark, gene expressions for five out of the fifteen genes 
were significantly higher than in human: APLF (p = 0.0004), LIG4 (p = 0.012), MRE11A 
(p = 0.009), SLC23A3 (p = 0.003), and XRCC6BP1 (p = 0.004). In contrast, gene 
expressions for nurse shark genes were significantly lower in three out the fifteen genes: 
NHEJ1 (p =  0.0004), XRCC5 (p = 0.016), and XRCC6 (p = 4.19x10-5) (Figure 21).  

In yellow stingray, gene expressions for eight out of the fifteen genes were 
significantly different than in human. In yellow stingray, gene expressions for four out 
the eight genes were significantly higher in compared with human: APLF (p = 0.019), 
LIG4 (p = 0.009), SLC23A3 (p = 0.007), and XRCC6BP1 (p = 0.003). However, gene 
expressions for the yellow stingray samples were significant lower in four out the eight 
genes: NHEJ1 (p =  0.0001), POLL (p = 0.001), XRCC5 (p = 0.014), and XRCC6 (p = 
9.43x10-5) (Figure 22). 

Between nurse shark and yellow stingray, gene expressions for six out of the 
fifteen genes were significantly different (Figure 23). Nurse shark had six genes that were 
significantly higher than in the yellow stingray: APLF (p = 0.009), DCLRE1C (p = 
0.015), MRE11A (p = 0.006), POLL (p = 0.005), SLC23A3 (p = 0.007), and XRCC5 (p 
= 0.008). 
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Figure 21. Non-Homologous End Joining Gene Expression Nurse Shark vs. Human. Each nurse shark and human samples have 

three biological replicates. (Asterisk (*) indicates significance at p < 0.05.) Gene expressions for eight out of the fifteen genes are 

significantly different. Five out of the fifteen genes are significantly higher in nurse shark genes: APLF (p = 0.0004), LIG4 (p = 

0.012), MRE11A (p = 0.009), SLC23A3 (p = 0.003), and XRCC6BP1 (p = 0.004), while gene expressions for three genes are 

significantly higher in human: NHEJ1 (p =  0.0004), XRCC5 (p = 0.016), and XRCC6 (p = 4.19x10-5). The inserted graph in the 

original picture represent the genes without the higher exonic reads that are obstructing the significant genes.  
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Figure 22. Non-Homologous End Joining Gene Expression Yellow stingray vs. Human. Each human and yellow stingray samples 

have three biological replicates. (Asterisk (*) indicates significance at p < 0.05.) Gene expressions for eight out of the fifteen genes are 

significantly different. The human samples were significant higher in four out of the eight genes: NHEJ1 (p =  0.0001), POLL (p = 

0.001), XRCC5 (p = 0.014), and XRCC6 (p = 9.43x10-5), while the yellow stingray gene expressions were significantly higher in four 

out the eight genes: APLF (p = 0.019), LIG4 (p = 0.009), SLC23A3 (p = 0.007), and XRCC6BP1 (p = 0.003). The inserted graph in 

the original picture represent the genes without the outlier gene (OAZ1).  
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Figure 23. Non-Homologous End Joining Gene Expression Yellow stingray vs. Nurse Shark. Nurse shark and yellow stingray 

samples have three biological replicates each. (Asterisk (*) indicates significance at p < 0.05.) Gene expressions for six out of the 

fifteen genes were significantly different, all significantly higher in nurse shark: APLF (p = 0.009), DCLRE1C (p = 0.015), MRE11A 

(p = 0.006), POLL (p = 0.005), SLC23A3 (p = 0.007), and XRCC5 (p = 0.008). The inserted graph in the original picture represent the 

genes without the outlier gene (OAZ1).  
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Table 7. Gene expression results summary for genes used in the five DNA repair 
pathways.  
  
 Significantly higher 

in nurse shark 
Significantly higher 
in yellow stingray 

Significantly 
higher in 
human 

NER Genes (14 total)    
Shark vs Human 3  7 

Ray vs Human   7 
Shark vs Ray 6  1 

BER Genes (18 total)    
Shark vs Human 2  6 

Ray vs Human  1 5 
Shark vs Ray 8  3 

MMR Genes (23 total)    
Shark vs Human 8   

Ray vs Human  6 4 
Shark vs Ray 6  2 

HR Genes (26 total)    
Shark vs Human 8  2 

Ray vs Human  2 3 
Shark vs Ray 9  2 

NHEJ Genes (15 total)    
Shark vs Human 5  3 

Ray vs Human  4 4 
Shark vs Ray 6   

 
  



 

 
67 

Discussion 
More than half of the genes were found to be conserved between the human and 

the elephant shark for all five repair pathways investigated. The lowest is MMR pathway 

with only 23 out 37 of the genes found conserved. However, an overlapping of the 

pathways may preclude this being an issue, especially with the NER pathway, which can 

correct damages that may normally be fixed by MMR proteins. The highest number of 

genes conserved in these pathways is in HR, with 81% of the genes present in both 

species. In humans, NER is the most important pathway for DNA repair. In 

elasmobranchs, MMR might be the most important pathway because all the significant 

genes are higher in the elephant shark than the human. NER is an especially versatile 

pathway and can repair any helix distorting damage, and we were able to find 70% of the 

20 canonical human NER genes in the elephant shark, indicating these might be the only 

NER genes conserved. 

Genes involved in the NER and BER pathways showed more genes that had 

significantly lower expression in elasmobranch than in humans. However, the HR and 

MMR pathways showed significantly increased expression of the genes in elasmobranchs 

than in humans. NHEJ had equal amount of lower and higher expression of the genes. 

Nurse sharks and yellow stingrays are both shallow-dwelling marine animals that receive 

high amounts of UV radiation, so it is interesting that they do not seem to have increased 

amounts of gene expression in the NER genes. However, this may be indictive of the 

shorter lifespan these animals have compared to that of humans. Furthermore, many of 

these genes are also used for replication, as well as overlapping with other DNA repair 

pathways. It is possible that NHEJ and MMR play larger roles in maintaining the 

integrity of the genome in these species. The genes not found in the elephant reference 

genome may be missing, yet to be discovered, have alternative names or aliases that are 

yet unknown. Some genes could be also found in the elephant shark genome but not in 

the human. 

Of the five genes that are significantly higher in human compared to these two-

elasmobranch species (Figure 10,11, and 12), the CSB and CSA genes are significantly 

higher in nurse shark compared to human. CSB and CSA genes are both involved in 

transcription-coupled repair in the human NER pathway, or the repair of actively 

transcribed genes. However, many of the global genomic repair genes are lower in 
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expression in elasmobranchs compared to that in human, a finding consistent with the 

higher NER expression in global genomic repair genes and longer lifespan in humans.  

One of the limitations of this study is that there is not a lot of genomic 

information on elasmobranchs. The elephant shark genome has a simple genome and was 

the closest to our samples to be able to use as a reference genome for analysis of RNA 

sequencing data. All the elasmobranch samples were extracted on the dock of the NSU 

Oceanographic Center at relatively high temperatures, which might have affected the 

integrity of the tissue samples and thereby also the isolated RNA samples.  

More studies must be done on a variety of elasmobranch species to get more data 

and to evaluate the overall trends in gene expression. In particular, elasmobranch species 

with different lifespans should be obtained and their RNA sequenced. A much more 

complex study is to run a DNA copy number analysis to see how many copies of each 

genes is present in each individual, there might be lesser or fewer copies of the genes in 

question. Lastly, the nurse shark and yellow stingray samples have to be performed by de 
novo transcriptome assembly, to construct a transcriptome for this species to obtain more 

accurate results for elasmobranch species. 

 

Conclusion 
Elasmobranchs are many million years apart from humans phylogenetically. The 

main goal for this project was to discover more about the genomic information of 

elasmobranchs, comparing the human genes with the elephant shark genes. In addition, 

two local elasmobranch species provided information on DNA repair pathways and 

respective lifespans. The correlation of DNA repair with a longer lifespan was shown in 

this project with the nucleotide excision repair (NER) pathway.  The NER pathway is 

apparently an evolutionarily important mechanism, as evidenced by our finding of 14 out 

of 20 human NER genes shared as orthologs in elasmobranchs, regardless of the 400-

million-year evolutionary difference between the taxa.  
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