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SYNDEEP: a deep learning 
approach for the prediction 
of cancer drugs synergy
Anna Torkamannia 1, Yadollah Omidi 2 & Reza Ferdousi 1*

Drug combinations can be the prime strategy for increasing the initial treatment options in cancer 
therapy. However, identifying the combinations through experimental approaches is very laborious 
and costly. Notably, in vitro and/or in vivo examination of all the possible combinations might not 
be plausible. This study presented a novel computational approach to predicting synergistic drug 
combinations. Specifically, the deep neural network-based binary classification was utilized to develop 
the model. Various physicochemical, genomic, protein–protein interaction and protein-metabolite 
interaction information were used to predict the synergy effects of the combinations of different 
drugs. The performance of the constructed model was compared with shallow neural network (SNN), 
k-nearest neighbors (KNN), random forest (RF), support vector machines (SVMs), and gradient 
boosting classifiers (GBC). Based on our findings, the proposed deep neural network model was found 
to be capable of predicting synergistic drug combinations with high accuracy. The prediction accuracy 
and AUC metrics for this model were 92.21% and 97.32% in tenfold cross-validation. According to the 
results, the integration of different types of physicochemical and genomics features leads to more 
accurate prediction of synergy in cancer drugs.

Cancer is one of the most detrimental diseases with high mortality worldwide and is considered a challeng-
ing barrier in terms of increasing life expectancy1. The currently used treatments fail to satisfactorily cure the 
disease, in large part due to the emergence of drug resistance, and severe side effects2,3. In cancer therapy, the 
foremost target is usually specified in eradicating malignant cells using anticancer cytotoxic drugs through the 
induction of apoptosis and cell death in the diseased cells and tissues. However, cancer cells can develop escape 
mechanisms, initiate bypasses in the networks, and emerge alternative pathways for further proliferation and 
recurrence4,5. Remarkably, combinational pharmacotherapy might be the prime strategy that can intensify the 
therapeutic impacts of anticancer drugs and overcome the drug resistance mechanisms of cancer cells6,7. Such 
an approach can impose synergistic effects and potentially reduce the dose of monotherapy and drug resistance 
and avoid toxicity while the efficacy of the drug increases8,9. Hence, the discovery of the drug combination with 
synergistic effects is of eminent necessity in treating cancer.

Combinational pharmacotherapy should be provided and designed by in vitro and in vivo experiments 
based on the US Food and Drug Administration (FDA), the European Medicines Agency, and the World Health 
Organization guidelines10. It should be noted that predicting the possible drug combinations with synergistic 
effects solely via in vitro and/or in vivo experimentation is an extremely laborious task with no/trivial outcomes11. 
Besides, predicting the synergistic drug combination with clinical experiments is inefficient, time-consuming, 
and cost-intensive7,12. Therefore, in silico approaches can be reliable tools to facilitate and prioritize identifying 
synergistic drug candidates for experimental strategies13.

The use of the in silico approaches as powerful tools has empowered the opportunity of exploring the wide 
variety of synergistic gaps with the diversity of chemical structures of drugs and genomic data from cancer cell 
lines9,14. Such approaches have paved the way for clinical trial experiments by providing accurate and adequate 
predictions15. Accordingly, over the last years, predicting drug combinations with synergistic effects has been 
increased by computational methods and has provided satisfactory outcomes. In this line, Jiang et al. developed 
a computational model to predict synergistic drug combinations on 39 cell lines using a graph convolutional 
network16. They used the multimodal network of the drug-drug synergy network, drug-target interaction net-
work, and protein–protein interaction network. As a result of their analysis, the value of AUC was higher than 
80%. The AuDNNsynergy method was proposed by Zhang et al.17, which identified the synergistic effects based 
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on chemical structure and genomic data. As a result of this approach, the omics data enhance prediction accuracy, 
and the value of Pearson correlation obtained 0.74. DeepSynergy was developed to detect the drug combina-
tions effect based on the deep neural network18. The method has utilized the chemical descriptors of drug pairs 
and gene expression profiles. DeepSynergy demonstrated the best performance compared to other state-of-art 
methods. Yang and colleagues proposed a model based on the functional similarity of target proteins to prioritize 
and stratify synergistic drug combinations19. This approach capitalized on the protein targets to predict synergy 
effects on breast cancer cell lines and experimentally validated the BRAF/insulin receptor combination in 48 
colorectal cancer cell lines.

In the current study, a novel deep neural network model was proposed as an SYNDEEP to predict the syn-
ergistic drug combinations based on cancer cell lines and drug information. The model utilized the different 
features of physicochemical, genomic, protein–protein interaction, and protein-metabolite interaction informa-
tion. Then the feature network was constructed based on eight various feature groups. The vector of features was 
developed according to the structure of the feature network. Finally, the feature vectors are fed into the deep 
neural network to achieve synergistic prediction results.

Results
This section summarizes the results of the synergy prediction model on the NCI-ALMANAC dataset. The 74 
drugs were utilized in this study. The final experiment dataset consists of 22,228 drug pairs combinations of 
74 unique drugs against 60 cell lines. Also, the final features for one drug consisted of 777 features, and total 
number of the features for a pairs of drugs were 1614 with similarity measurement and cell lines. In addition, 
the diverse hyperparameters of the algorithms were implemented to adjust the optimal state. As a result, the 
final optimization parameters are as follows: SNN: hidden layer = 1, dropout rate = 0.8, epochs = 300, learning 
rate = 10−2, KNN: n = 4, metric = ’Minkowski’, p = 2, SVM: degree = 3, kernel = ’linear’, cache size = 200; RF: max 
depth = 4, n estimators = 10; GBCs: max depth = 3, n_estimators = 100.

Performance of deep neural network with different feature groups.  SYNDEEP was implemented 
with different feature group to evaluate performance. Furthermore, to confirm the deep neural network is robust 
to training, we implemented tenfold cross-validation (CV) for all six feature group groups. Table 1 summarizes 
the performance results of six groups. The results highlighted that the four groups achieved accuracy over 90%, 
and the two remaining groups achieved accuracy of 89%. Best outperforming score was achieved by DC_net-
workII with the highest accuracy of 92.21%, and the second highest accuracy was achieved by DC_networkI 
with 92.16%. By including the protein–protein interaction and protein-metabolite interaction similarity score 
on DC_networkI to generate DC_networkII, the accuracy score slightly increased.

It can be seen from the results that by adding gene mutation and gene expression information to the DT_CL 
group, accuracy slightly dropped. However, accuracy increased significantly when combined with other feature 
groups. To further investigate the effect of gene mutation and gene expression on synergy prediction, we left out 
their information. Substantial differences were not observed in the forecast’s performance by excluding the infor-
mation (ACCU​. = 92.21%). In drug investigations, gene mutations and gene expression are highly predictive20. 
In this sense, adding their information seems crucial to predicting the synergy effect.

The DC_networkII feature set group was selected as a complete feature set group. To better investigate the 
model’s prediction ability, we obtained the values of sensitivity, specificity, precision, F-score, Matthews correla-
tion coefficient (MCC), AUC, and Cohen’s kappa. The considered evaluation metrics comprehensively reflect 
the model performance in the values of F-score, MCC, and AUC were obtained 92.15%, 84.41% and 97.32%, 
respectively. In addition, the Kappa value represents the model’s inter-rater reliability with a score of 84.37%.

Figure 1 shows the area under the receiver operating characteristic curve (ROC-AUC) and the accuracy in 
evaluating the performance of each fold. As can be seen from the graphs, the curves obtained by ten folds had 
the most covering coordinate space. The result of the tenfold cross-validation indicates that SYNDEEP provided 
a more reliable performance on the entire feature set.

Performance comparison of the various machine learning methods.  We reported the primary 
evaluation criteria for SYNDEEP, SNN, KNN, SVM, RF, and GBCs in Table 2. We observed from the table that 
SYNDEEP achieved the highest results in the entire evaluation criteria compared to other methods. The three 
models with the highest performance based on accuracy were (i) SYNDEEP, (ii) the GBCs, and (iii) the KNN. 
Accordingly, SYNDEEP accuracy was 92.21%, which is approximately 3.8% and 4.23% higher than the GBCs 

Table 1.   The overall results of the performance on six groups of features.

Group name ACCU. (%) Sen. (%) Spec. (%) Prec. (%) Fscore (%) MCC. (%) AUC (%) Kappa (%)

DT_CL 90.08 89.86 90.29 90.23 90.05 80.16 96.14 80.16

DCGM 89.78 87.84 91.37 91.38 89.57 79.63 95.80 79.57

DCGME 89.63 87.03 92.22 91.78 89.34 79.36 95.94 79.26

DCGMEM 90.21 89.32 91.10 90.92 90.12 80.44 95.96 80.43

DC_networkI 92.16 91.31 93.00 92.88 92.09 84.33 97.14 84.32

DC_networkII 92.21 91.53 92.91 92.80 92.15 84.41 97.32 84.37
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model, and the KNN, respectively. Among the models examined, the RF achieved poor accuracy (74.85%). Also, 
SYNDEEP achieved remarkable results in Matthews Correlation Coefficient (MCC. = 84.41%), representing the 
correlation between predictions and labels. Notably, SYNDEEP obtained a high Kappa score (Kappa. = 84.37%) 
while the RF had the lowest score (Kappa. = 49.69%).

The ROC curve was used as another evaluation measure. The ROC curve plots the true-positive rate (TPR) 
versus the false-positive rate (FPR). The area under the ROC curve (AUC) was calculated to reflect predictive 
accuracy. Figure 2 shows the visualization of the area under the ROC curve for SYNDEEP and the other classifiers 
to evaluate the performance of binary predictions. The AUCs for SYNDEEP, GBCs, and SNN were 0.97, 0.94 and 
0.93, respectively. This shows SYNDEEP’s potential for synergy prediction in drug combinations.

Figure 1.   The ROC and accuracy diagram of tenfold-cross validation. (a) The ROC curves and (b) accuracy 
diagram were generated on the entire feature set.

Table 2.   The overall results of the different state-of-art methods.

Method ACCU. (%) Sen. (%) Spec. (%) Prec. (%) Fscore (%) MCC. (%) AUC (%) Kappa (%)

Gradient boosting classifiers 88.41 88.73 88.10 87.97 88.35 76.83 0.94 76.83

SYNDEEP 92.21 91.53 92.91 92.80 92.15 84.41 0.97 84.37

Random forest 74.85 80.15 71.15 66.00 72.39 50.49 0.84 49.69

Support vector machines 84.23 84.42 84.04 83.92 84.17 68.46 0.90 68.46

Shallow neural network 86.61 86.48 86.74 86.71 86.59 73.23 0.93 73.23

k-nearest neighbor 87.98 84.35 92.36 93 88.47 76.39 0.88 75.99
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We conducted McNemar’s Test to assess classifiers’ performance. The null hypothesis of this test states that the 
probability of the synergistic effect being correctly identified is equal to the probability of the non-synergy effect 
being correctly identified. Also, the probability of the synergy effect being incorrectly classified is equal to the 
probability of the non-synergy effect being incorrectly classified. The p-value is calculated, and a p-value < 0.05 
is considered significant, thus rejecting the null hypothesis. Hence, we obtained X2 = 154.0, with a p-value of 0.0, 
which is below the set significance threshold (p-value = 0.05, degree of freedom = 1) and leads to rejection of the 
null hypothesis; we can conclude that SYNDEEP’s performance is reliable. The values of McNemar’s Test for GBC, 
RF, SVM, SNN, and KNN were achieved at 248.0, 363.0, 344.0, 295.0, and 154.0, respectively. Furthermore, RF 
and KNN obtained p-value < 0.05, while the comparison between GBC, SVM, and SNN gave a non-significant 
p-value > 0.05, so the null hypothesis was accepted. Generally, SYNDEEP achieved substantial performance 
compared with other methods to predict drug synergy.

Discussion
Cancer remains the primary cause of morbidity and mortality worldwide, despite the pharmaceutical and clinical 
research in cancer treatment21. Furthermore, the mono-therapeutic strategies are inefficient in cancer treatment 
because the targets are single proteins or pathways, and drug resistance occurs in these strategies22,23. Accord-
ingly, combining pharmacotherapy with synergistic effects is a promising approach6,7. However, it is infeasible 
to identify and examine the possible combinations of anticancer drugs24. Therefore, in silico approaches are 
beneficial to overcome the limitations.

Hence, we have developed a novel deep neural network model as an SYNDEEP that accurately predicts the 
synergistic effect of drug combinations for cancer cell lines. In this study, a data-driven approach to predict the 
synergy effects of drug combinations.

Previous studies used a small subset of genomic and drug-related data to predict synergy16–19,25,26. Some stud-
ies, such as Jiang’s model16, have considered drug-drug synergy, drug-target interaction, and protein–protein 
interaction networks based on 39 cell lines. Moreover, the DeepSynergy18 model has been defined based on 
chemical descriptors and genomic features on 39 cell lines. AuDNNsynergy17 is another drug synergy model 
that uses multi-omic and chemical data for synergy prediction. The most striking result among previous studies 
emerged from the studies that utilized genomic and drug information.

To the best of our knowledge, there is no study in the literature that utilized the comprehensive feature set of 
genomic, physicochemical, and drug information to predict synergy. Utilizing genomic, PPI, PMI, and physico-
chemical data is important for overcoming drug resistance. The genomic data would be practical for predicting 
the drug combination synergy27–29. In this study, a novel comprehensive feature set of genomic, physicochemical, 
and drug information (i.e. drug-target, protein–protein interaction, protein-metabolite interaction, gene muta-
tion, gene expression, differential methylation, chemical structure, and cell lines) was constructed. Therefore, we 
used the comprehensive feature set of various data types to optimize the model’s performance.

The modification in depth and width of model architecture is the pivotal factor in deep neural networks to 
enhance performance30. Generally, applying this property of deep neural networks leads to developing highly 
impactful architectures for diverse tasks30,31. Several previous studies have utilized network-based and machine-
learning methods, such as random forests and extremely randomized trees14,25,32–34. In contrast, rare studies 
used deep neural networks that focused on a small range of features18,35–40. Thus, we have used comprehensive 
biological features with a deep neural network. This strategy obtained satisfactory results, as shown in Table 2.

The Kappa value of SYNDEEP was 84.37%. The Kappa value demonstrated that classes have independent 
distributions. Few related studies in the literature have calculated the kappa coefficient16–18, while most studies 
only reported the accuracy/ AUC value14,34,37,38. The kappa values of DeepSynergy, AuDNNsynergy, and Jiang’s 
model were 0.51, 0.51, and 0.584, respectively. The kappa value in previous studies was just over 0.50%16–18, which 
may represent fair to a reasonable agreement beyond chance.

Previous studies used different datasets to predict the drug combination effects based on the deep neural 
network17,39–41. The NCI-ALMANAC and Merck datasets are the two large-scale pan-cancer datasets employed 
in most drug synergy prediction studies. For example, among these studies, the performance of the DeepSyn-
ergy, AuDNNsynergy, TranSynergy39, and Jiang’s models has been evaluated on the Merck dataset. The nature 

Figure 2.   ROC curve comparison of different machine learning methods.
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of these studies in terms of recruited information (e.g. multi-omics, phenotypic and biophysical features) was 
different. For example, some studies utilized drug pathways information, gene expression information, and/or 
microRNA information. Several previous studies reported the accuracy value, some of which stated the MSE 
value17,18,39–41. The accuracy values of DeepSynergy, AuDNNsynergy, and Jiang’s models were 0.92%, 0.93% and 
0.919%, respectively.

In this study, SYNDEEP’s performance has been tested on the NCI-ALMANAC dataset. Moreover, among the 
previous studies, the SYNPRED40 and Xia et al.35 utilized the NCI-ALMANAC dataset based on a deep neural 
network. The accuracy value of SYNPRED was 0.85%, while Xia’s model35 reported the R2, Pearson correlation, 
and Spearman correlation values.

In this study, the accuracy value of the novel deep neural network was 92.21%. While the AuDNNsynergy 
has reported a value score of 0.93% but the kappa value was 0.51%. However, the results of the current study 
highlighted the strength of the presented SYNDEEP, which was the large volume of features and network of 
features. Hence, the proposed model achieved a high score in kappa and accuracy values (Kappa. = 84.37%, 
ACCU. = 92.21%).

Evidence of in silico methods represented that combining the biological, chemical, and phenotypic proper-
ties had a substantial role in the modeling and prediction procedures42,43. According to the performance result 
of feature sets, it was evident that combining the genomic and physicochemical features had significant effects 
on improving the performance.

The network-based approaches evaluate the interactions among the various agents. Agents in the predic-
tion of drug effects have different natures. Several studies have used network-based analysis to predict the drug 
combinations effect19,25,26,34,37.

Previous studies prove that integrating the genomic data, drug targeting networks, chemical structure, cell 
lines, genomic profiling data, gene mutation, gene expression, and protein interaction based on the network 
approach has a significant role in synergy prediction19,25,26,34,37.

Therefore, we have investigated the effect of drug interactions among the diverse feature agents (i.e. drug-
target, protein–protein interaction, metabolite-protein interaction, gene expressions, gene mutations, chemical 
structures, cell lines, and differential methylation). However, the previous studies investigated and analyzed the 
network of interaction while not examining the network by deep neural network19,25,26,34,37.

Here, we have used a network of features comprised of different relationships based on the nature of the 
information for the first time. As shown in Table 2, the features network has achieved high performance and 
improved the deep neural network model.

Table 2 has proved that deep neural networks had superior outcomes compared to other state-of-art methods 
by the network of features.

Deep neural networks have significant capabilities in complex dimensional spaces by various structures44,45. 
Therefore, deep neural network algorithms have been proven to be a more capable system and have a better 
accuracy rate than other algorithms in classifying synergistic effects in drug combinations.

Conclusion
The current study proposes SYNDEEP for the prediction of synergy in drugs combination. It is well known that 
the critical factor in predicting drugs effect is extracting practical features, so the main superiority of this study 
was the network of extensive features. SYNDEEP integrated the various type of physicochemical and genomics 
information to generate the comprehensive features set for successfully and robustly predicting drug combina-
tions’ effects. SYNDEEP obtained 92.21% prediction accuracy utilizing the tenfold cross-validation in the NCI-
ALMANAC dataset. In the experiment, we compared SYNDEEP, SNN, KNN, SVM, RF, and GBC methods that 
SYNDEEP achieved superior performance. The result indicated that the deep neural network is the competent 
learning technique to determine synergy. For better and more accurate predictions in the future, updating and 
complementing the information of cell lines and targets of drugs are needed. Although the in silico approaches 
provide substantial insights into in vivo and in vitro experiments and accelerate the procedures, well-designed 
experimental investigations are required to prove the data resulting from in silico computational analyses.

Materials and methods
The first step of the proposed deep neural network was data preparation which consisted of data acquisition, 
features extraction, and network of features construction. The next step was prediction model construction 
which comprised the synergy prediction and model evaluation. Figure 3 illustrates a schematic representation 
of how the model uses the distinct features to predict synergistic drug combinations. The network of features is 
recruited as input for a deep neural network to predict the synergistic effect. The network has been constructed 
from the sequence of physicochemical, genomic, protein–protein interaction, and protein-metabolite interac-
tion data. The data has been produced from different databases based on drug-pairs information. The following 
figure illustrates the overall steps of the study.

Data acquisition
In this study, the NCI-ALMANAC dataset was used46. This dataset is the most well-known anticancer drug 
combinations effect dataset, covering the combinations of drug pairs against the NCI-60 cell lines with different 
concentrations. The drugs in the dataset contain FDA-approved drugs in oncology. The NCI-60 panel comprises 
60 human tumor cell lines derived from nine various tumor types. The NCI-ALMANAC introduced the Com-
boScore to quantify the combination benefit of pairs of drugs which initially modified the version of the Bliss 
independence score. The ComboScore defines the combination activity by three classes of positive, negative, and 
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zero values. Hence, the combination of drug pairs with positive values represents to be synergistic, whereas the 
negative values indicate antagonist combinations and zero values correspond to additive combinations.

Figure 3.   Overall steps to construct drug synergy prediction model. (a) eight feature sets were used to predict 
the synergy effect, drug-target, protein–protein interaction, protein-metabolite interaction, genomic features 
(gene expression, mutations, and differential methylation), chemical structure, and cell lines. (b) Features from 
different sets were extracted to generate the network. (c) The heterogeneous network was created from various 
features. (d) The prediction model was constructed to predict drug combinations’ effects.
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The ComboScore has defined the score range from 1 to 200 as synergistic, and − 1 to − 228 has specified 
the antagonistic effect. The score of drug combinations was converted to 1 and 0 to reduce the computational 
complexity. One represents the synergistic drug-pairs combination, and 0 illustrates the antagonistic drug-pairs 
combination. By sorting the dataset, the number of antagonist combination effects was more than the synergistic 
combinations. To avoid the occurrence of an imbalanced dataset, we selected an equal number of drug pairs 
based on the number of synergistic combinations.

In the present study, different feature groups have been extracted for each drug in the dataset. The extracted 
feature groups are as follows:

Extraction of the drug‑target interactions.  The total indexed drugs and related information in 
DrugBank(version 5.1.8.) was downloaded47. In the next step, the FDA-approved anticancer drugs were extracted 
from the XML file of DrugBank. Hence, the list of drug-target interactions (DT) for each anticancer drug based 
on protein targets was elicited. For each drug, the pairs of (Di, DTj) were created, where Di was observed in the 
approved drug list, and DTj was extracted as a protein target.

Extraction of the protein–protein interactions.  The critical resource of protein–protein interaction 
data is the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)48 database which is a reliable 
tool for providing the properties of proteins. As the first step, the sequences of proteins and accessions were 
retrieved from STRING (version 11.5). Then, protein–protein interaction (PPI) was extracted based on every 
protein related to DTs. Next, the pair of DTs and PPI was created as (DTi and PPIj), where DTi ∈{protein target 
reported for drugi} and PPIj ∈{PPI stated for protein targetj}.

Extraction of the genomic features (gene expression, mutations, and differential methyla-
tion).  The Catalogue Of Somatic Mutations In Cancer (COSMIC)49 database represents worthwhile informa-
tion on genomic sequences and microarray expression data. The COSMIC database provides extensive data for 
individual genes/ cell lines. The COSMIC (version 95-24) has provided the individual files for gene expression 
(GE), mutation (GM), and differential methylation (DM), which all relevant files downloaded. However, the vast 
majority of information was not relevant to predicting synergy, which might result in a bias. Hence, we filtered 
the data based on the cell lines and protein targets. As a result, we had the pairs of (Di, GEj), (Di, GMk), and (Di, 
DMn), where Di was considered in the list of drugs, GEj, GMk and DMn were extracted as gene expression, muta-
tion, and differential methylation.

Extraction of the protein‑metabolite interaction.  The Human Metabolome Database (HMDB)50 was 
utilized to construct the protein-metabolite interaction(PMI) data in this study. The metabolite and protein data 
lists were downloaded from HMDB version 4.0. The list of the corresponding metabolites for every protein in 
DTs was extracted. Then, the pair of (DTi, Mj) was considered, where DTi ∈{protein target reported for drugi} 
and Mi ∈{metabolite reported for proteinj}.

Extraction of the chemical structure.  We used the Morgan fingerprint counts, total polar surface area, 
molecular weight, logP, aliphatic and aromatic rings, H-bond donors, and acceptors as chemical structures (CF). 
The Morgan fingerprint counts are designed to represent the number of times a particular substructure detects 
in the molecule. To integrate the features into the deep neural network model, we used the RDKit library. As a 
result, chemical features for each drug were obtained.

Dimension reduction based on the similarity measure.  In total, there were 19,888 features for one 
drug except for cell lines. The entire features for drug pairs have consisted of 39,776 features with cell lines. 
These extensive features are considered the high dimensionality problem in constructing the synergy prediction 
model. The PPI and PMI comprised the high-dimension features among the other feature groups. Hence, the 
Russell-Rao similarity measure51 on PPI and PMI on pairs of drugs was used to overcome this issue. Therefore, 
the similarity values of PPI and PMI were included in the vector instead of the total features. The Russell-Rao 
similarity measure is defined as follows:

where x denotes the number of features where the values of vector one and vector two are one, which means 
positive matches, d denotes the total sum of the length of vectors.

Feature network construction.  The network feature in SYNDEEP (Fig. 3) was a heterogeneous network 
consisting of eight components: DT, PPI, PMI, GM, GE, DM, CF, and cell line (CL). In the previous section, it 
was described how to build each group of features.

In this study, different types of features were utilized; hence we constructed an undirected network U = (V, E), 
where V is a set of N nodes, in which V = {V DT ∪ V PPI ∪ V PMI ∪ V GM ∪ V GE ∪ V DM ∪ V CF ∪ V CL} is composed 
of cell lines, and seven sets of feature components, and E is a set of M edges such as protein–protein interaction 
and drug target. These N nodes have node feature vectors a1, a2,a3, . . . , aN ∈ R

d where d is the dimension of the 
feature vector. As for the edges, for example, (vi , vj) represents the link between node vi and vj . The total set of fea-
ture vectors has been combined to generate a feature matrix. As shown in Fig. 4, was defined feature matrix F as:

SRussell−Rao =
x

d
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where D is a set of drugs that are related to cancer drugs. Hence, Fij ∈ FD−DT = 1 if a D node vi and a DT node vj 
are related according to the drug and drug target, Fij = 0 otherwise, which means between drug and drug target 
there is no interaction. FDT−PPI ∈ [0, n] is indicated the similarity values between pairs of PPI nodes, in which n 
represents the non-zero values. FDT−PMI ∈ [0, n] is represented the non-zero values of similarity between pairs 
of PMI nodes. Fij ∈ FDT−GM = 1 indicates DT i is related according to the drug target and gene mutation with 
j-th GM, Fij = 0 otherwise. Fij ∈ FDT−GE = 1 represents the i-th DT is associated with a j-th GE, Fij = 0 otherwise. 
Fij ∈ FDT−DM = 1 if the interaction between a DT and DM nodes has been observed, Fij = 0 otherwise. In this study, 
to represent the chemical features of drugs FD−CF ∈ [0, n] is utilized. where D − CF is the chemical features of 
drugs, and n indicates the non-zero values of features. Fij ∈ FD−CL = 1 if a D node vi and a CL node vj are related 
according to the NCI-ALMANAC data, Fij = 0 otherwise.

F =


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FD−DT ∈ R
NVD×N

VDT

if vi ∈ VD , vj ∈ VDT ·

FDT−PPI ∈ R
N
VDT×NVPPI

if vi ∈ VDT .vj ∈ VPPI·

FDT−PMI ∈ R
N
VDT×NVPMI

if vi ∈ VDT .vj ∈ VPMI·

FDT−GM ∈ R
N
VDT×NVGM

if vi ∈ VDT .vj ∈ VGM·

FDT−GE ∈ R
N
VDT×NVGE

if vi ∈ VDT .vj ∈ VGE·

FDT−DM ∈ R
N
VDT×NVDM

if vi ∈ VDT .vj ∈ VDM·

FD−CF ∈ R
NVD×NVCF

if vi ∈ VD .vj ∈ VCF·

FD−CL ∈ R
NVD×NVCL

if vi ∈ VD .vj ∈ VCL·

Figure 4.   Construction of the heterogeneous network. The heterogeneous feature matrix was generated from 
drug-target, protein–protein interaction, protein-metabolite interaction, gene mutation, gene expression, 
differential methylation, chemical structures, and cell lines. The matrix values comprised zero, and non-zero 
values.
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To utilize the topological structural relations among the cell lines, and seven sets of features embedded in the 
network U, we formulated the multi-structure of topology as single input feature vectors (Fig. 5). As an input 
feature vector, the vector was divided into eight different groups: seven sets of features, and cell line related 
features. As mentioned above, the value of each group consists of two sets: (i) zero, and (ii) non-zero values.

Feature groups construction.  The various features group was established to assess the benefits of features 
on classifying the drug synergy, along with the network of features. Six groups of features were constructed. 
Where, the first group consisted of drug targets and cell lines, and the last group was the network of features 
comprised of total feature groups. Table 3 details the information on groups.

Construction of deep neural network model.  The Multi‑layer perceptron (MLP) was selected to build 
the model for synergy prediction. The shape of the MLP model was conic. The different hyperparameter settings 
were considered (i.e. number of layers, number of neurons, and the learning rate). The six diverse different lay-
ers (3, 4, 5, 6, 7) were tested. Various numbers of neurons (1024, 512, 256, 128, 64, 32) and learning rates (10−1, 
10−2, 10−5, 10−8, 10−75) were examined. After comparing the outcomes of different deep networks, the best result 
was observed from the five-layer network for binary classification of the drug synergy. The selected model had 
an input layer, 3 hidden layers, and an output layer (Fig. 6). The two activation functions have been used in the 
model: the ReLu and the sigmoid functions.

ReLu(x) =
{

x if x ≥ 0

0 otherwise

Figure 5.   Single input feature vectors. Single input feature vectors derived from multi-topological structural 
relations among the drug-target, protein–protein interaction, protein-metabolite interaction, gene mutation, 
gene expression, differential methylation, chemical structures, and cell lines.

Table 3.   Feature group description. The name of each group has been determined based on their feature 
groups. DT_CL drug targets and cell lines, DCGM drug targets, cell lines, and gene mutation, DCGME drug 
targets, cell lines, gene mutation, and gene expression, DCGMEM drug targets, cell lines, gene mutation, gene 
expression, and differential methylation, DC_networkI drug targets, cell lines, gene mutation, gene expression, 
differential methylation, and chemical features, DC_networkII drug targets, cell lines, gene mutation, gene 
expression, differential methylation, chemical features, protein–protein interaction, protein metabolite 
interaction.

Group Group name Features Number of features

Group 1 DT_CL Drug-target, Cell-lines 393

Group 2 DCGM Drug-target, Cell-lines, Gene-mutation 488

Group 3 DCGME Drug-target, Cell-lines, Gene-mutation, Gene-Expression 752

Group 4 DCGMEM Drug-target, Cell-lines, Gene-mutation, Gene-Expression, Differential-methylation 1086

Group 5 DC_networkI Drug-target, Cell-lines, Gene-mutation, Gene-Expression, Differential-methylation, Chemical-features 1612

Group 6 DC_networkII Drug-target, Cell-lines, Gene-mutation, Gene-Expression, Differential-methylation, Chemical-features, Protein–Protein Inter-
action, Protein-metabolite Interaction 1614
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The ReLu activation function is termed Rectified Linear Unit or rectifier, which is one of the common acti-
vation functions for deep learning. The ReLu function is used in hidden layers to detect the patterns, and the 
performance of the model increase by overcoming the gradient vanishing. The activation function of the last 
layer was the sigmoid function:

To optimize, we used the binary cross-entropy function as a loss function.

where yi is the actual synergy label of each drug pair, si is the predicted synergy score of each combination, and 
N is the number of drug combinations.

Applying other machine learning methods.  To evaluate the performance of the predictive model, we 
compared the deep neural network model with different machine learning algorithms. Shallow neural network 
(SNN), k-nearest neighbor (KNN), Support vector machines (SVMs), random forest (RF), and gradient boost-
ing classifiers (GBCs) were the algorithms that were recruited in this step. All the methods were examined by 
different hyperparameters. The performance of considered algorithms is largely dependent on hyperparameters. 
Therefore, the various hyperparameters of the algorithms were adjusted to the optimal state.

Evaluation criteria of presented models.  The tenfold cross-validation and some popular evaluation 
criteria were utilized in the proposed experiments to evaluate the models’ performance. The tenfold cross-vali-
dation involves randomly splitting the whole dataset into ten independent subsets equally sized. Each time one 
fold is used for testing, and nine remaining folds are used for the training, which this procedure is repeated 
iteratively. This process is performed ten times to ensure each fold is tested at once. To evaluate the performance 
of the prediction model, widely used evaluation criteria, including accuracy (Accu.), sensitivity (Sen.), specificity 
(Spec.), precision (Prec.), F-Score (Fscore), Matthews Correlation Coefficient (MCC.), and Cohen’s kappa coef-
ficient (Kappa) were calculated as follow.

sigmoid(x) =
{

1

1+ e−y

L = −
1

N

N
∑

i=1

yi · log(si)+
(

1− yi
)

· log(1− si)

Accu. =
TP + TN

TP + TN + FP + FN

Sen. =
TP

TP + FN

Figure 6.   Schematic illustration of the proposed method (SYNDEEP). The model takes the feature vectors as 
input. The input layer is connected to 3 hidden layers. The number of nodes in each of the three hidden layers 
was 512, 128, and 32, respectively. Between each of the three hidden layers, there is a ReLu activation function. 
For the last layer, we adopt a sigmoid activation function. The learning rate was 10−2.
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where TP, FP, TN, and FN denote true positive, false positive, true negative, and false negative, respectively. The 
current study used Cohen’s kappa to evaluate the agreement grade between observed accuracy and expected 
accuracy and the performance of the prediction model. Where Pc is the probability value of agreements expected 
by chance.

In addition, we performed McNemar’s Test to compare SYNDEEP results with proposed state-of-the-art 
computational models. McNemar’s Test is defined as follows:

where B is the number of drug combinations that were detected correctly as non-synergy and incorrectly detected 
as synergy effects, while C is the number of drug combinations that were detected correctly as synergy and 
incorrectly as non-synergy effects.

Computational equipment.  In this study, the deep neural network model is implemented in python lan-
guage using Python 3.7 version. To implement the deep learning methods and machine learning algorithms, we 
used the Keras and Scikit-learn libraries, respectively. The software environment to develop the experiments was 
Google colab.

Data availability
Dataset: NCI-ALMANAC Data Resource (https://​dtp.​cancer.​gov/​ncial​manac). Drug-target Interactions Data: 
Drug-target interactions (https://​go.​drugb​ank.​com/​relea​ses/​latest). Protein–Protein Interactions Data: PPI 
(https://​string-​db.​org/). Genomic Features Data: gene expression, mutations, and differential methylation (https://​
cancer.​sanger.​ac.​uk/​cosmic). Protein-Metabolite Interaction Data: protein-metabolite interaction (https://​www.​
mhmdb.​co.​uk/). Scripts: The source code of SYNDEEP is available in (https://​github.​com/​annat​orkam​annia/​
SYNDE​EP).
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