Spring 2004

When Disney Meets the Research Park: Metaphors and Models for Engineering an Online Learning Community of Tomorrow

Ronald J. Chenail
Nova Southeastern University, ronaldchenail@gmail.com

Follow this and additional works at: https://nsuworks.nova.edu/shss_facarticles

Part of the Arts and Humanities Commons, and the Social and Behavioral Sciences Commons

NSUWorks Citation

This Article is brought to you for free and open access by the Faculty Scholarship at NSUWorks. It has been accepted for inclusion in CAHSS Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
When Disney meets the research park: Metaphors and models for engineering an online learning community of tomorrow

Ronald J. Chenail*

Nova Southeastern University, Office of Academic Affairs, 3301 College Avenue, Fort Lauderdale, FL 33314-7796, USA

Received 26 January 2004; received in revised form 1 March 2004; accepted 22 March 2004

Abstract

It is suggested that educators look to an environment in which qualitative research can be learned in more flexible and creative ways—an online learning community known as the Research Park Online (RPO). This model, based upon Walt Disney’s 1966 plan for his “Experimental Prototype Community of Tomorrow” (EPCOT) and university cooperative research centers, proposes universities, through qualitative engineering, develop online learning communities dedicated to faculty and students’ explorations. The RPO resources would be constructed from “Contextualized Learning Objects for Constructing Knowledge” (CLOCKs) through which park goers can generate new knowledge and technology, blaze personal pathways to knowledge, engage park guides to traverse well-worn trails, and design experiences to meet lifelong learning needs. In the RPO, attractions, such as Methods Commons, University Communities, and CLOCKWorks, would be engineered so that students and faculty could learn and research at their own rates and according to their own needs.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Research park; Learning objects; EPCOT; Learning communities; Qualitative research

1. Introduction

One of the greatest challenges facing qualitative research today is how to best educate the next generation of researchers in the time allotted and with the faculty resources available in most graduate programs. The process of teaching and learning qualitative inquiries is at an interesting
transition. From a time when qualitative research was all but absent from the graduate curricula to a point today where most degree programs have at least one module or course on the subject, qualitative research is emerging as a legitimate part of most contemporary degree programs. In addition, some innovative universities are beginning to offer specializations, concentrations, and whole graduate certificates in qualitative inquiry (e.g., The University of Georgia; http://www.coe.uga.edu/edpsych/qualinquiry.html; Chenail, in press).

For many students, their entire formal world of understanding and practicing qualitative methods is contained in one, possibly two, semester-length classes. This means students usually receive a solid introduction to the well-known methods, such as ethnography, phenomenology, and grounded theory, but there may be scant time for learning about the artistic, critical, and collaborative approaches. Another factor in this time crunch is that many students may learn pieces of the skills needed to conduct a study, but do not have the opportunity to participate in a study from beginning to end within their standard curriculum (Webb & Glesne, 1992).

Some educators, such as Hoshmand (1989), have proposed lengthier tracks for learning qualitative approaches, but the fact remains that most qualitative researchers do not receive the training and supervision they really need to bring the overall quality in the field to a new level. Contributing to this problem is the diversity of qualitative methods, along with its related approaches, such as mixed methodology (Tashakkori & Teddlie, 1998), action research (Mills, 2003), participatory research (Jason, Keys, Suarez-Balcazar, Taylor, & Davis, 2004), collaborative inquiry (Bray, Lee, Smith, & Yorks, 2000), and appreciative inquiry (Cooperrider & Whitney, 1999), can stretch any faculty to its limits when it comes to providing students and junior faculty with the supervision and guidance it takes to master these approaches. This potential methodology gap can also mean that the diversity of methods will remain limited thus making it difficult for researchers to locate methods to fit their questions. Sadly, the result is that the methods known will drive the questions explored or researchers will produce research lacking in quality due to a lack of expertise with the method.

Despite the gloomy picture portrayed above, there are some exciting developments occurring today which do inspire hope for tomorrow. The literature of how best to teach qualitative research is growing (Seale, 1999) and these authors suggest that an activity-driven style of learning may be the best way to develop expertise in these challenging methods (Cobb & Hoffart, 1999; Fontes & Piercy, 2000). There is also a new trend of teaching qualitative research to undergraduates (Clark & Lang, 2002; Reising, 2003) that will help those teaching these methods to students on the graduate level. The Internet and other communication networks of the future also raise hopes. There is an ever-growing abundance of Web pages dedicated to all aspects of qualitative research, including teaching (e.g., http://www.wcer.wisc.edu/tqm/index.html for the University of Wisconsin’s Teaching Qualitative Methods site). This should help faculty and students alike.

These are very promising developments and should help to improve qualitative researchers’ education and the overall quality of qualitative research, but these solutions are still constrained by an orientation that is based upon the course, which emphasizes the separation of learning into discrete, structured pathways which have been prearranged by faculty members. The course as foundation can also limit the usefulness of smaller units of learning, such as learning objects (Wiley, 2002a,b), and larger units, such as learning communities (Lenning & Ebbers, 1998). Lastly, this organization can lead to a phenomenon of faculty bottlenecking whereas growing student demand can be frustrated by the finite time–space continuum that is the semester-class structure.
2. The Research Park Online approach

To address these constraints, it is suggested that educators look to a more conducive, sustainable, and scaleable learning environment through which faculty and students alike can learn qualitative research in more flexible and creative ways—an alternative online learning community known as the Research Park Online (RPO). This model, based upon concepts first conceived by Walt Disney in 1966 for his “Experimental Prototype Community of Tomorrow” (EPCOT; Walt Disney Productions, 1967) and later adapted for the park as it is structured today, proposes universities to develop distributed online learning communities (Oblinger, Barone, & Hawkins, 2001; Renninger & Shumar, 2002) dedicated to faculty and students’ exploration of environments. In this digital environment, faculty can conduct research for the production of new knowledge and technologies, can blaze their own pathways, can engage park guides and rangers to help traverse well-worn trails, and can design learning experiences to meet lifelong learning needs. In concert with this model, it is also suggested that universities move beyond the course as unit of learning and teaching and create new ways of accounting, validating, and rewarding student activity and faculty productivity.

The last ingredient in this model is the concept of the research park or cooperative research center (Gray & Walters, 1998). With research parks, universities work with corporate and governmental partners to generate new knowledge from the results of research (i.e., empirical findings, statistical relationships, conceptual schema, and new insights) and technology (i.e., practical tools, methods, applications, formulas, software, or a set of procedures emerging from the research; Tornatzky, Fleischer, & Gray, 1998, pp. 219–220). With the RPO model, resources and personnel would be dedicated to learning and practicing qualitative research with the goals of developing new knowledge about phenomenon being studied and the methods used in that pursuit, as well as developing and testing new qualitative research technology to improve teaching, learning, and practice. Every activity in the park would be potential subjects of research: Reflection on how researchers research, how teachers teach, and how learners learn would all be the foci of ongoing research to establish best practices, generate new knowledge, and transfer new technology.

The online aspect of the RPO would mean that these activities could happen virtually. University faculty and students could collaborate online regardless of location and conduct research around the world. Cooperation with companies would also not be place or time bound. The technology exists today to accomplish these objectives and the move towards faster and bigger networks, such as the National Lambda Rail (http://www.nationallambdarail.org/) and the Southern Universities Research Association-ATT fiber optic systems (http://www.sura.org/), will only make this type of virtual community easier to accomplish. In addition, the development of software systems beyond classroom management packages in areas, such as learning content management and library management, makes it possible to create larger, integrated learning systems of learning and research.

The goal of RPO would be to build a rich learning community that would offer faculty and students a “real world” classroom and laboratory. This RPO notion of connectivity between the park and the university community as a whole would be in contrast to what occurs in many contemporary research parks in that the faculty and graduate students working in the park may never interact with their colleagues and peers in the rest of the university. Although the isolation may be conducive to research, it
can mean that wonderful opportunities for learning can be denied to many worthy individuals not located physically in the park. Conceptualizing the park as a virtual community means that it can bring greater numbers of scholars and students together for the benefit of all.

3. The EPCOT philosophy

When Walt Disney introduced the concept of EPCOT in 1966, he wanted to create a showcase for innovation and invention—a permanent World’s Fair. He envisioned EPCOT as a community of 20,000 individuals who would live, work, and play within the confines of what he hoped would be a domed city (Walt Disney Productions, 1967, p. 11). Although many of his ideas never made it to the actual park in Orlando, FL today, EPCOT—the park, does retain the basic philosophy he crafted for EPCOT—the community:

1) a demonstration and proving ground for prototype concepts, 2) an ongoing forum of the future, 3) a communicator to the world, and 4) a permanent international people-to-people exchange (Mannheim, 2002, pp. 130–132).

EPCOT as organized today has two major components—Future World and the World Showcase. In Future World, there is a series of major pavilions and rides through which the latest technological innovations are on display for park goers to explore and experience. The World Showcase consists of an arrangement of pavilions that feature the best of a nation’s people and culture.

The glue that holds the park together and the “magic” that enables the Disney Corporation to maximize the park goers’ experience is Walt Disney’s focus on transportation and the management of movement. In all of his parks, he stressed the importance of organizing the flow of people through the community so there would not be the need of any traffic lights or stop signs. He wanted the park to be one where people could live, work, learn, and play without being restricted by needless barriers to their movement (Walt Disney Productions, 1967, p. 13). To accomplish this ideal, Walt proposed a highly structured transportation system that allowed people the freedom to move about the park in a manner that suited their needs. A highly structured system that would provide people great flexibility may sound paradoxical in nature, but the trick is to organize the park in such a way that small pieces of the transportation system can fit with other pieces of the system (Walt Disney Productions, 1967, pp. 12–16). When visitors experience EPCOT today, they can make an unlimited array of choices for their entertainment desires. They can take the rides they wish, visit the pavilions they want, they can eat at the restaurants they like, and they can organize their time at the park to maximize their entertainment experience (Davenport & Beck, 2001). In other words, no one park goer has the same EPCOT. Depending on the choices made, all park goers create their own EPCOT experience.

In contrast to the EPCOT philosophy and practice, the educational experience of today’s students is more akin to an agrarian model where students are herded together through a series of pens (i.e., classes) that have been organized by semesters, degrees, and prerequisites. Faculties are also confined by this system as their time at universities is organized in terms of how many classes and students they herd over time. Terms, such as credit hours and full-time equivalency, dominate the accounting system in higher education and help to determine everything from salaries and promotions to graduations. As will be
discussed later in the paper, the one of the biggest impediments to the adoption of this proposed model might not be pedagogy, technology, or know-how, but rather the current accounting and incentive systems found in higher education.

4. The RPO model

As a solution to this model of education, it is suggested that the RPO approach would serve as a suitable alternative. The RPO would be a digital environment that would allow faculties and students from multiple universities to share their knowledge and wisdom to help each other to become better researchers. Conceptually, the RPO could be organized along the lines of EPCOT’s Future World and World Showcases (see Fig. 1).

Whereas EPCOT’s Future World is that part of the park where the latest innovations in transportation, energy, and technology are explored, RPO’s Methods Commons would be where the qualitative research methodologies would be developed, explored, and researched. It would be a commons for all park goers to meet and to work collaboratively and cooperatively. The various universities that would partake in the RPO would maintain their own pavilions which would be situated in University Communities, as is the case with the different country pavilions in EPCOT’s

![Fig. 1. RPO conceptual map featuring Methods Commons, University Communities, and CLOCKWorks.](image-url)
World Showcase. In the scenario of one university having its own RPO, the various colleges, departments, and institutes would be arrayed as the nation pavilions are organized. The goal of this structure would be to encourage members of the different departments or universities to retain their own unique cultures in University Communities and, at the same time, recognize their common needs and interests, that is, research in Methods Commons. By connecting Methods Commons with University Communities, park goers would be encouraged to learn from each other’s “nation–states” as they explore how each approaches the world through their own discipline-driven perspectives. Concurrently, the connectivity of the RPO’s major sections, Methods Commons and University Communities, would encourage interdisciplinary and multidisciplinary inquiries, knowledge creation, and technology development.

To accomplish this communal ideal, the RPO would provide an environment that would balance structure and customization in which students and faculty could learn at their own rates and according to their own needs and not be limited to learning only from local resources. As with Disney’s EPCOT, the RPO would contain a number of attractions through which park staff and visitors would have access to a variety of learning spaces. These spaces would consist of a system of interlocking learning objects designed to share basic qualitative research information and skills. The objects would be connected to create structured rides (e.g., guided pathways depicting a research project from beginning to end), corporate pavilions where latest technological innovations would be open for exploration and experimentation, and access to data sets with which new research can be conducted. In addition, clients would come to the RPO for their research needs. In all of these activities, the RPO would be a place where research is examined so people can study how people teach, learn, and practice qualitative inquiries well.

Central to this research enterprise would be the challenge of engineering tacit or personal knowledge (Polanyi, 1967, 1969, 1974) of the park participants into external or working knowledge (Davenport & Prusak, 1998). As with the case of Wenger’s notion of communities of practice (Wenger, 1998; Wenger, McDermott, & Snyder, 2002), the RPO’s greatest challenge would be learning what is learned in the park and making those lessons learned public and in a form that can be made accessible for any park participant to use.

The challenge of this approach, like all knowledge management projects, is how to leverage tacit knowledge so that the insider’s insight that is critical to a process being conducted successfully be made overt and communicated to outsiders wishing to master the process too (Alderman & Barritt, 2004; Saint-Onge & Wallace, 2003). Although most of the knowledge management guides clearly state what must be done to successfully create a knowledge management system (McElroy, 2003; Probst, Raub, & Romhardt, 2001), the authors are usually not so clear on just how these processes are to be engineered. To address the challenge of tacit knowledge, a systematic approach is required to take knowledge, which is tacit and covert, and turn it into knowledge that is public and overt. Interestingly enough, both Disney and qualitative research provide answers to this perplexing problem.

At Disney, Walt organized his best creative personnel into the group that became known as the Imagineers (Capodagl & Jackson, 1999; Hench, 2003; LeBoeuf, 1980; The Imagineers, 1996, 2003). With Imagineering, Disney was able to leverage his community of practitioners’ creative processes and basic worldviews as cartoonists to create a dynamic, collaborative team that sketched, doodled, and story boarded together to generate ideas and projects that one day would be engineered into every major entertainment attraction seen today in the Disney entertainment empire (Hench, 2003). In the
Imagineers’ own words, Imagineering is their process for converting tacit knowledge into working knowledge:

Layer upon layer, we create a patchwork of sketches and words that color the original idea. Funny, fantastic, diverting, enhancing, persuasive, serious or not, our visualized thoughts begin to chisel away and uncover the diamond in the rough (The Imagineers, 1996, p. 51).

Taking this in-house Disney process one step further, Capodagli and Jackson, in their 1999 book, outline how any company can use the Imagineering approach to uncover their own diamond in the rough, or in other words, to mine their own tacit knowledge. Whereas Disney’s Imagineering emerged from his community of cartoonist practitioners, the RPO will utilize the skills and knowledge of its community of qualitative research practitioners to develop its own system for turning tacit knowledge into public knowledge—qualitative engineering.

Qualitative research is a well-established system of inquiries that enables researchers to interact with participants and communities to learn their worldviews and to map their experiences. Qualitative research is also a good system to help individuals to bring forth these insights from themselves (Patton, 2002). Whether through interviewing, participant observation, or document analysis, qualitative researchers are adept at focusing on individuals and groups to make sense of basic rituals, practices, and customs. In the RPO, qualitative engineering will be used to transform tacit knowledge into working knowledge, which in turn, will be converted into transferable wisdom. The system, based upon the theories and techniques developed in qualitative research, will allow individuals and organizations to learn the differences that make a difference in producing successful basic processes and outcomes. The qualitative engineers will take this working knowledge and turn it into contextualized learning objects through which individuals and organizations can transfer their knowledge into useful and reusable technology. This transformation helps to produce innovation and invention. Through qualitative engineering, the RPO will create its main attractions—contextualized learning objects, trails, rides, and pavilions.

5. RPO attractions: contextualized learning objects, trails, rides, and pavilions

Like any good park, the RPO would need to have interesting attractions to excite park goers and to make their experience of the park an enjoyable one. In the RPO, the basic building block for creating all of these attractions would be the learning object. Based upon the notion of an object found in computer science, learning objects in education are self-describing, self-contained small chunks of learning that accomplish a specific learning objective (Oakes, 2002) or as Wiley (2002a, p. 6) describes them, “any digital resource that can be reused to support learning.”

Textbooks, lesson plans, lectures, lecture notes, syllabi, handouts, web sites, reading lists, exercises, drills, and demonstrations all have the potential to become learning objects. These bits of instruction can help students to learn how to accomplish a particular task or how to master a specific body of knowledge. To become a learning object, the material must be contextualized with what is known as “metadata” or self-description, so that others wishing to use the objects can locate the resource online and understand what the object was designed to accomplish (Oakes, 2002, p. 104).
Today, there are a growing number of online sites that serve as learning object warehouses for teachers and students to mine. Some of the more well-known sites include Merlot which stands for Multimedia Education Resource for Learning and Online Teaching (http://www.merlot.org/Home.po), SPLASH’s Portals for On-line Objects in Education or POOL (http://www.edusplash.net/), Learning Resource Catalogue3 or LRC3 (http://www.lrc3.unsw.edu.au:8013/), Apple Learning Interchange (http://ali.apple.com/ali/resources.shtml), and Xanadu (http://xanedu.com/). In addition to these general higher education resources, there is also a growing array of discipline specific sites, such as Global Education Online Depository and Exchange (GEODE) for global studies (http://www.uw-igs.org/) and the National Science Foundation’s National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL; http://www.nsdl.nsf.gov/indexl.html).

For qualitative researchers, the selections are limited at these abovementioned learning objects sites, but that does not mean that there are no rich digital resources available online for qualitative researchers to explore, such as Bobbi Kerlin’s Research Place (http://kerlins.net/bobbi/research/qualresearch/), Judy Norris’ QualPage, which is now housed and maintained at the University of Georgia (http://www.qualitative-research.uga.edu/QualPage/), Colorado State University’s Writing Guides for Quantitative and Qualitative Research (http://writing.colostate.edu/references/research.cfm), and The Qualitative Report (http://www.nova.edu/ssss/QR/index.html) of Nova South-eastern University. At this point, what keeps these sites from being considered as learning object portals is the lack of a standardized metadata scheme for coding all of the resources so that they are self-described and searchable.

A general concern regarding the usefulness of all of these sites, including the major learning object resources, is the challenge of connecting the pieces into coherent and useful arrays so that learning can take place. The metaphor often used to describe learning objects is the LEGO block (Wiley, 2000a, p. 3) in that these objects theoretically can be used over and over again as building blocks in an endless string of structures (Alderman & Barritt, 2004). The challenge with using learning objects to create larger learning experiences is how to organize them into meaningful, coherent structures. In other words, if learners are hoping to master a new subject area or technique, they may be hard pressed to know what they do not know and be able to overcome this gap by navigating through a wealth of learning objects without a map or guide to help them.

5.1. CLOCKs: New generation learning objects

To address this challenge, the RPO qualitative engineers will use their expertise in studying phenomenon and meaning in context (Mishler, 1979) to create learning objects with meaningful context intact. This next generation of learning objects would be called Contextualized Learning Objects for Constructing Knowledge (CLOCKs) and the RPO would feature the latest technology in CLOCK creation and improvement at the CLOCKWorks pavilion.

As compared to the current learning objects, CLOCKs would be engineered so that they come with the theoretical context, evaluation component, exemplary outcomes, and the ability for users to upgrade the product by sharing their use of the learning instrument. Each CLOCK would be engineered so that instead of being something that can be used in a class, the CLOCKs can be the class themselves if they are properly contextualized. This can be accomplished if there is a built-in feedback loop so the CLOCKMakers can utilize qualitative engineering concepts and techniques to learn what others learned from using the CLOCK (see Fig. 2).
In the RPO CLOCKWorks model, the CLOCK creators, utilizing qualitative engineering, would wrap the learning activities and routines in thicker descriptions that will allow future users to appreciate the contexts in which the objects were originally developed and to suggest how they might be used again. This grounding information could include background on the development of the object, hyperlinks to the original home syllabi, sample results produced from earlier utilizations, students’ reactions to using the objects, and refinements made over time to the objects. The CLOCKs also need to be treated as “living documents” so that each time a CLOCK is used, the “price” for subsequent learners using these resources is the responsibility to collect data on the experience and report back what was learned to the object’s steward via qualitative engineering. In this way, CLOCKs can undergo a constant process of refinement and improvement.

In this approach, the CLOCKMakers would build, develop, and evaluate the RPO CLOCKs from a qualitative perspective. One product line would be the qualitative research CLOCKs where the CLOCKMakers would manufacture learning objects that help park goers to learn qualitative research. Another line of CLOCKs would be constructed for use by people outside the park to study their own situations and problems. To this end, the RPO qualitative engineers can create CLOCKs to help businesses work better by creating a line of CLOCKs that might help the company’s leadership train their employees to communicate better with their customers. The qualitative engineers would use participant observation, interviewing, and document analysis to create CLOCKs to help companies learn and master the best ways to fulfill their communication goals and objectives. Because every CLOCK comes with a component that helps its users to evaluate the CLOCK user’s performance, the business CLOCKs would be no different. In addition, customers can choose to buy generic CLOCKs to accomplish their goals instead of commissioning designer CLOCKs.

Along with engineering context into the system, CLOCKs can also become more useful and valuable if learners or park goers can have access to park guides and park rangers who can help them to organize their stay in the park so that they maximize their learning pleasure with the CLOCKs. As can be seen at

---

Fig. 2. RPO CLOCKWork model of learning in multiple contexts through qualitative engineering.
parks like EPCOT, these guides can be living and breathing humans who are in the park at the same time as park goers or they can be virtual or videotaped guides who have been programmed to assist and to enhance the experience of the park goers. With the human factor retained, CLOCKs can be prearranged into attractions by guides for park goers or they can be explored “just in time” as guides and park goers learn from object to object as they blaze a trail in the park.

5.2. Park pavilions

One type of RPO attraction would be pavilions that would consist of thematically organized areas in the park. These would be akin to the main components found in EPCOT today. The pavilions could be as large as the Qualitative Research Pavilion or as small as the Qualitative Interview Pavilion. There could also be corporate-sponsored and -managed pavilions, such as the NVivo Pavilion, which would feature qualitative data analysis software.

Pavilions would contain highly structured learning modules or configurations of CLOCKs, but the emphasis in this part of the park would be on the experience being park-goer-driven. In other words, the park goers would be encouraged to explore the various sections of the pavilion based upon their particular interests and needs. Although park goers would navigate pavilions idiosyncratically as they choose their course through the pavilion, there can also be guided tours, such as the live and recorded ones given in parks and museums. Again, along Disney lines, these guides can be virtual or live or in some combination.

5.3. Park rides

Another type of attraction would be park rides that would consist of highly structured journeys consisting of lectures, demonstrations, simulations, or some combination. They would be led by a ride operator in real-time or as a virtual avatar like Disney does with many of its rides, such as Body Wars. Each ride would include a preride component in which ride goers would be introduced to the concept of the ride, its prominent features, and its overall goals. The ride would provide to access alternative areas of information. The ride would have a linear quality to it overall, but it would also allow for hyperlinked, random-accessed departures because it would be important for ride goers to be able to reride any part of the ride. Enhanced DVDs of movies and television shows provide good examples of how rides can be constructed and enjoyed:

- The feature is divided into discrete programs so that viewers can jump around or replay certain scenes.
- “Alternative endings” and “deleted scenes” are included to provide variations to the narrative flow.
- Commentary tracks are included to give insight into the production of the feature.
- DVDs are programmed to interact with the Internet to allow for additional features to be accessed, for continuous updating of the material, and for peer-to-peer interaction.

5.4. Park trails, guides, and rangers

In addition to taking a ride or visiting a pavilion, park goers may wish to travel about the park by following existing trails or by blazing new trails. The existing trails approach would be similar to our courses of today in that they would be created and charted by park guides in course management
software, such as WebCT or Blackboard, and would be well-marked so that park goers could traverse them as part of a tour group or as a single sojourner. These trail followers would take part in the exercises set forth by the park guide and receive credit for completing their assignments successfully.

With the trailblazing experience, park goers can forge their own courses. These trailblazers would be charged with chronicling their journeys, like Lewis and Clark in course management packages, and produce reports of what they observed and learned along the way. The trailblazers may bring park guides or scouts with them to assist with the journey. These trailblazing expeditions can be credited or noncredit experiences. Like with any new exploration, the accomplishments of these explorers must be verified for their accuracy before they can be credited for reaching their objectives. Because these trailblazing experiences can be somewhat unpredictable, both the explorer and guide need to be flexible and open to recognizing unforeseen lessons and accomplishments. For example, Shackleford’s famous expedition to Antarctica was a failure if judged by its original goals and objectives, but a remarkable success for what was accomplished by the team due to the horrendous circumstances they overcame. Such a flexible and iterative approach would be consistent with how qualitative research is practiced in the field and would positively reflect and reinforce a qualitative pedagogy (DeMarrais & Preissle, in press).

Key to this process would be the work of the park rangers. Park rangers would not be connected with any particular park goer or attraction; rather, they would traverse the entire landscape and serve as sources of information, guidance, and security. They would have both the greatest challenge and the greatest joy from their work in the park in that they can “live and breathe” the qualitative engineering way each and everyday and endeavor to ensure that the learning experience for all involved remains central to the RPO and its participants.

In the RPO model, it would be the qualitative engineering faculty from CLOCKWorks who would serve as park rangers. They would navigate throughout the entire park and would be able to engage each and every learner. Their work in the park would not be limited to “teaching courses” so that their ability to help learners would not be constrained by the normal time–space continuum of higher education. In fact, whereas today, faculty productivity would be measured in terms of scholarly activity, teaching, and service, in the RPO, these three processes would become one as the faculty-member-as-park-ranger would emerge as the reflective qualitative engineering practitioner who serves as a leader in the online learning and research community.

With all of these ways to learn in the park, it would be important for everyone in the park to learn how park goers learn. This goal would be crucial to improving the experience for all who work and play in the park. To accomplish this, park goers and park guides utilizing qualitative engineering would need to keep journals of their park experiences and be willing to share these reflections with others. Other techniques would include participant observation by park guides and park rangers, member checking, and peer reviews with other park goers. This approach again would help park goers to appreciate the qualitative way of learning and to keep the park’s working knowledge flowing.

6. The RPO today

Hopefully, the idea of the RPO sounds less like a science fiction yarn and is beginning to look more like a viable blueprint for developing rich learning environments. Interestingly enough, a careful search of the online world today, glimpses of the RPO, can already be seen in various configurations and stages of development.
One fascinating example of RPO-like community is Eserver.org (http://eserver.org/). Eserver, which is short for the English Server, is a virtual community of over 1000 “netizens” who communicate, collaborate, and support each other in the learning and researching of literary and humanities pursuits. They publish a number of peer-reviewed journals, maintain repositories of digital resources, and provide a mentoring system for beginning academic wishing to learn the manuscript-reviewing process. They also serve as a working laboratory for their respective universities’ information technology departments.

In the area of qualitative research, the University of Georgia’s (UGA) Qualitative Inquiry Program (http://www.coe.uga.edu/edpsych/qualinquiry.html) supports the most active online community through its QUALRS-L listserv. The faculty has also developed a superb in-house collection of learning objects and they are now working on creating a virtual qualitative research commons that would serve qualitative researchers around the world (Preissle & DeMarrais, 2004).

7. Challenges

The challenges of bringing the RPO from dream to reality are considerable. They range from the current business climate, intellectual property laws, and higher education accounting practices, to the seduction of technology.

7.1. RPO meets ROI

Universities, like any business, must attend to sound business practices or they can end up facing severe financial crises and even foreclosure (Kirp, 2003). The RPO would need to be no different in its attention to its financials, like return on investment (ROI), if it were to become a real and long-lasting resource for learning and innovation. To this end, the RPO development team must include financial expertise along with the qualitative engineers, software engineers, learning theorists, and management experts. The bottom line means that the RPO will need to demonstrate clearly and continually that it represents a solid investment of time and money for everyone involved.

7.2. Intellectual property

Who would own the knowledge and innovation created in the RPO? What incentives would faculty have to contribute to the Park? Are CLOCKs patentable? Are the lessons learned by park goers copyrightable? Questions like these are being raised constantly and there are no quick and easy answers (see Lessig, 2001). In the RPO, access and park enjoyment must be balanced with economic viability and fiscal responsibility. How this can be accomplished successfully might be the biggest challenge of all for the RPO.

7.3. Accounting in higher education or time is money

Credit hours, clock hours, full-time-equivalency (FTE), and academic calendars are constant reminders that time is a dominate metapattern (Volk, 1995) in higher education. Students’ performance
(e.g., credit hours) and faculty productivity (e.g., teaching loads) are all accounted for in terms of time. In the RPO, how would park goers’ learning be credited and cost determined? How would park guides’ and park rangers’ salaries be determined? Disney and other similar entertainment parks may hold some answers for the RPO. Would RPO goers pay for a “three-day pass”? Would they meet with “event planners” instead of academic advisors to chart out their learning experience, including what the learning package would cost? Would faculty working in the park be paid based upon utilization rates of the CLOCKs they helped to create? Will park goers be given discounted rates if they contribute working knowledge that helps to create the next edition of a CLOCK?

7.4. Staying human focused

As stated earlier in the paper, the technology needed to create RPO and its Methods Commons, University Communities, CLOCKs, rides, pavilions, and trails is already here and readily available. That is both wonderful and problematic. From the wonderful perspective, it is now possible to program the attractions of the RPO. From the problematic point of view, it can mean that technology overtakes the human and the RPO loses its ability to become a community, a place where people will feel welcomed and will want to stay, learn, and contribute to the knowledge production.

One way to address this challenge is to keep RPO focused on the experience of the park goer, or as Walt Disney put it, “You don’t build the product for yourself. You need to know what the people want and build it for them” (as cited in Capodagli & Jackson, 1999, p. 59). Qualitative engineering can help to address some of these concerns in that it encourages reflection on the self and others. Challenging the metaphors of the RPO is also a way to keep the park human. For instance, instead of focusing on the multimedia aspects of CLOCKs, which is a software and hardware orientation, the CLOCKMakers should create products that are multisensory in nature, which will keep the qualitative engineers focused on the experience of the park goer.

8. Conclusion

Someday, we may see a more collaborative approach to educating our next generation of learners so that the burden of helping students to master the best methods available will not fall solely on the faculty of the student’s department alone. In the future, education can move from static web sites of qualitative research links and papers to dynamic, active online communities that will be something like a combination of Disney World’s EPCOT and North Carolina’s Research Triangle. This place, RPO, can be the virtual community where students and faculty from around the world can visit Methods Commons, University Communities, CLOCKWorks, and the Qualitative Research Pavilion. They can learn qualitative engineering and can have access to human and virtual park guides who can help park goers explore new methods and work with actual data. They can join research teams and work on cutting-edge projects regardless of where they are living in the world. They can learn how to use the latest qualitative data analysis software packages from the packages’ creators themselves. They can even earn credit by demonstrating through outcomes that they have mastered skills and have acquired knowledge. With quality engineering, the RPO of tomorrow will be here today before we know it.
References


Preissle, J., DeMarrais, K. Teaching qualitative research. Pre-conference institute presented January 9, 2004 at the 17th Annual Conference on Interdisciplinary Qualitative Studies, Athens, GA.


