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Abstract 

Antedonidae (Crinoidea: Comatulida) is the largest of extant crinoid families; it currently 

includes ~155 accepted species in 50 genera and accounts for ~23% of extant crinoid 

species (~29% of feather stars) and 27% of genera.  Molecular phylogenies have returned 

the family as polyphyletic, with several clades scattered among non-antedonid sister 

groups (Hemery 2011, Hemery et al. 2013, Rouse et al. in prep.). Traditional 

morphological characteristics are thus inadequate for reconstructing relationships among 

taxa. SEM imaging was used in an effort to discover new diagnostic features that will 

support the molecular data, focusing on skeletal ossicles within the calyx, specifically the 

radial ossicles, as they are least likely to be affected by their hydrodynamic environment. 

Geometric morphometric analysis and landmark software were used to systematically 

compare equivalent skeletal parts among antedonid and non-antedonid sister taxa to 

identify likely homologies and homoplasies. Principal Component Analysis 

(PCA/BGPCA) and Procrustes ANOVAs were used for visualizing and testing variances 

within and between taxonomic and molecular groups. Linear Discriminant Analysis 

(LDA) was used with leave-one-out cross validation (LOOCV) to identify any 

misclassifications based on morphological similarities. UPGMA Hierarchical clustering 

models using both Procrustes and Mahalanobis distances were produced for comparison, 

and inter-landmark measurements were compared between species in search for possible 

intra-radial character states. Results yielded significant variation of radial morphology 

within the family Antedonidae with significant effects by depth range, taxonomic 

classification, and phylogenetic forces. All species with a radial height to width (H:W) 

ratio <1.0 were restricted to the shallower depths (0-200m) and notable morphological 

similarities were seen within both molecular clades and taxonomic subfamilies 

(Antedoninae and Thysanometrinae excepted). Regional affects were seen within the 

subfamily Antedoninae, as the Atlantic antedonines differed significantly from the 

Pacific antedonines, both in overall radial appearance and in H:W ratio. These results, 

with limited variation within molecular clades, give at least rudimentary support to recent 

molecular phylogenetics and promote further morphological studies of this nature that 

will strengthen our understanding of extant crinoid phylogeny (Bull et al. 1993, 

Littlewood et al. 1997, Hemery 2011, Rouse et al. 2013, Roux et al. 2013). 
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I. Introduction 

A. Background 

Family Antedonidae is included within order Comatulida (superfamily 

Antedonoidea) (Clark & Clark 1967, Pawson 2007, Hess & Messing 2011), the most 

diverse group of extant crinoids. The order is currently diagnosed on the basis of a 

postlarval stalk with synarthrial articulations (Hess & Messing 2011), but this may be a 

plesiomorphy. Most Comatulida, including antedonids, lose the stalk following a 

postlarval stage and take up a free existence as feather stars. Stalk loss and associated 

increased mobility may have been associated with the early Mesozoic diversification of 

durophagous predators, such as echinoids (Baumiller et al. 2010). The order has 

undergone extensive radiation since it initially appeared in the Jurassic (Meyer & 

Macurda 1977) and apparently since the early Paleogene (Meyer & Oji 1993) and is now 

found in virtually all seas at all depths (Messing 1997). Antedonidae is the most species-

rich currently recognized family and encompasses more than one-quarter of all extant 

comatulids, about 150 species (Clark & Clark 1967, Hess & Messing 2011). Current 

morphologically-based taxonomy recognizes six subfamilies: Antedoninae, 

Heliometrinae, Thysanometrinae, Perometrinae, Isometrainae, and Bathymetrinae 

(Messing 2012). However, at least Heliometrinae appears to represent two separate 

clades based on both morphological (Eléaume 2006) and molecular data (Hemery 2011, 

Hemery et al. 2013, Rouse et al. 2013, in prep.). Messing & White (2001) elevated the 

former subfamily Zenometrinae to family level but restricted the group to only three 

genera. They treated the remaining former zenometrine genera as Antedonidae incertae 

sedis. 

 

B. Morphology-based classification 

Crinoid classification has been based on skeletal morphology with occasional 

contributions from soft-part anatomy (e.g. AH Clark 1915, 1921, 1931, Messing 1981, 

2003, Bohn and Heinzeller 1999, Hess and Messing 2011). Morphological characteristics 

used for higher taxonomic classification of Comatulida include stalk morphology, thecal 

structure, ray branching patterns and characteristics of articulations. All extant crinoids 
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belong to subclass Articulata, named for the ray articulations that include muscular as 

well as ligamentary bundles. Crinoid terminology follow Ubaughs (1978), Clark and 

Clark (1967), Messing and Dearborn (1990), and Hess and Messing (2011) 

Basic articulate crinoid structure consists of a central visceral mass enclosed 

within or supported by a calyx composed of two or three circlets of skeletal ossicles 

(radials, basals, infrabasals) supported on a stalk composed of a series of columnal 

ossicles. Both mouth and anus lie on the upper aboral surface of the visceral mass. Five 

often branching rays, or arms, arise from the radial ossicles. Each consists of a linear 

series of articulated brachial ossicles, and the series of brachials between each branching 

point is referred to as a division series or brachitaxis (Fig. 1). The arms of all extant 

crinoids bear alternating unbranched side branches called pinnules that bear the podia and 

that, together with the arms, form the crinoid’s suspension-feeding apparatus (e.g., 

Messing 1997, Roux et al. 2002). 

Within Comatulida, most species are feather stars that lose the postlarval stalk but 

retain a single large aboral centrodorsal ossicle. Centrodorsals vary widely in shape and 

size and bear prehensile, hook-like cirri (Fig. 1) used for anchoring (Messing 1997, Hess 

& Messing 2011). Roux et al. (2002) discussed extant crinoid articulation structure in 

detail. 

Hess and Messing (2011) placed Antedonidae in the superfamily Antedonoidea 

with the former antedonid subfamily Zenometridae and Pentametrocrinidae, the latter 

characterized by undivided rays. Most diagnostic characters are widely variable, but 

include basals transformed into a rosette with rod-shaped radiating portions ranging from 

absent to broad and tongue-like; centrodorsal cavity moderate to large; adoral paired 

muscle fossae forming tall, thin flanges almost parallel to the oral-aboral axis and 

meeting midradially at a ~90° angle; radial cavity narrow or funnel shaped, without 

central plug; synarthry between brachials 1 and 2 usually embayed; syzygy generally 

between brachials 9 and 10, and distally at short intervals; and pinnules cylindrical to 

flattened and not carinate. 

Antedonidae is currently distinguished chiefly on the basis of characters it does 

not share with the other families. The two genera Pentametrocrinidae have undivided 

rays, arising from five radials in Pentametrocrinus and ten in Thaumatocrinus. In 
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Zenometridae, the centrodorsal is completely hollow; cirrus sockets have a concave 

fulcral bowl surrounding the central lumen, and the basals form a thin, complete circlet 

with a large central lumen and radiating tongue-like projections (Messing & White 2001, 

Hess & Messing 2011). 

 

 

 

Variations in centrodorsal shape, cirrus socket arrangement, and the shape of the 

synarthrial articulations, diagnose antedonid subfamilies. The following descriptions are 

abbreviated from Hess & Messing (2011).  

Fig. 1: Lateral view of the proximal portion of an antedonid, showing centrodorsal, 

cirri, IBr series, brachials, syzygy and pinnules (Messing and Dearborn 1990). 
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Antedoninae is diagnosed by a discoidal to subconical centrodorsal generally with 

a small, cirrus-free, smooth to tuberculate aboral apex and moderate central cavity; cirri 

usually 10-60, closely placed, generally with fewer than 20 cirrals, and without aboral 

spines or carinae; basal rosette lacking rod-shaped extensions; adoral muscle fossae 

moderate, slightly larger than interarticular ligament fossae, and broadly rounded, 

separated by broad, midradial ridge with median furrow, and shallow notch; synarthries 

between brachials 1 and 2 flat or slightly embayed. Recent genera are distinguished 

mainly on length and structure of proximal pinnules.  

Bathymetrinae is characterized by a large centrodorsal cavity; small apex rounded 

or pointed, usually smooth; cirri typically 25-50 in irregular alternating rows; longest cirri 

laterally compressed; distal cirrals usually carinate or with aboral spine; longest cirrals up 

to six times longer than wide; basal rosette lacking rod-shaped extensions; radial articular 

facets high and steep, with low triangular ligament fossae and large, tall subtriangular 

muscular fossae separated by low narrow median ridge and small notch; radial cavity 

narrow; synarthry between primibrachials 1 and 2 commonly embayed; first pinnule stiff 

and slender with elongate pinnulars; second pinnule commonly the first genital pinnule. 

Heliometrinae is diagnosed by a rounded centrodorsal with a low hemispheric to 

concave or deep pit-like aboral apex; cavity sometimes with shallow marginal pits or 

furrows; sockets numerous, regularly alternating; cirri up to 200, long, stout and laterally 

compressed with up to 90 cirrals; radial cavity moderate to rather large; radial articular 

facet high, commonly concave with muscle fossae narrow, tall and separated by a median 

ridge and notch; synarthrial articulations usually embayed; first pinnule long, flagellate, 

with numerous short pinnulars; distal pinnulars of proximal pinnules may bear 

rudimentary teeth forming a comb as in Comatulidae but weaker. Eléaume (2006) 

distinguished two groups of genera: Anthometrina, Florometra, Heliometra with two 

pairs of radial nerve canals and no basal rays, and Solanometra, Promachocrinus with 

only two radial nerve canals and basal rays present. Hemery et al. (2013) returned these 

groups as two separate clades, and Rouse et al. (2013, in prep.) returned Promachocrinus 

as separate from a Florometra-Heliometra clade. The subfamily is thus polyphyletic. 

Isometrainae (Fet & Messing 2003) includes only genus Isometra, distinguished 

chiefly by viviparity and genital pinnules with expanded proximal pinnulars. 
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Perometrinae shares numerous features with other subfamilies but has distal 

cirrals bearing an aboral spine, triangular ligament fossae, and synarthry between 

brachials 1 and 2 usually embayed; first pinnule stout with fewer than 20 pinnulars; first 

interior pinnule frequently absent, and first exterior pinnule sometime absent; second 

pinnule differs from genital pinnules.  

Thysanometrinae also shares numerous characters with other subfamilies, but 

bears 30-40 slender laterally compressed cirri lacking aboral projections and no rod-

shaped basal extensions; centrodorsal adoral surface usually with interradial ridges; first 

pinnule long, flagellate, composed of 30-40 usually short pinnulars; second pinnule 

resembling those following. The radial articular facets differ substantially between the 

two included genera (Thysanometra and Coccometra). 

Messing & White (2001) removed 15 genera from the former subfamily 

Zenometrinae and treated them as Antedonidae incertae sedis. They lack the diagnostic 

characteristics of the restricted Zenometridae, but most at least tend to have cirrus sockets 

arranged in distinct columns.  

 

C. Molecular-based phylogenies 

Most classifications of articulate crinoids have been non-phylogenetic (see review 

in Hess & Messing 2011). Simms (1988) and Milsom et al. (1994) used phylogenetic 

approaches to reconstruct trees but included only limited numbers of fossil and extant 

taxa. Cohen et al. (2004) published the first combined morphological and molecular 

phylogenetic analysis of extant crinoids but included only a single concatenated feather 

star. Rouse et al. (2013) published the first extensive molecular-based analysis of extant 

crinoids, but among Antedonidae, included only a single Antedon terminal (A. 

mediterranea) and three heliometrines. In their maximum likelihood tree inferred from 

the concatenated five-gene complete dataset, the latter three conformed to Eléaume’s 

(2006) assessment of subfamilial polyphyly, with heliometrines Heliometra and 

Florometra forming a monophyletic clade sister to Aporometra (Aporometridae) and 

Promachocrinus sister to the zenometrid Psathyrometra. Antedon returned as sister to 

Tropiometra (Tropiometridae). Hemery (2011) and Hemery et al. (2013) included 37 
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antedonids among 271 (Hemery 2011) and 105 (Hemery et al. 2013) crinoid terminals 

(81 Comatulida) in their reconstruction using two mitochondrial genes, COI and 16s 

rDNA, and two nuclear genes, 18s rDNA and 28s rDNA. Maximum likelihood and 

Bayesian Inference analyses were performed and tree topologies were compared by eye 

(Figs. 2A, 3). Their consensus tree returned Antedonidae as polyphyletic with multiple 

groups separated and rearranged among other taxa of Comatulida. For the purposes of 

analyses herein, antedonid clades are referred to by the names and letters in Hemery 

(2011) (Fig. 2B-F). Any inconsistencies between trees have been noted throughout.  
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Fig. 2A: Crinoidea phylogeny from Bayesian Inference analysis using four combined genes (COI, 

16S, 28S, and 18S). Clades M, N, O, P, and an ‘unnamed’ clade contain antedonid terminals. 

Colored bars indicate subfamily representatives: Antedoninae, Bathymetrinae, Heliometrinae, 

Isometrainae, Thysanometrinae, Perometrinae, Antedonidae i.s., Zenometridae (Hemery 2011). 
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Fig. 2B-F: Close-up view of the five distinct antedonid clades in Fig. 2A. B: Hemery’s clade M, C: clade N, D: clade O, E: clade P, F: ‘unnamed’ clade 

(Hemery 2011). (Antedoninae = green, Bathymetrinae = blue, Heliometrinae = red, Isometrainae = purple, Thysanometrinae = turquoise, 

Perometrinae = pink, Antedonidae incertae sedis = orange, Zenometridae = yellow, not colored = Tropiometridae, Notocrinidae, Aporometridae) 
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Fig. 3: Antedonid section of the cladogram from Hemery et al. 2013. Maximum likelihood bootstrap 

values (>80%) are given above branch lines, Bayesian posterior probability values (>0.9) below. 

Subfamily/family names are in bold; numbers in parentheses represent number of genera and 

species in the clade, respectively. Note: the equivalent of Hemery’s ‘unnamed’ clade is the 

unspecified clade of “various Antedonidae.” 
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Figure 4 shows the portion of the most recent available tree of Comatulida that 

includes morphology-based antedonid subfamilies (and Zenometridae) (Rouse et al. in 

prep..). The new tree presents former antedonid Zenometridae as paraphyletic and basal 

to a clade including all former Antedonidae and several other taxa (e.g., Mariametroidea, 

Aporometridae, Tropiometridae), with a basal Psathyrometra sp. + Sarametra sp. clade, 

and another clade composed of another Psathryometra sp. and a Monachocrinus sp.  

(Bathycrinidae). 

As in Eléaume (2006) and Hemery et al. (2013), the heliometrines in Rouse et al. 

(in prep.) are no longer considered a monophyletic group as they form two clades; 

Promachocrinus and Florometra mawsoni forming one clade, and Comatonia, 

Florometra, Anthometrina, and Heliometra spp. another. Hemery et al. (2013) and Rouse 

et al. (in prep..) include a paraphyletic subclade sister to the heliometrines, containing 

several antedonine genera, Phrixometra (Bathymetrinae), Eudiocrinidae, and 

Aporometridae. Eléaume (2006) removed Promachocrinus and Solanometra (the latter 

not included in Hemery et al. 2013 or Rouse et al. in prep.) to Antedonidae incertae sedis 

due to differences in basal and radial architecture. Sequence data nest Florometra 

mawsoni within the many sympatric clades of Promachocrinus kerguelensis (Eléaume 

2006, Hemery et al. 2012). 
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Fig 4. Portion of phylogenetic tree of Comatulida including terminals from antedonid subfamilies. Maximum 

likelihood bootstrap values given at branch nodes. Same color assignments as Figs. 2&3. Non-antedonid taxa 

are not highlighted (Rouse et al. in prep.). 
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Antedoninae returns as polyphyletic in all molecular phylogenies (Hemery 2011, 

Hemery et al. 2013, Rouse et al. in prep.) but with some paraphyletic and monophyletic 

subgroups. Representatives of several Indo-west Pacific antedonine genera (Antedon, 

Euantedon, Toxometra, Dorometra, and Andrometra terminals) form a paraphyletic 

grouping containing Aporometra (Aporometridae) and Eudiocrinus spp. (Eudiocrinidae) 

and sister to Phrixometra (Bathymetrinae). This larger clade arises from within 

Heliometrinae. An antedonine clade composed of Argyrometra mortenseni and three 

other Indo-west Pacific Antedon species is sister to a monophyletic Mariametroidea 

(minus Eudiocrinidae). The other antedonine clade is composed of North Atlantic 

Antedon species and South African Annametra occidentalis and is sister to 

Tropiometridae. This Atlantic antedonid-tropiometrid group is in turn sister to a larger 

clade containing other family members of Tropiometroidea (Asterometridae, 

Ptilometridae, and Calometridae). 

A final clade composed of antedonid genera includes Coccometra 

(Thysanometrinae), two perometrines (Perometra and Nanometra), two isometrines 

(Isometra spp.), two bathymetrines (Hathrometra and Trichometra; another bathymetrine 

(Phrixometra) returned distantly (see above)), and four Antedonidae incertae sedis 

terminals. Within this clade, four terminals, the bathymetrines Hathrometra and 

Trichometra and two former zenometrines (Poliometra and Leptometra) form a subclade 

restricted to the North Atlantic. The two thysanometrine genera, Coccometra and 

Thysanometra, were widely separated in Hemery’s (2011) tree. 

Although the trees in Rouse et al. (2013, in prep..), Hemery (2011) and Hemery et 

al. (2013) only contain a fraction of extant crinoid species, and exhibit lower than 

preferred confidence intervals at the basal nodes, they support the idea that previous 

morphologically-based taxonomy is based on homoplasy. Morphological comparisons 

within Antedonidae and among non-antedonid sister groups are required to identify 

possible characters that may support the molecular trees and produce a robust new 

classification (Hemery 2011, Hemery et al. 2013, Rouse et al. 2013, in prep., Roux et al. 

2013). 
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II. Objectives 

The objective of this study was to search for morphological features that may support 

new relationships among groupings of former Antedonidae and their new non-antedonid 

sister groups based on Rouse et al.’s (in preparation), Hemery et al.’s (2013), and 

Hemery’s (2011) molecular-based phylogenetic trees. Work initially focused on 

representatives distributed among the six former antedonid subfamilies plus examples of 

genera incertae sedis and the non-antedonid family Zenometridae, followed by 

representatives of the various clades distinguished in molecular trees and their non-

antedonid sister groups (e.g., Notocrinoidea, Tropiometridae), to identify possible 

homologous features that may support molecular phylogenetic inferences, as well as to 

recognize homoplasies. The approach of studying certain skeletal components has proven 

successful in previous morphological examinations of feather star taxa, e.g., Comatonia 

moved from Comasteridae to Antedonidae (Messing 1981), Zenometridae removed from 

Antedonidae (Messing & White 2001), Heliometrinae divided (Eléaume 2006), and 

Atelecrinidae reassessed (Messing 2003, 2013). Character examples include details of 

centrodorsal shape and cavity (Purens 2016), features of cirrus sockets and cirri, basals, 

radials, brachials and pinnules, including articular structures. The particular ossicles 

examined in this study were the radials, as they are located below the visceral mass and 

are theoretically least likely affected by hydrodynamics and other environmental factors.  

While the radials are not part of the vast suspension-feeding apparatus making up 

about 90 percent of the crinoid structure, they do play other vital roles in regards to the 

animal’s water vascular system, as well as provide important attachment points and 

passages for muscles, ligaments, and nerve bundles (Clark & Clark 1967, Rasmussen 

1978, Ubaghs 1978). The five radials (ten in Promachocrinus sp.) sit in a pentagon and 

are connected aborally to both the centrodorsal, by way of radial pits or furrows, and the 

internal basal rosette diagnostic of the family (Clark & Clark 1967, Hess & Messing 

2011). The aboral nerve system passes from the centrodorsal through the basal structure, 

where lateral derivatives branch and form a circular commissure around the radial 

pentagon, and other derivatives partly fuse through the central canal on the articular face 

towards the brachials (Clark & Clark 1967, Ubaghs 1978).  The articular face of each 

radial bears five fossae, four paired and one unpaired. The paired fossae include two 
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adoral muscle fossae and two interarticular ligament fossae separated by a thin ridge (Fig. 

5). Aboral to the four paired fossae is the central canal, followed by a transversely-

oriented fulcral ridge which accommodates the articular motion. Below the fulcral ridge 

is the unpaired aboral ligament fossa which houses the extensor ligament bundle and 

serves to antagonize the flexor muscles (Ubaghs 1978).  

 

 

 

 

Fig. 5: SEM image of the articular facet view of a radial from Florometra asperrima; 

mf= adoral muscle fossae; il= interarticular ligament fossae; al= aboral ligament 

fossae; cc= central lumen. 
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Roux et al. (2013) discussed in detail the challenges involved in reconciling 

crinoid molecular and morphological phylogenies, emphasizing heterochronic trends and 

homoplastic evolutionary developmental patterns (e.g., paedomorphosis (Messing 1984); 

see also Rouse et al. 2013, Hemery et al. 2013) that confound attempts at classification 

based on morphology. While those trends were not able to be tested in this study, size 

was taken into account when looking at morphological variations. Because homoplasy is 

apparently so common, molecular-based trees formed the basis for review (Bull et al. 

1993, Smith 1997, Roux et al. 2013). Morphological features that support molecular data 

do not imply a direct connection between processes at the genetic level and processes at 

the phenotypical level. Morphological support will, however, help to generate a more 

robust phylogeny upon which a stable classification can be built. 

 

III. Materials and Methods 

A. Specimens 

 Due to the anatomical location of the radial ossicles, entire calices had to be 

dissolved for proper imaging. Therefore, specimens were selected from museum 

collections with larger sample sizes, and among them, those with the least intact number 

of arms and cirri were requested for loan. An attempt was made to obtain as large a 

sample as possible spanning the seven antedonid subfamilies (based on Hess & Messing 

2011) as well as non-antedonid sisters, based on the taxa present in the three molecular 

phylogenies (Hemery 2011, Hemery et al. 2013, Rouse et al. in prep..) plus any other 

antedonids available. A total of 109 specimens from 40 species were obtained, primarily 

from NMNH and NSMT, with supplemental specimens from SIO, NSUOC, and MNHN 

(Table 1). Of the total number of species used, 16 were antedonines, four bathymetrines, 

five heliometrines, three perometrines, two thysanometrines, two isometrines, three from 

Antedonidae incertae sedis, one zenometrid, and three other non-antedonid sisters. 
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Table 1: Specimens and museum sources. Abbreviations: NMNH: National Museum of Natural 

History, Smithsonian Institution, Washington, DC; NSMT: National Museum of Nature and 

Science, Tokyo; SIO: Scripps Institution of Oceanography, UC San Diego; NSUOC: Nova 

Southeastern University, Oceanographic Center, Dania Beach, FL; MNHN: Muséum National 

d’Histoire Naturelle, Paris, France 

Species            Sample Size            Museum/Collection 

Antedoninae 

    Andrometra psyche      3   NSMT 

    Antedon bifida bifida      4   NMNH 

    Antedon hupferi      4   NMNH 

    Antedon c.f. incommoda     2   NSUOC 

    Antedon loveni      5   NMNH 

    Antedon c.f. loveni      2   NSUOC 

    Antedon mediterranea     4   NMNH 

    Antedon petasus      3   NSUOC 

    Antedon parviflora      4   NSMT 

    Antedon c.f. parviflora     1   NSMT 

    Antedon serrata      2   NSMT 

    Ctenantedon kinziei      3   NMNH 

    Dorometra briseis      2   NSMT 

    Dorometra c.f. briseis         1   NSMT 

    Dorometra parvicirra      3   NSMT 

    Iridometra adrestine      2   NSMT 

Bathymetrinae 

    Hathrometra tenella      4   NMNH 

    Thaumatometra tenuis     1   NMNH 

    Tonrometra spinulifera     4   NMNH 

    Trichometra cubensis      1   NSUOC 

Heliometrinae 

    Anthometrina adriani      5   NMNH 

    Comatonia cristata      2   NSUOC 

    Florometra asperrima         5   NMNH 

    Florometra serratissima     1   SIO 

    Promachocrinus kerguelensis     1   SIO 

Perometrinae 

    Erythrometra rubra      2   NSMT 

    Hypalometra defecta      5   NMNH, NSUOC 

    Perometra diomedeae     2   NSMT 

Thysanometrinae 

    Coccometra hagenii      4   NSUOC 

    Thysanometra tenelloides     5   NSMT 

Isometrainae 

    Isometra graminea      2   NMNH 

    Isometra vivipara      1   SIO 
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Antedonidae incertae sedis 

    Balanometra balanoides     1   NSUOC 

    Hybometra senta      4   NMNH 

    Poliometra prolixa      2   NSUOC 

Non-antedonids 

    Aporometra occidentalis     3   NSUOC 

    Notocrinus virilis      3   NMNH 

    Psathyrometra sp.      4   MNHN 

    Tropiometra carinata      3   NMNH, NSUOC 

 

 

 After some identity hesitation following the dissolution of a few NSMT 

specimens, subsequent specimens were re-identified by both myself and Dr. Charles 

Messing upon reception from their respective museums. Using Clark’s monograph (part 

5, 1967), close examination of diagnostic characters under the dissecting microscope, 

with consideration from collection site and depth, resulted in most specimens keying out 

in agreement with the original identification label. There were some instances, however, 

where new identifications were agreed upon. An NMNH sample containing five 

specimens originally labeled as Antedon bifida moroccana was re-identified to be 

Antedon hupferi based upon the appearance of their proximal pinnules, division series 

and brachials (Clark & Clark 1967), as well as the collection site. The two subspecies of 

Antedon bifida (A. b. bifida and A. b. moroccana) and Antedon hupferi are 

morphologically very difficult to distinguish. Because of this, and their close geographic 

range, they may all be variations of the same species, Antedon duebenii (Clark & Clark 

1967). The four specimens are treated as Antedon hupferi for this project, although more 

morphological and molecular work needs to be done (Hemery et al. 2009, 2009). 

The original identifications of two NSMT samples from Japan, Antedon 

parviflora and Dorometra briseis, were accepted hesitantly, so a c.f. is included in their 

identifications. Antedon c.f. parviflora keyed out as an Antedon, since its third pinnule 

was of the same length and character as the succeeding pinnules, and was not distinctly 

smaller than the second pinnule (it was in fact larger). It keyed out to A. parviflora based 

on the length of its cirrus segments, but this was not definitive (Clark & Clark 1967). The 

specimen was too old to send out for genetic testing, so it was accepted as Antedon c.f. 

parviflora before dissolution. Similarly, identification of Dorometra c.f. briseis was not 
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definitive, as its third pinnule was indeed the longest and stoutest (in agreement with 

Clark & Clark 1967); however only among the proximal pinnules, not all pinnules.  

Four NSUOC samples, two unknown Antedon spp. from Madang, Papua New 

Guinea and two Antedon incommoda from Midway Island, were re-identified, but 

hesitantly as well. Both unknown Antedon spp. were identified as Antedon c.f. 

incommoda as most of the diagnostic characteristics were not intact. The two individuals 

previously identified as Antedon incommoda were re-identified as Antedon c.f. loveni: 

one due to the number of cirrus segments, the other due to the centrodorsal being 

hemispherical, and both because their antepenultimate cirrus segments were longer than 

wide (Fig. 13, Clark & Clark 1967).  

Four other NSMT specimens of Antedon parviflora were not re-identified but, due 

to substantial differences in their radial shape, were separated into two groups: Antedon 

parviflora B and E (with taller muscle fossae) from Shimane, Japan and Antedon 

parviflora C and D (with short muscle fossae) from the East China Sea. All four 

specimens were analyzed together and then by group for comprehensive analysis. 

Individuals identified with a c.f. were treated as a separate species from their non-c.f. 

counterparts for the purpose of unbiased statistical analysis.  

Most of the specimens requested for loan were those least intact in the large 

sample jars, all diagnostic characters were absent in two instances (Thaumatometra tenuis 

and Tonrometra spinulifera), making accurate identification essentially impossible. In 

these instances, the original label identification was accepted and the dissolved radial 

ossicles were compared to literature descriptions and drawings.  

 Once each specimen was identified as precisely as possible, appendages not part 

of the calyx bundle were carefully removed with forceps; all cirri were separated from the 

centrodorsal at the first cirral whenever possible, and all arms were separated at one of 

two points: either between IBr1 and IBr2 or at the first syzygy at Br3+4, whichever point 

minimized damage during dissection. The remaining centrodorsal with attached proximal 

brachials was placed in a 90% Chlorine Bleach/DI solution for at least 16 hours. Two 

additional washes with bleach were performed, each between 6 and 18 hours, to ensure 

all tissues had been thoroughly dissolved. Dissociated ossicles were then put through 

three separate washes in pure DI water, each soaking between 8 and 24 hours, to ensure 
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the bleach was removed from the ossicles. Radial ossicles that remained intact throughout 

the bleaching process were then carefully dried and mounted onto adhesive SEM stubs 

using a small paintbrush and a dissecting microscope, in preparation for SEM imaging.  

 

B. SEM imaging 

 Intact radial ossicles were imaged using an FEI Quanta 200 SEM with Inca X-

sight (Oxford Instruments) at Nova Southeastern University’s College of Dental 

Medicine. After a few preliminary sessions, three alignments were carried out to 

minimize variations in camera placement: 1) interior septum (which separates the two 

passages for the interradial nerve trunks) in line with the middle of the central lumen; 2) 

walls of the central lumen oriented so that no or little interior was visible, and 3) 

examination of the edges of all fossae so the ossicle appeared as “flat” as possible. 

Camera placement error was tested using Coccometra hagenii specimen F. Each of the 

specimen’s five radial ossicles was imaged four times, with a reset of the image plane 

between each image capture. Each image was landmarked according to the protocol 

discussed below (see Landmarking) and a preliminary PCA, with accompanying 

ANOVA tests, was produced to test camera placement error (see Results). Satisfactory 

results allowed adoption of the alignment system for the rest of the ossicles and reduction 

of image number to one per ossicle. Once all ossicles were imaged, ossicles in a total of 

233 images were deemed intact enough for landmarking (see Appendix B for all images).  

 

C. Landmarking 

 Before landmarking, each image was enhanced and, if necessary, rotated using 

Jasc Paint Shop Pro 9 software. The images were sharpened so stereom changes and 

slopes could easily be determined, and rotated so the scale bar was always horizontal; this 

was to reduce human error during measurements. Originally, 28 homologous landmarks 

were chosen, with the help of Dr. Lenaïg Hemery, to quantify the images for geometric 

morphometrics (Fig.6). All landmarks were based upon Bookstein’s landmark types II 

and III (Table 2). None were of type I, as all ossicles lacked tissue (Bookstein 1991). No 

semi-landmarks were used. Individual .tps files were created from each image using 

tpsUtil 1.58, then measured and carefully digitized using tpsDig2 2.17 (Rohlf 2006, 
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Burridge 2012). The first images landmarked were two specimens of Coccometra hagenii 

and one specimen of Dorometra briseis. The image of one ossicle from each of these 

three specimens was landmarked ten times without reference, in three separate bouts, 

adding an additional error factor. PCAs and a nested ANOVA were then performed on  

the repetitions in order to test accuracy of landmark placement (Zelditch et al. 2012, 

Sherratt 2014, Liu et al. 2016). Repeatability percentages were found using the Mean 

Squares (MS) values from the nested ANOVA. The difference of bout value from total 

MS value was divided by number of reps, and the ratio of that value to total MS value 

revealed the repeatability percentage for that image (Sherratt 2015). Satisfactory results 

allowed confident landmark placement on the remaining images (see Results).  

 

Fig. 6: Digitized SEM image of Florometra asperrima with 28 homologous 

landmarks based on Bookstein (1991). 
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n° point Definition Type 

1 Start of curvature at end of right muscular area III 

2 Curvature maximum at right muscle area II 

3 Tip of ligamento-muscular ridge on right muscle area II 

4 End of transverse fulcral ridge, right side II 

5 Curvature max at stereom meeting on right aboral region III 

6 Lateral minimum point of aboral ridge stereom, right side III 

7 Median minimum point of aboral ridge stereom, right side III 

8 Inner minimum point of aboral ridge stereom, right side III 

9 Inner minimum point of aboral ridge stereom, left side III 

10 Median minimum point of aboral ridge stereom, left side III 

11 Lateral minimum point of aboral ridge stereom, left side III 

12 Curvature max at stereom meeting on left aboral region III 

13 End of transverse fulcral ridge, left side II 

14 Tip of ligamento-muscular ridge on left muscle area II 

15 Curvature maximum at left muscle area II 

16 Start of curvature at end of left muscle area III 

17 Curvature max at end of septum, within the ambulacral groove II 

18 Lowest, deepest point of right muscle fossa III 

19 Lowest meeting point on right ligamento-muscular ridge II 

20 Lowest point of right ligament area, middle of stereom curve III 

21 Curvature minimum on right side of central lumen II 

22 Curvature minimum on aboral side of central lumen II 

23 Curvature minimum on left side of central lumen II 

24 Curvature minimum on oral side of central lumen II 

25 Lowest point of left ligament area, middle of stereom curve III 

26 Lowest meeting point on left ligamento-muscular ridge II 

27 Lowest, deepest point of left muscle fossa III 

28 Projection of intermuscular septum axis on aboral ridge II 

 

After the 233 images were landmarked, each image was reviewed and landmarks 

moved if needed. Dr. Hemery carried out a third review of landmark placements. The 

repeated reviews were performed in an attempt to reduce human error as much as 

possible, as the digitizing process can be subjective. Any landmarks that could not be 

placed due to missing material were placed on the image margin for possible removal 

later. Once all landmark edits were completed for the images, the frequency of presence 

was calculated for each landmark using a simple excel table (rows depicted images, 

columns depicted landmarks, and 0/1 indicated presence or absence). Using the 

Table 2: Description and landmark type assignment of the 28 homologous 

landmarks chosen based on Bookstein (1991). 
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frequency of presence data with a percent of lost data equation (Eqn 1, Cordeiro Estrela 

de Andrade Pinto 2005), two scenarios resulted in the least amount of lost data. 

 

Eqn 1       p = ((k*m*n) + (n*(K*m-k*m))*100) / (N*K*m) 

where K=total number of landmarks; m=dimension of the 

dataset (2D or 3D); N=total number of ossicles; k=number 

of removed landmarks, and n=number of removed ossicles. 

Landmarks #5 and #12 were removed in both scenarios as they proved the most 

subjective and did not appear to provide crucial information. Scenario 1 also removed 

landmark #1 and a total of 14 images (Table 3), and yielded a loss of 5.37%. Scenario 2 

retained landmark #1 but removed 18 total images (Table 4) and yielded a loss of 7.18%. 

As the results of both scenarios were both minimal and so similar, both were used to see 

if the results would differ a posteriori. Landmark removal and file appending was done 

with tpsUtil 1.58 (Rohlf 2006). 

The process of landmarking an image creates coordinates (in this case, only x and 

y coordinates) for each landmark, which are used to quantify shape change. It is 

important to note that while coordinates can often be thought of as data, they are not 

discrete anatomical points and thus cannot be used individually as characters. In 

morphometric studies such as this one, an entire configuration of coordinates is the datum 

for a single individual that is used for morphometric analysis (Bookstein 1991, Bookstein 

1997, Bookstein 2013, Rohlf 1999, Klingenberg 2008, Zelditch et al. 2012, Rohlf 2015). 
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n° point Definition Type 

1 Curvature maximum at right muscle area II 

2 Tip of ligamento-muscular ridge on right muscle area II 

3 End of transverse fulcral ridge, right side II 

4 Lateral minimum point of aboral ridge stereom, right side III 

5 Median minimum point of aboral ridge stereom, right side III 

6 Inner minimum point of aboral ridge stereom, right side III 

7 Inner minimum point of aboral ridge stereom, left side III 

8 Median minimum point of aboral ridge stereom, left side III 

9 Lateral minimum point of aboral ridge stereom, left side III 

10 End of transverse fulcral ridge, left side II 

11 Tip of ligamento-muscular ridge on left muscle area II 

12 Curvature maximum at left muscle area II 

13 Start of curvature at end of left muscle area III 

14 Curvature max at end of septum, within the ambulacral groove II 

15 Lowest, deepest point of right muscle fossa III 

16 Lowest meeting point on right ligamento-muscular ridge II 

17 Lowest point of right ligament area, middle of stereom curve III 

18 Curvature minimum on right side of central lumen II 

19 Curvature minimum on aboral side of central lumen II 

20 Curvature minimum on left side of central lumen II 

21 Curvature minimum on oral side of central lumen II 

22 Lowest point of left ligament area, middle of stereom curve III 

23 Lowest meeting point on left ligamento-muscular ridge II 

24 Lowest, deepest point of left muscle fossa III 

25 Projection of intermuscular septum axis on aboral ridge II 

 

 

 

 

 

 

Table 3: Scenario 1 landmark point table with 25 landmarks (used on 219 ossicles); 

type assignment based on Bookstein (1991). 
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n° point Definition Type 

1 Start of curvature at end of right muscular area III 

2 Curvature maximum at right muscle area II 

3 Tip of ligamento-muscular ridge on right muscle area II 

4 End of transverse fulcral ridge, right side II 

5 Lateral minimum point of aboral ridge stereom, right side III 

6 Median minimum point of aboral ridge stereom, right side III 

7 Inner minimum point of aboral ridge stereom, right side III 

8 Inner minimum point of aboral ridge stereom, left side III 

9 Median minimum point of aboral ridge stereom, left side III 

10 Lateral minimum point of aboral ridge stereom, left side III 

11 End of transverse fulcral ridge, left side II 

12 Tip of ligamento-muscular ridge on left muscle area II 

13 Curvature maximum at left muscle area II 

14 Start of curvature at end of left muscle area III 

15 Curvature max at end of septum, within the ambulacral groove II 

16 Lowest, deepest point of right muscle fossa III 

17 Lowest meeting point on right ligamento-muscular ridge II 

18 Lowest point of right ligament area, middle of stereom curve III 

19 Curvature minimum on right side of central lumen II 

20 Curvature minimum on aboral side of central lumen II 

21 Curvature minimum on left side of central lumen II 

22 Curvature minimum on oral side of central lumen II 

23 Lowest point of left ligament area, middle of stereom curve III 

24 Lowest meeting point on left ligamento-muscular ridge II 

25 Lowest, deepest point of left muscle fossa III 

26 Projection of intermuscular septum axis on aboral ridge II 

 

D. Additional factors 

 Allometry and its effect on radial shape was an additional factor explored during 

statistical analysis. Therefore, the sizes of the radials (Fig. 7), centrodorsal, and diameter 

at the first syzygy (Fig. 8) were measured (see Appendix Table A1). The radial height 

and width was measured before digitizing in tpsDig2 2.17 (Rohlf 2006). Centrodorsal 

height and diameter were measured under the dissecting scope following dissolution, and 

the diameter at the first syzygy, if available, was measured from images taken before 

dissolution, also using tpsDig2 2.17. Height to width (HW) ratios of the radials and the 

centrodorsal of each specimen were calculated, although only radial ratio was used as a 

Table 4: Scenario 2 landmark point table with 26 landmarks (used on 215 

ossicles); type assignment based on Bookstein (1991). 
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factor in statistical analyses. Specimens were assigned to either one of two factor levels 

based on their radial ratio: HW <1.0 (1) or ≥1.0 (2). It was the original intention to use 

centrodorsal ratio as an additional factor, but as only two of the 40 species (non-

antedonid sister Psathyrometra sp., and not sequenced incertae sedis species, 

Balanometra balanoides) had centrodorsal HW > 1.0, separate testing was not warranted. 

Arm length was not a contributor to size in this study, as none of the specimens had any 

completely intact.  

In addition to measurements, biogeographic information such as depth, specific 

locality, general region, taxonomic assignment, and molecular clade assignment were 

compiled and also used as factors in statistical analyses (Table 5). Depth was separated 

into five range levels: 0-50m (1), 51-100m (2), 101-200m (3), 200-1000m (4), and 

1001+m (5). Based on our and previous collection data (Clark & Clark 1967), species 

were assigned to the level in which they most frequently occurred, or the maximum if 

known to occur across several levels (e.g., Poliometra prolixa occurs from 20 to 1,960m 

and so was assigned to level 5). Specific locality separated species into 11 factor levels: 

Japan Sea, China Sea, Papua New Guinea, Australia, European North Atlantic, 

Antarctica, Northeast Pacific, West Africa, Northwest Atlantic, Caribbean Sea, and 

Mediterranea Sea. Japan and China seas were separated because of the preliminary 

observed shape differences between Antedon parviflora B&E (from the China Sea) and 

Antedon parviflora C&D (from the Japan Sea), and the anticipation that locality would be 

a significant factor. General region was separated into three factor levels: Atlantic, 

Pacific, and Antarctic. It is important to note that the factor “levels” are not used in a 

ranking manner, but simply for categorical purposes in the analyses. Although current 

speed is likely an influential factor in morphological adaptations of crinoids, it was not 

used here because nothing was known about the precise conditions under which the 

specimens lived (CG Messing, personal communication).  
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Fig. 7: Radial height and width measurements taken of Florometra asperrima. 
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Fig. 8: Arm length (vertical line) and syzygy diameter (horizontal line) measurements 

taken of Psathyrometra sp. 
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E. Statistical Analysis 

 Analysis of the digitized images was performed in R using geomorph and shapes 

packages (Dryden & Dryden 2012, Adams & Otarola-Castillo 2013, Adams et al. 2014, 

R Core Team 2014). Morphometrics terminology follows Zelditch et al. (2012). 

Configurations were aligned by generalized Procrustes superimposition (removing 

translation, rotation and scaling effects), and the superimposed configurations were 

projected as Euclidean distances onto an orthogonal plane using Principal Component 

analysis (PCA) (Kendall 1989, Rohlf & Slice 1990, Rohlf & Marcus 1993, Dryden & 

Mardia 1998, Klingenberg & McIntyre 1998, Rohlf 1999, Mitteroecker & Gunz 2009, 

Zelditch et al. 2012, Adams et al. 2013, Renaud et al. 2015). The purpose of PCA is to 

analyze all of the variance within a set of configurations and reduce it to a smaller set of 

factors or principal components (PCs), each of which encompasses decreasing amounts 

of variance (e.g., PC1 captures the largest variance, PC2 the second largest). PCA 

projected several levels of morphological variation. As mentioned above, first intra-

ossicle and intra-image variation was projected via PCA to visualize inconsistencies in 

camera and landmark placements, respectively. Then a PCA was done for each individual 

with multiple digitized ossicles to identify any significant within-individual variation. 

Mean configurations of individuals were used to perform a PCA within each species to 

identify any significant within-species variations. Mean configurations from the latter 

were used for testing variations within genera, within subfamilies, and within clades. 

 As Principal Component Analysis only projects within-group variation, the 

variations between group means (subfamily or clade) were projected onto an orthogonal 

plane using Between Groups Principal Component Analysis (BGPCA). This method was 

chosen over using Canonical Variance Analysis (CVA) and Linear Discriminant Analysis 

(LDA) in order to maintain geometric integrity, which may be biased during the rescaling 

step required by CVA (Campbell & Atchley 1981, Mitteroecker and Bookstein 2011, 

Hernández-Ortiz et al. 2015, Renaud et al. 2015).  

Both PCA and BGPCA are visualization tools only and, although they help 

describe shape variation through projection of PCs, they do not explain the variation or 

identify which factors cause the variation, nor do they provide any information about 

shape similarity. Procrustes ANOVA tests are used to explain shape variation in this 
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project, and Procrustes distances are calculated to explain similarity (Klingenberg & 

Mcintyre 1998, Zelditch et al. 2012, Collyer et al. 2014). Procrustes ANOVA tests were 

performed within and between groups, testing the effects on shape variation by factors 

such as size (using centroid size), depth range, specific locality, general region and 

taxonomic and molecular assignments. Mean configurations were used when testing 

significance effects between species via Procrustes ANOVAs. Any ANOVA result that 

yielded significant results was followed by a pairwise test between individual 

configurations to identify which pairing(s) caused the significant variance. Because 

varying sample sizes caused an imbalance, permutations methods (999 iterations) were 

used in all ANOVA and pairwise testing to stabilize this error (Zelditch et al. 2012, 

Collyer et al. 2014). 

While not used as a visualization tool in this project, Linear Discriminant 

Analysis (LDA) was used to classify individuals into species groups based on their 

Mahalanobis distances (Sheets et al. 2006, Mitteroecker & Gunz 2009, Mitteroecker & 

Bookstein 2011, Zeldich et al. 2012). Those classifications were then tested through 

leave-one-out cross validation (LOOCV), and, through comparisons to the known 

classifications of each individual, the overall correct classification rate, along with 

species-specific hit ratios (percent of correct classification) (Sheets et al. 2006, Cardini et 

al. 2009, Zelditch et al. 2012) were calculated for both scenarios. Finally, the patterns of 

similarity among species were visualized by way of “unweighted-pair grouping method 

using averages” (UPGMA) cluster analyses (Ramirez-Sanchez et al. 2016). UPGMA is a 

bottom-up method of cluster analysis, in which the two closest units are paired first, then 

their average distance is paired with the next closest unit, the average of the three paired 

with the next closest, and so on, until all taxa have been included (Zelditch et al. 2012, 

Hernández-Ortiz et al. 2015). This hierarchical clustering method was performed twice– 

once using the calculated Procrustes distances, the other using the Mahalanobis distances 

obtained from LDA—for each of the two scenarios, yielding a total of four phenograms.   

Procrustes distance is the square root of the sum of squared differences in 

landmark positions between two shapes and is used during PCA, BGPCA, and Procrustes 

ANOVA testing (Dryden and Mardia 1998), while Mahalanobis distance is a measure of 

standard deviations from a reference shape or origin in a rescaled shape space and is used 
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during discriminant analyses (Zelditch et al. 2012). All non-zero PCs were used (2k-4, 

where k is the number of landmarks) when calculating both distances in order to include 

all possible shape characters and to obtain optimal results. The results based on 

Procrustes distances were of the most interest as they depict the degree of morphological 

similarities between species. Mahalanobis distances were included as an additional 

source of information regarding the strength of the phenogram clusters (Zelditch et al. 

2012). The four phenogram results were visually compared to the molecular trees 

(Hemery 2011, Hemery et al. 2013, Rouse et al. in prep..). If congruent, these results, 

along with direct comparisons of Procrustes and Mahalanobis distance relatives, would 

support the notion of taxonomic revisions based on the phylogenies.  

In an additional effort to find morphological connections, and possible character 

states within radial shape, 12 inter-landmark measurements were measured within each of 

the 233 ossicles (Zelditch et al. 1995, Rohlf 2000, Freudenstein 2005, Bookstein 2013, 

Ling et al. 2016). All measurements were taken from the original 28-landmark images to 

ensure landmark #1 could be measured and all landmark numbers would remain 

unchanged (Fig. 9, Table 6). All measurements were divided by a standard inter-

landmark measurement (landmark 17 to landmark 28) in order to eliminate intra-

individual variation (see Appendix Table A2), then independent-sample t-tests were 

performed for each measurement on all images; these t-tests used the average of data for 

each measurement and determined if there were significant variances or not between two 

species at a time (Ling et al. 2016). To reduce the number of t-tests performed, the 

impractical pairings were eliminated, grouping only by locality, subfamily, and clade, as 

well as closest distance-based relative if they were no included in any of the former 

groups. All non-significant pairings were noted and compared within taxonomic and 

molecular assignments, geographic factors, and the phenograms. In addition to the twelve 

inter-landmark measurements, nine of those measurements (both muscle fossae widths 

and aboral ligament fossa width excluded) were divided by radial height or width, 

depending on the measurement, resulting in nine fossa-to-ossicle measurement ratios. 

Those ratios were presented as a range for each species are compared directly with both 

the phenograms and phylogenies as well. Are phylogenetic forces a factor in constraining 

morphology, or is it a whole suit of interactions with their environment? 
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 Fig. 9: Twelve inter-landmark measurements taken of Antedon bifida bifida. 
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IV. Test of the feasibility 

A. Results 

 Preliminary results were obtained in order to accept both camera placement and 

landmark placement protocols through PCA and Procrustes ANOVA tests. Adequate 

results allowed for the completion of imaging and landmarking, and subsequent analyses. 

PCAs and Procrustes ANOVAs were performed on those individuals with more than one 

landmarked ossicle. Satisfactory results allowed for the usage of mean configurations as 

the datum for each individual in subsequent intra-specific testing. The results of the intra-

specific testing, through between-group PCAs and Procrustes ANOVAs, then allowed 

usage of mean species configurations for all successive testing (i.e. intra-genus 

variability, intra-subfamily variability, etc).  

 

     i. Camera placement variability 

 The five radial ossicles of Coccometra hagenii, specimen F, were each imaged 

four times using the alignment protocol discussed above (see SEM imaging). The results 

of the PCA show tightly-formed clusters with no dramatically placed outliers within each 

ossicle (Fig 10). The overlap of the second and fifth ossicles simply infers a close 

similarity between their overall shapes; it does not infer any similarity between camera 

placements in comparison with the other ossicles. While the PCA does not show obvious 

outliers, the Procrustes ANOVA yielded significant variation (p = 0.001) between camera 

placements. The results of the pairwise test identified the variability to be significant only 

within placements of the fourth ossicle. The other four ossicles showed no significant 

variance with camera placement. 
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Fig. 10: Top: PCA of camera placement variation between the five radials of Coccometra hagenii, 

specimen F. Bottom: mean broken stick model, depicting PC1 as the interpretable variation 
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     ii. Landmark placement variability 

Three randomly-chosen images were selected to be landmarked ten times each, in 

three separate bouts (total of 30 repetitions for each image), in order to test for human 

error in landmark placements. The first two principal components of Coccometra hagenii 

specimen C encompass 68.5% of the total shape variance, both of which are interpretable 

and can be explained by non-random variation as they lie above the broken stick (Fig. 11, 

bottom). The PCA projection of Coccometra hagenii specimen C shows larger variations 

between the three bouts than within bouts although there are inconsistencies within each 

bout as well, especially within bout 2 (Fig. 11, top). The Procrustes ANOVA resulted in 

significant variance (p = 0.001) between bouts only, specifically between bouts 2 and 3 

according to the pairwise results. Results of the nested ANOVA revealed a repeatability 

of only 9.7% for Coccometra hagenii, specimen C. 

 Over half of the variation between all repetitions of Coccometra hagenii specimen 

D can be described by the first principal component (56.5%), with the first two PCs 

describing the interpretable variation (68.3%) (Fig. 12, bottom). The PCA projects the 

majority of the variation as between bout 1 and the other two bouts on the x-axis (PC1). 

There is significant overlap between bouts 2 and 3 on the x-axis and overlap of all three 

on the y-axis (PC2) (Fig. 12, top). Pairwise results after a significant Procrustes ANOVA 

(p = 0.001) revealed that most of the between-bout variation is due to variances with bout 

1, as depicted by the PCA, although there is variation between all three. As with C. 

hagenii specimen C, there was no significant variance within bouts, and the repeatability 

of landmark placement was only 9.8% after a nested ANOVA. 

The interpretable variation for Dorometra briseis specimen A can be described by 

the first two PCs, encompassing 58.8% of the overall variance (Fig. 13, bottom). The 

clear source of variance from the PCA projection is bout 2, with significant overlap 

between bouts 1 and 3 along PC1 (Fig. 13, top). The Procrustes ANOVA was significant 

(p = 0.001) for between-bout variation, with pairwise tests revealing the cause between 

bouts 1 and 2. Once again, no within-bout variation was significant and the results of the 

nested ANOVA revealed a repeatability of 6.9%. 
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Fig. 11: Top: PCA of landmark placement variation between three bouts of 10 reps each with Coccometra 

hagenii, specimen C. Bottom: broken stick model depicting the first two PCs (or x and y axes) as interpretable 

variation 
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Fig. 12: Top: PCA of landmark placement variation between three bouts of 10 reps each with Coccometra 

hagenii, specimen D. Bottom: broken stick model depicting the first two PCs (or x and y axes) as interpretable 

variation 
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Fig. 13: Top: PCA of landmark placement variation between three bouts of 10 reps each with Dorometra briseis, 

specimen A. Bottom: broken stick model depicting the first two PCs (or x and y axes) as interpretable variation 

 

-4 -2 0 2 4 6 8

-6
-4

-2
0

2
4

6

PC1

P
C

2

1_1

1_2

1_3

1_4

1_5
1_6

1_7

1_8

1_9

1_10

2_1

2_2

2_3

2_4

2_5

2_6

2_7

2_8

2_9

2_10

3_1

3_2

3_3

3_4

3_5

3_6

3_73_83_9

3_10

Landmark Placement PCA for DorbrA

bout 1

bout 2

bout 3



40 
 

 

 

Fig. 14: superimposed landmarked configurations of all three bouts, with problematic landmarks (5 & 12) circled. A – Coccometra 

hagenii, specimen C, B – Coccometra hagenii, specimen D, C – Dorometra briseis, specimen A 
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A. Discussion 

Four of the five ossicles imaged for testing camera placement variability did not 

show any significant variances among their four replicates, therefore the camera 

alignment protocol (discussed above) was accepted and image number was reduced to 

one for subsequent ossicle imaging.  

The result of the nested ANOVA for landmark placements was extremely low for 

all images, at less than 10% for all three species. However, both the number of repetitions 

(30 total) and the subjective nature of digitizing needs to be taken into account when 

interpreting repeatability. The majority of measurement error studies use around 2-3 

repetitions for each individual or image (Liu et al. 2016, Sherratt 2014). In this study, in 

order to gain more digitizing practice as well as test repeatability, 10 digitizing repetitions 

were performed for each bout which greatly increased the probability for human error, as 

well as decreased the success of repeatability, so higher percentages were not really 

expected. Landmark digitizing in general is a very subjective practice. Each twitch of the 

hand creates a different coordinate from repetition to repetition, so additional precautions, 

such as second and third reviews of the digitized images, needed to be put in place (see 

Landmarking).  

 The specific landmarks causing the variations within and between bouts cannot be 

directly calculated, since the entire configuration is used as the datum for each ossicle, 

but they can be inferred through visualization of their superimposed configurations (Fig. 

14A-C). Across the three digitized specimens, landmarks #5 and #12 seem to be causing 

the greatest amount of inconsistency (circled). These landmarks were removed (along 

with landmark 1 in Scenario 1) for subsequent testing (see Landmarking).  

 

V. Using geometric morphometrics to discriminate crinoids 

A. Results 

     i. Intra-individual variability 

 There was no significant variation within any of the 69 individuals with more than 

one ossicle imaged, for either of the two scenarios (25 landmarks and 219 ossicles in 

scenario 1 versus 26 landmarks and 215 ossicles in scenario 2). This allowed usage of 
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mean configurations as the individual datum in subsequent intra-specific testing. See the 

Appendix (Figs. A1-A20) for 20 examples of the non-significant results.  

 

     ii.. Intra-specific variability 

 Of the 40 species analyzed in this study, 21 species exhibited some significant 

variance among their individuals. Of the 21 species resulting in significant p-values with 

Procrustes ANOVA, only the following seven were discernable with the pairwise tests. 

Antedon bifida bifida was significantly variant (p = 0.001) between individuals A & E in 

both scenarios, and C & E in scenario 1; individual C was not used in scenario 2 as the 

ossicles were missing landmark #1 (Fig. 15A&B). Although no effect of size on overall 

shape was recorded for this species, individual E did measure the largest radial height, as 

well as the largest diameter at the first syzygy (see Appendix Table A1), so size may be a 

factor in this variation. 
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Fig. 15A: Scenario 1 results of intra-specific variation for Antedon bifida bifida. Scenario 1 

yielded significant variances between individuals A & E and C & E. 

A 
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Fig. 15B: Scenario 2 results of intra-specific variation for Antedon bifida bifida. Scenario 2 

yielded significant variance only between A & E. 

B 
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  Fig. 16: Intra-species variation of all Antedon loveni specimens depicting notable differences in the superimposed configurations of the 

known A. loveni specimens A-E and A. c.f. loveni specimens F-G, as well as a clear separation in the BGPCA (note: this composite depicts 

scenario 2 results only, although there were no differences between the two; see Appendix Figure A21 for scenario 1 results). 
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Significant variance among Antedon loveni was tested first by combining the 

known Antedon loveni individuals with the Antedon c.f. loveni individuals. Three of the 

five Antedon loveni individuals (A, C and D) were significantly variant with Antedon c.f. 

loveni individual F (p = 0.001) in both scenarios, supporting the separation of the species 

a priori (Fig. 16, Appendix Fig. A21). Among the individuals confidently deemed 

Antedon loveni, significant variation (p = 0.001) was found between individuals A & C 

and B & C in both scenarios (25 landmarks and 219 ossicles in scenario 1 versus 26 

landmarks and 215 ossicles in scenario 2). Individual C measured the largest diameter at 

the first syzygy and there was a significant effect of size on overall radial shape (p = 

0.015) within this species. Thus, size was the cause of variation here. As no significant 

variation appeared between the two individuals of Antedon c.f. loveni, they were both 

kept as a separate species for subsequent analyses.  

 The three groups of Antedon parviflora (Antedon parviflora B&E, Antedon 

parviflora C&D, and Antedon c.f. parviflora) were first combined to visualize any 

significant variations after Procrustes superimposition. Since four of the five individuals 

contained only one ossicle, proper Procrustes ANOVA could not be performed between 

the groups. However, evident differences in the superimposed configurations, as well as 

visible clustering in the BGPCA, provided enough evidence to keep the three groups 

separate for later analyses (Fig. 17, Appendix Fig. A22).  

 Anthometrina adriani revealed significant variance (p = 0.003) between 

individuals A & C and C & E in both scenarios (Fig. 18, Appendix Fig. A23). No 

significant effect of size on shape appeared for this species (p = 0.331/0.369), however 

individual C had a larger radial width than individual A, and a smaller radial height than 

individual E, which could be attributing to the overall variance.  
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Fig. 17: Scenario 2 results of Intra-species variation of all Antedon parviflora specimens depicting notable differences in the superimposed 

configurations and PCA of three A. parviflora groups: specimens B&E, C&D, and F (see Appendix Fig. A22 for scenario 1 results). 
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Fig. 18: Scenario 2 PCA and broken stick model depicting the intra-species variation of 

Anthometrina adriani. ANOVA results yielded significant variation between individuals A&E and 

C&E in both scenarios (see Appendix Fig. A23 for scenario 1 results). 
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Fig. 19: Scenario 2 PCA and broken stick model depicting the intra-species variation of Coccometra 

hagenii. ANOVA results yielded significant variation between individuals C&D in both scenarios (see 

Appendix Fig. A24 for scenario 1 results). 
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Significant differences can be seen between Coccometra hagenii individuals C 

and D in both scenarios (p = 0.007/0.026) (Fig. 19, Appendix Fig. A24). Of the four C. 

hagenii specimens, individual C measured the smallest ossicle height and width, while 

individual D measured the largest. Although there is no significant allometric effect in 

either scenario (p = 0.293/0.503), size may be the cause of some variation between these 

two individuals.  

 Dorometra briseis and Dorometra c.f. briseis individuals were first combined to 

test for significant variations. Although the pairwise test was not significant, the 

Procrustes ANOVA resulted in significant variance between the two groups (p = 0.004) 

in both scenarios. Furthermore, there was no significant variance within either group. 

These results, with support from the PCA (Fig. 20, Appendix Fig. A25), kept the two 

groups as separate species for further analyses.  

 Procrustes ANOVA and a pairwise test within Florometra asperrima resulted in 

significant variations (p = 0.001) between individuals C&D in both scenarios, C&E in 

scenario 1, and B&C in scenario 2 (Fig. 21A&B). In all cases, the variation was between 

individual C, which measured the largest radial height, radial width, and diameter at the 

first syzygy. Individuals B & E had almost identical measurements of syzygy diameter, 

with individual B having a slightly smaller ossicle size (see Appendix Table A1). 

Variations within Hybometra senta were found between individuals C&D in both 

scenarios (p = 0.0055/0.0065) (Fig. 22, Appendix Fig. A26). Of the four individuals 

representing this species, these two were intermediate in size. Their ossicle widths were 

the same, but ossicle height and diameter at first syzygy were larger in individual C. 

There was no significant effect of size on overall shape (p = 0.217/0.232). 

Since there was no variation between ossicles in the same individual, variation 

between individuals was accepted and the mean configurations of species were used as 

representatives for subsequent analyses.  
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Fig. 20: Scenario 2 Intra-specific variation for all Dorometra briseis specimens, supporting the ANOVA results of significant variance 

between the two groups through clear differences in the superimpositions and PCA (see Appendix Fig. A25 for scenario 1 results). 
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Fig. 21A: Scenario 1 results for intra-specific variation of Florometra asperrima supporting the 

significant variance between individuals C&D and C&E.  

A 
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Fig. 21B: Scenario 2 results for intra-specific variation of Florometra asperrima with significant 

variance between individuals C&D and B&C.  

B 
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Fig. 22: Scenario 2 PCA and broken stick model of the intra-specific variation in Hybometra 

senta, supporting the ANOVA significant variance between individuals C&D (see Appendix Fig. 

A26 for scenario 1 results).  
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     iii. Intra-generic variability 

 Only four of the 26 genera in this project had more than one species present to test 

for intra-generic shape variations: Antedon, Dorometra, Florometra and Isometra.  

 

a. Antedon spp. 

Eleven species within the genus Antedon were available, spanning eight of the 11 

localities and two of the five depth ranges (Table 5). Radial ratios were <1.0 across all 

species, and so was not included in the Procrustes ANOVAs. The first principal 

component encompassed just under half of the total shape variation and explains all of 

the non-random variation in both scenarios (49.3% and 48.6%, respectively). While there 

was an allometric effect in scenario 1 (p = 0.031), it was not present in scenario 2 (p = 

0.085), so size was ruled out as the factor causing variation. Significant factors were 

consistent between both scenarios (Fig. 23A, Appendix Fig. A27A). Of the four factors 

tested for effects on shape variation, general region (p = 0.011/0.014) and phylogenetic 

assignment (p = 0.035/0.041) proved significant, while depth range (p = 0.251/0.259) and 

specific locality (p = 0.23/0.218) provided no effect. The clear distinction between 

Atlantic and Pacific Antedon species can be seen in the PCA (Fig. 23B, Appendix Fig. 

A27B) and since there are only two factor levels in this case, a pairwise test was 

redundant. The pairwise test with molecular-based assignment resulted in a significant 

pairing between clade N and clade P species only. The variance is supported by the 

BGPCA, which returned a clear separation between the two clades, with overlap from 

clade O species (Fig. 23C, Appendix Fig. A27C). The phylogenetic effect supports the 

regional effect as clade N consists solely of Atlantic species, while clade P consists solely 

of species from the Pacific. However, clade O is also solely a Pacific clade, so several 

factors are at work here. The pairwise test between all Antedon species, with size taken 

into account, resulted in significantly variant pairings between clade N and P species, as 

well as between clades N and O. There were no significant pairings between clades O and 

P, supporting the regional effect. Also, interestingly, the only within-clade pairing was 

between clade O species, Antedon loveni and Antedon c.f. loveni. The true identity of 

Antedon c.f. loveni was investigated further in subsequent analyses.  



56 
 

 

Fig. 23A: Scenario 2 intra-genus variation of Antedon spp. (see Appendix Fig. A27A for scenario 1 results). A: 

between-group PCA (top) and broken stick model (bottom) (Acfin = Antedon c.f. incommoda, Acflv = Antedon c.f. loveni, Acfpv = 

Antedon c.f. parviflora, Antbb = Antedon bifida bifida, Anthp = Antedon hupferi, Antlv = Antedon loveni, Antmd = Antedon mediterranea, 

Antpt = Antedon petasus, AntpvBE = Antedon parviflora B&E, AntpvCD = Antedon parviflora C&D, Antse = Antedon serrata). 
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Fig. 23B-C: Scenario 2 intra-genus variation of Antedon spp. (see Appendix Fig. A27B-C for scenario 1 

results). B: BGPCA colored by general region. C: BGPCA colored by clade assignment (see Fig. 23A for 

species abbreviation reference). 
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b. Dorometra spp.  

Three species within genus Dorometra were available: Dorometra briseis, 

Dorometra c.f. briseis, and Dorometra parvicirra. All three species occur within the 

same depth range (51-100m), specific locality (Japan Sea), and general region (Pacific), 

so these factors were not included in ANOVA testing. Also, because D. parvicirra was 

not used in any tree, and thus placed in a different factor level by default, the results of 

any effect by clade assignment was not interpreted. Visual observations of the BGPCA 

suggested significant variations between the two Dorometra briseis groups and 

Dorometra parvicirra (Appendix Fig. A28A&B). Despite the visual separations and 

differing factor levels, neither scenario resulted in significant effects on shape by radial 

ratio (p = 0.1785/0.265). Pairwise testing between the three species only resulted in a 

significant size difference between at least one specimen of Dorometra c.f. briseis and 

Dorometra parvicirra. Although this reflects an individual-specific size effect, it was not 

enough to cause an allometric effect on overall species shape in either scenario (p = 

0.736/0.736).  

 

c. Florometra spp. 

 Both Florometra representatives in this study, F. asperrima and F. serratissima, 

share all tested factors except for collected depth. Procrustes ANOVAs were not 

performed on mean shape, as only two mean configurations could be compared, so 

individual configurations were tested for significant pairings between the two species 

(Appendix Fig. A29A&B). There was no significant effect on shape by depth (p = 

0.758/0.732), or any significant variation between the two species (p = 0.81/0.775). Since 

they are almost completely identical morphologically and can be found at the same 

depths, they may represent a single species (Eléaume 2006). Their similarities were tested 

further in later analyses (see Hierarchical Clustering and Inter-landmark measurements).  

 

d. Isometra spp. 

 Since one of the two Isometra species in this study, Isometra vivipara, was only 

represented by one specimen, neither Procrustes ANOVA nor pairwise testing was 

performed. Observations of the specimen PCA and broken stick model show that, 
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although some variation existed between the two species along PC1, this variance did not 

exceed the broken stick and was thus uninterpretable, random variation. The non-random 

variation lay along PC2, where considerable overlap existed between the species 

(Appendix Fig. A30A&B). As I. vivipara and I. graminea are distinguished almost 

entirely by size-related differences in the first two pinnules and share all biogeography 

factors, the possibility arose that they could be the same species. However, as they are 

still distinct in molecular analyses, it is more likely they are closely related sister species 

instead (Lenaïg Hemery, personal communication). Further analysis was performed later 

through independent-sample t-tests and hierarchical clustering. 

 

     iv. Intra-subfamily variability 

 Significant shape variations were tested for within each of the seven 

morphologically-based subfamilies, toward reconciling morphological features with the 

molecular phylogenies.  

 

a. Antedoninae 

The largest subfamily in this study, Antedoninae, was represented by 17 species 

across five genera (Antedon, Andrometra, Ctenantedon, Dorometra, and Iridometra).  All 

biogeographic and measured factors were tested along with clade assignment, as the 

representative species spanned at least two factor levels for each. The first principal 

component described the interpretable variation within Antedoninae, encompassing over 

half of the total variance (55.2%) in both scenarios (Fig. 24A, Appendix Fig. A31A). 

Neither depth (p = 0.098/0.104) nor specific locality (p = 0.27/0.252) proved significant 

factors through the Procrustes ANOVAs with visual support by the BGPCA.  There were 

significant effects on shape by general region (p = 0.008/0.008), radial ratio (p = 

0.009/0.0045), and molecular clade assignment (p = 0.01/0.01) (Fig. 24A-D, Appendix 

Fig. A31A-D). While there was some overlap between Atlantic and Pacific species in the 

BGPCA (Fig. 24B), a clear distinction remained between the two factor levels, 

supporting the ANOVA results. When both factor levels of radial ratio are present (as is 

the case here) a visual distinction will always exist between them in the BGPCA 

projections since it is directly associated with radial shape. Whether the factor is 
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significant in affecting the between-group variation is what is important, and this is not 

always the case (i.e. within the genus Antedon).  

The representatives of Antedoninae in this study occur in three of the 

phylogenetic clades. Three other species were not included in the trees: Ctenantedon 

kinziei, Dorometra parvicirra, and Iridometra adrestine. The BGPCA (Fig. 24C) shows 

an almost complete separation of clades N (depicted in green) and P (blue) along the x-

axis (the only interpretable PC) with overlap by clade O (yellow) species. Pairwise 

testing confirms this observation, with significant pairings between clades N and P and 

clades N and O. Significant pairings between the species not included in molecular 

phylogenies (black) and both clade N and clade O species exist as well. These results are 

misleading, however, and not used, as the three species not used in the phylogenies are a 

mixture of both Atlantic and Pacific species and would most likely separate into at least 

two of the three clades if included in the phylogenies. 
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Fig. 24A: Scenario 2 intra-subfamily variation of Antedoninae. A: BGPCA (top) and broken stick model 

(bottom). (see Appendix Fig. A31 for scenario 1 results) (Acfin = Antedon c.f. incommoda, Acflv = Antedon c.f. loveni, 

Acfpv = Antedon c.f. parviflora, Andps = Andrometra psyche, Antbb = Antedon bifida bifida, Anthp = Antedon hupferi, Antlv = 

Antedon loveni, Antmd = Antedon mediterranea, Antpt = Antedon petasus, AntpvBE = Antedon parviflora B&E, AntpvCD = Antedon 

parviflora C&D, Antse = Antedon serrata, Ctekz = Ctenantedon kinziei, Dcfbr = Dorometra c.f. briseis, Dorbr = Dorometra briseis, 

Dorpv = Dorometra parvicirra, Iriad = Iridometra adrestine) 
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Fig. 24B-C: Scenario 2 intra-subfamily variation of Antedoninae.). B: BGPCA colored by general 

region. C: BGPCA colored by phylogenetic assignment. (see Appendix Fig. A31B-C for scenario 1 

results; see Fig. 24A for species names). 
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Fig. 24D: Scenario 2 intra-subfamily variation of Antedoninae. D: BGPCA colored by radial ratio (see 

Appendix Fig. A31D for scenario 1 results; see Fig. 24A for species abbreviations). 
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Pairwise results between all antedonines reveal 17 significant pairings in scenario 

1 (25 landmarks) and 18 pairings in scenario 2 (26 landmarks), 12 of which occurred 

between an Atlantic and a Pacific species. Scenario 1 included a significant pairing 

between Antedon parviflora C&D and Dorometra briseis, two species that shared all 

other factors, assuming the identity of A. parviflora C&D is correct (see Discussion). 

Secnario 2 included a similar pairing between Antedon parviflora C&D and Antedon 

serrata. The additional pairing in scenario 2 was between two Atlantic species, Antedon 

bifida bifida and Ctenantedon kinziei. They shared all tested factors except for specific 

locality, and C. kinziei was not included in molecular analyses. The four remaining 

pairings in both scenarios involved variance between Pacific species and Antedon c.f. 

loveni. Two of the pairings were between the two antedonines with the larger radial ratios 

(≥1.0): Dorometra parvicirra and Iridometra adrestine. The third pairing was between a 

fellow clade O species, Dorometra c.f. briseis, which differed in depth range and specific 

locality. Although neither of those factors proved significant enough to affect overall 

antedonine shape variation, they could be affecting the variation between these species 

specifically, or it could be the result of phylogenetic forces if one or both of them were 

misidentified morphologically. The final pairing of Antedon c.f. loveni was with Antedon 

loveni. Although these species differed in their specific locality (Australia versus North 

Pacific), it is more likely that Antedon c.f. loveni was misidentified and shape variations 

were caused by genetic differences. The true identity of Antedon c.f. loveni is 

investigated further in later analyses. 

Although scenario 1 yielded significant results when testing the effect of size on 

shape (p = 0.014), no such allometric effect appeared in scenario 2 (p = 0.056). This 

inconsistency, with all other results constant between the scenarios, suggests the 

inclusion of landmark #1 as important in maintaining proper size depictions after 

Procrustes superimposition.  
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b. Bathymetrinae 

The four species representing the bathymetrines in this study (Hathrometra 

tenella, Thaumatometra tenuis, Trichometra cubensis, and Tonrometra spinulifera) span 

four specific localities, all three general regions, and two molecular clade assignments 

(Table 5). They all shared the same factor levels of depth range (201-1000m) and radial 

ratio (≥1.0), so these were not tested with Procrustes ANOVAs or pairwise tests. The 

majority of the shape variation within Bathymetrinae is interpretable in both scenarios 

(82.7%/83.1%) and can be described by the first principal component, or x-axis (Fig. 25, 

Appendix Fig. A32). Observations of the BGPCA suggest a significant difference 

between Tonrometra spinulifera, the only Antarctic representative, and the other three 

bathymetrines. However, Procrustes ANOVAs on mean shape revealed no significant 

shape variation between any species, and thus no significant effect by any factor (region: 

p = 0.443/0.274; locality: p = 0.6335/0.2515; clade: p = 0.6845/0.5985). Pairwise tests 

supported the BGPCA projection with a regional pairing between Antarctic species, 

Tonrometra spinulifera, and the Atlantic species, Hathrometra tenella and Trichometra 

cubensis, and three locality pairings between T. spinulifera and the other bathymetrines. 

However, results based on individual configurations should not be used to properly 

represent variation within a subfamily since variability within species can give the 

illusion of variance when there is none. There was also no allometric effect on shape 

variation between any species. These results were consistent in both scenarios. Although 

there was non-random variation between bathymetrine species, it was not significant. 

 

c. Heliometrinae 

The five heliometrine species in this study (Anthometrina adriani, Comatonia 

cristata, Florometra asperrima, F. serratissima, and Promachocrinus kerguelensis) span 

two depth ranges, three specific localities and all three general regions (Table 5). They all 

measure radial ratios greater or equal to 1.0 and fall close to each other in molecular 

analyses (clade M for this study). PC1 describes the interpretable variation within 

Heliometrinae and encompasses over half of the total shape variation in both scenarios 

(64.7%/65.2%). Observations of the BGPCA suggest a significant variation between the 

Antarctic species with the widest depth range, Promachocrinus kerguelensis, and the 
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other four heliometrines (Fig. 26, Appendix Fig. A33). However, Procrustes ANOVAs on 

mean shape revealed no significant variation between any species, and thus no significant 

effect by any factor (depth: p = 0.549/0.5065; locality: p = 0.616/0.6765; region: p = 

0.5935/0.6875) in either scenario. Procrustes ANOVA tests between individuals yielded 

significant shape variance, with effects by depth (p = 0.003/0.003), region (p = 

0.001/0.002), and locality (p = 0.001/0.002). Pairwise tests resulted in the same single 

pairing for both region and locality: Antarctic species (Anthometrina adriani and 

Promachocrinus kerguelensis) and Pacific species (Florometra serratissima and 

Florometra asperrima). On the other hand, pairwise tests also paired the two depth range 

groups, as well as three species within the same depth range (Comatonia cristata against 

Florometra asperrima and Anthometrina adriani). None of these results are congruent 

with each other or the BGPCA and, as previously stated, pairwise tests can only be 

performed on individuals, so should not be used to suggest variation within the 

subfamily. Although there is interpretable variance between species, it is not significant 

within subfamily Heliometrinae. 
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Fig. 25: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-subfamily 

variation of Bathymetrinae. Despite visual separations, there were no significant variations within this 

subfamily (see Appendix Fig. A32 for scenario 1 results) (Hattn = Hathrometra tenella, Thmtn = Thaumatometra 

tenuis, Tricb = Trichometra cubensis, Tonsp = Tonrometra spinulfera). 
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Fig. 26: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-subfamily 

variation of Heliometrinae. Despite visual separations, there were no significant variations within this 

subfamily (see Appendix Fig. A33 for scenario 1 results) (Anaad = Anthometrina adriani, Comcr = Comatonia 

cristata, Floas = Florometra asperrima, Flose = Florometra serratissima, Prmkg = Promachocrinus kerguelensis). 
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d. Isometrainae 

There was no significant variation between the two isometrines, Isometra 

graminea and I. vivipara. They share all tested factors and are distinguished almost 

entirely by size-related differences in the first two pinnules, but are still molecularly 

distinct, so it is most likely the two species are closely related sisters as part of a species 

flock (see Isometra results).  

 

e. Perometrinae 

The three perometrines represented here share a radial ratio factor level of less 

than 1.0 (Table 5). The two Pacific species, Erythrometra rubra and Perometra 

diomedeae, shared all tested factors other than clade assignment (E. rubra was not used). 

As a shallower Atlantic species, the other perometrine, Hypalometra defecta, differs from 

the other two in all biogeographic factors. Despite these differences, no significant shape 

variation was present between perometrine species (p = 0.495/0.5005), and thus there 

were no significant effects by any of the biogeographic factors (depth: p = 0.5195/0.5195; 

locality: p = 0.437/0.437; region: p = 0.5195/0.5195). While all of the shape variation is 

interpretable by the first two principal components (Fig. 27, Appendix Fig. A34) and may 

be attributable to one or more biogeographical factors, the differences in shape between 

perometrine species were not significant. Phylogenetic effects could not be tested within 

this subfamily, as only a Perometra species was used in the phylogenetic trees (Hemery 

2011, Rouse et al. in prep.). Additionally, the species used in the phylogenies (P. robusta) 

differed from the Perometra species used here (P. diomedeae).  
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Fig. 27: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-

subfamily variation of Perometrinae. Despite visual separations, there were no significant 

variations within this subfamily (see Appendix Fig. A34 for scenario 1 results) (Eryru = Erythrometra 

rubra, Hypdf = Hypalometra defecta, Perdi = Perometra diomedeae). 
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f. Thysanometrinae 

The two thysanometrines in this study represent both genera in this subfamily. 

The species share depth range (201-1000m) and phylogenetic assignment (clade 

‘unnamed’), while differing in their specific locality, general region, and radial ratios: 

Caribbean Coccometra hagenii has a higher radial ratio (≥1.0) and Thysanometra 

tenelloides from the Japan Sea has a smaller radial ratio (<1.0). Procrustes ANOVAs on 

mean shape could not be performed as there were only two mean configurations, so 

individual configurations were tested for significant pairings between the two species. 

Significant pairings between the two species occurred when testing all three factors (p = 

0.001) with the individual configurations. The PCA (Fig. 28. Appendix Fig. A35) shows 

a clear separation of the thysanometrines along PC1, which is the sole interpretable 

variance component in both scenarios (85.7%/85.9%). It is important to note, however, 

that PCA is based on the individuals and treats them as one group, so additional species 

within either or both genera would be needed to identify between-species variance 

through subsequent BGPCA and ANOVA testing.  

 

g. Antedonidae incertae sedis 

As with the perometrines, only one of the three species in Antedonidae incertae 

sedis examined here (Poliometra prolixa) was used in the phylogenetic trees (Hemery 

2011, Hemery et al. 2013, Rouse et al. in prep.), so phylogenetic effects could not be 

tested among these taxa. Of the factors that could be tested, the species shared only a 

higher than wide radial ratio (H:W ≥1.0). Hybometra senta and Poliometra prolixa differ 

from Balanometra balanoides by depth range and general region, and all three differ in 

their specific localities (Table 5).  The first principal component described the non-

random shape variation in both scenarios (78.2%/78.55%), with a visual distinction 

between Poliometra prolixa and the other species in the BGPCA (Fig. 29, Appendix Fig. 

A36). Despite the graphical separation, the results of the Procrustes ANOVAs revealed 

no significant shape variation between any of the three species (p = 0.169/0.5005), and 

thus no significant effects by depth (p =0.429/0.429), locality (p = 0.169/0.5005), or 

region (p = 0.429/0.429). 

 



72 
 

 

Fig. 28: Scenario 2 PCA (top) and broken stick model (bottom) depicting intra-subfamily variation 

of Thysanometrinae based on all individuals (see Appendix Fig. A35 for scenario 1 results) (Cocha 

= Coccometra hagenii, Thyte = Thysanometra tenelloides). 
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Fig. 29: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-subfamily 

variation of Antedonidae incertae sedis. Despite visual separations with P. prolixa, there were no significant 

variations within this subfamily (see Appendix Fig. A36 for scenario 1 results) (Balba = Balanometra balanoides, 

Hybse = Hybometra senta, Polpx = Poliometra prolixa). 
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     v. Intra-clade variability 

 Significant shape variations were tested within each of the five clades that 

belonged to the former Antedonidae (Hemery 2011, Hemery et al. 2013, Rouse et al. in 

prep.). Limited variation within these clades based on the factors tested here would 

reinforce the molecular results and offer additional support for taxonomic revisions.  

 

a. Clade M (and other tree equivalents) 

 Two heliometrine subclades, with an additional Thaumatometra species, make up 

Hemery’s clade M (2011). This differs slightly from the other two trees (Hemery et al. 

2013, Rouse et al. in prep.), which returned one heliometrine subclade (Promachocrinus 

kerguelensis and Florometra mawsoni) as sister to both the other subclade (Heliometra 

glacialis, Anthometrina adriani, Florometra asperrima, F. serratissima, and Comatonia 

cristata) and a clade equivalent to Hemery’s (2011) clade O (Pacific antedonines, 

Aporometra sp., and Eudiocrinus spp.).  For this study, both heliometrine subclades were 

included when testing variances within this clade, along with representatives of 

Thaumatometra tenuis (Hemery 2011). The phylogenetic return of P. kerguelensis as a 

sister and the close relationship of heliometrines to clade O was taken into account during 

result interpretations (see Discussion).  

 The tested factors within this group, and subsequent results, were similar to 

Heliometrinae (see results above); the inclusion of Thaumatometra tenuis added only one 

factor level in specific locality (Table 5). In accordance with the phylogenetics, a 

significant shape difference between members of heliometrine clade #2 (Hemery et al. 

2013) and P. kerguelensis was expected. However, the results of the Procrustes ANOVA 

yielded no significant shape variation between any species, within or between the 

subclades, in both scenarios (p = 0.5005/0.5005). There are observable differences 

between heliometrine clade #2 and P. kerguelensis, and (although less pronounced) 

between T. tenuis, on the BGPCA along PC1 (Fig. 30, Appendix Fig. A37), but these 

differences are not significant enough to warrant separation of the species into different 

taxonomic groups, supporting their placement on the trees.  
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Fig. 30: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade M and equivalents. Despite visual separation with P. kerguelensis, there were no 

significant variations within this clade (see Appendix Fig. A37 for scenario 1 results) (Anaad = 

Anthometrina adriani, Comcr = Comatonia cristata, Floas = Florometra asperrima, Flose = Florometra serratissima, Prmkg = 

Promachocrinus kerguelensis, Thmtn = Thaumatometra tenuis). 
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b. Clade N (and other tree equivalents) 

 Hemery’s clade N, and the other tree clade equivalents, are made up of two 

subclades, one containing solely Atlantic Antedon species, the other an Atlantic non-

antedonid, Tropiometra carinata (T. carinata can also be found in the Indian Ocean, but 

the specimens in this study were Caribbean) (Hemery 2011, Hemery et al. 2013, Rouse et 

al. in prep.). Despite sharing a general region and measured factors, there is potential for 

shape variation through different localities and depth ranges (Table 5). BGPCA results 

show overlap between A. bifida bifida and Tropiometra carinata along the only non-

random component (PC1), and very little variation between A. petasus and A. 

mediterranea (Fig. 31, Appendix Fig. A38). Separation of both groups from deeper 

species, A. hupferi, could suggest an effect on shape variation by depth. However, based 

on Procrustes ANOVA results, there was no significance in the overall shape variation 

between any clade N species (p = 0.5005/0.5005). Whether region plays a role in shaping 

radial ossicles is unclear, as ANOVAs only test for differences, not similarities (see 

Hierarchical Clustering). Nevertheless, the phylogenetic results of all trees are supported 

here by radial morphology. 

 

c. Clade O (and other tree equivalents) 

 Clade O, and its equivalents, is a solely Pacific clade composed of several 

antedonine species and three non-antedonid sisters, Aporometra sp. (A. occidentalis used 

here), Eudiocrinus spp. (not available) and Iconometra anisa (not available and only used 

in Hemery 2011). The eight representative species used in this project span three depth 

ranges, four specific localities, and two taxonomic classifications (Table 5). All species 

share a factor level for radial ratio (<1.0), as well as region. Once again, the first principal 

component alone describes the interpretable variation in both scenarios (p = 67%/66.3%), 

projecting a separation between the seven antedonines and sister, Aporometra 

occidentalis (Fig. 32, Appendix Fig. A39). While results of the Procrustes ANOVAs 

revealed no significant effects on shape variation by depth (p = 0.221/0.2265) or locality 

(p = 0.323/0.313), there was a significant effect by subfamily classification (p = 

0.0255/0.0405), supporting separation of A. occidentalis on the BGPCA. While there is 
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variation within this clade, it lies between the two subclades, supporting the phylogenetic 

placements.  

 

d. Clade P (and other tree equivalents) 

 Clade P and equivalents consist of four Pacific antedonines (Antedon iris, A. 

longicirra, A. parviflora, and Argyrometra mortenseni), and is sister to a larger clade 

containing various non-antedonids (Hemery 2011, Hemery et al. 2013, Rouse et al. in 

prep.). Unfortunately, only one of the four clade P species (A. parviflora) was acquired 

for this study. However, due to uncertain identities, along with the addition of 

Thaumatometra tenuis (T. comaster used in Hemery 2011 only), four species could be 

tested for variance within this clade: Antedon c.f. parviflora, A. parviflora B&E, A. 

parviflora C&D, and T. tenuis. The three A. parviflora groups share all factor levels 

except for A. parviflora B&E, which differed in specific locality (Table 5). As a 

bathymetrine, T. tenuis differed from the others in taxonomic assignment, as well as 

depth range and radial ratio (≥1.0). The majority of variance between species is 

interpretable (91.2%/91.1%) and described by the first two PCs (Fig. 33, Appendix Fig. 

A40). The BGPCA suggests variation between factor outlier, T. tenuis, and the A. 

parviflora groups along PC1. A. parviflora C&D also shows some separation along PC1, 

as well as PC2, suggesting a possibly misidentification (see Misclassifications). Despite 

the projected differences, Procrustes ANOVAs yielded no significant variation (p = 

0.5005/0.378) between any clade P representatives. This cannot confidently support the 

phylogenies, however, since only one representative was present and consistent across 

the three trees.  
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Fig. 31: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade N and equivalents. Despite visual separations, there were no significant variations 

within this clade (see Appendix Fig. A38 for scenario 1 results) (Antbb = Antedon bifida bifida, Anthp = Antedon 

hupferi, Antmd = Antedon mediterranea, Antpt = Antedon petasus, Troca = Tropiometra carinata). 
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Fig. 32: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade O and equivalents. There were significant affects by taxonomic classification within this 

clade, supporting the visual separation of A. occidentalis (see Appendix Fig. A39 for scenario 1 results) 
(Acfin = Antedon c.f. incommoda, Acflv = Antedon c.f. loveni, Andps = Andrometra psyche, Antlv = Antedon loveni, Antse = 

Antedon serrata, Dcfbr = Dorometra c.f. briseis, Dorbr = Dorometra briseis, Apooc = Aporometra occidentalis). 
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Fig. 33: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade P and equivalents. Although the first two PCs are interpretable and there is visual 

separation of bathymetrine T. tenuis, there were no significant variations within this clade (see 

Appendix Fig. A40 for scenario 1 results) (Acfpv = Antedon c.f. parviflora, AntpvBE = Antedon parviflora B&E, 

AntpvCD = Antedon parviflora C&D, Thmtn = Thaumatometra tenuis). 
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e. Clade ‘unnamed’ (and other tree equivalents) 

 All three molecular phylogenies (Hemery 2011, Hemery et al. 2013, Rouse et al. 

in prep.) returned a similiar ‘unnamed’ clade. The nine ‘unnamed’ species used in this 

study (bathymetrines Hathrometra tenella, Trichometra cubensis and Tonrometra 

spinulifera, isometraines Isometra graminea and I. vivipara, perometrine Perometra 

diomedeae, thysanometrines Coccometra hagenii and Thysanometra tenelloides, and 

incertae sedis species Poliometra prolixa) consisted of antedonids from five different 

morphological subfamilies, five localities, all three general regions, the three deepest 

depth ranges, and both radial ratio levels (Table 5). Species inclusion is nearly consistent 

between all three, except for an additional bathymetrine (Tonrometra spinulifera) and 

thysanometrine (Thysanometra tenuicirra) in Hemery (2011). Hemery (2011) included 

Hathrometra sarsii and Rouse et al. (in prep.) included H. tenella, but there are likely the 

same taxon (Messing and Dearborn 1990).  

 The first principal component was the sole descriptor of non-random variation 

within clade ‘unnamed’, encompassing most of the overall variation as well in both 

scenarios (73.4%/74.6%). The BGPCA revealed no obvious clustering, although slight 

overlap appeared between the isometrines and Atlantic Trichometra cubensis (Fig. 34A, 

Appendix Fig. A41A). Results from the Procrustes ANOVAs revealed a significant effect 

on shape by radial ratio only (p = 0.0415/0.049), indicating that Thysanometra tenelloides 

and Perometra diomedeae differed significantly in shape from the other clade ‘unnamed’ 

species (Fig. 34B, Appendix Fig. A41B). The visual variance between the species with 

taller than wide radials (≥1.0) was not large enough to register a significant difference in 

their radial shapes. As Thysanometra and Perometra are not sisters within clade 

‘unnamed’, the results do not completely support the phylogenies. However, the 

Thysanometra and Perometra species used in this study differed from those used in either 

molecular tree, which may have affected the results (see Discussion). 
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Fig. 34A: Scenario 2 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade ‘unnamed’ and equivalents (see Appendix Fig. A41A for scenario 1 results) (Cocha = 

Coccometra hagenii, Hattn = Hathrometra tenella, Isogr = Isometra graminea, Isovv = Isometra vivipara, Perdi = Perometra 

diomedeae, Polpx = Poliometra prolixa, Thyte = Thysanometra tenelloides, Tonsp = Tonrometra spinulifera, Tricb = Trichometra 

cubensis). 
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     vi. Variation among all species 

 After all of the within-subfamily and within-clade variation was examined, the 

entirety of species configurations was combined to test for significant shape variation 

among all of the species in this study. With all of the data included, six factors could be 

tested for significant effect on shape: depth range, specific locality, general region, radial 

ratio, taxonomic classification, and molecular clade assignment (Table 5). The first two 

principal components described the non-random variation between all species, 

encompassing over three-quarters of the total variance in both scenarios (76.0%/76.7%). 

Shape variation was significantly affected by four of the seven tested factors: depth (p = 

Fig. 34B: Scenario 2 results cont’d of intra-clade variation of clade ‘unnamed’ and equivalents. B: BGPCA 

colored by radial ratio showing separation of P. diomedeae and T. tenelloides, supporting the Procrustes 

ANOVA results (see Appendix Fig. A41B for scenario 1 results; see Fig. 34A for abbreviation names). 
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0.001/0.001), radial ratio (p = 0.001/0.001), subfamily classification (p = 0.001/0.001), 

and clade assignment (p = 0.001/0.001). Pairwise tests for depth yielded significant 

pairings between species from the shallowest depth range (0-50m) and species from the 

three deepest ranges (101-200m, 201-1000m, and 1001+m) in both scenarios (25 

landmarks in scenario 1 versus 26 landmarks in scenario 2). Additionally, scenario 1 

paired the two shallowest depths as significant (0-50m and 51-100m), and scenario 2 

paired the second range (51-100m) with the fourth range (201-1000m). It is important to 

keep in mind that pairwise tests are performed on individual configurations, not on mean 

species shape; thus, the pairings reflect significant differences between some individuals 

of the paired species, but not necessarily all. Nevertheless, the BGPCA supported the 

pairwise results for depth, as species lay in an overlapping series along PC1 from deepest 

(left) to shallowest (right) (Fig. 35B, Appendix Fig. A42B).  

 Pairwise tests for radial ratio yielded the only pairing possible, between the two 

levels <1.0 and ≥1.0, in both scenarios. There is an obvious connection with height to 

width ratio and overall shape variance, but testing is still necessary to prove significant or 

not between species (in this case, it is). A clear separation can be seen along PC1 in the 

BGPCA (Fig. 35C, Appendix Fig. A42C), with a slight overlap between Dorometra 

briseis (<1.0) and Isometra graminea (≥1.0) (see Discussion). As with depth, there is no 

variance of radial ratio along PC2.  

Pairwise tests by subfamily assignment yielded the same nine significant pairings 

in both scenarios: bathymetrines, heliometrines, thysanometrines, and zenometrid 

Psathyrometra sp. each significantly varied from Antedoninae species and non-

antedonoid sisters, with a ninth pairing between antedonines and species of Antedonidae 

incertae sedis. Again, pairwise testing is performed on individuals, so the pairings may 

not include all species in each subfamily/sister. This notion can be seen in the BGPCA 

with the pairing of Antedoninae and Thysanometrinae species. The two thysanometrines, 

Coccometra hagenii and Thysanometra tenelloides, show a wide separation along PC1, 

and as T. tenelloides lies within the antedonines, the significant pairing is clearly only 

representative of the differences between antedonines and C. hagenii (Fig. 35D, 

Appendix Fig. A42D).  
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 Complete separations between clade assignment can only be seen along PC1 

between clades M and N, and clades M and O (Fig. 35E, Appendix Fig. A42E), which 

are supported by significant pairwise results. The latter is of greater interest, as clade O 

lies within clade M in the recent phylogenies (Hemery et al. 2013, Rouse et al. in prep.), 

and thus does not support the molecular work. In addition to these two pairings with 

clade M, both scenarios yielded significant pairings between clade ‘unnamed’ individuals 

and individuals of clades N and O after pairwise testing. Scenario 2 resulted in a fifth 

pairing between clade P and clade ‘unnamed’ individuals, as well (see Discussion). 
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 Fig. 35A: Scenario 2. A: BGPCA and broken stick model depicting significant variations between all 

species used in this study (see Appendix Fig. A42A for scenario 1 results; see Table 5 for species 

abbreviations) (colored by subfamily: Antedoninae, Bathymetrinae, Heliometrinae, Isometrainae, Thysanometrinae, 

Perometrinae, A. incertae sedis, non-antedonids; symbols by clade:.∆ = clade M,  □ = clade N,  ○ = clade O,  V = clade P, ◊ = 

clade ‘unnamed’,  X = not used in molecular analyses) 
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 Fig. 35B-C: Scenario 2 results for variations between all species cont’d. B: BGPCA colored by depth. C: 

BGPCA colored by radial ratio assignment (see Appendix Fig. A42B-C for scenario 1 results; see Table 5 

for species abbreviations). 
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Fig. 35D-E: Scenario 2 results for variations between all species cont’d. D: BGPCA colored by 

subfamily/family. E: BGPCA colored by clade assignment (see Appendix Fig. A42D-E for scenario 1 results; 

see Table 5 for species abbreviations). 
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vii. Misclassifications through LOOCV 

 The results of the leave-one-out cross validation (LOOCV) through Linear 

Discriminant Analysis (LDA) were almost identical in both scenarios, except for one 

fewer misclassification in scenario 2 (Appendix Tables A3 & A4). Two species could not 

be tested through cross-validation (Balanometra balanoides and Isometra vivipara), as 

only one individual was available for each. Four of the 40 study species had the lowest 

hit ratios of 0%, meaning that all of their individuals were misclassified as another 

species after cross-validation: both individuals of Antedon c.f. incommoda were 

misclassified as Perometra diomedeae, both individuals of the group Antedon parviflora 

B&E were classified as Antedon serrata, the two Erythrometra rubra individuals were 

returned as Andrometra psyche and Antedon loveni, and the two Iridometra adrestine 

individuals were classified as Antedon petasus and Dorometra parvicirra (see 

Discussion).  

 Three species had the next lowest hit ratio (66.7%) in both scenarios with one 

individual misclassified: Antedon serrata returned as Antedon loveni, and both Isometra 

graminea and Trichometra cubensis returned as Hybometra senta. One individual of 

Antedon petasus was misclassified as Antedon hupferi (75% hit ratio), and vice versa 

(87.5% hit ratio) in both scenarios. One of the four Comatonia cristata specimens was 

returned as Hathrometra tenella (80% hit ratio). The group Antedon parviflora C&D had 

no misclassifications in scenario 2, but yielded only a 50% hit ratio in scenario 1, with the 

return of one individual as Antedon loveni. The remaining 27 species had no 

misclassifications in either scenario, yielding an overall correct classification rate of 

92.24% for scenario 1 and 92.56% for scenario 2.  

 

B. Discussion 

The lack of significant variance within any of the individuals examined in this 

study allowed usage of mean configurations as the individual datum in subsequent intra-

specific testing. Of the 40 species examined for intra-specific variation, 21 showed some 

significant variance between their individuals. Of the seven species whose variances were 

discernable with pairwise testing, only one revealed any significant allometric effect 

(Antedon loveni). However, most of the signficiantly variant species varied between those 
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individuals with the largest differences in radial width or height, or syzygy diameter, so 

some sort of size effect is taking place. The shift in a significance pairing among 

Florometra asperimma individuals from C&E in scenario 1 to B&C in scenario 2 

suggested the importance of landmark #1 in adding information to the configuration data, 

as there were no size differences between individuals B&E. Significant results within 

over half of the examined species seemed discouraging at first, but variation among 

individuals of other taxa (e.g. Homo sapiens) is common, and an individual may still be 

acceptable as a representative of a species as long as there is uniformity within the 

individual (i.e. identical hands) (Lenaïg Hemery, personal communication). Therefore, 

mean configurations were used as species datum for subsequent intra-generic, intra-

subfamily, and intra-clade testing. 

Of the four genera tested for intra-generic variability, only Antedon showed 

significant variances. Pairwise tests revealed significant shape differences between clade 

N Atlantic Antedon species and both clade O and P Pacific species. Region is the main 

factor affecting shape variance, at least among the factors in this study, although 

phylogenetics may also be playing a role.  

Two of the seven morphologically-based subfamilies revealed significant 

variations during intra-subfamily testing. Antedoninae exhibited results similar to those 

within the genus Antedon, with regional and molecular effects on overall radial shape. 

Additionally, radial ratio has a significant affect, with several pairings between Atlantic 

antedonines and the two species with radial H:W ratio >1.0 (Dorometra parvicirra and 

Iridometra adrestine). This strengthens the regional effect on overall radial shape, at least 

within this subfamily. The two species representing the subfamily Thysanometrinae, 

Coccometra hagenii and Thysanometra tenelloides, varied significantly in radial ratio, 

general region, and specific locality. Although they fall within the same phylogenetic 

clade, they are not close sisters, and their otherwise clear differences support the 

disbanding of this morphological subfamily. 

Clades O and ‘unnamed’ revealed significant variances during the intra-clade 

variability testing, although neither could strongly disprove morphological support. Clade 

O showed significant effect by taxonomic classification (the antedonine representatives 
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against non-antedonid Aporometra occidentalis) but still supports the inclusion of Pacific 

antedonids within the same clade as none were significantly variant with each other. 

Clade ‘unnamed’ results in significant variances affected by radial ratio. However, the 

two species that differed in radial ratio from the other clade ‘unnamed’ species examined 

in this study, Perometra diomedeae and Thysanometra tenelloides, are not the same 

species as used in the molecular phylogenies, which may have affected the significance 

outcome within this clade.  

The morphological variation between the species in this study has proven to be 

significantly associated with molecular clade assignment, as well as taxonomic 

assignment and depth range. All nine species assigned to the shallowest depth range (0-

50m), and all but one of the nine species from 51-100 m (Dorometra parvicirra 

excepted) shared a radial ratio H:W <1.0. Half of the eight species recorded from 101-

200m had ratios ≥1.0 and half <1.0. All but one of the eleven species from 201-1000 m 

(Thysanometra tenelloides excepted) and all three species from >1000 m had ratios ≥1.0. 

This arrangement supports the morphometric results of this study, indicating that depth 

has a significant effect on radial shape. However, collected depth information was not 

available for all specimens in this study, so information had to be taken from other 

sources (e.g. Anthometrina adriani and Isometra graminea depths were taken from 

Eléaume et al. 2014). As many antedonids have wide depth ranges (Table 5), specimens 

from different depths could impede this pattern of radial shape with depth. It would be 

interesting to examine radial shape between specimens of the same species collected at 

their extreme depth range limits to determine if any significant intra-specific variations 

exist relative to depth.  

Although shape varied significantly by region within the antedonines, no such 

effect appeared between all species. All geographic regions contain species with both 

H:W radial ratios <1.0 and >1.0, however species with H:W <1.0 were restricted to the 

shallower depths (0-200 m). 
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     i. Scenario 1 versus Scenario 2 

 Two landmark/image combinations from the percent of lost data equation 

(Cordeiro Estrela de Andrade Pinto 2005) yielded the least percent of lost data for 

analysis (see Landmarking). Because the two scenarios were so similar, it was decided to 

analyze both and compare them. The two scenarios did not differ substantially in overall 

variance. However, inclusion of landmark #1, and possibly the smaller sample size of 

certain species, showed some minor effects on a few intra-group variances, as well as on 

the results of similarity testing.  

 Florometra asperrima was the only individual whose variance pairings differed 

between the scenarios. As sample size of this species did not change, it was the additional 

information from landmark #1 that caused a reduction in variance between individuals, C 

and E (which were variant in scenario 1), and created variance between individuals, C 

and B. An additional significant pairing between individuals within Antedoninae also 

arose in scenario 2, between Ctenantedon kinziei and Antedon bifida bifida. While the 

added coordinate information could have been the cause of this new pairing, it is also 

possible that the reduced sample size of A. bifida bifida, from 11 configurations to 9 

between scenarios, could have also caused this result.  

 In testing variation among all species in this study, significant depth pairings 

changed between the two scenarios. There was a loss of variance between the first two 

ranges (0-50m and 51-100m) and an added variance between the second and fourth 

ranges (51-100m and 201-1000m) in scenario 2 compared to scenario 1. This change 

involved members belonging to the second depth range, and since none of these species 

had sample size changes between scenarios, this pairing alteration was the effect of 

additional information from landmark #1.  

 The overall correct classification rate from linear discriminant analysis (LDA) 

after leave-one-out cross validation (LOOCV) was very high for both scenarios 

(92.24%/92.56%), supporting the discriminatory strength of the LDA algorithm. The 

inclusion of landmark #1 in scenario 2 added the information necessary to correctly 

classify both individuals of Antedon parviflora C&D, and is the reason for the slightly 

higher correct classification rate.  
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Now that all of the variances between species’ radial shape have been recognized, 

morphological similarities were examined through clustering models and independent 

sample t-tests.  

   

VI. Application for crinoid classification 

A. Results 

i. UPGMA Hierarchical Clustering 

 The results of the clustering models based on Procrustes distances are almost 

identical between the two scenarios. This bottom-up clustering method begins with 

pairing the shortest Procrustes distances – those between Hathrometra tenella and 

Comatonia cristata, Antedon serrata and A. parviflora B&E, A. bifida bifida and A. 

hupferi, and Iridometra adrestine and Trichometra cubensis, then clustering by 

increasing distances using averages (Appendix Tables A5 & A6). Two main groups 

resulted from clustering by Procrustes distances, distinct in their radial ratio factor levels 

(<1.0 and ≥1.0), with non-antedonid Aporometra occidentalis as the obvious outlier 

(<1.0).  Although A. occidentalis does have the smallest average radial ratio (0.49), the 

Procrustes distances are calculated from the sum of differences from all coordinate data 

(or PCs in this study), so it cannot be assumed (and is not the case) that the species with 

the shortest ratio will be least similar to the species with the largest ratio, and so on (see 

Discussion).  

A few slight clustering differences appeared between the two scenarios, most 

likely due to the inclusion of landmark #1 in scenario 2. Antedon parviflora C&D, while 

measuring closest to A. hupferi in scenario 1, measured closest to Ctenantedon kinziei in 

scenario 2 (Table 7), causing it to join the A. petasus - C. kinziei pair sooner than in 

scenario 1 (Figs. 36 & 37). Four additional species (Balanometra balanoides, Dorometra 

briseis, Thaumatometra tenuis, and Tropiometra carinata) measured closest to different 

species in scenario 2 than in scenario 1 (Table 7). However, none of these changes had 

any effect on their position in the clustering models. The species’ farthest relatives were 

consistent across the two scenarios, with the shorter radial ratio species farthest from 

Tonrometra spinulifera (with the second largest radial ratio) and all of the larger ratio 
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species farthest from Aporometra occidentalis (with the smallest radial ratio). One 

exception was Notocrinus virilis which was least similar to Promachocrinus kerguelensis 

(largest radial ratio) in scenario 1 and T. spinulifera in scenario 2.  

 Unlike the Procrustes based clustering models, results based on Mahalanobis 

distances showed several differences in species position between the two scenarios. (Figs. 

38 & 39, Appendix Tables A7 & A8). Only two changes in closest morphological relative 

appeared between the scenarios (Table 7), although only one directly affected the primary 

cluster pairings. As a result, the majority of clustering differences between scenarios were 

likely affected by this new primary pairing, as well as by the addition of landmark #1 in 

scenario 2. This new primary pairing and additional landmark either increased or 

decreased Mahalanobis distances between certain species and also the subsequent clusters 

that resulted from the affected averages. An example of this cascade of effects was the 

pairings of Antedon loveni – Isometra graminea and Perometra diomedeae – 

Tropiometra carinata in scenario 1 versus A. loveni – P. diomedeae, T. carinata – 

Aporometra occidentalis, and I. graminea – (Hybometra senta – Trichometra cubensis) 

in scenario 2 (Fig. 39). It is important to note that the pairing of A. occidentalis and T. 

carinata in scenario 2 does not mean that they became more closely related with the 

addition of landmark #1. The distances between these two and between A. occidentalis 

and Notocrinus virilis are almost identical in both scenarios; but the primary pairing that 

occurred between T. carinata and Perometra diomedeae in scenario 1 left Notocrinus 

virilis as the closest remaining relative to A. occidentalis. Both the measured distances 

and the effect of averages needed to be taken into account when reading these 

phenograms (see Discussion).  

Morphological outliers are at least consistent between the two scenarios, with the 

majority of the shorter radial species furthest from Poliometra prolixa and most of the 

taller radial species furthest from either Notocrinus virilis or Aporometra occidentalis.  

 Both Procrustes and Mahalanobis distances included all variable data – 

coordinates or principal components – in their calculations, which yielded information 

about overall shape similarities between species. In order to determine similarities 

between specific areas within the radials, independent sample t-tests were performed on 

inter-landmark measurements of all images.  
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Fig. 36: UPGMA Hierarchical clustering model for scenario 1 data, based on Procrustes 

distances (see Appendix Table A5 for Procrustes distance values). The phenogram is colored 

by subfamily (reference Fig. 2A & 2B-F). 
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Fig. 37: UPGMA Hierarchical clustering model for scenario 2 data, based on Procrustes 

distances (see Appendix Table A6 for Procrustes distance values). The phenogram is colored 

by subfamily (reference Fig. 2A & 2B-F). 
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Fig. 38: UPGMA Hierarchical clustering model for scenario 1 data, based on Mahalanobis 

distances (see Appendix Table A7 for Procrustes distance values). The phenogram is colored 

by subfamily (reference Fig. 2A & 2B-F). 
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Fig. 39: UPGMA Hierarchical clustering model for scenario 2 data, based on Mahalanobis 

distances (see Appendix Table A8 for Procrustes distance values). The phenogram is colored 

by subfamily (reference Fig. 2A & 2B-F).  
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     ii. Inter-landmark measurements 

Twelve inter-landmark measurements were made on each radial image after 

digitizing (Fig. 9) with tpsDig2 1.58 (Rohlf 2006). Each measurement was divided by a 

standard measurement, between landmarks #17 and #28 (Table 6, Appendix Table A2), 

in order to remove any within-individual variation. Measurements included heights and 

widths of all attachment fossae, as well as measurements of the central canal, and were 

tested in a pairwise manner to identify significant differences between species. The non-

significant results of the independent sample t-tests were of particular interest in this 

study, and are referred to as “sharing” measurements. They were used to find specific 

morphological connections between species and were compared with the phenograms. It 

is important to note that t-tests take into account measurements of all individuals in each 

species. The average of measurements is used to compare between species (a pair of 

species at a time and each inter-landmark measurement at a time); because not all species 

were represented by the same number of individuals, these results contain an element of 

bias.  

a. Clade O taxa 

Antedon c.f. incommoda shared between three (with A. occidentalis) and 11 (with 

Antedon serrata) measurements with the other clade O species (six antedonines, Antedon. 

c.f. loveni, A. loveni, A. serrata, Andrometra psyche, Dorometra briseis, and D. c.f. 

briseis, and one non-antedonid, Aporometra occidentalis); all shared similarities in the 

height of their left interarticular ligament fossa and width of their central lumen. Antedon. 

c.f. incommoda shared between six and 12 measurements with all other antedonines, the 

same ones shared by clade O species plus the widths of their right interarticular ligament 

fossa and aboral ligament fossa. Antedon c.f. incommoda shared all of its inter-landmark 

measurements with Perometra diomedeae, supporting its misclassification under cross 

validation and the phenograms. However, it also shared all inter-landmark measurements 

with Iridometra adrestine but was not misclassified as this species. 

Antedon c.f. loveni shared at least two of the twelve measurements with all 

antedonines except Antedon loveni. Although A. cf. loveni did not differ significantly 

from A. loveni in overall shape, the fact that it shares no inter-landmark measurements 

supports its original identification as tentative. Antedon cf. loveni shared the most (11) 



101 
 

measurements with Antedon parviflora C&D, nine with its closest Mahalanobis distance 

relative, Antedon parviflora B&E, and only three with its closest Procrustes distance 

relative, Antedon hupferi. 

Antedon loveni shared at least some inter-landmark measurements with all 

antedonines (except A. c.f. loveni, as noted above), the most (11) with Antedon parviflora 

C&D. Fellow Australian and clade O species Aporometra occidentalis only shared one 

measurement with A. loveni: height of left adoral muscle fossa. Although A. loveni was 

not misclassified in cross validation, three separate species were misclassified as A. 

loveni, all of which shared several measurements with it: Erythrometra rubra and 

Antedon serrata (also its closest Procrustes distance-based relative) both shared 10 

measurements and Antedon parviflora C&D shared 11. The closest Mahalanobis 

distance-based relatives (Table 7), Isometra graminea and Perometra diomedeae, shared 

six and seven measurements with A. loveni, respectively.  

Andrometra psyche shared between four and eleven measurements with all other 

antedonines and clade O species. It shared the most measurements (11) with fellow Japan 

species, Antedon parviflora C&D and Iridometra adrestine. Although A. psyche itself 

was not misclassified in the cross validation, one Erythrometra rubra specimen was 

misclassified as A. psyche in both scenarios; the two shared eight measurements. The 

closest Procrustes distance-based relative of A. psyche, Tropiometra carinata, shared 

seven measurements, six heights and one width. The closest Mahalanobis distance-based 

relative, Antedon loveni, shared nine measurements with A. psyche. All clade O species 

share similar height measurements of both fossae. 

Dorometra c.f. briseis shared between one and eight measurements with all other 

antedonines except Atlantic Ctenantedon kinziei, and between two and seven 

measurements with all other clade O species except Aporometra occidentalis. It shared 

the most measurement similarities (10) with perometrine Erythrometra rubra, but only 

four with its closest distance-based relative, Antedon c.f. parviflora.  

Dorometra briseis shared between one and 11 inter-landmark measurements with 

all other antedonines, between three and nine measurements with clade O species, but 

none with A. occidentalis. It shared seven and three measurements, respectively (both 

sharing muscle fossae heights), with its closest Procrustes-based relatives, Antedon 
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serrata and Dorometra c.f. briseis, and all measurements except for central lumen width 

with its closest Mahalanobis-based relative Iridometra adrestine. Additionally, it shared 

all measurements but width of the right muscle fossa with Antedon parviflora C&D. 

Antedon serrata shared between two and 11 inter-landmark measurements with 

all antedonines, the majority (11) with other Pacific species Antedon c.f. incommoda and 

Antedon c.f. parviflora, along with perometrine Erythrometra rubra. It shared three to 11 

measurements with all clade O species. Ten measurements were shared between A. 

serrata and its closest distance-based relative, Antedon parviflora B&E, differing in both 

muscle fossae heights. A. serrata also shared ten measurements with Antedon loveni, 

differing only in interarticular ligament fossae heights and causing a misclassification in 

the cross validation.  

Non-antedonid sister Aporometra occidentalis shared few measurements with 

only four clade O species: Antedon loveni (shared one measurement), Antedon c.f. 

incommoda (shared three), Antedon serrata (shared three), and Andrometra psyche (five). 

Additionally, A. occidentalis shared four measurements with Isometra graminea, five 

measurements with Notocrinus virilis, and nine measurements with distance-based 

relative, Tropiometra carinata.   

 

b. Clade N taxa 

Among Atlantic Antedon species, Antedon bifida bifida shared between two and 

10 measurements with the other antedonines, with the most (10) shared with Pacific 

Andrometra psyche. It shared three to six measurements with all other clade N species 

(four antedonines, Antedon hupferi, A. mediterranea, and A. petasus, and non-antedonid 

Tropiometra carinata), the most (6) with its closest distance-based relative (Table 7) 

Antedon hupferi and non-antedonid Tropiometra carinata. No measurements were 

constant throughout clade N.  

Atlantic Antedon hupferi shared most measurements with Pacific species 

Iridometra adrestine and Andrometra psyche (eight and 10, respectively), despite being 

morphologically significantly different overall from I. adrestine. It shared three 

measurements with Antedon mediterranea and Antedon petasus (Mahalanobis distance-

based relative and misclassification) and six measurements with A. b. bifida (Procrustes 
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distance-based relative) and non-antedonid Tropiometra carinata, all Atlantic specimens 

in clade N.  

Antedon mediterranea was morphologically most similar to Antedon petasus 

based on both Procrustes and Mahalanobis distances. However, the two only shared six 

inter-landmark measurements. A. mediterranea shared three to six measurements with all 

other clade N species, as well as at least three with all antedonines. The most (10) was 

shared with clade O species Andrometra psyche.  

Antedon petasus shared three measurements with fellow clade N species A. b. 

bifida and A. hupferi (its closest Mahalanobis distance-based relative and 

misclassification), and six measurements with other clade N species A. mediterranea and 

Tropiometra carinata. Despite having statistically different overall shapes, A. petasus 

shared the most measurements with Iridometra adrestine and was the results from a 

misclassification of I. adrestine in cross validation. The closest Procrustes distance-based 

relative, Ctenantedon kinziei, shared six measurements with A. petasus.  

Non-antedonid sister, Tropiometra carinata, shared at least three inter-landmark 

measurements with its fellow clade N species, and at least one measurement with all 

other Caribbean species. The most measurements similarities occurred between T. 

carinata and four species (all of which share similar heights of the right interarticular 

ligament fossa and the central lumen): Antedon bifida bifida (the Procrustes distance-

based relative for scenario 1), Antedon hupferi (the scenario 2 Procrustes and both 

Mahalanobis distance-based relatives), Antedon petasus, and Trichometra cubensis.  

 

c. Clade P taxa 

Antedon c.f. parviflora shared between one and 11 measurements with all 

antedonines except for Antedon mediterranea, with which it is significantly variant. It 

shared measurements with all other clade P species (antedonines Antedon parviflora 

B&E and A. parviflora C&D, and bathymetrine Thaumatometra tenuis), although only 

two with non-antedonine Thaumatometra tenuis. Antedon c.f. parviflora shared the most 

measurements (11) with three species: Antedon parviflora C&D, Antedon serrata, and 

Erythrometra rubra. It only shared four measurements with distance-based relative 

Dorometra c.f. briseis. No measurements were shared between A. c.f. parviflora and the 
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other antedonines, but all clade P species shared the measurement of both right and left 

interarticular ligament fossae widths.  

Antedon parviflora B&E shared inter-landmark measurements with all clade P 

species: eight measurements with Antedon c.f. parviflora and Thaumatometra tenuis, and 

all 12 measurements with Antedon parviflora C&D. Despite the two separated A. 

parviflora groups sharing their entirety of measurements, A. parviflora B&E is most 

likely not Antedon parviflora, but Antedon serrata. A. serrata was the closest 

morphological relative based on both Procrustes and Mahalanobis distances (Table 7), 

and shared 10 measurements with A. parviflora B&E (does not match either muscle 

fossae height). Procrustes distance-based relatives of Antedon parviflora C&D, Antedon 

hupferi and Ctenantedon kinziei, shared 11 and 10 measurements respectively, both 

differing in the right muscle fossa width. Mahalanobis distance-based relative Antedon 

loveni and Dorometra briseis both share 11 measurements with A. parviflora C&D, 

differing in the same measurement as the Procrustes distance relatives.  

 

d. Clade M taxa 

Anthometrina adriani shared between three (with Promachocrinus kerguelensis) 

and eight (Florometra asperrima) measurements with all heliometrines, although none 

were constant. It shared at least two measurements with all other clade M species 

(heliometrines Comatonia cristata, Florometra asperrima, F. serratissima, 

Promachocrinus kerguelensis, and bathymetrine Thaumatometra tenuis) and at least one 

with all Antarctic species, the most measurements shared with Isometra vivipara (nine 

shared measurements). Of the clade M species (and heliometrines), A. adriani shared the 

most measurements (eight) with Procrustes distance relative Florometra asperrima and 

the second most with Mahalanobis distance relative Comatonia cristata (six 

measurements).  

Comatonia cristata shared at least four inter-landmark measurements with all 

heliometrine and clade M species, with the most (eight) between Promachocrinus 

kerguelensis. Two Atlantic bathymetrines shared the most measurements (nine) with C. 

cristata between all species: Trichometra cubensis and Hathrometra tenella (Procrustes 

distance-based closest relative and misclassification). The closest Mahalanobis distance-
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based relative, fellow heliometrine (and clade M species) Anthometrina adriani, shared 

six measurements with C. cristata. 

Florometra asperrima shared at least four similarities with all Heliometrinae and 

clade M species; the most shared by Anthometrina adriani (eight), followed by distance-

based relative Florometra serratissima (seven). Florometra serratissima shared with all 

of the same species as F. asperrima, but with the most (eight) inter-landmark similarities 

between Promachocrinus kerguelensis.  

Promachocrinus kerguelensis shared three to eight measurements with all 

heliometrine and clade M representatives. Eight measurements were shared with closest 

distance-based relative Comatonia cristata, the differences all related to width 

measurements. It shared the most (11) inter-landmark measurements with fellow Antartic 

species, the isometrine Isometra vivipara, differing only in the height of the left muscle 

fossa.  

 

e. Clade ‘unnamed’ taxa 

Hathrometra tenella shared three to five measurements with its three other 

bathymetrine representatives, although only the left muscle fossa width was consistently 

similar. It also shared at least two measurements with all other clade ‘unnamed’ species 

in this study (two other bathymetrines, Tonrometra spinulifera and Trichometra cubensis, 

two thysanometrines, Coccometra hagenii and Thysanometra tenelloides, two 

isometraines, Isometra graminea and I. vivipara, perometrine Perometra diomedeae, and 

one representative of Antedonidae incertae sedis, Poliometra prolixa), despite having 

significant overall shape variance with Thysanometra tenelloides and Perometra 

diomedeae. The largest number of similarities with H. tenella exists between a fellow 

clade ‘unnamed’ species, Isometra vivipara, as well as its closest distance-based relative 

and cross validation companion, Comatonia cristata, with nine shared measurements.  

Antarctic bathymetrine, Tonrometra spinulifera, shared at least two inter-

landmark measurements with all of its regional and taxonomic sisters. Two to six 

measurements were also shared with all clade ‘unnamed’ species, with the exception of 

Perometra diomedeae (shared no similarities with T. spinulifera). The closest Procrustes 

distance-based relative (Table 7) was fellow bathymetrine, Hathrometra tenella, with 
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which T. spinulifera shared only three muscle fossae measurements, while sharing five 

unsymmetrical measurements with non-bathymetrine and closest Mahalanobis distance-

based relative, Poliometra prolixa. The most similarities were found with fellow 

Antarctic species, Isometra vivipara, with which T. spinulifera shared six unsymmetrical 

measurements.  

Similar to fellow bathymetrine Hathrometra tenella, Trichometra cubensis shared 

at least one inter-landmark measurement with all of its taxonomic and cladistic 

counterparts. It also shared at least one measurement with all Caribbean species and non-

antedonine Atlantic species. Trichometra cubensis shared seven measurements with its 

misclassification and closest Mahalanobis distance-based relative, Hybometra senta, and 

shared all but two measurements with closest Procrustes distance-based relative, 

Iridometra adrestine (does not share the heights of the right muscle fossa height or the 

left interarticular ligament fossa).  

Isometra graminea differed significantly in overall shape from only one species, 

Antedon c.f. parviflora, and shared measurements with all other Antarctic species, clade 

‘unnamed’ species, and its fellow isometrine, I. vivipara. All 12 measurements were 

shared with its subfamilial sister, supporting the idea of these two as variations of the 

same species (see Discussion). Six measurements were shared between I. graminea and 

closest Mahalanobis distance-based relative, Antedon loveni, and nine were shared with 

closest Procrustes distance-based relative, Trichometra cubensis. Isometra graminea 

shared no inter-landmark measurements with Hybometra senta, despite its 

misclassification after cross validation.  

Isometra vivipara shared at least five inter-landmark measurements with all of its 

fellow clade ‘unnamed’ representatives and at least six with all other Antarctic species. 

Nine measurements were shared between I. vivipara and its closest Mahalanobis 

distance-based relative, Hathrometra tenella, and all 12 measurements were shared 

between I. vivipara and its closest Procrustes distance-based relative (and fellow 

isometrine), I. graminea.  

Coccometra hagenii shared at least one inter-landmark measurement with all 

other representatives of clade ‘unnamed’ except for its previous taxonomic sister, 

Thysanometra tenelloides, with which it was significantly variant in overall morphology. 
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The most measurements shared with C. hagenii was with its closest Mahalanobis 

distance-based relative, Comatonia cristata, with six similarities, although no 

measurements were shared with its closest Procrustes distance-based relative, Hybometra 

senta. 

Thysanometra tenelloides shared between two and six measurements with all 

clade ‘unnamed’ species (except for C. hagenii, as stated above). Thysanometra 

tenelloides also shared at least one measurement with all fellow Japan Sea species, 

especially Iridometra adrestine, with which it shared all but four height measurements. 

The closest distance-based relative, Antedon petasus, only shared two measurements with 

T. tenelloides, the heights of both interarticular ligament fossae. 

Poliometra prolixa shared three to 10 measurements with all representatives from 

the Northeast Atlantic, all Antedonidae incertae sedis species, and all representatives 

from clade ‘unnamed’, with the exception of Perometra diomedeae. With closest 

distance-based relative, Tonrometra spinulifera, P. prolixa shared five measurements, 

and with subfamily sister, Balanometra balanoides, P. prolixa shared all inter-landmark 

similarities but both aboral ligament fossae measurements.  

Perometra diomedeae shared three to seven of the 12 inter-landmark 

measurements with its fellow perometrines. It also shared at least two measurements with 

all other Japan species, the most with both Antedon serrata and Iridometra adrestine 

(shared 10 measurements). Muscle fossae height is consistent across the perometrine 

representatives, as well as with closest distance-based relative, Antedon loveni. A. loveni 

shared seven measurements with P. diomedeae, including all inter-landmark heights.  

 

f. Cladistic outliers 

Cladistic outlier, Psathyrometra sp., shared between five and 11 measurements 

with all North Pacific species, except for Antedon c.f. loveni. Most inter-landmark 

similarities occurred with Balanometra balanoides, differing only in aboral ligament 

fossa height. Closest Procrustes distance-based relative, Hathrometra tenella, shared nine 

measurements with Psathyrometra sp., conflicting in aboral ligament fossa height as well 

as both central lumen measurements, while closest Malahanobis distance-based relative, 
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Thaumatometra tenuis, shared only four measurements: both muscle fossae widths and 

both interarticular ligament fossae heights.     

Notocrinus virilis shared at least one inter-landmark measurement with all other 

Antarctic species, the most (nine) with Isometra vivipara. Closest distance-based relative 

(Table 7), Hypalometra defecta, only shared four measurements with N. virilis: both 

muscle fossae heights and both interarticular ligament fossae heights.   

 

g. Taxa not included in molecular phylogenies 

 The following species do not belong to any particular clade as they were not used 

in the molecular analyses. They are listed below according to morphological taxonomic 

classification. 

Dorometra parvicirra shared at least one measurement with all other antedonines, 

despite some overall significant shape variation between it and Antedon c.f. loveni and 

Antedon bifida bifida. D. parvicirra also shared between two and 11 measurements with 

all Japan species, with the most similarities (11) shared with both Erythrometra rubra 

and Iridometra adrestine (closest distance-based relative).  

Iridometra adrestine shared numerous inter-landmark similarities with almost half 

the species in this study, including its fellow Japan species as well as all other 

antedonines. It shared all twelve measurements with fellow Pacific species E. rubra and 

A. c.f. incommoda. It was misclassified after cross validation as Antedon petasus and 

Dorometra parvicirra, with which it shared nine and eleven measurements, respectively; 

it differed from D. parvicirra (its closest Mahalanobis distance-based relative) only in 

left interarticular ligament fossa height. It shared with its closest Procrustes distance-

based relative, Atlantic Trichometra cubensis, all inter-landmark measurements except 

for the heights of the right muscle fossa and left interarticular ligament fossa.   

Atlantic species Ctenantedon kinziei, shared measurements with all other 

antedonines except for Pacific Dorometra c.f. briseis. The most number of shared 

measurements occurred with Pacific antedonine Iridometra adrestine, with nine 

similarities. Closest Procrustes distance-based relative Antedon petasus shared six 

measurements with C. kinziei, and closest Mahalanobis relative Antedon loveni only 

shared three.  
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Among Perometrinae, Erythrometra rubra shared over half of its inter-landmark 

measurements, including muscle fossae heights, interarticular ligament fossae heights, 

and central lumen measurements, and all 12 of its measurements with fellow Japan 

species, the antedonine Iridometra adrestine. Although all distance-based relatives of E. 

rubra returned as A. loveni, and one specimen was misclassified as A. loveni, the two 

species shared no measurements. The other E. rubra specimen was misclassified as 

Andrometra psyche in cross validation, with which it shared seven similar measurements.  

Hypalometra defecta shared at least three inter-landmark measurements with its 

fellow perometrines, Perometra diomedeae and Erythrometra rubra, muscle fossae 

height being constant across the subfamily. H. defecta also shared at least four 

measurements with all other Caribbean species, the only constant being right 

interarticular ligament fossa height. H. defecta shared seven measurements with its 

closest Mahalanobis distance-based relative, Isometra graminea, but shared the most with 

subfamily sister Erythrometra rubra, only differing in the widths of both muscle fossae 

and the aboral ligament fossa.  

Thaumatometra tenuis shared measurements with all other bathymetrines, 

including five with its closest scenario 2 Mahalanobis distance-based relative (Table 7), 

Hathrometra tenella, and six with its closest scenario 1 Procrustes distance-relative, 

Trichometra cubensis. Four measurements were shared with the closest Mahalanobis 

distance-based relative from scenario 1, Psathryometra sp., and three measurements were 

shared with the closest Procrustes distance-based relative from scenario 2, Isometra 

graminea, including both heights of the interarticular ligament fossae. T. tenuis shared 

most of its inter-landmark similarities with fellow Japan Sea species, Erythrometra 

rubra, differing only in muscle fossae and aboral ligament fossa widths.  

Balanometra balanoides shared six to 12 measurements with seven other species: 

two fellow North Pacific species (Florometra asperrima and Florometra serratissima), 

the two other Antedonidae incertae sedis representatives (Hybometra senta and 

Poliometra prolixa), and the three species morphologically closest based on Procrustes 

and Mahalanobis distances. The species with the closest Mahalanobis distance, 

Hathrometra tenella, shared nine inter-landmark measurements, while the two species 

with the closest Procrustes distances, Isometra graminea (scenario 1) and Comatonia 
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cristata (scenario 2), joined Florometra serratissima in sharing all 12 inter-landmark 

measurements with B. balanoides. 

Hybometra senta shared most of its inter-landmark measurements with fellow 

Antedonidae incertae sedis representative, Balanometra balanoides, excluding the three 

ligament fossae widths. It shared only the left muscle fossa height measurement with its 

other subfamily sister, Poliometra prolixa, and only the right muscle fossa height with 

fellow West African species, Antedon hupferi; it was significantly variant from both in 

overall radial shape. Both species misclassified as H. senta in cross validation, Isometra 

graminea and Trichometra cubensis, shared seven measurements with H. senta, five of 

which were consistent between the three species.  

No inter-landmark measurements were shared between all of the species within 

the subfamilies Antedoninae, Bathymetrinae, Heliometrinae, or Thysanometrinae. One 

measurement, the height of the left adoral muscle fossa, was shared between all species 

of Antedonidae incertae sedis. Two measurements, the heights of the left and right adoral 

muscle fossae, were shared between the species of Perometrinae, and all twelve inter-

landmark measurements were shared between the two representatives of Isometrainae 

(see Discussion). The only molecularly assigned clade to share landmark measurements 

between all of its species was clade P, in which only the widths of both left and right 

interarticular ligament fossae were shared. 

 

     iii. Character states in phenograms and phylogenies 

 Nine fossa-to-ossicle measurement ratios were calculated for each specimen as 

size-independent data in an attempt to identify intra-radial character states that 

correspond to the molecular phylogenies (Appendix Table A9). The ratios were presented 

as a range for each species based on data from all of their individuals, and the ranges 

were compared with the phenograms and phylogenies. As with the inter-landmark 

measurement data, the unbalanced sample sizes between species most likely skewed the 

data to some degree, giving those with more individuals a larger range. This was taken 

into account during analysis. 
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a. Character states in the phenograms 

Obtaining positive connections with specific intra-radial data and the hierarchical 

clustering models was unlikely, as the distance measurements used in hierarchical 

clustering are calculated from the entirety of the coordinate or PC data. Nevertheless, 

comparisons were made to rule out any missing connections. Only the clustering models 

based on the Procrustes distances were explored for intra-radial character states, because 

Mahalanobis distances are calculated in a rescaled space.  

 As stated above, the UPGMA Hierarchical clustering model based on Procrustes 

distances formed two main cluster groups in both scenarios, separated by radial ratio 

factor level, with Aporometra occidentalis as the outlier (see UPGMA Hierarchical 

clustering). The primary clusters, or closest distance-based relatives, were the only 

groupings to show any majority overlap in seven of the nine ratios (no majority overlap 

was apparent for muscle fossae height ratios). These results ruled out the idea of any one 

area skewing similarity data, and support the accuracy of using 2k-4 principal 

components as an equivalent to all coordinate data for Procrustes distance calculations.  

 In addition to comparing ratios within each radial (e.g., muscle fossae height to 

radial height), general radial H:W ratios were explored within the Procrustes distance-

based phenograms. Character states were assigned to the two broad clusters, A and B, 

separated by factor level (with a 1 denoting a ratio <1.0 and a 2 denoting a ratio ≥1.0); 

then radial ratios, averaged from all individuals for each species, were compared within 

the two broad clusters (Fig. 40). As with the within-radial ratio results, several, but not 

all, of the primary clusters (e.g., Antedon parviflora B&E – Antedon serrata, Comatonia 

cristata – Hathrometra tenella) had notably close radial ratios (Fig. 40, Appendix Fig. 

A43). There was no recognizable pattern of H:W ratios among the finer branches after 

these primary clusters (e..g., cluster D range (0.79-0.97) overlaps cluster E range (0.66-

0.86), cluster H values (1.08 and 1.74) not close). 
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Fig. 40: Scenario 2 UPGMA Hierarchical clustering model based on Procrustes distances; colored by 

broad radial ratio (<1.0 = gray, ≥1.0 = black) with specific ratios at species terminals (see Appendix 

Fig. A43 for scenario 1 results). 
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Fig. 41: Antedonid section of Rouse et al. in prep. with general radial ratio factor levels 

(<1.0 or ≥1.0) at branch nodes; specific H:W radial ratios at terminals. 
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b. Character states relative to the phylogenies 

 The same within-radial ratios and H:W radial ratio data was used for investigation 

of character states within and between the phylogenetic clades. Again, any plausible 

character states would be suggested tentatively, due to the unbalanced sample sizes as 

well as the lack of availability of some terminals. The uncertain species were not used in 

comparing ratios for character state allocation.  

 There were no distinct states of any within-radial ratios within clade M. The 

interarticular ligament width ratios of Anthometrina adriani and Promachocrinus 

kerguelensis were both on the high end of the clade range (Appendix Table A9). 

However, as the ranges still overlapped with the other available clade members, it is not 

recognized as a separate character state and is most likely linked by their shared locality, 

if anything. All terminals within this clade have a radials higher (H) than wide (W) (H:W 

ratio ≥ 1.0), making this a potential character state of clade M (Fig. 41), although 

thorough examination of all terminals is needed for concrete assignment and the character 

would have to undergo a state change to H:W <1.0 at the split between subclade #2 and 

clade O (Rouse et al. in prep.). Species H:W radial ratios configured well within the clade 

M subclades, with ratios for Florometra asperrima (1.09) and F. serratissima (1.08) 

almost identical, increasing slightly in close subclade #2 neighbors Anthometrina adriani 

(1.13) and Comatonia cristata (1.13), then increasing drastically in the subclade #1 

representative, Promachocrinus kerguelensis (1.74). Recognition of more specific state 

changes, such as H:W 1.0-1.5 for subclade #2 and H:W 1.5-2.0 for subclade #1, is 

currently likely of little use due to the lack of data from the other subclade #1 terminal, F. 

mawsoni, as well as the positioning of subclade #1 in the phylogenies.  

 There were no discrete differences in intra-radial ratio ranges between the 

representatives of clade N and other tree equivalents. A small overlap exists between the 

greatest muscle fossae height ratio (in the largest Antedon mediterranea) and the smallest 

ratios of the other clade members, which eliminates any justification for separate 

character states. All representatives of this clade have radial H:W ratios >1.0, so there is 

potential for a state assignment at the base branching node (Fig 41), but specimens of 

Annametra occidentalis (used in all trees) and Antedon adriatica (Hemery 2011, Hemery 
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et al. 2013) would be needed for confirmation. The species radial ratios within clade N 

have no discernable branching pattern, so no further states can be suggested. 

 Some intra-radial ratio ranges did not overlap between species of clade O, but the 

differences were not wide enough to warrant recognition of different character states. 

Dorometra briseis had a slightly larger ratio range for both central canal width and 

height, visible in SEM images, but the combination of it being only 2% greater than in 

other clade O members, and the small sample sizes, precluded recognition of multiple 

character states. Aporometra occidentalis has a smaller central canal width range with a 

larger gap, but without morphological data from its sister in Hemery’s (2011) phylogeny, 

former colobometrid Iconometra anisa, character state suggestions cannot be made 

within this subclade. All eight examined members of clade O have H:W <1.0, although 

all terminals in phylogenies (12 in Rouse et al in prep..; 14 in Hemery 2011) are needed 

to define and assign character states. The subclade containing Antedon loveni, A. serrata, 

and Dorometra briseis shares very similar specific radial ratios (0.89, 0.91, and 0.88, 

respectively), distinct from that of subclade neighbor, Aporometra occidentalis (0.49). 

However, the branching neighbor, Andrometra psyche, has an intermediate average ratio, 

eliminating any justification for more finely differentiated character states.  

 No ratio ranges or averages were explored within clade P because, after re-

identifications, this study included no taxa attributable to this clade. 

 As with the other clades, no intra-radial ratio differences were distinct enough to 

warrant specific character states within clade ‘unnamed’ and its other equivalents. 

Coccometra hagenii has a wider range of interarticular ligament width ratios than the 

other clade species, but this is most likely due to this species having the largest sample 

size (n = 14) relative to the others (n = 1 – 12). The slightly smaller aboral ligament 

height ratios and slightly larger central canal width ratios of Tonrometra spinulifera 

relative to the other clade members were not great enough (a gap of 1% or less) to 

warrant distinct character states. All clade ‘unnamed’ species examined for this study 

have radial H:W ratios ≥1.0 except for the representatives of Perometra (P. diomedeae) 

and Thysanometra (T. tenelloides) with H:W <1.0. However, these two taxa were not the 

same ones as included in Hemery’s (2011) phylogeny (P. robusta and T. tenuicirra), 

leaving the possibility of within-genus variation, so it remains uncertain if H:W ≥1.0 is 
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characteristic of all species and terminals included in the molecular clade ‘unnamed’. The 

specific radial ratios within clade ‘unnamed’ have no distinct pattern. 

  The most likely pattern in radial H:W ratio appears to be that H:W ≥1.0 was the 

ancestral state, given that it is characteristic of Zenometridae, the basalmost clade relative 

to all other clades containing former antedonids in both Hemery (2011) and Rouse et al. 

(in prep..): M, N, P, and ‘unnamed’. However, this statement is preliminary as the radial 

ratio of Monachocrinus sp. (Rouse et al. in prep – this specimen was misidentified as M. 

caribbeus and is actually Rouxicrinus vestitus (Mironov & Pawson 2014)) is not known. 

Among clades including former antedonids only clade O members (sister to clade M) 

consistently exhibit H:W<1.0. Other non-antedonids arising among this group (e.g., 

Himerometroidea, several former Tropiometroidea families) have not been examined in 

enough detail. Limited depictions in AH Clark (1921) suggest that himerometroids 

(Colobometridae a possible exception) share a radial H:W ratio <1.0 while former 

tropiometroids vary by family (Tropiometridae, Ptilometridae and Calometridae with a 

H:W ratio <1.0; Thalassometridae and possibly Asterometridae with H:W ratio ≥1.0). 

This suggests that the radial character of H:W <1.0 arose several times throughout the 

tree (Fig. 41), although more radial examination need to be done across the comatulids.  

 

B. Discussion 

There was no consistent sharing of intra-landmark measurements across 

subfamilies, clades, or other factor groups, nor did the radial ratios have any pattern past 

broad factor levels, <1.0 and ≥1.0.  

 

     i.Scenario 1 versus Scenario 2 

Both distance-based UPGMA Hierarchical clustering models showed a few 

differences between the two scenarios. Five species changed closest Procrustes distance-

based relatives from scenario 1 to scenario 2. However, only one of these changes caused 

cluster differences between the phenograms, and none involved species with sample size 

imbalance; therefore, the differences were caused by the additional landmark #1 data. 

The same is true for the differences in Mahalanobis distance-based relatives and their 

corresponding phenograms. Only two changes were made between the two scenarios and, 
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although yielding a cascade of cluster changes, did not involve any of the three species 

that had a reduced sample size in scenario #2.  

 Although larger sample sizes are preferred in shape analyses, it is clear from these 

results that having a comprehensive number of landmarks is just as, or more, important in 

order to acquire all necessary data and produce consistent results.  

 

     ii. Identities of uncertain species 

Since the preservation time of the six uncertain species in this study exceeded the 

optimal time limit for obtaining proper genetic data (collected between 1984 and 2003) 

(and due to funding limitations), their true identities were inferred from the results of the 

cross validation, clustering models, and inter-landmark measurements, as well as from 

biogeographic information and overall morphological similarities. 

  

a. Antedon c.f. incommoda 

 The identities of both individuals were uncertain, as most of their diagnostic 

features were not intact. The combination of alternating sockets, pinnules of <30 

segments, and cirri lacking aboral spines placed them in Antedoninae, and apparently 

similar P2 and P3 suggested Antedon. Although there were no other Antedon incommoda 

species available to compare to, A. incommoda is only known from south and west 

Australia, while the specimens in this study were collected off Madang, Papua New 

Guinea, suggesting misidentification. 

 After cross validation, both individuals were misclassified as Perometra 

diomedeae. Distance calculations yielded P. diomedeae as the closest morphological 

relative, and the Procrustes-based clustering model joined the species with a larger cluster 

containing both P. diomedeae and other Pacific antedonines. Additionally, the species 

shares all 12 inter-landmark measurements with P. diomedeae, a closer Pacific locality, 

substantial overlap in the BGPCA along PC1, and no significant variance through 

Procrustes ANOVA testing.  

Despite all of this evidence, direct visual comparisons with SEM images and the 

intact morphological characteristics indicated that this unknown species is not Perometra 

diomedeae: the uncertain specimens lack the characteristic “skirt” at the base of all P. 
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diomedeae radials (Fig. 42A-B), lack a laterally close division series, and differ in 

centrodorsal shape (AH Clark, 1967). Even if some morphological features were 

modified by the environment, the prominent differences in radial features eliminate P. 

diomedeae. Visual comparisons of the SEM images, BGPCA, inter-landmark 

measurements, phenograms, and locality data, suggest it is most likely Antedon serrata 

(Fig. 42A&C), another Pacific antedonine, with which the unknowns share 11 

measurements, the same locality, close Procrustes-based clustering, and no significant 

variance. This new identity does not change interpretations with the molecular results, as 

they fall in the same clade among the other Pacific antedonines.  

 

 

Fig. 42: SEM images used to visually support 

the true identity of Antedon c.f. incommoda 

as Antedon serrata. A: Antedon c.f. 

incommoda; B: Perometra diomedeae with 

the distinct aboral “skirt”; C: Antedon 

serrata. 
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b. Antedon parviflora groups 

 The Antedon parviflora specimens were among the first specimens dissociate and 

mounted for imaging, before the entire specimens were re-examined and identities 

verified. Because differences in several radial ossicle characters, e.g. muscle fossae 

height, inter-muscular ridge width, and central canal size, revealed that they were not all 

of the same species, they were split into two groups: B&E and C&D. Although other 

diagnostic characteristics were no longer available, the locality data also suggested 

misidentification: Antedon parviflora B&E was collected in the East China Sea and 

Antedon parviflora C&D in the Sea of Japan, both well north of the northernmost record 

of A. parviflora in the Philippines. 

 

1. Antedon parviflora B&E 

 Both individuals in this group were misclassified as Antedon serrata after cross 

validations. Procrustes and Mahalanobis distance-based calculations yielded Antedon 

serrata as the closest morphological relative. A. parviflora B&E and A. serrata join as a 

primary cluster in all four UPGMA phenograms, they share 10 inter-landmark 

measurements, and have complete overlap along PC1 in the BGPCA. Visual comparisons 

of the radials show similarities as well (Fig. 43A-B), supporting the true identity of 

Antedon parviflora B&E as Antedon serrata. This could also have resulted from the lack 

of significant variation between clades P and O in ANOVA testing.  
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2. Antedon parviflora C&D 

 Only one of the individuals of this species was misclassified, and only in scenario 

1, as Antedon loveni. Mahalanobis distance calculations yielded Antedon loveni as this 

species’ closest relative as well, with 11 inter-landmark measurement similarities as 

support. However, because A. loveni is restricted to southern Australia, and the Procrustes 

distance-based results yielded the closest morphological relatives as Atlantic antedonines, 

Antedon hupferi and Ctenantedon kinziei, the SEM images were examined in greater 

detail.  

Messing (1984) suggested that ossicle stereom may be relatively coarser in 

juvenile specimens and becomes finer during development. The A. parviflora C&D 

specimens exhibit such relatively coarser stereom, as well as smaller size and 

underdeveloped interarticular fossae and ridges, suggesting they are juveniles, which 

produced the inconsistent morphological pairings through distance calculations and 

measurement similarities. The next most similar species, based on the hierarchical 

clustering models, are Andrometra psyche and Dorometra briseis. Dorometra briseis has 

a very large central canal relative to its size, a feature not shared by any other species but 

Fig. 43: SEM images used to visually support the true identity of Antedon 

parviflora B&E as Antedon serrata. A: Antedon parviflora B; B: Antedon serrata 
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Antedon parviflora C&D in this study (Fig 44A-B). This similarity, along with locality, 

overall morphology, and inter-landmark measurement similarities (the two share all but 

their right muscle fossa width), support the true identity of A. parviflora C&D as 

Dorometra briseis. It also helps explain the significant individual pairing with D. briseis 

in scenario 1 (and with A. serrata in scenario 2) as due to its underdeveloped juvenile 

form, not phylogenetic factors. This identity change also further reduces the number of 

terminals in clade P, and most likely contributed to the lack of significance between 

clades P and O in the Procrustes ANOVA and BGPCA results.  

 

 

 

 

 

 

 

 

Fig. 44: SEM images used to visually support the true identity of Antedon parviflora 

C&D as a juvenile Dorometra briseis. A: Antedon parviflora D; B: Dorometra briseis 
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3. Antedon c.f. parviflora 

 This specimen was obtained later toward improving comparison with the other 

two A. parviflora groups. However, its diagnostic features were not fully congruent with 

any species (closest to A. parviflora based on cirral length, but also similar to A. 

longicirra). As the other two A. parviflora groups were also uncertain, the new specimen 

could not be compared with any definitively identified specimens; it also was not 

misclassified. The closest morphological relative to this species, based on distance 

measurements and all four phenograms, is Dorometra c.f. briseis. The two share the same 

locality (Sea of Japan, outside the ranges of A. parviflora and A. longicirra) and 

extremely similar radial featurettes (Fig. 45A-B). However, as the identity of Dorometra 

c.f. briseis is uncertain as well (below), the identity of A. c.f. parviflora remains unclear. 

 

c. Dorometra c.f briseis 

 As noted above, Dorometra c.f. briseis is morphologically most similar to 

Antedon c.f. parviflora based on distance calculations, clustering models, and image 

observations. Although this specimen could not be compared with a definitive A. 

parviflora, the two were compared with a definitive Dorometra briseis, with which 

neither share a distinctly wide central canal. Aside from D. briseis, the two lie very close 

to both Antedon serrata and Erythrometra rubra in the BGPCA along PC1, and overlap 

Dorometra parvicirra along PC2. They share the most inter-landmark measurement 

similarity with E. rubra, and cluster with all three in the phenograms. Direct comparisons 

of SEM images did not contribute to definitive identification; in fact, their radial 

morphologies are not closely similar to any of the other species examined. Since there 

was no definitive A. parviflora for comparison, this alternative remains uncertain. 

Although their known distributions abut – D. briseis is southern Japan and A. parviflora 

from the Bonin (Ogasawara) Islands – the former might alternatively be a Pacific 

Dorometra species not used in this study. If so, no true representative of clade P remain 

in this study.  
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d. Antedon c.f. loveni 

 Specimens of Antedon c.f. loveni were compared with definitive A. loveni 

specimens, with which they share no measurement or locality similarities, were not close 

relatives based on distance calculations, and did not cluster closely in the phenograms. 

Instead, A. c.f. loveni clustered in a group containing clade N species, with Thysanometra 

tenelloides and Antedon parviflora C&D (now thought to be D. briseis). It shared the 

most measurements with this newly identified D. briseis, overlapped it along PC2 in the 

BGPCA, and was its closest morphological relative based on Mahalanobis distances. 

Antedon c.f. loveni overlapped Antedon hupferi along PC1 and is its closest relative based 

on Procrustes distances. However, A. hupferi is an Atlantic species and is thus ruled out.  

 The widely separated muscle fossae of Antedon c.f. loveni radials is distinct from 

any other species in this study, so its true identity remains uncertain. 

  

e. Summary of reassigned taxa  

The examination of the radials above and the re-assignments, strongly suggest 

that this project included no actual representatives of clade P. As a result, the significant 

differences between these re-assigned or unidentified species and the members of clade N 

Fig. 45: SEM images used to visually support their similar identities, although what 

that identity is, is unclear. A: Antedon c.f. parviflora; B: Dorometra c.f. briseis. 



124 
 

(see Intra-subfamily variability) could no longer be presented as variance between clades 

N and P. Two of the three groups were re-identified as Clade O species, Antedon serrata 

and a Dorometra briseis juvenile. Although this juvenile and another clade O species 

(Dorometra briseis) differed significantly in pairwise tests, the juvenile did not differ 

significantly from any clade N species. The only pairwise result between clades N and P 

was between clade N species Antedon mediterranea and the specimen previously 

identified as Antedon c.f. parviflora, which was re-identified as an uncertain Dorometra 

species that was definitively not D. briseis. These results explain why there was 

significant variance between Atlantic and Pacific species, but not between clades N and 

O. Thus, it can now be said that there is no significant variance in mean radial shape 

between any clades containing antedonine species.  

 

 

     iii. Comparing morphological relatives to the phylogenies 

 The closest morphological relatives of each species based on distance calculations 

(mainly Procrustes distances, with support if needed from Mahalanobis distances) were 

compared with their placements in the molecular phylogenies in order to support the 

connection between radial morphology and phylogenetics.  

 

a. Clade M (and equivalents) 

 The morphological similarities between the available species of clade M 

(Heliometrinae and Thaumatometra) coincided with their phylogenetic placement fairly 

well. Thaumatometra tenuis was not taken into account in comparisons as the 

phylogenies used different species from different localities. This left four heliometrines in 

two subclades to be compared. Eleaume’s (2006) morphological comparison reflected the 

later molecular phylogenies: subclade #1 with Promachocrinus kerguelensis, 

Solanometra antarctica, and Florometra mawsoni characterized by a single pair of nerve 

canals in the interior face of the radials, and a fine radial intermuscular septum, versus 

subclade #2 with Anthometrina adriani, F. asperrima, F. serratissima, F. magellanica, 

and Heliometra glacialis characterized by two pairs of nerve canals and a thick 
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intermuscular septum. The phylogenies also included Comatonia cristata and F. 

novaezealandiae in subclade #2. 

In the current study, both distance-based relatives of Anthometrina adriani - 

Florometra asperrima and Comatonia cristata - are also close subclade #2 phylogenetic 

relatives (Fig. 46). Florometra asperrima and F. serratissima are each other’s closest 

phylogenetic and morphological relative. The only known difference between the two 

appears to be the location of the third syzygy, and as this characteristic is linked to arm 

autotomy and may be variable depending on environmental conditions, it is plausible the 

two are morphotypes (or perhaps ecophenotypes) of the same species (Eléaume 2006). 

The closest morphological relative to Comatonia cristata based on Procrustes distances, 

Hathrometra tenella, does not lie within clade M, or even its neighbor, clade O, meaning 

the two are not phylogenetically similar. It is possible, however, that if either Florometra 

novazealandiae (subclade #2) or F. mawsoni (subclade #1) were available for this study, 

they would be more morphologically similar to C. cristata than H. tenella. The closest 

Mahalanobis distance-based relative to C. cristata, Anthometrina adriani, is molecularly 

related to it as well. The closest distance-based relative of Promachocrinus kerguelensis 

is Comatonia cristata (Table 7), although they differ in number of radial nerve canals and 

lie in neighboring subclades. 
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Fig. 46: Visual comparison of SEM images with the non-monophyletic clade M equivalent of Rouse et al. in prep. phylogeny. 
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b. Clade N (and equivalents) 

 Clade N consists of six Atlantic Antedon spp. and South African Annametra 

occidentalis as a clade sister to the non-antedonid Tropiometra carinata, also from the 

Atlantic (although its range extends to the western Indian Ocean). Antedon bifida bifida 

and Antedon hupferi are the closest morphological relatives to T. carinata. The closest 

Procrustes distance-based relative to Antedon petasus, Ctenantedon kinziei, was not used 

in any of the phylogenies, so its morphological and phylogenetic placements cannot be 

compared. However, molecular sister taxa A. petasus and A. hupferi are also closest 

based on Mahalanobis distances. Both closest distance-based relatives of Antedon hupferi 

- A. bifida bifida and A. petasus - are closely related molecularly as well, although not 

direct sisters. The same goes for A. bifida bifida, which is closest morphologically to 

fellow clade N species, Antedon hupferi, although is closest molecularly to A. 

mediterranea. Finally, Antedon mediterranea is morphologically most similar to Antedon 

petasus. Although not closest molecularly, they still lie within the same subclade of a 

genetically tight clade N (Fig. 47). 

 

c. Clade O (and equivalents) 

 This clade includes eight former antedonids: Australian Antedon loveni, A. 

incommoda, and Toxometra bicolor; east Asian A. serrata, D. briseis, and Andrometra 

psyche; an unidentified Euantedon sp. (western to central Pacific) (all antedonines), and 

the South Atlantic bathymetrine Phrixometra, as well as two non-antedonids: South 

Australian Aporometra occidentalis (Aporometridae) and western Pacific Eudiocrinus sp. 

(formerly in Colobometridae). Among the taxa examined in this study, Antedon c.f. 

incommoda was re-identified as Antedon serrata based on measurement data and visual 

comparisons, although its identity remains questionable. Its closest morphological 

relative is Perometra diomedeae, although genetic similarities cannot be compared as P. 

diomedeae was not used in the molecular analyses. The closest morphological relative to 

Andrometra psyche, based on Procrustes distances, is Tropiometra carinata, an Atlantic 

clade N species; no phylogenetic connection here. The closest Mahalanobis distance-

based relative to A. psyche is Antedon loveni (Table 7), which, although not in the same 
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subclade, still lies in the same genetic clade O. The closest Procrustes distance-based 

relative of A. loveni is also its closest molecular relative, Antedon serrata. The relatives 

of A. loveni based on Mahalanobis distances have no close phylogenetic association. 

Antedon serrata returned closest to Antedon parviflora B&E based on both distances. 

Since A. parviflora B&E was re-identified as Antedon serrata, comparisons are 

redundant. The second closest morphological relative to Antedon serrata was Antedon 

loveni, a close phylogenetic neighbor. The closest Procrustes distance-based relative of 

Dorometra briseis from scenario 1 was subclade companion, Antedon serrata. In 

scenario 2, the closest Procrustes relative of D. briseis was Dorometra c.f. briseis of 

uncertain identity; its closest Mahalanobis distance-based relative, Iridometra adrestine, 

was not used in the phylogenies.  The aporometrid Aporometra occidentalis is 

morphologically similar to the tropiometrid Tropiometra carinata, but they return on 

widely separated branched in the phylogenies, and are geographically widely separated as 

well (Fig. 48).  
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Fig. 47: Visual comparison of SEM images with the clade N equivalent of Rouse et al. in prep. phylogeny. 
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Fig. 48: Visual comparison of SEM images with the clade O equivalent of Rouse et al. in prep. phylogeny. 
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d. Clade P (and equivalents) 

 Since all of the species previously thought to be Antedon parviflora were either 

re-identified or are still uncertain, there were no definitive clade P species to compare 

morphologically with the molecular results. 
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e. Clade ‘unnamed’ (and equivalents) 

 Hemery (2011) and Rouse et al. (in prep..) returned a clade including 

representatives of eight genera in common (Nanometra, Hathrometra, Leptometra, 

Perometra, Isometra, Eumorphometra, Eometra, and Coccometra) (plus Tonrometra and 

Thysanometra in Hemery (2011) and Poliometra and Trichometra in Rouse et al. (in 

prep..)), although their interior relationship differed (Fig. 49). Although Tonrometra 

spinulifera was only sequenced in Hemery (2011), it returned in the current study as 

closest morphologically to Poliometra prolixa. Tonrometra spinulifera returned closest to 

Hathrometra sarsii in Hemery et al. (2013), and P. prolixa returned close to Hathrometra 

tenella in Rouse et al. (in prep..). The likely identity of the two Hathrometra species 

(Messing & Dearborn 1990) suggests that T. spinulifera and P. prolixa are molecularly 

close as well.  

The thysanometrine Thysanometra tenelloides from Japan was morphologically 

closest in the current study to Atlantic Antedon petasus – a clade N species in Rouse et al. 

(in prep..). Hemery (2011) returned Thysanometra tenuicirra at a distance as sister to an 

Isometrainae clade. These two Tysanometra species, the only taxa in the genus, are 

closely similar based on traditional morphology (Clark and Clark 1967), so the placement 

of T. tenelloides closest to A. petasus here remains unexplained. Similarly, Perometra 

diomedeae was closest morphologically in the current study to clade O species, Antedon 

loveni, whereas Perometra robusta returned in Hemery (2011) as sister to a clade of 

several genera (Hathrometra, Leptometra, Tonrometra). These two Perometra species 

are distinguished only by variations of P1 ornamentation (Clark and Clark 1967), so, the 

similarity of P. diomedeae and A. loveni remains unexplained as well.  

 Isometra graminea was the closest Procrustes distance-based relative of its 

phylogenetic sister, Isometra vivipara. Hathrometra tenella was closest to I. vivipara 

based on Mahalanobis distances and returned in this clade ‘unnamed’, but in a separate 

subclade. Although no close phylogenetic relationship exists between Isometra graminea 

and its closest Mahalanobis distance-based relative, Antedon loveni, its closest 

Procrustes-based relative, Trichometra cubensis, also returned in this clade ‘unnamed’ 

but again in a separate subclade (Fig. 49). However, no morphological, geographic, or 

molecular support was found for Comatonia cristata, the closest distance-based relative 
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of Hathrometra tenella or Iridometra adrestine, the closest Procrustes relative of 

Trichometra cubensis (Table 7). The closest Mahalanobis relative of T. cubensis was 

Hybometra senta, a species not inclused in any phylogeny. Traditional morphology 

placed H. senta close to Eumorphometra and Leptometra (Clark and Clark 1967), both 

Antedonidae incertae sedis and both members of clade ‘unnamed’. Strengthening the 

possibility of placing H. senta in clade ‘unnamed’ was that its closest Procrustes-based 

relative was Coccometra hagenii, also in clade ‘unnamed’. However, given the distant 

phylogenetic relationships noted above between several taxa despite close Mahalanobis 

or Procrustes similarities, i.e. P. diomedeae and A. loveni, and T. tenelloides and A. 

petasus, it may be premature to suggest that H. senta belongs in clade ‘unnamed’.  

 In general, there is a notable connection between overall radial shape and the 

phylogenies. Whether phylogenetic forces are an influential factor in constraining 

morphology or whether both phylogenetics and morphology are influenced similarly by 

environmental factors is unclear, and thus have been explored further through 

comparisons of biogeography, intra-radial measurements, and additional morphological 

features.  
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Fig. 49: Visual comparison of SEM images with both Hemery’s (2011) 

‘unnamed’ clade and its equivalent in Rouse et al. in prep. 
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     iv. Visual comparisons of SEM images to phylogenies 

 Visually obvious morphological similarities in many ways reflected the molecular 

results better than the morphometrics did, due to the limitation of 25 (scenario #1) or 26 

(scenario #2) landmarks as an overall shape representation in the statistical analyses. The 

clade M representatives in this study all share a H:W ratio ≥1.0, but more specifically 

have tall muscle fossae, a thick intermuscular ridge, and interarticular ligament fossae 

that visually seem as wide as high (Fig. 46). Clade N representatives all share wide 

muscle fossae well separated by a thick intermuscular ridge, as well as wider than high 

interarticular ligament fossae (Fig. 47). Although all clade O representatives have 

H:W<1.0 radial ratios, only the antedonids share muscle fossae that are visually either 

higher or as high as wide and situated closer together than the antedonids in clade N (Fig. 

48). They also seem to have a larger central canal than those in clade N. Clade ‘unnamed’ 

representatives (Perometra diomedeae and Thysanometra tenelloides excepted) share tall 

muscle fossae (although varying degrees), wider or as wide as high interarticular 

ligament fossae, and thin interarticular ridges within their tall radials (Fig. 49). 

 

     v. Taxonomic revisions 

 Antedoninae was the only subfamily that definitively yielded significant variation 

among its tested species. Additional morphometric data from antedonines not used in the 

phylogenies confirmed that significant differences exist between antedonines from 

different regions: Atlantic versus Indo-west Pacific. The morphologically similar radials 

within clades are both visually apparent and reinforced by Procrustes distance 

calculations (Tables 7, A5, A6), supporting the need for in-depth examinations between 

regional antedonines, specifically within the genus Antedon. One potential outcome, as 

suggested by Hemery et al. (2009), is the restoration of genus Compsometra (type species 

Antedon loveni Bell, 1882), which formerly included Indo-west Pacific species in clades 

O and P: loveni, incommoda, serrata, iris, longicirra and parviflora. The genus was 

placed in synonymy under Antedon by Gislén (1955). Antedon would remain the genus 

for Atlantic and Mediterranean species, following the type species Antedon bifida 

(Pennant, 1777). 
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An expectation at the outset of this study was that, if significant morphometric 

distinctions conformed with molecular data to support taxonomic revisions, the 

polyphyly of Antedonidae would likely require shuffling of generic assignments, 

elevation of former subfamilies to familial status, or establishment of new families, with 

taxa morphologically closest to the type species, Antedon bifida, retained in that genus 

and in Antedonidae. Although this study offers no formal taxonomic revision, such an 

outcome is still likely, as the closest molecular relatives of clade N are non-antedonids. 

Some possible taxonomic revisions are suggested below, based on support of the 

phylogenies by the morphometric results presented here, as well as by diagnostic features 

of the proximal-most ossicles, thought least likely constrained by the environment.  

 In addition to their radial morphology coinciding with the molecular results, there 

are a few other morphological features shared between the antedonines and Tropiometra 

spp. of clade N (Hemery 2011, Hemery et al. 2013, Rouse et al. in prep.), such as their 

cirrus socket arrangement, lack of cirral ornamentations, proximal syzygy pattern, and 

third pinnule as similar to those succeeding (Clark & Clark 1967, Hess & Messing 2011). 

Also, all examined representatives occur in the Atlantic, although T. carinata extends to 

the Indian Ocean, and other Tropiometra species occur as far as Japan and Australia. A 

clade containing representatives of other families from superfamily Tropiometroidea 

(Asterometridae, Calometridae, Ptilometridae) is sister to clade N in Rouse et al. (in 

prep..), although with very low support numbers (19% ML), and returns at a distance (as 

clade K) as sister to Notocrinidae in Hemery (2011) and Hemery et al. (2013). All 

phylogenies have returned Tropiometroidea as polyphyletic. Hemery’s (2011) clade N 

and Rouse et al.’s equivalent (in prep..) also include Bathymetra (not included in Hemery 

et al. 2013); However, no morphological or geographic support currently exists for its 

inclusion.  

 The antedonine members of clade P, although not included in this study, only 

share a hemispherical centrodorsal, cirrus socket arrangement, and a third pinnule 

characteristically similar to those succeeding, along with those characters shared by all 

antedonines: basal rosette, proximal syzygy pattern, and lack of cirral ornamentation 

(Clark and Clark 1967, Hess & Messing 2011). The addition of Thaumatometra comaster 

in Hemery’s tree (2011) reduces the morphological similarities to centrodorsal shape, 
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socket arrangement, syzygy pattern, and a basal rosette (Clark and Clark 1967). Clade P 

is phylogenetically related to representatives from the superfamily Himerometroidea in 

all three phylogenies, with which it only consistently shares cirrus socket arrangement 

and a basal rosette – characters found in other feather star clades as well. The diagnostic 

features that distinguish himerometroid families are not shared by clade P members, or 

any antedonids, so the taxonomic placement of these species remains unclear.  

 No morphological support exists for the molecular pairing of Aporometra 

occidentalis to the Pacific antedonines of clade O.  The two taxonomic groups proved 

significantly variant in ANOVA and pairwise testing, and share no diagnostic 

characteristics. Grouping of Aporometridae and Notocrinidae together in Notocrinoidea 

has some morphological basis (e.g., radial pits in centrodorsal) (Clark and Clark 1967, 

Hess & Messing 2011), but they otherwise differ in morphology and distribution, 

whereas Aporometra species and clade O antedonines have overlapping ranges.  

 Except for Thaumatometra spp. (Hemery 2011), clade M and its recent tree 

equivalents contain members within the same antedonid subfamily, Heliometrinae, which 

lends support to the morphometrics and former morphological taxonomy (Clark & Clark 

1967, Hess & Messing 2011, Hemery et al. 2013, Rouse et al. in prep.). Eléaume (2006) 

recognized two morphological groups of heliometrine genera based on, e.g., two versus 

four nerve canals in the interior face of the radials. All three molecular phylogenies also 

recognize two heliometrine clades, but the subfamily consistently returns as paraphyletic, 

with a Promachocrinus kerguelensis and Florometra mawsoni clade basal to the 

remaining heliometrines and clade O (antedonines, Aporometra and Eudiocrinidae).  

 Additionally, over two-thirds of all the species imaged in this study had four 

radial nerve canal openings (two pairs) instead of two on the interior face of each radial, 

but neither number was consistent among species of the same clade or subfamily (e.g., of 

the three perometrines examined, Erythrometra rubra had two nerve canals while 

Hypalometra defecta and Perometra diomedeae had four; of the four bathymetrines, only 

Tonrometra spinulifera had two nerve canals). Thysanometrinae was the only 

morphological subfamily, represented by Coccometra hagenii and Thysanometra 

tenelloides, which had a consistent number of nerve canals, but the morphology of the 

two representatives was otherwise completely different. 
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Heliometrinae is not monophyletic, as the clade containing the two M subclades 

also includes clade O (Hemery et al. 2013, Rouse et al. in prep.). Revisions based on the 

molecular phylogenies suggest a new clade to include both clade M and clade O. If 

treated as a superfamily, the appropriate name would be Eudiocrinoidea. Eudiocrinidae 

AH Clark, 1907, is senior to the other available family-group names: Heliometrinae AH 

Clark, 1909, and Aporometridae HL Clark, 1938. This revision suggestion is rather far-

fetched as of now, however, due to such low support at the basal nodes (Hemery et al. 

2013, Rouse et al. in prep). Although Hemery (2011) returned Thaumatometra spp. in 

clade M, none are T. tenuis, which is morphologically distinct from the other 

Thaumatometra species based on its size and proximal pinnule length (Clark and Clark 

1967). Thaumatometra tenuis is not morphologically similar to the heliometrines in clade 

M, but since it is also distinct from the other Thaumatometra species, it cannot yet be 

considered during taxonomic revisions. 

As clade ‘unnamed’ and its equivalents contain members from five of the seven 

antedonid subfamilies, major taxonomic revisions would have to be performed in order to 

match the phylogenies. Still, some can be suggested. Regardless of species sequenced, 

the bathymetrines and incertae sedis members tend to fall together. Members of both 

share a conical centrodorsal (although not all bathymetrinaes) with a large cavity, 

elongate segments of the proximal pinnules, and laterally close primibrachials (although 

ornamentation may vary). These same general characteristics are shared by the 

perometrines, the representatives of which are neighbors to the other two subfamilies in 

the phylogenies. It could be suggested that the bathymetrines and incertae sedis species 

either be combined into Bathymetrinae, or kept as separate subfamilies (due to the 

differences in cirrus socket arrangement) under a new family, Bathymetridae. Although 

perometrines share the socket arrangement of Bathymetrinae, they are not apparently 

similar to either this subfamily or incertae sedis based on morphometric results, and thus 

should remain their own group, either as a subfamily under the new bathymetrine family 

or alone. Isometrainae species form their own subclade but are molecularly close to the 

previous subfamilies, and are morphometrically similar to the bathymetrines. Their non-

radial diagnostic features, however, are most similar to those of the heliometrines, so 

taxonomic placement of this group remains unclear.  
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Significant pairings between thysanometrine individuals, distinct separation 

within the BGPCA, differing locality ranges, and differences in radial ratio (at least 

between the species examined in this study) yield enough evidence to warrant a closer 

look at their other morphological features. The Mahalanobis-based results support 

diagnostic similarities between Coccometra species and the heliometrines, including 

centrodorsal and primibrachial shapes, a moderate cavity, and characteristically stout and 

flagellate proximal pinnules (Clark & Clark 1967, Hess & Messing 2011), although the 

latter feature is shared by Thysanometra as well. However, the Procrustes-based 

morphometrics suggest Coccometra hagenii is most closely related to incertae sedis and 

bathymetrine species, a result consistent with the phylogenies (Hemery 2011, Hemery et 

al. 2013, Rouse et al. in prep..), which returned this genus as basal to a clade including 

Eometra, Eumorphometra, Hathrometra, Leptometra, Perometra and Nanometra. This 

clade also included Thysanometra, but at a considerable distance from Coccometra. All 

results so far support dismembering Thysanometrinae, although more thysanometrine 

species, as well as more features within those species, need to be sequenced and 

examined. 

 The suggestions proposed above are extremely hesitant and based on general and 

limited data. Much more examination needs to be done for actual consideration of any 

formal taxonomic revisions. Even though more evidence is better when suggesting 

taxonomic revisions, the fact that radial morphology seems to be the only consistent 

similarity within clades reinforces the notion that the majority of the crinoid body is 

highly moldable by the environment, and supports this study’s choice of using the radial 

ossicles for finding morphological connections with the phylogenetics. 

 

VII. General Discussion 

A. Study Limitations / pros and cons 

The morphological exploration of only one ossicle was not considered one of the 

limitations of this study as it was chosen specifically as the single skeletal element 

thought least likely to be affected by the environment. Imaging proved to be an important 

limitation. The original plan was to obtain three-dimensional images of the radial ossicles 

for morphometric analysis, but that resource proved unavailable due to many delays. 
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Additional features that might have contributed to molecular support (e.g., fossae depth, 

ossicle depth and overall shape, thickness of muscle fossae) were thus not included. As a 

result, two-dimensional SEM imaging was used. The articular facet was chosen, as it has 

the most topographical variance. Additionally, Miriam Zelditch (personal 

communication) raised a concern about use of type 3 landmarks instead of 

semilandmarks. Documented problems associated with the subjectivity of semilandmarks 

(Gunz & Mitteroecker 2013, Klingenberg 2008, Zelditch et al. 2012) influenced the 

decision to use type 3 landmarks in this study. However, towards the end, after all 

landmarking was complete and statistical analyses had begun, it was clarified that 

between the two option, type 3 landmark and semilandmarks, semilandmarks are much 

less arbitrary than type 3 landmarks if digitized correctly and are associated with a 

distinct anatomical position – a feature not accompanied with type 3 landmarks 

(Mitteroecker & Gunz 2009, Zelditch et al. 2012, Adams et al. 2013, Zelditch et al. 2015, 

Miriam Zelditch, personal communication). Because of the timing of this clarification, it 

was decided that analyses would continue with the already digitized type 3 landmarks, 

with a change to semilandmarks for publication.  

Another major limitation of this study, noted throughout, was the incomplete 

representation of terminals, as well as low and unbalanced sample sizes within and 

between terminals. These sampling limitations could have affected the connection 

between radial morphology and phylogenetics; inclusion of all terminals in the 

morphometric analyses could have returned different results.  

A few differences in locality data extracted from Genbank (Benson et al. 2009, 

Sayers et al. 2009) existed between the species sequenced by Hemery (2011, 2013) and 

Rouse (in prep.) and those used for morphometric analysis here. Of the five species with 

collection site differences, four remained in the same general region (Trichometra 

cubensis, Hathrometra tenella, Dorometra briseis, and Andrometra psyche), so are of 

less concern than Tropiometra carinata, which was collected off the southern tip of 

Madagascar for sequencing and off Colombia for morphometric analysis. Torrence et al. 

(2012) found two substantially divergent genetic lineages across the species’ range, 

suggesting the possible existence of a species complex. Although both occurred in 

sympatry in both Indian and Atlantic oceans, the material discussed here for sequencing 
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versus morphometrics could have derived from different genetic lineages. Additionally, 

for the several instances in which one or more biogeographic factors were not available 

for a species, data from Clark & Clark (1967) were used for factor assignment. Although 

locality was not a significant factor affecting shape between species, locality differences 

were not tested within a species and could have affected our results.  

 Aside from limitations due to missing data, unknown data also limited possible 

conclusions in this study. Because not enough is known about development and age in 

comatulids, ontogenetic effects on radial shape formation could not be tested. The 

presumed recognition of Antedon parviflora C&D as juvenile Dorometra briseis 

specimens allowed a preliminary look at the differences between juvenile and adult 

radials. Those initially identified as A. parviflora C&D shared all but one inter-landmark 

measurement (right muscle fossa width) with D. briseis. Overall radial morphology did 

not differ significantly between these two, although there was a notable size difference 

(radial height was 0.30 mm for A. parviflora C&D and 0.51 mm for D. briseis), 

suggesting that radials do not exhibit the substantial morphological changes with 

development that can be seen with other ossicles (i.e. axils, Messing 2013). The larger 

relative stereom size of the juveniles seen in the specimens originally identified as 

Antedon parviflora C&D suggests that relative mesh sizes may also vary ontogenetically 

(Messing 1984).  

The idea arose, during measurements of inter-landmarks, that dimensional 

differences in fossae might be linked to interspecific locomotory differences. However, 

as far as is know, all antedonids, as well as representatives of several other clades (e.g., 

Thalassometridae, Mariametridae), can swim in the same manner, by alternately thrusting 

and lifting their arms (Ubaghs 1978). However, the ability to swim is not consistently 

distributed among clades in current phylogenies, e.g., thalassometrids swim, but members 

of their sister Comatulidae cannot; among Himerometroidea, mariametrids swim, but 

himerometrids do not. Effects of current velocity on radial shape could not be tested, 

because ambient environmental conditions and variations associated with individual 

specimens were completely unknown. 
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B. Future morphological focus 

 Aside from the overall support that radial morphology has lent in this study to 

molecular work, the features of this one ossicle are not enough to support the drastic 

taxonomic changes that the molecular phylogenies suggest for Antedonidae; additional 

morphological features need to be examined, not only across all taxa, but across locality 

and depth ranges within taxa.  

 Although the radials, as proximal-most ossicles not involved in the suspension 

feeding apparatus, were anticipated to be the skeletal components least likely affected by 

hydrodynamics and other environmental factors, the patterns seen between the 

morphometrics and both depth and region in this study indicate that even the radials are 

somewhat affected by their environment. Regardless, additional morphological support is 

needed, and continuing to focus on the proximal ossicles at least reduces the probability 

of environmentally associated phenotypic plasticity within species.  

 Away from the radial pentagon, promising ossicles for analysis include the two 

primibrachials making up the division series, with secondary support from the proximal 

pinnules not involved in suspension feeding. Although the latter are often modified for 

different purposes, e.g., putative tactile and defensive functions, they may be less likely 

to be affected by environmental factors than their distal counterparts. However, the 

number of these modified pinnules varies within and between taxa, in some cases at least 

with growth (e.g. Rankin & Messing 2008), and it is not clear how they respond to 

environmental conditions.  

Aboral to the radials lie the basals, which differ structurally in different extant 

comatulid groups, e.g., Antedonidae versus Zenometridae (Messing & White 2001). The 

basals were considered at the outset similar to the radials in ostensibly being “concealed” 

from environmental variation. However, it became clear during dissociation that these 

structures may not be a dependable diagnostic feature. Apart from their extremely 

delicate nature, there were inconsistencies across antedonid taxa, e.g., single compound 

basals were found in all specimens of the bathymetrine, Tonrometra spinulifera, and the 

thysanometrine, Thysanometra tenelloides, although they are described with a rosette 

form characteristic of their family (Hess & Messing 2011). Both species were thought to 



143 
 

be fully grown (from the limited size records in Clark and Clark 1967), so this was not a 

developmental occurrence. Rosette forms across taxa need to be reexamined.  

Cirrus length, ornamentation, and arrangement around the centrodorsal have 

tentative potential as supportive features for the phylogenies. However, they are likely 

subject to variation based on their chosen substrate. Therefore, it is suggested that the 

adoral features (primibrachials and proximal pinnules) and possibly characters of the 

centrodorsal itself (Purens 2016) should be the primary focus in continuing the search for 

morphological support for molecular results. 

 

C. Conclusions 

 Despite their location within the visceral mass, radial ossicles are not immune 

from the effects of environmental factors. However, the factors that appeared to have an 

effect on radial morphology in this study are depth and region, which may reflect a 

combination of evolution and biogeography. The Atlantic antedonines differed 

significantly in overall radial appearance and a reduced H:W ratio from the Pacific 

antedonines, so a more comprehensive examination, and possible taxonomic revisions, 

should follow. All examined species with a radial H:W ratio <1.0 were restricted to the 

shallower depths (0-200 m), although several individuals of each species should be 

collected at their depth extremes for comparisons.  Aside from biogeographic factors, 

there were notable morphological similarities of the radials of species within molecular 

clades (Hemery 2011, Hemery et al. 2013, Rouse et al. in prep.) In many cases, the 

visually apparent morphological similarities better reflected the molecular results than did 

the results of the morphometrics. Morphometrics results could be improved upon through 

use of semilandmarks instead of type 3 landmarks, or possibly through more carefully 

chosen landmark choices and placements in future studies. Nonetheless, the limited 

variations of radial morphology within molecular clades support further morphological 

studies of this nature that will strengthen our understanding of extant crinoid phylogeny 

(Bull et al. 1993, Littlewood et al. 1997, Hemery 2011, Rouse et al. 2013, Roux et al. 

2013). Three-dimensional imaging needs to be done on the radials, and other proximal 

ossicles across as many antedonid terminals as possible. Only then can morphology be 
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fully used as a guide for revising this crinoid family’s chaotic taxonomy in congruence 

with molecular phylogenetics.  
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VIII. Appendices 

A. Appendix A 
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Fig. A1: Superimposed configuration, PCA, and broken stick model for ossicles within Antedon c.f. parviflora, specimen F (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A2: Superimposed configuration, PCA, and broken stick model for ossicles within Antedon bifida bifida, specimen E (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A3: Superimposed configuration, PCA, and broken stick model for ossicles within Antedon hupferi, specimen B (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A4: Superimposed configuration, PCA, and broken stick model for ossicles within Antedon loveni, specimen A (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 



164 
 

 Fig. A5: Superimposed configuration, PCA, and broken stick model for ossicles within Antedon mediterranea, specimen D (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A6: Superimposed configuration, PCA, and broken stick model for ossicles within Anthometrina adriani, specimen A (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A7: Superimposed configuration, PCA, and broken stick model for ossicles within Aporometra occidentalis, specimen B 

(top: scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A8: Superimposed configuration, PCA, and broken stick model for ossicles within Coccometra hagenii, specimen D (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A9: Superimposed configuration, PCA, and broken stick model for ossicles within Coccometra hagenii, specimen F (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A10: Superimposed configuration, PCA, and broken stick model for ossicles within Comatonia cristata, specimen B (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A11: Superimposed configuration, PCA, and broken stick model for ossicles within Ctenantedon kinziei, specimen D (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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Fig. A12: Superimposed configuration, PCA, and broken stick model for ossicles within Dorometra c.f. briseis, specimen C (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A13: Superimposed configuration, PCA, and broken stick model for ossicles within Dorometra parvicirra, specimen B (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A14: Superimposed configuration, PCA, and broken stick model for ossicles within Florometra asperrima, specimen A (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A15: Superimposed configuration, PCA, and broken stick model for ossicles within Hathrometra tenella, specimen A (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A16: Superimposed configuration, PCA, and broken stick model for ossicles within Tropiometra carinata, specimen D (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A17: Superimposed configuration, PCA, and broken stick model for ossicles within Trichometra cubensis, specimen E (top: 

scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A18: Superimposed configuration, PCA, and broken stick model for ossicles within Tonrometra spinulifera, specimen E 

(top: scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A19: Superimposed configuration, PCA, and broken stick model for ossicles within Thysanometra tenelloides, specimen D 

(top: scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A20: Superimposed configuration, PCA, and broken stick model for ossicles within Thaumatometra tenuis, specimen B 

(top: scenario 1; bottom: scenario 2). There is no significant variance within this individual. 
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 Fig. A21: Scenario 1 results of Intra-species variation for all Antedon loveni specimens depicting notable differences in the 

superimposed configurations of the known A. loveni specimens A-E and A. c.f. loveni specimens F-G, as well as a clear separation in 

the PCA (see Figure 16 for scenario 2 results). 
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Fig. A22: Scenario 1 results of Intra-species variation of 

all Antedon parviflora specimens depicting notable 

differences in the superimposed configurations and 

PCA of three A. parviflora groups: specimens B&E, 

C&D, and F (see Fig. 17 for scenario 2 results). 
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Fig. A23: Scenario 1 PCA and broken stick model depicting the intra-species variation of Anthometrina 

adriani. ANOVA results yielded significant variation between individuals A&E and C&E in both scenarios 

(see Fig. 18 for scenario 2 results). 
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Fig. A24: Scenario 1 PCA and broken stick model depicting the intra-species variation of Coccometra 

hagenii. ANOVA results yielded significant variation between individuals C&D in both scenarios (see Fig. 19 

for scenario 2 results). 
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Fig. A25: Scenario 1 intra-specific variation for all 

Dorometra briseis specimens, supporting the ANOVA 

results of significant variance between the two groups 

through clear differences in the superimpositions and 

PCA (see Fig. 20 for scenario 2 results). 
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Fig. A26: Scenario 1 PCA and broken stick model of the intra-specific variation in Hybometra senta, 

supporting the ANOVA significant variance between individuals C&D (see Fig. 22 for scenario 2 

results).  
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Fig. A27A: Scenario 1 intra-genus variation of Antedon spp. (see Fig. 23A for scenario 2 results). A: between-

group PCA (top) and broken stick model (bottom). (Acfin = Antedon c.f. incommoda, Acflv = Antedon c.f. loveni, Acfpv = 

Antedon c.f. parviflora, Antbb = Antedon bifida bifida, Anthp = Antedon hupferi, Antlv = Antedon loveni, Antmd = Antedon 

mediterranea, Antpt = Antedon petasus, AntpvBE = Antedon parviflora B&E, AntpvCD = Antedon parviflora C&D, Antse = Antedon 

serrata). 
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Fig. A27B-C: Scenario 1 intra-genus variation of Antedon spp. (see Fig. 23B-C for scenario 2 results). 

B: BGPCA colored by general region. C: BGPCA colored by clade assignment (see Fig. A27A for 

species abbreviation reference). 
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Fig. A28A: Scenario 1 results of intra-genus variation BGPCA and broken stick model for 

Dorometra spp. Despite their separations along both axes, there is no significant variance within 

this genus. (Dorbr = Dorometra briseis, Dcfbr = Dorometra c.f. briseis, Dorpv = Dorometra 

parvicirra). 
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Fig. A28B: Scenario 2 results of intra-genus variation BGPCA and broken stick model for 

Dorometra spp. Despite their separations along both axes, there is no significant variance 

within this genus. (Dorbr = Dorometra briseis, Dcfbr = Dorometra c.f. briseis, Dorpv = 

Dorometra parvicirra). 
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Fig. A29A: Scenario 1 results of intra-genus variation PCA and broken stick model for 

individuals of Florometra spp. There is no significant variance between F. asperrima and F. 

serratissima in this study. (Floas = Florometra asperrima, Flose = Florometra serratissima). 
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Fig. A29B: Scenario 2 results of intra-genus variation PCA and broken stick model for 

individuals of Florometra spp. There is no significant variance between F. asperrima and F. 

serratissima in this study. (Floas = Florometra asperrima, Flose = Florometra serratissima). 
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Fig. A30A: Scenario 1 results of intra-genus variation PCA and broken stick model for 

individuals of Isometra spp. There is no significant variance between I. graminea and I. vivipara 

in this study. (Isogr = Isometra graminea, Isovv = Isometra vivipara). 
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Fig. A30B: Scenario 2 results of intra-genus variation PCA and broken stick model for 

individuals of Isometra spp. There is no significant variance between I. graminea and I. vivipara 

in this study. (Isogr = Isometra graminea, Isovv = Isometra vivipara). 
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Fig. A31A: Scenario 1 intra-subfamily variation of Antedoninae. BGPCA (top) and broken stick model (bottom) 

(see Fig. 24A for scenario 2 results) (Acfin = Antedon c.f. incommoda, Acflv = Antedon c.f. loveni, Acfpv = Antedon c.f. 

parviflora, Andps = Andrometra psyche, Antbb = Antedon bifida bifida, Anthp = Antedon hupferi, Antlv = Antedon loveni, Antmd = 

Antedon mediterranea, Antpt = Antedon petasus, AntpvBE = Antedon parviflora B&E, AntpvCD = Antedon parviflora C&D, Antse = 

Antedon serrata, Ctekz = Ctenantedon kinziei, Dcfbr = Dorometra c.f. briseis, Dorbr = Dorometra briseis, Dorpv = Dorometra parvicirra, 

Iriad = Iridometra adrestine). 
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Fig. A31B-C: Scenario 1 intra-subfamily variation of Antedoninae. B: BGPCA colored by general region. C: 

BGPCA colored by phylogenetic assignment. (see Fig. 24B-D for scenario 2 results; see Fig A31Afor species 

abbreviations). 
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Fig. A31D: Scenario 1 intra-subfamily variation of Antedoninae. D: BGPCA colored by radial ratio (see 

Fig. 24B-D for scenario 2 results; see Fig. A31A for species abbreviations). 
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Fig. A32: Scenario 1 between group PCA (left) and broken stick model (right) depicting intra-subfamily 

variation of Bathymetrinae. Despite visual separations, there were no significant variations within this 

subfamily (see Fig. 25 for scenario 2 results) (Hattn = Hathrometra tenella, Thmtn = Thaumatometra tenuis, Tricb = 

Trichometra cubensis, Tonsp = Tonrometra spinulifera). 
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Fig. A33: Scenario 1 between group PCA (left) and broken stick model (right) depicting intra-subfamily 

variation of Heliometrinae. Despite visual separations, there were no significant variations within this 

subfamily (see Fig. 26 for scenario 2 results) (Anaad = Anthometrina adriani, Comcr = Comatonia cristata, Floas = 

Florometra asperrima, Flose = Florometra serratissima, Prmkg = Promachocrinus kerguelensis). 
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Fig. A34: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-

subfamily variation of Perometrinae. Despite visual separations, there were no significant variations 

within this subfamily (see Fig. 27 for scenario 2 results) (Eryru = Erythrometra rubra, Hypdf = Hypalometra 

defecta, Perdi = Perometra diomedeae). 
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Fig. A35: Scenario 1 PCA (top) and broken stick model (bottom) depicting intra-subfamily 

variation of Thysanometrinae based on all individuals (see Fig. 28 for scenario 2 results) 

(Cocha = Coccometra hagenii, Thyte = Thysanometra tenelloides). 
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Fig. A36: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-

subfamily variation of Antedonidae incertae sedis. Despite visual separations with P. prolixa, there 

were no significant variations within this subfamily (see Fig. 29 for scenario 2 results) (Balba = Balanometra 

balanoides, Hybse = Hybometra senta, Polpx = Poliometra prolixa). 
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Fig. A37: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade M and equivalents. Despite visual separation with P. kerguelensis, there were no 

significant variations within this clade (see Fig. 30 for scenario 2 results) (Anaad = Anthometrina adriani, 

Floas = Florometra asperrima, Flose = Florometra serratissima, Comcr = Comatonia cristata, Prmkg = Promachocrinus 

kerguelensis, Thmtn = Thaumatometra tenuis). 
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Fig. A38: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade N and equivalents. Despite visual separations, there were no significant variations 

within this clade (see Fig. 31 for scenario 2 results) (Antbb = Antedon bifida bifida, Anthp = Antedon hupferi, 

Antmd = Antedon mediterranea, Antpt = Antedon petasus, Troca = Tropiometra carinata). 
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Fig. A39: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade O and equivalents. There were significant affects by taxonomic classification within this 

clade, supporting the visual separation of A. occidentalis (see Fig. 32 for scenario 2 results) (Acfin = Antedon 

c.f. incommoda, Acflv = Antedon c.f. loveni, Andps = Andrometra psyche, Antlv = Antedon loveni, Antse = Antedon serrata, Dcfbr = 

Dorometra c.f. briseis, Dorbr = Dorometra briseis, Apooc = Aporometra occidentalis). 
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Fig. A40: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-clade variation 

of clade P and equivalents. Although the first two PCs are interpretable and there is visual separation of 

bathymetrine T. tenuis, there were no significant variations within this clade (see Fig. 33 for scenario 2 results) 
(Acfpv = Antedon c.f. parviflora, AntpvBE = Antedon parviflora B&E, AntpvCD = Antedon parviflora C&D, Thmtn = Thaumatometra 

tenuis). 



206 
 

 

Fig. A41A: Scenario 1 between group PCA (top) and broken stick model (bottom) depicting intra-clade 

variation of clade ‘unnamed’ and equivalents (see Fig. 34A for scenario 2 results) (Cocha = Coccometra hagenii, 

Hattn = Hathrometra tenella, Isogr = Isometra graminea, Isovv = Isometra vivipara, Perdi = Perometra diomedeae, Polpx = 

Poliometra prolixa, Thyte = Thysanometra tenelloides, Tonsp = Tonrometra spinulifera, Tricb = Trichometra cubensis). 
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Fig. A41B: Scenario 1 results cont’d for intra-clade variation of clade ‘unnamed’ and equivalents. B: BGPCA 

colored by radial ratio showing separation of P. diomedeae and T. tenelloides, supporting the Procrustes 

ANOVA results (see Fig. 34B for scenario 2 results). 
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 Fig. A42A: Scenario 1. A: BGPCA and broken stick model depicting significant variations between all 

species used in this study (see Appendix Fig. 35A for scenario 2 results; see Table 5 for species 

abbreviations) (colored by subfamily: Antedoninae, Bathymetrinae, Heliometrinae, Isometrainae, Thysanometrinae, 

Perometrinae, A. incertae sedis, non-antedonids; symbols by clade:.∆ = clade M,  □ = clade N,  ○ = clade O,  V = clade P, ◊ = 

clade ‘unnamed’,  X = not used in molecular analyses) 
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 Fig. A42B-C: Scenario 1 results model of variations between all species cont’d. B: BGPCA colored by 

depth. C: BGPCA colored by radial ratio (see Fig. 35B-C for scenario 2 results; see Table 5 for species 

abbreviations). 
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  Fig. A42D-E: Scenario 1 results model of variations between all species cont’d. D: BGPCA colored by 

subfamily/family. E: BGPCA colored by clade assignment (see Fig. 35D-E for scenario 2 results; see Table 

5 for species abbreviations). 



211 
 

 

  



212 
 

 



213 
 

 



214 
 

 



215 
 

 



216 
 

 



217 
 

 



218 
 

 



219 
 

 



220 
 

 



221 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



222 
 

 

Fig. A43: Scenario 1 UPGMA Hierarchical clustering model based on Procrustes distances; colored by 

broad radial ratio (<1.0 = gray, ≥1.0 = black) with specific ratios at species terminals (see Fig. 40 for 

scenario 2 results). 
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B. Appendix B 

 

Fig. B1: SEM images of Antedon c.f. incommoda. A: specimen A; B: specimen B. 
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 Fig. B2: SEM images of Antedon c.f. loveni. A-D: specimen F; E-H: specimen G 
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Fig. B3: SEM images of Antedon c.f. parviflora, specimen F. 
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Fig. B4: SEM images of Anthometrina adriani. A-C: specimen A; D: specimen B; E-F: specimen C; G: specimen D; H-J: specimen E 
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Fig. B5: SEM images of Andrometra psyche. A-B: specimen A; C: specimen B; D: specimen C 
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Fig. B6: SEM images of Antedon bifida bifida. A-C: specimen A; D-E: specimen C; F-H: specimen D; I-J: specimen E. 
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 Fig. B7: SEM images of Antedon hupferi. A: specimen A; B-D: specimen B; E: specimen C; F-H: specimen D. 
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Fig. B8: SEM images of Antedon loveni. A-B: specimen A; C-D: specimen B; E-F: specimen C; G-H: specimen D; I-J: specimen E 
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 Fig. B9: SEM images of Antedon mediterranea. A-B: specimen A; C: specimen C; D-F: specimen D; G-H: specimen E 
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Fig. B10: SEM images of Antedon petasus. A-B: specimen A; C: specimen C; D: specimen D. 
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Fig. B11: SEM images of Antedon parviflora B & E. A: specimen B; B: specimen E. 

Fig. B12: SEM images of Antedon parviflora C & D. A: specimen C; B: specimen D. 
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Fig. B13: SEM images of Antedon serrata. A-B: specimen A; C: specimen B. 
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 Fig. B14: SEM images of Aporometra occidentalis. A: specimen A; B-D: specimen B; E-F: specimen C. 
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Fig. B15: SEM image of Balanometra balanoides (only one ossicle was 

successfully imaged in this study). 
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Fig. B16: SEM images of Coccometra hagenii. A: specimen A; B-D: specimen C; E-I: specimen D; J-N: specimen F. 
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Fig. B17: SEM images of Comatonia cristata. A-C: specimen B; D-E: specimen C. 
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Fig. B18: SEM images of Ctenantedon kinziei. A-B: specimen A; C-D: specimen C; E-G: specimen D.  
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Fig. B19: SEM images of Dorometra c.f. briseis, specimen C.  
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Fig. B20: SEM images of Dorometra briseis. A-B: specimen A; C: specimen B.  
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Fig. B21: SEM images of Dorometra parvicirra. A: specimen A; B-D: specimen B; E: specimen C. 
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 Fig. B22: SEM images of Erythrometra rubra. A: specimen A; B: specimen B. 
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Fig. B23: SEM images of Florometra asperrima. A-C: specimen A; D-E: specimen B; F-G: specimen C; H-I: specimen D; J-L: specimen E. 
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Fig. B24: SEM images of Florometra serratissima, specimen B. 



246 
 

 Fig. B25: SEM images of Hathrometra tenella. A-C: specimen A; D: specimen B; E: specimen D; F-G: specimen E. 
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Fig. B26: SEM images of Hybometra senta. A-B: specimen A; C-D: specimen C; E-F: specimen D; G: specimen E. 
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Fig. B27: SEM images of Hypalometra defecta. A: specimen A; B-C: specimen B; D: specimen D; E: specimen F; F-G: specimen G. 
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Fig. B28: SEM images of Isometra graminea. A-B: specimen A; C: specimen C. 
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Fig. B29; SEM image of Isometra vivipara (only one 

ossicle was successfully images in this study).  

Fig. B30: SEM images of Iridometra adrestine. A: specimen B; B: specimen C.  
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Fig. B31: SEM images of Notocrinus virilis. A-C: specimen A; D: specimen B; E-G: specimen C. 
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Fig. B32: SEM images of Perometra diomedeae. A-B: specimen A; C-D: specimen B. 
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Fig. B33: SEM images of Poliometra prolixa. A-B: specimen A; C: specimen B. 
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 Fig. B34: SEM images of Promachocrinus kerguelensis, specimen A. 
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Fig. B35: SEM images of Psathyrometra sp. A: specimen B; B-C: specimen C; D-E: specimen D; F-G: specimen E. 
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Fig. B36: SEM images of Thaumatometra tenuis, specimen B. 
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Fig. B37: SEM images of Thysanometra tenelloides. A: specimen B; B-D: specimen C; E-H: specimen D; I: specimen E; J-K: specimen G. 
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Fig. B38: SEM images of Tonrometra spinulifera. A-B: specimen A; C: specimen B; D: specimen C; E-G: specimen E. 
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Fig. B39: SEM images of Trichometra cubensis, specimen E. 
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Fig. B40: SEM images of Tropiometra carinata. A-B: specimen A; C-E: specimen D; F: specimen E. 
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