4-20-2020

Development of "Sharkavir": A Hypothetical Inhibitor for HIV-1 Protease

Matthew Hunt
Feza Abbas
Lyla Abbas
Mina Ghali
Helana Ghali

See next page for additional authors

Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facpres

Part of the Biology Commons
Authors
Matthew Hunt, Feza Abbas, Lyla Abbas, Mina Ghali, Helana Ghali, Alesa Chabbra, Emily Schmitt Lavin, and Arthur Sikora
Development of “Sharkavir”: A New Hypothetical Inhibitor for HIV-1 Protease

Matthew Hunt1, Feza Abbas2, Lyla Abbas1, Mina Ghali1, Helana Ghali1, Alesa Chhabra1, Emily Schmitt Lavin1, and Arthur Sikora2
1Department of Biological Sciences, 2Department of Chemistry and Physics; Halms College of Natural Sciences and Oceanography
Nova Southeastern University, Ft. Lauderdale, FL 33314

Research Question

How can molecular models be used to simulate the binding of various HIV-1 protease inhibitors including Darunavir, Ritonavir, and a novel combination of these two named “Sharkavir”?

Introduction

HIV has infected approximately 37 million people worldwide and results in over 1 million deaths annually. A key component of the HIV life cycle is the enzyme HIV-1 protease, which is involved in cutting newly made protein components of the HIV virion (NIH, 2020). One of the primary forms of treatment for HIV is to inhibit its protease through a variety of competitive inhibitors; however, multiple mutations in HIV-1 protease have caused these inhibitors to be less effective (Figure 1). We collaborated with the CREST (Connecting Researchers, Educators and Students) Program of the Center for Biomolecular Modeling (CBM) to depict this process (Herman et al., 2006; Procko et al., 2019). Our CREST Team prepared a molecular model explaining HIV-1 protease (Figure 2) and two of its potent inhibitors Darunavir (DRV) and Ritonavir (RTV), which are both aspartic proteases that result in peptide cleavage (Figure 3). DRV and RTV are being prescribed as a mixed dose of both drugs as they are shown to be more effective in combination than by administering one of these drugs alone (Datta et al., 2019). Inspired by this, we designed a hybrid of these two inhibitors, which we named “Sharkavir”, and used our molecular model to show how this inhibitor would bind to HIV-1 protease. The active site of HIV-1 protease (Surialla et al., 2005) was depicted as a binding box model. The protease inhibitors DRV (Mittal et al., 2010) and RTV (Prabhu-Jeyabalan et al., 2003) were 3-D printed to show how they fit into the protease active site.

Results - Model Information

Protease Inhibitors (Figure 4): Darunavir, Ritonavir, and “Sharkavir” (a molecular combination of Darunavir and Ritonavir) were prepared in spacefill mode with light cpk (standard chemical element colors) to show their binding to the active site box model. The hydroxides that interact with the Asp 25 residues in the catalytic triad of aspartic proteases mechanism were noted with a green asterisk.

HIV-1 Protease Active Site Binding Box (Figures 5a and b):
- Two homodimers of HIV-1 protease shown in light yellow (lemonchiffon) and tan
- Catalytic triad containing Asp 25, Thr 26, and Gly 27 colored orange/salmon
- Five key amino acids in the active site that often mutate, leading to less specific binding with their substrate inhibitors: Asp 30, Gly 48, Ile 50, Val 82, and Ile 84: shown in standard cpk colors
- Sharkavir bound to HIV-1 protease along with catalytic Asp 25 residues (Figure 6)
- Each 3-D printed inhibitor can be manipulated to fit into the HIV-1 protease binding box model.

Discussion

The development of Sharkavir was based on structures of established inhibitors (DRV and RTV) and can be used as a model towards the in-silico development of inhibitory antibiotic molecules, a wide variety of enzymes. Sharkavir maintains the benzyl ring that is sensed by the specificity pocket consisting of Ile 84, Ile 50 and Val 82. The hydroxide that mimics the tetrahedral intermediate of the substrate fits between the catalytic Asp 25 residues at the dimerization interface. Using the chemical hallmarks present in known inhibitory molecules, combinatorial drugs can be modeled, and subsequently synthesized for targeted drug testing. Future steps for this project could involve synthesizing the molecule in the laboratory for inhibitor testing and crystallographic studies. The molecular modeling techniques described are accessible to students and researchers from a wide range of STEM fields and is a scientific and a more first step in the long and costly drug design process. As more undergraduate students are thinking about biochemical research concepts and computational tools becoming ubiquitous, this style of project is very promising for research labs and as part of Course-Based Undergraduate Research Experiences (CUREs).

Applications

3-D Molecular Models:
- Visually represent molecular processes assisting in health and student education
- Communicate ideas to others in the scientific community
- Assist in the development of novel drugs that can serve as enzyme inhibitors

Literature Cited


Acknowledgments

We would like to thank the Center for BioMolecular Modeling (CBM), who awarded a travel and education grant to E. Schmitt Lavin, and a special thanks to Dr. Margaret Franzen for her guidance on this project. In addition, we want to thank the entire team at the CBM for their encouragement, support, and making this project accessible and cost-effective. We are appreciative of the CREST program for supporting and making this project possible. Special thanks to Craig Lavin for photographing the molecular models.