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Abstract 

 Cooperation is a trait that is found at all levels of biological organization. 

Interestingly, cooperation appears to occur in bacteria that produce small, easily diffusible 

molecules called autoinducers. To understand why bacteria produce these autoinducers, 

the scientific community has focused on one predominant theory called quorum sensing. 

Under this theory, bacteria produce autoinducers so they can sense the density of the 

population. Once a sufficiently high population density is reached, autoinducers initiate the 

production of a costly gene product that serves to benefit the population. In contrast, a 

competing theory called diffusion sensing suggests that autoinducers are used by the 

individual cells and are not used for cooperation. Here, the production of the autoinducer 

serves as a mechanism to sense environmental conditions. If the environmental conditions 

are favorable, a costly gene product is produced. To what extent, and under what 

conditions, are each of these opposing theories valid remains to be identified. In this thesis, 

an engineered strain of Escherichia coli was used to identify the conditions under which 

quorum sensing and diffusing sensing can be observed. It was discovered that, depending 

upon the frequency at which the spatial distribution of the autoinducer and bacteria was 

disrupted, the population of engineered bacteria displayed hallmarks of either quorum 

sensing or diffusion sensing. Specifically, when the spatial distribution was disturbed at 

high or low frequency, quorum sensing was observed. However, when spatial distribution 

was disturbed at an intermediate frequency, diffusion sensing was observed. Understanding 

how these disturbances affect survival in bacteria may result in novel treatments for 

bacterial infections. In more general applications, it may be exploited in the development 

of alternative mechanisms for controlling invasive species or aid in species reintroduction. 

Keywords: quorum sensing, diffusion sensing, synthetic biology, cooperation 



6 
 

  

List of Figures 

Figure 1: The general mechanism of the LuxI/LuxR quorum sensing in Vibrio fischeri 

Figure 2: The central tenant of the diffusion sensing theory 

Figure 3: The core features of a gene circuit 

Figure 4: Activation of the promoter through external factors leads to transcription of 

a desired protein 

Figure 5: A synthetic gene circuit that confers an Allee effect to a population of bacteria 

Figure 6: Increasing agar percentages in the medium decreased bacterial dispersal rate 

Figure 7: Increasing agar percentages in the medium decreased movement of bacterial 

cells shaken in the microplate 

Figure 8: Growth and translation rates of the engineered bacteria were not affected by 

shaking of the microplate 

Figure 9: Increasing agar percentage in the medium decreased the diffusion rate of AHL 

Figure 10: Verification of circuit functionality in the experimental setup   

Figure 11: The concentration of agar in the medium affects bacteria survival when the 

cells are shaken at an intermediate frequency. 

Figure 12: CCRIT was statistically equivalent for bacteria grown in all agar densities 

when shaken at low frequency 



7 
 

  

Figure 13: CCRIT was statistically equivalent for bacteria grown in all agar densities 

when shaken at high frequency 

Figure 14: Summary figure showing CCRIT values of engineered bacteria grown in 

medium with different agar densities and at different shaking frequencies demonstrated 

the core facets of both quorum sensing and diffusion sensing 

Figure 15: Stabilization of AHL reduced CCRIT in cells grown in 0% agar and 0.2% 

agar, but had no effect on CCRIT in cells grown in 0.4% agar when shaken at intermediate 

frequency 

Figure 16: Stabilization of AHL decreased CCRIT in bacteria grown in 0.4% agar, but 

had no effect on bacteria grown in 0% agar and 0.2% agar when shaken at low 

frequency. 

Figure 17: Stabilization of AHL had no effect on CCRIT for bacteria shaken at high 

frequency 

Figure 18: CCRIT was not affected evenly when AHL was stabilized 

Figure 19: Mixing the bacteria in media caused an increase in CCRIT for bacteria grown 

in 0.4% agar 

 

 



8 
 

  

List of Abbreviations 

AHL: acyl homoserine lactone 

3OC6-HSL: 3-oxo-hexanoyl-homoserine lactone 

3OC12-HSL: 3-oxo-dodecanoyl-homoserine lactone 

C4-HSL: butanoyl-homoserine lactone 

AIPs: autoinducing peptides 

ABC: ATP-binding cassette 

RNA: ribonucleic acid 

GFP: green fluorescent protein 

fL: femtoliter  

DNA: deoxyribonucleic acid 

RBS: ribosomal binding site 

mRNA: messenger ribonucleic acid 

MOPS: 3-(N-morpholino) propanesulfonic acid 

LB: Luria-Bertani 

IPTG: isopropyl -D-1-thiogalactopyranoside 

OD600: Cell density/Optical density at wavelength 600 nm 

CFU: colony forming unit 

atc: anhydrotetracycline 

FITC: fluorescein isothiocyanate 

a.u.: arbitrary units 

 



9 
 

  

Introduction 

Cooperation in biology  

Natural selection favors genes that increase an organism’s chance of survival so it 

can reproduce, passing on these favorable genes in the process. This suggests that the world 

should be dominated by selfish behaviors. Contrary to this assumption, cooperation can be 

found at all levels of biological organization: genes cooperate within genomes, organelles 

cooperate within eukaryotic cells, cells cooperate to form multicellular organisms, and 

individuals cooperate to form societies (S A West, Griffin, & Gardner, 2007a). For a 

behavior to be considered cooperative, it must provide a benefit to another individual, and 

it must have partially evolved because of this benefit (S A West et al., 2007a; S A West, 

Griffin, & Gardner, 2007b). While cooperation is observed in many multicellular 

organisms, it is also observed in single celled organisms such as bacteria. This has led to a 

need for research regarding the adaptive significance of cooperation in bacteria.  

The adaptive significance of cooperation 

Understanding how cooperation has evolved has challenged evolutionary biologists 

since natural selection favors selfish behaviors and uncooperative individuals (Brockhurst, 

Habets, Libberton, Buckling, & Gardner, 2010; Diggle, Gardner, West, & Griffin, 2007; 

Griffin, West, & Buckling, 2004). However, cooperation can be seen in multiple species 

where the benefit for the individual is not to procreate, but to aid the colony or population 

in survival (e.g., kin selection). For example, social insects, such as bees and ants, have 

sterile workers that contribute to the fitness of the colony although they have no chance of 

reproducing themselves (C. M. Waters & Bassler, 2005). The same can be said for 
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meerkats, in which groups of 30 adults live together and are divided into the dominant male 

and female, who do most of the breeding, and the subordinates, who help with raising the 

offspring (S A West et al., 2007a). This can be explained by Hamilton’s theory in which 

the individuals that cooperate within a community promote the inheritance of their own 

genes when they contribute to the fitness of closely related kin (Kreft, 2004; C. M. Waters 

& Bassler, 2005). A similar mechanism is found in bacteria.  

 Bacteria display a stunning array of behaviors that facilitate cooperation so that 

they can perform actions such as dispersal, foraging, biofilm formation, chemical warfare, 

signaling, and reproduction (Velicer & Yu, 2003; Velicer, 2003; Stuart A West, Diggle, 

Buckling, Gardner, & Griffin, 2007; Stuart A West, Griffin, Gardner, & Diggle, 2006). 

These behaviors are a result of the secretion of extracellular molecules, called autoinducers 

or ‘public goods’ into the environment (Driscoll, Espinosa, Eldakar, & Hackett, 2013; 

Sanchez & Gore, 2013).  

The bacterium Myxococcus xanthus provides an example in which individuals 

within the colony sacrifice themselves for the good of the population (C. M. Waters & 

Bassler, 2005). M. xanthus is a soil dwelling bacterium that, when nutrients become scarce, 

produce spores that can survive nonvegetatively for long periods of time while being 

dispersed to new environments (Velicer & Yu, 2003; C. M. Waters & Bassler, 2005). To 

produce these spores, a large percent of the population must endure a lethal differentiation 

event to form structures that function to promote spore generation and dispersal (C. M. 

Waters & Bassler, 2005). This is achieved through the detection of amino acids acting as 

communication molecules that are produced by M. xanthus when starvation conditions are 

also present, leading to the production of a spore-filled fruiting body (Bassler & Losick, 
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2006; Shapiro, 1998). M. xanthus also demonstrates a socially dependent swarming 

behavior that allows the population to pursue bacterial prey that can be visualized as 

behavior similar to how wolves hunt in packs (Crespi, 2001; Diggle et al., 2007).  

Biofilm formation demonstrates another behavior found in bacteria that mimics 

cooperative behaviors found in higher-level organisms. Bacteria use autoinducers to form 

biofilms (T. F. C. Mah & O’Toole, 2001) which can serve as sites for offspring production, 

similar to hives, nests, or burrows seen in higher organisms (Crespi, 2001). Furthermore, 

biofilms found on human teeth provide an environment that allows for both intra and inter-

species interactions (Diggle et al., 2007). 

Understanding why cooperation occurs is of paramount importance as several 

theories suggest that cooperation should not be maintained in a population (Diggle et al., 

2007; S A West et al., 2007b). Costly cooperative strategies make the population more 

vulnerable to exploitation by “cheaters” that do not participate in cooperation, but take 

advantage of the benefits produced by the cooperating individuals (Celiker & Gore, 2012; 

Diggle et al., 2007). This problem is termed the “tragedy of the commons.” The tragedy of 

the commons is an evolutionary paradox in which the short-term interests of individuals 

can lead to negative long-term consequences for a population. Here, the selfish actions of 

individuals within a population can lead to the collapse of resources, which in turn can 

result in the extinction of a population (Hardin, 2009; Lampert & Tlusty, 2011; MacLean, 

2007; Rankin, Bargum, & Kokko, 2007). While the tragedy of the commons has been most 

widely studied in the context of evolutionary biology, it has also been observed in other 

fields, widely ranging from ecology to economics.  
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 Protecting shared common resources (or public goods) from the acts of selfish 

individuals (or cheaters) is difficult due to the competitive advantage that cheaters receive 

as compared to their non-cheating (or cooperator) counterparts (Kreft, 2004). Specifically, 

cheaters are afforded an economic advantage while passing the cost on to the remainder of 

the cooperating population. Such a scenario is prevalent in evolutionary biology. Here, a 

cooperating population produces a freely sharable ‘public good’ that benefits individuals 

that participate in cooperation, and thus benefits the entire population (Pai, Tanouchi, & 

You, 2012). The production of the public good comes at a cost, which may be manifested 

as increased injury, a metabolic burden, or death. Such populations are prone to infiltration 

by cheaters, which can take advantage, but not produce, the public good (Hibbing, Fuqua, 

Parsek, & Peterson, 2010). Furthermore, as the cheaters do not produce the public good, 

they do not pay the ‘cost’ of cooperation, and thus have a fitness advantage (Rankin et al., 

2007).  

Cell-to-cell communication in bacteria 

 Bacteria were thought to be self-contained entities that lacked the sophistication of 

higher organisms which are organized into multicellular groups and communicate amongst 

one another (Greenberg, 2003b). This idea has since become obsolete, as it is now known 

that bacteria can organize into groups and communicate amongst themselves, as well as 

with their eukaryotic hosts (Henke & Bassler, 2004). It is now widely accepted that bacteria 

produce and respond to chemical signals, and these coordinated actions lead to group 

activities (Greenberg, 2003a; Schertzer, Boulette, & Whiteley, 2009). This includes 

secretion of virulence factors (Antunes, Ferreira, Buckner, & Finlay, 2010; Henke & 

Bassler, 2004; Ji, Beavis, & Novick, 1995), biofilm formation (Greenberg, 2003a, 2003b; 
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T. F. C. Mah & O’Toole, 2001; T.-F. Mah et al., 2003), bioluminescence (Miller & Bassler, 

2001), sporulation (De Kievit & Iglewski, 2000), and antibiotic resistance (T.-F. Mah et 

al., 2003; Stewart & Costerton, 2001). 

Bacteria communication occurs through the use of chemical signals referred to as 

autoinducers. As the population of bacteria increases in density, the autoinducers produced 

by the bacteria also increase in density. Once the bacteria reach a particular density, and 

the autoinducer is at a sufficiently high concentration, gene expression is altered (C. M. 

Waters & Bassler, 2005).  

The theory of quorum sensing  

 In spite of the “tragedy of the commons,” cell communication can still persist in 

bacterial populations, even in the presence of cheaters (Dandekar, Chugani, & Greenberg, 

2012; Keller & Surette, 2006b; Stevens, Schuster, & Rumbaugh, 2012). This suggests that 

communication is of paramount importance in some bacteria, thus demonstrating its 

adaptive usefulness. Previous studies (Skindersoe et al., 2008; Walters & Sperandio, 2006; 

Widder, 2010) have examined the specific adaptive significance of communication in 

bacteria and have attempted to develop theories to explain its importance.  

One theory as to why bacteria communicate, and thus cooperate, is quorum sensing. 

Quorum sensing is the process used by bacteria to regulate gene expression in response to 

changes in cell population density (Darch, West, Winzer, & Diggle, 2012; Ji et al., 1995; 

Miller & Bassler, 2001; Pai et al., 2012; Platt & Fuqua, 2010; Stuart A. West, Winzer, 

Gardner, & Diggle, 2012) through the secretion and detection of small molecules that are 

present within a population (Schertzer et al., 2009; Stuart A. West et al., 2012). Through 
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this process, bacteria can express traits that are energetically expensive, but only when the 

benefit to the host will be maximized (Pai et al., 2012; Rutherford & Bassler, 2012).  

Quorum sensing is viewed as a mechanism to coordinate these cooperative behaviors in 

bacteria (Diggle et al., 2007; Schertzer et al., 2009). More specifically, it allows bacteria 

to assess cell density, and only after a threshold density has been obtained, allows for 

subsequent cooperation (Diggle et al., 2007; Lampert & Tlusty, 2011; Ross-Gillespie, 

Gardner, Buckling, West, & Griffin, 2009). This is because many cooperative behaviors 

would not be advantageous at low cell densities, so a communicative signal is used to 

inform the population when there are sufficient individuals present (Diggle et al., 2007; 

Platt & Fuqua, 2010). As such, quorum sensing is viewed as a predominantly social, or 

cooperative, trait. 

 Vibrio fischeri is a bioluminescent marine bacterium that has a symbiotic 

relationship with a variety of eukaryotic hosts and is the most intensely studied in terms of 

quorum sensing (Antunes et al., 2010; Miller & Bassler, 2001). It has often been considered 

the paradigm for quorum sensing in gram-negative bacteria (C. M. Waters & Bassler, 

2005). V. fischeri was initially found in the light organ of the Hawaiian bobtail squid, 

Euprymna scolopes, and it was observed that for the organ to emit light, the bacteria needed 

to reach a sufficiently high cell density (Alberghini et al., 2009; Miller & Bassler, 2001; E. 

Waters et al., 2003). In this example, the squid used the light to avoid predation by using 

the light to counter-illuminate itself (Miller & Bassler, 2001; C. M. Waters & Bassler, 

2005). This counter-illumination prevented a shadow from being cast beneath the squid on 

nights when the light from the moon and stars illuminates the ocean water (Miller & 

Bassler, 2001). In other examples, such as in the fish Monocentris japonicus, the light is 
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used to attract mates (Miller & Bassler, 2001). The uses of the light produced by V. fischeri 

vary depending on the organism. 

  In V. fischeri, quorum sensing is controlled by two regulatory proteins, LuxI and 

LuxR, which together regulate the expression of the luciferase operon, luxICDABE (C. M. 

Waters & Bassler, 2005). This is the case regardless of the host that harbors the bacteria to 

produce light (Miller & Bassler, 2001). LuxI is the autoinducer synthase enzyme, which is 

responsible for producing AHL (Miller & Bassler, 2001; C. M. Waters & Bassler, 2005), 

specifically 3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) (Schuster, Joseph Sexton, 

Diggle, & Peter Greenberg, 2013). LuxR has dual functions; it binds to the autoinducer 

and, bound with AHL, activates transcription of the luxICDABE operon (Miller & Bassler, 

2001; C. M. Waters & Bassler, 2005). As AHL is produced, it diffuses freely across the 

cell membrane, increasing in concentration in the environment as the cell density increases 

(Schuster et al., 2013; C. M. Waters & Bassler, 2005). Once the concentration of AHL 

reaches a critical threshold, it is bound by LuxR (Miller & Bassler, 2001; C. M. Waters & 

Bassler, 2005). This in turn activates the expression of the targeted gene (Figure 1). The 

luxI gene is also regulated by quorum sensing (Miller & Bassler, 2001; Schuster et al., 

2013; C. M. Waters & Bassler, 2005) and is activated by the AHL-bound LuxR providing 

hysteresis to the system (Schuster et al., 2013). This configuration allows the environment 

to be flooded with the AHL signal, creating a positive feedback loop; the entire population 

is switched into the quorum sensing mode and light is produced (C. M. Waters & Bassler, 

2005) (Figure 1). 
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The autoinducer that is used for quorum sensing varies amongst bacterial species. 

In gram-negative bacteria, most of the quorum sensing circuits that have been identified 

resemble the canonical system that is found in V. fischeri (Miller & Bassler, 2001). Another 

bacterium, which uses quorum sensing and that has been extensively studied, is 

Pseudomonas aeruginosa. P. aeruginosa is an opportunistic pathogen that has the ability 

to affect a range of hosts, including plants, insects, and mammals (Schuster et al., 2013). 

Humans that have compromised immune systems are particularly vulnerable to P. 

aeruginosa, which colonizes in the lungs of people with cystic fibrosis (Camilli & Bassler, 

2006). P. aeruginosa has two complete AHL regulated circuits, LasR-LasI and RhlR-RhlI; 

both circuits are composed of a receptor resembling LuxR and a synthase like LuxI 

(Schuster et al., 2013; Williams & Cámara, 2009). The autoinducer that is produced by 

LasR is a 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) while the one produced by 

RhlI is a butanoyl-homoserine lactone (C4-HSL) (Schuster et al., 2013). Many of the 

products that are produced by these systems are considered to be virulence factors because 

of the damage caused to the tissues of the host (Schuster et al., 2013; Van Delden & 

Iglewski, 1998). 

Figure 1: The general mechanism of the 

LuxI/LuxR quorum sensing in Vibrio 

fischeri   

In V. fischeri, quorum sensing is controlled by 

two regulatory proteins, LuxI (green circle) 

and LuxR (blue rectangles). LuxI produces the 

autoinducer AHL (orange triangles). As the 

density of the population of bacteria increases, 

so does the concentration of AHL. Once the 

cell population (and AHL) reaches a high 

enough density, the AHL binds to the receptor 

LuxR. LuxR then attaches to the promoter, 

altering gene expression, and produces light 

from the luxICDABE gene (Miller & Bassler, 

2001; C. M. Waters & Bassler, 2005).  
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Gram-positive bacteria also regulate a number of processes using quorum sensing. 

However, they employ a different type of autoinducer than those used by Gram-negative 

bacteria. Gram-positive bacteria use autoinducing peptides (AIPs) as their signaling 

molecules (Miller & Bassler, 2001; Rutherford & Bassler, 2012; E. Waters et al., 2003). 

As with Gram-negative bacteria, these signals are specific to the bacterium that uses it (C. 

M. Waters & Bassler, 2005). This signal gets transported out of the cell through an ATP-

binding cassette (ABC) transporter (Kleerebezem, Quadri, Kuipers, & de Vos, 1997; Miller 

& Bassler, 2001). Once the extracellular level of the AIPs reaches a sufficiently high 

concentration, it binds to a two-component histidine kinase receptor located in the cell 

membrane (Miller & Bassler, 2001; Rutherford & Bassler, 2012). This two-component 

regulatory system uses phosphorylation to transfer information. This system is composed 

of a sensor and response-regulator protein to form a mechanism for signal transduction in 

bacteria (Kleerebezem et al., 1997). The sensor kinase autophosphorylates on a conserved 

histidine residue then transfers the phosphoryl group to the response-regulator protein, 

which is also phosphorylated (Miller & Bassler, 2001). Changes in gene expression within 

the cell subsequently ensue and often involve the expression of virulence factors such as 

toxins.  

There are also examples that demonstrate how quorum sensing is maintained in the 

presence of cheating populations. Some mutants that form within a population of V. fischeri 

are incapable of luciferase production. These cheater bacteria are outcompeted by the wild-

type, cooperative bacteria in the host, indicating that the host may possess a policing 

mechanism that eliminates cheaters (C. M. Waters & Bassler, 2005). Another example can 

be found in the bacterium Agrobacterium tumefaciens, a plant pathogen that induces the 
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development of tumors on wound sites of the host plant (Joint, Allan Downie, & Williams, 

2007; C. M. Waters & Bassler, 2005).  A. tumefaciens uses quorum sensing to induce 

virulence factors that allow for the formation of crown gall tumors on the wound sites of 

host plants (Joint et al., 2007). Interestingly, as the bacterial density increases, depleting 

the nutrients available, there is an increase in bacterial conjugation, which in turn leads to 

a higher copy number of the Ti plasmid, a plasmid that is critical in the infection process 

(C. M. Waters & Bassler, 2005). Quorum sensing is required for both of these events to 

occur, and in turn, most of the bacteria receive copies of the plasmid before they 

disseminate and become infective in a new location (C. M. Waters & Bassler, 2005). 

These are only a few examples of quorum sensing. As there are many systems that 

require a high cell density to express a costly trait, this has given rise to the assumption that 

quorum sensing is a cooperative trait. For the population to work as a group, a sufficiently 

large population needs to be present, and only then will a costly product be produced from 

which all of the cells will benefit.  

The theory of diffusion sensing  

 While the majority of the scientific community has accepted that cell 

communication in bacteria is a cooperative trait, in recent years alternative theories have 

been gaining ground. One opposing theory, diffusion sensing, suggests that the function of 

autoinducers is to enable individual cells to sense how quickly the molecules secreted by 

the cell diffuse away (Redfield, 2002; Von Bodman, Willey, & Diggle, 2008; Stuart A. 

West et al., 2012) (Figure 2).  The theory of diffusion sensing was first introduced by 

Redfield in 2002. In her manuscript, she points out that the genes for quorum sensing would 
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evolve only if the cells that are investing the individual resources for the good of the 

population reproduced better that the cells that used these goods selfishly. Maintaining 

cooperative genes therefore would be difficult, especially in mixed populations, because 

selection will favor for any selfish cells that can reap the benefits without having to produce 

the costly good (i.e., the tragedy of the commons) (Redfield, 2002). As such, 

communication in bacteria is likely an adaptive strategy to benefit the individual cell and 

not the population (Alberghini et al., 2009).  

One key prediction of diffusion sensing is that the environment should dictate 

whether an autoinducer regulated costly product is made by the individual cell (Williams, 

Winzer, Chan, & Cámara, 2007). This contrasts to quorum sensing where the production 

of a costly product is solely dependent upon cell density, and not the environment 

(Williams et al., 2007). Environmental factors that can vary include temperature, pH, 

osmolarity, nutrient availability, spatial structure and diffusion rate of substances in the 

environment (Williams et al., 2007). 

 

Figure 2: The central tenant of the diffusion sensing theory 

The theory of diffusion sensing suggests that the function of the autoinducer is to aid the cells in sensing how quickly 

the autoinducer diffuses away. Here, environmental factors such as temperature, spatial structure, or viscosity, control 

this diffusion rate and thus determine the potential benefit of producing a costly exoproduct. The cells (green ovals) 

on the left have AHL (red triangles) diffusing away quicker than the cells on the right. Therefore, the cells on the left 

will not produce a costly product, while the cells on the right, sensing more of the AHL in their environment, will 

(Redfield, 2002; Von Bodman et al., 2008; Stuart A. West et al., 2012). 
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Several studies have produced results that support the diffusion sensing theory. 

Staphylococcus aureus is a Gram-positive bacterium that causes local and systemic 

infections in mammals that can range from minor infections to life-threatening conditions 

such as toxic shock syndrome and endocarditis (Shompole et al., 2003). Establishment of 

a S. aureus infection within a host involves attachment, a coordination of host defense 

elusion, and tissue invasion, all of which involve several independent virulence factors that 

fall under the control of the Agr-regulatory system (Shompole et al., 2003). The authors 

were able to demonstrate that the S. aureus Agr-regulatory system can be induced after 

internalization within epithelial cells. The endosomal compartment provides a restricted 

microenvironment. This allows for the secreted autoinducers to increase in concentration 

to saturation levels using a single bacterium or a small cluster of bacterial cells. The 

autoinducers, which were previously thought to be used to sense population density, are 

instead believed to be involved in assessing the frequency at which secreted molecules 

diffuse from the cell(s). Once enough of the autoinducer accumulates in this 

microenvironment, it initiates a cascade of signaling events to activate the virulence factors 

that are required to escape from the endosome. This data indicates that Agr-mediated 

regulation can support the diffusion sensing hypothesis because it can be induced by a 

single bacterium or a small bacterial cluster (Shompole et al., 2003). To experimentally 

confirm that induction was occurring inside the endosome, the authors used the RNAIII 

promoter to drive the expression of green fluorescent protein (GFP). The expression of 

GFP was observed as early as one hour post invasion, meaning that induction occurred 

while the bacteria were still in the endosome and that activation of the RNAIII promoter 

occurred without the presence of bacterial clusters (Shompole et al., 2003).  
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In another example using S. aureus, Carnes et al. (2010) were able to demonstrate 

adaption and survival through self-induction, which resulted in genetic reprogramming in 

isolated individual organisms. The authors were able to observe activation of autoinducer 

regulated genes in isolated, individual cells using a matrix that was designed at a 

sufficiently small physical scale where the overall cell density surpassed the reported 

activation threshold. Using this system, where S. aureus was individually contained within 

a small volume, it could sense and respond to confinement as the autoinducer accumulated, 

allowing for activation of the regulatory system. Their results demonstrate that under 

certain conditions, induction can occur independently of both cellular density and spatial 

distribution of cells, confirming one experimental condition of the diffusion sensing 

hypothesis (Carnes et al., 2010).  

Using P. aeruginosa, Boedicker et al. (2009) demonstrated that they could initiate 

changes in gene expression due to cell communication using one to three cells. To 

investigate how these changes in gene expression could be initiated by a small group of 

cells, they used a previously described microfluidic technique (Park, Hur, Kwon, Park, & 

Suh, 2006). Once the bacteria were confined to volumes of approximately 100 fL, these 

small groups of P. aeruginosa were able to initiate expression of genes regulated through 

cell-to-cell communication (Boedicker, Vincent, & Ismagilov, 2009). These results 

accentuate that a few cells can induce such genes when restricted to a confined environment 

and that confinement may play a role in the association between virulence in pathogens 

and cell-to-cell communication (Boedicker et al., 2009). 
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Significance of understanding cooperation and communication in bacteria 

Microbes offer numerous opportunities for ecologists and evolutionary biologists 

who study social evolution (Stuart A West et al., 2007). First, a significant amount of 

microbiology requires an evolutionary explanation (Stuart A West et al., 2007). 

Cooperation is abundant in the natural world, therefore the mechanisms that maintain it 

must exist, especially since the spread of cheaters is so prevalent (Von Bodman et al., 

2008). Communication and cooperation in bacteria are very important. For example, in the 

bacterium P. aeruginosa, 6-10% of its genes are controlled by cell-cell communication 

systems (Stuart A West et al., 2007). To better understand the evolution of cooperation, 

explaining it in microbes may provide valuable insights (Stuart A West et al., 2007). 

Second, the development of the social evolution theory was to aid in the explanation 

of known behaviors in animals such as insects, birds, and mammals (Stuart A West et al., 

2007). For example, a familiar feature of social cooperation demonstrated by 

macroorganisms is the concept of a shared shelter, which is also seen in microbes in biofilm 

formation (Crespi, 2001). Another form of cooperation in many species involves food 

acquisition. Some vertebrates work together to subdue prey larger than themselves while 

smaller invertebrates coordinate mass attacks. In some bacteria (M. xanthus for example) 

this behavior can be observed when they attack other, larger bacteria for consumption 

(Crespi, 2001). Because microbes have such a wide variety of social behaviors, this 

presents a unique opportunity to test how these behaviors can be applied to other taxa 

(Stuart A West et al., 2007). Gaining a better understanding of how these cooperative 

behaviors have evolved may elucidate key evolutionary steps that led us to the complexity 

of multicellular organisms (Celiker & Gore, 2013).  
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Third, microbes are incredibly amenable to evolutionary theory experimentation as 

they have short generation times. This makes long-term evolution experiments more 

practical and altering gene expression (from cooperators to cheaters) is relatively easy 

(Celiker & Gore, 2013; Stuart A West et al., 2007).  

Fourth, the social behaviors of microbes impact human lives in many ways. 

Cooperative behaviors found in microbes can harm humans, livestock, and agricultural 

crops through infection, while at the same time provide beneficial services by breaking 

down waste or though symbiotic relationships with other taxa (Stuart A West et al., 2007). 

Most cellular cooperation involves the production of a public good that benefits the other 

cells in the population (Celiker & Gore, 2013). These public goods include autoinducers, 

antibiotics, siderophores, extracellular enzymes, and exopolysaccharides (Celiker & Gore, 

2013). Secretion of these products come at a cost to the producer, ranging from a small 

metabolic burden to cell death (Celiker & Gore, 2013).  

Synthetic biology  

While there exist several bacterial systems that communicate using autoinducers, 

these natural systems are complex. As such, it is challenging to study communication alone 

without interference from additional confounding variables such as larger, regulatory 

networks that may be involved in communication or downstream processes, cell-to-cell 

variability, the presence of natural cheaters, etc. Often, conclusions drawn from natural 

systems may not represent the entire story due to these and other confounding factors.  

 Synthetic biology offers an alternative to studying biological phenomena in natural 

systems through the creation of functional devices and systems, using standardized 
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biological building blocks (Weber & Fussenegger, 2012). Driven by mathematical 

modeling, synthetic biology involves engineering desired behaviors using genetic 

components, which are assembled into a gene circuit. The gene circuit is then placed into 

the ‘chassis’ of choice, which powers the circuit, thus implementing the desired behavior. 

Due to ease of manipulation and high variable growth conditions, E. coli have, to date, 

been the preferred chassis of choice. Indeed, through using E. coli, many different 

behaviors have been engineered, such as switches (Atkinson, Savageau, Myers, & Ninfa, 

2003; Gardner, Cantor, & Collins, 2000; Hasty, McMillen, & Collins, 2002) and oscillators 

(Danino, Mondragón-Palomino, Tsimring, & Hasty, 2010; Prindle et al., 2011; Stricker et 

al., 2008). Since experiments using natural systems are often challenging due to the 

complexity involved, using engineered bacteria is advantageous in that such organisms are 

equipped with components that can be easily altered.  

 While synthetic systems have been designed for use in medicine (Brown, West, 

Diggle, & Griffin, 2009) and industry (Brenner, You, & Arnold, 2008), it is becoming 

increasingly recognized that these synthetic systems can be used to study ecological and 

evolutionary dynamics (Tanouchi, Smith, & You, 2012). Using engineered bacteria to 

study cooperation, or other applications to ecological/evolutionary relationships, has 

several advantages over the use of natural systems. The study of cooperation in natural 

systems is often challenging due to multiple interacting factors in the natural environment 

that cannot be controlled (Horswill, Stoodley, Stewart, & Parsek, 2007; Riccione, Smith, 

Lee, & You, 2012). These factors may serve to obscure the true behavior(s) governing 

cooperation, or its maintenance and loss, in the system. Using engineered bacteria serves 

to reduce this complexity. First, engineered bacteria operate using well-defined 
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components that can be readily perturbed and controlled. Second, such systems operate in 

well-defined environments, which can be readily controlled, thus reducing confounding 

variables. Third, these systems operate on much shorter time scales than natural 

environments allowing behaviors to be observed over the course of hours (as opposed to 

days or years) and can allow for multiple experiments, thus increasing repeatability 

(Tanouchi, Smith, et al., 2012). Indeed, engineering bacteria have been used to study 

several important relationships in cooperation. 

 To create a synthetic circuit, it is important to consider how a natural genetic circuit 

is comprised to control specific behaviors (Purnick & Weiss, 2009). For example, E. coli 

cells are made up of thousands of genes, but to express all of these genes all of the time 

would be costly. As such, many genes are expressed only when they are needed by the 

bacterium. This is possible because these genes are divided up into separate units that are 

controlled (or activated) by external signals. In nature, bacteria cells would use these 

signals to activate or repress the targeted gene (Jusiak & Daniel, 2014). It is through this 

design, where genes can be independently controlled, that the concept of the genetic circuit 

was formed.   

Most gene circuits are made up of four main biological parts (Endy, 2005), each of 

which play a critical role in the function of the gene circuit (Figure 3). These parts are 

modular and act independently of other cellular processes (Sprinzak & Elowitz, 2005) 

allowing for each part to be mixed and matched, but have defined functions. For example, 

a promoter will drive the expression of the gene located downstream from it, regardless of 

what that gene may be (Jusiak & Daniel, 2014). The result is a novel gene circuit that 

displays the desired behavior intended by the designer. Because many of these are 
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preexisting parts found within natural systems (Purnick & Weiss, 2009), one must take 

care that there is minimal ‘cross talk’ between these novel genes and with other genes 

within the cell (Jusiak & Daniel, 2014). Minimizing cross talk allows for greater control of 

the new circuit (Wang, Kitney, Joly, & Buck, 2011).          

Each of the pieces that make up a gene circuit are incredibly diverse, but contain 

core features that denote its functionality. At the beginning of the gene circuit is the 

promoter (Figure 3). Promoters are DNA sequences, which when found by RNA 

polymerase, serve to control the frequency and location of transcription initiation (Harley 

& Reynolds, 1987). This involves the integration of an external factor, including sugar or 

sugar analogs (Lutz & Bujard, 1997), autoinducers (You, Cox, Weiss, & Arnold, 2004), or 

specific wavelengths of light (Olson, Hartsough, Landry, Shroff, & Tabor, 2014), that 

allow the promoter to function similar to that of a light switch, turning the circuit on or off 

(Figure 4A). These signals serve to activate, or repress, RNA polymerase adhesion to the 

promoter. Once RNA polymerase is bound, it can transcribe the genetic information 

downstream from the promoter (Figure 4B). Ideally, the promoter is tunable, meaning that 

it can achieve different output levels through small changes in the signal (Jusiak &  Daniel, 

2014).  

Figure 3: The core features of a gene circuit. 

The four main biological parts of a gene circuit. The promoter activates expression of the gene. The ribosomal binding 

site (RBS) binds to the mRNA to initiate protein expression. The coding sequence (CS) contains the genetic information 

encoding the protein to be produced. The terminator (T) stops RNA polymerase transcription. Each part in the gene 

circuit can be interchanged to create unique combinations, which may result in novel behaviors. 
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Directly downstream from the promoter is the ribosomal binding site (RBS) (Figure 

3). This is the region where the ribosome binds to the mRNA to initiate protein translation, 

controlling the translation initiation rate and the level of protein expression (Salis, Mirsky, 

& Voigt, 2009). Following the RBS is the protein coding sequence, containing the genetic 

information of the protein that is to be produced (Figure 3). Of the four main parts of the 

gene circuit, the protein coding sequence is often the most varied and the most critical, as 

it is often directly responsible in producing the desired behavior. There can be multiple 

protein coding sequences under the control of the promoter, both in natural systems, as is 

observed in the lac operon (Davies & Jacob, 1968), or in synthetic systems, where the first 

sequence produces the desired behavior while the second contains a fluorescent protein 

that is used to verify the activation of the promoter (Zaslaver et al., 2006). A terminator is 

located at the end of the gene circuit that stops RNA polymerase transcription and is 

essential for proper expression of genes (Peters, Vangeloff, & Landick, 2011) (Figure 3).  

Figure 4: Activation of the 

promoter through external 

factors leads to transcription of 

a desired protein 

(A) The promoter is activated by an 

external factor (EF) which may 

vary, from specific wavelengths of 

light, sugars, or molecules 

produced by the cell.  

(B) Once activated, RNA 

polymerase is free to bind to the 

promoter, which in turn allows the 

genetic information (geneS) 

downstream to be transcribed, 

producing the desired protein (S).   
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Objectives and Hypothesis 

The objective of this thesis was to use a strain of engineered bacteria, constructed 

using the principles of synthetic biology, to examine the conditions that allow the 

observation of the core predictions of quorum sensing and diffusion sensing. The spatial 

distribution of the cells and the diffusion rate of the autoinducer were both manipulated as 

both have been predicted to affect, or not to affect, cell-to-cell communication. Four central 

hypotheses were developed: 

1) Quorum sensing and diffusion sensing are not competing theories. The core 

predictions of both theories can be observed in a single, bacterial system given the 

appropriate environmental conditions.  

2) Spatial distribution of the bacteria and diffusion rate of the autoinducer will impact 

the ability of the engineered bacteria to successfully cooperate. 

3) Initiation of the autoinducer activated gene expression will be impacted by the 

frequency at which the spatial distribution of AHL and bacteria are altered.  

4) The stability of the autoinducer and initial positioning of the cells can be perturbed 

independently, thus allowing the autonomous contribution of both parameters to 

cooperate. 
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Materials and Methods 

Strains and growth conditions 

 A previously engineered strain of Escherichia coli, strain DH5PRO (Clontech, 

Mountain View, CA), was used in this study (unless otherwise indicated). All experiments 

were performed in modified M9 (minimal growth) medium [1X M9 salts (48 mM NaHPO4, 

22 mM KH2PO4, 862 mM NaCl, 19mM NH4Cl), 0.4% glucose, 2% casamino acids 

(Teknova, Hollister, CA), 0.05% thiamine (Alfa Aesar, Ward Hill, MA), 2 mM MgSO4, 

0.1 mM CaCl2] buffered to pH 7.0 or 7.4 with 100 mM 3-(N-morpholino) propanesulfonic 

acid (MOPS) (Amresco, Solon, OH), with or without 0.2% or 0.4% agar (Alfa Aesar, Ward 

Hill, MA). 25 g/mL chloramphenicol (Alfa Aesar, Heysham, England) and 50 g/mL 

kanamycin (Amresco, Solon, OH) were added to the medium before each experiment. The 

medium was then overlaid with mineral oil (Fisher Scientific, Fair Lawn, NJ) to prevent 

evaporation. Single colonies were inoculated into 5 mL Luria-Bertani (LB) broth (MP 

Biomedicals, Solon, OH) containing 25 g/mL chloramphenicol and 50 g/mL kanamycin 

and incubated for 24 hours. Induction of the gene circuit was achieved by the addition of 1 

mM isopropyl -D-1-thiogalactopyranoside (IPTG) (Promaga, Madison, WI). Cell density 

was obtained at an optical density measured at a wavelength of 600 nm (OD600) at 37C in 

a PerkinElmer Victor X4 (Waltham, MA) microplate reader. Shaking took place in 5, 20, 

or 60 minute intervals for 10 seconds using a linear pattern with a diameter of 0.1 mm. 

Colony forming unit (CFU) counts were performed on LB solid medium containing 

chloramphenicol and kanamycin as previously described (Smith et al., 2014). 
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Determining dispersal rate 

 Experiments to determine dispersal rate were conducted by modifying the amount 

of agar (0%, 0.2%, or 0.4%) that was added to the medium. This experiment was performed 

using a cell chamber (Ibidi, Martinsried, Germany) made of uncoated hydrophobic glass 

that contained 150 L of M9 medium (containing various agar concentrations) with both 

openings of the cell chamber overlaid with 15 L of mineral oil to prevent evaporation. A 

plasmid containing gfp(mut3b) (Cormack, Valdivia, & Falkow, 1996) under the regulation 

of a Ptet0-1 promoter (Lutz & Bujard, 1997) was transformed into E. coli strain DH5PRO 

using a Zymo Z-competent transformation kit (as per manufacturer’s specifications, 

Genesee Scientific, San Diego, CA). Single colonies were grown overnight in 5 mL of LB 

medium with 25 g/mL chloramphenicol at 37C. The cells were resuspended the 

following day in M9 medium containing 25 g/mL chloramphenicol and 100 ng/mL of 

anhydrotetracycline (atc) (Acros Organics, Geel, Belgium). The cells were allowed to 

incubate for an additional 3 hours to induce GFP expression. 10 L of the culture was 

inoculated at one end of the cell chamber. Cell placement was observed using an Olympus 

IX73P2F fluorescent microscope with a 25X objective lens using a DP-80 camera 

(Olympus Microscopes, Center Valley, PA). The chamber was then allowed to incubate at 

37C without shaking. Cell movement was observed 2 hours later for cultures in 0% agar, 

and 12 hours later for cultures in both 0.2% and 0.4% agar. The cellSens software 

(Olympus Microscopes) was used to quantify the distance that the bacteria had travelled. 

Distances were averaged from 6 replicates.  
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Cell shaking assay 

Single colonies of E. coli strain DH5PRO expressing gfp(mut3b) were grown 

overnight in LB medium with 25 g/mL chloramphenicol. The following day, the cells 

were resuspended into M9 medium containing 25 g/mL chloramphenicol and 100 ng/mL 

atc and were shaken at 37C for 3 hours to induce GFP expression. 190 L of M9 medium 

(containing various agar concentrations) was added to the cell chamber and 5 L of the 

bacterial strain was inoculated into one side of the chamber. The cell chamber was left at 

room temperature for 10 minutes whereupon the initial position of the cells was examined 

under an Olympus fluorescent microscope at 25X magnification using a DP-80 camera. 

The cell chamber was then placed in the microplate reader and shaken once as previously 

described. The cell chamber was removed and the displacement of the cells was measured 

using an Olympus microscope and the cellSens software. Distances were averaged from 

three replicates. 

Growth and translation rate 

 To verify that shaking the plate at different frequencies was not affecting growth or 

translation rates, single colonies of E. coli strain DH5PRO expressing gfp(mut3b) were 

grown overnight in LB medium with 25 g/mL chloramphenicol. To induce the circuit, the 

cells were diluted 100-fold in M9 medium with 25 g/mL chloramphenicol and 100 ng/mL 

atc. 200 L of the diluted culture was plated in triplicate in a 96 well plate in both OFF 

(without atc) and ON (with atc) conditions. The wells were overlaid with 70 L mineral 

oil to prevent evaporation. The cells were then incubated at 37C for 48 hours in a Victor 
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X4 microplate reader and shaken at 5, 20, or 60 minute intervals. For the cells that were 

shaken every 5 or 20 minutes, the plate was read every 20 minutes for OD600 and GFP; for 

cells that were shaken every 60 minutes, the plate was read for OD600 and GFP every 60 

minutes. To specifically examine translation rate, the GFP(mut3b) signal (a.u.) was 

normalized by OD600.  

AHL detector assay 

 A previously described AHL detector strain (Song, Payne, Gray, & You, 2009) was 

used to quantify AHL diffusion. The 3OC6HSL detector strain is implemented in TOP10F’ 

and contains two plasmids; one harboring a Plac promoter driving expression of luxR (p15a, 

KanR) and the second harboring a Plux promoter driving gfp(UV) (ColE1, CmR). This 

detector strain was grown overnight in LB with 50 g/mL kanamycin and 25 g/mL 

chloramphenicol. 25 mL of M9 medium containing different percentages of agar (0%, 

0.2%, and 0.4%) was made and 25 g/mL chloramphenicol, 50 g/mL kanamycin, 1 mM 

IPTG, and 25 L of overnight cell culture was added to the medium once it cooled to 

approximately 50C. 200 L of this culture was them added to a cell chamber. After the 

medium was allowed to solidify, 1 L of 20 M 3OC6HSL was added to one end of the 

cell chamber. The cell chambers were incubated at 37C for 5 hours whereupon the position 

of the cells was recorded from two areas of the cell chamber. The first was roughly 1 cm 

from the end of the cell chamber where 3OC6HSL was first introduced, and the second 

was roughly 5 cm from where 3OC6HSL was introduced. The cells were imaged using the 

fluorescein isothiocyanate (FITC) channel. The exposure and gain were kept constant for 

each image and condition (exposure 3.75 seconds, 0 gain). Bottom threshold was set to 
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5000 arbitrary units (a.u.) in all experiments to remove background fluorescence. GFP 

intensity was quantified in random cells from each of three images taken per experiment. 

Cell fluorescence was quantified using cellSens software and determined using the 

following equation: 

Corrected fluorescence = (fluorescence x area) – (background fluorescence x area) 

The exact same shape was used in the quantification of cell and background fluorescence. 

The average of all corrected fluorescence values were calculated and outliers removed 

(those that were outside one standard deviation of the average). The average was plotted 

from 5 replicates. 

Critical threshold experiments 

 Cultures were grown overnight in 5 mL LB medium with 25 g/mL 

chloramphenicol and 50 g/mL kanamycin. A 10-fold dilution series was performed in M9 

medium. CFUs were measured at the beginning of each experiment for all dilutions. 190 

L of M9 medium with different agar densities (0%, 0.2%, and 0.4%) in both OFF (no 

IPTG) and ON (1 mM IPTG) conditions was plated into a 96 well plate (REF 25-104; 

Olympus, San Diego, CA). Each well was overlaid with 70 L mineral oil to prevent 

evaporation. 10 L of each dilution was added to the center of the well. For the samples 

grown in the ON condition, 1 mM of IPTG was added to the sample and vortexed prior to 

adding it to the medium containing IPTG (the ON condition). The plate was then incubated 

in a Victor X4 microplate reader at 37C for 48 hours. The plate was shaken linearly at 

different frequencies (1 shake/hr, 3 shakes/hr, 12 shakes/hr) for 10 seconds. Measurements 
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were taken at OD600 every 60 (for cells shaken 1/hr) or 20 minutes (for cells shaken 3 or 

12/hr). A minimum of three replicates were averaged for each data point.  

To examine how altering in the initial distribution of the cells in the well affected 

cooperation (mixed population experiments), cultures were grown overnight in 5 mL LB 

with 25 g/mL chloramphenicol and 50 g/mL kanamycin and a 10-fold dilution series 

was performed in M9 medium. CFUs were measured at the beginning of each experiment 

of all dilutions. 950 L of M9 medium with different agar densities (0%, 0.2%, and 0.4%) 

containing 1 mM IPTG was added to 50 L of each culture dilution that also contained 1 

mM IPTG and vortexed. 200 L of the vortexed culture was added to a 96 well plate and 

the well was overlaid with 70 L of mineral oil. The plate was incubated in a Victor X4 

microplate reader at 37C for 48 hours. The plate was shaken linearly every 20 minutes. 

Measurements were taken at OD600. A minimum of three replicates were averaged for each 

data point.  

Statistical analysis 

 For the experiments where measurements were taken to demonstrate cell movement 

(diffusion with different agar densities and plate shaking with different agar densities), a 

two-tailed t-test was used and the measurements compared.  

To determine the first initial density at which cooperation was significantly 

inhibited, thus resulting in little to no growth (CCRIT), a two-tailed t-test was used to 

determine if the OD600 values observed at 48 hours were statistically different from zero. 

In cases where the OD600 value was less than 0.01, the value was set to zero as this is below 
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the detectability level of the microplate reader and likely represents minor differences in 

background readings. This assumption has been used in previous studies to carry out 

similar analyses (Smith et al., 2014). CCRIT was reported as the first initial density where 

the OD600 value at 48 hours was not statistically greater than zero (P ≤ 0.05).  

 To determine if growth rates or translation rates were different in the various 

shaking frequencies, the area of the log phase for growth and translation were located by 

visually examining the growth curves and by then fitting linear lines through the selected 

data such that R2 > 0.95. Following this, the slope of each of the lines was calculated and 

a two-tailed t-test was performed. Rates were considered to not be statistically significant 

if P < 0.05. Note that the different frequencies were compared against each other.  

Results 

Engineered bacteria that require cooperation to survive 

The objective of this thesis is to investigate quorum sensing and diffusion sensing 

theories in a synthetic bacterial system. To achieve this, a bacterial strain that requires 

communication as a facet of its survival was needed. In recent years, Allee effects have 

become increasingly studied because of the potential role that they may play in extinctions, 

of already endangered, rare or dramatically declining species, invasive species (Taylor & 

Hastings, 2005), reintroduction biology (Dai, Vorselen, Korolev, & Gore, 2012), as well 

as in the study of epidemiology and infectious diseases (Smith et al., 2014). As Allee effects 

have been recognized to be a common cause of extinction in low-density populations, 

understanding this effect is imperative to developing strategies to manage species invasion, 

establishing guidelines for species introduction for biological control, and for conservation 
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of endangered species (Robinet et al., 2008). In some species, the ability to cooperate 

determines growth and survival. While first reported in goldfish, obligate cooperation is 

now observed in many species, including Danaus plexippus, Vincetoxicum rossicum, and 

in V. cholera pathogenesis (Smith et al., 2014). In addition to the tragedy of the commons, 

the Allee effect is now being widely recognized as a mechanism by which cooperative 

organisms can go extinct, yet it remains substantially less explored. 

Named after the ecologist Warder C. Allee, Allee effects are defined as the positive 

relationship between any fitness component of a species and the density of the population 

(Stephens, Sutherland, & Freckleton, 1999; Taylor & Hastings, 2005; Tobin et al., 2009; 

Tobin, Berec, & Liebhold, 2011). For a species with an Allee effect, cooperation is only 

initiated once a sufficiently high density of individuals is reached. Once cooperation is 

initiated, the species can survive. Otherwise, if the density of individuals is too low, 

cooperation is not initiated, or is insufficient, the population goes extinct (Smith et al., 

2014). This could be in response to not finding a mate or species’ inability to colonize 

empty sites (Ferdy & Molofsky, 2002). Thus, for cooperative species, as the individuals in 

a population decrease, the benefits gained through cooperation may diminish 

disproportionately, decreasing one or more of the components of individual fitness 

(Angulo, Rasmussen, Macdonald, & Courchamp, 2013). Indeed, the engineered bacteria 

used in this study have the core behavior of the Allee effect as they require cooperation to 

survive. The initial density of the bacterial population determines if cooperation will be 

successful.  

The engineered bacteria that were used in this study were previously designed and 

used in Smith et al. (2014). The circuit was designed to display the bistable growth seen in 
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species with an Allee effect (Keitt, Lewis, & Holt, 2001), where the growth of the 

population depends upon the initial density of the population. If the initial density is 

sufficiently high, growth occurs. However, if the initial density is below a critical threshold, 

CCRIT, growth is significantly reduced or does not occur. To engineer these bacteria, two 

systems were used. The first was the LuxR/LuxI quorum sensing system from V. fischeri 

(Miller & Bassler, 2001), which allows for the cells to communicate with each other. The 

second was the CcdA/CcdB toxin/antitoxin module that controls population survival 

(Figure 5). To induce the system, 1 mM IPTG was introduced to the medium, activating 

the Plac/ara and Plac promoters. Activation of the Plac/ara and Plac promoters drives the 

expression of both the LuxR/LuxI system, and ccdB, respectively, which causes death by 

inhibiting DNA replication (Dao-Thi et al., 2005). However, CcdB can be inhibited by 

CcdA, which is controlled by the quorum-sensing module. AHL is synthesized by luxI, and 

can readily diffused across the cell membrane. Here, the concentration of AHL in the 

medium increases as the population of bacteria increases. Once the AHL reaches a 

sufficiently high concentration, it activates the Plux promoter, driving the expression of 

ccdA, which inhibits CcdB, and rescues the population (Smith et al., 2014) (Figure 5).  

An experimental framework to study quorum sensing and diffusion sensing 

 To observe facets of quorum sensing and diffusion sensing in the same system, an 

experimental framework was designed where three critical aspects of cell communication 

could be perturbed.  These three aspects were 1) the diffusion rate of the autoinducer, 2) 

the stability of the autoinducer, and 3) the spatial distribution of the engineered bacteria. 

To realize these requirements, an experimental design was devised in which the bacteria 

were seeded into the center of a 96 well microplate and allowed to diffuse. Altering the 
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concentration of the agar in the medium controlled the rate of diffusion. As the 

concentration of the agar was increased, the diffusion rate of both the autoinducer and the 

bacteria would decrease. To realize the second condition, the stability of the autoinducer 

was altered by changing the pH in the medium. Decreasing the pH in the medium slowed 

the degradation of the autoinducer, making it more stable in the environment. To realize 

Figure 5: A synthetic gene circuit that confers an Allee effect to a population of bacteria.   

This circuit was designed so the growth of the population was dependent on the initial density being above a 

threshold density (CCRIT). This was achieved through the use of two systems. The first was the LuxR/LuxI quorum 

sensing system from Vibrio fischeri, which produced AHL (green triangles) needed for the cells to activate the 

desired gene expression. The second was the CcdA/CcdB toxin/antitoxin module, which controlled population 

survival. The circuit was induced with 1 mM IPTG, which activated the Plac/ara and Plac promoters, driving the 

expression of the LuxR/LuxI system and CcdB, respectively. luxI (green rectangle) synthesized the autoinducer 

AHL, which could readily diffuse across the cell membrane, while luxR (orange rectangle) synthesized a receptor 

(R, orange square). CcdB will lead to cell death, but can be inhibited by CcdA, the antitoxin. Once there was a 

sufficient amount of AHL produced, it would bind to the receptor, which would activate the Plux promoter, driving 

the expression of CcdA. CcdA could then inhibit CcdB, and the population would be rescued (Smith et al., 2014).  
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the third condition, the microplate was then shaken at different time intervals to examine 

how disturbances affected the ability of the population to cooperate. 

Increasing agar concentration decreases dispersal  

 One previously described mechanism to alter spatial distribution of bacteria is by 

varying the percentage of agar in the medium (Ben-Jacob et al., 1994). To determine how 

increasing the percentage of the agar in medium would affect the dispersal rate of bacteria, 

a strain of E. coli that expresses a green fluorescent protein (GFP) in response to the 

addition of atc was used. These bacteria were seeded into a cell chamber containing 

medium with different concentrations of agar (0%, 0.2%, and 0.4%). The initial position 

of the cells was recorded using a fluorescent microscope. The cells were then allowed to 

incubate undisturbed at 37C. After 2 hours for cultures in 0% agar and 12 hours for 

cultures in 0.2% and 0.4% agar, the positions of the cells were again observed using the 

fluorescent microscope. The dispersal rate was determined by taking the average of the 

total distance the cells moved for each of the agar concentrations, and dividing it by the 

number of hours over which the experiment occurred.  

 As the agar concentration in the medium was increased, it was observed that the 

dispersal rate of the cells decreased (Figure 6). Cells that were placed in a medium with 

0% agar (purple) were able to disperse quickly, and moved on average 644.23 m/hour (± 

521.25 m/hour). When the agar concentration was increased to 0.2% agar (blue), the cell 

dispersal decreased, with the average dropping to 11.98 m/hour (± 9.08 m/hour). 

Increasing in agar concentration to 0.4% agar (red) resulted in a further decrease in cell 

dispersal to 0.92 m/hour (± 0.64 m/hour).  
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Shaking the microplate disturbs the spatial structure of the bacteria.  

 To verify that shaking the microplate reader caused movement of the cells, a strain 

of E. coli that expressed GFP was inoculated into a cell chamber containing M9 medium 

with various agar densities. Once an initial image was taken under a fluorescent 

microscope, the cells were placed on the microplate reader and shaken. The cells were 

given 10 minutes to settle before being examined again under the fluorescent microscope. 

The distance that the bacteria moved in the different agar concentrations was measured 

using the cellSens software. It was observed that the shaking altered the spatial positioning 

of the cells (Figure 7). As the agar density increased, the ability of the cells to be moved 

by the shaking of the microplate reader decreased. Specifically, we found that with 0% 

(purple), 0.2% (blue), and 0.4% agar (red), the cells were moved 1625.98 (± 616.37) m, 

92.49 (± 23.29) m, and 11.93 (± 3.60) m, respectively.  P-values were ≤ to 0.05 amongst 

all conditions. 

Figure 6: Increasing agar percentage in 

the medium decrease bacterial dispersal 

rate  

It was confirmed that as the agar 

concentration increased from 0%, to 0.2%, to 

0.4%, the dispersal rate of the cells decreased. 

Using a strain of E. coli that expresses GFP in 

response to atc, the distance (μm) that the 

bacteria travelled over time in an undisturbed 

environment was measured. Cells grown in 

the presence of 0% agar (purple) traveled the 

furthest (644.23 m/hour (± 521.25) 

m/hour). The distance decreased as agar 

concentration increased with the cells moving 

11.98 m/hour (± 9.08 m/hour) in 0.2% agar 

(blue) while cells grown in 0.4% agar (red) 

traveled the least (0.92 m/hour (± 0.64) 

m/hour). Standard deviation derived from 

six replicates. P-values ≤ 0.03 amongst all 

conditions. 
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Confirmation that shaking frequency does not affect growth or translation rate 

Previous studies have shown that certain conditions can affect growth (Brophy & 

Voigt, 2014; Tan, Marguet, & You, 2009) or translation (Tanouchi, Pai, Buchler, & You, 

2012) rates of synthetic bacteria, impacting the functionality of the circuit, and thus the 

behavior of the bacteria. As such, verification was needed to ensure that shaking the plate 

at different frequencies did not affect either the growth or translation rates in the engineered 

bacteria. To do this, a strain of bacteria that contained an atc inducible gfp construct was 

used in order to examine both growth and translation rates. Neither the growth rate nor 

translation rate was statistically different for any of the shaking frequencies that were 

examined.  

Specifically, for growth rate an increase in OD600/min of 4 x10-4 (± 1x10-4), 3 x10-

4 (± 1x10-4) and 4 x10-4 (± 1x10-4) was detected when cells were shaken at 1/hr, 3/hr and 

Figure 7: Increasing agar percentage in 

the medium decreases movement of 

bacterial cells shaken in the microplate  

Agar concentration affected the distance that 

the cells moved when shaken. Here, the 

shaking feature of the microplate reader was 

used to disturb the spatial arrangement of the 

cells. Using a strain of E. coli that expressed 

GFP in response to atc, it was observed that 

the greatest movement in bacteria in cells 

shaken in 0% agar (1625.98 (± 616.37) m) 

(purple). As the density of the agar was 

increased to 0.2% (blue) and 0.4% (red), the 

distance that cells moved due to shaking of 

the microplate decreased  (92.49 (± 23.29) 

m, and 11.93 (± 3.60) m, respectively) 

Standard deviation derived from three 

replicates. P-values ≤ 0.05 amongst all 

conditions. 
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12/hr, respectively (Figure 8, left panel). When all three growth rates were compared 

amongst each other, all P-values were ≥ 0.47. For translation rate (Figure 8, right panel), 

the values were normalized and were found to be 541.7 a.u./min (± 73.4), 398.0 a.u./min 

(± 29.8), and 398.3 a.u./min (± 50.4) when the cells were shaken at 1/hr, 3/hr and 12/hr, 

respectively. When all three translation rates were compared amongst each other, all P-

values were ≥ 0.12.  

 AHL diffusion decreases as agar concentration increases  

The impact that different agar densities in the medium had on the diffusion of AHL 

was examined by using a previously published detector strain that expresses GFP(UV) in 

response to the specific AHL used by the engineered bacteria, 3OC6HS (Song et al., 2009). 

Previous studies found that increasing the agar percentage in growth medium resulted in a 

Figure 8: Growth and translation rates of the engineered bacteria were not affected by shaking of the microplate 

Left panel: Growth rate was not affected by the shaking of the microplate reader. Cells that were shaken 3/hr (blue circles) 

and 12/hr (purple circles) were measured at OD600 every 20 minutes while the cells shaken 1/hr (red circles) were read 

every 60 minutes. No statistical difference was found in growth rate for all 3 conditions (P ≥ 0.48 for all comparisons). 

In both panels, standard deviation from three replicates.  

Right panel: Translation rate was also unaffected by the shaking of the plate reader under all three conditions. GFP was 

normalized to OD600 and no statistical difference in translation rate was observed for all three conditions (P ≥ 0.13 for all 

comparisons).  
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decrease in diffusion rate of small molecules (Kümmerli, Griffin, West, Buckling, & 

Harrison, 2009). In this study it was noted that as the agar percentage increased in the 

medium, the intensity of GFP(UV) expression approximately 1 cm away from the initial 

point of inoculation decreased (Figure 9). Specifically, it was seen that with 0%, 0.2%, and 

0.4% agar in the medium, the GFP(UV) fluorescence measured 221.3 a.u. (± 43.8), 107.84 

a.u. (± 64.5) and 70.32 a.u. (± 53.5), respectively, at ~1 cm away from the initial inoculation 

point of AHL. Similar trends were observed ~5 cm further in the channel, where the 

GFP(UV) fluorescence measured 24.09 a.u. (± 10.22), 14.13 a.u. (± 6.02) and 6.84 a.u. (± 

2.73) for 0%, 0.2%, and 0.4%, respectively.  When averages were compared within each 

point on the slide, the P values were always less than or equal to 0.021. Given that 

expression from the Plux promoter is dependent upon the concentration of AHL detected 

(Collins, Arnold, & Leadbetter, 2005), it can be surmised that this decrease in intensity was 

a result of less 3OC6HSL in the cell chamber at both locations, because of a decreased 

diffusion rate due to increased agar concentration. The cells with AHL were incubated for 

five hours prior to performing a measurement to ensure sufficient expression of LuxR and 

AHL-induced expression of GFP(UV). 

Figure 9: Increasing agar percentage in the 

medium decreased the diffusion rate of AHL  

It was observed that increasing the agar 

concentration in the medium decreased the 

diffusion rate of AHL. A detector strain was used 

that expressed GFP in response to AHL that was 

inoculated into one end of a cell chamber. GFP 

fluorescence was recorded ~1 cm (blue bars) and 

~5 cm (red bars) from where AHL was introduced 

into the chamber. The cells at ~1 cm showed more 

fluorescence for all conditions compared to the 

cells at ~5 cm and the fluorescence decreased as 

agar concentration increased. P-values ≤ 0.021 for 

all comparisons. Standard deviation from five 

replicates. 
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 The effect of pH on the stability of AHL 

Several previous studies have found that increasing pH decreases the stability of 

AHL (Englmann et al., 2007; You et al., 2004). Furthermore, a previous study has shown 

that increasing pH increases CCRIT of the engineered bacteria in this study (Smith et al., 

2014). These changes in pH did not affect cell physiology or circuit functionality as they 

were measured in Smith et al., 2014 using fluorescent reporters and growth rate assays. As 

such, the impact of pH on AHL stability was not directly measured in this study; instead, 

the data from the previous studies was utilized. 

Verification of circuit functionality  

 Verification was needed to ensure that the engineered bacteria functioned as desired 

in the experimental framework. Towards this end, the engineered bacteria were grown in a 

96 well plate in both the ON (with IPTG) and OFF (without IPTG) conditions at different 

initial cell densities. The bacteria were grown in a microplate reader at 37C for 48 hours 

and cell density was measured at OD600 every 20 minutes (following shaking). The cells 

that were induced with IPTG (ON condition) displayed a strong Allee effect, where growth 

was significantly reduced at initial densities that were less than ~105 CFU/mL, (or CCRIT) 

(Figure 10). Experimentally, we defined CCRIT as the first initial density where the final 

OD600 was not statistically different than zero. Wells that were inoculated with cultures that 

contained initial densities greater than ~105 CFU/mL displayed substantial increases in 

OD600, which was indicative of growth. For the cells grown without IPTG (OFF condition), 

OD600 increased in all of the wells regardless of the initial cell density. 
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Shaking affects population survival  

The impact that changing the agar concentration in the medium, as well as how the 

shaking frequency (e.g., the spatial distribution of cells) affected population survival, was 

examined. The cells were inoculated into the center of a 96 well plate containing media 

with different percentages of agar (0%, 0.2%, and 0.4%) in both the ON (with IPTG) and 

OFF (without IPTG) conditions. The cells were grown in a microplate reader at 37C for 

48 hours and OD600 (e.g., cell density) was measured every 20 minutes (3/hr) (following 

shaking). For the cells grown in the ON condition, CCRIT (Figure 11, top panel, circles with 

thicker borders) varied depending on the density of the medium. Cells grown in medium 

with 0% agar had a CCRIT that averaged 3.93 x 105 (± 6.42 x 104) CFU/mL (Figure 11, top 

panel, purple circles). When the agar percentage in the medium was increased to 0.2% agar, 

the CCRIT was reduced to an average of 4.47 x 104 (± 1.46 x 104) CFU/mL (Figure 11, top 

panel, blue circles). A further increase in the percentage of agar in the medium (0.4%) 

resulted in a further decrease in CCRIT to 5.70 x 103 (± 1.42 x 103) CFU/mL (Figure 11, top 

Figure 10: Verification of circuit functionality 

in the experimental setup   

When the engineered bacteria were grown in the 

OFF condition (without IPTG, red circles), the 

cells grew regardless of the initial cell density. 

However, when the bacteria were grown in the 

ON condition (1 mM IPTG, blue circles), 

significant growth was not detected below ~105 

CFU/mL (CCRIT, P = 0.06). Wells that were 

inoculated with an initial density more than ~105 

CFU/mL survived. Lines drawn as a guide. 
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panel, red circles). For the cells grown without IPTG (OFF condition), OD600 increased in 

all of the wells regardless of the initial cell density (Figure 11, bottom panel). When the 

values of CCRIT were compared amongst each other, the P values were always less or equal 

to 0.04. That is, CCRIT was statistically different for cells grown in medium containing the 

different agar concentrations.  

Next, the frequency at which the microplate was shaken was reduced to every 60 

minutes (1/hr) and OD600 was quantified over 48 hours. When the bacteria were grown in 

the ON condition, it was found that CCRIT was the same for all of the cells, regardless of the 

agar concentration that it was grown in (Figure 12, top panel, circles with thicker boarders). 

Specifically, cells grown in medium with 0%, 0.2% and 0.4% agar had CCRIT of 3.96 x 104 

(± 2.05 x 104) CFU/mL (purple circles), 4.78 x 104 (± 7.72 x 103) CFU/mL (blue circles), 

and 4.20 x 104 (± 1.14 x 104) CFU/mL (red circles), respectively. For the cells grown 

without IPTG (OFF condition), OD600 increased regardless of the initial cell density (Figure 

12, bottom panel). When CCRIT values were compared amongst each other, the P-values 

were always greater than or equal to 0.44 indicating that all values of CCRIT were 

statistically equivalent.  

The frequency at which the microplate was shaken was increased to every 5 minutes 

(12/hr), and a similar trend was seen. That is, in the ON condition, CCRIT was the same for 

all bacterial cells grown in each medium (Figure 13, top panel, circles with thicker borders). 

Specifically, the CCRIT values for medium containing 0%, 0.2%, and 0.4% agar were 3.76 

x 104  (± 3.51 x 103)  CFU/mL  (purple circles),  4.48 x 104 (± 1.33 x 104)  CFU/mL  (blue 
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Figure 11: The concentration of agar in the medium affects bacteria survival when the cells are shaken at an 

intermediate frequency 

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different densities of agar (0%, 0.2%, and 0.4%) in both the OFF (without IPTG) and ON (with 1mM IPTG) 

conditions. The cells were then shaken 3/hr (intermediate shaking frequency). When the cells were grown in the ON 

condition (top panel), CCRIT (circles with thicker boarders) was observed and was varied dependent on the agar density. 

Cells grown in 0% agar (purple circles) had the highest CCRIT (average 3.93 x 105 (± 6.43 x 104) CFU/mL). As the agar 

density was increased to 0.2% (blue circles), the CCRIT decreased (average 4.47 x 104 (± 1.46 x 104) CFU/mL). Further 

increasing the agar density to 0.4% (red circles) caused CCRIT to decrease once again (average 5.70 x 103 (± 1.42 x 103) 

CFU/mL). P-values were ≤ 0.04 for all CCRIT values. When the cells were grown in the OFF condition (bottom panel), 

growth was observed at all initial cell densities, regardless of the agar density. Standard deviation derived from a 

minimum of three replicates. Lines drawn as a guide. 
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Figure 12: CCRIT was equivalent for bacteria grown in all agar densities when shaken at low frequency 

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different densities of agar (0%, 0.2%, and 0.4%) in both the OFF (without IPTG) and ON (with 1mM IPTG) 

conditions. The cells were then shaken 1/hr (low shaking frequency) then read at OD600. In the ON condition, CCRIT (top 

panel, circles with thicker borders) was observed and found to be statistically equivalent at all agar densities (P-values ≥ 

0.44). Specifically, in 0% agar (purple circles), CCRIT was found to be on average 3.96 x 104 (± 2.05 x 104) CFU/mL, in 

0.2% agar (blue circles), CCRIT was found to be on average 4.78 x 104 (± 7.72 x 103) CFU/mL, and in 0.4% agar (red 

circles), CCRIT was found to be 4.20 x 104 (± 1.14 x 104) CFU/mL. In the OFF condition (bottom panel), the cells grew at 

all initial cell densities and in all agar concentrations. Standard deviation derived from a minimum of three replicates. 

Lines drawn as a guide. 
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Figure 13: CCRIT was equivalent for bacteria grown in all agar densities when shaken at high frequency 

 

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different densities of agar (0%, 0.2%, and 0.4%) in both the OFF (without IPTG) and ON (with 1mM IPTG) 

conditions. The cells were then shaken 12/hr (high shaking frequency) then read at OD600. In the ON condition, CCRIT 

(top panel, circles with thicker borders) was observed and found to be statistically equivalent for all agar densities (P-

value  0.44). Specifically, in 0% agar (purple circles), CCRIT was found to be on average 3.76 x 104 (± 3.51 x 103) 

CFU/mL, in 0.2% agar (blue circles), CCRIT was found to be on average 4.48 x 104 (± 1.33 x 104) CFU/mL, and in 0.4% 

agar (red circles), CCRIT was found to be 5.10 x 104 (± 1.84 x 104) CFU/mL. Growth was observed in all of the wells 

where bacteria were grown in the OFF condition (bottom panel), regardless of the agar concentration or initial cell 

density. Standard deviation derived from a minimum of three replicates. Lines drawn as a guide. 
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circles), and 5.10 x 104 (± 1.84 x 104) CFU/mL (red circles) respectively. When CCRIT 

values were compared amongst each other, the P-values were always greater than or equal 

to 0.44, indicating statistical equivalence amongst all CCRIT values. Similarly, when the 

CCRIT values for the bacterial cells grown at a low shaking frequency (1/hr) were compared 

to those grown at a high shaking frequency (12/hr), CCRIT values were again statistically 

equivalent (P-values were greater than or equal to 0.61). For the cells grown without IPTG 

(OFF condition), OD600 increased regardless of the initial cell density (Figure 13, bottom 

panel). 

Overall, when comparing CCRIT for all agar densities and shaking frequencies 

(Figure 14), it was found that CCRIT for low (1/hr) and high (12/hr) shaking frequencies 

were statistically equivalent for all agar densities (P-value  0.66). This result was 

consistent with the central prediction of the quorum sensing theory, which states that cell 

density is the sole factor initiating expression of autoinducer-regulated genes. However, 

when CCRIT for all agar densities were compared at the intermediate (3/hr) shaking 

frequency, it was found that CCRIT varied amongst the different agar densities (P-value  

0.04). This result was more consistent with the theory of diffusion sensing, in which 

environmental factors (bacterial dispersal and AHL diffusion) dictate expression of 

autoinducer regulated genes (Figure 14). 
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Increasing the stability of AHL reduces CCRIT at low and intermediate shaking frequency.  

The role that access to AHL had on the above trends was examined. One 

mechanism to perturb access to AHL, but not cell physiology or circuit functionality, was 

to modify the pH of the medium. Disrupting AHL access might lead to a better 

understanding as to why CCRIT varies at intermediate shaking frequency, but not at low or 

high shaking frequency. To perturb AHL access, the pH of the growth medium was 

decreased from pH 7.4 to pH 7.0. This served to stabilize AHL and has been previously 

shown to decrease CCRIT (Smith et al. 2014).  

Figure 14: Summary figure showing CCRIT values of engineered bacteria grown in medium with different agar 

densities and at different shaking frequencies demonstrated the core facets of both quorum sensing and diffusion 

sensing 

 

When all CCRIT values were compared amongst each other, CCRIT was observed to be statistically equivalent for all agar 

concentrations (0%, 0.2%, and 0.4%) at low shaking frequency (1/hr) (3.96 x 104 CFU/mL, 4.78 x 104 CFU/mL, and 

4.20 x 104 CFU/mL) and at high shaking frequency (12/hr) (3.76 x 104 CFU/mL, 4.48 x 104 CFU/mL, and 5.10 x 104 

CFU/mL). P-values for these conditions were always greater than or equal to 0.44. At intermediate shaking frequency 

(3/hr), CCRIT was dependent upon agar concentration, where highest agar concentration (0.4%) had the lowest CCRIT 

(5.70 x 103 CFU/mL). As the agar concentration was decrease to 0.2% and 0%, CCRIT increased to 4.47 x 104 CFU/mL 

and 3.93 x 105 CFU/mL, respectively. P-values amongst these three conditions were always less than or equal to 0.04. 

Standard deviation from a minimum of three replicates. Lines drawn as a guide. CCRIT was determined from data in 

Figures 11, 12, and 13. 
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Cells were inoculated into the center of a 96 well plate and grown in the ON 

condition (1 mM IPTG) in a microplate reader at 37C for 48 hours. OD600 (e.g., cell 

density) was measured every 20 minutes (3/hr). At the intermediate shaking frequency, a 

decrease in CCRIT was observed in bacteria grown in 0% and 0.2% agar, while bacteria 

grown in 0.4% agar exhibited no change in CCRIT . Specifically, CCRIT (Figure 15, circles 

with thicker border) decreased in the medium when the agar concentration was 0% and 

0.2% to 4.73 x 104 (± 1.56 x 104) CFU/mL (Figure 15, purple circles) and 4.80 x 103 (± 

1.41 x 102) CFU/mL (Figure 15, blue circles), respectively. However, there was no change 

in CCRIT in the 0.4% agar concentration (4.80 x 103 (± 1.41 x 102) CFU/mL) (Figure 15, red 

circles).  

Figure 15: Stabilization of AHL reduced CCRIT in cells grown in 0% agar and 0.2% agar, but had no effect on 

CCRIT in cells grown in 0.4% agar when shaken at intermediate frequency  

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different densities of agar (0%, 0.2%, 0.4%) in the ON (1mM IPTG) condition in M9 medium buffered to a 

pH of 7.0. The cells were shaken 3/hr (intermediate shaking frequency) then read at OD600. The bacteria grown in 0% 

agar had a 10-fold decrease in CCRIT (circles with thicker borders) with an average of 4.73 x 104 (± 1.56 x 103) CFU/mL 

(purple circles) when compared to the bacteria grown in M9 media with a higher pH (7.4). The cells grown in 0.2% agar 

also had a 10-fold decrease in CCRIT with an average of 4.80 x 103 (± 1.41 x 102) CFU/mL (blue circles). Bacteria grown 

in medium with 0.4% agar had no change in CCRIT (4.80 x 103 (± 1.41 x 102) CFU/mL, red circles). Standard deviation 

derived from a minimum of three replicates. Lines drawn as a guide.  
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When the cells were shaken at low frequency (1/hr), CCRIT (Figure 16, circles with 

thick borders) decreased only in the cells grown in 0.4% agar, while cells grown in the 0% 

and 0.2% agar remained unchanged when compared to cells grown in medium with a pH 

7.4. That is, CCRIT for cells grown in medium containing 0.4% agar decreased to 5.59 x 103 

(± 1.19 x 103) CFU/mL (Figure 16, red circles), while 0% and 0.2% agar remained 

unchanged with 7.60 x 104 (± 4.36 x 104) CFU/mL (Figure 16, purple circles) and 6.04 x 

104  (± 3.68 x 104) CFU/mL, respectively (Figure 16, blue circles). The P-value for cells 

grown in medium with pH 7.0 at 0% and 0.2% agar was 0.57, indicating that they were 

statically equivalent.  

Figure 16: Stabilization of AHL decreased CCRIT in bacteria grown in 0.4% agar but had no effect on bacteria 

grown in 0% agar and 0.2% agar when shaken at low frequency.   

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different agar densities (0%, 0.2%, and 0.4%) in the ON (with 1mM IPTG) condition in M9 media buffered 

to pH 7.0. The cells were shaken 1/hr (low shaking frequency) then read at OD600. For the cells shaken in 0% and 0.2% 

agar, CCRIT (circles with thicker borders) was found to have not changed. That is, CCRIT was 7.60 x 104 (± 4.36 x 104) 

CFU/mL for cells grown in 0% agar (purple circles) and 6.04 x 104 (± 3.68 x 104) CFU/mL (blue circles) for 0.2% agar. 

CCRIT was increased for bacteria grown in 0.4% agar to 5.59 x 103 (± 1.19 x 103) CFU/mL (red circles). Standard 

deviation derived from a minimum of three replicates. Lines drawn as a guide.  
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 Interestingly, CCRIT remained the same when the cells were shaken at high 

frequency (12/hr) (Figure 17, circles with thicker borders). Here, with media containing 

0%, 0.2%, and 0.4% agar, CCRIT values were 4.70 x 104 (± 6.27 x 103) CFU/mL (Figure 17, 

purple circles), 4.68 x 104 (± 5.80 x 103) CFU/mL (Figure 17, blue circles), and 3.70 x 104 

(± 1.76 x 104) CFU/mL (Figure 17, red circles) respectively. When CCRIT values were 

compared, the P-values were always greater than or equal to 0.20 indicating that all values 

of CCRIT were statistically equivalent amongst each other.  

Overall, when AHL was stabilized in the medium by reducing the pH from 7.4 to 

7.0, CCRIT was not affected evenly amongst shaking frequencies or agar concentrations 

(Figure 18). For cells shaken at low frequency (1/hr), CCRIT was affected only in the cells 

Figure 17: Stabilization of AHL had no effect on CCRIT for bacteria shaken at high frequency 

The engineered bacteria were diluted in a 10-fold serial dilution and inoculated into the center of a 96 well plate 

containing different agar densities (0%, 0.2%, and 0.4%) in the ON (1mM IPTG) condition in M9 media buffered to pH 

7.0. The cells were shaken 12/hr (high shaking frequency) then read at OD600. At this shaking frequency, CCRIT  (circles 

with thicker borders) remained statistically equivalent at all agar densities (P-value ≥ 0.20). Specifically, in 0% agar, 

CCRIT was found to be on average 4.70 x 104 (± 6.27 x 103) CFU/mL (purple circles), in 0.2% agar, CCRIT was found to be 

on average 4.68 x 104 (± 5.80 x 103) CFU/mL (blue circles), and in 0.4% agar, CCRIT was found to be 3.70 x 104 (± 1.76 

x 104) CFU/mL (red circles). These values were also statistically equivalent to the bacteria grown at the same shaking 

frequency in pH 7.4 (P-value ≥ 0.05). Standard deviation derived from a minimum of three replicates. Lines drawn as a 

guide. 
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grown in the medium with 0.4% agar (P-value = 0.02 for values compared between pH 7.0 

and 7.4). When CCRIT values were compared at low shaking frequency between the cells 

grown in 0% and 0.2% agar in both pH 7.0 and pH 7.4, those P-values were always greater 

than or equal to 0.20, indicating that these values were statistically equivalent amongst all 

growth conditions. While the trend observed at pH 7.4 was indicative of that of quorum 

sensing, where the cell density depicted survival, the change in an environmental factor 

(pH), led to a decrease in one of the agar conditions (0.4%), leading to the assumption that 

a transition from quorum sensing to diffusion sensing was occurring.  

The opposite trend was observed in bacteria shaken at intermediate frequency (3/hr, 

Figure 18). For cells grown in intermediate shaking frequency at pH 7.0, a decrease in CCRIT 

for both 0% and 0.2% agar (P-values were 0.01 and 0.04, respectively) was seen, while 

bacteria grown in 0.4% agar had no difference in CCRIT (P-value = 0.29) when compared 

to values obtained at pH 7.4. Different CCRIT values for each agar density was detected 

when the cells were grown in a medium with pH 7.4, which is indicative of the facets of 

diffusion sensing. Being able to perturb these values by stabilizing AHL further supports 

the theory of diffusing sensing, as altering environmental factors has affected CCRIT for 

bacteria grown in 0% and 0.2% agar. Additionally, it was found that CCRIT for 0.2% and 

0.4% agar were statistically equivalent (P-value = 1.00) in this condition.  

At high shaking frequency, changing the pH to 7.0 had no effect on CCRIT for 

bacterial cells grown in any of the agar densities (Figure 18). The CCRIT was statistically 

equivalent at all agar densities (P-value ≥ 0.34). When these shaking frequencies were 

compared to those grown in a medium with a pH of 7.4, there was still no statistical 

difference between these values (P-values ≥ to 0.05). At this shaking frequency, neither 



56 
 

  

agar density nor pH has an effect on CCRIT, suggesting that quorum sensing dominates at 

high shaking frequency. 

Mixed population experiments 

 The affect that the initial placement of the bacteria had on population survival was 

then examined. In the medium with 0% agar, the cells were dispersed throughout the 

environment every time the plate was shaken, but for bacteria grown in either 0.2% agar 

or 0.4% agar, this was not the case. Under these conditions, despite the shaking action 

caused by the microplate reader, these higher agar densities kept the majority of the bacteria 

fairly restricted to the central area of the well where they were first inoculated. By mixing 

the cells throughout the media, it was hypothesized that this change in the initial placement 

Figure 18: CCRIT was not affected evenly when AHL was stabilized 

When all CCRIT values were compared amongst each other, it was observed that the CCRIT values were not affected 

evenly amongst shaking frequencies nor agar concentrations. At low shaking frequency (1/hr), CCRIT decreased for 

cells grown in 0.4% agar to 5.59 x 103 (±1.19 x 103) CFU/mL, while bacteria grown in either 0% or 0.2% agar had no 

statistical difference in CCRIT (7.60 x 104 (±4.36 x 104) CFU/mL and 6.04 x 104 (±3.68 x 104) CFU/mL, respectively) 

between each other or when compared to cells grown in the same conditions at pH 7.4 (P-values ≥ 0.20). Increasing 

the shaking to intermediate frequency (3/hr) decreased CCRIT for both 0% and 0.2% agar (4.73 x 104 (±1.56 x 104) 

CFU/mL and 4.80 x 103 (±1.41 x 102) CFU/mL, respectively, while bacteria grown in 0.4% agar remained the same 

when compared to cells grown in the same condition at pH 7.4, where CCRIT was 4.80 x 103 (±1.41 x 102) CFU/mL (P-

value = 0.29). At high shaking frequency (12/hr), CCRIT for 0%, 0.2%, and 0.4% agar were statistically equivalent (4.70 

x 104 (±6.27 x 103) CFU/mL, 4.68 x 104 (±5.80 x 103) CFU/mL, and 3.70 x 104 (±1.76 x 104) CFU/mL, respectively) 

when compared amongst each other in media with both pH 7.0 and pH 7.4 (P-value ≥ 0.05). Standard deviations were 

derived from a minimum of three replicates. Lines drawn as a guide. 
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of the bacteria could have an effect on cell survival. Given that previous results had 

indicated that survival of the engineered bacteria, or CCRIT, was most affected at 

intermediate shaking frequency, this condition was explicitly examined.  

 To disperse the bacteria equally throughout the medium, the cells were mixed into 

the medium before it had (in the case of 0.2% and 0.4% agar) solidified. As an internal 

control, concurrent experiments were preformed where the cells were inoculated into the 

center of the well (as described in previous experiments). When the bacteria were shaken 

at intermediate frequency (3/hr), it was observed that there was no change in CCRIT in cells 

grown in 0% agar or 0.2% agar (Figure 19). However, when cells were grown in medium 

with 0.4% agar, CCRIT increased ~10-fold (relative to when cells were inoculated into the 

center of the well). Specifically, CCRIT was 3.25 x 105 (± 7.07 x 103) CFU/mL, 3.78 x 104 

(± 2.99 x 103) CFU/mL, and 3.70 x 104 (± 5.57 x 103) CFU/mL for cells grown in 0%, 

0.2%, and 0.4% agar, respectively. For bacteria grown in medium with 0.2% and 0% agar, 

it was noted that the value of CCRIT was statistically equivalent (P-value  0.21) when 

bacteria were either initially well mixed in the medium or when the bacteria were 

Figure 19: Mixing the bacteria in medium 

caused an increase in CCRIT for bacteria grown 

in 0.4% agar 

Bacteria were mixed with medium containing 

different agar densities (0%, 0.2%. and 0.4% agar) 

in the ON condition (1 mM IPTG) before they 

were added to the well. It was observed that there 

was no statistical difference in CCRIT with bacteria 

grown in 0% and 0.2% agar in the well mixed 

condition (3.25 x 105 (± 7.07 x 103) CFU/mL and 

3.78 x 104 (± 2.99 x 103) CFU/mL, respectively) 

when compared with the bacteria grown in the 

same agar conditions where they were inoculated 

into the center of the well (P-value  0.21). For 

bacteria grown in media with 0.4% agar, an 

increase was observed in CCRIT  (3.70 x 104 (± 5.57 

x 103) CFU/mL). Standard deviation derived from 

a minimum of three replicates.  
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inoculated into the center of the well. For bacteria grown in medium with 0.4% agar, the 

value of CCRIT increased to 3.70 x 104 (± 5.57 x 103) CFU/mL) (P-value = 0.01). 

Discussion 

One of the central hypotheses of this thesis is that quorum sensing and diffusion 

sensing are not competing theories, and that the core predictions of both theories can be 

seen in a single bacterial system when the appropriate conditions are present. The theory 

of quorum sensing states that bacteria regulate gene expression in response to cell density 

(Darch et al., 2012; Ji et al., 1995; Miller & Bassler, 2001; Pai et al., 2012; Platt & Fuqua, 

2010; Stuart A. West et al., 2012) through the use of autoinducers (Schertzer et al., 2009; 

Stuart A. West et al., 2012). Overall, quorum sensing is viewed as a social behavior, as a 

sufficient amount of bacteria are required to be present in order to initiate cooperation to 

alter gene expression. The theory of diffusion sensing suggests that the role of autoinducers 

is not used for cooperation, but instead to enable individual cells to sense how quickly the 

molecules secreted by the cell diffuse away (Redfield, 2002; Von Bodman et al., 2008; 

Stuart A. West et al., 2012). A key prediction of diffusion sensing is that the environment, 

and not cell density, should dictate whether a costly product should be produced by the 

individual cell (Williams et al., 2007). Factors that influence environmental conditions, and 

thus diffusion sensing, include changes in temperature or pH, nutrient availability, spatial 

structure, and diffusion rate (Williams et al., 2007).  

To investigate this central hypothesis, a previously engineered strain of bacteria 

(Smith et al., 2014) was used, where survival was dependent upon an autoinducer. For the 

cells to survive, a sufficiently high concentration of autoinducer was required. 
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Furthermore, an experimental set up was designed where environmental factors could be 

readily perturbed, to assess whether or not these environmental factors had any effect on 

autoinducer activated gene expression. After verifying the functionality of the engineered 

cells (Figure 10), it was determined that changing the density of the agar in the medium 

affected bacterial dispersal and AHL diffusion. It was observed that by increasing the 

percentage of agar in the medium from 0% to 0.2% to 0.4%, the dispersal rate of the 

bacteria and the diffusion rate of AHL decreased, which affected the survival rate of the 

engineered bacteria.  However, this reduction was unlikely to be equal, as AHL and 

bacteria move through the medium at different speeds. Specifically, AHL, being a molecule 

much smaller than the bacterium, should always diffuse faster than the bacterium. Overall, 

it was surmised that the results were predominantly driven by the variance in the spatial 

positioning between AHL and bacteria. With less spatial variance, CCRIT would be lower. 

Similarly, with high spatial variance, CCRIT would be higher.  

The bacteria were first grown in medium with a pH of 7.4. When the cells were 

shaken at low frequency (1/hr), it was found that CCRIT was statistically equivalent for all 

agar densities (Figure 14). This was likely due to near equal variance in the spatial 

distribution of AHL and bacteria. That is, despite differences in AHL diffusion rate and 

bacterial dispersal rate, the relative positions of bacteria and AHL were near equal amongst 

all conditions. It was proposed that under this condition of infrequent disturbance that the 

AHL produced by each bacterium remained closer to that bacterium, and this, in addition 

to the AHL produced by their relatively undisturbed neighboring cells, was sufficient to 

activate ccdA expression. Thus, overall, each bacterium effectively encountered a high 

amount of AHL. When the spatial position of the cells and AHL was moved, the long time 
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interval until the next disturbance offered the opportunity for the cells to rebuild the AHL 

concentration to levels high enough to eventually initiate cooperation. As such, when the 

cells were shaken at a low shaking frequency, the bacteria were able to access a local AHL 

concentration.  

Next, high shaking frequency (12/hr) of the bacteria was examined to observe the 

effect that increased disturbance had on the survival rate of the bacteria. Again, it was 

found that CCRIT was statistically equivalent for cells grown in all agar densities (Figure 

14). This CCRIT was also statistically equivalent to the cells grown in the low shaking 

frequency experiments, and similarly, it was hypothesized that this was because the 

variance between the spatial distribution of AHL and the bacteria were nearly equal for all 

agar densities. However, unlike the previous experiment (low shaking frequency) in which 

the bacteria were able to take advantage of AHL because it was able to build up over a long 

period of time within the vicinity of the cells, the frequent shaking allowed the AHL to be 

well mixed within the environment. This increased the likelihood that each bacterium had 

access to sufficient AHL. This effect contrasts to what was observed in the experiments at 

low shaking frequency, where each bacterium used more of the AHL produced by itself 

and by its neighboring cells. At high shaking frequency, the bacteria had a greater chance 

of encountering AHL produced from cells from anywhere within the microplate well, as 

under this shaking frequency, the contents of the microplate well were disturbed often 

enough that AHL was well mixed throughout the environment. As such, at high frequency, 

the bacteria were able to access a global AHL concentration. 

When the cells were shaken at either low (1/hr) or high (12/hr) frequency, CCRIT 

was statistically equivalent for all agar densities, supporting the theory of quorum sensing, 
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as the density of the bacterial population dictated when gene expression was altered to 

produce the costly product (ccdA) that rescued the population. Additionally, this activation 

of the autoinducer regulated gene was independent of environmental conditions (diffusion 

and dispersal). That is, the same CCRIT was observed in all of the agar densities and 

depended solely on cell density. However, at intermediate shaking frequency, 

environmental conditions affected the autoinducer activated expression of ccdA.  

When shaken at an intermediate frequency (3/hr), CCRIT was statistically different 

for cells grown in all of the agar densities. Here, the cells grown in 0.4% agar had the 

lowest CCRIT, while the cells grown in 0% agar had the highest (Figure 14). The cells in 

0.2% agar had a CCRIT that was statistically equivalent to cells shaken at either high or low 

frequency. It was hypothesized that during intermediate shaking frequency the variance in 

the spatial distribution of AHL and the cells were no longer equal in the three agar densities. 

When grown in medium with 0.4% agar, the spatial variance between AHL and bacteria 

was the lowest. Here, the combination of intermediate shaking frequency and 0.4% agar in 

the medium was the most optimal condition for the bacteria to access AHL. As this was 

the lowest CCRIT that was observed, it was theorized that this may be the optimal point for 

this system. Conversely, when grown in 0% agar, the spatial variance between AHL and 

bacteria was the highest. Under this condition, it was speculated that the bacteria were less 

successful at accessing the AHL they produced or of the AHL produced by the population. 

That is, the combination of the intermediate shaking frequency and 0% agar required a 

higher population density of bacteria to build up a sufficient concentration of the AHL 

within the local vicinity, as was observed in the low shaking frequency experiments. At the 

same time, the intermediate shaking frequency was not frequent enough to sufficiently mix 
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the population and grant access to the global AHL available throughout the environment. 

Overall, at intermediate shaking frequency, population survival was dependent upon 

environmental conditions, as these were used to perturb CCRIT, and thus satisfied the core 

tenant of diffusion sensing. 

Next, the pH in the environment was decreased from pH 7.4 to pH 7.0. This caused 

the degradation rate of AHL to decrease, making more of it available in the medium for 

the cells. All things being equal, a decrease in AHL degradation should effectively decrease 

the spatial variance between the bacteria and AHL for all shaking frequencies and all agar 

densities as more AHL will be available in the environment. That is, as there will be more 

AHL in the system at any given time, bacteria stand to effectively encounter AHL at any 

position on the plate.  

The bacteria were grown in a medium with a pH of 7.0 at all agar concentrations 

(0%, 0.2%, and 0.4%) and shaken at low frequency (1/hr). It was observed that the cells 

grown in both 0% and 0.2% agar were statistically equivalent to the cells grown in the same 

agar densities with a pH of 7.4 (Figure 18). As such, it appeared that the stabilization of 

AHL had no effect on these conditions; this suggests that the spatial variance between AHL 

and bacteria was not decreased with the increase of AHL that was available within the 

environment so as to affect CCRIT. However, for the cells grown in 0.4% agar, a decrease 

in CCRIT was observed (as compared to the same experiment at pH 7.4). These results 

suggest that the spatial variance was reduced under this condition. Due to the decreased 

degradation rate of AHL coupled with very low dispersal of the bacteria (due to the high 

agar concentration), it was surmised that AHL increased around the cells significantly 

faster, thus reducing CCRIT for this condition. Here, it was also noted, since an 
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environmental condition was again influencing CCRIT, the system was transitioning from 

quorum sensing, which was seen when the cells were grown in pH 7.4, to diffusion sensing. 

Interestingly, at high shaking frequency, CCRIT was again found to be statistically 

equivalent for cells grown in all agar densities (Figure 18). Furthermore, CCRIT was 

statistically equivalent to CCRIT when AHL was less stable and degraded faster (pH 7.4). 

These results suggest that the bacteria and AHL were moving frequently enough that the 

increase in AHL does not offer any additional benefit to the cells because the spatial 

variance between AHL and the bacteria remained the same. That is, although there was 

effectively more AHL available within the environment, the frequent perturbation via 

shaking prevents any additional benefit to the cells in this condition. At high shaking 

frequency, regardless of any changes that were made in any of the environmental 

conditions, quorum sensing dominated.  

When cells were grown at an intermediate shaking frequency (3/hr), a change in 

CCRIT was observed in two of the three agar densities (Figure 18). The cells grown in 0.4% 

agar displayed no change in CCRIT, having a CCRIT that was statistically equivalent to the 

cells grown in the same condition in a medium with pH 7.4. Again, it is proposed that the 

variance between the spatial distribution of the cells and AHL was at its optimal point. The 

cells grown in both 0% and 0.2% agar displayed a reduction in CCRIT. This influx of 

additional AHL via reduced degradation served to lessen the spatial variance between the 

spatial distribution of the cells and AHL, thus decreasing CCRIT. This again supported the 

theory of diffusion sensing, as perturbing an environmental condition affected CCRIT.  
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The above experiments were initiated using bacteria inoculated into the center of 

the well, which would initially serve to decrease the spatial variance.  In contrast, beginning 

experiments using equally distributed, or well-mixed, bacteria would serve to initially 

increase the spatial variance between bacteria and AHL. In agreement with the proposed 

mechanism, this would serve to increase CCRIT under some conditions. Because most of the 

variance in CCRIT occurred in experiments where the cells were shaken at intermediate 

frequency, this was the only frequency considered for these experiments. As expected, the 

cells grown in mixed medium with 0% agar had a CCRIT  that was statistically equivalent to 

that of cells were seeded (inoculated into the center of the well) into the medium (Figure 

19). This was also observed in cells grown in 0.2% agar. Although the cells were dispersed 

throughout the environment, the spatial variance between AHL and the bacteria remained 

close enough to that of cells that were seeded, which resulted in a CCRIT that was statistically 

equivalent between both of these conditions. For cells grown in 0.4% agar, an increase in 

CCRIT was observed when the cells were evenly distributed in the environment, meaning 

that more bacteria were required for the population to survive. The spatial variance between 

AHL and bacteria was increased due to the distance between each of the bacteria in the 

medium. This made it harder for the bacteria to access AHL from its neighbors and to 

utilize all of the AHL that it produced.  

Overall, these results served to support a theory that the spatial variance between 

bacteria and AHL was critical in determining successful activation of autoinducer regulated 

genes. It appeared that if passive movement (dispersal and diffusion) dominated (low 

shaking frequency), or if active movement dominated (high shaking frequency), the spatial 

variance conforms despite changes to environmental conditions (dispersal, diffusion, 
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autoinducer degradation rate). Here, quorum sensing was observed. However, if passive 

movement and active movement had non-dominating roles (intermediate shaking 

frequency), spatial variance, and thus in this case CCRIT, varies with the environmental 

conditions. Here, diffusion sensing was observed.  

The ability of bacteria to communicate is essential for their survival in many 

instances. Communication allows bacteria to work together, regulating gene expression as 

a single unit, and providing them with greater opportunity to adapt to changes within their 

environment. This adaption is vital, as natural environments are heterogeneous and 

subjected to frequent disturbances. In turn, understanding how these disturbances affect 

survival in bacterial species may aid in the prediction of potential outcomes at a grander 

scale. These disturbances are important, as they play a critical role in maintaining 

biodiversity. Moreover, this understanding may contribute to novel ways of addressing 

species reintroduction or controlling invasive species.  

Presently, there is a public health crisis, as the emergence of once treatable bacterial 

infections are now resistant to the antibiotics that were considered to be a last line of 

defense. As these antibiotics are losing their efficacy due to the increased incidence of 

resistant bacterial strains, new treatment options must be developed to combat these 

diseases. Many bacteria utilize cooperation to colonize their hosts (Keller & Surette, 

2006a), evade the immune system (Ackermann et al., 2008), and resist antibiotics (Allen 

et al., 2010; Martínez, 2008), but the core parameters that lead to effective disruption have 

yet to be explored. This research has demonstrated that disturbance of spatial distribution 

offers a possibility to enhance or detract growth. This may offer new prospects for research 

to develop more effective treatment for these diseases.   
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Conclusion 

Two competing theories exist as to why bacteria communicate using autoinducers; 

quorum sensing and diffusion sensing. Using a genetically engineered strain of bacteria, 

the core predictions of both quorum sensing and diffusion sensing were observed by 

predominantly changing the frequency at which the spatial structure of the bacteria and 

AHL were perturbed. Overall, this analysis has shown that both theories can be observed 

in a single bacterial species. These results have implications for a range of issues. This data 

suggests that how often a system is disturbed has a significant impact on species survival. 

Strategies that intervene with this ability may have an impact on how to control or possibly 

eradicate invasive species. At the opposite end of the spectrum, this may aid in the survival 

of reintroduced species. These results may also contribute to the development of novel 

treatments for bacterial infections, as the treatments currently available are becoming less 

effective.   
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