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Abstract 

The Florida Reef Tract (FRT) extends from the tropical Caribbean up the southeast 

coast of Florida into a temperate environment where tropical reef assemblages diminish 

with increasing latitude. This study used data from a three-year comprehensive fishery-

independent survey to quantify reef fish spatial distribution along the Southeast FRT and 

define where the assemblage shifts from tropical to temperate. A total of 1,676 reef fish 

visual census samples were conducted to assess the populations on a stratified-random 

selection of sites of marine hardbottom habitats between the Miami River and St. Lucie 

inlet. Multivariate analyses were used to investigate differences in assemblages among 

sites. Depth (<10 m and 10-33 m), general habitat (reef or hardbottom), and slope (high or 

low) strata were examined to explain the dissimilarities between assemblages. A general 

trend of cold-tolerant temperate fish dominated the northern assemblages and more tropical 

species dominated further south. Seven reef fish assemblage biogeographic regions were 

determined. In shallow habitats the data clustered in three spatial regions: One south of 

Hillsboro inlet, one in Northern Palm Beach south of Lake Worth inlet, and one north of 

Lake Worth inlet. The assemblage in deep habitats mainly split in close proximity to the 

Bahamas Fracture Zone south of Lake Worth Inlet. The presence of reef habitat aided in 

splitting the southern assemblage regions from the northern all-hardbottom assemblage 

regions in both the shallow and deep habitats. Substrate relief was significantly correlated 

with the differences in the northernmost deep assemblages but did not appear to affect the 

remainder of the shallow and deep assemblages. This bioregional study creates a baseline 

assessment of reef fish assemblages of the Southeast FRT for future analyses.  

 

Keywords: Ecology, multivariate analyses, biogeography, range shift, community 

latitudinal transition, assemblage structure 
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1.0 Introduction 

 1.1 Importance of Study 

Coral reef fishes comprise the most species-rich assemblages of vertebrates on 

earth. Over the past several decades, there have been substantial changes in the composition 

of the biomass and density of reef fish assemblages (Ault, Bohnsack, and Meester 1998; 

Mora 2008; Kopp, Bouchon-Navaro, Louis, et al. 2010; Kopp, Bouchon-Navaro, 

Cordonnier, et al. 2010). Therefore, assessing current assemblages to understand species’ 

distributions in the Caribbean is needed. Such studies should quantify the reef fish 

assemblages by both habitat and habitat regions to understand the current distribution of 

fishes and their habitat associations. This is essential information to provide a robust 

baseline for detecting future assemblage and individual species changes due to natural 

impacts such as climate change, cold-water influences, etc. (e.g. hurricane, excessive 

freshwater flooding). The establishment of a baseline will also be invaluable in the 

detection of the annual effects of anthropogenic inputs to a system (e.g., oil spills, 

pollution) including effects of management actions. 

The patterns of species’ density and distribution vary both spatially and temporally. 

Distinguishing the intensity of such variations is a first step along the way to 

comprehending the factors that help structure an assemblage (Tuya, Wernberg, and 

Thomsen 2011). The distribution of mobile animals such as reef fishes is heavily 

influenced by both abiotic and biotic factors (Walker, Jordan, and Spieler 2009). 

Temperature, for example, has a large effect on the distribution of some fishes like the 

Centropristis striata (black seabass), which is typically a temperate water fish and 

primarily found in the north of Florida (Robins and Ray 1986). Ecological processes like 

food availability, recruitment, predation, and competition, are examples of some biotic 

factors that can lead to patterns of density and distribution (Shapiro 1991). Determining 

the relative importance of such abiotic and biotic factors can help in defining the structure 

of reef fish assemblages. The distribution of many marine species is also related to certain 

habitats and depth regimes. Species like Opistognathus aurifrons (yellowhead jawfish), 
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Ptereleotris helenae (hovering goby), Ptereleotris calliurus (blue goby), and Malacanthus 

plumieri (sand tilefish) are found only in sandy areas where they make their burrows. 

Members of the Gerreidae (mojarra) family infrequently are seen on reefs and instead 

inhabit shallow sand-swept shorelines and grass, rubble, or mud flats (Humman and 

Deloach 2002). Life histories can also play a role in distribution; some juveniles may 

initially settle on one type of nursery habitat then move onto different habitats as they grow 

and mature (Shapiro 1991). For instance, juvenile Haemulidae (grunt) species are found 

typically in mangroves, estuaries, or nearshore reefs while the more mature grunts occur 

mainly on offshore reefs close to the sediment and seagrass beds they use for nighttime 

feeding. Recognizing these relationships between species and their preferred habitat can 

enable better inventory estimations and extrapolations (Walker, Jordan, and Spieler 2009; 

Walker 2008).  

Benthic habitat maps can be valuable tools in the process of detecting a correlation 

between reef fish and certain preferred habitats, currents, and depth regimes (Mellin et al. 

2009; Walker 2012). Mapping data are collected through remote sensing methods like 

high-resolution bathymetry, satellite imagery, and aerial photography and then displayed 

as geographic information system (GIS) vector data. The GIS vector data aid in enabling 

the quantification of a feature’s spatial relationship in the landscape and its areal extent 

(Walker 2012; Walker, Riegl, and Dodge 2008). These remote sensing techniques allow 

for the acquisition of large amounts of data on the characterization of broad areas of the 

seafloor quickly and economically, providing the foundation for large-scale resource 

mapping and modeling (Walker 2012; Walker, Riegl, and Dodge 2008). Remote sensing 

can be applied to help bridge the gap between in situ data and broader patterns in the 

seascape (Costa, Dijkstra, and Walker, in review). Thus, biological surveys, if 

appropriately distributed throughout an area, can be analyzed with benthic mapping data 

to elicit otherwise obscure spatial associations (Walker, Jordan, and Spieler 2009; Walker 

and Gilliam 2013). In the absence of a comprehensive in situ biological data, spatial 

analyses of benthic habitat maps could fill a significant role in identifying statistically 
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distinct physical biogeographic regions based on the morphology of habitats (Walker 

2012).  

The Florida Reef Tract (FRT) is the only barrier reef in the continental United 

States and is recognized as the third largest barrier reef chain ecosystem in the world, 

stretching across roughly 595 km of coastline. (Walker and Gilliam 2013; Finkl and 

Andrews 2008). This high-latitude reef tract has been divided into five geographic 

subsystems—Dry Tortugas, lower Keys, middle Keys, upper Keys, and mainland 

southeast—based on differing location, geomorphology, habitats, sediment types, 

temperature regimes and/or current systems (Lindeman et al. 2000; Brandt et al. 2009). 

The FRT starts in the Dry Tortugas subsystem and runs for about 135 km in an east-west 

orientation mostly at latitude 24.5°N (Walker and Gilliam 2013). At about 25.5°N, it arcs 

northeast for about 245 km of coastline which includes the lower, middle and upper keys 

(Walker and Gilliam 2013). The final mainland southeast subsystem extends north to about 

27.25°N to the end of the FRT (Walker and Gilliam 2013). The mainland Southeast (SE) 

FRT subsystem consists of several linear, shore-parallel, coral reef assemblages separated 

from one another longitudinally by sand flats extending north from the Florida Keys for 

approximately 215 km (Walker 2012; Walker and Gilliam 2013; Finkl and Andrews 2008). 

The section of the SE FRT that is the focus for my project has been extensively mapped 

using multiple remote sensing techniques making it an ideal location to perform 

bioregional spatial analyses (Figure 1) (Walker and Gilliam 2013; Walker 2012; Walker, 

Riegl, and Dodge 2008; Riegl et al. 2005).  

Bioregional groupings of assemblages are valuable at the broadest scales to better 

comprehend the processes of evolution, extinction and biodiversity (Harvey et al. 2013). 

Since the 1800s, latitudinal gradients have been identified as biogeographic indicators for 

landscape-wide distribution and diversity of marine organisms (Engle and Summers 1999; 

Willig, Kaufman, and Stevens 2003; Ebeling and Hixon 1991; Walker 2012; Macpherson 

2002). In order to better anticipate and understand the outcome of local anthropogenic 

impacts and natural disturbances, it is vital to identify the abiotic and biotic makeup of the 
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bioregion as whole (Harvey et al. 2013; Lourie and Vincent 2004). Southeast Florida is 

located at the convergence of the subtropical and temperate climate zones (Chen and 

Gerber 1990; Lugo et al. 1999) and benthic species latitudinal and cross-shelf assemblage 

differences have been reported along the SE FRT (Walker 2012; Walker and Gilliam 2013; 

Klug 2015). Through spatial analyses, Walker (2012) and Walker and Gilliam (2013) 

determined five boundaries that defined six coral reef ecoregions from Miami-Dade 

County to Martin County (Figure 1). Walker (2012) described a latitudinal benthic habitat 

zonation where the overall live stony coral cover and the size and number of distinct 

benthic features attenuates in a northward progression. Walker and Gilliam (2013) reported 

that temperature is a major controlling factor in the benthic assemblages between the coral 

reef ecoregions. Klug (2015) reported that there are benthic differences between habitats 

and regions that align with the coral reef ecoregions. Fish species diversity is often related 

to coral diversity (Smith, Chave, and Kam 1973) and certain benthic features are strongly 

associated with specific reef fish populations and demographics (Brandt et al. 2009; Smith 

et al. 2011). It follows that the fish assemblages would vary along this latitudinal gradient 

similar to the benthos. However, many species and even life-stages of the same species 

(e.g. juveniles, adults) have spatial distribution patterns that differ from one another. It 

remains to be shown whether the fish assemblages of the SE FRT agree with the benthic 

habitat based coral reef ecoregions of Walker (2012) and Walker and Gilliam (2013). 

1.2 Coral Reef Ecoregions 

The Coral Reef Ecoregions discussed in my study were originally defined by 

Walker (2012) and Walker and Gilliam (2013) and a summary of each follows. The 

southernmost coral reef ecoregion defined by Walker (2012) is the Biscayne region 

spanning 22 km to the south from Government Cut (25°45’44.35”N) in Miami-Dade 

County. The Biscayne region was not surveyed for this project. 

The Broward-Miami Coral Reef Ecoregion extends roughly 48 km (134.67 km2 

total mapped area) along the coast of mainland SE Florida (Walker 2012). This ecoregion 

is the second largest and is bounded by the Miami River and Government Cut to the south 
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and the northern terminus of the Linear Reef-

Inner (LIRI) habitat at Hillsboro inlet 

(26°15’32.73”N) (Walker 2012). The 

nearshore hardbottom is comprised of rock 

outcrops of colonized pavement and rubble that 

contains variable sand cover dominated by 

encrusting zoanthids, corals and macroalgae 

(Finkl and Andrews 2008; Kilfoyle et al. 2013).  

The Deerfield Coral Reef Ecoregion is 

the smallest of the six coral reef ecoregions and 

ranges about 15 km of the coastline of 

mainland SE Florida (25.27 km2 total mapped 

area) north from its southern boundary of the 

Hillsboro inlet to the northern end of the Linear 

Reef-Middle (LIRM) habitat at Boca Raton 

(26°23’40”N) (Walker 2012).  

The South Palm Beach Coral Reef 

Ecoregion was the fourth largest coral reef 

ecoregion and covers roughly 36 km of 

shoreline (60.05 km2 total mapped area) 

reaching north from the Boca Raton boundary 

to the northern end of the Linear Reef-Outer 

(LIRO) habitat at the Bahamas Fracture Zone 

(BFZ) (26°43’4.62”N) (Walker 2012). This 

ecoregion is relatively narrow and includes the 

remainder of the coral reefs that are not present 

in the North Palm Beach Coral Reef Ecoregion 

(Finkl and Andrews 2008).  

Figure 1. Map of study area including 

habitat types and the five ecoregions along 

the Southeast Florida Reef Tract. 



- 7 - 

Fisco, Dana P.      Master's Thesis 

 

The North Palm Beach Coral Reef Ecoregion is the largest, encompassing around 

32 km of coastline and 175.48 km2 of mapped area, it spans from just south of Palm Beach 

Harbor at the BFZ to the northern extent of the Deep Ridge Complex (DPRC) (Walker 

2012). At its southern edge, the Florida current diverges further from the coast (Engle and 

Summers 1999; Walker 2012) and the coastal shelf widens (Finkl and Andrews 2008). 

There is a notable lack of ancient coral reef topography in this ecoregion, it is characterized 

by extensive sand flats and karst topography (Finkl and Andrews 2008). The nearshore 

hardbottom habitats of the Jupiter area are derived from accretionary ridges of coquina 

mollusks, sand and shell marl with lithified parallel to ancient shorelines during the 

Pleistocene interglacial periods (Finkl and Andrews 2008). The habitat complexity of these 

limestone structures was expanded by colonies of tube-building polychaete worms and 

other invertebrate and macroalgal species (Lindeman and Snyder 1999) including the 

present-day coral assemblages.  

The Martin Coral Reef Ecoregion extends from southern Martin County just north 

of the end of the DPRC to the northern border of Martin County (Walker and Gilliam 

2013). At the southern end of the county, there are three deep ridge lines that run parallel 

to the shore (Walker and Gilliam 2013). Most of the shallow hardbottom habitats—both 

Colonized Pavement-Shallow (CPSH) and Ridge-Shallow (RGSH)—occur near the St. 

Lucie inlet (Walker and Gilliam 2013). The Martin Coral Reef Ecoregion also contains 

large mobile sand dunes that appear to be moderately or completely burying portions of 

the DPRC (Walker and Gilliam 2013).  

1.3 Benthic Habitats 

The SE FRT has also been divided into specific cross shelf habitat types (Walker 

2012; Walker and Gilliam 2013; Walker, Riegl, and Dodge 2008). The benthic habitats 

used in this project were adopted and modified from the NOAA hierarchical classification 

scheme used in Puerto Rico and the U.S. Virgin Islands (Kendall et al. 2001; Walker and 

Gilliam 2013; Walker, Riegl, and Dodge 2008). The habitats used in this project and their 

descriptions (adopted directly from the sources) are listed from inshore to offshore below 
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(Walker and Gilliam 2013; Walker 2012; Kendall et al. 2001; Finkl and Andrews 2008; 

Walker, Riegl, and Dodge 2008; Banks et al. 2008). For the purposes of my study, Shallow 

habitats occur < 10 m water depth and Deep habitats occur between 10 - 33 m. Furthermore, 

Reef was defined as a substrate that has historical organic reef growth and Hardbottom as 

every other type of natural, hard substrate habitat. 

1.3.1 Shallow Habitats  

 Colonized Pavement-Shallow (CPSH) consisted of colonized pavement in water 

shallower than 10 m. This habitat included rubble in many areas; however, consolidated 

rubble fields were a less frequent feature in shallow water than found in the Colonized 

Pavement-Deep habitat. Especially inshore of the Ridge-Shallow habitat, limited rubble 

was found and a wide contiguous area of pavement was encountered. This area could 

contain variable sand cover, which shifted according to seasons, wave energy and in 

response to weather. Thus, some of the colonized pavement was always covered by shifting 

sand and the density of visible coral and algae was highly variable. This habitat was 

categorized as Hardbottom and was present in four of the five coral reef ecoregions. 

Ridge-Shallow (RGSH) were ridges found in water shallower than 10 m near shore 

that were geomorphologically distinct, yet their benthic cover remained similar to the 

shallow colonized pavement assemblages on the surrounding hard grounds. The RGSH 

habitat was categorized as Hardbottom and was the only habitat present in all five of the 

coral reef ecoregions. 

Linear Reef-Inner (LIRI) was a distinct, relatively continuous, shore-parallel reef that 

consisted of a rich coral reef assemblage and crested in approximately 8 m depth. The LIRI 

had an immature reef formation growing atop antecedent shallow colonized pavement that 

lacked any clearly defined zonation. Acoustic and biological data indicated a distinct 

benthic assemblage from the Linear Reef-Middle and Linear Reef-Outer (Moyer et al. 

2003; Walker, Riegl, and Dodge 2008). LIRI was categorized as Reef and was only present 

in the Broward-Miami Coral Reef Ecoregion.  
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Patch Reefs (PTCH) were coral or hardbottom formations (categorized as Reef for 

this study) that were isolated from other coral reef formations by sand, seagrass, or other 

habitats and that had no organized structural axis relative to the contours of the shore or 

shelf edge. PTCH habitats could occur as a single isolated patch or in constellations of 

patches with varying densities in the four southern coral reef ecoregions. A surrounding 

halo of sand was often a distinguished feature of this habitat type when it occurred adjacent 

to submerged vegetation.  

Scattered Rock in Unconsolidated Sediment (SCRS) was primarily sand bottom 

with scattered rocks or small, isolated coral heads that were too small to be delineated 

individually and were less than 10 percent cover of submerged vegetation. SCRS was 

present in Broward-Miami and Martin coral reef ecoregions and was categorized as 

Hardbottom. 

1.3.2 Deep Habitats  

Linear Reef-Middle (LIRM) was a distinct, relatively continuous, linear, shore-

parallel reef that consisted of a rich coral reef assemblage which crested in approximately 

15 m depth. Acoustic and biological data indicated that it harbored a distinct benthic 

assemblage from the LIRI, Linear Reef-Outer and other hardbottom habitats (Moyer et al. 

2003; Walker, Riegl, and Dodge 2008). These Reef features followed the contours of the 

shore/shelf edge and were found in Broward-Miami and Deerfield coral reef ecoregions.  

Colonized Pavement-Deep (CPDP) was a flat, low relief habitat, composed of solid 

carbonate rock with coverage of macroalgae, hard coral, gorgonians, and other sessile 

invertebrates that were dense enough to partially obscure the underlying substrate in water 

deeper than 10 m. Also included in the CPDP habitat was a transition zone from colonized 

pavement to consolidated colonized rubble on the deep reefs. The CPDP was a Hardbottom 

habitat and was present in all coral reef ecoregions except the Martin Coral Reef Ecoregion. 

Linear Reef-Outer (LIRO) was a linear coral formation that was oriented parallel to 

shore or the shelf edge. These features were distinct, relatively continuous, reefs that 



- 10 - 

Fisco, Dana P.      Master's Thesis 

 

followed the contours of the shore/shelf edge, crest in approximately 16 m depth and were 

only found in the three southern coral reef ecoregions. The LIRO Reef habitat consisted of 

a rich coral reef assemblage that lived on relic reef morphology and included a back reef, 

reef crest, and spur and groove. Acoustic and biological data indicated that it harbored a 

distinct benthic assemblage (Moyer et al. 2003; Foster, Walker, and Riegl 2009).  

Spur and Groove (SPGR) was a Reef habitat that had alternating sand and coral 

formations that were orientated perpendicular to the shore or bank/shelf escarpment. The 

coral formations (spurs) of this feature typically had a high vertical relief compared to 

pavement with sand channels and were separated from each other by 1-5 m of sand or bare 

hardbottom (grooves), although the height and width of these elements may have varied 

considerably. This habitat type was found in the three southern coral reef ecoregions and 

typically occurred in the fore reef or bank/shelf escarpment zone.  

Aggregated Patch Reefs-Deep (APRD) were clustered patch reefs that individually 

were too small or were too close together to map separately. Like the PTCH habitat, APRD 

was categorized as Reef and was present in all of the coral reef ecoregions except for 

Martin.  

Ridge-Deep (RGDP) was a linear, often shore-parallel, low-relief feature, present in 

four of the five coral reef ecoregions (absent in North Palm Beach Coral Reef Ecoregion), 

which mostly occurred deeper than 20 m. It consisted of Hardbottom with sparse benthic 

assemblages in most parts likely due to variable and shifting rubble and sand cover. Some 

parts of the RGDP contained exposed ledges where large fish like Goliath Grouper 

(Epinephelus itajara) and Nurse Shark (Ginglymostoma cirratum) may have aggregated. 

Acoustic data indicated a distinct benthic assemblage (Foster, Walker, and Riegl 2009). 

Deep Ridge Complex (DPRC) was a complex of Hardbottom ridges found in deep 

water in the North Palm Beach and Martin coral reef ecoregions. These features resided in 

depth from 20 m to 35 m and were presumed to be of cemented beach dune origin. Most 

of this habitat consisted of low cover, deep assemblages dominated by small gorgonians, 

sponges and macroalgae, but denser areas existed, especially near areas of higher relief. 
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Some areas, particularly between ridges, may have contained large areas of shifting 

unconsolidated sediments.  

1.4 Previous Regional Fish Studies 

While the southern portions of the FRT—which include the Florida Keys and the 

Dry Tortugas—have been the focus of yearly fish surveys since 1979 and 1999, 

respectively; the regional distribution of reef fish along the SE FRT has never been 

investigated in a synoptic way. Localized studies have been performed in Broward and 

Palm Beach counties for various purposes, but never a full reef-tract-wide scale 

investigation to assess the reef fish assemblages.  

The largest amount of data gathered was between 1998 and 2002 for the National 

Oceanic and Atmospheric Administration (NOAA). Ettinger et al. (2001) performed the 

preliminary study with 181 Reef fish Visual Census (RVC) samples over a 5 nm area. The 

authors surveyed the three reef tracts and recorded a total of 139 species from 39 families. 

These surveys revealed significant cross-shelf differences with the inshore sites containing 

significantly less density and species richness than the two outer reef tracts. The 181 initial 

counts were added into the database of Ferro, Jordan, and Spieler (2005) who sampled east-

west transects every quarter nautical mile along the coastline of Broward County. In a total 

of 667 sites collected over four years, the authors found a total of 211 species from 52 

families. The analysis of the data showed significant latitudinal differences within reef 

tracts—especially with relation to the ports and inlets. The authors also found a significant 

trend of increasing species richness, total density, and total biomass on each reef tract 

moving offshore (Ferro, Jordan, and Spieler 2005).  

  Walker, Jordan, and Spieler (2009) further analyzed Ferro, Jordan, and Spieler's 

(2005) data using GIS and spatial analyses tools. The spatial analyses tools showed that 

the maps used by Ferro, Jordan, and Spieler (2005) misclassified some of sample sites 

leading to an erroneous conclusion of significant differences among the middle and inner 

reefs. Further analysis showed that reef fish distributions along the SE FRT appear to be 

influenced by topographic complexity. In general, benthic habitats with the highest mean 
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densities and species richness exhibited correspondingly higher topographic complexity 

and vice versa (Walker, Jordan, and Spieler 2009). Cluster analysis indicated the shallow 

and middle reef habitats were highly variable assemblages and the deeper habitats 

displayed a less variable species assemblage. While species richness was more reliably 

homogeneous among benthic habitats than fish density, the relationships between 

topographic metrics and fish assemblages varied among benthic habitats.  

 Arena, Jordan, and Spieler (2007) performed a study to analyze the differences in 

fish populations between natural ledge reef sites and vessel reef sites. The authors used 

some of the Ferro, Jordan, and Spieler (2005) data from 32 sites on the second and third 

reef tracts and added 29 sites of their own for a total of 61 point counts. For this study, only 

reef ledge sites closest to the vessel reefs were chosen because of their proximity and the 

complexity of reef ledges most closely resembles that of vessel reefs. Their data from the 

natural reefs showed a statistically higher fish density and mean species richness on the 

east edge of the middle reef than the western edge of the outer reef. The authors recorded 

118 species from 35 families on the natural reefs (Arena, Jordan, and Spieler 2007). 

The other studies on the SE FRT have focused on the nearshore hardbottom fish 

assemblages. Between 1994 and 1996, Lindeman and Snyder (1999) performed a series of 

15 m transect counts on the nearshore hardbottom off Jupiter in Palm Beach County and 

found that over 80% of the individual fish at all of the sites sampled were in early life 

stages. In the 394 transects performed, the authors found 86 taxa from 36 families. When 

Lindeman and Snyder (1999)’s species data were compared to a similar study in Broward 

County, the assemblages were different (Baron, Jordan, and Spieler 2004). In their study 

in 2001, Baron, Jordan, and Spieler (2004) performed 398 counts and found 164 species 

from 48 families. More than 85% of the fish in the first 30 m of nearshore hardbottom were 

juveniles. The authors concluded that the assemblage of fishes throughout the nearshore 

hardbottom of Broward County is relatively homogeneous due to a weak north-south 

regression for both species richness and density. Kilfoyle et al. (2013) performed rover 

diver and transect counts annually between 2004 and 2008 on the nearshore hardbottom 
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and artificial boulders in Broward County. The authors recorded an overall high diversity 

with a total of 185 species consisting primarily of juveniles and small cryptic species.  

In a literature synthesis on the ecological functions of nearshore hardbottom 

habitats in Southeastern Florida, a list was compiled of 257 species of fish that had been 

recorded from nearshore hardbottom habitats (Lindeman et al. 2009). The authors noted 

that some differences among the fish assemblages were present between the southern and 

northern areas of the SE FRT in terms of the most abundant species. The authors believe 

that there is a southern nearshore hardbottom population and a less diverse northern fauna 

particularly north of the deflection of the Gulf Stream offshore.  

In a study in preparation for regional reef fish surveys, Ault et al. (2012) 

synthesized the data from numerous previous reef fish studies performed on the SE FRT. 

The authors put together a list of reef fish with 10% or higher frequency of occurrence for 

each county (Broward, Palm Beach, Martin). Although the methods used and amount of 

data collected were not the same in all of the counties, a few obvious differences between 

the 10% frequency of occurrence lists are; 13 species of fish occurred frequently in all three 

counties, 23 species were listed in both Broward and Palm Beach counties, 5 species made 

the cut off in Palm Beach and Martin counties, 1 species was on the list for both Broward 

and Martin counties, 6 species were only in Broward County, 23 were only in Palm Beach 

County and 8 were only in Martin County.  

In 2012, Florida Department of Environmental Protection (FDEP) in concert with 

NOAA Coral Reef Conservation Program (CRCP) funded a three-year statistically robust 

tiered fisheries-independent monitoring program along the SE FRT (Kilfoyle et al. 2015; 

Ault et al. 2012). A main objective of the project was to capture an initial baseline of the 

reef fish assemblages throughout the region that could then be used to study and compare 

temporal trends in the future for fisheries management. Data collected has been integrated 

with the existing Reef fish Visual Census (RVC) program data for the Dry Tortugas and 

Florida Keys to enable resource managers to holistically examine the FRT, assess the status 

of the ichthyofaunal resources and conduct system-wide stock assessments.  
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1.5 Statement of Purpose 

My thesis used three years of the most recent regional data to evaluate the spatial 

distribution of southeast Florida reef fish assemblages and determine fish community 

differences by habitat types and with previously defined ecological sub-regions. My 

intention was to quantify reef fish latitudinal and cross-shelf spatial distribution on the 

southeast Florida Reef Tract and to define where the assemblage shifts from a tropical 

species dominance to a more cold-tolerant temperature dominance as well as to define new 

Reef Fish Assemblage Biogeographic Regions related to these spatial patterns.  

2.0 Methodology  

2.1 Study Area and Design 

The study area includes all previously mapped hardbottom habitats shallower than 

33 m between Government Cut (25°45”32’N, -80°7”30’W) in Miami-Dade County and 

the Saint Lucie Inlet (27°9”45’N, -80°9”9’W) in Martin County (Figure 1). The sampling 

design for this project was created with local stakeholder input in a separate FDEP-CRCP 

project by Ault et al. (2012). The two stage stratified random sampling design used for 

selecting locations for these Reef fish Visual Census (RVC) surveys has been proven to 

dramatically improve the efficiency of sampling (Ault et al. 2005; Smith et al. 2011) and 

was based on the prior accuracy of the RVC studies performed in the Florida Keys and the 

Dry Tortugas. The allocation scheme that follows is an established method and is the same 

reported in Kilfoyle et al. (2015).  

The reef-scape was gridded into 100 m cells referred to herein as primary sampling 

units (PSUs). Each PSU was divided into four 50x50 m grid cells to acquire second-stage 

randomized data collection locations with the PSU (Figure 2). At each second-stage data 

collection site, two surveyors performed concurrent fish counts. During the analysis, an 

arithmetic mean for adjacent counts from each individual surveyor was calculated to 

determine the fish density per data collection area (177 m2). This area is referred to herein 

as a second-stage unit (SSU). A SSU is synonymous with a “site” throughout the remainder 
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of my project. Each PSU and SSU was characterized by three main strata types, which 

combined are termed herein as map strata: coral reef ecoregion, benthic habitat type, and 

topographic slope (Table 1). The coral reef ecoregions as described above in section 1.2 

and defined in Walker (2012) and Walker and Gilliam (2013) were used to divide the study 

area into five ecologically relevant subregions. The grid cells were characterized according 

to which coral reef ecoregion the majority of the PSU resided. Detailed benthic habitat 

maps were used to determine the majority habitat type in each PSU and SSU (Riegl et al. 

2005; Walker, Riegl, and Dodge 2008; Walker, Jordan, and Spieler 2009; Walker and 

Gilliam 2013). The benthic habitat maps contained more detail than was practical for the 

stratification, therefore a priori decisions were made to combine more specific habitats into 

broader strata (Table 2). Since topographic complexity also affects local fish distributions 

(Foster, Walker, and Riegl 2009), topographic slope was included in the stratification as a 

surrogate for larger scale (10s of meters) topographic complexity. The slope was calculated 

in ArcGIS using high resolution LIDAR (Light Detection and Ranging) data. The LIDAR 

data were analyzed for slope where all areas greater than 5° were considered “high slope”. 

A single polygon layer of these areas was created and used to determine if the PSU and 

SSU majority were high or low slope. 

 

 

 

Figure 2. Illustration of a 100 m Primary Sample Unit (PSU) and the Second-stage Sample Units 

(SSUs) inside their respective 50 m box. Selection of 2 individual target SSUs is accomplished by 

a randomization of the 4 cells within the PSU. The dashed circles represent a buddy pair (A and 

B). [Modified from (Smith et al. 2011)]. 
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Table 1. Map strata for the site randomization to optimize survey outcomes. The coral reef 

ecoregions, habitat strata, and slope were used to define a specific map stratum. See Table 2 for 

habitat strata details. [Adopted from (Kilfoyle et al. 2015)] 

 

Coral Reef Ecoregion 

Habitat 

Strata Slope 

Broward-Miami INNR High 

Broward-Miami INNR Low 

Broward-Miami MIDR High 

Broward-Miami MIDR Low 

Broward-Miami NEAR High 

Broward-Miami NEAR Low 

Broward-Miami OFFR High 

Broward-Miami OFFR Low 

Broward-Miami PTDP High 

Broward-Miami PTDP Low 

Broward-Miami PTSH N/D 

Deerfield MIDR Low 

Deerfield MIDR High 

Deerfield NEAR Low 

Deerfield OFFR High 

Deerfield OFFR Low 

Deerfield PTDP High 

Deerfield PTDP Low 

South Palm Beach NEAR High 

South Palm Beach OFFR Low 

South Palm Beach OFFR High 

South Palm Beach PTDP Low 

South Palm Beach PTDP High 

South Palm Beach PTSH Low 

North Palm Beach DPRC High 

North Palm Beach DPRC Low 

North Palm Beach NEAR High 

Martin NEAR Low 

Martin NEAR High 

Martin RGDP Low 

Martin RGDP High 
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Table 2. Mapped benthic habitat classes and stratification habitat codes for this study, and major 

categories for the benthic habitat map in the southeast Florida Reef Tract. * The Ridge-Deep was 

included in the OFFR strata for the southern portion of the reef tract however, in Martin County it 

was recognized as distinctly different and was thus kept as a separate stratum. [Adopted from 

(Kilfoyle et al. 2015)] 

 

Map Habitat Class Habitat Strata 

Deep Ridge Complex DPRC 

Linear Reef-Inner INNR 

Linear Reef-Middle MIDR 

Linear Reef-Outer OFFR 

Ridge-Deep OFFR (RGDP in Martin only)* 

Ridge-Shallow NEAR 

Other Delineations (Artificial, dredged inlets, sand borrow areas) OTHR 

Aggregated Patch Reef-Deep PTDP 

Aggregated Patch Reef-Shallow PTSH 

Patch Reef PTSH <20 m; PTDP>20 m 

Colonized Pavement-Deep OFFR 

Colonized Pavement-Shallow NEAR 

Unconsolidated Sediment SAND 

Scattered Coral/Rock in Sand PTSH <20 m; PTDP>20 m 

Seagrass SGRS 

Spur and Grove OFFR 

No Map Data UNKW 

 

 The map strata were used to parse the region into finer categories to optimize 

sample locations for the eight targeted fishery species Balistes capriscus, Epinephelus 

morio, Haemulon plumierii, Haemulon sciurus, Lachnolaimus maximus, Lutjanus analis, 

Lutjanus griseus, and Ocyurus chrysurus. A simple randomized design would take many 

more samples to acquire the necessary data on the desired species, whereas a strategically 

targeted design is much more efficient (Smith et al. 2011). A major aspect of sampling 

efficiency (balance of precision and cost) of the Florida Keys RVC surveys was the use of 

environmental features that correlated with the spatial distribution of reef fishes to partition 

the survey area into strata of low, moderate and high variation in density (Smith et al. 2011; 

Ault et al. 2012). In the case of the Southeastern Florida Reef Tract (SE FRT), initially 
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there was not much regional information available about the fisheries species to inform the 

survey design, thus the proportion of benthic habitats were used to allocate sampling 

among strata (Ault et al. 2012). Subsequent years used previously collected data to aid in 

the site allocations by allocating sampling effort according to both stratum size and stratum 

variance of reef-fish density. When including the coral reef ecoregions, slope, and benthic 

habitat types, there were too many individual categories to be practical in the stratified 

random design and many were not thought to pertain to the targeted fish species. For 

example, the subtle differences between Colonized Pavement-Shallow and Ridge-Shallow 

benthic communities and geomorphology were not thought to be major factors affecting 

species distribution. Therefore certain benthic habitats were combined into what were 

intended to be more relevant strata, such as the nearshore habitats (NEAR). Combining the 

benthic habitats into habitat strata resulted in thirty-one map strata that were used in the 

sampling allocations (Table 1). As this project is meant to study hardbottom reef fish 

populations, grid cells containing ‘Other’ habitat class (altered natural substrates, dredge 

channels, artificial reefs, etc.) were excluded from the sample frame, as were cells 

containing only softbottom habitats (e.g. sand, seagrass, etc.). 

It was estimated that 360 PSUs could be visited each year with a combined effort 

from all partner agencies. PSU allocations for each stratum were guided by the proportional 

distribution of strata in the sampling frame. Each stratum was given a minimum of five 

PSUs. Then the remaining PSUs were distributed proportionally by the strata area. 

Extremely large strata were limited to 50 PSUs. Once the total number of target PSUs for 

each stratum was determined, the location of the PSUs to be sampled was randomly chosen 

based on equal probability of selection from the survey frame using NOAA’s sampling 

design tool for ArcGIS (http://coastalscience.noaa.gov/projects/detail?key=185). Then, 

two of the four SSUs in each chosen PSU were randomly selected. The center location of 

the two chosen SSUs were the sample sites for that PSU. 

Prior to the beginning of field sampling, the target locations were visually inspected 

with the high-resolution bathymetry and benthic habitat maps in GIS to determine if the 
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location was within the intended strata. If not, the points were moved (within the SSU 

where possible) to the designated target habitat. In cases where no suitable habitat was 

nearby, the point was discarded and a suitable alternate was chosen. Appendix 1 contains 

four site maps of actual sample locations from the combined 2012-2014 period.  

2.2 Point-Count Methodology  

The Reef fish Visual Census (RVC) point-count method used in this project is 

modeled after the original survey design developed by Bohnsack & Bannerot (1986). It is 

a nondestructive survey method, which provides reliable quantitative estimates of species 

density, frequency of occurrence, and size structure of reef fish assemblages. This method 

is based on taking a census of reef fish at a randomly selected stationary point within an 

imaginary cylinder with a 7.5 m radius (Figure 3).  

 

 
 

Figure 3. Diagram of the 15 m cylinder with Reef fish Visual Census surveyor in center. [Reprinted 

from (Brandt et al. 2009)]. 
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Biological data for this project were collected using non-destructive, in situ, 

fishery-independent, visual monitoring methods by highly trained and experienced 

surveyors using open circuit Air and Nitrox SCUBA (Ault et al. 2002). Data on non-

cryptic, diurnally active marine fishes were collected between May and October when there 

are minimum winds for better diving logistics and to keep a year-to-year consistency for 

the more mobile species. A reel with a weight and reef hook was dropped at each of the 

two Global Positioning System (GPS) located Second-stage Sampling Unit (SSU) sites. 

The line on the reels was attached to the surface with flag, buoy, and GPS systems. The 

addition of a GPS attached to the flag was used to document the actual location at the time 

of the sample. In areas of high current where there was risk of the flag and GPS 

submerging, a GPS point was taken where the surveyor’s bubbles were detected on the 

bottom using a Fathometer. Once suited up and ready, a buddy team of two surveyors 

(designated as diver A and diver B) was dropped at each flag. The weighted reel was 

hooked into the hardbottom using the reef hook—being careful to avoid sensitive species 

where possible—and served as a mid-point between the two surveyors’ cylinders. Each 

surveyor was responsible for a 15 m diameter imaginary cylinder from the bottom to the 

limits of vertical visibility or surface (Figure 3). A prefabricated data sheet on a clipboard 

with an attached pencil was used to assist in ease of recording. Starting in 2013, a new 

technique was used for the deep, high current sites found in the northern regions of the 

study frame. One team of surveyors was dropped—with flag and reel—at the SSU that was 

the furthest up current in the PSU. The buddy team performed one point-count at that SSU, 

then swam about 50 m with the current in the direction of the second SSU and performed 

the second point-count for that PSU. The surveyors were told prior to their dive the 

direction to swim and the projected relief of the two target SSU’s (high or low) and 

attempted, to the best of their ability, to land on the desired SSU. This technique was 

implemented to save overall dive time as well as give the surveyors’ extra surface intervals 

in between deep dives.  

For five minutes, the surveyor wrote down every observed species within the 

cylinder. The timing was assisted by the use of a stopwatch. After the initial five minutes, 
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the surveyor then drew a line under the list of species. For each species, the surveyor 

recorded the density and the estimated maximum, minimum and mean fork lengths to the 

nearest centimeter (cm). The surveyor worked back up the list in reverse order of recording 

to reduce potential bias by avoiding counting a species when they were particularly 

abundant or obvious. For the common families (e.g. Pomacentridae, Labridae, etc.), one 

360° rotation was made for each species. Species with few individuals (e.g. Pomacanthid’s, 

Sphyraena barracuda, Lachnolaimus maximus, etc.) were counted and their size estimated 

immediately. Highly mobile fish that were unlikely to remain in the area (e.g. 

Elasmobranch’s, Carangidae, etc.) were tabulated when first observed. This was repeated 

for every species on the list. If another species appeared within the next five minutes which 

was not previously recorded, the surveyor wrote it down under the five-minute line. For 

particularly long or species-rich counts, the stopwatch alarm went off again and the 

surveyor then drew a ten-minute line and continued counting and estimating until the 

original five minute list was completely filled out. The time required for the surveyor to 

record each count averaged between 15-20 minutes but ranged between 5-30 minutes 

depending on the habitat and number of species present. 

To aid in correct estimation of sizes and to reduce the apparent magnification errors 

each surveyor was equipped with an All Purpose Tool (APT). This measuring tool was 

composed of a meter-long Polyvinyl Chloride (PVC) stick marked at 10 cm increments 

with a perpendicular 30 cm ruler attached at one end. This APT enabled surveyors to 

calibrate their length estimates by measuring stationary items such as gorgonians or 

sponges and comparing these items to the fish swimming by. It also aided in measuring the 

radius of the cylinder, visibility, distinctive habitat features such as relief, and in keeping 

the surveyor aware of the center of his or her cylinder. In a couple instances, the APT was 

also used to ward off unwanted attention from predatory fish. 

After the initial data on the fish species were recorded, data were also collected on 

the depth and benthic habitat features including bottom composition, estimated percent 

cover, reef morphology (e.g. isolated patch reefs, spur and groove, coral rubble, etc.) and 
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topography (e.g. maximum height of hard and soft reef structures extending above the 

seafloor). An underwater camera was used to take four pictures—North, East, South, and 

West—to further document the benthic habitats. This underwater camera was also used to 

take photos of unusual or less well-known species to help the surveyors to later fact-check 

their in-water identifications.  

The captain, or data manager, recorded a daily boat log during the field day. This 

boat log contained the date, daily weather and sea state, the individual SSU’s five-digit 

identification number, the names of each surveyor and their designation (A or B), the GPS 

location and time at which the surveyors were dropped, the time the surveyors returned to 

the surface, and other pertinent information to the dives.  

2.3 Data Entry and Proofing 

Reef fish Visual Census (RVC) sample fish and habitat data were entered into an 

electronic database using the RVC Data Entry Program (Weinberger 1998; Ault et al. 2002; 

Brandt et al. 2009). This program was designed to standardize data entry and minimize the 

potential for errors during the data entry process (Brandt et al. 2009; Ault et al. 2002). The 

surveyors entered their own data from each of their dives through a three-window data 

entry program. With a section for comments, each entry contained every detail observed 

and recorded while performing the sample. The lead data manager entered the information 

gathered on the daily boat logs into a similar data entry program. The actual SSU locations 

from the dive flags’ hand-held Global Positioning System (GPS) units (or Fathometer 

readings) were entered as well to indicate the location at which the point-counts took place.  

Efforts to ensure maximum quality of the data were maintained throughout all 

levels of the data collection, entry and verification process in order to create the most 

accurate database possible (Kilfoyle et al. 2015). There was a two-fold data checking 

process performed by each of the surveyors. Immediately following each dive, surveyors 

consulted with their buddies to review the data sheet, fill in missing data, correct any errors, 

and ensure agreement on subjective data such as habitat type and visibility (Brandt et al. 

2009; Kilfoyle et al. 2015). Secondarily, after entering all of their samples, each surveyor 
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was provided with a scanned copy of their original data sheet and a similar Portable 

Document Format (PDF) with all of the data that he or she entered. The surveyors went 

through each sample crosschecking the original with that which was entered into the RVC 

Data Entry Program. From previous experience in experiments in the Florida Keys and the 

Dry Tortugas, this two-fold proofing process is critical to the data analysis process as 

individual entering errors were most likely not caught after the use of the RVC Data Entry 

Program (Brandt et al. 2009). Once all errors were identified and corrected, the final 

version of the data (i.e., sample, species, and substrate files, boat log, diver log and 

environmental data) for each agency was submitted for the final data merge, Quality 

Assurance/Quality Control (QA/QC) verification procedures (Kilfoyle et al. 2015). Once 

final data from each agency was compiled, the RVC Annual Master Spreadsheet was 

created (Kilfoyle et al. 2015). This file consisted of merged (via Merge2.0exe program) 

ASCII sample, substrate and species data outputs from the RVC data entry program along 

with a combined version of the Boat/Field and Water Quality/Environmental logs, each of 

which become one of four individual worksheets within the completed RVC Annual 

Master Spreadsheet file (Kilfoyle et al. 2015). The next step involved performing an in-

depth cross check of each of the four worksheets to locate any missing samples or 

incorrectly entered data, outliers, unlikely sizes and numbers of particular species, and any 

other dubious entries (Kilfoyle et al. 2015). Questionable elements discovered during this 

process were typically resolved by contacting the individual surveyor(s) who collected the 

data (Kilfoyle et al. 2015). A final rigorous verification procedure followed which 

scrutinized the habitat and substrate data, comparing the observed results to the GIS 

database (Kilfoyle et al. 2015).  

As the RVC methodology was not designed to accurately assess every fish on a 

reef, some decisions were made as to what to keep for analysis and what to disregard. In 

order to keep the data consistently identified to the species level, every fish that was only 

identified to the genus level was disregarded during statistical analyses. An exception was 

made for Jenkinsia spp. (Herring spp.), which was included in the analyses because it was 

the only representative of that genus. One other exception was made for fish identified as 
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Haemulon spp. with the assumption that individual species are very difficult to distinguish 

at newly settled and early juvenile life stages yet make up an important functional group 

of the nearshore fish assemblages (Baron, Jordan, and Spieler 2004; Gilliam 1999).  

During the QA/QC process, each SSU’s actual Global Positioning System (GPS) 

location (from the boat log) was mapped in Geographic Information Systems (GIS). Due 

to high current conditions, the surveyors did not always end up at the initially allocated 

site. The diver’s benthic data were cross-referenced with the habitat type to determine the 

strata of the sample. If the data indicated it was in a different habitat than originally 

assigned, the habitat classification associated with the SSU was changed to reflect the 

difference.  

2.4 Statistical Analyses 

Once the QA/QC process was complete, the final RVC Annual Master Spreadsheet 

file from the three years of sampling were compiled into one Microsoft Excel (2011) 

spreadsheet and each SSU was assigned an individual site number (0001-1676). Microsoft 

Excel (2011) was used to calculate percent occurrence and formulate graphical displays of 

the data. The statistical package, Statistica, was used to perform basic analysis of variance 

(ANOVA) and non-parametric analyses on the species richness and mean fish density data. 

The species richness data were found to be normally distributed so ANOVA tests were 

performed and differences were found. Then, using a post-hoc Tukey HSD test with an 

alpha value of 0.05, statistically significant homogenous groups were determined. The 

mean fish density data were not found to be normally distributed and transformations did 

not normalize the data so non-parametric Wilcoxon Matched Pairs Tests (p<0.05) were 

performed to determine statistically significant homogenous groups. Microsoft Excel 

(2011) was used to collect the data and formulate the graphs. 

Characterizing the reef fish assemblage biogeographic regions requires the 

inclusion of many variables because many habitats are composed of a variety of organisms 

of different densities or coverage (Costa, Dijkstra, and Walker, in review). Surveys that 

collect multivariate information can be analyzed spatially to determine larger scale patterns 
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and site similarities and differences (Costa, Dijkstra, and Walker, in review). Multivariate 

statistics for this project were conducted in Plymouth Routines in Multivariate Ecological 

Research (PRIMER) (PRIMER-E, Ltd., Plymouth, UK). First, in order to normalize the 

density measurements, an overall square root transformation was performed. Then, a Bray-

Curtis similarity resemblance matrix was created out of the transformed density data which 

ranked all of the sites relative to each other.  

Figure 4 illustrates an example using seafloor habitat data along cross-shelf 

transects to determine seascape patterns along the coast in Southeast Florida (Costa, 

Dijkstra, and Walker, in review). The analysis in this project closely followed the steps in 

the example. After the resemblance matrix was created, differences in the structure of reef 

fish assemblages between the twelve habitat types (CPSH, RGSH, LIRI, PTCH, SCRS, 

LIRM, CPDP, RGDP, LIRO, SPGR, APRD, and DPRC) were assessed using 

MultiDimensional Scaling (MDS). Then, a cluster analysis was performed and a 

dendrogram showed the similarity of the main data clusters. The data was then displayed 

in GIS using the two main cluster categories (Cluster A and Cluster B). The two clusters 

showed spatial patterns and a bar graph showed the habitat types that composed the two 

clusters fit into a depth strata (shallow and deep). The data was then analyzed by depth 

strata to determine species distributions driving spatial patterns. Analysis of similarity 

(ANOSIM) tests were then used to determine whether the reef fish assemblage data fit into 

the Coral Reef Ecoregions defined by Walker (2012) and Walker and Gilliam (2013). 

Insignificant differences were found between some of the coral reef ecoregions so these 

ecoregions were combined into a set of Shallow and Deep Reef Fish Assemblage 

Biogeographic Regions. MDS and ANOSIM analyses were performed to test if previously 

determined reef fish strata (General Habitat and Relief) lead to significant differences. 

After the final Shallow and Deep Reef Fish Assemblage Biogeographic Regions were 

determined, similarity percentages analyses (SIMPER) were performed to assess the 

species that contributed the most to the differences in the southernmost and northernmost 

assemblage regions.  
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Figure 4. Methods for identifying spatial distribution. Six steps involved in analyzing multivariate 

data to determine spatial patterns. The colored numbers correspond to the colored list of steps in 

the middle. The steps go from the top left to the middle right to the bottom left. Example data are 

from (Walker 2012). [image from (Costa, Dijkstra, and Walker, in review)]. 
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3.0 Results 

 3.1. General 

Three annual surveys were accomplished between July 12 and October 31, 2012; 

May 23 and October 28, 2013 and between May 6 and October 31, 2014 collecting data at 

432, 639, and 605 SSUs respectively (1676 total). Forty-seven surveyors counted a total of 

283,644 fish during the three sampling seasons representing 286 species from 69 families 

( 

Appendix 2). The total mean density for all sites combined was 170.0 ± 5.9 

Standard Error of the Mean (SEM) fishes/site. The total mean species richness for all sites 

combined was 25.0 ± 0.2 SEM species/site. 

 3.2 Defining Strata 

 The analyses to define the fish strata were performed for my project as well as for 

the Kilfoyle et al. (2015) report. The results that follow in this section (3.2) are the same 

as those in the report. Multidimensional scaling (MDS) showed patterns in the reef fish 

assemblages associated with the benthic habitats described above in section 1.3 (Figure 5). 

Samples in many of the habitats clustered tightly together indicating that these sites were 

most similar to each other. These included Linear Reef-Middle (LIRM), Colonized 

Pavement Deep (CPDP), Linear Reef-Outer (LIRO), Spur and Groove (SPGR), and 

Aggregated Patch Reef Deep (APRD). Other habitats contained more variable but 

relatively distinct assemblages as indicated by their spread away from each other and the 

main cluster of points. For example the Ridge-Deep (RGDP) and the Deep Ridge Complex 

(DPRC) were spread out and mostly separated from samples in other habitats. The Ridge-

Shallow (RGSH) and Colonized Pavement-Shallow (CPSH) were also spread out, however 

they were comingled indicating that the assemblages in these habitats, although variable, 

are more similar to each other than other habitats. 

 A cluster analysis illustrated the similarity of each site in a dendrogram (Figure 6). 

The dendrogram showed a main split in the data at the 36% similarity level indicating the 
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sites in these two clusters were very different. The sites associated with these clusters were 

categorized as Cluster A and Cluster B and plotted in GIS to visualize their spatial 

relationships (Figure 7). There was clear spatial separation in the two clusters where 

Cluster A was mainly offshore spread from the Broward-Miami Ecoregion through the 

South Palm Beach Ecoregion. Cluster B was mainly constrained to the nearshore in the 

Broward-Miami Ecoregion. The samples in clusters A and B were associated with different 

habitat types (Figure 8). The sites in Cluster A mainly occurred in the deep habitats (LIRM, 

CPDP, RGDP, LIRO, SPGR, APRD, and DPRC) whereas the sites in Cluster B were 

associated with mostly shallow habitats (CPSH, RGSH, and LIRI) supporting that depth 

was strongly correlated with the differences in the regional reef fish assemblage. 

 

 

 
 

Figure 5. MDS plot of all sites categorized by Habitat. 
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Figure 6. Cluster dendrogram of all sites. Dashed red line indicates the 36% similarity level which 

is the main split in the data. All sites linked below the left cluster are Cluster A and all sites linked 

below the right cluster are Cluster B. 
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Figure 7. Map of all sites illustrating the samples within the two main clusters of species densities 

in the multivariate analysis at 36% similarity. (Kilfoyle et al. 2015) 
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Figure 8. The number of sites in the two main clusters of species densities in the multivariate 

analysis at 36% similarity by habitat type. (Kilfoyle et al. 2015) 
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When categorized by shallow and deep habitats (Figure 9), the MDS plot illustrated 

a tight cluster of deep sites and that the shallow sites were mostly separate and considerably 

spread out indicating high variability. There were many deep sites spread throughout the 

shallow sites as well, indicating that depth was not the only factor influencing the 

assemblage composition. When combining habitats into general categories of Reef (LIRI, 

PTCH, LIRM, LIRO, SPGR, and APRD) and Hardbottom (CPSH, RGSH, SCRS, SCDP, 

RGDP, DPRC), the MDS revealed that the Reef sites were mostly tightly clustered and the 

Hardbottom sites were mostly separate and spread throughout the plot where the Deep and 

Shallow sites mixed (Figure 10). This result indicated that the main differences in habitat 

associated with regional fish assemblages was whether it was Deep or Shallow and Reef 

or Hardbottom. When displayed by both depth and general habitat, the MDS plot illustrated 

good splits between most categories (Figure 11). However, some assemblages on the Deep 

Hardbottom sites clustered with those on the Deep Reef sites. The MDS was further 

categorized by Depth, General Habitat and Relief (0=Low= <0.3 m and 1=High= >0.3 m) 

(Figure 12). The general patterns in Figure 11 remained and high relief helped explain the 

Deep Hardbottom sites clustering with the Deep Reef sites. 

 

 



- 33 - 

Fisco, Dana P.      Master's Thesis 

 

 
 

Figure 9. MDS plot of all sites categorized by Habitat Depth. CPSH, RGSH, LIRI, PTCH and SCRS 

habitats were categorized as Shallow and all others as Deep. 

 

 
 

Figure 10. MDS plot of all sites categorized by General Habitat; Reef (LIRI, PTCH, LIRM, LIRO, 

SPGR and APRD) or Hardbottom (CPSH, RGSH, SCRS, CPDP, RGDP and DPRC). 
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Figure 11. MDS plot of all sites categorized by Depth (Shallow or Deep) and General Habitat 

(Reef or Hardbottom). 

 

 
 

Figure 12. MDS plot of all sites categorized by Depth (Shallow or Deep), General Habitat (Reef 

or Hardbottom), and Relief (0=Low or 1=High). 
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3.3 Shallow Samples 

Analyses were performed on the shallow sites (CPSH, RGSH, LIRI, PTCH and 

SCRS) to further define shallow reef fish assemblage strata. A MDS between the Coral 

Reef Ecoregions within the shallow sites showed the Broward-Miami and Martin sites were 

mostly separate but the other three ecoregions were all mixed together ( 

Figure 13). An ANOSIM further elucidated the differences in the shallow reef fish 

assemblages between the Coral Reef Ecoregions (Table 3). Broward-Miami Coral Reef 

Ecoregion was significantly different (R stat = 0.373-0.591) from the northern Coral Reef 

Ecoregions so the sites within this zone formed the new Shallow Broward-Miami Reef Fish 

Assemblage Biogeographic Region. A Reef Fish Assemblage Biogeographic Region is 

synonymous with an “Assemblage Region” throughout the remainder of this document. 

No significant differences were found between the Deerfield, South Palm Beach and North 

Palm Beach Coral Reef Ecoregions so these ecoregions were combined into a new Shallow 

Palm Beach-Deerfield Assemblage Region. All of the southern ecoregions were 

statistically different from the Martin Coral Reef Ecoregion (R stat 0.482-0.595) so the 

sites within this zone created the new Shallow Martin Assemblage Region.  

Following the separation into the three Shallow Assemblage Regions (Broward-

Miami, Palm Beach-Deerfield, and Martin) an ANOSIM was performed to determine if 

General Habitat and Relief were significant stratification factors in the shallow habitats 

(Table 4). The largest difference between shallow reef fish strata was between the 

Broward-Miami High relief Reef and the Martin Low relief Hardbottom (R stat = 0.967). 

Within the Shallow Broward-Miami Assemblage Region, the majority of the assemblages 

were not significantly different and the significant ones were not very strong (R stat = 

0.181-0.183). The assemblages of the Low Hardbottom and High Hardbottom habitats 

within the Shallow Palm Beach-Deerfield Assemblage Region were not significantly 

different. The same was true for assemblages in the Shallow Martin Assemblage Region. 

Due to the lack of strong significant differences within the individual assemblage regions, 
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a further stratification by General Habitat and Relief was deemed unnecessary for the 

shallow sites.  

A MDS plot was created using the new Shallow Assemblage Regions (Figure 14). 

Similar to  

Figure 13, the Broward-Miami sites clustered on the bottom and the Martin sites 

clustered on the top. The new Palm Beach-Deerfield Assemblage Region sites overlapped 

the other two assemblage regions with most of the sites falling in between Broward-Miami 

and Martin. While the 2D stress was quiet high at 0.24, the MDS clearly illustrated the 

difference between the shallow Broward-Miami and the Martin assemblages. An ANOSIM 

further confirmed the difference in assemblage structure between Broward-Miami and 

Martin (R stat = 0.591) (Table 5). The Broward-Miami assemblage was significantly 

distinct from the Palm Beach-Deerfield (R stat = 0.429) and the Palm Beach-Deerfield 

assemblage was significantly different from the Martin Hardbottom (R stat = 0.255).  
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Figure 13. MDS plot of all samples on shallow habitats only (CPSH, RGSH, LIRI, PTCH and 

SCRS). Categorized by Coral Reef Ecoregion. 
 

Table 3. A summary of the ANOSIM pairwise tests of the shallow sites between the Coral Reef 

Ecoregions. The R statistic indicates the strength of the difference where 1 is the strongest and 0 is 

the weakest. The significant differences (0.1%) are in plain text while the non-significant pairings 

(>0.1%) are in italics. 

 
  

Groups (Coral Reef 

Ecoregion) 

R 

Statistic 

Significance 

Level % 

Broward-Miami,  

Deerfield 0.52 0.1 

Broward-Miami,  

South Palm Beach 0.373 0.1 

Broward-Miami,  

North Palm Beach 0.408 0.1 

Broward-Miami,  

Martin 0.591 0.1 

Deerfield,  

South Palm Beach 0.113 0.4 

Deerfield,  

North Palm Beach 0.106 0.7 

Deerfield,  

Martin 0.595 0.1 

South Palm Beach,  

North Palm Beach 0.042 9.1 

South Palm Beach,  

Martin 0.489 0.1 

North Palm Beach, 

 Martin 0.482 0.1 
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Table 4. A summary of the ANOSIM pairwise tests of the shallow sites between the Assemblage 

Region, General Habitat, and Relief. 

 

  

Groups (Assemblage Region, General 

Habitat, Relief) 

R 

Statistic 

Significance 

Level % 

  

Groups (Assemblage Region, General 

Habitat, Relief) 

R 

Statistic 

Significance 

Level % 

Broward-MiamiReef0,  

Broward-MiamiHardbottom0 0.037 9.7 

Broward-MiamiHardbottom1,  

Palm Beach-DeerfieldHardbottom0 0.285 0.1 

Broward-MiamiReef0,  
Broward-MiamiHardbottom1 0.183 0.1 

Broward-MiamiHardbottom1, 
MartinHardbottom1 0.722 0.1 

Broward-MiamiReef0, 

Broward-MiamiReef1 0.061 1 

Broward-MiamiHardbottom1, 

MartinHardbottom0 0.693 0.1 
Broward-MiamiReef0, 

Palm Beach-DeerfieldHardbottom0 0.491 0.1 

Broward-MiamiHardbottom1,  

Palm Beach-DeerfieldHardbottom1 0.425 0.2 

Broward-MiamiReef0,  
MartinHardbottom1 0.915 0.1 

Broward-MiamiReef1,  
Palm Beach-DeerfieldHardbottom0 0.405 0.1 

Broward-MiamiReef0,  

MartinHardbottom0 0.888 0.1 

Broward-MiamiReef1,  

MartinHardbottom1 0.946 0.1 
Broward-MiamiReef0,  

Palm Beach-DeerfieldHardbottom1 0.637 0.1 

Broward-MiamiReef1,  

MartinHardbottom0 0.967 0.1 

Broward-MiamiHardbottom0,  
Broward-MiamiHardbottom1 -0.018 69.3 

Broward-MiamiReef1,  
Palm Beach-DeerfieldHardbottom1 0.721 0.1 

Broward-MiamiHardbottom0,  
Broward-MiamiReef1 0.101 1 

Palm Beach-DeerfieldHardbottom0, 
MartinHardbottom1 0.251 0.1 

Broward-MiamiHardbottom0,  

Palm Beach-DeerfieldHardbottom0 0.333 0.1 

Palm Beach-DeerfieldHardbottom0, 

MartinHardbottom0 0.036 31.8 
Broward-MiamiHardbottom0, 

MartinHardbottom1 0.495 0.1 

Palm Beach-DeerfieldHardbottom0,  

Palm Beach-DeerfieldHardbottom1 -0.015 54.3 

Broward-MiamiHardbottom0, 

MartinHardbottom0 0.429 0.1 

MartinHardbottom1,  
MartinHardbottom0 0.266 0.2 

Broward-MiamiHardbottom0,  

Palm Beach-DeerfieldHardbottom1 0.335 0.4 

MartinHardbottom1,  

Palm Beach-DeerfieldHardbottom1 0.705 0.1 
Broward-MiamiHardbottom1, 

Broward-MiamiReef1 0.181 0.1 

MartinHardbottom0,  

Palm Beach-DeerfieldHardbottom1 0.459 0.1 
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Figure 14. MDS plot of all samples on shallow habitats only. Categorized by the new Shallow 

Assemblage Regions. 

 

 

 

Table 5. A summary of the ANOSIM pairwise tests of the shallow sites between the new Shallow 

Assemblage Regions. 

 
  

Groups (Shallow 

Assemblage Region) 

R 

Statistic 

Significance 

Level % 

Broward-Miami,  

Palm Beach-Deerfield 0.429 0.1 

Broward-Miami,  

Martin 0.591 0.1 

Palm Beach-Deerfield,  

Martin 0.255 0.1 
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3.4 Deep Samples 

Analyses were performed on the deep sites (LIRM, CPDP, RGDP, LIRO, SPGR, 

APRD, and DPRC) to further define deep reef fish assemblage strata. An MDS between 

the Coral Reef Ecoregions (Figure 15) aided in splitting apart the dense cluster present 

within the deep habitats in Figure 9. The sites in the Broward-Miami, Deerfield, and South 

Palm Beach Coral Reef Ecoregions all clustered together while the sites in North Palm 

Beach and Martin were mostly spread apart from the cluster and each other. An ANOSIM 

numerically demonstrated the relationships of the deep habitat assemblages within the 

Coral Reef Ecoregions (Table 6). Since the R stat values between Broward-Miami, 

Deerfield and South Palm Beach were very low (R stat < 0.198), these three were combined 

to make a new Deep South Palm Beach-Miami Assemblage Region. While the assemblages 

of South Palm Beach and North Palm Beach were weakly similar (R stat 0.169), the 

decision to create a separate Deep North Palm Beach Assemblage Region was made 

because the assemblages as a whole between the southern three ecoregions were more 

similar to each other (R stat = 0.054-0.198) than to the North Palm Beach assemblage (R 

stat = 0.169-0.532). The differences between the assemblages of the southern four 

ecoregions and those of the Martin Coral Reef Ecoregion were strong enough to separate 

them into the new Deep Martin Assemblage Region. 

An ANOSIM was performed using the Deep reef fish strata (Assemblage Regions, 

General Habitat and Relief) to further elucidate the differences in the assemblages (Table 

7). The strongest difference between the deep reef fish strata was South Palm Beach-Miami 

High relief Reef and Martin Low relief Hardbottom (R stat = 0.981). Of the six reef fish 

strata comparisons within the South Palm Beach Assemblage Region, only two sets of 

assemblages were significantly different from each other. The High relief Reef and the 

Low relief Hardbottom, were moderately dissimilar (R stat = 0.339) while the comparison 

between the Low relief Reef and the High relief Reef was not strong (R stat = 0.098). 

Because the majority of the assemblages were similar, the strata of South Palm Beach-

Miami were considered a single Deep South Palm-Deerfield Assemblage Region. The 
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North Palm Beach Low relief and High relief Hardbottom assemblages were also similar 

(R stat = 0.16) so the strata were considered a single Deep North Palm Beach Assemblage 

Region. The Martin Low relief and High relief Hardbottom assemblages were moderately 

dissimilar (R stat = 0.342) so this assemblage region was split into two regions, Deep 

Martin Low Assemblage Region and Deep Martin High Assemblage Region. 

An MDS plot was created using the new Deep Assemblage Regions (Figure 16). 

The South Palm Beach-Miami sites clustered densely at the top of the plot. Some of the 

North Palm Beach sites were also clustered in with the South Palm Beach sites but the 

majority were spread across the right side of the plot. The Martin High sites were spread 

in between the main cluster and the Martin Low sites at the bottom left. An ANOSIM 

(Table 8) further confirmed the difference in assemblage structure between South Palm 

Beach-Miami and North Palm Beach (R stat = 0.588), Martin Low (R stat = 0.957) and 

Martin High (R stat = 0.93). The assemblage structure of North Palm Beach was 

significantly different from Martin Low (R stat = 0.402) and Martin High (R stat = 0.364).  
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Figure 15. MDS plot of all samples on deep habitats only (LIRM, CPDP, RGDP, LIRO, SPGR, 

APRD, and DPRC). Categorized by Coral Reef Ecoregion. 

 

Table 6. A summary of the ANOSIM pairwise tests of the deep sites between the ecoregions. 

 

Groups (Coral Reef Ecoregion) 

R 

Statistic 

Significance 

Level % 

Broward-Miami,  

Deerfield 0.101 0.1 

Broward-Miami,  

South Palm Beach 0.198 0.1 

Broward-Miami,  

North Palm Beach 0.532 0.1 

Broward-Miami,  

Martin 0.938 0.1 

Deerfield,  

South Palm Beach 0.054 0.1 

Deerfield,  

North Palm Beach 0.256 0.1 

Deerfield, 

Martin 0.858 0.1 

South Palm Beach,  

North Palm Beach 0.169 0.1 

South Palm Beach,  

Martin 0.831 0.1 

North Palm Beach,  

Martin 0.37 0.1 
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Table 7. A summary of the ANOSIM pairwise tests of the deep sites between the Reef Fish Strata 

(Assemblage Region, General Habitat, and Relief).  

 

Groups (Assemblage Region, General 

Habitat, Relief) 

R 

Statistic 

Significance 

Level % 

 Groups (Assemblage Region, 

General Habitat, Relief) 

R 

Statistic 

Significance 

Level % 

South Palm Beach-MiamiReef0,  

South Palm Beach-MiamiReef1 0.098 0.1 

South Palm Beach-MiamiHardbottom0,  

North Palm BeachReef1 0.125 28 
South Palm Beach-MiamiReef0,  

South Palm Beach-MiamiHardbottom0 0.15 1.5 

South Palm Beach-MiamiHardbottom1,  

North Palm BeachHardbottom0 0.103 10 

South Palm Beach-MiamiReef0,  
South Palm Beach-MiamiHardbottom1 -0.072 78.5 

South Palm Beach-MiamiHardbottom1,  
North Palm BeachHardbottom1 0.045 28.7 

South Palm Beach-MiamiReef0,  

North Palm BeachHardbottom0 0.555 0.1 

South Palm Beach-MiamiHardbottom1,  

MartinHardbottom0 0.555 0.1 
South Palm Beach-MiamiReef0,  

North Palm BeachHardbottom1 0.396 0.1 

South Palm Beach-MiamiHardbottom1,  

MartinHardbottom1 0.565 0.1 

South Palm Beach-MiamiReef0,  

MartinHardbottom0 0.929 0.1 

South Palm Beach-MiamiHardbottom1,  

North Palm BeachReef0 0.649 0.1 

South Palm Beach-MiamiReef0, 

MartinHardbottom1 0.899 0.1 

South Palm Beach-MiamiHardbottom1,  

North Palm BeachReef1 0.558 4.2 
South Palm Beach-MiamiReef0,  

North Palm BeachReef0 0.402 0.1 

North Palm BeachHardbottom0,  

North Palm BeachHardbottom1 0.16 0.1 

South Palm Beach-MiamiReef0,  
North Palm BeachReef1 0.166 23.1 

North Palm BeachHardbottom0,  
MartinHardbottom0 0.397 0.1 

South Palm Beach-MiamiReef1,  

South Palm Beach-MiamiHardbottom0 0.339 0.1 

North Palm BeachHardbottom0,  

MartinHardbottom1 0.451 0.1 
South Palm Beach-MiamiReef1,  

South Palm Beach-MiamiHardbottom1 -0.027 59.6 

North Palm BeachHardbottom0,  

North Palm BeachReef0 -0.123 87 

South Palm Beach-MiamiReef1,  
North Palm BeachHardbottom0 0.722 0.1 

North Palm BeachHardbottom0,  
North Palm BeachReef1 0.019 43 

South Palm Beach-MiamiReef1,  

North Palm BeachHardbottom1 0.413 0.1 

North Palm BeachHardbottom1,  

MartinHardbottom0 0.674 0.1 
South Palm Beach-MiamiReef1,  

MartinHardbottom0 0.981 0.1 

North Palm BeachHardbottom1,  

MartinHardbottom1 0.549 0.1 

South Palm Beach-MiamiReef1, 
MartinHardbottom1 0.963 0.1 

North Palm BeachHardbottom1,  
North Palm BeachReef0 0.264 2.1 

South Palm Beach-MiamiReef1,  

North Palm BeachReef0 0.617 0.1 

North Palm BeachHardbottom1,  

North Palm BeachReef1 -0.101 58.1 
South Palm Beach-MiamiReef1,  

North Palm BeachReef1 0.329 8.3 

MartinHardbottom0,  

MartinHardbottom1 0.342 0.1 

South Palm Beach-MiamiHardbottom0,  
South Palm Beach-MiamiHardbottom1 0.077 12.7 

MartinHardbottom0,  
North Palm BeachReef0 0.215 0.8 

South Palm Beach-MiamiHardbottom0,  
North Palm BeachHardbottom0 -0.007 53.6 

MartinHardbottom0,  
North Palm BeachReef1 0.268 6.2 

South Palm Beach-MiamiHardbottom0,  

North Palm BeachHardbottom1 0.229 0.1 

MartinHardbottom1,  

North Palm BeachReef0 0.523 0.1 
South Palm Beach-MiamiHardbottom0,  

MartinHardbottom0 0.576 0.1 

MartinHardbottom1,  

North Palm BeachReef1 0.277 13.5 

South Palm Beach-MiamiHardbottom0,  
MartinHardbottom1 0.593 0.1 

North Palm BeachReef0,  
North Palm BeachReef1 0 40 

South Palm Beach-MiamiHardbottom0,  

North Palm BeachReef0 0.246 3.2    
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Figure 16. MDS plot of all samples on deep habitats only. Categorized by the new Deep 

Assemblage Region. 

 

 

Table 8. A summary of the ANOSIM pairwise tests of the deep sites between the new Deep 

Assemblage Regions. 

 

  

Groups (Deep Assemblage Region) 

R 

Statistic 

Significance 

Level % 

South Palm Beach-Miami,  

North Palm Beach 0.588 0.1 

South Palm Beach-Miami,  

Martin Low 0.957 0.1 

South Palm Beach-Miami,  

Martin High 0.93 0.1 

North Palm Beach,  

Martin Low 0.402 0.1 

North Palm Beach,  

Martin High 0.364 0.1 

Martin Low,  

Martin High 0.342 0.1 

Deep
Transform: Square root

Resemblance: S17 Bray Curtis similarity

Deep Assemblage Regions
South Palm Beach-Miami

North Palm Beach

Martin Low

Martin High

2D Stress: 0.18

Deep
Transform: Square root

Resemblance: S17 Bray Curtis similarity

Deep Assemblage Regions
South Palm Beach-Miami

North Palm Beach

Martin Low

Martin High

2D Stress: 0.18
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3.5 Southeast Florida Reef Fish Assemblage Biogeographic Regions 

 Once the Reef Fish Assemblage Biogeographic Regions were determined within 

each depth stratum, the deep and shallow data were analyzed together to examine if 

differences between latitudes is stronger than the difference between shallow and deep 

assemblages. An MDS plot was created with all of the sites divided by shallow and deep 

assemblage regions (Figure 17). While it is hard to interpret because the sites in the middle 

latitudes are highly variable, there is a clear difference between Broward-Miami sites and 

the Martin sites. An ANOSIM better shows the differences in the latitudes (Table 9). All 

assemblages were determined to be significantly different from each other with some 

showing stronger differences than others. The strongest difference in assemblage structure 

was between the Deep South Palm Beach-Miami and the Shallow Martin assemblage 

regions (R stat = 0.966). The smallest differences in assemblage structure was between the 

Shallow Palm Beach-Deerfield and the Deep North Palm Beach assemblage regions (R stat 

= 0.238).  
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Figure 17. MDS plot of all sites categorized by Assemblage Region. “S” indicates Shallow and 

“D” indicates Deep Assemblage Regions. Shallow sites are denoted by hollow shapes and the Deep 

sites are solid. 
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Table 9. A summary of the ANOSIM pairwise tests of all sites categorized by Assemblage Regions. 

“S” indicates Shallow and “D” indicates Deep Assemblage Regions.  

 
  

Groups (Assemblage 

Region) 

R 

Statistic 

Significance 

Level % 

  

Groups (Assemblage 

Region) 

R 

Statistic 

Significance 

Level % 

S-Broward-Miami,  

D-South Palm Beach-Miami 0.441 0.1 

S-Palm Beach-Deerfield,  

D-North Palm Beach 0.238 0.1 

S-Broward-Miami,  

S-Palm Beach-Deerfield 0.429 0.1 

S-Palm Beach-Deerfield,  

S-Martin 0.255 0.1 

S-Broward-Miami,  

D-North Palm Beach 0.37 0.1 

S-Palm Beach-Deerfield,  

D-Martin Low 0.493 0.1 

S-Broward-Miami,  

S-Martin 0.591 0.1 

S-Palm Beach-Deerfield,  

D-Martin High 0.401 0.1 

S-Broward-Miami,  

D-Martin Low 0.798 0.1 

D-North Palm Beach,  

S-Martin 0.411 0.1 

S-Broward-Miami,  

D-Martin High 0.724 0.1 

D-North Palm Beach,  

D-Martin Low 0.402 0.1 

D-South Palm Beach-Miami, 

S-Palm Beach-Deerfield 0.856 0.1 

D-North Palm Beach,  

D-Martin High 0.364 0.1 

D-South Palm Beach-Miami,  

D-North Palm Beach 0.588 0.1 

S-Martin,  

D-Martin Low 0.752 0.1 

D-South Palm Beach-Miami,  

S-Martin 0.966 0.1 

S-Martin,  

D-Martin High 0.552 0.1 

D-South Palm Beach-Miami,  

D-Martin Low 0.957 0.1 

D-Martin Low,  

D-Martin High 0.342 0.1 

D-South Palm Beach-Miami,  

D-Martin High 0.93 0.1    
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3.6 Mean Species Richness and Mean Density 

Comparisons of mean species richness and density among the assemblage regions 

were statistically significant. The Shallow Broward-Miami Assemblage Region contained 

significantly more species and fish on average than the Shallow Palm Beach-Deerfield and 

Martin assemblage regions which contained a statistically similar mean number of species 

and fish (Figure 18 andFigure 19).  

The Deep South Palm Beach-Miami sites had significantly higher mean species 

richness than the rest of the deep sites (Figure 20). The Deep Martin Low sites contained 

significantly lower mean species richness than the rest of the deep sites. The deep sites in 

the North Palm Beach and Martin High assemblage regions contained a similar number of 

species on average. The deep sites in the South Palm Beach-Miami and Martin High 

assemblage regions contained similar mean density of fish which was higher than the deep 

sites in the North Palm Beach and Martin Low assemblage regions (Figure 21).  

 

 
 

Figure 18. Comparisons of mean reef fish species richness by Shallow Assemblage Region. The 

lines above the bars indicate one standard error measurement (SEM). The letters represent 

significantly different homogenous groups as determined by a post-hoc Tukey HSD test with an 

alpha value of 0.05. 
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Figure 19. Comparisons of mean reef fish density by Shallow Assemblage Region. The lines above 

the bars represent one standard error measurement (SEM). The letters represent significant 

homogenous groups as determined by a non-parametric Wilcoxon Matched Pairs Test (p<0.05).  

 

 

 
Figure 20. Comparisons of mean reef fish species richness by Deep Assemblage Region. The lines 

above the bars indicate one standard error measurement (SEM). The letters represent significantly 

different homogenous groups as determined by a post-hoc Tukey HSD test with an alpha value of 

0.05. 
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Figure 21. Comparisons of mean reef fish density by Deep Assemblage Region. The lines above 

the bars represent one standard error measurement (SEM). The letters represent significant 

homogenous groups as determined by a non-parametric Wilcoxon Matched Pairs Test (p<0.05).  

 

3.7 Assemblage variations with latitude 

Between Shallow reef fish strata, the High relief Broward-Miami Reef and Low 

relief Martin Hardbottom ANOSIM showed the greatest dissimilarity (Table 4). These sites 

were separated by the greatest latitudinal difference, thus an analysis of similar percentages 

(SIMPER) test was run to analyze the species that contributed the most to the differences 

in assemblages with latitude (Table 10). These two reef fish strata had an average 

dissimilarity of 81.69%. Stegastes partitus, Thalassoma bifasciatum, Coryphopterus 

personatus, Sparisoma aurofrenatum, Halichoeres garnoti, Haemulon flavolineatum, 

Acanthurus bahianus, Acanthurus coeruleus and Scarus iseri had a higher percentage of 

density in the Broward-Miami High relief Reef than in the Martin Low relief Hardbottom. 

Haemulon aurolineatum, juvenile Haemulon spp., Halichoeres bivittatus, Anisotremus 

virginicus, and Acanthurus chirurgus, had higher percentages in the Martin Low relief 

Hardbottom and the Broward-Miami High relief Reef. Percent occurrence comparisons 
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between Shallow Assemblage Regions also showed patterns with latitude, where S. 

partitus, T. bifasciatum, S. aurofrenatum, and A. bahianus decreased in percent occurrence 

to the north and H. aurolineatum, A. virginicus, and Diplodus holbrookii increased (Figure 

22). Diplodus holbrookii in particular showed an exaggerated pattern with < 7% frequency 

of occurrence in Broward-Miami and Palm Beach-Deerfield assemblage regions but > 71% 

frequency of occurrence in the Martin Assemblage Region.  

The ANOSIM showed the greatest dissimilarity within the Deep reef fish strata 

between the South Palm Beach-Miami High relief Reef and the Martin Low relief 

Hardbottom. The SIMPER test showed an average dissimilarity of 89.16% in the 

assemblages between these two Deep reef fish strata (Table 11). Like in the Shallow reef 

fish strata, S. partitus, T. bifasciatum, C. personatus, H. garnoti, S. aurofrenatum, A. 

bahianus and A. coeruleus had a higher percentage of density in the South Palm Beach-

Miami High relief Reef than in the Martin Low relief Hardbottom. In addition to the shared 

species, Canthigaster rostrata, Chromis cyanea, Chromis insolata, and Clepticus parrae 

were also present in higher densities in the south than in the north. Only H. aurolineatum 

and H. bivittatus shared spots with the shallow in the top 50% of species with higher 

densities in the northern than in the southern reef fish strata. In addition, Centropristis 

striata and Balistes capriscus were present in high densities in the Deep Martin Low relief 

Hardbottom sites than in the Deep South Palm Beach-Miami High relief Reef sites. Percent 

occurrence comparisons between Deep Assemblage Regions showed similar patterns with 

latitude (Figure 23). Stegastes partitus, T. bifasciatum, H. garnoti and C. rostrata, 

decreased in occurrence with latitude while H. aurolineatum, C. striata, B. capriscus, and 

Caranx crysos showed an increase in occurrence with latitude. Centropristis striata 

specifically had an exaggerated pattern with < 1% frequency of occurrence in Broward-

Miami and Palm Beach-Deerfield assemblage regions and an > 58% frequency of 

occurrence in Martin Low and Martin High assemblage regions.  
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Table 10. A summary of the SIMPER test performed on the transformed species density data on 

Shallow reef fish strata up to 52% cumulative percentage between the Broward-Miami High relief 

Reef sites and the Martin Low relief Hardbottom sites. For abbreviations, see  

Appendix 2. 

 

  

Group 

Broward-

Miami 

Reef High 

Group 

Martin 

Hardbottom 

Low                  

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

STE_PART 5.3 0.05 6.04 2.65 7.4 7.4 

THA_BIFA 5.04 0.89 5.02 1.87 6.15 13.54 

HAE_AURO 0.9 3.56 4.33 0.84 5.3 18.84 

COR_PERS 3.94 0.05 4.03 1.01 4.93 23.77 

SPA_AURO 2.69 0 3.18 2.65 3.89 27.66 

HAE_SPE_ 0.34 2.39 2.77 0.53 3.39 31.06 

HAL_GARN 2.13 0 2.41 2.22 2.95 34.01 

HAE_FLAV 2.32 0.24 2.38 0.98 2.92 36.93 

HAL_BIVI 1.9 3.47 2.35 1.33 2.88 39.8 

ACA_BAHI 2.37 1.08 2.24 1.47 2.74 42.55 

ANI_VIRG 0.79 1.56 1.95 0.81 2.39 44.94 

ACA_CHIR 1.16 1.36 1.83 1.12 2.24 47.18 

ACA_COER 1.64 0.05 1.79 1.56 2.19 49.37 

SCA_ISER 1.66 0.16 1.78 1.33 2.17 51.54 

 

 

 
 

Figure 22. Percent occurrence comparison between Shallow Assemblage Region for commonly 

occurring species. Species on the left occur more frequently in the southern assemblages while 

species on the right occur more frequently in the northern assemblages. For abbreviations, see  

Appendix 2. 
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Table 11. A summary of the SIMPER test performed on the transformed species density data on 

the Deep reef fish strata up to 51% cumulative percentage between the South Palm Beach-Miami 

High relief Reef and the Martin Low relief Hardbottom. For abbreviations, see  

Appendix 2 

 

  

Group South 

Palm Beach-

Miami High 

Reef  

Group Martin 

Low 

Hardbottom              

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

STE_PART 6.61 0.91 7.67 2.35 8.6 8.6 

THA_BIFA 4.91 0.73 5.52 1.82 6.19 14.79 

COR_PERS 3.68 0 4.41 0.88 4.95 19.73 

HAL_GARN 2.86 0.2 3.6 1.83 4.04 23.77 

SPA_AURO 2.47 0.06 3.16 1.84 3.55 27.32 

ACA_BAHI 2.11 0.21 2.64 1.39 2.96 30.28 

CAN_ROST 1.86 0.33 2.11 1.65 2.37 32.65 

HAE_AURO 0.53 1.55 2.08 0.66 2.34 34.98 

ACA_CHIR 1.62 0.4 2.08 1.08 2.33 37.32 

CHR_CYAN 1.66 0 1.97 0.91 2.21 39.53 

CEN_STRI 0 1.23 1.68 0.77 1.88 41.41 

ACA_COER 1.25 0 1.62 1.34 1.82 43.23 

CHR_INSO 1.06 0.43 1.62 0.71 1.82 45.05 

HAL_BIVI 0.5 1.17 1.6 1.02 1.8 46.85 

CLE_PARR 1.53 0 1.58 0.56 1.77 48.62 

BAL_CAPR 0.31 1.15 1.54 1.06 1.73 50.34 
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Figure 23. Percent occurrence comparison between Deep Assemblage Regions for commonly 

occurring species. Species on the left occur more frequently in the southern assemblages while 

species on the right occur more frequently in the northern assemblages. For abbreviations, see  

Appendix 2. 

4.0 Discussion 

This study defines biogeographic regions for coral reef fish assemblages in 

southeast Florida (Figure 24). Reef fish assemblages’ species richness, distribution and 

density are structured by the regional pool of available species and the numerous factors 

that guide these species’ ability to settle and persist (Ebeling and Hixon 1991; Sale 1980). 

The Florida Current provides the regional pool of planktonic larvae for the Florida Reef 

tract from upstream sources (Yeung and Lee 2002; Gilmore et al. 1981). Most reef fishes 

are dependent on the substrate for many purposes (avoiding predation, seeking 

nourishment, etc.) accordingly, the structure and makeup of the substrate will most likely 

influence the local assemblage (Luckhurst and Luckhurst 1978). Therefore, it is crucial to 

analyze the data at the finest habitat strata categorization possible to best comprehend the 

relationships with associated reef fish assemblages (Pittman, Costa, and Battista 2009; 

Walker, Jordan, and Spieler 2009). Reef fish distributions may not directly equate to the 

finest level of benthic habitat classification though and the numerous variables involved in 

determining the spatial relationships of reef fish sometimes complicate predicting and 

analyzing their distributions (Walker 2008). However, my study illustrates that analyses 

can be used to define statistically meaningful reef fish assemblage biogeography at a 

regional scale. 

Depth was the first large-scale habitat strata which correlated highly with the reef 

fish assemblage structure along the southeast Florida Reef Tract (SE FRT) in this study 

and in others (Walker, Jordan, and Spieler 2009; Gilliam et al. 2014; Ferro, Jordan, and 

Spieler 2005). Correlations between fish assemblage attributes (i.e. density and/or species 

richness) and depth of habitat have also been documented on other coral reef habitats 

around the world (Gilmore et al. 1981; Aguilar-Perera and Appeldoorn 2008; Grober-

Dunsmore et al. 2004; Luckhurst and Luckhurst 1978; Friedlander and Parrish 1998; 
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Newman and Williams 2001). Similar to the findings of Walker et al. (2009) and Ferro et 

al. (2005), my study found that fish assemblages were more variable in the shallow habitats 

and more tightly clustered in the deeper habitats. So, in order to eliminate the depth variable  
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Figure 24. Map of the Southeast Florida Reef Tract with Reef Fish Assemblage Biogeographic 

Regions indicated by color. Shallow sites are lighter shades and Deep sites are darker shades. The 

Coral Reef Ecoregions of Walker (2012) and Walker and Gilliam (2013) are labeled and divisions 

are indicated by dark bars. 

 

from obfuscating the analysis of reef fish assemblage biogeographic regions, the data in 

this study were initially analyzed separately by shallow ( < 10 m) and deep ( 10 – 33 m) 

habitats. After determining the shallow and deep assemblage regions, the data were 

combined to analyze the relative importance of depth. While strong differences between 

depths within similar regions were present, the latitudinal differences in assemblages, 

regardless of depth, were stronger.  

Along the SE FRT, the amount and extent of distinct benthic habitats attenuates 

northward (Walker 2012) and the benthic macroalgal (Lapointe 2007) and coral (Walker 

and Gilliam 2013; Moyer et al. 2003) assemblages vary with latitude as well. The data from 

the present study show the fish assemblages of the SE FRT also vary with latitude. Many 

studies have related habitat structure to the structure of the reef fish assemblages (Jones 

and Syms 1998; Tuya, Wernberg, and Thomsen 2011; Friedlander and Parrish 1998). Since 

habitat type greatly affects the assemblage structure, the presence or absence of habitat in 

a region helped define the reef fish assemblage biogeography of the SE FRT. The primary 

shallow reef habitat, the Linear Reef-Inner, runs along the entire near-shore shelf in the 

Broward-Miami Coral Reef Ecoregion terminating approximately at the Hillsboro inlet 

(Banks et al. 2008; Walker 2012). The Broward-Miami Assemblage Region was the only 

shallow region to contain both Reef and Hardbottom habitats. The shallow habitats north 

of Hillsboro inlet were found to be formed by processes other than historical organic reef 

growth (i.e. exposed rock outcrops, karstified terrains, etc.) (Banks et al. 2008; Walker, 

Riegl, and Dodge 2008; Finkl and Andrews 2008) so they were considered Hardbottom. 

Similarly, the deep reef habitats, the Linear Reef-Middle and Linear Reef-Outer, are 

present only in the three southern coral reef ecoregions (Walker 2012). The combination 

of the reef fish assemblages of the southern three coral reef ecoregions into one South Palm 
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Beach-Miami Assemblage Region corresponded to the presence of mapped reef and 

hardbottom habitats.  

The correlation of relief with a range of coral reef fish metrics in coral reef 

ecosystems has been documented and spans multiple habitats and/or depths (Luckhurst and 

Luckhurst 1978; Friedlander and Parrish 1998; Pittman et al. 2007; Pittman, Costa, and 

Battista 2009; Walker, Jordan, and Spieler 2009; Parrish, Callahan, and Norris 1985). 

Intricacies in substrate can provide many benefits to a variety of reef fishes. Live coral and 

other invertebrates living in the substrate can serve as a food source for some fish 

(Friedlander and Parrish 1998; Parrish, Callahan, and Norris 1985) while the structural 

complexity can serve as protection from physical or predatory stress (Hixon 1991). The 

strongest difference in assemblages between low and high relief was between the Martin 

Low and Martin High assemblage regions where the Martin Low sites exhibited lower 

density and richness than the Martin High sites. In all other assemblage regions, relief did 

not play a significant role in differentiating assemblage biogeography. While the general 

habitat and relief helped to parse out the differences in the assemblage regions, they did 

not fully explain the strong latitudinal differences between the assemblage regions.  

Along continental coasts, north-south faunal latitudinal boundaries fluctuate as 

warm-temperate and cold-temperate regions overlap in zones of transition. In these zones 

species of different faunas mingle to various extents depending on yearly shifts in the 

oceanographic climate (Ebeling and Hixon 1991). Variation in thermal regimes—either 

seasonal or with depth—may enhance local diversity in transitional zones between 

temperate and subtropical waters by promoting the co-occurrence of cool and warm water 

species (Stephens and Zerba 1981). Southeast Florida is located at the convergence of the 

subtropical and temperate climate zones (Chen and Gerber 1990; Lugo et al. 1999). Prior 

studies of the benthos have found that the assemblages of the SE FRT show a substantial 

decrease in the number of tropical coral species and a relative dominance of cold-tolerant 

coral species in the northern assemblages (Martin County) (Walker and Gilliam 2013). The 

authors found that the shift in benthic assemblages was explained by differences in 
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temperature regimes along the southeast Florida coast. Analyses of bottom temperature 

differences along the reef tract showed significant cold-water upwelling occurs more 

frequently and with higher intensity in the regions north of an area referred to as the 

Bahamas Fracture Zone (BFZ) (Walker, Gilliam, and Gramer, in prep), a geological feature 

that coincides with the end of historical outer reef growth and where the Florida Current 

diverges from the coast (Klitgord, Popenoe, and Schouten 1984). The division between the 

deep South Palm Beach-Miami and the North Palm Beach assemblage regions is situated 

along the BFZ, above which, the continental shelf widens and the Florida Current diverges 

from the coast. This divergence carries the warm tropical waters into the Gulf Stream and 

boundary eddies form causing the frequent episodes of cold water upwelling (Walker and 

Gilliam 2013). In my study, the deep assemblages south of the BFZ were more similar to 

each other while the assemblages north of the BFZ were separate from the southern 

assemblages and widely dispersed indicating they were highly variable in species 

composition and density.  

Among the deep assemblages, the southernmost Broward-Miami Assemblage 

Region and the northernmost Martin High Assemblage Region contained similar fish 

density but the number of species was significantly lower in the Martin High sites. The 

shallow assemblage regions also showed a significant decrease in species richness between 

the Broward-Miami sites and the Martin sites. My results of increasing species richness 

with decreasing latitude agree with previous studies (Ebeling and Hixon 1991; Willig, 

Kaufman, and Stevens 2003; Macpherson 2002; Walker 2012; Moyer et al. 2003; Stephens 

and Zerba 1981). This is not surprising since fish diversity can be related to coral diversity 

(Smith, Chave, and Kam 1973), and Walker and Gilliam (2013) found that coral species 

richness decreased poleward along the coast. Furthermore, in a study of the fishes of Palm 

Beach County performed between 1997 and 2007, more species were recorded in the 

southern half of the county than in the northern half with the most frequently occurring 

species differing markedly between the two as well (Banks et al. 2008).  
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This latitudinal decrease in the richness of the assemblages of tropical fauna may 

be due to a decrease in the level of environmental variability through which reef species 

are able to survive and persist (Ebeling and Hixon 1991; Stephens and Zerba 1981). 

Tropical to temperate latitudinal differences in reef fish assemblages have been reported 

along the northern coast of Florida in the Indian river lagoon system (Gilmore et al. 1981). 

While their study includes inland habitats and assemblages north of the present study area, 

Gilmore et al. (1981) note that the warm-temperate Carolinian and the tropical Caribbean 

fish faunas overlap considerably in the east central aquatic fish assemblages they studied. 

They propose that the fishes of the Indian river lagoon region in east central Florida 

originated in the Caribbean faunal province and apparently came into the region via the 

Florida Current while the warm-temperate Carolinian fishes distribution must be explained 

by adult migration with some aid from larval fishes transported via southbound counter-

currents of the Florida Current and other inshore water mass movements (Gilmore et al. 

1981). My study demonstrates that the transition between these two climate zones within 

the ichthyofaunal assemblages is present in habitats further south than the Gilmore et al. 

(1981) study covered. Typical coral reef fishes live among existing coral in relatively 

shallow tropical water where temperatures rarely drop below 20°C (Ebeling and Hixon 

1991). Over the course of a two year study, the temperature recorded in Martin County was 

below 20°C for about 2100 hours whereas the temperature recorded in the southern areas 

of the SE FRT was below 20°C for approximately 300 hours (Walker, Gilliam, and Gramer, 

in prep). This temperature regime difference is likely affecting the assemblage constituents.  

Examples of known ranges (Www.aquamaps.org 2013) for some of the species 

driving the differences in assemblages between the southernmost Shallow Broward-Miami 

and Deep South Palm Beach-Miami assemblage regions and the northernmost Shallow 

Martin, Deep Martin Low and High assemblage regions are displayed in Figure 25. The 

species found in high densities at the northernmost sites (right) have ranges that extend 

much farther north indicating they live in a broader range of colder water temperatures. 

The ranges of the species found in much higher densities farther south (left) diminish 

rapidly to the north indicating they are less tolerant of colder conditions (i.e. more tropical). 
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For example, two of the species that have higher densities in the Shallow Martin, Deep 

Martin Low and High assemblage regions, Haemulon aurolineatum (tomtate grunt) and 

Diplodus holbrookii (spottail seabream), are found from 43° N to 33° S and 40° N to 20° 

N respectively whereas two of the species with higher densities in the South Palm Beach, 

and Broward-Miami assemblage regions, Thalassoma bifasciatum (bluehead) and  

   

   

Stegastes partitus Haemulon aurolineatum 

Thalassoma bifasciatum Diplodus holbrookii 



- 61 - 

Fisco, Dana P.      Master's Thesis 

 

   

   
 

Figure 25. Examples of known ranges for some of the species driving the differences in 

assemblages between the southernmost Broward-Miami region and the northernmost Martin 

region (Www.aquamaps.org 2013).  

 

Sparisoma aurofrenatum (redband parrotfish) are only found 33° N to 8° N and 32° N to 

7° N respectively (Robins and Ray 1986). One species, Centropristis striata (black 

seabass), was observed 47 times in the Deep Martin Low and High assemblage regions 

combined and only three times in the North Palm Beach and South Palm Beach-Miami 

assemblage regions combined. The black seabass is described as a temperate fish with a 

range from Maine to northeastern Florida that can reach extreme southern Florida during 

cold winters (Robins and Ray 1986). Interestingly, none of the samples were conducted in 

winter, but cold-water upwelling is known to occur.  

Sea surface temperatures along the world’s major coastlines decrease with 

increasing latitude. Sea Surface temperatures are expected to rise over the next century 

(Pratchett et al. 2011; Munday et al. 2007; Booth, Bond, and MacReadie 2011; Fodrie et 

al. 2010; Hobday and Lough 2011). Baumann and Doherty (2013) demonstrate how these 

Sparisoma aurofrenatum Centropristis striata 

Halichoeres garnoti Caranx crysos 
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large scale thermoclines along the continental coasts have changed over the past three 

decades. This has direct influence on the ability of fish species to live at different latitudes 

because water temperature is one of the most important abiotic factors influencing fish 

geographic distribution (Baumann and Doherty 2013; Fodrie et al. 2010; Booth, Bond, and 

MacReadie 2011). As noted above, many of the reef fish dominating the southern regions 

of the SE FRT have ranges that do not span as far into the more temperate northern latitudes 

than those found in the northern regions. If the warm sea surface temperatures move north 

as predicted, there could be an increase in opportunities for more tropical warm-water 

species to survive in the northern portions of the SE FRT and a shift in the center of biomass 

of tropical species could occur (Baumann and Doherty 2013; Perry et al. 2005; Holbrook, 

Schmitt, and Stephens 1997; Nye et al. 2009). Studies of marine and coastal studies at 

middle and high latitudes have suggested biogeographical shifts are possible with locally 

increased numbers of warm-water species and decreased numbers of cold-water species 

(Perry et al. 2005; Weinberg, Dahlgren, and Halanych 2002; Precht and Aronson 2004; 

Nye et al. 2009). Perry et al. (2005) for example, found that the latitudinal boundaries of 

roughly half of the species they studied in the North Sea moved significantly northward 

with warming ocean temperatures. Likewise, Nye et al. (2009) demonstrated clear shifts in 

spatial distribution in 24 of the 36 fish stocks they examined on the continental shelf of the 

northeastern United States. This shift in specific species’ boundaries could lead to a shift 

in the species composition and relative density in local assemblages to those able to better 

adapt to warmer water temperatures (Holbrook, Schmitt, and Stephens 1997). Figueira and 

Booth (2010) demonstrated that the ability of four commonly occurring species of tropical 

pacific damselfishes to overwinter at temperate latitudes increases with increasing average 

winter temperatures. With the frequency of warm winters increasing, the possibility grows 

for poleward populations of certain reef fish species to become established year-round 

(Figueira and Booth 2010). Tropical species poleward range expansion have been 

suggested for corals (Precht and Aronson 2004) along the FRT but thus far contemporary 

range expansions for fish or corals have yet to be documented.  
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“For a species to expand its present range the new area must meet a minimum set 

of biophysical requirements” (Figueira and Booth 2010). Thus, a holistic approach is 

needed to look at the changes in reef fish distribution as these changes may also be 

influenced by variations in the distribution and density of other organisms that also live on 

and around coral reefs and might follow the corals’ migration poleward as well as habitat 

like mangroves for nurseries (Nye et al. 2009). The study of local systems is important to 

understanding how fish will respond to global temperature changes because local controls 

will ultimately dictate their potential distribution. The availability of suitable habitat may 

drastically restrict a shift in species range (Munday et al. 2007). The unique 

geomorphology of Florida, for example, could prevent projected range shifts from 

occurring along the eastern seaboard. Walker (2012) proposed that poleward expansions 

of tropical systems on the coast of Florida may be limited by the present habitat 

geomorphology and hydrography. Walker and Gilliam (2013) suggested that the frequent 

cold water upwelling events may be affecting the northernmost benthic communities. The 

unique local geomorphology may have been controlling the northern limit of coral reef 

growth since the Holocene (Walker and Gilliam 2013; Walker, Gilliam, and Gramer, in 

prep) when temperatures were similarly warm (Ziegler et al. 2008). It is possible that if the 

Florida current continues to pull the warm water offshore and the cold-water upwelling 

persists, a temperature boundary will continue to limit the range expansion of the more 

tropical Caribbean reef fishes. My study provides a baseline for future comparisons of 

global climate change’s effects on the fish assemblages of the SE FRT. A long term 

continuation of this study will be necessary to determine if the more warm-water tolerant 

species that dominate the assemblages of the southern assemblage regions will settle in the 

northern assemblage regions in higher densities with warming waters.  

The Assemblage Regions match with the Coral Reef Ecoregions of Walker (2012) 

and Walker and Gilliam (2013) in some ways and not in others. One big distinction is that 

the Assemblage Regions vary by habitat depth.  The Shallow Broward-Miami Assemblage 

Region aligns with the Broward-Miami Ecoregion and the Martin Assemblage Region 

aligns with the Martin Ecoregion. The Deep South Palm Beach – Miami Assemblage 
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Region spans the Broward-Miami, Deerfield, and South Palm Beach Ecoregions, yet it 

transitions at the BFZ similar to the South Palm Beach Ecoregion. The Deep North Palm 

and Deep Martin assemblage regions match the North Palm and Martin Ecoregions. The 

Coral Reef Ecoregions were not defined by one particular species or group, thus it is not 

surprising that certain groups conform in some places and not others. Klug (2015) found 

that in the shallow habitats, coral communities and benthic cover supported the Biscayne 

and Broward-Miami separation. A comprehensive regional benthic assessment has yet to 

be conducted on a scale that would facilitate a similar benthic analyses as those conducted 

herein. It is possible that some major benthic functional groups (corals, algae, gorgonian) 

are arranged similar to the Reef Fish Assemblage Regions defined herein.  

 

 

 

5.0 Conclusions 

In conclusion, this study defines seven new reef fish assemblage biogeographic 

regions. The three shallow, Broward-Miami, Palm Beach-Deerfield and Martin, and four 

deep, South Palm Beach-Miami, North Palm Beach, and Martin Low and Martin High, 

assemblage regions are defined by differences in assemblage structure. The structures of 

the assemblages were driven by a higher concentration of more cold-tolerant species in the 

northern latitudes and a more tropical species dominance in the southern latitudes of the 

Southeast Florida Reef Tract (SE FRT). The Bahamas Fracture Zone (BFZ) appears to play 

an important role in shaping the local communities. The frequent upwelling events that 

occur north of the BFZ coincide with the poleward limit of tropical species. The study of 

local systems is important to understanding how coral reefs will respond to global 

temperature changes because local controls will ultimately dictate their potential 

distribution. Even if sea surface temperatures along the coast increase, the BFZ might 

impede a range shift along the SE FRT. 
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Appendices 

Appendix 1. Maps of locations of all study sites. Red dots indicate sites sampled in 2012, yellow 

dots indicate sites sampled in 2013 and black dots indicate sites sampled in 2014. 
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Appendix 2. All observed species listed alphabetically by family name. Species codes were created 

using the first three letters from the genus and the first four letters from the species. *Species that 

were removed for multivariate tests in PRIMER and all richness calculations. **Species that were 

removed for all richness calculations. 

  

Species Code Scientific Name Common Name Family Name 

  ACA BAHI Acanthurus bahianus Ocean Surgeon Acanthuridae 

  ACA CHIR Acanthurus chirurgus Doctorfish Acanthuridae 

  ACA COER Acanthurus coeruleus Blue Tang Acanthuridae 

* ACA SPE. Acanthurus sp. Surgeonfish species Acanthuridae 

  APO BINO Apogon binotatus Barred Cardinalfish Apogonidae 

  APO MACU Apogon maculatus Flamefish Apogonidae 

  APO PSEU Apogon pseudomaculatus Twospot Cardinalfish Apogonidae 

  APO QUAD Apogon quadrisquamatus Sawcheek Cardinalfish Apogonidae 

  APO TOWN Apogon townsendi Belted Cardinalfish Apogonidae 

* AST SPE. Astrapogon sp. Cardinalfish species Apogonidae 

  AUL MACU Aulostomus maculatus Atlantic Trumpetfish Aulostomidae 

  BAL CAPR Balistes capriscus Gray Triggerfish Balistidae 

  BAL VETU Balistes vetula Queen Triggerfish Balistidae 

  CAN SUFF Canthidermis sufflamen Ocean Triggerfish Balistidae 

  MEL NIGE Melichthys niger Black Durgon Balistidae 

  OPS TAU. Opsanus tau Oyster Toadfish Batrachoididae 

* BLE SPE. Blenniidae sp. Blenny species Blenniidae 

  HYP BERM Hypleurochilus bermudensis Barred Blenny Blenniidae 

  OPH MACC Ophioblennius macclurei Redlip Blenny Blenniidae 

  PAR MARM Parablennius marmoreus Seaweed Blenny Blenniidae 

  SCA CRIS Scartella cristata Molly Miller Blenniidae 

  BOT LUNA Bothus lunatus Peacock Flounder Bothidae 

  BOT OCEL Bothus ocellatus Eyed Flounder Bothidae 

  STY LATE Stygnobrotula latebricola Black Brotula Bythitidae 

  PAR BAIR Paradiplogrammus bairdi Lancer Dragonet Callionymidae 

  ALE CILI Alectis ciliaris African Pompano Carangidae 

  CAR BART Caranx bartholomaei Yellow Jack Carangidae 

  CAR CRYS Caranx crysos Blue Runner Carangidae 

  CAR HIPP Caranx hippos Crevalle Jack Carangidae 

  CAR LATU Caranx latus Horse-Eye Jack Carangidae 

  CAR LUGU Caranx lugubris Black Jack Carangidae 

  CAR RUBE Caranx ruber Bar Jack Carangidae 

* CAR SPE. Caranx sp. Jack species Carangidae 
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  CHL CHRY Chloroscombrus chrysurus Atlantic Bumper Carangidae 

  DEC MACA Decapterus macarellus Mackerel Scad Carangidae 

  DEC PUNC Decapterus punctatus Round Scad Carangidae 

* DEC SPE. Decapterus sp. Jack species Carangidae 

  ELA BIPI Elagatis bipinnulata Rainbow Runner Carangidae 

  OLI SAUR Oligoplites saurus Leatherjack Carangidae 

  SER DUME Seriola dumerili Greater Amberjack Carangidae 

  SER RIVO Seriola rivoliana Almaco Jack Carangidae 

* SER SPE. Seriola sp. Jack species Carangidae 

  SER ZONA Seriola zonata Banded Rudderfish Carangidae 

  TRA FALC Trachinotus falcatus Permit Carangidae 

  TRA GOOD Trachinotus goodei Palometa Carangidae 

  TRA LATH Trachurus lathami Rough Scad Carangidae 

  CAR LEUC Carcharhinus leucas Bull Shark Carcharhinidae 

  CAR PERE Carcharhinus perezii Reef Shark Carcharhinidae 

  GAL CUVI Galeocerdo cuvier Tiger Shark Carcharhinidae 

  NEG BREV Negaprion brevirostris Lemon Shark Carcharhinidae 

  CEN UNDE Centropomus undecimalis Common Snook Centropomidae 

  ACA ASPE Acanthemblemaria aspera Roughhead Blenny Chaenopsidae 

  ACA MARI Acanthemblemaria maria Secretary Blenny Chaenopsidae 

  CHA LIMB Chaenopsis limbaughi Yellowface Pikeblenny Chaenopsidae 

  EMB PAND Emblemaria pandionis Sailfin Blenny Chaenopsidae 

  HEM SIMU Hemiemblemaria simula Wrasse Blenny Chaenopsidae 

  CHA CAPI Chaetodon capistratus Foureye Butterflyfish Chaetodontidae 

  CHA OCEL Chaetodon ocellatus Spotfin Butterflyfish Chaetodontidae 

  CHA SEDE Chaetodon sedentarius Reef Butterflyfish Chaetodontidae 

  CHA STRI Chaetodon striatus Banded Butterflyfish Chaetodontidae 

  PRO ACUL Prognathodes aculeatus Longsnout Butterflyfish Chaetodontidae 

  AMB PINO Amblycirrhitus pinos Redspotted Hawkfish Cirrhitidae 

** JEN SPE. Jenkinsia spp. Herring species Clupeidae 

  SAR AURI Sardinella aurita Spanish Sardine Clupeidae 

  HET LONG Heteroconger longissimus Brown Garden Eel Congridae 

  DAC VOLI Dactylopterus volitans Flying Gurnard Dactylopteridae 

  DAS AMER Dasyatis americana Southern Stingray Dasyatidae 

  CHI ANTE Chilomycterus antennatus Bridled Burrfish Diodontidae 

  CHI ATIN Chilomycterus atinga Spotted Burrfish Diodontidae 

  CHI SCHO Chilomycterus schoepfii Striped Burrfish Diodontidae 
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  DIO HOLO Diodon holocanthus Balloonfish Diodontidae 

  DIO HYST Diodon hystrix Porcupinefish Diodontidae 

* DIO SPE. Diodon sp. Puffer species Diodontidae 

  ECH NAUC Echeneis naucrates Sharksucker Echeneidae 

  ECH NEUC Echeneis neucratoides Whitefin Sharksucker Echeneidae 

  REM REMO Remora remora Remora Echeneidae 

* ELA SPE. Charcharhinidae sp. Shark species Elasmobranchiomorphi 

  ANC LYOL Anchoa lyolepis Dusky Anchovy Engraulidae 

  CHA FABE Chaetodipterus faber Atlantic Spadefish Ephippidae 

  FIS TABA Fistularia tabacaria Bluespotted Cornetfish Fistulariidae 

  EUC LEFR Eucinostomus lefroyi Mottled Mojarra Gerreidae 

  GER CINE Gerres cinereus Yellowfin Mojarra Gerreidae 

  GIN CIRR Ginglymostoma cirratum Nurse Shark Ginglymostomatidae 

  COR DICR Coryphopterus dicrus Colon Goby Gobiidae 

  COR EIDO Coryphopterus eidolon Pallid Goby Gobiidae 

  COR GLAU Coryphopterus glaucofraenum Bridled Goby Gobiidae 

  COR LIPE Coryphopterus lipernes Peppermint Goby Gobiidae 

  COR PERS Coryphopterus personatus Masked Goby Gobiidae 

* COR SPE. Coryphopterus sp. Goby species Gobiidae 

  CTE SAEP Ctenogobius saepepallens Dash Goby Gobiidae 

  ELA EVEL Elacatinus evelynae Sharknose Goby Gobiidae 

  ELA HORS Elacatinus horsti Yellowline Goby Gobiidae 

  ELA OCEA Elacatinus oceanops Neon Goby Gobiidae 

  ELA XANT Elacatinus xanthiprora Yellowprow Goby Gobiidae 

  GNA THOM Gnatholepis thompsoni Goldspot Goby Gobiidae 

* GOB SPE. Gobiidae sp. Goby species Gobiidae 

  MIC CARR Microgobius carri Seminole Goby Gobiidae 

  PRI HIPO Priolepis hipoliti Rusty Goby Gobiidae 

  ANI SURI Anisotremus surinamensis Black Margate Haemulidae 

  ANI VIRG Anisotremus virginicus Porkfish Haemulidae 

  HAE ALBU Haemulon album Margate Haemulidae 

  HAE AURO Haemulon aurolineatum Tomtate Haemulidae 

  HAE CARB Haemulon carbonarium Caesar Grunt Haemulidae 

  HAE CHRY Haemulon chrysargyreum Smallmouth Grunt Haemulidae 

  HAE FLAV Haemulon flavolineatum French Grunt Haemulidae 

  HAE MACR Haemulon macrostomum Spanish Grunt Haemulidae 

  HAE MELA Haemulon melanurum Cottonwick Haemulidae 
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  HAE PARR Haemulon parra Sailors Choice Haemulidae 

  HAE PLUM Haemulon plumierii White Grunt Haemulidae 

  HAE SCIU Haemulon sciurus Bluestriped Grunt Haemulidae 

** HAE SPE. Haemulon sp. Juvenile mixed grunts Haemulidae 

  HAE STRI Haemulon striatum Striped Grunt Haemulidae 

  ORT CHRY Orthopristis chrysoptera Pigfish Haemulidae 

  HEM BRAS Hemiramphus brasiliensis Ballyhoo Hemiramphidae 

  HOL ADSC Holocentrus adscensionis Squirrelfish Holocentridae 

  HOL RUFU Holocentrus rufus Longspine Squirrelfish Holocentridae 

* HOL SPE. Holocentrus sp. Squirrelfish species Holocentridae 

  MYR JACO Myripristis jacobus Blackbar Soldierfish Holocentridae 

  SAR CORU Sargocentron coruscum Reef Squirrelfish Holocentridae 

  SAR VEXI Sargocentron vexillarium Dusky Squirrelfish Holocentridae 

  INE VITT Inermia vittata Boga Inermiidae 

  IST PLAT Istiophorus platypterus Sailfish Istiophoridae 

  KYP SECT Kyphosus sectatrix Bermuda Chub Kyphosidae 

  BOD PULC Bodianus pulchellus Spotfin Hogfish Labridae 

  BOD RUFU Bodianus rufus Spanish Hogfish Labridae 

  CLE PARR Clepticus parrae Creole Wrasse Labridae 

  HAL BIVI Halichoeres bivittatus Slippery Dick Labridae 

  HAL CAUD Halichoeres caudalis Painted Wrasse Labridae 

  HAL CYAN Halichoeres cyanocephalus Yellowcheek Wrasse Labridae 

  HAL GARN Halichoeres garnoti Yellowhead Wrasse Labridae 

  HAL MACU Halichoeres maculipinna Clown Wrasse Labridae 

  HAL PICT Halichoeres pictus Rainbow Wrasse Labridae 

  HAL POEY Halichoeres poeyi Blackear Wrasse Labridae 

  HAL RADI Halichoeres radiatus Puddingwife Labridae 

  LAC MAXI Lachnolaimus maximus Hogfish Labridae 

  THA BIFA Thalassoma bifasciatum Bluehead Labridae 

  XYR MART Xyrichtys martinicensis Rosy Razorfish Labridae 

  XYR NOVA Xyrichtys novacula Pearly Razorfish Labridae 

* XYR SPE. Xyrichtys sp. Razorfish species Labridae 

  XYR SPLE Xyrichtys splendens Green Razorfish Labridae 

* LAB SPE. Labrisomid sp. Labrisomid Blenny species Labrisomidae 

  LAB KALI Labrisomus kalisherae Downy Blenny Labrisomidae 

  LAB NUCH Labrisomus nuchipinnis Hairy Blenny Labrisomidae 

  MAL AURO Malacoctenus aurolineatus Goldline Blenny Labrisomidae 
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  MAL GILL Malacoctenus gilli Dusky Blenny Labrisomidae 

  MAL MACR Malacoctenus macropus Rosy Blenny Labrisomidae 

  MAL TRIA Malacoctenus triangulatus Saddled Blenny Labrisomidae 

  LUT ANAL Lutjanus analis Mutton Snapper Lutjanidae 

  LUT APOD Lutjanus apodus Schoolmaster Lutjanidae 

  LUT BUCC Lutjanus buccanella Blackfin Snapper Lutjanidae 

  LUT CAMP Lutjanus campechanus Red Snapper Lutjanidae 

  LUT CYAN Lutjanus cyanopterus Cubera Snapper Lutjanidae 

  LUT GRIS Lutjanus griseus Gray Snapper Lutjanidae 

  LUT JOCU Lutjanus jocu Dog Snapper Lutjanidae 

  LUT MAHO Lutjanus mahogoni Mahogany Snapper Lutjanidae 

* LUT SPE. Lutjanus sp. Snapper species Lutjanidae 

  LUT SYNA Lutjanus synagris Lane Snapper Lutjanidae 

  OCY CHRY Ocyurus chrysurus Yellowtail Snapper Lutjanidae 

  RHO AURO Rhomboplites aurorubens Vermilion Snapper Lutjanidae 

  MAL PLUM Malacanthus plumieri Sand Tilefish Malacanthidae 

  MEG ATLA Megalops atlanticus Tarpon Megalopidae 

  MAN BIRO Manta birostris Giant Manta Mobulidae 

  ALU MONO Aluterus monoceros Unicorn Filefish Monacanthidae 

  ALU SCHO Aluterus schoepfii Orange Filefish Monacanthidae 

  ALU SCRI Aluterus scriptus Scrawled Filefish Monacanthidae 

* ALU SPE. Aluterus sp. Filefish species Monacanthidae 

  CAN MACR Cantherhines macrocerus Whitespotted Filefish Monacanthidae 

  CAN PULL Cantherhines pullus Orangespotted Filefish Monacanthidae 

  MON CILI Monacanthus ciliatus Fringed Filefish Monacanthidae 

  MON TUCK Monacanthus tuckeri Slender Filefish Monacanthidae 

  STE HISP Stephanolepis hispidus Planehead Filefish Monacanthidae 

  MUL MART Mulloidichthys martinicus Yellow Goatfish Mullidae 

  PSE MACU Pseudupeneus maculatus Spotted Goatfish Mullidae 

  UPE PARV Upeneus parvus Dwarf Goatfish Mullidae 

  ENC CARY Enchelycore carychroa Chestnut Moray Muraenidae 

  ENC NIGR Enchelycore nigricans Viper Moray Muraenidae 

  GYM FUNE Gymnothorax funebris Green Moray Muraenidae 

  GYM MILI Gymnothorax miliaris Goldentail Moray Muraenidae 

  GYM MORI Gymnothorax moringa Spotted Moray Muraenidae 

  GYM VICI Gymnothorax vicinus Purplemouth Moray Muraenidae 

  AET NARI Aetobatus narinari Spotted Eagle Ray Myliobatidae 
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  NAR BANC Narcine bancroftii Lesser Electric Ray Narcinidae 

  OGC NASU Ogcocephalus nasutus Shortnose Batfish Ogcocephalidae 

* OGC SPE. Ogcocephalus sp. Batfish species Ogcocephalidae 

  MYR BREV Myrichthys breviceps Sharptail Eel Ophichthidae 

  OPI AURI Opistognathus aurifrons Yellowhead Jawfish Opistognathidae 

  OPI MACR Opistognathus macrognathus Banded Jawfish Opistognathidae 

* OPI SPE. Opistognathus sp. Jawfish species Opistognathidae 

  OPI WHIT Opistognathus whitehursti Dusky Jawfish Opistognathidae 

  ACA POLY Acanthostracion polygonia Honeycomb Cowfish Ostraciidae 

  ACA QUAD Acanthostracion quadricornis Scrawled Cowfish Ostraciidae 

  LAC BICA Lactophrys bicaudalis Spotted Trunkfish Ostraciidae 

  LAC TRIG Lactophrys trigonus Trunkfish Ostraciidae 

  LAC TRIQ Lactophrys triqueter Smooth Trunkfish Ostraciidae 

  PAR ALBI Paralichthys albigutta Gulf Flounder Paralichthyidae 

  PEM SCHO Pempheris schomburgkii Glassy Sweeper Pempheridae 

  CEN ARGI Centropyge argi Cherubfish Pomacanthidae 

  HOL BERM Holacanthus bermudensis Blue Angelfish Pomacanthidae 

  HOL CILI Holacanthus ciliaris Queen Angelfish Pomacanthidae 

  HOL TRIC Holacanthus tricolor Rock Beauty Pomacanthidae 

  HOL TOWN Holocanthus sp. Townsend Angelfish Pomacanthidae 

  POM ARCU Pomacanthus arcuatus Gray Angelfish Pomacanthidae 

  POM PARU Pomacanthus paru French Angelfish Pomacanthidae 

  ABU SAXA Abudefduf saxatilis Sergeant Major Pomacentridae 

  CHR CYAN Chromis cyanea Blue Chromis Pomacentridae 

  CHR ENCH Chromis enchrysura Yellowtail Reeffish Pomacentridae 

  CHR INSO Chromis insolata Sunshinefish Pomacentridae 

  CHR MULT Chromis multilineata Brown Chromis Pomacentridae 

  CHR SCOT Chromis scotti Purple Reeffish Pomacentridae 

  MIC CHRY Microspathodon chrysurus Yellowtail Damselfish Pomacentridae 

  STE ADUS Stegastes adustus Dusky Damselfish Pomacentridae 

  STE DIEN Stegastes diencaeus Longfin Damselfish Pomacentridae 

  STE LEUC Stegastes leucostictus Beaugregory Pomacentridae 

  STE PART Stegastes partitus Bicolor Damselfish Pomacentridae 

  STE PLAN Stegastes planifrons Threespot Damselfish Pomacentridae 

* STE SPE. Stegastes sp. Damselfish species Pomacentridae 

  STE VARI Stegastes variabilis Cocoa Damselfish Pomacentridae 

  HET CRUE Heteropriacanthus cruentatus Glasseye Snapper Priacanthidae 
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  PRI AREN Priacanthus arenatus Bigeye Priacanthidae 

  PTE CALL Ptereleotris calliura Blue Dartfish Ptereleotridae 

  PTE HELE Ptereleotris helenae Hovering Dartfish Ptereleotridae 

  RAC CANA Rachycentron canadum Cobia Rachycentridae 

  RHI LENT Rhinobatos lentiginosus Atlantic Guitarfish Rhinobatidae 

  CRY ROSE Cryptotomus roseus Bluelip Parrotfish Scaridae 

  NIC USTA Nicholsina usta Emerald Parrotfish Scaridae 

  SCA COEL Scarus coelestinus Midnight Parrotfish Scaridae 

  SCA COER Scarus coeruleus Blue Parrotfish Scaridae 

  SCA GUAC Scarus guacamaia Rainbow Parrotfish Scaridae 

  SCA ISER Scarus iseri Striped Parrotfish Scaridae 

* SCA SPE. Scarus sp. Parrotfish species Scaridae 

  SCA TAEN Scarus taeniopterus Princess Parrotfish Scaridae 

  SCA VETU Scarus vetula Queen Parrotfish Scaridae 

  SPA ATOM Sparisoma atomarium Greenblotch Parrotfish Scaridae 

  SPA AURO Sparisoma aurofrenatum Redband Parrotfish Scaridae 

  SPA CHRY Sparisoma chrysopterum Redtail Parrotfish Scaridae 

  SPA RADI Sparisoma radians Bucktooth Parrotfish Scaridae 

  SPA RUBR Sparisoma rubripinne Yellowtail Parrotfish Scaridae 

* SPA SPE. Sparisoma sp. Parrotfish species Scaridae 

  SPA VIRI Sparisoma viride Stoplight Parrotfish Scaridae 

  EQU LANC Equetus lanceolatus Jackknife Fish Sciaenidae 

  EQU PUNC Equetus punctatus Spotted Drum Sciaenidae 

  ODO DENT Odontoscion dentex Reef Croaker Sciaenidae 

  PAR ACUM Pareques acuminatus High-hat Sciaenidae 

  PAR UMBR Pareques umbrosus Cubbyu Sciaenidae 

* SCI SPE. Sciaenidae sp. Drum species Sciaenidae 

  EUT ALLE Euthynnus alletteratus Little Tunny Scombridae 

  SCO CAVA Scomberomorus cavalla King Mackerel Scombridae 

  SCO MACU Scomberomorus maculatus Spanish Mackerel Scombridae 

  SCO REGA Scomberomorus regalis Cero Scombridae 

  PTE VOLI Pterois volitans Red Lionfish Scorpaenidae 

  SCO PLUM Scorpaena plumieri Spotted Scorpionfish Scorpaenidae 

  ALP AFER Alphestes afer Mutton Hamlet Serranidae 

  CEN OCYU Centropristis ocyurus Bank Sea Bass Serranidae 

  CEN STRI Centropristis striata Black Sea Bass Serranidae 

  CEP CRUE Cephalopholis cruentata Graysby Serranidae 
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  CEP FULV Cephalopholis fulva Coney Serranidae 

  DIP FORM Diplectrum formosum Sand Perch Serranidae 

  EPI ADSC Epinephelus adscensionis Rock Hind Serranidae 

  EPI GUTT Epinephelus guttatus Red Hind Serranidae 

  EPI ITAJ Epinephelus itajara Goliath Grouper Serranidae 

  EPI MORI Epinephelus morio Red Grouper Serranidae 

  HYP GEMM Hypoplectrus gemma Blue Hamlet Serranidae 

  HYP GUTT Hypoplectrus guttavarius Shy Hamlet Serranidae 

  HYP INDI Hypoplectrus indigo Indigo Hamlet Serranidae 

  HYP PUEL Hypoplectrus puella Barred Hamlet Serranidae 

* HYP SPE. Hypoplectrus sp. Hamlet species Serranidae 

  HYP TANN Hypoplectrus tann Tan Hamlet Serranidae 

  HYP UNIC Hypoplectrus unicolor Butter Hamlet Serranidae 

  LIO EUKR Liopropoma eukrines Wrasse Basslet Serranidae 

  LIO RUBE Liopropoma rubre Peppermint Basslet Serranidae 

  MYC BONA Mycteroperca bonaci Black Grouper Serranidae 

  MYC MICR Mycteroperca microlepis Gag Serranidae 

  MYC PHEN Mycteroperca phenax Scamp Serranidae 

  PAR FURC Paranthias furcifer Atlantic Creolefish Serranidae 

  RYP BIST Rypticus bistrispinus Freckled Soapfish Serranidae 

  RYP MACU Rypticus maculatus Whitespotted Soapfish Serranidae 

  RYP SAPO Rypticus saponaceus Greater Soapfish Serranidae 

  SCH BETA Schultzea beta School Bass Serranidae 

* SRR SPE  Serranidae sp. Grouper-Sea Bass species Serranidae 

  SER ANNU Serranus annularis Orangeback Bass Serranidae 

  SER BALD Serranus baldwini Lantern Bass Serranidae 

  SER PHOE Serranus phoebe Tattler Serranidae 

  SER SUBL Serranus subligarius  Belted Sandfish Serranidae 

  SER TABA Serranus tabacarius Tobaccofish Serranidae 

  SER TIGR Serranus tigrinus Harlequin Bass Serranidae 

  SER TORT Serranus tortugarum Chalk Bass Serranidae 

  ARC PROB Archosargus probatocephalus Sheepshead Sparidae 

  ARC RHOM Archosargus rhomboidalis Sea Bream Sparidae 

  CAL BAJO Calamus bajonado Jolthead Porgy Sparidae 

  CAL CALA Calamus calamus Saucereye Porgy Sparidae 

  CAL LEUC Calamus leucosteus Whitebone Porgy Sparidae 

  CAL NODO Calamus nodosus Knobbed Porgy Sparidae 
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Appendix 2 continued   

  CAL PENN Calamus penna Sheepshead Porgy Sparidae 

  CAL PROR Calamus proridens Littlehead Porgy Sparidae 

* CAL SPE. Calamus sp. Porgy species Sparidae 

  DIP ARGE Diplodus argenteus Silver Porgy Sparidae 

  DIP HOLB Diplodus holbrookii Spottail Pinfish Sparidae 

  LAG RHOM Lagodon rhomboides Pinfish Sparidae 

  SPH BARR Sphyraena barracuda Great Barracuda Sphyraenidae 

  SPH PICU Sphyraena picudilla Southern Sennet Sphyraenidae 

  SPH LEWI Sphyrna lewini Scalloped Hammerhead Sphyrnidae 

  SPH TIBU Sphyrna tiburo Bonnethead Sphyrnidae 

* SYG SPE. Syngnathus sp. Pipefish species Syngnathidae 

  SYN FOET Synodus foetens Inshore Lizardfish Synodontidae 

  SYN INTE Synodus intermedius Sand Diver Synodontidae 

  SYN SYNO Synodus synodus Red Lizardfish Synodontidae 

  CAN ROST Canthigaster rostrata Sharpnose Puffer Tetraodontidae 

  SPH NEPH Sphoeroides nephelus Southern Puffer Tetraodontidae 

  SPH SPEN Sphoeroides spengleri Bandtail Puffer Tetraodontidae 

  SPH TEST Sphoeroides testudineus Checkered Puffer Tetraodontidae 

  PRI OPHR Prionotus ophryas Bandtail Searobin Triglidae 

  PRI RUBI Prionotus rubio Blackwing Searobin Triglidae 

* UNK SPE. unknown species Unknown species unknown 

  URO JAMA Urobatis jamaicensis Yellow Stingray Urolophidae 
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