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was measured daily to ensure stabilization and R/O water was added to tanks as 

necessary to maintain salinity at 35 ppt. Fifty percent water changes were conducted 4 

times per week and 100 percent water changes were conducted once per week. All 

treatment tanks had two ReSun SP-800 Submersible Aquarium pumps that were attached 

to a 1lb lead weight to keep them submerged and anchored to the bottom. All tanks were 

monitored weekly for surviving and dead specimens. Survivorship and death of each 

individual polyp was recorded considering its known orientation and placement on the 

settlement tiles. Areas of the polyps were measured weekly using photographs to assess 

coral growth. Photographs were taken with an Olympus LC20 digital camera attached to 

an Olympus SZ61 dissecting microscope. The imaging software CellSens® was used to 

assess the photographs and record total surface area of the individual polyps (Figure 2). 

Logistically it was not feasible to have replicate tanks, however tile position was tested as 

a factor and was controlled. The initial natural sediment experiment ran over a period of 

three months, from April to July 2015.  The second anthropogenic sediment experiment 

ran over a period of one month, from September to October 2015.   

                        

Figure 2: Coral juvenile measurements using the imaging software CellSens. 
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2.6. Statistical Analysis  

The experiment was designed to test the null hypothesis that temperature and 

sedimentation rates of natural and anthropogenic sediment have no singular or interactive 

effects on coral juvenile survival and growth. I expected to reject the null hypothesis, 

therefore finding that coral juveniles’ survival and growth were affected by temperature 

and sedimentation rates, particularly between natural and anthropogenic sediment 

composition. Specifically, we expected that juveniles exposed to natural sedimentation 

will be better able to feed and photosynthesize compared to anthropogenic sediment, thus 

storing more energy reserves, allowing them to better cope with higher temperatures. The 

programming language and statistical software R® version 3.2.1 was utilized to conduct 

the analysis. Survival analysis was conducted using methods in the R package “survival” 

(Crawley, 2012). The Kaplan-Meier was used to estimate the survival curves of juvenile 

corals to display the effect of temperature and sediment. A Cox model was used to assess 

the effects of temperature, sediment, and tile position on coral juvenile survival. Mantel-

Haenszel (log-rank) tests were conducted to do pairwise comparisons of survival curves 

between the different temperature and sediment treatments. Coral juvenile growth was 

conducted using several methods in the R package “lme4” (Logan, 2011).  Juvenile 

growth was plotted and assessed in a linear mixed effects regression model. Parameter 

estimates were compared using the Akaike Information Criteria (AIC) in a forward step-

wise model to test significant difference in coral juvenile growth (considered as the 

change in surface area) between treatments. Parameter estimates dependent on 

temperature and sediment rates were tested with models that were independent of 

temperature and sediment to obtain p-values. Sediment and temperature were considered 

fixed effects and the tile position considered was a random factor for all tests.  

 

3. RESULTS 

3.1. Survival Analysis – Natural sediment  

Coral juvenile survival was significantly affected by temperature (p < 2.2 x 10-16), 

where higher mortality was seen at the elevated temperature (30°C). Coral juvenile 

survival was significantly affected by sediment, where survival increased with increased 

sedimentation (p < 2.2 x 10-16). Tile position showed a significant effect on coral juvenile 
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survival as well (p = 0.018). A Kaplan-Meier survival curve was created to show survival 

for each sedimentation level per temperature treatment (Figure 3). 

 

Figure 3: Kaplan-Meier survival curves of juveniles at all combinations of temperature and natural 

sediment. Color represents different sediment levels. Smooth lines represent temperature 26oC and dashed 

lines represent 30oC. 

 

Table 3: Pairwise comparisons of survival curves for treatments in natural sediment using Mantel-Haenszel 

(log-rank) tests. Asterisks show significant p values, meaning the treatments are significantly different. 

 
 
 
 

26 oC 
 

30 mg cm-

2 d-1 
60 mg cm-2 d-1 90 mg cm-2 

d-1 
120 mg cm-2 

d-1 

 
 
 
30 
oC 

30 mg cm-2 d-1 

 
0.00837* 5.06 x 10-16 * 1.11 x 10-16 * 0.0* 

60 mg cm2 d-1 

 
0.0215* 2.87 x 10-13 * 0.0* 0.0* 

90 mg cm2 d-1 

 
0.445 4.74 x 10-5 * 5.05 x 10-10 * 5.44 x 10-14 * 

120 mg cm2 d-1 

 
0.404 3.18 x 10-6 * 5.9 x 10-10 * 1.28 x 10-14 * 

 



	   14	  

Table 4: Pairwise comparisons of survival curves for treatments in natural sediment using Mantel-Haenszel 

(log-rank) tests. Comparing within the same temperature (26oC) but different sediment levels. Asterisks 

show significant p values, meaning the treatments are significantly different. 

 
 
 
 

26 oC 
 
30 mg cm-2 d-1 60 mg cm-2 d-1 90 mg cm-2 d-1 

 
 
26 o C 

60 mg cm2 d-1 

 
4.62 x 10-8 *   

90 mg cm2 d-1 

 
4.59 x 10-12 * 0.022*  

120 mg cm2 d-1 

 
0.0* 0.000792* 0.51 

 

Table 5: Pairwise comparisons of survival curves for treatments in natural sediment using Mantel-Haenszel 

(log-rank) tests. Comparing within the same temperature (30oC) but different sediment levels. Asterisks 

show significant p values, meaning the treatments are significantly different. 

 
 
 
 

30 oC 
 
30 mg cm-2 d-1 60 mg cm-2 d-1 90 mg cm-2 d-1 

 
 
30 o C 

60 mg cm2 d-1 

 
0.938   

90 mg cm2 d-1 

 
0.00284* 

 
0.00367*  

120 mg cm2 d-1 

 
0.00133* 0.0015* 0.847 

 

3.2. Survival Analysis – Anthropogenic sediment 

Coral juvenile survival was significantly affected by temperature (p <1.88 x 10-5), 

where higher mortality was seen at the elevated temperature (30°C). Coral juvenile 

survival was significantly affected by sediment, where survival decreased with increased 

sedimentation (p = 0.000316). Tile position did not show a significant effect on coral 

survival (p = 0.25). A Kaplan-Meier survival curve was created to show survival for each 

sedimentation level per temperature treatment (Figure 4).  
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Figure 4: Kaplan-Meier survival curves of juveniles at all combinations of temperature and sediment for 

anthropogenic sedimentation. Color represents different sediment level. Smooth lines represent temperature 

26oC and dashed lines represent 30oC. 

 

Table 6: Pairwise comparisons of survival curves for treatments in anthropogenic sediment using Mantel-

Haenszel (log-rank) tests. Asterisks show significant p values, meaning the treatments are significantly 

different. 

 
 
 

26 oC 
 
30 mg cm-2 

d-1 
60 mg cm-2 d-

1 
90 mg cm-2 

d-1 
120 mg 
cm-2 d-1 

 
 
 
30 oC 

30 mg cm-2 d-1 

 
0.00315* 0.0652 0.601 0.784 

60 mg cm2 d-1 

 
9.18 x 10-5 * 

 
0.00164* 0.00672* 0.00986* 

90 mg cm2 d-1 

 
0.000226* 0.000756* 

 
0.023* 0.0376* 

120 mg cm2 d-1 

 
9.37 x 10-5 * 0.000309* 0.0097* 0.0164* 
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Table 7: Pairwise comparisons of survival curves for treatments in anthropogenic sediment using Mantel-

Haenszel (log-rank) tests. Comparing within the same temperature (26oC) but different sediment levels. 

Asterisks show significant p values, meaning the treatments are significantly different. 

 
 
 
 

26 oC 
 
30 mg cm-2 d-1 60 mg cm-2 d-1 90 mg cm-2 d-1 

 
 
26 o C 

60 mg cm2 d-1 

 
0.00091 *   

90 mg cm2 d-1 

 
0.03 * 0.166  

120 mg cm2 d-1 

 
0.00159* 0.175 0.425 

 

 

Table 8: Pairwise comparisons of survival curves for treatments in anthropogenic sediment using Mantel-

Haenszel (log-rank) tests. Comparing within the same temperature (30oC) but different sediment levels. 

Asterisks show significant p values, meaning the treatments are significantly different. 

 
 
 
 

30 oC 
 
30 mg cm-2 d-1 60 mg cm-2 d-1 90 mg cm-2 d-1 

 
 
30 o C 

60 mg cm2 d-1 

 
0.000495 *   

90 mg cm2 d-1 

 
0.0000458* 0.748  

120 mg cm2 d-1 

 
0.000199* 0.831 0.515 

 

 

3.3. Coral Juvenile Growth – Natural sediment  

Coral juvenile growth was significantly affected by temperature (p < 2.2 x 10-16). 

Coral juvenile growth was significantly affected by sediment (p < 2.2 x 10-16). However 

this data originally did not fit the assumptions and was not parametric so the data was log 

transformed. The model shows that the fit is significantly better when there is a 

temperature and sediment dependency, however the confidence intervals for the growth 

rate for temperature 26oC would likely overlap with the confidence intervals for the 

growth rate of temperature 30oC and the same could be said for each sedimentation level 
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(Figure 5). Since these lines are so close, I am being critical in interpreting them and even 

though the model shows to have a better fit with temperature and sediment dependency, 

there does not seem to be a large effect of temperature and sediment on the growth rate. 

In conclusion, the coral juveniles were not growing, which is why the growth rate lines 

are horizontal.  

 
Figure 5: Growth rate for natural sediment. Smooth lines represent temperature 26oC and dashed lines 

represent 30oC. 

 

3.4. Coral Juvenile Growth – Anthropogenic sediment  

Coral juvenile growth was significantly affected by temperature (p = 2.684 x 10-5) 

and sediment (p = 5.02 x 10-5) in the anthropogenic sedimentation experiments. Tile 

position was not significant (p = 0.3529). However this data originally did not fit the 

assumptions and was not parametric so the data was log transformed.  Once again the 

model shows that the fit is significantly better when there is a temperature and sediment 

dependency, however the confidence intervals for the growth rate for temperature 26oC 

would likely overlap with the confidence intervals for the growth rate of temperature 

30oC and the same could be said for each sedimentation level (Figure 6). This is more 

obvious for the anthropogenic sediment and in some cases there was shrinking of the 
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coral juveniles. Once again there was no growth of the coral juveniles due to lack of 

heterotrophic feeding. The corals were relying on energy derived from the Symbiodinium, 

which was allocated towards surviving rather than growing.  

 
Figure 6: Growth rate for anthropogenic sediment. Smooth lines represent temperature 26oC and dashed 

lines represent 30oC. 

 

4. DISCUSSION 

When anthropogenic sedimentation was reduced juvenile corals could cope better 

with higher temperatures. The effect of ambient temperature combined with low 

sedimentation was equal to the effect of high temperatures combined with low 

sedimentation rates (Table 6). Increasing temperatures from ambient (26oC) to elevated 

(30oC) had similar effects to increasing anthropogenic sedimentation levels from 30 to 60 

or more mg cm-2 d-1.  This indicates that a potential opportunity towards coral resilience 

to climate change is to reduce local stressors, such as sedimentation. The effect of climate 

change could be reduced if sedimentation was limited to 30 mg cm-2 d-1 (Table 6), which 

represents natural sedimentation concentrations (Jordan et al., 2010). In other words, the 

limits of sedimentation would need to reflect typical conditions, where there is no 
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additional anthropogenic effect at all. Temperature increased coral mortality as expected. 

Unexpectedly, the natural sediment did not have this negative effect and actually 

benefitted the corals. At ambient temperatures coral survival increased at higher natural 

sedimentation rates, while at elevated temperatures the high sedimentation rate did not 

affect survival.  

Increasing sedimentation rates was expected to negatively affect coral survival but 

this was dependent on the composition of sediment. It is well known that increased 

temperatures cause coral mortality (Brown, 1987; Glynn & D’Croz, 1990; Glynn, 1993; 

Glynn, 1996) and when this is coupled with excessive sedimentation the effects can be 

intensified.  Not only does the sediment concentration matter, but the composition of the 

sediment also has an effect on growth and survival of coral juveniles. Natural sediment 

typically found on the reef is characteristically coarse grained (180-2000 µm), normally 

light in color, and less likely to have presence of contaminants (hydrocarbons, heavy 

metals etc.). This sediment is not as detrimental compared to sedimentation arising from 

human construction and development, which is small grained (<63-180 µm), typically 

dark in color, and has potential presence of contaminants. The combination of high 

temperatures, high sediment concentration, and anthropogenic sediment has the most 

detrimental effects on coral survival and growth (Figure 4). Small-grained particles have 

been shown to be more deleterious to corals and other invertebrates (Bak & Elgershuizen, 

1976; Fisk, 1981; Nugues & Roberts, 2003) particularly due to the relationship of grain 

size and sediment suspension in the water column. It has been shown that suspended 

sediment is worse for coral survival and growth compared to settled sediment (Dodge & 

Vaisny 1977; Bak 1976; Tomasick & Sander 1985; Erftemeijer et al., 2012). Silt, 

classified as grain sizes smaller than 64 µm, is continuously suspended within the water 

column therefore increasing turbidity and decreasing light availability for the corals. 

During dredging, construction, and development activities the sediment typically contains 

silt and contaminants (Jordan et al., 2010; Erftemeijer et al., 2012). Therefore, 

anthropogenic sediment contributes to immense light reduction (160, 81, 40, and 16 µmol 

m-2 s-1) and leads to more detrimental effects on the juvenile coral growth and survival 

(Table 2). The EPA has regulated a standard for Nephelometric Turbidity Units for 

Florida coastal waters that should not exceed 29 NTUs (U. S. EPA). In this study, the 



	   20	  

natural sedimentation experiment was equal or less than ~ 1 NTU so turbidity was not 

likely a damaging factor. In contrast, the anthropogenic sedimentation experiment 

showed a range of ~5 – 43 NTUs. It is important to note that detrimental effects were 

observed above 14 NTUs. Therefore, EPA regulations for allowable turbidity on corals 

reefs would need to be less than half of the current 29 NTUs, since this limit jeopardizes 

the resilience of corals.  

Increased natural sediment did not hinder juvenile coral survival and growth. The 

grain size was larger; therefore this sediment did not smother corals and deplete light and 

oxygen levels as extensively in comparison to anthropogenic sediment (Table 1). Large 

grained sediment that is found naturally settling on top of corals is not as detrimental as 

suspended, small silt grained sized sediment found where development projects typically 

take place (Erftemeijer et al., 2012). Light is an important factor. Since the natural 

sediment was not suspended within the water column in this study, the light availability 

was not compromised (240, 175, 145, and 130 µmol m-2 s-1) as much compared to the 

anthropogenic sediment (160, 81, 40, and 16 µmol m-2 s-1). The settled sediment can help 

protect from excess light and could be beneficial for juveniles as cryptic covering. 

Orientation of settled larvae in corals reefs has been studied well and newly settled coral 

larvae have been found to settle on downward facing settlement tiles where there is 

cryptic covering, some coral species prefer to settle in shadier areas (Babcock & Mundy, 

1996; Gleason & Hofmann, 2011) so it may not be surprising that this sedimentation 

covering was beneficial. Also, many studies have found a positive dynamic between 

sediment and corals where corals can ingest nutrients present on the sediment (Anthony, 

1999b; Anthony, 2000; Anthony & Fabricus, 2000; Mills & Sebens, 2004).  As stated 

above, settled sediment is not as detrimental to corals in comparison to suspended 

sediments, since settled sediment could be more readily “shed” off where smaller 

particles would constantly be in the water column. Corals can withstand a degree of 

settled sediment as it can occur naturally in the field (Erftemeijer et al., 2012) until 

complete burial, which would induce death. Larger grain sizes typically allow more water 

flow and therefore more oxygen availability to corals, whereas silt sized sediments can 

create anoxic environment due to lack of water flow and a more active bacterial 

community is more likely to develop, further harming corals (Erftemeijer et al., 2012).  
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Coupled with climate change, the effects of sedimentation can be damaging for 

coral reefs. Climate change occurs on a global scale, which makes it difficult to manage. 

However, local stressors can be more easily managed and regulated. Sedimentation is one 

of the most widely recognized threats to coral reefs (Jones et al., 2015). In today’s society 

there is an ever-increasing urge for incessant construction, which can be damaging for 

sensitive ecosystems such as coral reef communities. If local action can be taken to 

reduce the sedimentation levels that arise from these construction activities, the status of 

coral reef health could more likely be sustained, rather than a continuous trend of 

depreciation. Coral reefs can occur in close proximity to major cities around the world. 

This is also where most dredging takes place due to the high demand to expand ports. 

Coastal construction around coral reefs occurs in areas such as the Great Barrier Reef in 

Australia, Saudi Arabia, Thailand, and the U.S. Virgin Islands (Brown et al., 1990; Price 

1993; Rogers, 1993). Recently the dredging of the Miami Port in Florida, U.S.A. and 

beach re-nourishment projects in the South Florida region, have likely killed millions of 

corals (Walker et al., 2012). The sediment from this experiment is an accurate 

representation of sediment more likely to be present during dredging since it was sampled 

from an active boat basin near a busy port, where human development usually takes place 

(Barnes et al., 2015). So not only are adult corals being affected, it is likely that juvenile 

corals have also not been able to recruit and survive these dredging activities. Note that 

there has been no sign of recovery for these populations (Gardner et al., 2003) and 

juveniles are key to regenerate populations (Ritson-Williams et al., 2009). Coral reefs can 

be protected and further damage may be prevented if mitigation and assessment of 

dredging and construction are implemented. Timing of dredging operations may be an 

important factor. For example, many coral species reproduce sexually through spring and 

summer months (Baird et al., 2009) so timing dredging and construction operations for 

the winter may minimize harmful effects during spawning, or for juvenile recruitment. 

Also, sea surface temperatures in the winter are lower compared to potential bleaching 

temperatures in the summer months, thus synergistic effects of sedimentation and 

temperature could potentially be avoided.  

This study shows that reducing a local stressor can increase coral resilience to 

climate change. More specifically, when anthropogenic sedimentation is limited and kept 
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at natural levels coral juveniles survive better with elevated water temperatures. With 

climate change becoming an ever-increasing worldwide issue, local action must be taken 

to tackle the consequences. Human development and construction must be more strictly 

monitored and controlled. However, it is important to note that the source and 

composition of the sedimentation is pertinent in the capacity of destruction to coral reefs. 

Active management of anthropogenic activities that result in increased severity, quantity, 

and frequency of sediment deposition on coral reefs must be implemented in order to 

improve current coral cover and sustain reefs under future climate change.  
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