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Abstract 

Artificial reefs (ARs) are generally created with the intention of increasing local fish 

populations, biodiversity and corresponding habitat productivity, most often in support of 

commercial and recreational uses (e.g., diving and fishing). Numerous studies have 

investigated the communities that develop on artificial reefs. By contrast, far less research 

has focused on the surrounding infaunal communities, which represent critical trophic 

resources for many species that populate both natural and artificial reefs, and which may 

be affected both by AR deployment and the organisms that subsequently recruit to them. 

This study compared infaunal organism abundances at four sites between the inner and 

middle reefs off Broward County, Florida, before deployment of a series of Florida 

Department of Transportation (FDOT) AR boulders in 2009 (pre-construction) and four 

years later in 2013 (post-construction). Samples consisted of sediment collected in hand-

held core tubes taken on open sediment adjacent to the proposed ARs and along transects 

at distances 3 m and 7 m from the ARs post-construction. Sample depths ranged from 

12.1 to 14.6 m. Analyses were carried out on organisms retained on a >0.5 mm sieve and 

identified to the lowest practical taxonomic level. Data consisted of abundances rather 

than densities, because pre-construction samples did not record sediment volume per 

core. A total of 159 taxa were identified, of which only 50 were identified to genus and 

61 to species. Polychaete families Spionidae, Sabellidae, Syllidae, and Hesionidae, and 

sipunculan superfamily Phascolosomatidea dominated pre-construction samples. 

Polychaetes also dominated post-construction samples, with high relative abundances of 

Sabellidae and Hesionidae, but with increased proportions of bivalves and amphipods. 

Statistical analyses (PRIMER, PERMANOVA, and SIMPER) determined whether 

infaunal composition, richness and, diversity differed among samples by year, site and 

distance from AR boulders. A slight but statistically insignificant difference in species 

diversity appeared between 3- and 7-m distances between years. However, composition, 

richness, and diversity of infauna did not differ either between pre-and post-construction 

samples or by sample distance from the adjacent AR boulders. The increase in 

homogeneity among samples post-construction may reflect recovery following the 

disturbance created by AR deployment, or a response to different benthic conditions 

generated by AR deployment. As other studies have suggested that AR fauna may 

influence surrounding infaunal communities to distances greater than 7 m, and that 

conditions may not stabilize around ARs for up to ten years following deployment, 

additional sampling is recommended to determine the longer-term effects of the FDOT 

ARs on infauna and benthic habitat (e.g., sediment composition, water movement) and 

assist in determining best practices for future AR deployments (e.g., composition, 

structure, location).  
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Introduction 

Coral reefs support more species per unit area than any other marine 

environment and may harbor up to 8 million undiscovered species (Reaka-Kudla 1997; 

NOAA 2007). Maintaining reef health, structure, and diversity is of critical importance 

because reefs play multiple important roles, including but not limited to supporting 

fishery resources, providing coastal protection, and serving as local economic engines 

(Hodgson 1999; Bellwood et al. 2004).   

Reefs are subject to numerous natural and anthropogenic impacts (Halpern et al. 

2008, Hodgson 1999), and are currently declining worldwide due to global warming, 

ocean acidification (Hoegh-Guldberg et al. 2007), sedimentation and eutrophication, 

which can be caused by coastal development (Muday 2004). This decline has led to 

major efforts to conserve and expand reef areas. One such strategy involves the 

construction of artificial reefs (Rinkevich 2005; Perkol-Fenkel et al. 2006; Carr and 

Hixon 2015). Artificial reefs are deployed in Florida waters primarily to enhance fish 

biomass and populations to augment fishing opportunities that would reduce fishing 

effort and increase public access (Stone 1985; National Academy Press 1988). Sanders 

and Morgan (1976) define fishing effort as the product of fishing power per number of 

unit operations and is therefore the total effective area covered by gear during a given 

number of unit operations. Catch per unit effort is a measure of fish density. Increased 

fish densities and catch rates have been the overriding criteria for pronouncing artificial 

reefs as productive (Bohnsack 1989). The idea that supposedly unproductive sediment 

substrates can become highly productive fish habitat by deploying artificial reefs is 

based on the apparent additional food and shelter, and greater opportunities for 
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recruitment, that such structures provide (Randall 1963; Ogawa 1973; Stone et al. 1979; 

Matthews 1985). Although the benthic infaunal communities in the sediment 

surrounding reefs are vital for maintaining reef health and trophic dynamics, they are 

often overlooked, so their response to artificial reef construction remains poorly 

understood (Ambrose and Anderson 1990). 

Over the last several decades, considerable literature has focused on interactions 

between shallow (<30 m) hard substrates, both natural and artificial, and adjacent 

sediment substrates, following the recognition that substantial trophic linkages exist 

between them (e.g., Ogden & Buckman 1973; Parrish & Zimmerman 1977; Alongi 

1989; Hueckel et al. 1989). Influences may be both physical and biological. Alterations 

in the direction, pattern and intensity of water movements around adjacent hard 

substrates may alter patterns of erosion, sedimentation, bedform structure, grain-size 

distributions, sorting and organic content, which in turn may have significant effects on 

resident infauna (Davis et al. 1982; Ambrose & Anderson 1990; DeFelice & Parrish 

2001; Danovaro et al. 2002). The composition of artificial substrates (e.g., steel, tires) 

may induce faunal changes via chemical leaching (Fukunaga et al. 2008). Many fishes 

and some invertebrates forage beyond their reefal or rocky refuges, sometimes 

extensively (e.g., Ogden et al. 1973; Sale 1980; Parrish 1989; Frazer et al. 1991; Posey 

and Ambrose 1994; Bortone et al. 1998; Langlois et al. 2005), which may influence 

infaunal populations directly via predation, as well as indirectly via bioturbation 

(Dahlgren et al. 1999). 

There have been conflicting studies about relationships between substrate 

habitats, adjacent sediments and the infaunal communities that reside in these areas. As 
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examples, Barros et al. (2001) found that infaunal assemblages were richer and spatially 

more variable closer to rocky reefs, with lower infaunal densities and richness near an 

artificial reef relative to natural reefs, while infaunal abundances have been found to 

increase away from both natural (Posey & Ambrose 1994) and artificial (Bortone et al. 

1998) reefs. On the other hand, several studies have found no clear variation in infauna 

with distance from hard substrates, either natural or artificial (e.g., Davis et al. 1982; 

Schlacter et al. 1998; Fukunaga & Bailey-Brock 2008). Langlois et al. (2006) agree that 

there is no consensus or a generalized conceptual model on how these variables 

mentioned above affect each other.  

Individual studies have revealed that proximity to hard substrates affects 

different organisms differently. Predation by artificial reef-associated fishes decimated 

populations of an epifaunal soft-bottom sea pen, while densities of tube-building 

polychaetes Diopatra spp. increased adjacent to reefs (Davis et al. 1982). Densities of 

the polychaete Prionospio pygmaeus dropped, while those of Spionophanes spp. 

increased adjacent to an artificial reef (Ambrose & Anderson 1990). Langlois et al. 

(2006) found differing patterns between large (>4 mm) and small (<4->0.5 mm) 

macrofauna. Further, the range of proximity effects varied widely in different locations, 

from as little as a few meters to over 70 m (Ambrose & Anderson 1990; Barros et al. 

2001), and even beyond 200 m in the case of epifaunal prey (Davis et al. 1982). 

Variations with distance from natural hard substrates have been attributed to both 

predation (Posey & Ambrose 1994, Langlois et al. 2005) and physical disturbance 

(DeFelice and Parrish 2001). Cheung et al. (2009) attributed an observed decline in 

infauna to finer sediments and intensive trawling away from the reefs. Of course, an 
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extensive literature relates infaunal assemblage composition and structure to a variety of 

factors independent of hard substrate proximity, e.g., sediment stability, wave exposure, 

particle size distribution, and predator disturbance (e.g., Aller and Dodge 1974; Hughes 

and Gamble 1977; St John et al. 1989; Etter and Grassle 1992; Morrisey et al. 1992). 

However, sediment composition may be affected by proximity to hard substrates, e.g., 

adjacent coarser sediments and greater scour (Davis et al. 1982; Ambrose & Anderson 

1990). Also, the actual value of an artificial reef assemblage relative to the infaunal 

assemblage that it replaces depends on the size, extent and nature of the submerged 

structure, its proposed function (e.g., habitat and resource enhancement or restoration, 

recreation/ecotourism, erosion reduction), the length of time it has been in place, and the 

nature of both reef and surrounding assemblages and their interactions (Bortone et al. 

1998; Fukunaga and Bailey-Brock 2008; Cheung et al. 2009). For example, Steimle et 

al. (2002) compared reef epifaunal versus sediment infaunal secondary production (kcal 

m-2 y-1) and noted that reef production had to exceed that of infauna in terms of 

providing food to higher trophic levels in order for the local habitat to be considered 

enhanced. 

Two previous studies have examined infaunal assemblages in Broward County 

waters as part of two major beach renourishment monitoring programs (Dodge et al. 

1989, 1995). The focus was to monitor environmental problems associated with beach 

renourishiment. For example, resuspended sediment and the time it remains after 

construction have detrimental effects on the benthic community of sandy bottoms and 

nearby natural reefs. Although these studies did not investigate trophic dynamics or 

proximity effects of hard substrates, they provide a baseline for estimating background 
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infaunal richness and diversity. The two studies combined recorded infaunal richness 

values of about 400 species at offshore stations (between the middle and outer reefs) and 

250 species for inshore stations just beyond the toe of fill. Polychaetes dominated at 

both suites of stations (197 and 102 species, respectively), followed by crustaceans (81 

and 51 species), chiefly amphipods.  

The relative roles of various physical and biological processes in structuring, 

maintaining and changing soft-bottom benthic communities have generated some 

controversy (e.g., Gray, 1981; Thistle, 1981; Schoener, 1982; see also Lewin, 1986). 

Dodge et al. (1991) agreed that the extent of natural variability associated with the 

interactions among of these processes remains poorly understood for many marine 

environments, so that care must be taken in distinguishing between natural variability 

and the effects of anthropogenic disturbance. Natural sources, such as weather and 

predation, and anthropogenic influences affect a reef’s viability. Potential major natural 

variations might include El Niño events, which may affect reef stability via reduced 

rainfall, increased sea temperature and lowering of sea levels (Cane 1983).  Large, 

powerful waves from hurricanes and cyclones can break apart or flatten large coral 

heads and destroy their fragments (Barnes and Hughes, 1999; Jones and Endean, 1976). 

This will not usually destroy the entire reef, but growing coral maybe overrun by algae 

before it has a chance to reestablish. Anthropogenic influences, such as pollution from 

agricultural, urban and sewage runoff, and ship discharges, change seawater chemistry, 

increase turbidity, and introduce a wide variety of toxins. Fabricius’ (2005) review 

provided information on these and other types of pollution that not only reduced coral 

recruitment, decreased richness of zooxanthellae in octocorals, reduced coral cover and 
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decreased biodiversity, but increased bioerosion, macroalgal cover, and increased 

abundance of filter feeders. Mangrove communities have also been in decline due to 

human influence. Valiela et al. (2001) stated that the bulk of increasing losses of 

mangrove forests is due to maricultural practices. 

South Florida is an excellent area in which to study possible effects of reef-

associated communities, both natural and artificial, on adjacent infaunal communities 

because of their close mutual proximity. The region offers opportunities to study 

epifaunal and infaunal communities and their influence on the natural and artificial reef 

systems. The current project is part of a larger study investigating trophic 

interrelationships between fish assemblages associated with both artificial and nearby 

natural reefs and the surrounding soft-bottom infauna.  

This thesis represents the first step of a planned multi-annual study, which 

proposes to assess how the structure and trophic relationships of the infaunal community 

change and influence nearby artificial reef fish assemblages over time. Peter-Finkel and 

Benayahu (2004) estimated that recognizing changes in artificial reef diversity may 

require a minimum of 10 years of study. 

This thesis compares infaunal, benthic communities before and after the 

placement of a series of artificial boulder-pile reefs, and attempts to identify possible 

dependent factors contributing to any differences. Factors measured included year, site, 

distance from hard substrate, year vs. site, year vs. distance, site vs. distance, year vs. 

site vs. distance, and the nature of the original benthic communities either exterminated 

or displaced by artificial reef placement. This work represents a baseline for identifying 
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impacts of a series of artificial boulder-pile reefs and their associated fish assemblages 

on adjacent natural infaunal communities.  

Ho1:  Composition, richness and diversity of infauna does not differ between pre- and 

post- construction samples of the artificial reefs. 

Ha1: Composition, richness and diversity of infauna is higher after construction of 

artificial reefs. 

Ho2: Composition, richness and diversity of infauna does not vary, significantly with 

distance from adjacent artificial reef boulders. 

Ha2: Composition, richness and diversity of infauna varies, significantly with from 

adjacent artificial reef boulders. 

 

Materials and Methods 

Site Description 

This study was carried out at sites ranging from ~1.43 to 1.53 km offshore on 

sediment substrates between the Inner and Middle Reefs off Broward County, Florida 

(Figure 1) (Table 1). Sediment core samples analyzed for infaunal community 

composition in this study represented a portion of a larger study that consisted of a total 

of 232 samples: 40 pre-construction and 192 post-construction, the latter taken at four 

artificial and four natural reef sites, 96 in 2013 and 96 in 2014.  

Experimental Design 

The sampling protocol differed slightly between pre- and post-construction sites. 

For this study, a total of 40 pre-construction sediment core samples was analyzed, ten at 
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each of four sites where artificial reefs would be placed: five samples (A-E) in a circle 

20 ft (6.1 m) from buoys marking proposed artificial reef sites 1, 3, 5 and 6 (30 Sep. 

2009), and an additional five samples (F-J) per site in a circle ~3 m from each marker 

buoy (1 Oct. 2009) (Figure 2). The ten sediment samples, A-E and F-J, at each of the 

four artificial reef sites were each treated as replicate samples for the two distances for 

each site, for a total of 8 samples of 5 replicates each.  

Each artificial reef was composed of 12 manufactured limestone boulders, each 

~1 m3, deployed at approximately the same locations as the pre-construction samples on 

29 and 30 October 2009 by the Florida Department of Transportation under the 

supervision of Environmental Planning and Community Resilience Division and Florida 

Fish and Wildlife Commission. The four artificial boulder piles, chosen for this study 

were designated 1A, 3A, 5B, and 6A, corresponding to the preconstruction sample site 

names. These sites were closest to the Inner and Middle Reef tracts, ~275 m from the 

nearest natural reef outcrop except for 3A, which was 305 m.  

Three parallel transects, each 2 m apart and designated North, Middle, and 

South, were established at each of the four artificial reef sites by hammering 3, 0.6-m 

rebar stakes into the substrate at distances of 0 and 10 m away from each artificial reef. 

Transects at sites 3A and 6A ran east to west from the artificial reef towards the Inner 

Reef, and transects for 1A and 5B ran west to east from the artificial reef towards the 

Middle Reef (Figure 3). Core samples were collected at 3-m and 7-m distances along 

each of the three transects per site totaling 24 post-construction samples. The three cores 

at a given distance per site were treated as replicates for a total of 8 samples of 3 

replicates each. 



  

15 
 

Tables 1 and 2 list global positioning system (GPS) latitude and longitude for 

both pre-construction and post-construction artificial reef sampling sites. Depths 

recorded during sampling ranged from 12.1 to 14.6 m. 

Field Methods 

Sediment samples were collected using a stainless steel hand-held corer 10 cm in 

diameter x 18 cm deep (4 in x 7 in) (area= 471 cm2) while using SCUBA. Sediment was 

transferred underwater from the corer to a zippered plastic bag labeled with site 

designator, transect position (North, Middle, South), and distance. Airlifts transported 

the bags to the surface, where they were placed in ice-filled coolers aboard the boat. 

Excess water was decanted from each bag in the laboratory, and the bags were 

immediately refilled with 10% buffered formalin with Rose-Bengal vital stain. 

Preconstruction samples collected in 2009 had been left in formalin bags until 2012, 

when they were transferred to ethanol for this study. Some of these samples had become 

desiccated prior to transfer to ethanol but still contained stained specimens (Table 2). 

Each sediment sample was sieved through a 0.5-mm Nalgene screen, thoroughly rinsed 

twice in separate freshwater baths, and then funneled into 1-quart glass jars filled with 

70% ethanol pending sorting. All preconstruction samples showed signs of specimen 

deterioration (e.g., broken specimens; crustaceans reduced to stained exoskeletons; 

unrecognizable parts of bodies).  If the degraded organisms had features distinctive of 

known taxa, they were included in the abundance count. In September 2013, post-

construction samples were collected along each transect at distances 3 and 7 m from 

each of the four artificial reefs, and treated following the same procedure as the 
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preconstruction samples. Samples were sieved and transferred to ethanol between 48 and 

72 hours following collection. 

 

Figure 1. Map showing all pre-construction core samples sites (+) and locations of all 
FDOT artificial reefs in red dots. Black dots indicate sites from which samples were 
analyzed. 

 

 

 

N 



  

17 
 

 

Figure 2. Diagram of pre-construction sampling technique. Marking buoy is represented by star with 

transects starting from the center and spreading out to their perspective distances. Core samples taken 

at the end of each transect, shown by black dots. 
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Figure 3. Schematic diagram of post construction samples and transect locations (black 

dots) for the four artificial reef sites. Distances between sites are not to scale. 

 

Table 1. Global positioning system coordinates of preconstruction and post- 

construction sites. 

GPS Coordinates 

Preliminary Construction Sites Artificial Reef Sites 

  Latitude Longitude  Latitude Longitude  

3 26°09.1829 80°05.1492  3A 26°09.1887 80°05.1449 

6 26°09.1200 80°05.1691  6A 26°09.1148 80°05.1703 

1 26°09.1799 80°05.0898  1A 26°09.1914 80°05.0944 

5 26°09.1286 80°05.0879  5B 26°09.1201 80°05.0958 

  

   



  

19 
 

Table 2. Pre-construction samples taken in 2009 that were dry or moist but with 
no visible formalin when opened for analysis in 2013. 

  

 

 

Laboratory Methods 

Approximately 1 tablespoon of sieved sample at a time was placed on a watch 

glass under a dissecting microscope and examined left to right in repeated horizontal 

rows, moving the examined sediment aside with a fine forceps. All invertebrates were 

placed in small vials containing 70% ethanol, closed with a cotton ball, and placed in a 

jar with 70% ethanol pending further identification. Excess ethanol in the initial sample 

jars was gently poured into a Petri dish lid to be examined thoroughly for floating 

specimens. For subsequent examination and identification, specimens were placed in 47-

mm plastic Petri dishes, separated initially to major taxonomic group, and subsequently 

identified to lowest possible taxon. Most crustaceans and mollusks were identified to 

genus and species. Most polychaetes were identified to only family due to limited 

availability of taxonomic expertise. Nematodes and harpacticoid copepods were 

considered meiofauna and not sorted or identified.  

 

 

Preliminary 

Reef Sites

Samples with no 

visible formalin

3 3A, 3D, 3E, 3G, 3J

6 6A, 6B, 6C, 6D, 6F, 6I

1 1A, 1B

5 5D, 5E



  

20 
 

Statistical analysis 

The quantity of the sediment of the 2009 pre-construction core samples were not 

recorded during their collection: therefore, it was not possible to standardize or 

otherwise accurately examine differences in sample size (i.e., organism densities could 

not be calculated) and sampling effort.  To compensate, this study applied statistical 

analysis that were reasonably unaffected by dissimilarities in sampling effort. Infaunal 

communities at each site, both pre- and post-construction, were compared using standard 

community indices, and univariate and multivariate methods.  

Univariate methods 

Two univariate indices were used in this study. Taxonomic richness (S) is the 

count of the number of taxa in a sample, and does not provide any information on 

abundance. It takes a minimum value of zero and theoretically has no upper bound. To 

measure relative abundance of the taxa in a sample, Pielou’s eveness (J’) was calculated. 

To test for both, each sample was analyzed using the DIVERSE routine in the PRIMER-

E (v. 7). The calculation and distributional properties of these indices has been described 

elsewhere (e.g., see Magurran 2003). To calculate J’ the following formula was used: 

𝐽′ =
𝐻′

ln 𝑆
 

where H’ is the Shannon Diversity Index, calculated as: 

𝐻′ =  − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑆

𝑖=1
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where S is the number of taxa in the sample, and pi is the proportion of 

individuals in a sample belonging to the ith taxon in that sample. Evenness (J’) assumes 

values between 0 and 1. Values approaching zero indicate that some taxa are more 

abundant than others compared to values approaching 1, which indicate that all taxa are 

equally abundant in the sample.  

These univariate community indices were imported into SPSS 19, and a General 

Linear Model (GLM) was used to test for effect of year (two levels: 2009, pre- 

construction vs. 2013, post-construction), sample site (four levels: sites 1A, 3A, 5A, 6B, 

with samples for each site replicated 6 or 10 times as described above), and distance 

along transect (two levels: 3 m and 7 m). The model was fully factorial and all factors 

were treated as fixed effects. The focus of this study was on the effect of artificial reef 

construction on infaunal community structure, making the year the primary factor of 

interest. Distance from artificial reef site was the second main effect of interest. 

Multivariate methods 

Pairwise Bray-Curtis similarity indices were calculated for each pair of samples 

in the dataset, using PRIMER-E (see http://www.primer-e.com/Primary_papers.htm). 

The Bray-Curtis similarity index was calculated as: 

𝐵𝐶𝑗𝑘 = 100 {1 −
∑ |𝑌𝑖𝑗 − 𝑌𝑖𝑘|𝑝

𝑖=1

∑ (𝑌𝑖𝑗 + 𝑌𝑖𝑘)𝑝
𝑖=1

} 

where BCjk is the Bray Curtis similarity between the jth and kth sample, Yij is 

the abundance of taxon i in sample j, and Yik is the abundance of taxon i in sample k. 

Note that the absolute value of the difference in the abundance of each taxon is used in 
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the numerator, and that the index is multiplied by 100, so that BCjk can take values 

between 0 and 100. Values approaching 100 indicate that samples j and k are identical in 

both the taxa present and their relative abundances (i.e., the two samples have very 

similar communities in both taxonomic composition and abundances of each taxon). 

Conversely, values approaching zero indicate that the samples differ strongly in terms of 

which taxa are present and/or their relative abundances. The Bray Curtis similarity index 

can be biased by the presence of a few dominant taxa; this was addressed by using the 

square root of the abundance for all taxa in all calculations. Pairwise Bray Curtis 

similarity indices were calculated for all samples, yielding a triangular similarity matrix 

of the relative similarities across all pairs of samples. This matrix was used for all 

subsequent analyses except as noted below. 

To determine what taxon was the most dominant in shaping the general 

community similarity patterns among all samples, a distance-based linear modelling 

(DistLM) procedure in PRIMER-E was performed using a stepwise addition process and 

adjusted Akaike Information Criteria (AICc, a statistic used to measure goodness of fit 

for a model) at each step to evaluate whether including a specific taxon improved the 

model. A permutation-based ANOVA (PERMANOVA) procedure in PRIMER-E was 

used to test for effect of year (i.e., before and after reef construction), site, and distance. 

A similarity permutations (SIMPER) analysis to identify the taxa that changed the most 

between 2009 and 2013 (i.e., before and after reef construction) was implemented. The 

results of the SIMPER analysis were imported into Excel and used to calculate the mean 

difference in abundance between 2009 and 2013 for these taxa. A sign test (available at 

http://graphpad.com/quickcalcs/binomial1.cfm) was used to determine whether there 

http://graphpad.com/quickcalcs/binomial1.cfm
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were more taxa that increased in abundance vs decreased following reef construction. A 

t-test (as per Zar 1998) was applied to determine whether the overall total change in 

abundance across all of the taxa identified by SIMPER was significantly different than 

zero. 

Nonmetric multidimensional scaling (nMDS) was used to depict the Bray-Curtis 

similarity patterns among samples, and (where applicable) Pearson correlation vectors 

added to the ordination to illustrate among-sample differences in abundance for selected 

individual taxa. 

To determine changes in community composition at higher taxonomic levels, 

abundance values in each sample were summed by class and phylum, and the above 

multivariate analyses were repeated. 

Results 

This study distinguished a total of 159 different taxa in both pre- and post-

construction sites: 2 to the level of phylum, 5 to class, two to order, 42 to family, 50 to 

genus and 61 to species. Appendix A lists these taxa, as well as the taxonomic 

abbreviations used in all analyses and ordination graphs to maintain clarity. Appendices 

B and C list species identified from preconstruction and post-construction sites, 

respectively. Polychaete families Spionidae, Sabellidae, Syllidae, and Hesionidae, and 

sipunculan superfamily Phascolosomatidea dominated pre-construction samples. 

Polychaetes also dominated post-construction samples, with high relative abundances of 

Sabellidae and Hesionidae, but with increased proportions of bivalves and amphipods. 
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Table 3. Total organism abundance by site and distance, and abundance 
averaged for the five and three replicates per site preconstruction and post-
construction, respectively. 

 

 
 

 

Average abundances per sample varied widely, ranging from 42.2±6.1 organisms 

at preconstruction site 5, 3 m, to 120.3±12.9 at post-construction site 3A, 7 m (Table 3). 

These values overlapped substantially among sites, distances, and years, although for 

any given site and year, average abundance at 7 m was at least slightly greater than at 3 

m. 

Univariate community indices 

Community taxon richness (S) in samples ranged from 5 to 32, with a mean of 

22.4+6.09 (std. dev.). The GLM including year, site, and distance as factors was not 

significant (GLM; R2 0.302, df 1,15; F=1.357, p=0.208); there was no significant effect 

of year (df 1,1; F=881.153, p=0.190; eta squared 0.036), site (df 1,3; F=0.573, p=0.636; 

eta squared 0.035), but there was a slight but significant effect of distance from 

construction site (df 1,1; F=4.162, p=0.047, eta squared 0.081).  Given the lack of 

Site Total Average Total Average

1 285 57.0±5.6 493 98.6±21.2

Pre-Construction 3 336 67.2±6.9 346 69.2±9.0

5 211 42.2±6.1 350 70.0±9.0

6 309 61.8±8.7 383 76.6±8.1

1A 168 56.0±4.4 234 78.0±8.3

3A 169 56.3±6.4 361 120.3±12.9

Post-Construction 5B 268 89.3±10.9 280 93.3±10.6

6A 152 50.7±4.1 175 58.3±5.8

3 m 7 m
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significance of the overall model and the low effect size (i.e., eta squared), it is unlikely 

that taxonomic richness varied among samples. Community evenness (as Pielou’s J’) in 

samples ranged from 0.457 to 0.956 with a mean value of 0.855 and a standard deviation 

of 0.08. The mean value of J’ closer to one indicated that each sample was dominated by 

one or more taxa. To identify these taxa, multivariate analyses were performed. The 

GLM including year, site, and distance as factors was not significant (GLM; R2 0.292, df 

1,15; F=1.291, p=0.245), a result similar to taxon richness. There was no significant 

effect of year (df 1,1; F=0.002, p=0.961, eta squared <0.001), site (df 1,3; F=1.343, 

p=0.272, eta squared 0.079), or distance from construction site (df 1,1; F=0.252, 

p=0.618, eta squared 0.005). These results indicated that all samples included 

approximately the same number of taxa, and featured similar dominance patterns. 

Multivariate analyses 

Permutation distance-based linear modelling identified a subset including 19 of 

the original 159 taxa that accounted for overall community similarity across all of the 

samples. The 19 taxa accounted for approximately 70% of the similarity patterns in the 

data (R2=0.696; AICc = 467.2) and are listed in Appendix D. This analysis indicated that 

the taxa that were most important in driving overall community similarity were 

Hesionidae and Sabellidae (Polychaeta), Cardiidae (Bivalvia), Aspidosiphon albus 

(Sipuncula), and Apseudes sp. (Crustacea Tanaidacea). 

Among-site Bray-Curtis similarity indices ranged from 0 to 67.3 with a mean 

overall similarity of 38.7+11.79 (std. dev). PERMANOVA indicated significant effects 

of year, site, and distance (Table 4). There was also a significant year-by-site interaction, 
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indicating that the communities from at least one site did not vary between years, or 

exhibited a different response than the other sites. No other interactions were significant. 

Table 4. Results of PERMANOVA on Bray-Curtis similarity indices. 

 

The pseudo-F values generated by the PERMANOVA (Table 4) can be 

interpreted as effect sizes (see http://www.primer-e.com/Primary_papers.htm), 

indicating that the factor that played the strongest role in structuring the infaunal 

assemblage among our samples was year (i.e., pre-construction vs. post-construction), 

followed by site and distance from reef. There was also a significant interaction between 

year and site, suggesting that infaunal assemblages in some samples did not change from 

2009 to 2013, or changed in a different way. To examine this further, PERMANOVA 

was performed again, but with additional post-hoc tests to explore differences among 

individual sites in each year. 

 
 
 
 
 
 

Source df MS
Pseudo-

F
p

Year 1 7705 4.388 0

Site 3 2972 1.692 0

Distance 1 2784 1.585 0.04

Year x Site 3 2412 1.373 0.02

Year x Distance 1 1117 0.636 0.91

Site x Distance 3 1809 1.03 0.41

Year x Site x 

Distance
3 1445 0.823 0.86

http://www.primer-e.com/Primary_papers.htm
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Table 5. Results of a post-hoc pairwise tests exploring community similarity 
among sites in 2009 of factor 'Year'. 

 

Groups T statistic P 

1A, 3A 1.3418 0.005 

1A, 5B 1.6346 0.001 

1A, 6A 1.6472 0.001 

3A, 5B 1.2297 0.095 

3A, 6A 1.3153 0.03 

5B, 6A 1.1774 0.148 

 

 

Table 6. Results of a post-hoc pairwise tests exploring community similarity 
among sites in 2013 of factor 'Year'. 

 
Groups T statistic P 

1A, 3A 1.0485 0.398 

1A, 5B 1.2178 0.155 

1A, 6A 0.95857 0.557 

3A, 5B 1.2383 0.129 

3A, 6A 1.3402 0.016 

5B, 6A 1.3621 0.047 

 

     

The results in Tables 5and 6 indicate that differences existed in community 

structure among the four sites in 2009 (pre-construction) but that these became less 

apparent in 2013 (post- construction), suggesting that that the sites became more 

homogeneous post-construction. 

The primary objective of this study was to characterize infaunal assemblages 

pre- and post-construction. To achieve this end, SIMPER was performed to identify 

those taxa that differed the most in relative abundance before and after reef construction. 

SIMPER identified 89 taxa that changed. Table 7 shows partial results of SIMPER 

analysis. Twenty-five taxa accounted for 56.1% of the dissimilarity among samples 
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collected in 2009 and 2013, with Sabellidae alone accounting for 6%. Subtracting the 

abundances between years indicated that most of these taxa (15 of 25) increased in 

abundance from 2009 to 2013. Other polychaetes involved in the increase in 2013 

included Hesionidae, Syllidae, and Glyceridae, whereas others, such as Maldanidae, 

Spionidae and Pilargiidae, did not show positive values. Ostracoda, Amphipoda (both 

Crustacea) and Veneridae (Bivalvia) also showed positive values in this analysis.  

Appendix A lists taxa identified by their code and ranks them by their percent 

contribution to the overall community similarity differences between years (Contrib %). 

Cumulative contribution is listed as well (Cum %). Note that these 25 taxa accounted for 

56.1% of the dissimilarity between samples collected in 2009 and 2013. Taxa that 

increased in abundance post-construction are indicated in green, whereas those that 

decreased are indicated in red. 

A sign test to determine whether more taxa increased than decreased among all 

84 taxa identified by SIMPER (rather than just the top 25) found that 44 increased. This 

was not a significant departure from 50% (sign test, 2-tailed p=0.735), indicating that the 

number of taxa increasing in abundance did not differ from the number that decreased. 

A one-sample t-test performed on the net changes in abundance across all 89 taxa found 

that the mean change across all taxa was + 0.036: not significantly different from zero (t-

test; df 1,83; t=1.196, p=0.235). The results indicated that, although infaunal community 

composition changed between years, abundances did not. 
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Table 7. Results of SIMPER analysis listing the 25 taxa that varied the most in 
abundance between years (pre- vs. post- construction). 

 Group 2009 Group 2013    

Species Av. Abund Av. Abun DIFF Contrib% Cum.% 

SabeA 2.15 3.1 0.95 5.97 5.97 

HesiA 2.35 3.37 1.02 3.63 9.59 

SyllA 1.48 1.6 0.12 3.15 12.74 

CardA 1.62 1.56 -0.06 2.96 15.7 

SpioA 1.62 1.53 -0.09 2.74 18.44 

albus 1.42 0.69 -0.73 2.67 21.11 

GlycA 1.36 1.74 0.38 2.62 23.73 

SyneB 1.84 1.47 -0.37 2.6 26.34 

ApseA 1.64 1.19 -0.45 2.57 28.91 

MyodA 0.44 0.96 0.52 2.15 31.06 

CirrA 0.52 1.05 0.53 2.05 33.11 

CapiA 0.87 0.58 -0.29 2.03 35.14 

ParaA 1.07 1.14 0.07 2.01 37.15 

parv 0.72 0.52 -0.2 1.96 39.11 

darb 0.48 0.58 0.1 1.81 40.93 

BemoA 0.67 0.73 0.06 1.81 2.73 

pauc 0.07 0.75 0.68 1.7 44.44 

SyneA 0.71 0.1 -0.61 1.63 46.07 

NereA 0.36 0.61 0.25 1.58 47.65 

LumbA 0.47 0.54 0.07 1.5 49.16 

simps 0.41 0.67 0.53 1.48 50.64 

misa 0.51 0.34 -0.17 1.48 52.12 

MaldA 0.43 0.42 -0.01 1.38 3.5 

PhylA 0.32 0.49 0.17 1.33 54.82 

MooA 0.33 0.38 0.05 1.29 56.12 

 

Figure 4 depicts the nMDS ordination plot of sample similarities, with individual 

samples labeled and disposed so that proximity implies similarity of infaunal 

community. The evenness (J’) of various taxa can be seen for 2013 in this graph. 

Samples are also marked by a symbol indicating year of collection, and superimposed 

with Pearson correlation vectors corresponding to the taxa identified during the DistLM 

procedure above. Figure 5 is the same ordination plot, with individual samples marked 
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with a symbol as above, labeled by collection site, and superimposed with vectors 

corresponding to those taxa identified during the SIMPER analysis. The two-

dimensional stress value of 0.22 indicates that some distortion was needed to depict 

sample community patterns in two dimensions; however, the distinct clustering by year 

and (to a lesser extent, by site) remain apparent in the figures. 

 

Figure 4. nMDS ordination plot of sample similarities, where proximity implies 
similarity of infaunal community. 
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Figure 5. Same plot as above but collection site labeled with vectors to taxa 
identified during the SIMPER analysis. 

 

Analysis by class detected a strong effect of year and distance from reef, but not 

of site (Table 8). There were no significant interaction terms. SIMPER analysis 

identified 9 classes accounting for 90.6% of the dissimilarity among samples between 

years, with Polychaeta (20.4%), Phascolosomatidea (13.3%) and Malacostraca (12.6%) 

accounting for 46.3% of the dissimilarity (Table 9). 

Analysis by phylum also detected significant effects of year and distance, but not 

site (Table 10). SIMPER analysis indicated that Annelida and Sipuncula accounted for 

31.2% and 21.4%, respectively, of the dissimilarity among sites between years (Table 
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11).  Figure 6 reveals that 2013 samples were more clustered and less spread out than 

the 2009 samples, confirming the results of the SIMPER analysis. 

Table 8. PERMANOVA by class. Green indicates strong effect and red no effect. 

 

 

Table 9. The nine classes SIMPER analysis identified with the most dissimilarity 
between years. 

 Group 2009 Group 2013   

Species Av. Abund Av. Abun Contrib% Cum.% 

Polychaeta 6.46 6.72 20.42 20.42 
Phascolosomatidea 1.94 1.19 13.3 33.72 

Malacostraca 2.57 2.42 12.62 46.34 
Ostracoda 1.17 1.94 12.33 58.67 

Bivalvia 2.32 2.54 11.28 69.95 
Gastropoda 0.98 1.15 7.96 77.91 
Scaphopoda 0.11 0.49 4.68 82.58 
Leptocardii 0.36 0.23 4.2 86.78 

Polyplacophora 0.09 0.39 3.82 90.59 
 

 

 

 

 

Source Df MS Pseudo-F p

Year 1 2455 5.0574 0

Site 3 667.4 1.375 0.15

Distance 1 1446 2.9796 0.01

Year x Site 3 756.5 1.5585 0.07

Year x Distance 1 132.4 0.27285 0.94

Site x Distance 3 363.5 0.74894 0.76

Year x Site x 

Distance
3 502.8 1.0359 0.43
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Table 10. PERMANOVA by Phylum. Cell colors as in Table 8. 

 

 

Table 11. SIMPER analysis for phylum between years. 

 Group 2009 Group 2013   

Phylum Av. Abund Av. Abun Contrib% Cum.% 

Annelida 6.47 6.72 31.19 31.19 
Sipuncula 1.98 1.19 20.4 51.58 

Arthropoda 3.04 3.19 19.3 70.88 
Mollusca 2.67 3.13 17.78 88.66 
Chordata 0.36 0.23 6.4 95.06 

 

Source df MS
Pseudo-

F
p

Year 1 889.2 2.8015 0.03

Site 3 364.1 1.1472 0.34

Distance 1 1016 3.2009 0.03

Year x Site 3 572.6 1.8042 0.06

Year x Distance 1 86.64 0.273 0.89

Site x Distance 3 210.1 0.6619 0.78

Year x Site x 

Distance
3 383.7 1.2089 0.27
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Figure 6. Graph showing that phyla Annelida and Sipuncula account for the greatest 
dissimilarity among sites and between years. 

 

Figures 7 and 8 show that polychaetes accounted for 66% and 65% of organisms 

pre-construction and post-construction, respectively. Bivalvia was the next most 

influential group in both years (9.22% pre-construction and 10.44% post-construction) 

followed by Tanaidacea (6.74% pre-construction) and Amphipoda and Ostracoda (both 

5.91% post-construction).  

 The majority of transects confirmed that polychaetes were the most abundant and 

ranged from 31 to 90% of organisms pre-construction and 30 to 80% post-construction. 

Polychaetes were not most abundant only in pre-construction area 5 in the 3-m samples 

along transects G and H. Transect 5G bivalves and polychaetes dominated equally at 
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42% while Bivalves dominated transect 5H at 57%. Polychaetes remained the most 

dominant group in all post-construction transects. 

 

Figure 7. Pre-construction graph showing major groups. 
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Figure 8. Major group percentages 2013 Post-Construction 
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circumstances differed between pre- and post-construction sampling, the latter carried out 

by NSU graduate students, that may have contributed to differences in results. First, 

although eight samples were taken in both years, the number of replicates per sample 

differed between years. In 2009, Broward County collected five cores at each distance (3 

and 7 m) from each of the four proposed artificial reef sites. The five cores for a given 

distance were treated as replicates for that site (i.e., eight samples of five replicates each 

at four sites; total 40 cores). In 2013, cores were taken along three transects at each 

artificial reef site so that each sample consisted of three replicates at a given distance (3 

and 7 m) from each reef (i.e., two samples of three replicates each at four sites; total 24 

cores). Second, the pre-construction core samples were taken on open sandy sediment at 

the proposed sites for the artificial reefs (Figure 1). Distances to the nearest hard bottom 

ranged from ~275 to ~305 m. By contrast, post-construction core samples were taken 

four years after artificial reef deployment at distances no greater than 7 m from the hard 

substrates of the boulder piles. As a result, near-bottom water movement around the 

artificial reefs may have modified adjacent sediment deposition and composition by that 

time, perhaps modifying infaunal communities. In addition, pre-construction samples 

remained in original collection bags in formalin for four years before transfer to ethanol 

and analysis. As a result, 15 pre-construction samples (Table 2) contained no visible 

formalin when examined in 2013, which contributed to specimen deterioration and 

probable loss.  

The results of univariate analyses (using DIVERSE routine in the PRIMER-

E(v.7) found no significant differences in standard diversity indices (S, J',) among years, 

sites or distances. However, analyses that accounted for community structure found 
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significant effects of year, site, and distance. Year was consistently the factor with the 

greatest effect size. The main change in community structure was increasing 

homogenization. Post-construction samples were much more similar in terms of relative 

abundances of the various taxa compared to pre-construction samples. Closer 

examination of the taxa responsible found that this effect was driven by changes in the 

abundance of several key taxa, most notably particular families of polychaetes, which 

increased in relative abundance from 2009 to 2013.  

Multivariate  statistical analysis (computed in PRIMER-E program; 

http://www.primer-e.com/Primary_papers.htm.) comparing species richness, diversity 

and abundance among sites (pre-construction vs. post construction sites, three meters vs. 

seven meters transect distances) found a slight change in species diversity between 

distances between years, but no other significant effects for any other diversity indices. 

SIMPER identified 89 taxa that changed between years, with the first 25 responsible for 

the difference. Of the 89 taxa, only 44 exhibited an increase, which was not a significant 

departure from 50%. These results indicated that there were compositional changes in the 

infaunal community between the years, though abundances did not change. This 

suggested that, at least four years after deployment, the artificial reefs had little to no 

effect on species diversity and richness. Thus, both null hypotheses, that composition, 

richness and diversity of infauna did not differ either between pre-and post-construction 

samples or by distance from the artificial reefs, could not be rejected. 

Marine sediments constitute the largest habitat on Earth, covering roughly 80% of 

the ocean bottom (Lenihan and Michele 2001; Mybakken and Bertness 2005). The four 

taxonomic groups that dominate the macrofauna of these sediment communities are 
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polychaetes, crustaceans, echinoderms and mollusks (Thorson1955; Nybakken and 

Bertness 2005). The current study agreed with Fabi et al. (2002), who also reported that 

polychaetes constituted the major taxa found in sediment surrounding artificial reefs, 

followed by mollusks and crustaceans. Similarly, previous studies that examined infauna 

offshore Broward County as part of beach renourishment monitoring programs (Dodge et 

al. 1989, 1995) reported that polychaetes dominated, followed by crustaceans, chiefly 

amphipods. Gravina et al. (1989) and Hutchings (1998) both stated that polychaetes have 

wide adaptive and reproductive capabilities, and this plasticity could lead to their 

resilience to change initiated by the establishment of an artificial reef. 

Davis et al. (1982) stated that infaunal densities surrounding the artificial reefs 

should decrease due to increases in reef-associated fish populations. Somaschini et al. 

(1997) agreed and reported that disturbance in sandy bottom communities led to a decline 

in community diversity two years after establishment of an artificial reef. Hughes et al. 

(1984) mentioned that both disturbance and space availability were major factors 

affecting sand bottom community diversity.  

Dodge et al. (1989, 1995) recorded combined infaunal richness values in sediment 

off Broward County of about 400 species for offshore stations (between the middle and 

outer reefs) and 250 species for inshore stations just beyond the toe of fill. Polychaetes 

dominated at both suites of stations (197 and 102 species, respectively), followed by 

crustaceans (81 and 51 species), chiefly amphipods. Both studies identified virtually all 

taxa to species level. The substantially lower total richness recorded in the current study, 

159 taxa, is almost certainly due to a combination of fewer samples and less specific 

taxonomic identification. In addition, because the current study sampled between the 
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inner and middle reefs (~12-14 m depth), the fauna is not directly comparable with the 

much shallower inshore (~4 m) and deeper offshore (~20 m) faunas sampled by Dodge et 

al. (1989, 1995). However, all three studies agreed on the dominant role of Polychaeta. 

  This study showed no significant changes between year and distances in the 

infaunal communities surrounding the ARs. However, Perkol-Finkel and Benayahu 

(2004) have suggested that any significant changes in the AR community would take at 

least ten years. It might therefore require a similar duration before surrounding infaunal 

communities might be affected. As a result, additional samples should be taken in the 

future to determine whether the infaunal communities change over a longer period. Such 

sampling may help determine whether these artificial reefs are suitably placed relative to 

the natural reef. 

Bortone et al. (1998) stated that increasing the distance between an artificial reef 

and a natural reef should diminish any effect the artificial reef may have on the 

productivity of the natural reef. As artificial reefs are intended to increase fish 

productivity and restore damaged or lost habitats, their placement should avoid taking 

away resources from natural reef (Lonnstedt et al. 2014, NOAA 2007). However, 

Alevizon and Gorham (1989) state that artificial reefs can dramatically increase fish 

populations of selected species without negative impact on fishes dwelling in nearby 

habitats. The placement of ARs themselves maybe what disturbs the underlying and 

surrounding infaunal communities (Davis et al. 1982; Ambrose and Anderson 1990).  

Perkol-Fenkel et al. (2006) have suggested that particular suites of structural features may 

correspond to unique taxonomic composition and that an AR should have a variety of 

niches exhibiting different structural features in order to obtain a higher biodiversity.  For 
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this study, these changes may need to take more time than the four-year period given 

between the pre- and post-construction activities of this study to show any significant 

changes in infaunal communities. 

The statistics results concluded that infaunal community composition became 

more homogenous by the end of 2013, though the groups of represented taxa shifted only 

slightly between sampling years. This suggests that the infauna may be moving to a more 

stable state, perhaps through a series of successions such as Connell and Slatyer (1977) 

described. However, it remains unknown whether the slight changes observed derived 

from local post-construction modifications of the sediment environment, interactions with 

fish newly associated with the artificial reefs, seasonality, storms or other factors. 

The lack of significant changes in the infaunal community after placement of the 

artificial reefs also suggests that the trophic system has remained much the same as it was 

before deployment, and that reef productivity has not increased substantially. Therefore, 

additional sampling should be carried out until at least ten years post-construction, per 

Perkol-Finkel and Benayahu (2004), to identify any changes attributable to the artificial 

reefs. Ideally, samples should be taken more than once yearly to distinguish between 

longer-term and seasonal effects. If the artificial reefs were placed mainly to attract more 

fishes and increase biodiversity, it is important to track the surrounding infaunal 

community on which many of those fishes rely. 
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Appendix A. All taxa extracted from cores with levels of identification and abbreviations used for input in PRIMER. 

Abbreviation Phylum Class Order Family Genus Species 

TubiA Annelida Clitellata Haplotaxida Tubificidae Unknown A 

EnchA Annelida Clitellata Enchytraeida Enchytraeidae Unknown A 

AmphiA Annelida Polychaeta Amphinomida Amphinomidae  Unknown A 

AmphiB Annelida Polychaeta Amphnomida Amphnomidae  Unknown B 

EuniA Annelida Polychaeta Eunicida Eunicidae  Unknown A 

LumbA Annelida Polychaeta Eunicida Lumbrineridae  Unknown A 

LumbriA Annelida Polychaeta Eunicida Lumbrineridae Lumbrineris A 

tetra Annelida Polychaeta Eunicida Lumbrineridae Lumbrineris tetraura 

ScolA Annelida Polychaeta Eunicida Lumbrineridae Scoletoma A  

OnupA Annelida Polychaeta Eunicida Onuphidae  Unknown A 

MooA Annelida Polychaeta Eunicida Onuphidae Mooreonuphis A 

GlycA Annelida Polychaeta Phyllodocida Glyceridae  Unknown A 

amer Annelida Polychaeta Phyllodocida Glyceridae Glycera americana 

capi Annelida Polychaeta Phyllodocida Glyceridae Glycera capitata 

GlyA Annelida Polychaeta Phyllodocida Glyceridae Glycerella A 

HemiA Annelida Polychaeta Phyllodocida Glyceridae Hemipodia A 

HesiA Annelida Polychaeta Phyllodocida Hesionidae  Unknown A  

Vita Annelida Polychaeta Phyllodocida Hesionidae Gyptis vitatta 

obsu Annelida Polychaeta Phyllodocida Hesionidae Oxydromus obscurus 

NereA Annelida Polychaeta Phyllodocida Nereididae  Unknown A 

mira Annelida Polychaeta Phyllodocida Nereididae Ceratonereis mirabilis 

Phol Annelida Polychaeta Phyllodocida Phyllodocidae  Unknown A 

Gene Annelida Polychaeta Phyllodocida Phyllodocidae  Unknown  B 

PhylA Annelida Polychaeta Phyllodocida Phyllodocidae  Unknown  
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AnaiA Annelida Polychaeta Phyllodocida Phyllodocidae Phyllodoce A 

PhylB Annelida Polychaeta Phyllodocida Phyllodocidae  Unknown B 

SyneA Annelida Polychaeta Phyllodocida Pilargiidae Synelmis A 

SyneB Annelida Polychaeta Phyllodocida Pilargiidae Synelmis B 

SigA Annelida Polychaeta Phyllodocida Sigalonidae  Unknown A 

SyllA Annelida Polychaeta Phyllodocida Syllidae  Unknown A 

Sabe Annelida Polychaeta Sabellida Sabellidae  Unknown   

CapiA Annelida Polychaeta Scolecida Capitellidae  Unknown A 

CapiB Annelida Polychaeta Scolecida Capitellidae  Unknown B 

MaldA Annelida Polychaeta Scolecida Maldanidae Unknown A 

MaldB Annelida Polychaeta Scolecida Maldanidae Unknown B 

MaldC Annelida Polychaeta Scolecida Maldanidae Unknown C 

ClymA Annelida Polychaeta Scolecida Maldanidae Axiothella A 

opheA Annelida Polychaeta Scolecida Opheliidae  Unknown A 

ArmaA Annelida Polychaeta Scolecida Opheliidae Armandia A 

Orbin Annelida Polychaeta Scolecida Orbiniidae  Unknown   

TaubA Annelida Polychaeta Scolecida Paraonidae Levinsenia A 

ParaA Annelida Polychaeta Scolecida Paraonidae  Unknown A 

cerr Annelida Polychaeta Scolecida Paraonidae Aricidea cerrutii 

phil Annelida Polychaeta Scolecida Paraonidae Aricidea philbinae 

grac Annelida Polychaeta Scolecida Paraonidae Levinsenia gracilis 

Mageb Annelida Polychaeta Spionida Magelonidae  Unknown B  

MagelA Annelida Polychaeta Spionida Magelonidae Magelona A 

petf Annelida Polychaeta Spionida Magelonidae Magelona pettiboneae 

SpioA Annelida Polychaeta Spionida Spionidae  Unknown A 

SpioB Annelida Polychaeta Spionida Spionidae  Unknown B 

ApopA Annelida Polychaeta Spionida Spionidae Prionospio A 
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CirrA Annelida Polychaeta Terebellida Cirratulidae  Unknown A  

CaulA Annelida Polychaeta Terebellida Cirratulidae Caulleriella A  

TereA Annelida Polychaeta Terebellida Terebellidae  Unknown A  

HalaA Arthropoda Arachnida Trombidiformes Halacaridae  Unknown A 

Carp Arthropoda Malacostraca Amphipoda Chevaliidae Chevalia carpenteri 

Leptac Arthropoda Malacostraca Tanaidacea Leptocheliidae Leptochelia   

AmpiA Arthropoda Malacostraca Amphipoda Ampithoidae  Unknown A 

BemoA Arthropoda Malacostraca Amphipoda Aoridae Bemlos A 

CaprA Arthropoda Malacostraca Amphipoda Caprellidae  Unknown A 

Capre Arthropoda Malacostraca Amphipoda Caprellidae Caprella   

ChevA Arthropoda Malacostraca Amphipoda Chevaliidae Chevalia A 

pans Arthropoda Malacostraca Amphipoda Haustoriidae Acanthohaustorius pansus 

Amphide Arthropoda Malacostraca Amphipoda Kamakidae Amphideutopus   

flor  Arthropoda Malacostraca Amphipoda Phoxocephalidae Metharpinia floridana 

PodoA Arthropoda Malacostraca Amphipoda Podoceridae  Unknown A 

AmphA Arthropoda Malacostraca Amphipoda Unknown  Unknown A 

vari Arthropoda Malacostraca Cumacea Bodotriidae Cyclaspis cf. sp. 

CycloD Arthropoda Malacostraca Cumacea Bodotriidae Cyclaspis D 

Pare Arthropoda Malacostraca Decapoda Albuneidae Albunea paretii 

PersA Arthropoda Malacostraca Decapoda Leucosiidae Persephona A  

PenaA Arthropoda Malacostraca Decapoda Penaeidae  Unknown A 

DecaA Arthropoda Malacostraca Decapoda Unknown  Unknown A  

Mag Arthropoda Malacostraca Isopoda Anthuridae Amakusanthura magnifica 

AnthA Arthropoda Malacostraca Isopoda Anthuridae  Unknown A 

XenaA Arthropoda Malacostraca Isopoda Hyssuridae Xenanthura A 

ParanA Arthropoda Malacostraca Isopoda Paranthuridae  Unknown A 

TanaA Arthropoda Malacostraca Tanaidacea  Unknown  Unknown A 
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ApseA Arthropoda Malacostraca Tanaidacea Apseudidae Apseudes A 

KallA Arthropoda Malacostraca Tanaidacea Kalliapseudidae  Unknown A 

KalliA Arthropoda Malacostraca Tanaidacea Kalliapseudidae Kalliapseudes A 

floriden  Arthropoda Malacostraca Tanaidacea Kalliapseudidae Psammokalliapseudes Floridensis 

LeptA  Arthropoda Malacostraca Tanaidacea Leptognathiidae  Unknown A 

ParatA Arthropoda Malacostraca Tanaidacea Paratanaidae Paratanais A 

Punct Arthropoda Ostracoda Myodocopida Cylindroleberididae  Cylindroleberis  astropella 

louisi Arthropoda Ostracoda Myodocopida Cypridinidae Kornickeria   

pauc Arthropoda Ostracoda Myodocopida Philomedidae Harbansus paucichelatus 

darb Arthropoda Ostracoda Myodocopida Rutidermatidae Rutiderma darbyi 

MyodA Arthropoda Ostracoda Myodocopida  Unknown Unknown A 

MyodB Arthropoda Ostracoda Myodocopida  Unknown Unknown B 

MyodG Arthropoda Ostracoda Myodocopida  Unknown Unknown G 

CrustA Arthropoda Crustacea unident.  Unknown  Unknown Unknown A 

BranA Chordata Leptocardii Amphioxiformes Asymmetronidae Branchiostoma A 

Ecop Echinodermata Echinoidea  Clypeasteroida Mellitidae Encope sp.  

HoloA Echinodermata Holothuroidea  Unknown Unknown Unknown A 

Amphiuridae Echinodermata Ophiuroidea  Ophiurida Amphiuridae Amphiura   

ThraA Mollusca Bivalvia Anomalodesmata Thraciidae Thracia A 

luna Mollusca Bivalvia Carditoida Crassatellidae  Unknown   

dupl Mollusca Bivalvia Carditoida Crassatellidae Crassinella dupliniana 

LimA Mollusca Bivalvia Limoida Limidae unknown A 

scab Mollusca Bivalvia Limoida Limidae Ctenoides scabra 

subo Mollusca Bivalvia Limoida Limidae Limatula subovata 

LuciA Mollusca Bivalvia Lucinoida Lucinidae Unknown A 

blan Mollusca Bivalvia Lucinoida Lucinidae Cavilinga   

cren Mollusca Bivalvia Lucinoida Lucinidae Parvilucina crenella 
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Vari Mollusca Bivalvia Myoida Corbulidae Corbula   

VariA Mollusca Bivalvia Myoida Corbulidae Corbula A 

decu Mollusca Bivalvia Mytiloida Mytilidae Crenella decussata 

Pter Mollusca Bivalvia Pterioida Pteriidae Pteria   

CardA Mollusca Bivalvia Veneroida Cardiidae  Unknown A 

floridana Mollusca Bivalvia Veneroida Laseidae Orobitella   

lio  Mollusca Bivalvia Veneroida Semelidae Abra lioica 

nuca Mollusca Bivalvia Veneroida Semelidae Semlina nucloides 

ErvA Mollusca Bivalvia Veneroida Semelidae Ervilia  A 

concen Mollusca Bivalvia Veneroida Semelidae Ervilia concentrica 

Semel Mollusca Bivalvia Veneroida Semelidae Semelina   

nite Mollusca Bivalvia Veneroida Tellinidae Tellina nitens 

meriA Mollusca Bivalvia Veneroida Tellinidae Tellina A 

TellA Mollusca Bivalvia Veneroida Tellinidae  Unknown A 

VeneA Mollusca Bivalvia Veneroida Veneridae  Unknown A 

mazy Mollusca Bivalvia Veneroida Veneridae Chione mazycki 

Simps Mollusca Bivalvia Veneroida Veneridae Pitar   

flori Mollusca Bivalvia Veneroida Veneridae Tivela trigonella 

BivA Mollusca Bivalvia  Unknown Unknown  Unknown A  

cerit Mollusca Gastropoda Caenogastropoda Cerithiidae  Unknown   

TurrA Mollusca Gastropoda Caenogastropoda Turritellidae  Unknown  A 

succ Mollusca Gastropoda Cephalaspidea Haminoeidae Haminoea   

RetuA Mollusca Gastropoda Cephalaspidea Retusidae Retusa A 

RetuB Mollusca Gastropoda Cephalaspidea Retusidae Retusa B 

PhenA Mollusca Gastropoda Cycloneritimorpha Phenacolepadidae Phenacolepas A 

caro  Mollusca Gastropoda Littorinimorpha Caecidae Caecum carolinianum 

florid Mollusca Gastropoda Littorinimorpha Caecidae Caecum floridanum 
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pulc Mollusca Gastropoda Littorinimorpha Caecidae Caecum pulchellum 

nitid Mollusca Gastropoda Littorinimorpha Caecidae Meioceras nitidum 

Capul Mollusca Gastropoda Littorinimorpha Littorinidae  Unknown   

RissA Mollusca Gastropoda Littorinimorpha Rissoidae Rissoa A 

RissoA Mollusca Gastropoda Littorinimorpha Rissoidae Rissoina A 

NassA Mollusca Gastropoda Neogastropoda Nassariidae Nassarius A 

nivea Mollusca Gastropoda Neogastropoda Olividae Oliva nivea 

Simp Mollusca Gastropoda Neogastropoda Marginellidae  Serrata   

eburn Mollusca Gastropoda Neogastropoda Marginellidae Marginella eburneola 

ovul Mollusca Gastropoda Neogastropoda Marginellidae Granulina ovuliformis 

MargA Mollusca Gastropoda Neogastropoda Marginellidae Marginella A 

OlivA Mollusca Gastropoda Neogastropoda Olividae Unknown A 

BullA Mollusca Gastropoda Cephalaspidea Bullidae Unknown A 

GastA Mollusca Gastropoda  Unknown Unknown Unknown A 

PolyA Mollusca Polyplacophora  Unknown Unknown Unknown A  

floridense Mollusca Scaphopoda Dentaliida Dentalidae Coccodentalium carduus 

DentA Mollusca Scaphopoda Dentaliida Dentalidae  Unknown A 

Pret Mollusca Scaphopoda Dentaliida Dentalidae Antalis pretiosum 

Laq Mollusca Scaphopoda Dentaliida Dentalidae Dentalium laqueatum 

quad Mollusca Scaphopoda Gadilida Gadilidae Polyschides quadratus 

carol Mollusca Scaphopoda Gadilida Gadilidae Polyschides carolinus 

ScaphA Mollusca Scaphopoda  Unknown Unknown  Unknown  A 

Albus Sipuncula Phascolosomatidea Aspidosiphonida Aspidosiphonidae Aspidosiphon albus 

Parv Sipuncula Phascolosomatidea Aspidosiphonida Aspidosiphonidae Aspidosiphon parvulus 

misa Sipuncula Phascolosomatidea Phascolosomatida Phascolosomatidae Apionsoma misakianum 

strom Sipuncula Sipunculidea Golfingiida Phascolionidae Phascolion strombus 

nudas Sipuncula Phascolosomatidea Phascolosomatida Phascolosomatidae Phascolosoma   



  

48 
 

Appendix B. Pre-construction Major Groups 

 

 

 
 

 

 

 



  

49 
 

 

 

Appendix C. Post Construction Major Groups 
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Appendix D. Pre-construction Major Groups 

 

Variable AICc SS(trace) 

Pseudo-

F P Prop. Cumul. res.df 

+HesiA 481.99 11116 6.1649 0.001 9.04E-02 9.04E-02 62 

+SabeA 479.5 7897 4.6368 0.001 6.43E-02 0.15469 61 

+CardA 477.85 6188.5 3.8004 0.001 5.04E-02 0.20505 60 

+albus 476.3 5782.6 3.7116 0.001 4.70E-02 0.2521 59 

+ApseA 474.79 5508.6 3.6974 0.001 4.48E-02 0.29692 58 

+SyllA 473.59 4883 3.4139 0.001 3.97E-02 0.33665 57 

+flori 472.24 4899.4 3.5804 0.001 3.99E-02 0.37651 56 

+darb 471.37 4175.1 3.1693 0.001 3.40E-02 0.41048 55 

+CirrA 470.47 4093.6 3.2336 0.001 3.33E-02 0.44379 54 

+SyneB 469.65 3886.6 3.1949 0.001 3.16E-02 0.47541 53 

+MyodA 469.21 3408.5 2.9025 0.001 2.77E-02 0.50314 52 

+MaldA 468.75 3359.3 2.9689 0.001 2.73E-02 0.53048 51 

+SyneA 468.26 3310.8 3.0433 0.001 2.69E-02 0.55741 50 

+misa 467.86 3160 3.0221 0.001 2.57E-02 0.58313 49 

+CapiA 467.63 2956.4 2.9393 0.001 2.41E-02 0.60718 48 

+pauc 467.45 2860.4 2.9599 0.001 2.33E-02 0.63045 47 

+NereA 467.36 2744.1 2.958 0.001 2.23E-02 0.65278 46 

+parv 467.36 2631.9 2.9577 0.001 2.14E-02 0.67419 45 

+TanaA 467.19 2675.7 3.1506 0.001 2.18E-02 0.69597 44 
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