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ABSTRACT 

The Marine sponge Cinachyrella sp used in this study are commonly found in offshore 

South Florida and Caribbean waters and appeared to be resilient in closed system 

aquaculture. Marine sponges host diverse bacterial symbionts that are distinct compared 

to bacteria found in ambient seawater, however the roles of a large fraction of the 

bacterial community in marine sponges are unknown. Comparison of symbiotic to 

aposymbiotic (bacteria-free) sponges could provide information about interactions 

(metabolic and physiologic) between the bacteria and sponge. In this study, a single 

Cinachyrella kuekenthali individual was subsectioned into explants (N=240) in order to 

provide identical bacterial communities to perform comparative studies. Presence of 

photosymbionts was also analyzed by characterizing bacterial communities from varying 

light and dark conditions. Tools for characterization included transmission electron 

microscopy (TEM) and 16S rRNA sequence analysis obtained from Illumina Miseq. 

High throughput DNA sequencing revealed bacterial taxa belonging to phyla 

Thaumarchaeota, Chloroflexi, Nitrospira, Acidobacteria and Verrucomicrobia persist in 

the explants. This study also demonstrated that antibiotics (Ampicillin, Tetracycline, 

Penicillin-Streptomycin and combination of all) can alter the bacterial community in the 

marine sponge C. kuekenthali explants in vitro. Bacterial communities of explants treated 

with different antibiotics were statistically (Unifrac and Bray-Curtis analysis) different 

from controls (p-value < 0.001, R2=41%). Penicillin-streptomycin and cocktail of 

antibiotics treatment contributed to the highest difference in the bacterial communities. 

Also, bacterial communities of explants at difference time points treated with 

corresponding antibiotics were also statistically significant (p-value<0.05, R2=15%). 

TEM observations of denatured nucleic acid and osmotic lysis of bacteria, due to the 

effect of antibiotics were observed, creating a LMA mesohyl. However light versus dark 

conditions did not produce any statistically significant difference in beta diversity 

between bacterial communities. These interdisciplinary results indicate that while 

individual bacterial symbiont taxa may persist after community disruption, significant 

changes in the overall composition of the bacterial symbiont population can be created. 

Key words: Cinachyrella sp, aposymbiotic, antibiotics, time, photosymbionts, HMA 
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INTRODUCTION 

Sponges are found in all biotopes from the tropics to the poles with an estimated 

diversity of 11,000, of which 8500 are considered valid (Van Soest et al., 2012). In 

marine ecosystems, sponges enable efficient recycling of dissolved organic matter and 

nutrients to higher trophic levels in nutrient poor coral reefs through the sponge loop 

(Goeji et al., 2013). Therefore, sponges play a vital role in the coral reef ecosystem.  

Sponge-derived compounds have been used in biomaterial engineering and in 

pharmaceutical industries. For example, biosilica-producing enzymes from sponges have 

been applied in nanotechnology (Schröder et al., 2007) and avarol from Dysidea avara 

have in vivo antileukemic activity and inhibits in vitro replication of HIV (Muller et al., 

2000).  

Sponges may be composed of up to 40% bacterial cells (Schmitt et al., 2012). The 

role of bacteria in sponges has been highly debated (Webster and Blackall 2009) and 

while certain bacterial species have a proven impact on sponge health, the specific 

beneficial relationship with a majority of bacteria is yet to be demonstrated. 

Understanding the relationship between host and symbiont can reveal how the symbiosis 

occurs and persists. Symbiosis is not simply an interaction between organisms but an 

innovative mechanism of survival (Seckbach, 2002). 

Sponges 

Sponges belong to the phylum Porifera, which are among the most primitive 

multicellular organisms. These sessile organisms occur in all seas, wherever there are 

rocks, shells, submerged timbers, or corals to provide a suitable substratum. Their bodies 

vary in size and shape (Bergquist 1998). Sponges possess an active filtration system of 

incurrent openings, channels, chambers and excurrent opening to obtain food and oxygen 

from the surrounding water and remove waste from their body. In this system, flagellated,  

ameboid cells, collagen and skeletal elements that fill the internal space are essential 

components of this process (Müller 2003). The whip-like motion of the flagella of the 

choanocyte cells causes an unidirectional movement of water and other nekton through 

the pores called the ostium(a), into the body of the sponge. Water is lead to the 
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spongocoel by incurrent and excurrent channels collecting it from the choanocyte 

chambers, which in turn leads to excurrent opening, called the osculum (oscula) through 

which all waste products are released from the sponge body (Ruppert. et al., 2004).  

Sponge Natural Products and Cultivation 

There are approximately 7000 sponge derived novel molecules, however only 

hundreds are used in the industry due to the difficulty in obtaining sufficient biomass 

from natural populations (Blunt et al., 2009). The compounds derived from natural 

sources are generally developed by chemical synthesis However, the potency of these 

complex compounds have to be additionally assessed, before a potential drug is 

identified. This can be done with preclinical studies, which in turn, requires large 

amounts of the natural compounds. Since bioactive compounds are found in such small 

quantities in nature, large amounts of biomass needs to be harvested. Doing so could 

disrupt the ecosystem. For example, 7000 tons of Lissodendoryx sp were needed to obtain 

halichondrin B to treat 25% of all melanoma patients. However, only 300 tons exist in 

nature (Sipkema et al., 2005). This paradox of early drug development being dependent 

on biological production methods, is often referred to as "The Supply Issue" (Osinga et 

al., 1998, Faulkner 2000).  

Sponge farming can be adopted to increase sponge biomass, however the methods 

of aquaculture varies from species to species. These include horizontal ropes, coral 

boulder and artificial substrates (Schiefenhövel and Kunzmann 2012). Information 

regarding optimal external environmental conditions and nutrient requirement is 

necessary for successful farming (Duckworth 2009). 

One way the supply issue of sponges may be overcome is by in vitro culture 

techniques (Schippers et al., 2013). In vitro cultivation allows for control of culture 

conditions and manipulation to increase product concentrations. Loosely organized 

cellular structure and the presence of totipotent cells, appear to favour the initiation of 

sponge cell lines (Sipkema et al., 2005). However the presence of sponge associated 

microorganisms make it difficult to establish pure contaminant-free sponge cell lines, 

also referred to as axenic cultures. 
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Explant culture has proven to be successful in studies of cell proliferation and 

development of biomass (De Caralt et al., 2010). Carballo et al. (2010) have published 

results indicating fragment culture to be a viable method of producing metabolites. 

Different cultivation methods result in different sponge metabolite activity. For example, 

compared to wild sponges, cell culture results in a low concentration of lipids, loss of 

sterols and volatile compounds (De Rosa et al., 2002).  

The presence of microbes presents a challenge to in vitro cultures of sponge 

biomass for the purpose of extracting metabolites (Lopez et al., 2002). The addition of a 

cocktail of antibiotics has proved ineffective in obtaining an axenic culture (Schippers et 

al., 2012). Thus, more documentation about changes in bacterial diversity and abundance 

in experiments would provide insight into the sponge microbial response to the 

antibiotics. 

Cinachyrella sp 

The genus Cinachyrella belongs to the class Demospongiae and family Tetillidae 

of the order Tetractinellida (Morrow and Cardenas 2015). These globe shaped sponges 

possess concave depressions (porocalices) that contain aggregations of microscopic 

incurrent pores. The commonly called “golf ball sponge” is yellow to orange–red 

externally and yellow-orange internally (Rutzler et al., 1992) (Appendix 7). Its 

geographic distribution ranges from shallow coastal waters of North Carolina to the south 

Atlantic waters of Brazil. Three common species of Cinachyrella found in waters off 

South Florida are C. kuekenthali, C. alloclada and C. apion (Cardenas et al., 2009). 

Sequence analysis is the optimal method to identify the sponge species. This is due to the 

structural similarities of the species in the genus making it difficult to distinguish the 

species of Cincahyrella by macroscopic observations (Table 1). The spiny microoxeas of 

C. kuekenthali viewed under the compound microscope can distinguish it from C. apion. 
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Table 1: Morphological description and Identification of Cinachyrella species (Smith et 

al., 2013, Master’s thesis).  

Cinachyrella alloclada Cinachyrella apion Cinachyrella kuekenthali 

Orange to yellow, shallow 

reef sponge (5-20m) 

Yellow to light grey, 

mangrove and lagoon water 

habitats (0.3-60m) 

Orange, may appear grey-

red, found on reef and coral 

rubble (4-100m) 

Grow to 10cm diameter  Grow up to 7cm in diameter  Massive subglobular with 

growth up to 15cm diameter  

Strongly hispid surface with 

small to large porocalices 

(3-15mm) 

Strongly hispid surface with 

evenly distributed 

porocalices (2mm) on the 

sides. Oscules are rare. 

moderately hispid with 

unevenly distributed 

porocalices (0.3-0.5cm) and 

one or few oscules (1cm) 

Spicules are smooth oxeas 

with two/three size classes, 

pro- and anatriaenes of one 

size class, and spiny 

sigmaspires of variable size  

Spicules with oxeas in two 

size classes with few 

subtylostyles and strongyles 

Spicules with large oxeas of 

one size class, spiny 

microoxeas, straight/slightly 

, protriaenes, anatriaenes 

commonly distributed, 

spiny sigmaspires 

              

Some natural metabolites extracted from Cinachyrella sp have been found to be 

beneficial. For example, the first natural 6-hydroximino-4-en-3-one steroids were isolated 

from Cinachyrella sp by Rodriguez et al., in 1998. This molecule is an example of a 

metabolite that can be deployed against a specific type of tumor cells.  

Another example of bioactive sponge compound is Enigmazole A and related 

compounds. It has been isolated from Cinachyrella enigmatica that selectively target 

aberrant c-Kit signalling. C-kit is a type of transmembrane protein- tyrosine kinase that is 
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important in the control of gametogenesis, hematopoiesis, mast cell development and 

function, and melanogenesis. This kinase has implications for cancer patients with a 

specific c-Kit genotype that undergo treatment with Gleevec (Novartis Pharmaceutical 

Corp: common name: imatinib mesylate). Enigmazole A also shows cytotoxic effects 

against IC-2 mast cells (Skepper et al., 2010).  

In 2012, bioactivity-based screening of Cinachyrella sp extract identified an 

ancestral member of the galectin family based on its unexpected ability to positively 

modulate mammalian glutamate receptor function. They play important and diverse 

physiological roles, particularly in the immune system of sponges, and are thought to be 

critical metastatic agents for many types of cancer cells, including gliomas; a type of 

tumor that originates in the brain or spine, by inhibiting cell proliferation (Freymann et 

al., 2012).  

 

Marine Sponge as Microbiome  

The microbial symbionts and their genes make up the microbiome, that can 

provide traits not evolved by the host (Turnbaugh et al., 2013).  The majority of the 

bacterial symbionts are unculturable. Using DNA sequencing of 16S ribosomal RNA 

(rRNA) gene of bacterial communities, new taxa can be identified in the environment 

(Patin et al., 2013).  The 16S rRNA gene is weakly affected by horizontal gene transfer 

and is universally distributed in all mitochondrial genomes. This universality of 16S 

rRNA allows for phylogenetic and taxonomic classification (Wang and Qian 2009). The 

similarity of the 16S rRNA reads to a reference database is used to identify the bacterial 

taxa. The cluster of reads with 97% similiarity is also referred to as Operational 

Taxonomic Units (OTUs) (Chang et al., 2008).  

Schmitt et al., (2012) compiled 11,000 16S rRNA sequences from sponge 

associated bacteria that included alpha-,beta-,gamma-, and deltaproteobacteria, 

Acidobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, Cyanobacteria, Firmicutes and 

Poribacteria, which can constitute upto 40% of the biomass in some sponges.  Sponges 

provide a suitable substrate for attachment and nutrients for microbial symbionts  
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(Schippers et al., 2012). The sponge hosts that possess a high concentration of bacteria in 

their mesohyl are called bacteriosponges or high microbial abundance (HMA) sponges,. 

Those with low concentrations are called low microbial abundance (LMA) sponges 

(Hentschel et al., 2006). HMA sponges possess a denser mesohyl, more complex 

aquiferous system with narrower and longer water canals that allows slower filtration 

rates (Weisz et al., 2008). δ15 N ratio metabolic differences were also observed in Ircinia 

felix and Aplysina cauliformis (i.e. LMA) compared to Niphates erecta (HMA) . 

Microbes in LMA sponges provide nitrogen while N.erecta obtained nitrogen solely from 

an external source (Weisz et al., 2007).  

Sponge associated bacteria have been hypothesised to produce vitamin B12 

utilized by the sponge, assist in ammonium assimilation and in the generation of 

reductive energy (Thomas et al., 2010).  Recent evidence identifies specific prokaryotic 

genes involved in various metabolic pathways that could be activated by the sponge. For 

example, key enzymes for thiamin synthesis were found in metatranscriptome of 

Xestospongia muta and the genes for the activation of the pathway were found in the 

sponge transcript (Fiore CL et al., 2015). However, the beneficial functions of a large 

fraction of bacterial species associated with sponges have yet to be documented. 

Sponge-Bacteria Dynamics 

Sponge-microbe dynamics is still under scrutiny. Sponges with similar eco-

evolutionary characteristics share more microbes between them than the hosts with 

different characteristics (Björk et al., 2013). Yet the factors that structure sponge-bacteria 

associations remain poorly understood (Noyer et al., 2014). In some cases, sponges 

maintain a stable bacterial community across spatial and temporal scales (Erwin et al., 

2012, Friedrich et al., 2001) while others can be affected by many factors. These factors 

include environmental changes, geography (Taylor et al., 2005), pollution (Webster et al., 

2001), temperature ( Webster and Blackall 2009),  transfer into aquaculture (Mohamed et 

al., 2008) or disease-related physiological changes (Webster et al., 2008). 
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Molecular Biology of Sponge-Bacterial Interaction 

The capacity of sponge cells to distinguish between food and symbiotic bacteria 

has been discussed since Bergquist (1978) observed no particle selection feeding of 

sponge cells using latex beads and Indian ink. Wilkinson (1984) observed choanocytes 

and pinacocytes performed initial phagocytosis followed by amoebocytes in the mesohyl.  

Genomes of symbiotic bacteria possess large numbers of mobile elements that are 

proposed to have an important role in the evolution of bacterial genomes for symbiotic 

relations (Thomas at el., 2010). Four eukaryote-like, ankyrin repeat proteins (ARP) found 

in uncultured gamma-proteobacterial sponge symbiont were made to express in E.coli 

using recombinant technique and it appeared to interfere with phagosome development of 

amoebal cells. This interference mechanism suggests a possible method by which 

bacteria escape digestion by sponge amoebocytes (Nguyen, Liu and Thomas 2014). 

Metatranscriptomics of sponge associated bacteria also suggest TPR (tetratricopeptide 

repeats) secrete extracellular protein which could present a mechanism by which they 

avoid digestion.  

Sponges also use pattern recognition receptors, namely NLR (nucleotide-binding 

domain and leucine-rich repeat containing) that can recognize a broad spectrum of 

microbial ligands, critical in mediating animal-bacterial communication. For example, 

Amphimedon queenslandica genome encodes approximately 135 bona fide NLR genes 

(Degnan, 2014). Molecules containing scavenger receptor cysteine-rich (SRCR) domains 

have also been identified in some sponges and have high a similarity to mammalian 

surface antigen which suggests they could be involved in bacterial-cell recognition 

(Muller and Muller 2003, Steindler et al., 2007). 

Microbiomes in Aquaculture 

It is important to determine feasibility of growing sponges in in vitro and 

aquaculture systems to evaluate their effect on sponge health (Nayer et al., 2014). In 

order to extract compunds from unculturable bacteria in sponges, artificial culturing of 

sponges may be necessary. Some cases have found aquaculture of sponges, provide less 

perturbation of the bacterial symbiont community (Mohamed et al., 2008).   
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In other cases, there have been changes in the bacterial community in aquaculture 

environment. An increase in bacterial community in Mycale laxissima and an increase in 

alpha- and gamma- proteobacteria in Ircinia strobilina in aquaculture compared to wild 

were discovered (Mohamed et al., 2008). The diversity in Ircinia strobilina increased 

after 3 months in the tank and reduced to an intermediate level after 9 months, suggesting 

acclimatization. Bacterial community of Mediterranean sponge Aplysina aerophoba 

remained stable for the 11 day period, observed under starving conditions in recirculating 

seawater aquaria (Friedrich et al., 2001). A stable bacterial community was also observed 

in Rhopaloeides odorabile (Webster et al., 2011) and Aplysina aerophoba (Hausmann et 

al., 2006). 

Effect of Light on Sponge Symbiocosm 

The most prevalent photosymbionts in sponges are cyanobacteria (Erwin and 

Thacker, 2007) in addition to dinoflagellates and filamentous algae. The translocation of 

9 to 17% of total photosynthate from a chlorella-like green alga to the freshwater sponge 

Ephydatia fluviatilis, a phototrophic sponge has been identified (Wilkinson 1979). This 

may not be the case in all sponges hosting phototrophic organisms such as cyanobacteria, 

filamentous algae and dinoflagellates. For example, coral reef sponges can comprise 25-

50% cyanobacterial cells yet relatively little is known about metabolic exchanges 

between the organisms (Taylor et al., 2007). Studies suggest the relationship between the 

sponge and its photosymbiont varies with sponge species. For example, the marine 

sponge Lamellodysidea chlorea has a mutualistic relationship with the filamentous 

cyanobacterium Oscillatoria spongeliae whereas, marine sponge Xestospongia exigua 

was found to be commensalistic with the unicellular cyanobacterium Synechococcus 

spongiarum (Thacker 2005). S. spongarium may represent a generalist symbiont with the 

ability for widespread dispersal. In 2008, Erwin and Thacker revealed three clades (A, B 

and C) of S. spongarium that had variable nutritional benefits for Neopetrosia 

subtriangularis.  

Sponges may be defined as phototrophic if the ratio of gross primary productivity 

to respiration exceeds 1.5, implying the sponge receives a significant amount of nutrition 

from photosymbionts (Wilkinson 1979). Determining the amount of chlorophyll-a is a 
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common technique for estimateing the percentage of cyanobacteria in the sponge, 

however it may only estimate the amount of phototrophic bacteria present in the sponge 

and does not demonstrate a symbiotic relationship. Cyanobacteria may in turn, benefit 

from the sponge through nutrition, UV protection, nitrogen fixation and production of 

secondary metabolite (Erwin and Thacker 2008). 

Species Specific Bacterial Community 

The presence of distinct microbial communities in different sponge species is still 

under debate. Aplysina aerophoba and Theonella swinhoei from geographically separated 

regions, share high similarity in bacterial communities distinct from that found in the 

ambient seawater (Hentschel et al., 2002). In contrast, comparative of Cymbastela 

concentrica, Callyspongia sp. and Stylinos sp from temperate Australia using denaturing 

gradient gel electrophoresis (DGGE) showed substantial differences, with little variability 

within each species (Taylor M. W. et al., 2003).  

The bacterial communities in sponges collected from the Indian Ocean, Pacific 

Ocean, Mediterranean, Caribbean and Red Sea were compared and found large species-

specific bacterial communities. That is, common Operational Taxonomic Units (OTU) 

were found in specific sponge species found in different locations (Schmitt et al., 2012). 

Bacteria that were believed to be exclusive to low abundance sponges (eg. 

Poribacteria) were also present in seawater (Taylor et al., 2013). The bacteria detected in 

seawater could be in metabolically inactive dispersive phases. Only some members of a 

highly complex microbial system may be active at any particular time (Schaechter et al., 

2006). 

The consortium of microbes present in many sponges span the three Domains of 

life with the association ranging from mutualistic to commensalistic and exploitative 

(Taylor et al., 2007). The complexities of the sponge-microbe interaction can provide 

clues of origin, evolution and maintenance of sponge-microbe interaction. 
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Development of Aposymbiotic Model System 

Aposymbiotic organisms are those that are symbiont-free that are most often 

induced or reared experimentally. For example, in order to study a cnidarian-

dinoflagellate relationship, Aiptasia was chosen since it can exist without dinoflagellate 

symbionts, and  was made aposymbiotic using cold-shocking and the photosynthesis 

inhibitor, diuron.  The difference in gene expression was then analysed (Lehnert et al., 

2012). A model for animal-microbe mutualistic association is the Hawaiian-bobtail squid 

and bioluminescent bacteria (McFall-Ngai 2014). Difference in proteome of uncolonized 

juvenile bobtail squid (aposymbiotic) and a colonized juvenile squid (symbiotic) was 

analyzed to understand the maintenance of this association (Bethany and Nyholm 2012). 

In another example, horizontal acquisition of Burkholderia bacteria by the bean bug 

(Riptortus pedestris) was also observed by rearing aposymbiotic bugs (Kikuchi et al., 

2007).  However, sponges have proved to be an experimental challenge to develop as 

aposymbiotic systems due to their complex microbial biota and the uncertain interactions 

between host and symbionts. 

Action of Antibiotics on Sponge System 

In 2012, Richardson et al., used sponge cell aggregates treated with different 

antibiotics to identify the difference between control and aposymbiotic sponge. This 

revealed different abundance in the bacterial community under different antibiotic 

treatment, although failed to create aposymbiotic sponge cell aggregates. Noticeable 

effects of the antibiotics (combinations of ampicillin and gentamycin) and starvation 

were not observed via TEM of Aplysina aerophoba, but there was a change in colony 

forming units (CFU) and difference in DGGE bands (Freidrich et al., 2001). 

The experimental setup in this project used the following antibiotics: Penicillin-

Streptomycin, ampicillin and tetracycline. These antibiotics were commonly used in 

sponge cell culture studies to control microbial contamination (De Rosa et al., 2003, Sun 

et al., 2007, Zhao et al., 2005).  The mechanism of action of antibiotics include disruption 

of membrane structure, inhibition of enzymes involved in cell wall synthesis, nucleic acid 

metabolism or protein synthesis (Sigma-Aldrich).  
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Penicillin is a β-Lactam antibiotic that inhibits the formation of peptidoglycan 

link in the bacterial cell wall. This weakens the cell wall and osmotic pressure increases 

in the cytoplasm resulting in cell lysis (Van Bambeke et al., 1999). It mostly acts on 

majority of gram-positive bacteria.  Ampicillin is derived from penicillin, and possess 

similar mechanism of cell wall disruption, afftecting gram-positive and gram-negative 

bacteria (AHFS 2006). These antibiotics are bactericidal and blocks the division of 

cyanobacteria, cyanelles, photosynthetic organelle of glaucophytes and chloroplasts in 

bryophytes (Kasten and Reski 1997).  

Streptomycin inhibits protein synthesis by binding to S12 protein of 30S 

ribosomal subunit, thereby blocking translation, eventually leading to cell death (Sharma 

et al., 2007). Protein synthesis is inhibited by tetracycline by preventing binding of 

aminoacyl tRNA to acceptor site. Tetracycline is a broad spectrum bacteriostatic 

antibiotic, acting upon gram-positive and gram-negative bacteria (Chopra and Roberts 

2001).  

         Antibiotics have been previously used to observe the effects of bacteria loss 

in sponges (Richardson et al., 2012). However, conclusive evidence suggesting the extent 

of dependence of the sponge on the bacterial community is yet to be established. This 

study hypothesises that antibiotics can be used to estimate the sponge-bacteria 

dependency. Once the success in demonstrating the change in sponge bacterial 

community due to antibiotics is established, difference in sponge bioactivity can be 

studied. Another study compared explants treated with antibiotics in 2 litres of seawater 

versus the whole sponge in a closed aquarium system without antibiotics with algae as 

food. It was found that the whole sponge had higher growth rates and explants showed 

long term survival and a loss in growth rate. Yet the explants continued to synthesize 

bioactive compounds (De Caralt et al., 2003).  

Applications of Sponge- Associated Bacteria 

Sponge microbial associates may provide a significant source of bioactive 

compounds. For example, antifungal activity was observed in the chitinase of 

Strepromyces sp. isolated from the marine sponge Craniella australiensis (family 
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Tetillidae). Compared with chitinase from terrestrial sources, marine chitinase has a 

higher pH and salinity tolerance which is useful for certain biotechnological applications 

(Han et al., 2009).  

Marine sponges may provide novel compounds to prevent bacteria, viral, fungal 

and parasitic diseases that are gaining antibiotic resistance (Thomas et al., 2010). The 

therapeutic properties of secondary metabolites synthesised by microbial flora inhabiting 

sponges is a subject of great research interest and high biomedical potential.  

 

HYPOTHESIS AND OBJECTIVES 

H1 – Cinachyrella sp possess symbiotic bacterial community 

• Compare 16S rRNA of bacterial communities in tank water and Cinachyrella sp 

explants, and baseline data. 

H2 - Cinachyrella sp harbours photosymbiotic bacteria 

• Sponge explants exposed to light and dark conditions are compared under 

electron microscopy, CARD-FISH and 16S rRNA metagenomics analysis 

H3 - Antibiotic treatments possess the potential to develop aposymbiotic sponge explants 

• Explants are treated with media containing cocktail of penicillin-streptomycin, 

ampicillin and tetracycline. Effects are observed under electron microscopy and CARD-

FISH.  

•       Apply Metagenomic 16S rRNA analysis to compare and confirm the success of 

the treatments. 

MATERIALS AND METHODOLOGY 

Sample Collection 

Cinachyrella sp was collected off the coast of Broward County, South Florida. 

They were then placed in the closed system aquarium with filtered seawater. The sponge 

for in vitro culture (day0) was kept in a closed system aquarium under starvation for 6 

weeks. The Cinachyrella sp dead sponge(CinDead,CinDead2) was obtained when loss of 
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structure and discoloration was observed of after 6 months in closed aquarium under 

starvation. 

The marine sponge made into explants was identified as Cinachyrella kuekenthali 

(Paco Cardenas’s personal communication (Uppsala University)). It was yellow-orange 

sponge with a layer brownish-green filamentous algae, which was washed away prior to 

fragmenting. The sponge was subglobular shaped with an a diameter of 10cm 

approximately. Cinachyrella kuekenthali have concentrated pockmarks with circular cup-

like depressions (porocalices) at the apical depression. They possess two main types of 

megascleres (Appendix 1): (1) straight  rods with two pointed ends (oxea), sometimes 

kinked, rounded or stepped (2) Rods with one end pointed and other with 2-3 short 

pointed or blunt rays (Rutzler and Smith 1992). 

Preparation of sponge explant culture 

This protocol was adopted from Schippers et al., (2013). An individual 

Cinachyrella sp was in the tank for a period of 6 weeks under starvation to remove 

inactive bacteria in the sponge body. The sponge was processed by rinsing with filtered 

sea water and cut into pieces of approximately 15-20mm3 in filtered seawater. The 

sponge pieces were placed in explant culture plates containing 8ml of artificial seawater 

(ASW) (Pomponi et al., 1997). Triplicates were made for each treatment specified below. 

A total of ten 24-well plates were prepared.  
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Figure 1: Sponge explant tissue culture plate at time point Day 0  
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Table 2: Sponge explants Experimental Plate Setup 

Plate 

number Culture Conditions 

1 explant supplemented with combination of antibiotics under light 

2 

explant supplemented with 100IU/ml penicillin-streptomycin 

under light 

3 explant supplemented with 100µg/ml Tetracycline under light 

4 explant supplemented with 0.1mg/ml ampicillin under light 

5 explant supplemented with combination of antibiotics under dark 

6 

explant supplemented with 100IU/ml penicillin-streptomycin 

under dark 

7 

explant supplemented with 100µg/ml Tetracycline under light 

under dark 

8 explant supplemented with 0.1mg/ml ampicillin under dark 

9 explant without antibiotic under light 

10 explant without antibiotic under dark 

 

 

Antibiotic treatment 

 Artificial sea water media was supplemented with a combination of 100IU/ml 

penicillin-streptomycin (Müller et al., 1999), 100µg/ml Tetracycline and 0.1mg/ml 

ampicillin (Rosa et al., 2003). Media was prepared and supplemented with each antibiotic 
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separately and in combination. The media was replaced with fresh media every 48 hours. 

The plates were kept in the incubator at 20◦C.  

Light treatment 

The explants were cultured in tissue culture plates maintained in the light and 

dark (covered with foil). The transparent plates were illuminated throughout the 

experiment with 6W T5 10,000K and Actinic Bluelight, to simulate sunlight. The plates 

were kept in the incubator at 20◦C with media replaced every 48 hours. 

The explants were collected every 48 hours and stored in 2% gluteraldehyde in 

sodium cacodylate buffered seawater for electron microscopy. Samples were kept in 70% 

ethanol for DNA extraction, and 4% paraformaldehyde for 4 hours and then transferred to 

70% ethanol for FISH. A total of 20 samples were prepared for EM and 30 samples for 

FISH experiments.  

Transmission Electron Microscopy Preparation 

Table 3: Samples used for TEM Ultrastructure study 

Sample ID Sample Description 

day0 Cinachyrella sp explant day 0 

CONTROLdark2 Cinachyrella sp control explant  on day 2 under dark 

condition 

CONTROLlight2 Cinachyrella sp control explant on day 2 under light 

condition 

ABlight2 Cinachyrella sp cocktail of antibiotic treated explant  on 

day 2 under light condition 

ABdark2 Cinachyrella sp cocktail of antibiotic treated explant  on 

day 2 under dark condition 
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CONTROLlight8 Cinachyrella sp control explant on day 8 under light 

condition 

CONTROLdark8 Cinachyrella sp control explant  on day 8 under dark 

condition 

ABlight8 Cinachyrella sp cocktail of antibiotic treated explant  on 

day 8 under light condition 

ABdark8 Cinachyrella sp cocktail of antibiotic treated explant  on 

day 8 under dark condition 

CIN-W 2011 
Wild Cinachyrella sp  collected in 2011 

CIN-T 2011 
Cinachyrella sp kept in tank for 2 weeks in closed  system 

aquarium in 2011 

 

The sponge samples fixed and stored in 2% glutaraldehyde were rinsed with 3 

changes of 0.05M sodium cacodylate buffer. After the third change of buffer samples 

were placed in 1% osmium tetroxide in buffer and samples postfixed in this solution for 

45mins. The postfixative was removed with three changes of buffer. The pellet was then 

dehydrated in a graded series of ethanol (20%, 40%, 60%, 70%, 95% and 100%) by 

rinsing three times for 5 mins each. If necessary, samples were stored in 70% ethanol for 

an extended period.   

Transmission Electron Microscopy 

After dehydration, samples were embedded in SpurrTM low viscosity resin after three 

changes for 5 mins each. The samples were then transferred to BEEM capsules and spurr 

resin was added to fill the capsule. Labels were prepared and placed in the capsules. The 

samples in resin polymerized for 48 hours at 60ᴼC in a stable temperature oven. After 

polymerization, the capsules were cut open and the solidified resin containing the sample 

was prepared for sectioning. Blocks were trimmed at the tip to a trapezoidal shape and 
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placed in a block holder in a Sorvall MT-2 Ultramicrotome. Sectioning presented 

challenges due to the many large spicules. However, it was decided to not de-silicify the 

sponge during fixation to avoid potential artifacts produced by this process. Sections 

were then stained with Reynolds lead citrate. The carbon and formvar coated grids with 

sections were observed in Philips 300 TEM at the NSU Oceanographic Center, and 

photographs taken on a CM-10 Philips TEM at the Miller School of Medicine at the 

University of Miami. In some cases spicule fragments were evident in sections, but were 

minimized by the utilization of a rapid microtome cutting speed and restriction to a single 

staining technique (Pb citrate only) to avoid spicule crystal disassociation from the 

sections during the staining washes.!

Collecting Bacteria in Tank Water 

One liter of tank water was filtered through 0.45µm filter in a filtration set-up using a 

vacuum pump. Bacterial DNA were isolated using PowerSoil® Powerlyzer DNA 

Isolation Kit  (from MoBio) following the Earth Microbiome Project protocol. 

16S rDNA sequencing  

Table 4: The V4 region of the 16S rRNA sequence was sequenced for the following 

samples:   

 

Sample ID 
Duration in 

treatment 
Description/Treatment 

1. July2014 OUTGROUP 

Wild Cinachyrella sp 

collected in July 2014 

from South Florida 

2. April2014 OUTGROUP 

Wild Cinachyrella sp 

collected in April 2014 

from South Florida 
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3. CinDead 6 months tank 
Dead Cinachyrella 

kuekenthali 

4. Water1 

 

filtered seawater in 

closed tank containing 

Cinachyrella sp 

5. Water2 

6. Water3 

7. Water4  

Filtered sewater in closed 

tank not containing 

sponge 

8. Day0 6 weeks tank 

Cinachyrella kuekenthali 

collected in August 2014 

transferred to closed tank 

system for 6 weeks 

9. CONTROLlight2 48 hours 

Control explant under 

light 
10. CONTROLlight4 96 hours 

11. CONTROLlight10 240 hours 

12. CONTROLdark2 48 hours 

Control explant under 

dark 
13. CONTROLdark4 96 hours 

14. CONTROLdark10 240 hours 

15. ABlight2 48 hours 

Explant in combination 

of antibiotics under light 
16. ABlight4 96 hours 

17. ABlight10 240 hours 

18. ABdark2 48 hours Explant in combination 
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19. ABdark4 96 hours of antibiotics under dark 

20. ABdark10 240 hours 

21. AMPlight2 48 hours 

Explants in ampicillin 

under light 
22. AMPlight4 96 hours 

23. AMPlight10 240 hours 

24. AMPdark2 48 hours 

Explants in ampicillin 

under dark 
25. AMPdark4 96 hours 

26. AMPdark10 240 hours 

27. PENSTREPlight2 48 hours 

Explants in  penicillin-

streptomycin under light 
28. PENSTREPlight4 96 hours 

29. PENSTREPlight10 240 hours 

30. PENSTREPdark2 48 hours 

Explants in  penicillin-

streptomycin under dark 
31. PENSTREPdark4 96 hours 

32. PENSTREPdark10 240 hours 

33. TETlight2 48 hours 

Explants in  tetracycline 

under light 
34. TETlight4  96 hours 

35. TETlight10 240 hours 

36. TETdark2 48 hours 

Explants in  tetracycline 

under dark 
37. TETdark4 96 hours 

38. TETdark10 240 hours 
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The DNA sequences for samples ABdark10, AMPdark4, TETlight4 and 

TETdark10 were not considered for further analysis due to their poor quality reads.Tank 

water samples Water1, Water2, Water3 and water4 were from the same closed tank 

system. Water1, Water2 and Water3 were sampled with the presence of Cinachyrella sp 

in the tank. “water4” was sampled without any sponge in the tank and hence was not 

included in any statistical analysis (Table 4). 

Genomic DNA of the bacteria were extracted by following the basic Earth 

Microbiome Project protocol (earthmicrobiome.org), except for the MoBio 96-well 

Manual Extraction Method. The primers used target the V4 region: 515F (5’- 

GTGCCAGCMGCCGCGGTAA- 3’) and 806R (5’- GGACTACHVGGGTWTCTAAT- 

3’) (Caporaso et al., 2011), which contains a unique barcode used to tag each PCR 

product. The presence of amplified product was confirmed by observations with gel 

electrophoresis (Sambrook and Russel et al., 2001).  

The genomic DNA was prepared for the Illumina Miseq by following the Illumina 

16S Metagenomic Sequencing Library protocol (http://web.uri.edu/gsc/files/16s-

metagenomic-library-prep-guide-15044223-b.pdf). The protocol was modified to adjust 

for the low concentration of extracted genomic DNA; the template DNA was optimized 

to a concentration of 1.2ng/ul for a total volume of 10.5ul and 1ul of 5uM amplicon PCR 

forward/reverse primer. The genomic DNA was quantified using a Qubit fluorometer 

(Life Technologies, Oregon). 

Sequence analysis 

Raw DNA sequence reads were downloaded from Illumina BaseSpace platform 

and processed in Quantitative Insights into Microbial Ecology (QIIME v1.9.0) (Caparaso 

2010). Operational taxonomic units (OTUs) were assigned using uclust (Edgar, 2010) 

with 97% similarity, using open reference OTU picking. Taxonomic assignments were 

made using the uclust taxonomic assigner with an 90% confidence cutoff and the 

greengenes 13_8 reference database The sequences were aligned using the greengenes 

reference alignment (DeSantis et al., 2006). Chimeric OTUs were detected and removed 

using the usearch61 (Haas et al., 2011) algorithm in QIIME. The resulting alignment was 



! 29!

used to create a phylogenetic tree with FastTree (Price, Dehal, and Arkin, 2010) and a 

resulting OTU table. The paired-end sequences of all samples were submitted to NCBI 

Sequence Read Archives (SRR2976095-SRR2976127).!

Multiple rarefaction with lowest rarefaction depth of 10 and highest rarefaction 

depth of 100 at an 10 times increment using multiple_rarefactions.py. Alpha diversity 

was measured using shannon index of the rarefactions using compare_alpha_diversity.py 

Beta diversity was analyzed using ordination plot and multifactorial non-

parametric ANOVA (MANOVA) based on Bray Curtis and weighted Unifrac with 

NMDS and PCoA plots, on normalized dataset at 1061 reads per sample. Weighted 

Unifrac measures the difference between communities based on the shared evolutionary 

history and includes the difference in relative abundance (Lozupone et al., 2011). Both 

these factors are important when studying the effect of antibiotics as it may cause 

changes in relative abundance of bacterial symbionts that may share evolutionary lineage. 

On the other hand, Bray-Curtis provides differences in community composition based on 

OTU counts regardless of taxonomic relationship. Bray curtis distance measures uses an 

algorithm that uses measures distance between communities based on the number of 

species they share and total number of species (Galimanas et al., 2014). By contrast, 

unweighted Unifrac is based on presence/absence of OTUs, to show whether the 

community has shifted to a new community, i.e checking for contamination (Lozupone et 

al., 2011). Plots were visualized using ordinate command and ellipse at 95% confidence 

interval (default) using stat_ellipse() and ADONIS test from the R ‘vegan’ package was 

used to perform MANOVA (Oksanen et al., 2007). ADONIS test was performed to test 

the significance of differences between time points, treatment and light/dark condition.  

The statistical significance of the interaction of the factors: antibiotic-time, time-

irradiance and irradiance and antibiotic were analysed. The test was repeated by 

interchanging the orders of the factors to confirm the results. The effect of each antibiotic 

used were also analysed using ADONIS test. This analysis uses a permutation test with 

pseudo-F ratios. The distance matrix was generated using Bray-Curtis and Unifrac 

indices with 999 permutation.   
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Community composition 

Relative abundance of bacterial community composition of the top 100 OTUs which 

made up 97% of the data was used to construct barplot of all samples, based on 

antibiotics at the Phylum and Class level and based on time point at the Class level. This 

was performed using ‘Phyloseq’ package in R (McMurdie and Holmes 2013).  

Preparing sponge explants for Fluorescent in situ hybridization  

Sponge explant samples was embedded in paraffin wax using an automatic 

apparatus. The apparatus was used in order to immerse the cassettes containing the 

sponge in two 80% ethanol solutions, two 95% ethanol solutions, three 100% ethanol 

solution, three 100% xylene solutions and three paraffin wax solutions for a period of 30 

minutes each. The gradual changes of percentages was required to prevent an extreme 

change in hydrophobicity that would damage the cells. Once the sponge was dehydrated 

and processed in paraffin, the cassettes were placed in a melted paraffin bath. Samples 

were taken out of the cassettes and cut at desired locations and placed with the cut side 

down into a mould which was filled with melted paraffin.  

The paraffin-embedded sponge blocks was sliced into sections with an Accu-Edge 

low profile microtome blades (Sakura Finetek). Sponge sections for day 2, day 8, day 5 

and day 14 were cut to a width of 10µM and placed on a warm water bath where the 

sections float on the top in order to smooth out the sections and to make it easier to 

mount. Sections were then floated on top of a glass slide. The slides were placed in an 

incubator for 12 hours at 37ᴼ C. The slides were then dewaxed by placing in xylene and 

ethanol solutions and air-dried. 

Catalyzed Reported Deposition- Fluorescent in situ hybridization (CARD-FISH) 

The protocol was adopted from Department of Microbiology, Lab 016, Technische 

Universität München (http://www.environmental-

microbiology.de/pdf_files/CARDFISH_2march2013.pdf). Permeabilization mix was 

used with lyzozyme for eubacteria and proteinase K for Archae. The deparaffinized slides 

dipped in low melting point agarose were treated with permeabilization mix (Lyzozyme 
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10mg/ml (or) Proteinase K 10.9mg/ml, 1M tris-HCl 0.1M, 0.5M EDTA 0.05M) for 1 

hour at 37C. They were subsequently washed in water and ethanol and air dried. Slides 

were washed in 0.1% hydrogen peroxide in order to inactivate peroxidase enzymes which 

might be present in the tissue.  

Biotin labelled EUB338 (5'- GCT GCC TCC CGT AGG AGT -3'), NONEUB338 

(5’-ACT CCT ACG GGA GGC AGC-3’) and ARCH915 (5’-GTG CTC CCC CGC CAA 

TTC CT-3’) were diluted to 50ng/ml using molecular grade water. Slides were treated 

with hybridization buffer (Dextran sulfate 10%, 5M NaCl 900mM, 1M tris-HCl, 100% 

Triton X100 0.025%, Formamide 55% for EUB338, Formamide 20% for ARCH915, 1% 

of 10% Blocking buffer), biotin-probe and HRP-streptavidin for 12 hours under darkness 

at 35◦C. The probe binds to the target bacteria, and biotin and streptavidin form a strong 

non-covalent interaction. Slides were then washed with wash buffer (13mM of 5M NaCl, 

20mM of 1M TrisHCl, 5mM of 0.5M EDTA, 0.01% of 10% SDS) at 37◦C for 10 

minutes. Slides were air dried and washed with PBS-T (1X PBS and 100% TritonX100) 

at room temperature for 5-10 minutes.  

Tyramide-Alexa fluor488 NHS ester (1mg/ml) (Life Technologies) prepared 

overnight was diluted with amplification buffer (10% Dextran sulfate, 2M of 5M NaCl, 

0.1% of 10% Blocking reagent in 1XPBS) and 30% hydrogen peroxide (final 

concentration of 0.0015%) and loaded onto the slide and incubated at 37◦C for 45minutes. 

The tyramide molecules along with Alexa Fluor deposits on the horse-radish peroxidase 

(HRP), which amplifies the fluorescence (Fig. 2). This eliminates background 

fluorescence. Slides were washed in PBS-T and 96% ethanol and air-dried. Vectashield 

was used as mounting agent. 
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Figure. 2 : Tyramid signal amplification. Biotin-labelled probe binds to gene of 
interest. The HRP indirectly binds to biotin. Tyramide binds to Alexa Fluor binds 
to HRP. (Image credit: PerkinElmer)  
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RESULTS 

 

Figure 3: Explant plate setup on Day 2 and Day 8 Control vs Antibiotics under 

Light/Dark Condition. 
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Transmission Electron Microscopy 

Electron micrographs of Cinachyrella sp collected in February 2011 (CIN-W 

2011) revealed a high microbial abundance (Fig. 4). The high abundance persisted after 

two weeks in closed aquaria (CIN-T 2011) (Fig. 5). Although this information is based on 

morphology, we can discern a high diversity of bacteria in the sponge mesohyl.  

The Cinachyrella kuekenthali collected from the field in September 2014 (day0), 

kept in closed aquaria for 6 weeks, revealed a high abundance and diversity (Fig. 6). 

Cinachyrella kuekenthali after 6 weeks in tank was considered day 0 of the in vitro 

explant culture.  

 

Figure 4: Electron micrographs of wild Cinachyrella sp (CIN-W 2011) mesohyl (scale 
= 1um)  

Figure 5: Electron micrographs of Cinachyrella sp (CIN-T 2011) mesohyl after a duration of 2 
weeks in closed aquaria (scale = 1um) 
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Day Two Control Explants 

Control explant observed in fixed samples for TEM after 48 hours under light 

conditions (CONTROLlight2) (Fig. 7) were not significantly different from day 0 in 

terms of bacterial abundance, although pronounced vacuoles were observed in the 

explant. Comparison of micrographs of the control explant 48 hours under dark 

conditions to those maintained under light, revealed marginal differences in bacterial 

morphology. A significant number of bacteria appear to possess a denatured nucleoid and 

cells appear bloated in the control explant under darkness (Fig. 8). There was no 

difference in macroscopic observation of the explants.  

 

   

Figure 6: Representative micrographs of Cinachyrella kuekenthali mesohyl after 6 weeks 
starvation in closed tank system (day0).  

 

Figure 7: TEM of control explant (CONTROLlight2) mesohyl on day 2 under light 
condition (A) vacuoles v , sponge cells and bacteria b (scale bar=2um) (B) possible 
phagocytic activity of sponge cell s on bacteria b(scale bar=2um).   

!
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v" s"
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Day Two Cocktail of Antibiotic Treated Explants  

Explants treated with antibiotics after 48 hours under light treatment showed 

discoloration in sponge and media (Fig. 3) Some bacterial cells appear to be affected by 

the antibiotics while a few have intact nucleoid and cell walls (Fig. 9). Abnormalities 

were observed in few sponge cells while intact sponge cells were also observed. Explants 

after 48 hour antibiotic treatment in dark showed no discolorations compared to the light 

and was not visibly different compared to control (Fig. 10). Sponge cells observed 

through electron microscopy showed no abnormalities, but the presence of vacuoles were 

observed (Appendix 2). It should be noted that few bacterial cells were observed.  

Figure 9: TEM of explant (ABlight2) treated with cocktail of antibiotics on day 2 under 
light condition. s= sponge cell (scale bar=1um) 

!

 

Figure 8: TEM of control explant mesohyl on day 2 under dark condition 
(CONTROLdark2)  (A&B) bacterial cells in collagenous matrix (scale bar= 1um) 

A B 
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Other features found in antibiotic treated explants were characteristic “blebs” 

which were shared in both sponge and bacterial cells (Figs. 11). It can be hypothesized 

that they could be of sponge origin as they are present more commonly in sponge cells, 

however it cannot be discerned for certain. 

 

 

 

Figure 10: TEM of explant  (ABdark2) treated with cocktail of antibiotics on day 2 under 
dark condition (A) sponge cells with vacuoles (scale bar=1um) (B) granulocyte g, sponge 
cells s and denatured bacteria b (scale bar=1um) 

!
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Figure 11: TEM of explant (ABdark2) treated with antibiotic cocktail on day 2 under dark 
condition. Interaction of sponge cell and bacteria (A) bleb-like structures observed in 
denatured bacteria and sponge cells (scale bar=0.5um) (B) bleb-like structures (arrow) 
observed in sponge cell (scale bar=0.2um).  

!

B A 
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Day 8 Control Explants 

After 8 days of culture, control explants (CONTROLlight2, CONTROLdark2, 

CONTROLlight8, CONTROLdark8) exhibited no macroscopic differences under light 

and dark conditions. TEM micrographs revealed abundance of one specific morphotype 

under light treatment (Fig. 13B). This bacterial morphotype was ovoid with a central 

nucleoid with network of fibrils. Sponge cells were observed to have vacuoles filled with 

possible bacterial cells (Fig. 13A). Bacterial cell divisions were also observed (Figs. 

13B&C). Dark treatment of controls showed reduced number of bacterial cells compared 

to light, however there were remote observations of possible phagocytosis of bacteria by 

ameboid sponge cells (Fig. 12B). Also, there were no visible abnormalities in sponge 

cells.  

 

v"

v"

C"
D"

 

Figure 12: TEM of control explant (CONTROLdark8) on day 8 under dark condition (A) 
choanocytes c with motile flagella (scale bar=1um) (B) phagocytic activity of sponge cell 
(scale bar=1um) 
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c"
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Day 8 Cocktail of Antibiotic Treated Explants 

Antibiotic treated explants under light conditions 8 days into culture, showed 

more intense discolorations and the media turned pinkish in color (Fig 3). This was later 

learned to be due to phototoxic nature of tetracycline. On comparing experimental and 

control sponge cells, the antibiotic treated explants appeared to show swelling in a few 

granulocytes (Fig. 14B). Most bacterial cells appeared to have a degraded nucleoid and 

remnant cell membranes were observed (Fig. 14A&B). Under dark conditions, almost all 

bacterial cells appear to be similarly degraded (Fig. 15). Due to an insufficient number of 

observations, statistical conclusions cannot be drawn as to its significance. 

 

Figure 13:!TEM of control explant (CONTROLlight8) on day 8 under light condition (A) 
sponge cell with vacuole (v) containing bacterial cells. scale bar=1um (B) common 
bacterial morphotype in the mesohyl (scale bar=2um) (C) bacteria diving in mesohyl 
(scale bar=1um) (D) dividing bacteria (scale bar=0.5um)!

B A 

C D 
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16S rRNA Community Analysis 

The total number of raw 16S rRNA amplicon sequences obtained with MiSeq 

was 270,381 reads. After filtering the chimeric sequences and singletons, 269,827 reads 

were generated. The average number of reads for the data set was 5191 reads with a 

standard deviation of 3911 reads. The cutoff quality score for all samples was Q25, the 

 

Figure 15: TEM of explant (ABdark8) treated with cocktail of antibiotics on day 8 under 
dark conditions (A) granulocyte sponge cells g with denatured bacterial cells (scale 
bar=1um) (B) sponge cell and denatured bacterial cells b (scale bar=1um) 

!
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Figure 14: TEM of explant (ABlight8) treated with cocktail of antibiotics on day 8 under 
light conditions (A) granulocyte sponge cells g with denatured bacterial cells (scale 
bar=1um) (B) sponge cell and denatured bacterial cells b (scale bar=1um) 
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default set in QIIME. The average length of the samples was about 250 base pairs. 

Certain samples (AMPdark4, TETlight4, ABdark10, TETdark10) did not successfully 

amplify by PCR, and were therefore unavailable for analysis. 

A rank abundance plot was used to visualize the relative species abundance of 

the top 100 OTUs found in the sponge samples (Fig. 16). The X-axis is the rank of the 

species (table 5), that is, the most abundant is placed at rank 1 and Y-axis gives the log 

scale of the measure of abundance. A steep slope implies less evenness.  

 

 

Table 5: Top 10 Rank of bacterial phyla corresponding to X-axis of Rank abundance 

plot (Fig: 16).  

Rank Phylum Class Order 

Total 

number of 

sequences 

1 Crenarchaeota Thaumarchaeota Cenarchaeales 30254 

2 Proteobacteria Gammaproteobacteria Alteromonadales 24149 

3 Nitrospirae Nitrospira Nitrospirales 11588 

4 Proteobacteria Gammaproteobacteria Vibrionales 11335 

!

!!! !

!

Figure 16: Rank abundance plot of all bacteria identified in the sponge explants 
(N=26). X-axis: rank of species, Y-axis: log measure of abundance.  
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5 Chloroflexi Anaerolineae SBR1031 10274 

6 Proteobacteria Gammaproteobacteria Alteromonadales 8320 

7 Proteobacteria Gammaproteobacteria Chromatiales 7518 

8 Acidobacteria Acidobacteria-6 iii1-15 6363 

9 Proteobacteria Gammaproteobacteria Vibrionales 3506 

10 Verrucomicrobia [Pedosphaerae] 
NA(not 

available) 
3472 

 

In order to visualize the distribution of the phyla, a relative abundance plot was 

used (Fig. 17), where x-axis is the mean relative abundance of an OTU and y-axis is 

relative frequency of that OTU. The sequences were normalized to the minimum number 

of reads found in the data set (1061 reads) and plotted. Acidobacteria, Chloroflexi, 

Crenarchaeota, Nitrospirae and Proteobacteria were present in almost all sponge 

samples.  

 

 

 

 

 

 

 

 

 

 

 

!

Figure 17: Distribution of bacterial phyla in the sponge explants.  Data was 
normalized to 1061 reads/samples. Graph was plotted using ggplot in R.  
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Community Composition 

Taxa summary bar plot of the top 100 OTUs compares all the samples at the 

phylum level. This plot represents 97.6% of all acceptable data. It should be noted that 

CinDead and CinDead2 were isolated from the same individual C. kuekenthali dead 

sponge. 

!

!

Figure 18: Relative abundance phyla of bacterial communities in all samples; explants (N=28) 
under all treatments and tank water sample replicates (water1, water2, water3, water4). The 
sample ID along with its description is listed in Table 4. 
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Bacterial taxonomic diversity in the explants was higher compared to tank water. 

Dominant phyla included Proteobacteria, Thaumarchaeota, Chloroflexi, Nitrospirae, 

Actinobacteria, Verrucomicrobiae and Acidobacteria (Fig. 18). Thaumarchaeota was 

introduced as a new phylum in 2008 however GreenGenes database has not indexed the 

phylum and is recognized as Crenarchaeota (Hong et al., 2014). Firmicutes appeared 

very high in the dead Cinachyrella sample, which was composed of class Clostridia, an 

anaerobic bacteria (Fig. 18). Cyanobacteria are only observed in the water and in dead 

Cinachyrella sp.  

The overall diversity bacterial community diversity present in the 16S rRNA 

dataset showed a higher diversity in Proteobacteria, Bacteroidetes and Chloroflexi and a 

relatively lower diversity in Crenarchaeota, Nitrospirae, Acidobacteria, 

Verrucomicrobiae and Actinobacteria (Fig. 19). To better interpret results, the 

phylogenetic bacterial communities’ Class and Order were analyzed by considering the 

top 100 OTUs of the sample based on type of treatment (Fig. 20 & Fig. 21).!

!!!!!!!!!!!

!

Figure 19: Bray Curtis NMDS plot of the bacterial community at the phylum level in the 
sponge explants (N=26) 
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!
Figure 20: Relative abundance of bacterial communities at the Class level in the 
explants (N=26) based on the antibiotic treatment. The analysis of antibiotic 
effects on explant bacterial communities included the bacterial community at 
different time points.  
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Tank water was dominated by Alteromonadales, a Gammaproteobacteria, which 

occupied a small portion (approx. 2%) of the total bacterial community in the sponge. 

Order Actinomycetales (Phylum: Actinobacteria) was present in the dead sponge and 

!!!!!!!!! !

Figure 21: Relative abundance of bacterial taxa at the Order level in experimental explants 
(N=26) after antibiotic treatments. The analysis of antibiotic effects on explant bacterial 
communities included the bacterial community at different time points. 
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tank water but not significant in the explants, however the explants have a significant 

presence of Acidimicrobiales (Phylum Actinobacteria). Bacterial orders 

Acidimicrobiales, Cenarchaeales (Phylum Thaumarchaeota), Chromatiales(Class: 

Gammaproteobacteria), iii1-15 (Phylum: Acidobacteria), Nitrospirales (Phylum: 

Nitrospirae), Rhodospirillales (Class: Alphaproteobacteria), SBR1031 (Phylum: 

Chloroflexi) and Spirochaetales were consistently present in all the explants with little 

variation in relative abundance (Fig 19 & 20). 

Orders Campylobacterales (Class: Epsilonproteobacteria), Bacteroidales (Class: 

Bacteroidia) and Pasteurellales (Class: Gammaproteobacteria) were observed in the 

control explants but not in the antibiotic treated. The control and ampicillin treated 

explants appeared to have similar diversity compared to other antibiotic treated 

communities. Order Vibrionales was dominant in control and ampicillin but not in the 

remaining antibiotic treated explants (Fig. 21). 

Considering the Class and Order of the bacterial community provides more 

information, however many bacteria have not been identified to Order level and hence 

have not been plotted and can give false information. In order to examine those, the 

following tabular columns lists the top 10 OTUs found in the different treatments. 

Certain Orders were unidentified (NAi, NAii and NAiii) and hence not plotted. 

BLAST searches via NCBI revealed NAi to be 97% related to an uncultured 

Alphaproteobacteria also found associated with Cinachyra cavernosa and Haliclona 

pigmentifera in the Gulf of Mannar, east coast of India (Jasmin et al., 2015) and 97% 

identity with a partial sequence found in shallow marine hydrothermal vents off Papua 

New Guinea (Accession: JN838679.1, Unpubbl). NAii was identified to be 99% similar 

to uncultured Verrucomicrobiae in Saanich inlet off Vancouver island (Walsh et al., 

2009). NAiii is an uncultured alpha-proteobacterium associated with the crystalline 

sponge Astrosclera willeyana of the Great Barrier Reef (Karlinska-Batres,K Unpubbl) 

and Ancorina alata (Kamke et al., 2010). 
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Change of bacterial community with time 

To display the variability in sponge bacterial community with time, the 

phylogenetic Class of the top 100 OTUs at the Class level of explants based on time 

points were plotted (Fig. 22). 

 

 

 

Class Thaumarchaeota, Nitrospira and Gammaproteobacteria were persistent in 

all the explants, with little variation in Acidobacteria-6. However, Class SAR202 

(Phylum: Chloroflexi) and Anaerolineae (Phylum: Chloroflexi) bactreria appear to 

decrease from day 0 to day 10. Acidomicrobiia, Alphaproteobacteria, Flavobacteria and 

Epsilonproteobacteria increased to higher relative abundances at days 4 and 10 

compared to day 0 and 2. This could have been due to the loss of bacteria, which 

resulted in an increased comparative abundance of other classes of bacteria. 

 

!

Figure 22: Relative abundance of phylogenetic Class of bacterial communities in 
explants based on time period 
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Alpha Diversity 

Alpha diversity using the Shannon and Simpson indices across all samples was 

visualized in QIIME. Tank water exhibited the lowest bacterial diversity and dead 

Cinachyrella sp, the highest diversity, while the alpha diversity of the explants was 

approximately constant (Fig. 23). This indicates the explants are similarly ecologically 

rich. The reference control samples included the primary Cinachyrella sp (day0) and two 

other Cinachyrella sp (collected in April and July 2014) individuals, which could 

explain the higher diversity. The alpha diversity of explants treated with the cocktail of 

antibiotics exhibits a narrow range, which indicates the smaller range of diversity. 

 

 

 

!

!

Figure 23: Explant alpha diversity using Shannon index of bacterial 
communities based on antibiotic treatment, Dead Cinachyrella sp 
(CinDead,CinDead2) and tank water  
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Beta Diversity 

Beta diversity is the measure of diversity between sites, and was determined 

using Unifrac and Bray Curtis method illustrated with non-metric multidimensional 

scaling (NMDS) plots. Bray-Curtis distance measures clearly show the separation of 

bacterial community in the tank water, Healthy Cinachyrella sp and Dead Cinachyrella 

kuekenthali (CinDead, CinDead2) (Fig 24). The variability in the bacterial community of 

dead compared to healthy sponges can be a good indicator of the state of the sponge.  

!

Bacterial Community Analysis Between Antibiotic Treatments 

Bacterial communities of explants treated with different antibiotics were significantly 

different (ADONIS, p-value= 0.001, R2= 41.3%). The control was significantly 

different from all antibiotic treatments, ampicillin (bray curtis: p-value=0.004, unifrac: 

p-value=0.01), penicillin-streptomycin (p-value=0.001), tetracycline (Bray Curtis: p-

!

Figure 24: Bray -Curtis NMDS plot with statistical ellipse at 95% confidence interval of  
water= Tank water, Dead sponge= Dead Cinachyrella kueknethali and Sponge= Wild 
Cinachyrella spp (july2014 and April2014)+C. kuekenthali explants (N=26) 
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value=0.002, unifrac: p-value= 0.004) and cocktail of antibiotics (bray curtis: p-

value=0.001, unifrac: p-value=0.003). There was significant difference between the 

cocktail of antibiotics and ampicillin (Bray Curtis: p-value=0.001 unifrac: p-value= 

0.009) and between penicillin-streptomycin and ampicillin (Bray Curtis: p-value=0.001, 

unifrac: p-value=0.005). This was visualized using Unifrac via non-metric 

multidimensional scaling (NMDS). There was an overlap of clustering in the cocktail 

and penicillin-streptomycin treatments and a partial overlap of control and ampicillin 

treatment (Fig. 25). However the control was significantly clustered away from the 

cocktail of antibiotic treatment. This pattern can also be seen using Bray-Curtis method 

via principal coordinate analysis (PCoA) (Appendix 3). 

 

Bacterial Community Analysis With Increasing Time Intervals 

The bacterial community of the explants on different days was statistically 

different (ADONIS p-value=0.001, R2= 28%). For further analyses, UniFrac distance 

was analyzed via non-metric multidimensional scaling (NMDS) of bacterial 

communities of the explants on different days (Fig. 26). However, comparison of only 

!

Figure 25: Weighted Unifrac NMDS plot of bacterial communities in the explants (N=26) 
based on Antibiotic treatment. Communities clustered within a statistical ellipse have a 95% 
confidence interval 
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the controls from Fig. 25 with Fig. 26 indicates that the controls in different days are 

clustering significantly from each other. Similar graph was observed in Bray-Curtis 

analysis visualized with PCoA plot (Appendix 4). 

 

The interaction of “antibiotics” and “temporal” factors results in bacterial 

communities that appears slightly statistically different (p-value= 0.043, R2= 15%). This 

confirmed that the bacterial communities of the explants treated with particular 

antibiotics, at different time intervals was significantly different. 

Bacterial Community Analysis Between Light and Dark Conditions 

Beta diversity based on irradiance did not show a significant difference (Fig. 27). 

Unifrac analysis performed on the dataset visualized via NMDS, resulted in a significant 

difference in irradiance gradients (p-value=0.006, R2=3.4%). However, there was no 

significant interaction between irradiance versus time period (p-value= 0.131) and 

irradiance versus antibiotics (p-value= 0.153).   

 

!

Figure 26: Weighted Unifrac NMDS plot of bacterial communities of the explants (N=26) 
on different days 
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Unweighted Unifrac of dataset was analyzed in order to confirm the shift in 

bacterial community was not due to introduction of new bacterial species or a change in 

bacterial community due to new species. There was significant overlapping of bacterial 

communities under different antibiotic treatments (Fig. 28) suggesting no new species 

was introduced. The partial overlap of the control with antibiotics treated explants 

suggests loss of bacterial species from control to antibiotics.  

 

 

 

 

 

Figure 27: Weighted Unifrac of bacterial communities of explants(N=26) based on 
Light/Dark Conditions. Since Day 0 were kept in different conditions compared to 
explants, it is not categoried based on light/dark condition 
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The bacterial communities at different time points shared a common core 

bacterial community, which appeared evident in the NMDS plot of Fig. 28. The 

separation of day 0 could be a result of lack of replicates or a significant loss of bacteria. 

!!!!!!!!!!!!!! !

Figure 29: Unweighted unifrac of bacterial communities in explants (N=26) based on the time 
point (Day) the explant was sampled 

Figure:!

!

Figure 28: Uweighted Unifrac NMDS plot with statistical ellipse at 95% confidence interval of 
bacterial communities in explants  (N=26) based on antibiotic treatment 
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Catalyzed Reporter Deposition Fluorescent in situ Hybridization 

The hybrized bacterial and archae were visualized in the Cinachyrella 

kuekenthali explants AMPlight2 and CONTROLdark4 respectively (Figs 30 & 31). 

Unfortunately, a very low concentration of hybridized bacteria and archae were 

observed. To obtain an accurate estimate of the total bacteria present, one set of 

eubacterial probes may not be sufficient and could require EUB338I, EUB338II and 

EUB338III (Daims et al., 1999). Hence, low microbial density and insufficient probes 

could contribute to the infrequent hybridizations observed (Fig. 30). ARCH19 probe had 

a slightly higher number of hybridizations compared to EUB338I (Fig. 31). Further 

analysis was discontinued as it could not provide additional information for the purpose 

of this study.  

 

! ! !

Figure 30: 10um section of Control Cinachyrella kuekenthali explant on Day 8 hybridized 
with EUB338 probe (arrow) with background autofluorescence.  

! !

Figure 31: 10um section of Day 0 Cinachyrella kuekenthali with ARCH19 probe (arrow) with 
background autofluorescence.  
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DISCUSSION  

The primary aim of this study was to investigate the potential to develop an 

aposymbiotic sponge in order to study the detailed interactions between sponge and 

bacteria. The change in gene expression between a symbiotic and aposymbiotic sponge 

could provide the metabolic interaction of the two organisms. Other aspects such as 

presence of photosymbionts and other bacterial symbionts were also investigated. 

Reverse engineering the process of introducing bacteria to an aposymbiotic sponge by 

quantifying the gradual elimination of identified bacterial taxa along with the change in 

sponge transcriptomics, could help provide more information regarding the sponge-

bacterial interactions. To achieve this, the effect of antibiotics on sponge bacterial 

community was established in this project using electron micrographs and 16S rRNA 

metagenomics. 

The sponge Cinachyrella sp was chosen because it has been developed as an 

experimental model sponge in our laboratory after the Deepwater Horizon oil spill 

accident (E. Blake NSU Masters Thesis, 2013; Cuvelier et al, 2014). However, verifying 

the taxonomy of the Cinachyrella genus has been more complicated than expected 

(Rutzler and Smith 1992). Preliminary analysis of the taxonomy of this sponge from 

South Florida region has identified possibly 2-3 closely related or visually similar taxa  - 

Cinachyrella kuekenthali, and possibly two different Cinachyrella alloclada-like species 

(P. Cardenas, pers communication/unpublished).  

Limitations in the Experiment 

One problem in the current experiments appeared from hindsight, such as the lack 

of true replicates. Due to this, changes in bacterial composition of the explants due to 

antibiotic and time were analyzed separately. Using multiple identified sponges to make 

explants would provide true replicates. Multiple replicates would allow for the statistical 

power to combine the effects of antibiotics, time and light/dark condition in the analysis. 

However, it was discerned that light/dark condition did not significantly alter the 

bacterial community. Hence, the combined effect of antibiotics and time was studied 

using ADONIS test.  
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Another limitation, is the unidentified nature of the HMA Cinachyrella sp 

identified in 2011 (CIN-W and CIN-T 2011). The prior findings of C. alloclada as an 

LMA sponge (Gloeckner et al., 2014) could rule out that CIN-W and CIN-T were C. 

alloclada and were most likely C. kuekenthali. The sponges were collected in South 

Florida waters populated with C. alloclada and C. kuekenthali.  

Shift in Microbial Abundance in Sponge Aquaculture 

Several earlier studies have defined the criteria for high and low microbial 

abundance (LMA) sponge hosts via TEM (Gloeckner et al., 2014). TEM was a necessary 

tool to visualize the effects of experiments of antibiotics, since 16S rRNA sequencing can 

only identify and not quantify all possible bacteria present in the sample. 

The preliminary analysis of the Cinachyrella sp specimens collected in 2011 

(CIN-W 2011 and CIN-T 2011) showed possession of a high bacterial abundance (Fig.4 

and Fig 5). Though we cannot identify the species of Cinachyrella collected in 2011, we 

can speculate that they were C. kuekenthali. Interestingly, a high microbial abundance 

was observed after 6 weeks of starvation in the closed tank system (Fig. 5). On the other 

hand, Cinachyrella alloclada has been previously reported to be of low microbial 

abundance (Gloeckner et al., 2014). This raises the question of what levels of symbiont 

species specificity exist in the microbial abundances of marine sponge of Genus 

Cinachyrella. This could correspond to previous findings of distinct microbial 

communities in different groups of Cinachyrella sp (Cuvelier et al., 2014).  

TEM at the point of collection of the Cinachyrella kuekenthali (day 0) used in my 

experiments was not obtained and cannot provide evidence of the initial microbial 

abundance of the sponge. From the following evidence, we can speculate that the 

Cinachyrella kuekenthali are HMA sponges, in order to verify the loss of bacteria: 

• Bacterial phylum Chloroflexi was found in high abundance (Fig. 20), which is 

characteristic of HMA sponge (Schmitt et al., 2011) 

• The dead Cinachyrella sp, also identified as Cinachyrella kuekenthali harbored 

larger abundance of anaerobic bacteria (eg: Clostridia seen in Fig. 18). Steep 

concentration gradients are formed, on account of the denser HMA sponges, a 
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slower pumping rate through its complex aquiferous system and narrower 

canals. Deteriorating HMA sponges reduce pumping rates that reduces internal 

oxygen creating an anoxic internal environment (Weisz et al., 2008). 

• There is evidence of HMA Cinachyrella sp from TEM of samples collected in South 

Florida waters in 2011 (CIN-W and CIN-T) (Fig. 4 and Fig. 5). The microbial 

abundance in C. kuekenthali after 6 weeks in tank possesses high microbial 

abundance in mesohyl. 

The loss of bacteria in C. kuekenthali could be due to their uptake by the sponge 

by phagocytosis. Since there was no external food source supplied to the sponge, it could 

explain the decrease of bacteria in the sponge mesohyl. In addition, a large number of 

bacteria in the sponge could be transient, which were lost when transferred to the 

aquaculture. 

Other Significant Structures Observed  

Common bacterial morphotypes appeared unaffected by changes in environment 

(Fig 13B) , and some morphotypes have been observed in previous studies of 

Stromatospongia micronesica (Fuerst et al., 1998). It is highly likely this particular 

morphotype is an archae as it is consistent with the 16S rRNA analysis data. This 

morphotype also resembled type ‘a’ morphotype bacteria identified in Oscarella 

malkhovi (Vishnyakov and Erekovsky 2009) and Aplysina fulva (Hardoim et al., 2009).  

Microbiome Analysis of Cinachyrella kuekenthali Explants 

Community Composition 

Although my aims differed from previous studies, this study complements recent 

microbiome characterizations of Cinachyrella sp. Previous findings suggest that the 

sponge used in my study (C. kuekenthali) played a significant role in its microbial 

community with little influence of geographic location and season (Cuvelier et al, 2014).  

The OTUs with the highest abundance were identified by BLAST analysis to 

reveal the most abundant bacterial phyla present in the Cinachyrella kuekenthali explants 

throughout the experiement (Table 6). The bacterial community in the Cinachyrella sp 
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used in this experiment is more similar to Sponge Group 2 (Cuvelier et al., 2014) except 

Poribacteria, Deltaproteobacteria and PAUC34f were not observed. 
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Table 6:  Bacterial symbionts of Cinachyrella kuekenthali and their significance. The OTU ID along with its FASTA sequence 

can be found in APPENDIX 6. 

Taxonomic Class OTU# 

present 

in top 

100 

BLAST 

% 

Identity 

& e-

value 

Species and 

Location 

Significance 

Acidobacteria 587581 100% & 

0 

Uncultured 

bacterium from 

Caribbean sponge 

Svenzea zeai (Lee 

et al., 2009, 

Accession: 

FJ529305.1) 

Order iii1-15 of Class 

Acidobactera-6 and Phylum 

Acidobacteria are commonly found 

in soil. As they are largely 

unculturable, role of marine 

acidobacteria are less understood. 

Bacteroidetes New.Ref

erenceO

TU35 

97% & 

5e-120 

Uncultured 

bacterium from 

sponge tissue 

Cymbastella 

coralliophila, Great 

Barrier Reef 

(JX455299.1) 

Phylum Bacteroidetes was found in 

sponge group 2 of Cinachyrella 

spp(Cuvelier et al 2014). Show 

obvious spatial specificity for the 

endosome (Yang and Li 2012) 
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Chloroflexi:  

 

New.Ref

erenceO

TU27 

99% & 

2e-140 

uncultured bacterium 

isolated from Cinachyra 

sp in the Gulf Of 

Mannar (KC861135.1, 

Jasmin et al., 2015). 

Chloroflexi found in different 

HMA sponges are similar whereas 

Chloroflexi in low microbial 

abundant sponges are more similar 

to seawater. Average OTUs 

observed in all explants were 433.2, 

which is characteristic of HMA 

sponge (Schmitt et al., 2011). 

Actinobacteria:  

 

 

213687 

100% & 

6e-150 

uncultured bacterium 

isolated from coral 

Porites lutea, China on 

the Luhuitou fringing 

reefs (Kuang, W 2014, 

Unpubb, Accession 

KP305285.1). 

Mutualistic actinobacteria found in 

insects have the ability to exploit 

wide variety of carbon and nitrogen 

sources and are hypothesized to 

engage in protective symbiosis 

(Kaltenpoth 2009). Due to its 

potential to produce important 

secondary metabolites, it is largely 

targeted for natural product and 

drug discovery.  

Thaumarchaeota; 

Genus Cenarchaeum 

New.Ref

erenceO

96% & 

1e-127 

Uncultured bacterium 

from Marine sponge 

Stellata normani 

Vertical transmission and presence 

of AOA indicates possible role of 

ammonia detoxification in marine 
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TU41 (Kennedy et al., 2014, 

Accession: 

KF597128.1) 

 

sponge (Steger et al., 2008). 

Preliminary analysis confirms 

presence of ammonia-oxidizing 

archae using amoA primers for 

control and antibiotic treated 

explants. 

Due to the difference in structure of 

archae and bacteria, classic beta-

lactam antibiotics directed against 

murein biosynthesis have no 

growth inhibition against archae. 

Antibiotics such as bacitracin and 

gardimycin, interfere with lipid 

cycle are inhibitory to different 

archae (Kandler and Konig 1998) 
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Alphaproteobacteria New.Ref

erenceO

TU28 

96% & 

1e-131 

Uncultured bacterium 

from coralline sponge 

Astrosclera willeyana of 

the Great Barrier Reef 

(Karlinska-Batres,K 

2014) 

Alphaproteobacteria are found in 

sponges from several oceans and 

dominate the culturable community 

of the marine sponge Rhopaloeides 

odorabile (Webster et al., 2013). 

Rhodobacteraceae of the Order 

Rhodobacterales, was found 

common in H. erectus and X. 

testudinaria (Cleary et al., 2015).   

Gammaproteobacteria 939811 99% & 

2e-145 

Vibrio orientalis; 

Pacific oyster 

hemolymph (Wendling 

et al., 2014 Accession: 

KJ507431.1) 

Vibrio alginolyticus; 

epidermal layer of 

stingrays  (Luer et al., 

2015, unpubb, 

Accession KP713657.1). 

Members of this class have a broad 

range of trophism, temperature 

adaptations and morphologies 

(Williams et al., 2010).  It is a 

common inhabitant of marine 

sponges (Webster et al., 2010) and 

nematodes (Woyke et al., 2006). 
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Epsilonproteobacteria 625724 100% & 

6e-150 

Uncultured bacterium 

from coral, Porites lutea 

(Roder et al., 2014 

Accession 

KC527463.1).  

Genus Arcobacter belonging to 

Order Campylobacterales was 

identified in the control explants 

and a lower abundance in the tank 

water. 

Genus Arcobacter is said to prefer 

microaerophilic conditions with an 

established sulfide-oxygen gradient 

flowing system (Wirsen et al., 

2001). This could describe a sponge 

system, with an aquiferous system 

and lower levels of oxygen.  

99% & 

9e-148 

uncultured bacterium 

from sponge Axinella 

corrugata and 

surrounding seawater in 

Fort Pierce (Lopez et al., 

2008 unpubb,Accession 

FJ215397.1). 
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Nitrospirae 605566 99% & 

7e-120 

Unculutred bacterium 

from Ircinia spp in 

Bahamas (Pita et al., 

2013. Accession 

JX280167.1), sponges in 

Great Barrier Reef 

(Erwin et al., 2012 

Accession JX206652.1) 

and marine sponge 

Stelleta normani in Irish 

territorial waters 

(Kennedy et al., 2014 

Accession: 

KF597114.1). 

Nitrospirae is common in many 

sponges with varying abundance. 

White et al., (2012) found an 

abundance of Nitrospira in 

sediment but not in Broward 

seawater. 

They are mostly uncultured and 

diverse nitrite-oxidizing bacteria 

present in natural ecosystems and 

biological wastewater treatment. 

Nitrite oxidation is the second step 

in nitrification (Lucker et al., 

2010). Hence it could play a role in 

removal of waste material in the 

sponge. Only few studies have 

addressed their physiology and 

ecology.  

Actinobacteria:  

 

New.Ref

erenceO

TU13 

99% & 

7e-144 

uncultured bacterium 

isolated from Cinachyra 

sp. from Gulf of 

Mutualistic actinobacteria found in 

insects have the ability to engage 

in protective symbiosis 
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Mannar, India (Jasmin 

et al., 2015) 

 

(Kaltenpoth 2009). Due to its 

potential to produce important 

secondary metabolites, it is largely 

targeted for natural product and 

drug discovery.  



! 67!

Shifts in Bacterial Community  

The bacterial community richness of the explants has a Shannon index ranging 

from 4.0-4.5 (Fig. 23), which is approximately within the range found in previous 

analysis (Cuvelier et al., 2014). However the bacteria in the control explants after 2 days 

appeared to be stressed, compared to that found in whole sponge (Fig. 8). Stressed 

bacterial morphology does not possess characteristic features such as a nucleoid similar 

to that of healthy bacteria. This shift in bacterial state could be due to change in 

environmental conditions. Artificial seawater does not possess sufficient nutrients to 

support growth of sponge-associated microbes. This could eliminate the bacteria that are 

not predominantly dependent on the sponge substrate and are transient. Also, the change 

in sponge activity from whole to explant state is not known and could contribute to the 

change in bacterial community. There was no significant difference in bacterial 

community of control explants versus wild in Corticum candelabrum, a HMA sponge 

(De Caralt et al., 2003). This could imply this manipulation could vary depending on 

sponge host.  

a. Effect of Antibiotics  

Comparing the TEM images of the control explant against the antibiotic treated, 

gives a visual confirmation of denatured bacterial cells and sponge cells under stress (Fig 

13B). Bacterial communities treated with antibiotics have evidence of bacterial cells with 

cell envelope devoid of nucleoid and enlarged denatured bacterial structures (Figs 

13&14). This is a characteristic of bactericidal antibiotics as they denature bacteria, 

whereas bacteriostatic will only prevent bacteria from further replication, leaving behind 

intact 16S rRNA.  

This loss of bacterial species richness due to antibiotics is evident, with penicillin-

streptomycin and cocktail with the lowest Shannon index value (Fig 23). The loss of 

Bacterial species was also observed in the community composition analysis of the 

bacterial community in explants based on phylogenetic Order (Fig. 22). The relative 

abundance of Vibrionales, Flavobacteriales, Campylobacterales and Alteromonadales is 

significantly reduced in the antibiotic treatments compared to that of Control. However, 
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the increase in relative abundance of certain Orders such as Cenarchaeales and 

Chromatiales is due to the loss of other bacterial species. The loss of particular species in 

a community will result in increase in the “relative” abundance of other species, even if 

their abundances are unaltered.    

Variation in the bacterial species composition among explants under the effect of 

antibiotics was also revealed using Unifrac and Bray-Curtis analysis. The bacterial 

community in the control explants are not constant and are significantly different from 

the antibiotic treatments, except that of ampicillin. Ampicillin is a semi-synthetic 

derivative of Penicillin with an added amino group such that it targets both gram-negative 

as well as gram-positive bacteria (Sharma et al., 2013). The bacterial communities in 

explants treated with the antibiotic cocktail and penicillin-streptomycin overlapped in the 

Unifrac analysis (Fig 25). This indicates that both treatments resulted in similar bacterial 

communities. This similarity can also be discerned from the bacterial composition of the 

explants (Fig. 21). The relative abundance of bacterial Class in penicillin-streptomycin is 

similar to Antibiotic Coctail. Penicillin-streptomycin proves to be most effective as it has 

similar effect as the cocktail of antibiotics and clustered significantly away from control. 

It is a combination of synergistic antibiotics as the penicillin allows for the streptomycin 

to be taken up by the bacteria by damaging the cell wall (Farber and Mates 1986). Other 

studies using Penicillin-streptomycin treated sponge cell aggregates (SCA) of Clathria 

prolifera were more successfully maintained compared to control and other antibiotics: 

Nalidixic acid, trimethoprim and mixed (Richardson et al., 2012). Another example 

demonstrating effects of penicillin-streptomycin on bacterial community of Corticum 

candelabrum explants by TEM, where bacterial cells denatured after 24 hours but 

recovered after 2 months (De Caralt et al., 2003). While factors such as time, host and 

environment are important to consider, penicillin-streptomycin points to be a possible 

combination to use in order to remove non-symbiotic bacteria. 

Broad-spectrum bacteriostatic tetracycline also causes a shift in bacterial 

community of the explants, but the true effect cannot be analyzed in this study due to the 

damage to the sponge tissue because of its phototoxicity. Phototoxicity can affect 

ribosomes and cell membranes of both prokaryotic and eukaryotic organisms (Chopra 
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and Roberts 2001). 

b. Temporal effects 

Another important factor to consider was time. Using explants from the same 

individual sponge for comparison confirms the effect of changing bacterial community, 

as the explants would initially harbor the same bacterial community. My experiments 

showed that the action of antibiotics on the bacterial community is gradual and more 

effective with increase in time. That is, replinishing the media with fresh antibiotics can 

gradually change the bacterial community. Weighted Unifrac analysis reveals the 

bacterial community in day 10 is similar to bacterial community in day 4 and day 2, but 

there is a change in the relative abundance. This accounts for the increasing and 

overlapping elliptical area enclosing the bacterial communties from day 2 to day 10, with 

day 2 at the center (Fig.  26). In addition, the change in the relative abundance of 

bacterial community with time is apparent in the community composition analysis of the 

top 100 OTUs in the explants (Fig. 23) 

Changes in bacterial communities of control explants over time were also 

observed (Fig 26). This could indicate (1) loss of bacteria due to lack of nutrients/change 

in internal environment (2) change in sponge explant resulting in change in its bacterial 

community. All the changes seen could also be the result of contamination by an external 

bacterial agent. With the help of unweighted unifrac, which analyses data based of the 

presence or absence of bacteria, we observe significant overlapping of bacterial 

community in the explants, based on antibiotics and duration (Fig. 28 and Fig. 29). This 

implies that the explants share similar bacterial communities. The difference in 

ellipsoidal area encompassing the bacterial communities, at different times, would be due 

to difference in relative abundance. Hence, unweighted Unifrac refutes the possibility of 

change in bacterial community due to introduction of contaminants. 

c. Effect of Irradiance 

Cinachyrella kuekenthali is a dense sponge with a complex internal system that 

receives minimum light. Cyanobacteria are often found localized on the surface of all 

Cinachyrella sp, characteristic of marine sponge found on the trophic zone (Hentschel et 
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al., 2006). Apart from cyanobacteria, we focused on possible changes in phototrophic 

proteobacteria, chloroflexi and Anaerolinea, if present. Cyanobacteria have been found in 

the endosome of the golf-ball sponge of Tethya aurantium, which indicates that it is 

possible to be internally present (Yang and Li 2012).  

Initial efforts with developing Cinachyrella sp cell line showed the presence of 

filamentous cyanobacteria in TEM (Appendix 5), but was not observed in explants.  

However, slightly higher bacterial abundance was observed in control explants exposed 

to light compared to dark condition after 8 days in vitro (Fig 12). This could be due to 

spatial difference in sections obtained from the explants. However, significant 

overlapping of bacterial communities in light and dark conditions were observed in the 

weighted unifrac analysis (Fig. 27). This indicates that explants placed in light and dark 

share majority of their bacterial communities. Resulting ADONIS test considering the 

factor “Irradiance” alone will result in false positives as other factors “time” and 

“antibiotics” play a significant role in altering the bacterial community. The combined 

effect of Irradiance with Time and Irradiance (p-value= 0.131) with Antibiotics was not 

significant (p-value= 0.153). Hence, sequence analysis showed no significant changes in 

bacterial community due to light compared to dark conditions.  

It is possible that Cyanobacteria observed in the previous study of Cinachyrella sp 

(Cuvelier et al., 2014) was due to its presence on the surface/external layers of the 

sponge. This was significantly lost during the experiment and also in this study the 

experiment focused on internal symbionts. Absence of cyanobacteria in the sponge tissue 

is consistent with Erwin and Thacker’s (2007) findings that identified very low levels of 

chlorophyll-a in Cinachyrella alloclada (<50ug/g).  

CONCLUSIONS 

Determining the stability of microbial associates of marine sponge is important in 

order to predict the success of aquaculture. Symbiotic microbial communities will be 

affected by artificial cultivation due to changes in environment (Webster et al., 2011). 

Explant culture of Cinachyrella kuekenthali has proved to alter the bacterial community 

of the control explants. However the community composition analysis reveals the 
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persistence of characteristic symbionts, which could suggest the loss of transient bacteria. 

Based on the community composition analysis of the explants, Thaumarchaeota, 

Chloroflexi, Nitrospira, Acidobacteria, Actinobacteria and Gammaprtoebacteria are 

possible symbionts. Most of the bacteria identified in sponges are either yet to be cultured 

or difficult to culture (Sfanos et al, 2005). More recent studies are now pointing to the 

possibility that most species have a few “core”, acclimated bacteria found in specific 

sponge hosts and thrive in their unique internal environment (Easson and Thacker 2014). 

The oxygen gradient, nutrients and a continuous flowing system provide the bacteria with 

desirable environment for growth. Yet the question remains, whether or not presence of 

bacteria is caused by or is the result of the morphological and physiological difference 

between high and low microbial abundant sponges (McDonald et al., 2002). Cinachyrella 

kuekenthali appeared to be metabolically active even with the loss of bacteria (Figs. 12 & 

13), which could indicate that high microbial abundance is a result of its internal 

structure. To confirm a symbiotic role of the bacteria and sponge, interaction between the 

organisms will need to be identified.  

This study has shown the bacterial community stability in the sponge 

Cinachyrella in aquaculture environment. This was observed via TEM images of C. 

kuekenthali after 6 weeks in a closed tank system supplied with only filtered seawater 

(Fig. 6). Ultrasctructure studies also show the change of bacterial abundance from whole 

sponge to explant state (Fig. 7 & Fig. 8).  

Through rigorous statistical analysis using QIIME and R, the effects of antibiotics 

were also established with penicillin-streptomycin being the most effective after 10 days 

of treatment. This was established due to the significant overlapping of the bacterial 

communities in the exaplants treated with penicillin-strepromycin and the antibiotic 

cocktail using Weighted Unifrac analysis. The bacterial communities in the explants also 

appear to change with time, with respect to relative abundance. In addition, there was no 

significant difference of bacterial communities in the explants treated with light versus 

dark. The effect of antibiotics was also corroborated with TEM images of the mesohyl of 

the explants (Fig. 14 & Fig. 15). 



! 72!

Since it is challenging to determine the health and viability of explants, TEM was 

often used to check phagocytic activity. Evidence of phagocytosis of bacteria by sponge 

cell indicates metabolic activity of sponge cells . This verifies that the sponge cells were 

alive during the experiment (Fig 12).  

FUTURE RESEARCH 

To correspond 16S analysis with TEM, it is essential to determine the bacteial 

abundance, state and functional ultrastructure of the sponge microbiome, revealing 

information that might identify the LMA versus HMA condition of a partiular species 

and its ultrastructural stability. Analysing the TEM and 16S rRNA of bacterial 

community of Cinachyrella identified at the species level, would help discern the reason 

for the differences in bacterial communnity identified in previous findings (Cuvelier et 

al., 2014). In addition, it would be interesting to re-analyze the TEM of a larger sample 

size of C. alloclada and C. kuekenthali to confirm their LMA and HMA status 

respectively.  Examination whether the differences between these sponges is consistent 

with previous findings comparing HMA and LMA sponges (Gloeckner et al., 2014), or 

the differences are largely contributed based on differences at the species level (Easson 

and Thacker 2014). This difference in abundance of bacteria within the same genus of 

sponge that are morphologically similar and found in the same geographic location, is 

particularly interesting. Latest research provides evidence of morphological and 

physiological differences between high and low microbial abundant sponges (Gloeckner 

et al., 2014). 

Now that we have established the effect of antibiotics, the optimum time period, 

antibiotic to use and identified bacteria associated with the sponge, quantitating the 

identified bacteria in the sponge treated with penicillin-streptomycin with qPCR along 

with change in gene expression levels of the sponge could provide more information 

about their symbiosis. This study suggests that Cinachyrella kuekenthali could be a 

potential model HMA sponge to study this evolutionary relationship.  

Developing an aposymbiotic sponge may not be possible as bacteria provide 

necessary nutirents for sponge development or as the sponge cells and the microbial 
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associates exist as a biological unit. However, analyzing change in gene expression of the 

sponge at different stages of loss of bacteria can provide more information on sponge-

bacterial symbiosis. Possible genes to focus on would be scavenger receptor cysteine rich 

domains (SRCR) (Steindler et al., 2007), Nucleotide binding domains and Leucine rich 

repeats (NLR) (Degnan 2014). Isotope analysis of Carbon and Nitrogen could also be 

indicators of changes in the sponge physiology (Weisz et al., 2007). 

The sponge explants were transferred to the closed system aquarium after in vitro 

treatment but regeneration was not observed by macroscopic observation. A higher 

concentration of marine bacteria in the order of 106 cells/ml could be necessary in order 

to support sponge nourishment (De Caralt et al., 2003) to predict the ability of 

Cinachyrella sp regeneration. Further analysis will also demonstrate the importance of 

specific bacterial symbionts for sponge development.  

To summarize, a significant drop in bacterial abundance was observed in a high 

microbial abundance sponge under a stravation period of 6 weeks. This although a rare 

occurrence, suggests that the microbial abundance in a sponge might be altered by the 

microbial abundance of the sea water, soil or other organisms surrounding the sponge. 

This study demonstrates the utilization of antibiotics for manipulating the sponge-

associated bacterial community and identifies the bacterial communities that persist.  
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C. kuekenthali spiculation: a, Oxeas(large,meadium,small) and modifications; b, 
Tetractines; c, Protriaene cladomes and modifications; d, Protriaene shaft 
points; e, Anatriaene cladome and modification; f, Smallest (crenulate) category 
oxea enlarged; g, Sigmaspires. (Image credit: Ruetzler and Smith 1992) 

 

!

Bacterial community in Explants at day 2 treated with cocktail of 
antibiotics.(ABdark2) Vacuole (v) was observed in the sponge cell. (scale=1um) 

v!
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APPENDIX 3 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 4  

        

 

 

 

 

 

 

 

 

 

 

!

Bray Curtis analysis of bacterial communities based on antibiotic treatment. 
Bacterial communities are enclosed by an ellipse with 95% condifence 
interval. Clear separation of Control with Antibiotic treatment is observed. 

!

Bray- Curtis analysis of bacterial communities based on time period. Bacterial 
communities are enclosed in ellipse with 95% confidence interval. Day zero 
appears separate from day 2, 4 and 10 due to lack of replicates. 
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APPENDIX 5 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 6: OTU ID with its corresponding FASTA sequence 

OTU ID FASTA Sequence 

New.ReferenceOTU41   
GTGCCAGCAGCCGCGGTAAAACCAGCACCTCAAGTGGTCAGGAGGAT
TATTGGGCCTAAAGCATCCGTAGCCGGCCGTGCCAGTCTTCGGTTAA
ATCCATATGCTCAACATATGGGCTGCCGGAGATACTGCACAGCTAGG
GAGTGGGAGAGGTAGACGGTACTTGGTAGGAAGGGGTAAAATCCTGT
GATCTACTGATGACCACCTGTGGCGAAGGCGGTCTACTAGAACACGT
CCGACGGTGAGGGATGAAAGCTGGGGGAGCAAACCGGATTAGAAACC
CTTGTAGTCC 
 

New.ReferenceOTU28 GTGCCGGCAGCCGCGGTAATACGGAGGGGGCTAGCGTTGTTCGGAAT
TACTGGGCGTAAAGCGCGCGTAGGCGGTCTGGAAAGTCGGATGTGAA
AGCCCGGGGCTCAACCCCGGAACTGCATTCGAAACTTCCAGGCTCGA
GACTTGGAGAGGTGGGCGGAATTCCGAGTGTAGAGGTGAAATTCGTA
GATATTCGGAAGAACACCAGTTGCGAAGGCGGCTCACTGGCCAAGTT
CTGACGCTGAGGCGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC
CTGGTAGTCC 
 

939811 GTGCCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAAT
TACTGGGCGTAAAGCGCATGCAGGTGGTTTGTTAAGTCAGATGTGAA
AGCCCGGGGCTCAACCTCGGAATAGCATTTGAAACTGGCAGACTAGA
GTACTGTAGAGGGGGGTAGAATTTCAGGTGTAGCGGTGAAATGCGTA

!

Day 0 at attempting Cinachyrella sp cell cuture reveals filamentous 
cyanobacteria (f) in TEM (scale= 2um) 

f!
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GAGATCTGAAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAGATA
CTGACACTCAGATGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC
CTGGTAGTCC 
 

625724 GTGCCAGCAGCCGCGGTAATACGGAGGGCGCAAGCGTTACTCGGAAT
CACTGGGCGTAAAGAGCGTGTAGGCGGGTTAATAAGTTTGAAGTGAA
ATCCTATAGCTCAACTATAGAACTGCTTTGAAAACTGTTAACCTAGA
ATATGGGAGAGGTAGATGGAATTTCTGGTGTAGGGGTAAAATCCGTA
GAGATCAGAAGGAATACCGATTGCGAAGGCGATCTACTGGAACATTA
TTGACGCTGAGACGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC
CTGGTAGTCC 
 

605566 GTGCCAGCAGCCGCGGTAATACGAAGGTGGCAAGCGTTGTTCGGATT
TACTGGGCGTAAAGAGCACGTAGGCGGTTTAGTAAGCCCTTTGGGAA
AGCTACGGGCTTAACCCGTAAAGGTCGAGGGGGACTGCTAAGCTAGA
GGGCAGGAGAGGAGCGCGGAATTTCCGGTGTAGCGGTGAAATGCGTA
GATATCGGGAAGAAGGCCGGTGGCGAAGGCGGCGCTCTGGAATGTCT
CTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC
CTTGTAGTCC 
 

587581 GTGCCAGCAGCCGCGGTAATACGGGGGGGGCAAGCGTTGTTCGGAAT
TACTGGGCGTAAAGGGCTCGTAGGCGGCCAGCCAAGTCGGACGTGAA
ATCCCTCGGCTCAACCGGGGAACTGCATCCGATACTGGTTGGCTTGA
AGCCGGGAGAGGGATGCGGAATTCCAGGTGTAGCGGTGAAATGCGTA
GATATCTGGAGGAACACCGGTGGCGAAGGCGGCATCCTGGACCGGTC
TTGACGCTGAGGAGCGAAAGCCAGGGGAGCAAACGGGATTAGATACC
CTTGTAGTCC 
 

New.ReferenceOTU13 GTGCCAGCCGCCGCGGTAACACGTAGGGCGCGAGCGTTGTCCGGATT
TATTGGGCGTAAAGGGCTCGTAGGCGGTTCTGTAAGTCGGATGTGAA
AACTCAGGGCTCAACCCGGAGATGCCATCCGATACTGCAGTGACTGG
AGTCCGGTAGGGGAGCATGGAATTCCTGGTGTAGCGGTGGAATGCGC
AGATATCAGGAGGAACACCAGTGGCGAAGGCGGTGCTCTGGGCCGGT
ACTGACGCTGAGGAGCGAAAGCGTGGGGAGCAAACAGGATTAGATAC
CCTTGTAGTCC 
 

213687 GTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAAT
TACTGGGCGTAAAGAGCTCGTAGGTGGTTTGTCGCGTTGTTCGTGAA
AACCTGAGGCTTAACCTTGGGCGTGCGGGCGATACGGGCAGACTGGA
GTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGGAATGCGCA
GATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAA
CTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACC
CTGGTAGTCC 
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APPENDIX 7 

APPENDIX 8 

SAMPLE ID Total 
Sequence 

ABdark2 3113 
ABdark4 3327 
ABlight10 3141 
ABlight2 3013 
ABlight4 3225 
AMPdark10 8308 
AMPdark2 4806 
AMPlight10 6385 
AMPlight2 3555 
AMPlight4 4412 
April2014 42418 
CinDead 7071 
CinDead2 3537 
CONTROLdark10 3357 
CONTROLdark2 13487 
CONTROLdark4 5496 
CONTROLlight10 942 

! !

(A) C. kuekenthali (Image 
credit:http://www.nova.edu/ncri/sofla_sponge_guide/sp_78.html)! (B) C. alloclada 
(Image credit :http://www.nova.edu/ncri/sofla_sponge_guide/sp_51.html) 

A! B!
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CONTROLlight2 5529 
CONTROLlight4 5009 
day0 2300 
July2014 41834 
PENSTREPdark10 7029 
PENSTREPdark2 4412 
PENSTREPdark4 4546 
PENSTREPlight10 3947 
PENSTREPlight2 1338 
PENSTREPlight4 3378 
TETdark2 4821 
TETlight10 5531 
TETlight2 3050 
TETlight4 3608 
Water1 4315 
Water2 10937 
Water3 19964 
water4 3659 
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