
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2016

Algorithmic Foundations of Heuristic Search using
Higher-Order Polygon Inequalities
Newton Henry Campbell Jr.
Nova Southeastern University, nc607@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Geometry and Topology Commons, Other Computer Sciences Commons, and the
Theory and Algorithms Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Newton Henry Campbell Jr.. 2016. Algorithmic Foundations of Heuristic Search using Higher-Order Polygon Inequalities. Doctoral
dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (374)
https://nsuworks.nova.edu/gscis_etd/374.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Algorithmic Foundations of Heuristic Search using Higher-Order Polygon

Inequalities

by

Newton H.Campbell Jr.

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2016

Approval Signature Page

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Algorithmic Foundations of Heuristic Search using Higher-Order Polygon

Inequalities

by

Newton H. Campbell Jr.

November 2015

The shortest path problem in graphs is both a classic combinatorial optimization problem

and a practical problem that admits many applications. Techniques for preprocessing a

graph are useful for reducing shortest path query times. This dissertation studies the

foundations of a class of algorithms that use preprocessed landmark information and the

triangle inequality to guide A* search in graphs. A new heuristic is presented for solving

shortest path queries that enables the use of higher order polygon inequalities. We

demonstrate this capability by leveraging distance information from two landmarks when

visiting a vertex as opposed to the common single landmark paradigm. The new

heuristic’s novel feature is that it computes and stores a reduced amount of preprocessed

information (in comparison to previous landmark-based algorithms) while enabling more

informed search decisions. We demonstrate that domination of this heuristic over its

predecessor depends on landmark selection and that, in general, the denser the landmark

set, the better heuristic performs. Due to the reduced memory requirement, this new

heuristic admits much denser landmark sets.

We conduct experiments to characterize the impact that landmark configurations have on

this new heuristic, demonstrating that centrality-based landmark selection has the best

tradeoff between preprocessing and runtime. Using a developed graph library and static

information from benchmark road map datasets, the algorithm is compared

experimentally with previous landmark-based shortest path techniques in a fixed-memory

environment to demonstrate a reduction in overall computational time and memory

requirements. Experimental results are evaluated to detail the significance of landmark

selection and density, the tradeoffs of performing preprocessing, and the practical use

cases of the algorithm.

Acknowledgements

While I am finishing this final Computer Science degree at Nova Southeastern

University in DC and Florida, my path started in Cleveland, OH. I thank my family and

friends in Cleveland, who supported and nurtured my ambitions to get into this field.

Knowing that I have my sisters, brother, parents, cousins, and everyone else in my huge

family there when I need them has been a great comfort throughout the dissertation

process. To my little sister Nicole, I’m ready to watch you be the next one to be called

“doctor”. Just keep pushing yourself. You’ll get there. And to my grand-aunt, Phyllis

Robinson, I wish you could be around to watch me walk across the stage one more time.

Thank you for everything you’ve done. I’ll carry the legacy that started with you into the

next phase of my life and onward.

When I moved to SUNY Buffalo, in my mind, I was starting my own crusade. I

started alone. I had a plan. But life had a different one. I ended up where I am at the time

of this writing because of individuals who went out of their way to support me at every

step along this journey. As my first research professor, Shambhu Upadhyaya, I thank

you. Not only for introducing me to the world of research, but also for providing me with

guidance and support both while at Buffalo and afterward. You were the first to ever tell

me I should get a PhD. While I was too naïve to listen to you then, I eventually got

around to it. I would also like to acknowledge other professors who were there for me

after Buffalo, including Florian Buchholz, Brett Tjaden and Xunhua Wang. The time

spent with you and lessons learned gave me the confidence and experience that I needed

to pursue a PhD. Finally, thanks to my advisor, Michael Laszlo, my committee members

and all the other professors and classmates I’ve interacted with at Nova Southeastern.

I’ve been a dreamer my entire life, imagining so many ways of helping the world

but knowing, at some level, that many things were impossible. But with the support and

nurture from the all the staff at BBN, I learned that I could build the impossible. This

would have never happened without the support and valuable lessons from many of the

seniors at BBN, including Jack Marin, Joshua Edmison, Richard Burne, Carl Powell, as

well as all of the staff that I’ve worked with over the years. You are all just as responsible

for shaping me into a contributor to science as all my experiences in University. Dr. John

Everett (currently at DARPA) deserves a great deal of thanks for initially supporting the

idea of being on my committee, nominating me and serving as a true mentor for the 2015

DARPA Rising session, and being the program manager for the first of many research

efforts that I hope to have my name on. I now stand on the shoulders of these giants.

And to John-Francis Mergen, my mentor and one of my closest friends, I thank

you and Lynne for always being there as family and for believing in me. While knowing

you, I’ve seen you make the case for change in the world as only you can make it. In that

time, you’ve taught me that I can do the same, and you can bet that I will. My lifelong

friends deserve just as much acknowledgement for their support as everyone else

mentioned here. So to Vera Neroni, Elizabeth Brown, Michelle Chu, Cyrus Chu, Douglas

Campese, Jessica Lombardo, Scott Goldweber, and everyone else in the surrogate family

that has joined me on my crusade, thank you for getting me to this point. Everyone on

this page has contributed to the person I am today with a trust that I will strive to create a

better tomorrow. I will not fail that trust. And I will not fail to try.

v

Table of Contents

Approval Signature Page ii
Acknowledgements iv
List of Tables vi
List of Figures viii

1. Introduction 1

Background 2

Problem Statement 4

Dissertation Goal 5

Research Questions 8

Relevance and Significance 10

Barriers and Issues 12

Assumptions, Limitations, and Delimitations 13

Definition of Terms 14

Summary 26

2. Review of the Literature 28

Metric-Independent Shortest Path Preprocessing 28

Other Preprocessing Algorithms 40

Landmark Selection Algorithms 42

Advanced Landmark Selection Algorithms 46

3. Methodology 52

Overview 52

Research Methods 53

Validating and Verification 83

Summary 88

4. Results 89

Data Analysis 90

Findings 136

Summary 148

5. Conclusions, Implications, Recommendations, and Summary 152

Conclusions 152

Implications 153

Recommendations 155

Summary 157

vi

6. Appendices 163

Appendix A: Graphs and Applied Mathematics Concepts 163

Appendix B: Data Description 165

Appendix C: Supplemental Experiment Data 171

7. References 213

List of Tables

1. Derivation of the Reverse Triangle Inequality in Simple, Connected Graphs 55

2. Derivation of the Reverse Quadrilateral Inequality in Simple, Connected Graphs 56

3. Inequalities for a source, target, and two landmark vertices in a directed graph 60

4. When ALP Beats ALT 70

5. Dissertation Experiments 86

6. Summary of Experimental Runs 91

7. Synthetic Graph Problem Families 91

8. Average Synthetic Graph Transitivity and Local Clustering Coefficient 92

9. Road Graph Problem Families 93

10. ALP Performance and Bounds Trials 101

11. Efficiency and Approximation Error for Varying Synthetic Graph Structures 102

12. Road Graphs for Increasing Landmark Trials 106

13. ALP Performance for Increasing Landmarks 107

14. # Landmarks vs Preprocessing Time 109

15. Experimental Landmarks Selection Techniques for ALP 110

16. ALT vs ALP Trials 117

17. Washington DC Fixed-Memory Performance of ALT vs ALP (Louvain) 124

18. Washington DC Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap)

125

vii

19. New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain) 127

20. New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap) 128

21. New York City Fixed-Memory Performance of ALT vs ALP (Louvain) 129

22. ALP's dominance of ALT over Large Path Lengths for 2.5E6 Data Label Upper

Bound 131

23. New York City Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap) 132

24. San Francisco Fixed-Memory Performance of ALT vs ALP (Louvain) 133

25. San Francisco Bay Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap)

134

26. NYC Path Histograms 143

27. Average Preprocessing and Efficiency for ALP Landmark Selection over All Trials

149

28. Average Efficiency of Queries at Each Graph Scale 172

29. Real Road Graph Shortest Path Average Query Efficiency 174

30. ALT vs ALP Preprocessing 179

31. V1 Synthetic Graphs Performance and Structure 183

32. V3 Synthetic Graph Structure 183

33. V3 Synthetic Graph Performance 190

34. V3 Real Graph Performance 198

35. V3 Real Graph Structure 198

36. V4 Synthetic Graph Structure 199

37. V4 Synthetic Graph Performance 200

38. V4 Real Graph Structure 201

39. V4 Real Graph Performance 202

40. V5 Synthetic Graph Structure 203

41. V5 Synthetic Graph Performance 203

viii

42. V5 Real Graph Structure 204

43. V5 Real Graph Performance 205

44. V7 Real Graph Structure 207

45. V7 Real Graph Performance 207

46. ALT-Based Landmark Selection over Synthetic Graphs 208

List of Figures

1. Map of the Seven Bridges of Königsberg, Euler's Inspiration for Studying the

Königsberg Bridge Problem 2

2. Notional diagram of changing the approach for guiding shortest path search from a

Single Landmark(ALT) to a Dual Landmark approach (ALP) 7

3. Dijkstra's Algorithm for SSSP Queries 18

4. A* Algorithm for PPSP Queries 20

5. Common Paradigm for Metric-Independent Preprocessing 29

6. Illustration of distance information for three vertices not necessarily incident to each

other in a graph 30

7. Local Landmarks Example 50

8. Three vertices within a sample connected graph. The dotted lines represent shortest

paths between each of the vertices 54

9. Four vertices within a sample connected graph. The dotted lines represent shortest

paths between each of the vertices 55

10. Quadrilateral Inequalities for Graphs 60

11. Four vertices within a sample directed connected graph. The dotted lines represent

shortest paths between each of the vertices 62

12. An Example of Distributed Embedding for a Simple Graph with Three Partitions 71

13. Random Landmark Selection 78

14. Optimized Random Landmark Selection 78

15. ALP Planar Landmark Selection 80

ix

16. The flow of each trial during Experimentation 87

17. Vertex and Edge Graph Scales 95

18. GCC Optimizations for Large Graph Runs 97

19. Average Efficiency and Error for Synthetic Graphs 103

20. Average Efficiency of 1000 Queries vs Structural Properties of Graphs 104

21. Graph of Efficiency measures for Dijkstra’s Algorithm and ALP shortest path queries

on Barabási-Albert preferential attachment graphs 104

22. ALP Efficiency at each Graph Scale 106

23. Landmark Increase vs Performance Gain 108

24. Landmark Selection Efficiency on Two Graphs for 1000 Query Trials 111

25. Landmark Selection Tradeoff on Two Graphs for 1000 Query Trials 112

26. Preprocessing Time vs Total Query Time for Landmark Selection Techniques on the

New Mexico Graph Dataset 113

27. Landmark Selection Approximation Error on Three Graphs for 1000 Query Trials

114

28. Path Length(X) vs Approximation Error (Y) 115

29. Graph demonstrating a higher runtime for ALT (Blue) compared to ALP (Red) as the

length of the paths grow 118

30. Graph demonstrating a higher number of operations for ALT (Blue) compared to

ALP (Red) as the length of the paths grow. This corresponds to the runtime graphic

on the previous page 118

31. ALP Preprocessing in ALT: ALP #Landmarks vs Average Efficiency 119

32. ALP Preprocessing in ALT: ALT #Landmarks vs Average Efficiency 119

33. ALP Preprocessing in ALT: ALP Average Runtime vs Search Space Size 119

34. ALP Preprocessing in ALT: ALT Average Runtime vs Search Space Size 119

35. Washington DC Fixed Memory vs Average Search Space Size 125

36. Washington DC Fixed Memory vs Average Runtime 125

x

37. Washington DC Fixed Memory vs Average Search Space Size (Louvain/Walktrap)

126

38. Washington DC Fixed Memory vs Average Runtime (Louvain/Walktrap) 126

39. New Mexico Fixed Memory vs Average Search Space Size 127

40. New Mexico Fixed Memory vs Average Runtime 127

41. New Mexico Fixed Memory vs Average Search Space Size (Louvain/Walktrap) 128

42. New Mexico Fixed Memory vs Average Runtime (Louvain/Walktrap) 128

43. New York City Fixed Memory vs Average Search Space Size 129

44. New York City Fixed Memory vs Average Runtime 129

45. Performance of ALT vs ALP for 2.5M Data Labels 131

46. New York City Fixed Memory vs. Average Search Space Size (Louvain/Walktrap)

132

47. New York City Fixed Memory vs. Average Runtime (Louvain/Walktrap) 132

48. San Francisco Bay Fixed Memory vs. Average Search Space Size 133

49. San Francisco Bay Fixed Memory vs. Average Runtime 133

50. San Francisco Bay Fixed Memory vs. Average Search Space Size

(Louvain/Walktrap) 134

51. San Francisco Bay Fixed Memory vs. Average Runtime (Louvain/Walktrap) 134

52. Colorado Fixed Memory vs. Average Search Space Size (Louvain/Walktrap) 135

53. Colorado Fixed Memory vs. Average Runtime (Louvain/Walktrap) 135

54. Percentage Of Queries in Which ALP has Equal or Better performance than ALT 136

55. Log Plot of #Nodes vs # Landmarks vs Tradeoff for road graph trials shows worse

tradeoff using less landmarks with ALT 138

56. Plot of Landmark to Vertex Ratio vs Average Efficiency for 200 Trials 141

57. ALT Experiences Better Runtimes and better Approximation Error while ALP

Experiences Better Runtimes over Growing Path Length 146

58. ALP Preprocessing vs Query Runtime for Trials of 1000 Queries on Real Road

Graphs 147

xi

59. ALT Preprocessing vs. Query Runtime for Trials of 1000 Queries on Real Road

Graphs 147

60. Four Charts demonstrating Overall Tradeoff for ALP vs ALT Trials on Real Road

Graphs 148

61. Efficiency Multipliers for Vertex Scales 172

62. Efficiency Multiplier for Edge Scales 173

63. Average Efficiency for Real Road Graphs 175

64. Average Distance vs Efficiency 176

65. Average Distance vs Average Error 176

66. ALT vs ALP: Significant Difference in Efficiency for Graphs of size V1, V2, and V4

178

67. ALT vs ALP: Total Trial Time for Increasing Nodes 181

68. ALT vs ALP: Total Trial Time for Increasing Edges 181

69. ALT vs ALP: Average Efficiency among Landmark Selection Techniques using the

Same Number of Landmarks 182

70. ALT vs. ALP: Total Times for Each Landmark selection Technique with the Same

Number of Landmarks 182

71. ALT vs. ALP: Preprocessing Times for Each Landmark selection Technique with the

Same Number of Landmarks 182

Campbell 1

Chapter 1

Introduction

From topic areas such as urban planning to space exploration, graph theory

encompasses some of the oldest and most interesting areas of algorithmics. A graph, or

network, is one of the most important types of models used in discrete applied

mathematics (Strang, 2007). This model is used to analyze a wide variety of real-life

applications. And as computable aspects of the real world are being analyzed more each

day, the study of these large-scale interaction networks is a growing trend. Protein

networks (Voevodski, Teng, & Xia, 2009a, 2009b), communications networks (Fortz &

Thorup, 2000; Luo, Zhu, Wu, Chen, & Ieee, 2011), aircraft networks (Bard, Yu, &

Arguello, 2001; Royset, Carlyle, & Wood, 2009), and road networks (Delling & Wagner,

2007; Geisberger, Sanders, Schultes, & Delling, 2008a) are studied frequently by

abstracting them onto a graph. In practice, these networks are mined for structural and

relational information to solve problems with respect to their domains.

One of the fundamental, most commonly studied problems in this space is the

shortest path problem. The shortest path problem is a query for the lowest cost to get

from one node of a graph to another by way of its edges. Computing this query quickly

and in a resource efficient manner is beneficial for many applications. The brute force

solution for the problem involves testing every path from source to destination in the

graph. Methods for efficiently solving the shortest path problem apply a combination of

dynamic programming and greedy algorithms to speed up the search. Though these

Campbell 2

methods are theoretically efficient solutions, their computational time and space

requirement is insufficient for graphs at the practical scale of many modern, real-world

networks. In this dissertation, a new class of algorithms for solving this problem for

large-scale graphs is defined and evaluated through experimentation. In particular, this

new method presents a feasible capability for storing basic information about the graph

and using this information to guide future searches. To demonstrate its utility, this class

of algorithms is applied to a set of benchmark datasets for navigational planning on road

networks in a fixed-memory environment.

Background

 The problem of pathfinding in a graph was mathematically established in early

works by Euler through analysis of the map of Königsberg, a large city in pre-World War

II Germany, shown in Figure 1 (Euler, 1736). In 1736, his Königsberg Bridge Problem,

modernly known as the Eulerian circuit problem, represented the beginning of not only

mathematical pathfinding, but of modern graph theory itself. Heavy research into the

point to point shortest path (PPSP) problem started relatively late compared to most other

Figure 1 Map of the Seven Bridges of Königsberg, Euler's Inspiration for Studying the

Königsberg Bridge Problem

Campbell 3

combinatorial optimization problems in graph theory (Aardal, Nemhauser, &

Weismantel, 2005). In all likelihood, this may have been because the size of data used for

the problem was typically smaller, making the problem seem trivial while anything larger

was deemed intractable. At the time of this writing, progress in practically solving the

problem has only occurred in the last six decades. Much of the true scientific

investigation started with Alfonso Shimbel, in his introduction of the all-pairs shortest

path (APSP) problem (Shimbel, 1953). All possible path queries are automatically

answered and stored for the APSP problem, while querying is done upon request for the

PPSP problem. The solution to the PPSP problem requires an efficient computation of the

shortest path between an arbitrary pair of nodes be established.

 Shortly after Shimbel, Edsger W. Dijkstra was credited with discovering the

algorithm that, at the time of this writing, is the best, most well-known, commonly used,

and simplest method of solving the shortest path algorithm in a graph (Dijkstra, 1959).

This algorithm is widely known as Dijkstra’s algorithm. A decade after its creation, the

A* search algorithm showed, by adding a heuristic that estimates distance, that it could

run a shortest path query in significantly faster time than Dijkstra’s algorithm (Hart,

Nilsson, & Raphael, 1968). Fundamentally, the A* algorithm is Dijkstra’s algorithm that

takes into account a distance estimation heuristic derived from characteristics of the

graph. While other algorithms have been developed in an attempt to contest them, these

two greedy optimization algorithms serve as the basis for most modern day shortest path

solutions.

 As researchers find more use for graph theory in the storage, retrieval, and

analysis of big data, extremely fast solutions to problems such as the shortest path

Campbell 4

problem are in great demand. However, not even Dijkstra’s or the A* algorithm can solve

the problem for massive datasets without a significant increase in their requirements for

computational time and space. For this reason, modern research focuses on performing

computations on the graph prior to allowing it to be queried for shortest path. The results

of these computations are used to guide, narrow, or inform the search such that arbitrary

queries can be performed significantly faster on graphs that represent huge data corpuses.

Modern approaches typically exploit mathematical approximation techniques (Delling,

Sanders, Schultes, & Wagner, 2009; Delling & Wagner, 2007; Goldberg & Harrelson,

2005; Jens Maue, Sanders, & Matijevic, 2010), large-scale storage (Duan, Pettie, &

Siam/Acm, 2009; Goldman, Shivakumar, Venkatasubramanian, & Garcia-Molina, 1998;

J. Sankaranarayanan & Samet, 2010; Thorup & Zwick, 2001), artificial intelligence

algorithms (Awasthi, Lechevallier, Parent, & Proth, 2005; Yussof, Razali, Ong Hang,

Ghapar, & Din, 2009; Zakzouk, Zaher, & El-Deen, 2010; Zongyan, Haihua, & Ye, 2012),

and combinations of preprocessing algorithms (Sanders & Schultes, 2007). Of these

approaches, the focus of this dissertation is an evaluation of strategies for aiding shortest

path approximation known as landmark selection strategies. A series of landmark

selection strategies is applied to a new class of algorithms to address one of the original

applications of the problem, road navigation planning.

Problem Statement

Large-scale navigation planning requires the ability to regularly compute the

shortest path for massive road networks. In such cases, preprocessing algorithms are used

to increase the performance of queries. Many shortest path preprocessing algorithms

Campbell 5

require very heavy upfront computation and storage. In some cases, they require

structural information about the graph that may not be able to be obtained in real-world

applications. Moreover, many require a significant amount of information to be stored in

order to yield reasonable speedups. Few algorithms concern themselves with the space

complexity required by such preprocessing techniques. The problem that this dissertation

addresses is that modern PPSP preprocessing algorithms have space and preprocessing

time requirements for large-scale graphs that are impractical in terms of utility in real-

world applications. While cloud computing is often used to perform navigation planning

for devices that report location, network connectivity issues can prevent reasonable

responses to navigation planning queries. For such mission-oriented devices that then

must perform navigation planning locally, particularly with limited memory resources,

these computational requirements must be reduced.

Dissertation Goal

The primary contribution of this dissertation is the description, software

implementation, and experimental evaluation of a new class of algorithms for generating

a heuristic function for the A* algorithm (Hart et al., 1968). Its novel feature is that it

uses more information about the graph to generate the heuristic while requiring

significantly less computational space, making it a favorable algorithm to use in a fixed

memory environment. This new heuristic is based on a class of algorithms known as ALT

(Goldberg & Harrelson, 2005). ALT describes a preprocessing technique for shortest path

queries that chooses a relatively small number of landmark nodes in a graph, computes

the distances between all vertices and these landmarks, and establishes lower bounds

Campbell 6

using this distance information and the triangle inequality during search queries.

However, by using information about multiple landmarks, new lower bounds can be

computed from other polygon inequalities. These inequalities can be derived from either

generalized polygon inequalities or ones specific to a shape embedded within the graph.

The use of these new lower bounds as a heuristic has resulted in a new class of

algorithms called ALP, an acronym for A*, Landmarks, and Polygon Inequalities.

The ALT algorithm requires a spanning shortest path tree, rooted at each

landmark to be generated and stored, in a process known as landmark embedding.

However, through a process called distributed landmark embedding, hereafter referred to

as distributed embedding, ALP generates shortest path trees only encompassing the local

areas surrounding each landmark, resulting in a significant reduction in required memory.

By using smaller shortest path trees with multiple landmarks to guide the search, ALP

also reduces the amount of required apriori computation for shortest path search. In many

practical cases, it also increases the efficiency of computing the A* heuristic. This

heuristic’s domination over ALT’s depends on the landmark set that each is assigned.

Therefore, if an optimal landmark set can be determined more efficiently under the ALP

paradigm than under ALT, then ALP is the more efficient heuristic to use for A* search.

The goal of this dissertation is to identify and characterize landmark selection techniques

for a concrete ALP heuristic function that lends a significant memory and preprocessing

time reduction while maintaining the experimental speedups that ALT provides.

Campbell 7

The base case function for ALP, using one landmark to compute the A* heuristic

function, is already characterized as the ALT algorithm. To begin to characterize the

behavior of this class of algorithms with increasing information, this research theorizes

and experiments with the behavior of A* using two landmarks as shown in Figure 2. The

use of two landmarks, in this way, acts as an inductive step for using multiple landmarks

to guide A* search. In the first three chapters of this report, the characterization of this

dual landmark approach for ALP is formed. The ALP algorithm was implemented and

tested using benchmark road graph datasets on which the ALT algorithm and several

other major algorithms were tested (Demetrescu, Goldberg, & Johnson, 2006). The

algorithm’s performance bounds are compared with ALT’s in common environments.

ALP is tested using the most common modern landmark selection techniques to

characterize its behavior for each of them. Data is collected to identify how large the

shortest path tree actually has to grow for each landmark in the dataset to maintain an

overall performance benefit. The scenarios in which each of the different shortest path

preprocessing techniques and landmark selection techniques are optimal are characterized

and experimentally tested. A suite of software tools for future use in situational shortest

Figure 2 Notional diagram of changing the approach for guiding shortest path search

from a Single Landmark(ALT) to a Dual Landmark approach (ALP)

Campbell 8

path solving is generated. In the end, an applicable algorithm for shortest path speedup

under limited memory resources is demonstrated and verified.

Research Questions

The following questions pertain to the contribution of this effort and are answered

through a combination of theory and experimentation:

 What landmark selection techniques theoretically fit best with ALP?

The ALP class of algorithms differs in behavior from the ALT class of algorithms

because of ALP’s memory-reducing properties (i.e., distributed landmark

embedding). These properties change the average expected computational

performance of PPSP queries for each landmark selection technique. Some landmark

selection techniques perform better under ALP while others will perform worse.

However, because ALP with distributed embedding has to perform significantly less

preprocessing, landmark selection techniques that result in heuristics that are on par

with ALT’s allow ALP to be leveraged as a more efficient approach than ALT.

 Using ALP with distributed landmark embedding, what are the ideal characteristics

for landmark shortest path trees? In other words, how much preprocessing and

memory is required for ALP to maintain its key benefits?

Due to distributed landmark embedding, ALP requires preprocessing at a level

significantly less than ALT. Each landmark grows significantly smaller shortest path

trees in comparison. While guaranteed to be less than that of ALT, the exact amount

of preprocessing is not theoretically defined as it is relative to the inputted graph

Campbell 9

information. If the graph has a very small number of partitions, the preprocessing

may not see a significant reduction in compute time.

 How does the algorithm behave as the number of landmarks used to guide the search

increases?

A single landmark approach (ALT) and a dual landmark approach (ALP with

distributed embedding) for guiding shortest path search using polygon inequalities is

studied in this dissertation. These studies identify the benefits and drawbacks of each

approach. Experimental results corresponding to each type of shape being identified

in the graph are detailed in this effort. Future research will involve identifying other

shapes with a larger number of sides (pentagons, hexagons, heptagons, etc.) to

discover the benefits and detriments of continuously increasing the number of

landmarks used for guiding the search.

The following open question pertains to how ALP’s contributions can be further

characterized.

 In what ways can this be applied to path planning? What real-world applications

exist for ALP that were previously impractical to solve with ALT?

In the real world, memory-limited capabilities for quickly computing shortest

paths can enable smaller, memory-limited devices without constant internet or local

network connection to navigate paths in large graph datasets. The reduced

requirement of a persistent connection for path planning reduces the amount of

energy required to power such devices. Such localized navigation planning also

allows for more intelligent planning to occur in denied areas such as space or military

domains.

Campbell 10

Relevance and Significance

The shortest path problem is a classic problem in computer science (Dijkstra,

1959). Many developed preprocessing methods for Dijkstra’s algorithm efficiently solve

the problem, but incur tradeoffs for large graphs that are impractical in some use cases.

The need to analyze large real-world networks is steadily growing as more information is

being accumulated about the real world and the use of digital services, networks, and

devices grows. This scaling-up of networks creates a need for algorithms to be able to

compute over large datasets without incurring a significant operational cost.

In areas such as navigation planning, smaller and smaller devices are required to

do computing while using minimal bandwidth for communication. While newer devices

are becoming more powerful, many still lack the ability to perform shortest path queries

efficiently on large datasets using naïve algorithms. The required preprocessing for most

real-world applications is slower for large-scale graphs, as the time to generate shortest

path trees grows as a function of the number of graph elements. These problems need to

be solved quickly, using minimal resources and, in some cases, limited preprocessing

time. The problem has been cited in many other works and is commonly solved by

pushing the problem off to an external memory source (A. Goldberg & R. Werneck,

2005; Hutchinson, Maheshwari, & Zeh, 2003). However, the problem must also be

solved for devices that have very little to no external memory sources in various

scenarios (Dong, ZuKuan, Jae-Hong, & ShuGuang, 2010; Santhosh, Sasiprabha, &

Jeberson, 2010). For these types of devices, memory and processor usage play a large

role in the energy consumption of the system and overall cost. Many modern approaches

Campbell 11

for pathfinding on these types of devices lack the dual benefit of low memory usage and

efficient computation. In general, one is sacrificed for the other.

In particular, modern GPS-enabled devices are commonly tasked with computing

the shortest path on the fly for downloaded map data (Bo & Dong, 2010; Holdsworth &

Lui, 2009). Also, many such devices have very little external memory to store the

massive amount of preprocessing information required by other methods. For small

multipurpose devices without persistent network connections, this computation needs to

be performed repeatedly on the same dataset as it is held in primary memory (Cerf et al.,

2007; Jain, Fall, & Patra, 2004). A reduction in computation when solving this problem

can reduce the amount of energy required for these devices, as well, while allowing them

to efficiently perform other tasks at the same time. For these reasons, precomputing a

reasonable amount of data to help guide the search such that a query can be practically

executed on a device is a common need for individual consumers, businesses, and

governments.

Aside from shortest path queries, landmark selection techniques are employed in a

host of other applications. The notion of using landmarks to estimate distance

information in a graph structure was actually conceptualized before their use in PPSP

queries. Common routing protocols typically rely on landmarks such as key routing

devices to decide whether or not other devices are too far away (Cowen, 1999). Internet

distance information (in hops) and a concept of Internet coordinates is often measured

using landmarks as a guide (Costa, Castro, Rowstron, & Key, 2004). Landmarks are

naturally used by honey bees to estimate the flight path to their hives (Chittka, Geiger, &

Kunze, 1995). And finally, landmarks have been used to create filters for string

Campbell 12

comparisons when detecting duplicates among large datasets (Weis & Naumann, 2004).

In general, discoveries about the benefits and detriments of using multiple landmarks to

perform estimation can benefit many landmark-based research efforts.

Barriers and Issues

The dual landmark heuristic demonstrated in this dissertation for ALP only

outperforms ALT in certain scenarios. Over the same set of landmarks, the estimates

computed by the dual landmark ALP heuristic has equal or worse performance than ALT.

However, given ALP’s ability to choose a denser landmark set, we see a performance

increase over ALT. In this dissertation, we demonstrate how much more dense this set

has to be for ALP. Regardless, even when ALP demonstrates little or no average time

complexity reduction, its space complexity reduction is guaranteed.

One main goal of this dissertation is to explore the efficacy of landmark selection

strategies that can optimize ALP algorithms. As of the time of this writing, this is still an

open problem for ALT. Many authors have experimentally concluded that random

selection of landmarks is good enough in many cases, with no theoretical backing

(Goldberg & Harrelson, 2005; Potamias, Bonchi, Castillo, & Gionis, 2009). We

characterize what “good enough” would mean for ALP in this dissertation, leaving the

use of landmark selection techniques up to implementers. We are able to characterize this

because of the ability to perform more experiments, a direct benefit of the smaller

preprocessing time and space requirement of dual landmark ALP with distributed

embedding. Therefore, a significant number of trials were performed for each experiment

with a wide array of landmarks to obtain a better experimental characterization than seen

in previous efforts.

Campbell 13

Assumptions, Limitations, and Delimitations

 This dissertation relies on a theoretically proven heuristic. Timing and memory

usage, measured on a developer-class system, are recorded through program

instrumentation for a host of metrics (e.g. number of nodes/edges explored, number of

arithmetic operations, memory usage, % CPU usage, computed runtime in seconds, etc.).

Conclusions about ALP’s behavior in navigation planning environments shall be drawn

from the measurements reported by this instrumentation. Such conclusions, however, fall

prey to a small set of limitations. The first limitation stems from randomness (or more

appropriately, pseudo-randomness). The random landmark selection technique is

currently seen as a good technique for ALT (Goldberg, Kaplan, & Werneck, 2009). In

ALT, testing a significant number of queries for various trials of random landmark

selection becomes difficult because of the time that it takes to generate a shortest path

tree from each node. For extremely large graph datasets, such computations for a

significant number of trials (~10
6
) should sufficiently justify the behavior of the random

landmark selection technique along with all other landmark selection techniques for ALP.

The second primary limitation stems from the data used for experimentation. In this

dissertation, the benchmark data used for experimentation is collected from the same

sources used in each of the original research efforts that the algorithm will be compared

against. Some of this data was not be able to be obtained due to insufficient citation of the

source or simply a lack of access. For experimentation, all datasets used in these studies

were either downloaded or replicated to sufficiently duplicate the results found in each

study.

Campbell 14

 Intentionally excluded from this research is any experimentation using more than

two landmarks for ALP. The main polygon inequalities that are used in this study are

quadrilateral inequalities, as the use of two landmarks forms the shape of a quadrilateral

in the graph. This allows the research to serve as a base demonstration of how a heuristic

function behaves when more than one landmark is used to form a polygon in a graph. The

focus, however, will not be on further increasing the number of landmarks that are used

by the heuristic function. Rather, it will be on characterizing the behavior of the landmark

selection techniques for ALP’s dual landmark heuristic function. This full

characterization provides an experimental template for future heuristics that use even

more landmarks in their functions.

Definition of Terms

Throughout this dissertation, for clarity, a common set of graph theoretical

definitions, concepts, and notations will be used. Let G = (V,E) be an undirected graph,

where V is the set of vertices in G and E ⊆ V × V is the set of edges in G, with n = |V| and

m = |E|. For any edge e ∈ E, let w(e) be the positive real weight of the e. In an unweighted

graph, for every edge e ∈ E, w(e) = 1. In a weighted graph, w(e) is subject to the graph’s

application. A finite graph is one in which and .If an edge e ∈ E

connects two vertices vi,vj ∈ V, vi is called the neighbor of vj and vj the neighbor of vi. The

vertices vi and vj are also said to be adjacent to each other and incident to their shared

edge e. A graph H = (V(H), E(H)) is a subgraph of G if V(H) ⊆ V and E(H) ⊆ E, with

edges of E(H) incident to only the vertices in V(H). A spanning subgraph H of G is a

subgraph in which V(H) = V.

Campbell 15

An induced subgraph H of G is a subgraph of G such that ⊆ and two

vertices of H are adjacent if and only if they are adjacent in G. In other words, H is an

induced (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008)subgraph of G if and only if

it has exactly the edges that exist for G over the same vertex set. A graph cluster,

partition, or community is a collection of vertices in a graph such that the vertices

assigned to a particular community are similar or connected by some predefined criteria.

A sequence (v0,…,vk-1), k ≥ 1, of vertices of G = (V,E) is known as a path from v0

to vk-1 if there is an edge (vi, vi+1) ∈ E for every 0 ≤ i < k. A path is denoted as P(v0,vk-1) =

‹v0,…,vk-1›. A path P is a subgraph of G. The length of P is the number of edges (i.e.,

) on the path P(v0,vk-1), denoted as d(v0,vk-1) or d(P), and the weight of P is the sum

of the weights of the path edges, denoted as w(P) or w(v0,vk-1). If, for every pair of

vertices vi,vj ∈ V, there exists a path from vi to vj, the graph is called connected. An

acyclic, connected, spanning subgraph of G is called a spanning tree of G. In this

dissertation, the experiments are performed on finite, connected graphs, both directed and

undirected. Directed graphs will be strongly connected, meaning that each vertex can be

reached from every other vertex in the graph.

Many algorithms exist for identifying communities in graphs, a process known as

community detection. A common community detection algorithm used throughout this

dissertation is an algorithm dubbed the Louvain method (Blondel et al., 2008). The

algorithm is a greedy optimization method that attempts to optimize a score known as

modularity, a measurement of the fraction of edges that fall within a community minus

the expected fraction if edges were distributed at random. The Louvain method occurs in

two phases: In the first phase, the method identifies small communities by optimizing

Campbell 16

modularity locally. This is done by assigning each vertex in a network its own

community, computing the modularity increase of moving the vertex into each of its

neighbors’ communities, and keeping the vertex in the community that resulted in the

highest modularity increase for the graph (or in its own community, if no modularity

increase occurs). This process is repeated for all nodes until no more modularity increases

are possible. In the second phase, the nodes determined to be those of the same

community are grouped together and a new graph is built where vertices are the

communities from the first phase and weighted edges represent the edges between

multiple border nodes from the first phase and self-loops for edges within the community.

These two phases are repeated iteratively until a maximum modularity is attained and a

hierarchy of communities, often modeled as a dendrogram, is formed for each phase. A

dendrogram is a tree-like representation of the hierarchical clustering where each level of

the tree represents the partitioning for the graph at that level, with the first level

indicating maximum modularity for the Louvain method.

Also, this paper references several fundamental graph theoretic problems and

algorithms. Given a graph G = (V,E), the point-to-point shortest path problem (PPSP) is

one of finding the path that comprises the shortest path in the graph from a specified

vertex s, known as the source, to a specified vertex t, known as the destination. For two

vertices s,t ∈ V, a path P(s,t) ∈ G is called a shortest path from s to t if there exists no

path P′(s,t) ∈ G such that d(P′) < d(P) and . The distance between two vertices s,t

∈ V is the sum of the weights on the shortest path and is denoted by d(s,t). For weighted

graphs, the weight of an individual edge is a numeric value that identifies the cost of

traversing the edge in a path calculation. The weight of the edge that connects two

Campbell 17

vertices ∈ is denoted as . In Chapter 2, many of the reviewed algorithms

apply to both weighted and unweighted graphs.

A single-source shortest path tree (SPT), is a spanning tree of a connected graph

G, rooted at s, connecting all the vertices such that the length of the path to each vertex t

in the tree is d(s,t). The problem of computing this tree is known as the single-source

shortest path problem (SSSP). The all pairs shortest path problem (APSP) attempts to

find a shortest path from u to v for every pair of vertices u,v ∈ V.

With respect to algorithmic complexity, the preprocessing time of a shortest path

algorithm refers to the worst-case time required to construct the data structure used to

speed up shortest path queries. The space complexity is the worst-case size of such a data

structure. And finally, the query time refers to the worst-case time required to compute

either d(s,t), P(s,t), or both for s,t ∈ V.

 Another important class of problems for large graphs involves the idea of

probabilistic movement from one vertex of a graph to another vertex by way of incident

edges. This is another way that graphs can characterize real-world interactions. For

instance, a web surfer browsing from site to site or a disease spreading between humans

by means of direct contact are two applications that can be modeled by probabilistic

movement from vertex to vertex in a graph. In these problems, a surfer is an entity that is

able to walk from vertex to vertex in the graph by way of its edges. A random walk on a

graph is a finite, time-reversible Markov chain (Freedman, 1971). Given a graph G =

(V,E) and a starting vertex for the surfer, at each time step t, a neighbor is selected at

random and the surfer moves to it. When the graph is unweighted, the surfer moves to a

Campbell 18

neighbor with uniform probability. When it is weighted, it moves to a neighbor with

probability proportional to the weight of the incident edge.

The most common algorithm used to solve the shortest path problem in both

directed and undirected graphs is known as Dijkstra’s shortest path algorithm, or simply

Dijkstra’s algorithm (Dijkstra, 1959). Dijkstra’s algorithm naturally creates an SPT in a

graph, rooted at the source vertex, by finding the shortest path from the source vertex to

one additional vertex at each iteration of the algorithm’s primary loop. Each vertex v ∈ V

is in one of three states: visited, unvisited, or settled. The shortest path from the source

vertex s to a vertex u ∈ V is found once the state of u is settled. This settling occurs in the

process specified by the pseudocode for the algorithm in Figure 3. Steps 11-15 are

Figure 3 Dijkstra's Algorithm for SSSP Queries

Dijkstra(G = (V,E), w : E, s , t∈ V)

1. for each vertex u ∈ V

 Set the parent of u to null

 Set the state of u to unvisited

 Initialize d(s,u to ∞

2. Set the state of s as visited

3. Set d(s,s) to 0

4. Insert all nodes into Priority Queue Q //Open Set

5. while Q is not empty and t has not been visited

6. Extract minimum u ∈ V from Q

7. Mark the state of u as settled

8. if u = t: stop

9. For each vertex v ∈Q adjacent to u that has not been settled

 //Relax the edge

10. if d(s,u) + w (u,v) < d(s,v):

11. Set the parent of v to u

12. Set d(s,v) = d(s,u) + w (u,v)

13. if v is not visited:

14. Insert v into Q with priority d(s, v)

Set the state of v to visited

 Else:

15. Decrease the priority of v in Q to d(s,v)

16. return d(s,t)

Campbell 19

referred to as relaxing an edge.

This algorithm is an efficient greedy algorithm that effectively solves the single-

source shortest path problem for graphs with non-negative edge weights. However, this

restriction on edge weights can be removed using Johnson’s algorithm to convert

negative edge weights to non-negative in O() (Johnson, 1977). Overall, the naïve

version of Dijkstra’s answers single-source shortest path queries in O(2
) time. The best

version of the algorithm, using Fibonacci heaps (O(log) deletions and insertions),

manages to answer PPSP queries with a query time of O(+ log) (Fredman &

Tarjan, 1987). For APSP, computing Dijkstra’s from every vertex simply requires

multiplying this query time by the total number of vertices, leaving the worst case bounds

at O(+ 2
 log). To date, there is no general sub-cubic algorithm that

calculates an APSP solution for any type of simple graph, though faster solutions have

been provided for graphs with certain constraints (Chan, 2007; Seidel, 1995). For general

APSP, the Floyd-Warshall algorithm is the industry-standard algorithm with a time

complexity of (Floyd, 1962). If a target vertex t is provided, the bidirectional

version of Dijkstra’s algorithm can start a second search from the target vertex,

alternating the search direction at each iteration and finishing when the frontiers of both

searches meet.

The A* algorithm behaves similarly to Dijkstra’s but with a heuristic function, πt,

guiding the search (Hart et al., 1968). Throughout this paper, πt(s) will denote the

estimated cost of the shortest path from a vertex s ϵ V to target vertex t ϵ V. This is also

known as the heuristic cost. The A* search strategy uses this function to add additional

knowledge about graph structure to the shortest path problem, pruning from the search

Campbell 20

space vertices that do not need to be considered. The pseudocode that demonstrates this

addition is displayed in Figure 4. The figure also demonstrates that Dijkstra’s algorithm is

simply the A* algorithm without a search heuristic (or πt = 0).

In terms of identifying shortest path, Dijkstra’s algorithm is both complete and

optimal, meaning that the algorithm both always finds the shortest path if one exists and

it is guaranteed that there is no shorter path than the one that it finds, respectively

(Russell & Norvig, 2009). However, A* possesses these properties only if the heuristic

function πt adheres to certain constraints. First, it must satisfy the constraints of Dijkstra’s

algorithm, meaning that the graph is finite and that it has non-negative edge weights. To

Figure 4 A* Algorithm for PPSP Queries

A*(G = (V,E), w : E, s ,t∈ V, πt)

1. for each vertex u ∈ V

 Set the parent of u to null

 Set the state of u to unvisited

 Initialize d(s,u to ∞

2. Set the state of s as visited

3. Set d(s,s) to 0

4. Insert all nodes into Priority Queue Q //Open Set

5. Create empty set R //Closed Set

5. while Q is not empty and t has not been visited

6. Remove minimum u ∈ V from Q

7. Mark the state of u as settled

8. if u = t : stop

9. Add u to R

10. For each vertex v ∈V adjacent to u ∈V

11. g’ = d(s,u) + w(u,v)

12. f’ = g’ + πt v //πt is the A* heuristic function

13. if v ∈ R and f’ ≥ d(s,v): continue

14. if v ∉ Q or f’ < d(s,v):

15. Set the parent of v to u

16. g[v] = g’

17. f[v] = f’

18. if v ∉ Q: add v to Q

Campbell 21

achieve optimality, the first constraint is that the heuristic function, πt, must be

admissible, never overestimating the distance to the target vertex. This means that, in the

case of graphs, for a heuristic function to be admissible, for any vertex v ∈V,

 (1)

An intuitive example of an admissible heuristic is in the case of routing

applications, in which the straight line distance to a target point is used as the admissible

heuristic. Because the shortest distance between two points on a map is a straight line, it

can never overestimate the distance of the path to the target at any point in the search.

 The second constraint for optimality states that πt must be consistent, meaning

that the algorithm never traces its steps backward when attempting to settle the path

(Russell & Norvig, 2009). More formally, when settling vertices on a path, if for every

vertex n and every successor vertex n′, the heuristic cost πt(n) should be no greater than

the cost of getting to n′ plus πt(n′). So

 ′ ′ (2)

Every consistent heuristic is also admissible, as it can never overestimate the cost

of reaching the target vertex (Russell & Norvig, 2009). The consistency constraint

requires a heuristic to obey the triangle inequality, which requires that one side of a

triangle can be no longer than the sum of its other two sides. In the case of Equation 2,

the triangle’s endpoints are represented by n, n′, and t.

For an A* query, let be the vertex currently being visited on the search and let

 be the previously visited node. An admissible heuristic can be made into a consistent

heuristic can by making the following adjustment:

 (3)

Campbell 22

The equation for this heuristic is known as the pathmax equation and can be used to force

consistency for any admissible heuristic. It is extremely useful when a proof of

consistency has not been found for an admissible heuristic.

Finally, let and each be an admissible heuristic function for any

vertex v ∈V of the graph, let

 ≥ (4)

If Equation 3 holds, then dominates , verifying that

is a more

efficient heuristic. An A* search using

as a heuristic visits no more nodes than

on its way from source to target, allowing it to reach the target while visiting fewer nodes

in the graph. A* can never suffer a performance degradation by switching from one

heuristic to another consistent heuristic that dominates it (Pearl, 1984). Therefore, the

best possible heuristic is the most dominant, consistent heuristic. Just as with Dijkstra’s

algorithm, A* also has a bidirectional variant. In the bidirectional variant, two heuristic

functions are used with the same criteria of being consistent (and inherently, admissible).

 A metric space is a set with a global distance function d known as a metric that,

for any points x, y in the set, gives a nonnegative real number as the distance between

them. A metric satisfies the following properties for all points x, y, z in the set:

 d(x,y) ≥ 0 (nonnegative)

 d(x,y) = 0 if and only if x = y (identity)

 d(x,y) = d(y,x) (symmetry)

 (the triangle inequality)

Using the shortest path between two vertices as the distance function, a finite, connected,

undirected graph with positive edge weights fits each of these requirements and is,

Campbell 23

therefore, a metric space. A directed graph with non-negative edge weights is a quasi-

metric space, meaning it has all the properties of a metric space except the symmetry

property. The triangle inequality, originally proposed by Euclid in Elements around 300

BC, specifies that for three points in a metric space, the distance between any two of

those points is no greater than the sum of the other two distances that form the triangle

(Millman & Parker, 1991). For points x, y, z in a metric space, the triangle inequality

states:

 (5)

This establishes an upper bound for the distance between points x and z. A lower bound

can also be derived from the triangle inequality.

 ≥ (6)

This is known as the reverse triangle inequality and is derived from the triangle

inequality as follows. First, subtract from both sides from Equation 4:

 ≥ (7)

For ≥ , Equation 5 holds. Then, for , we examine

the following triangle inequality for points y and z.

 (8)

Subtracting on both sides, we get

 ≥ (9)

By combining Equations 6 and 9, the new lower bound for x and y becomes

 ≥ (10)

Because obeying the triangle inequality is a required property of a metric space, the

reverse triangle inequality is a required property, as well.

Campbell 24

The triangle inequality can be generalized for all polygons through induction

(Millman & Parker, 1991). Given a set of points P1, P2, …, Pn in a metric space,

 (11)

This is known as the generalized polygon inequality and follows from induction from the

triangle inequality.

Finally, another geometry-based inequality for metric spaces is known as

Ptolemy’s Inequality. For four points w, x, y, z in a metric space, Ptolemy’s Inequality

states that

 ≥ (12)

This inequality is derived from measuring the sides of quadrilaterals (Kay, 2011).

PageRank is an edge analysis algorithm that is used to compute the probability

that a vertex in a network will be visited on a random walk of the network (Brin & Page,

1998). Its initial intention was to act as a ranking system for distinct vertices (web pages),

indicating their individual popularity in a random walk of the graph. However, the

algorithm has demonstrated utility in a wide variety of graph applications in which

analyzing the priority of particular vertices is a concern (Andersen, Chung, & Lang,

2006; J. Chen, Bardes, Aronow, & Jegga, 2009; P. Chen, Xie, Maslov, & Redner, 2007;

Liu, Bollen, Nelson, & Van de Sompel, 2005).

PageRank is an eigenvector centrality measure that is computed as follows. Given

a graph G with n = |V| vertices and vertices numbered 1 through n, an adjacency matrix A

is an n×n matrix formed such that

(13)

Campbell 25

for i,jϵ[1,n]. This is the simplest type of adjacency matrix. In other applications, the

weight of the edge or number of edges between two nodes is used for edges between two

vertices.

After forming the adjacency matrix, an n×n transition probability matrix P′ is

computed, where each element P′ij contains the probability that a surfer would move from

vertex i to vertex j. For each vertex i ϵ V represented by a row Ai in the adjacency matrix,

let L(i) represent the set of vertices adjacent to i. P′ij is then computed as follows:

 ′

 ∈

(14)

(Page, Brin, Motwani, & Winograd,

1999)

The goal of PageRank is to identify the principal eigenvector of the

transformation of this matrix that takes into account surfer teleportation, the likelihood of

a surfer to move to another vertex without following any specific path in the graph. To

compare this to web browsing behavior, this is the likelihood of a surfer “getting bored”

and finding a new web page to start surfing. Let α ϵ [0,1] represent this probability. Then

P, the transition probability matrix taking into account surfer teleportation, is computed

as follows:

 ′

 (15)

The principal eigenvector of P can be computed by a variety of different methods for

speed or application (Das Sarma, Gollapudi, & Panigrahy, 2011; Kamvar, Haveliwala, &

Golub, 2004; Sun, Deng, & Deng, 2008). The basic algorithm that is used to quickly

approximate the principal eigenvector is known as the power method (Mises &

Campbell 26

Pollaczek-Geiringer, 1929). A delta vector δ and initial guess vector x0 for x of size n

with arbitrary inputs is created and is continuously updated by

 (16)

until

 (17)

The final derived vector xk is known as the PageRank vector, with the value in xk[i], 1 ≤ i

≤ n, representing the PageRank value of the vertex corresponding to i. Using this method,

PageRank maintains a time complexity of O(|E|) (Bao, Feng, Liu, Ma, & Wang, 2006).

Summary

Modern day techniques for preprocessing large graphs to aid shortest path queries

are insufficient in many real-world applications for devices with limited resources. Some

algorithms rely on large amounts of memory, removing the ability for the device to

perform other operations while performing navigation planning. Others rely on heavy

compute resources, which can be expensive at smaller scales and consume a large amount

of energy. To address this problem, this dissertation characterizes and compares the

theoretical and practical performance of ALP, a new class of algorithms against ALT, the

preprocessing technique from which it was derived. When combined with distributed

embedding, ALP’s novel feature is that it can rely on more precomputed distance

information than ALT to derive a heuristic for A* while realizing a significant reduction

in both space complexity and preprocessing time. Its ability to quickly perform

preprocessing lends itself to better landmark selection, as more trials to vet landmarks can

occur. It is also able to compute and store more landmark information with a fixed

Campbell 27

amount of required memory. Because of its improved preprocessing, heuristics can be

generated that are on par or even better than those generated by ALT. The algorithms’

characterization will occur through the identification of optimal landmark selection

strategies in an effort to advise future users of the algorithm of the initial computations

that need to be performed in a network. Such experiments will occur with both synthetic

and real world benchmark data to truly test the algorithms in a variety of scenarios. In

the end, a set of portable graph libraries, a theoretical and experimental characterization

of ALP against ALT, and a characterization of landmark selection techniques for the ALP

approach will be generated.

This dissertation is organized as follows. Chapter 2 introduces the problem of

preprocessing the shortest path algorithm and reviews existing methodologies for path

planning and landmark selection. Chapter 3 introduces the motivations for using the

polygon inequality to guide A* shortest path searching, laying the foundations of the

ALP class of algorithms and establishes several theoretical techniques for identifying

landmarks. Chapter 4 describes data analysis, findings, and results of experimentation

with respect to the bounds and landmark selection algorithms for ALP contrasted with

that of ALT. Chapter 5 summarizes the conclusions of the study based on the analysis

described in Chapter 4 in relation to the theoretical characterization described in Chapter

3.

Campbell 28

Chapter 2

Review of the Literature

To understand the principles of preprocessing a graph to perform shortest path

queries, identify new methods of approximate distance estimation, address techniques for

identifying landmark elements of the graph from which to base distance estimation, and

develop algorithms that maintain realistic space complexity, this chapter provides a

review of key papers from the academic literature.

Metric-Independent Shortest Path Preprocessing

Significant work has been done in preemptively analyzing graphs to store

information that can assist in solving the point-to-point shortest path (PPSP) problem

(Awasthi et al., 2005; Duan et al., 2009; Lin, Kwok, & Lau, 2003; Sanders & Schultes,

2007). Performance for algorithms that attempt to maintain exact distance information

degrades for large-scale graphs. In this literature review, algorithms that focus on

distance estimation are described. In particular, because ALP and ALT algorithms rely on

the same fundamental principles, the preprocessing algorithms in this review have been

vetted through their comparison to ALT algorithms.

In practice, the applications of a graph are taken into account to create metrics

that advise shortest path search queries (Delling, Goldberg, Pajor, & Werneck, 2011).

The development of such preprocessing algorithms is an acknowledgement, on behalf of

the academic community, that more efficient algorithms than normal Dijkstra’s or A* are

Campbell 29

needed to handle the challenges of real-world pathfinding applications. While this

dissertation is concerned with practical applications of shortest path search, the goal is to

make practical a general class of algorithms for shortest path preprocessing. Therefore,

the preprocessing performed by the ALP algorithm will be compared and contrasted with

other forms of metric-independent preprocessing, which are preprocessing algorithms

that only take the graph topology as input (Delling et al., 2011). Such algorithms have the

shortcoming of producing a large amount of auxiliary data for use during query time. As

shown in Figure 5 below, metric-independent preprocessing commonly involves

performing some computations and storage of a subset of possible distance information

for key points in a graph prior to running PPSP queries. One of the main contributions of

this dissertation is to demonstrate a class of algorithms that significantly reduce the

amount of auxiliary data while maintaining a practical speedup to the A* algorithm.

Figure 5 Common Paradigm for Metric-Independent Preprocessing

A*, Landmarks, and Triangle Inequality (A. V. Goldberg & Harrelson, 2005)

While many other metric-independent preprocessing algorithms exist, ALT,

developed by Goldberg and Harrelson, was the original algorithm to propose using

landmark methods to speed up A*. ALT describes a class of algorithms that compute a

Campbell 30

heuristic for A* by using precomputed shortest path trees (SPTs). These SPTs are rooted

at strategically chosen landmark vertices in the graph. Using the triangle inequality, the

distance information stored by these SPTs is exploited to estimate the distance between a

visited vertex and a search target (Goldberg & Harrelson, 2005). The ALT algorithm is

one of the central focuses of this dissertation. Both the ALT and ALP algorithms depend

on the same fundamental principles to estimate distances in a graph. Specifically, we will

investigate landmark selection methods that optimize heuristics for the new ALP class of

algorithms and how they compare to the landmark selection methods created for ALT.

Goldberg and Harrelson’s original work provided three contributions. First, their

main contribution was a preprocessing technique for computing distance bounds that

depends on identifying a carefully chosen, relatively small (in comparison to |V|) number

of vertices, called landmarks, in a graph. Second, they provided the first exact shortest

path preprocessing algorithm for arbitrary graphs (no restricted graph classes). And

finally, they tested this algorithm in an experimental study comparing new and previously

known algorithms both on synthetic graphs and on real-world road graphs.

In ALT, a PPSP query uses computed distance estimate, derived from the triangle

Figure 6 Illustration of distance information for three vertices not necessarily incident

to each other in a graph

Campbell 31

inequality, to guide the search. Using the distances illustrated in Figure 6 for a graph

 this inequality yields two important equations for any three vertices ∈

 :

 (18)

 ≥ (19)

Let L ⊆ V be the set of landmarks with distance d (v, li) stored for all vertices v ϵ V and

any landmark li ϵ L, 1 ≤ i ≤ |L|. Due to the triangle inequality, the following equation

holds for vertices s,t ϵ V:

 ≥ (20)

Based on the above arguments, the ALT algorithm works as follows: In a

preprocessing step, the Dijkstra’s SPT algorithm is used to compute and store the

distances to each landmark in L from all other vertices in V. Then, during PPSP queries,

the triangle inequality is used as follows: let πt
L
 (v) be the heuristic function based on

landmarks that will be used for the A* algorithm seen in Figure 4. Then the following

equation represents the heuristic function when visiting vertex v ϵ V on the way to a

target vertex t:

 (21)

Recall that a dominating heuristic function for A* yields a larger estimate than

other heuristics without overestimating distance. For this reason, in ALT, to compute the

best estimate, the maximum triangle inequality estimate is taken over all landmarks.

Using this heuristic for A* tailors the bounds to the graph being analyzed, greatly

reducing the search space, along with memory requirements and processing time. The

Campbell 32

proof that
 is an admissible heuristic for the shortest path between two vertices s,t ϵ V

follows:

Proof. Let P(s,t) be a shortest s-t path. For any vi ϵ V, i≤1<k,

 ≥ . Therefore, ≥

. Because of

this, ≥

 (Bauer, Columbus, Katz, Krug, & Wagner, 2010).

The runtime of ALT’s preprocessing, not including the actual selection of l

landmarks, is og , as a breadth-first search is performed from each

landmark to form each SPT. Because an SPT is computed from every chosen landmark,

ALT’s data structure requires space. Since , the theoretical space

requirement for ALT is . This quadratic space requirement means that the

preprocessing algorithm does not scale well in terms of memory. As a dataset (or more

specifically, its number of vertices) grows, the number of chosen landmarks must be

increased in order to maintain an appropriate distribution of distances.

The ALT algorithm’s preprocessing technique is faster than other preprocessing

techniques for shortest path search, due to the fact that it only performs one shortest path

search from each landmark to create each SPT. In experimentation on large European

roadmap datasets (nodes), it was shown that preprocessing only 16

landmarks can lead to a speedup factor of nearly 50 using the bidirectional

implementation of A*(Jens Maue, 2006). However, identifying the set of landmarks that

optimizes overall performance during preprocessing and querying on any graph is an NP-

hard problem known as MINALT(Bauer et al., 2010).

For sparse graphs, a larger number of landmarks are also required by ALT to be

effective. Storing distance information for each landmark is quite space intensive, as an

Campbell 33

individual measurement of distance must be kept for each node-landmark pair. Therefore,

the ALT algorithms lack the ability to maintain reasonable space complexity while

achieving efficient speedup for sparse graphs.

Increasing the number of landmarks or the size of the graph can present another

drawback to the ALT approach. Note that, for ALT, as each vertex is visited for A*,

 must be computed, such that for l landmarks, l subtraction operations need to

occur along with a max operation (of time complexity O(l)). For a large enough l or for

long enough paths, performing this many operations for every visit to a vertex in the

graph can drastically slow down a query’s actual runtime. In some cases, this will result

in Dijkstra’s algorithm (A* with a 0 heuristic) outperforming A* with the ALT heuristic.

This dissertation advocates that the number of visited vertices cannot be the only reliable

measure of the effectiveness when defining a new heuristic function for A*. Future

research must measure the actual number of operations that occur during queries and not

simply the size of the search space to clarify an algorithm’s behavior.

Precomputed Cluster Distances (J Maue, Sanders, Matijevic, Alvarez, & Serna, 2006)

The precomputed cluster distances (PCD) algorithm was designed with the

intention of reducing the space requirements of metric-independent preprocessing

algorithms such as ALT. PCD uses the distances between graph clusters to inform the

heuristic for A* (Jens Maue et al., 2010). The preprocessing step of the PCD algorithm

assumes that the graph has been partitioned into k clusters that will be used in the query

process to maintain an upper bound, where k is predetermined. This preprocessing

method is metric-independent, as clustering is seen as a part of topology input. Also, the

Campbell 34

algorithm operates in the same manner regardless of the type of clustering and, in

practical cases, this clustering is done ad-hoc by quickly splitting the graph into cells.

These ad-hoc methods are much faster than more accurate methods as the Louvain

algorithm (Blondel et al., 2008).

To begin PCD preprocessing, the minimum distance between each pair of clusters

is computed by connecting, with zero weight, a single vertex to all border vertices of a

cluster and computing the shortest path from that “single source”. A border vertex is a

vertex with an adjacent vertex that is in another cluster C. Border vertices realize the

shortest distance to other clusters in the graph. These cluster distances are then used to

advise A* during query time. Only k
2
 shortest paths are calculated with this approach and

only k
2
 distances are then stored. The impact of this preprocessing step is dependent on

the structure, size, and number of clusters that the graph is partitioned on. But with

adequate parameters, the algorithm is flexible enough to allow many different types of

clustering.

PCD’s preprocessing method is significant as it experimentally provides greater

speedup than the ALT algorithm and achieves drastically reduced space complexity. The

PCD algorithm only computes and stores distance information for border nodes of

partitions of the graph. Therefore, the algorithm benefits from a significant reduction in

preprocessing time and required memory.

The querying step for PCD is a modification of a bidirectional version of

Dijkstra’s algorithm. This means that the lower and upper bounds that need to be updated

are computed differently based on the iteration of the search. From the start vertex and

end vertex, lower bounds for the length of any path from source to target containing a

Campbell 35

settled vertex in an intermediate cluster are repeatedly estimated. Let C be the set of

clusters in a graph G. The shortest path between two clusters P,Q is

 ∈ ∈ (22)

For an intermediate vertex, u ∈ V, being settled, the lower bounds of the shortest

path between vertices s,t ∈ V can be estimated to be

 ≥ ′ (23)

 ≥ ′ (24)

where S, T, U are clusters that respectively contain s,t,u ∈ V, and cluster border vertices

s′,t′∈ V .

The upper bound is also updated at every iteration of the search. The settled

vertex gets pruned if the path from the source to destination using it is greater than the

maintained upper bound. For clusters ∈ and source-target pair s ∈ , and t ∈ ,

let ∈ ∈ represent the source-target pair for the shortest path from cluster to

 . This target pair is denoted . Also, let ∈ ∈ represent the source-

target pair for the shortest path from cluster to , denoted . The upper bound

is initialized as the sum of the diameters of the source and target clusters and the

precomputed distance between their clusters using one of the following equations:

where, for a cluster A ∈ G, r(A) denotes the radius of the cluster. Each of these equations

hold for the upper bound of . The upper bound is then maintained with one of

 (25)

 (26)

 (27)

 (28)

Campbell 36

these equations based on the upper bound and whether or not , , , or is

settled.

Attempting to set bounds on a search space to prune the space has been a common

technique for speeding up shortest path queries. Often, however, many algorithms require

a significant amount of storage, inherently rendering them not scalable for larger datasets

(Lauther, 2004; Jagan Sankaranarayanan, Samet, & Alborzi, 2009; Wagner, Willhalm, &

Zaroliagis, 2005). The previously discussed ALT algorithm maintains a space complexity

of for l landmarks. The ALT algorithm was also cited by PCD’s authors as a

key reason for developing their own space-efficient algorithm.

PCD’s chief benefit is that while, in practice, it requires more preprocessing than

landmarks, it achieves PPSP speedups through far more space-efficient means. In Maue’s

work, when comparing the amount of space required by PCD to ALT, he notes that the

space complexity for PCD is compared to ALT’s , where is equal

to the number of border nodes for clusters. However, since the actual clustering

information is stored, as well, the space complexity is actually , as

information about which cluster every vertex belongs to needs to be referenced. In

Maue’s experiment, the landmark method also had an experimental average speedup to

normal PPSP less than that of PCD (Jens Maue et al., 2010) and a higher preprocessing

time complexity. However, as shown later in the methodology for ALP, the space

requirement for landmarks can be significantly reduced while benefiting from a sufficient

performance increase. PCD will be a key algorithm to compare ALP against when using

speed as a metric.

Campbell 37

Note also that the clustering takes place before preprocessing, meaning that the

algorithm itself ignores the type of clusters when computing distances. Clustering

information is presumed to be input parameters, limiting the application of this algorithm.

The downside to this algorithm is that the complexity benefits are only gained if the

clusters inherently come with the topology information or are quickly computed. This is

computationally intensive and is optimal only for graphs that have the proper structure

for clustering, such as small-world or scale-free graphs. The fastest known algorithms for

graph clustering rely on modularity optimization, another NP-hard problem, and run

experimentally in O(log) (Blondel et al., 2008).

The key issue here is that data that can be overlaid onto a graph does not

necessarily cluster or partition well. This can have a significant impact on the PCD

algorithm. Optimal clustering (with maximum modularity) can sometimes result in

clusters that are extremely small, which could potentially require PCD’s preprocessing

algorithm to store nearly as much information as ALT preprocessing. In such cases, while

the space benefit is still clearly better, the performance benefit of PCD over ALT for a

high number of clusters has not been tested.

Reach-Based Routing (Goldberg et al., 2009; Gutman, 2004)

Reach-based pruning is another method for speeding up shortest-path queries such

as Dijkstra’s algorithm. Reach is a centrality measure that identifies how central a vertex

is on a shortest path (Gutman, 2004). The reach of a vertex v ∈ V is larger when v is

closer to the middle of a shortest path and smaller otherwise. Based on this measure, the

Campbell 38

algorithm was created to deal with large-scale graphs, which inherently contain shortest

paths that are larger in size.

Let the reach of a node v ∈ V be denoted as for shortest path P. For a reach

metric m and a path P, let m(P) represent the sum of m(e) over all edges e of P (or zero

for |P| = 1). Then for two nodes u,v ∈ V, m(u,v,P) represents m(Q) where Q is the subpath

in P from u to v. Formally, for path P(s,t) and graph G,

 (29)

 ∈ ∈ (30)

where is the reach of v in G, SP the set of all shortest paths in G, and ∈ ∈

 represents any shortest path in G containing v.

For the purposes of creating a feasible algorithm, computing exact reaches for all

elements in a graph is not scalable. Therefore, an upper bounds for , denoted as

 , is computed instead. Let be the lower bound of . If, for a source-target

pair s,t ϵ V,
 and

 , then v is not on a shortest path

from s to t. Therefore, reach-based pruning for shortest path search occurs as follows.

During a run of Dijkstra’s algorithm (seen in Figure 3), before inserting a vertex v ϵ V

into the priority queue, a test is run on the reach values for . Vertex is inserted into the

priority queue if

 ≥ (31)

Otherwise, the vertex is not considered to be on the shortest path. These reach upper

bounds are computed during the preprocessing phase. Lower bounds are iteratively

computed. The bidirectional variant is achieved by setting implicit bounds in both

directions. Note that in the bidirectional variant, searching between s,t ϵ V by way of

Campbell 39

vertex v ϵ V the goal is to identify d(s,v), d(v,t), P(s,v), and P(v,t). With this in mind,

 is likely to be high, making v a high-reach vertex. This bidirectional variant is

often used to optimize the speedup.

In practice, the reach measure along with reach-based pruning is combined with

other approaches such as contraction hierarchies (Geisberger, Sanders, Schultes, &

Delling, 2008b) or ALT (Goldberg et al., 2009). In this research, the combination of

reach-based pruning and ALT, known as REAL, is studied. REAL is a partial landmark

algorithm which stores landmark distances for all vertices with high reach, set by

establishing a reach threshold R. A query begins by running normal bidirectional

Dijkstra’s (or A* with no heuristic) with normal reach-based pruning. Bidirectional

Dijkstra’s continues until either the algorithm terminates or the search frontiers, both

forward and backward, have crossed into the region of vertices with reach R or higher.

Once the search radii of the front and backward searches have crossed the

threshold, the algorithm then uses ALT to accomplish the remainder of its task. The way

that the remainder of the path is found in forward search is symmetrical to the way it is

found in backward search in the following description. For identifying P(s,t), suppose

that s has low reach. Denote s′ as the proxy, or highest reach vertex closest to s. The

vertex s′ is computed either during preprocessing or by a multiple-source version of

Dijkstra’s algorithm. Then store the length of the shortest path between s′ and s, d(s′,s).

The lower bound for the vertex where both search frontiers meet is computed using the

precomputed landmark distances. For a landmark L, the lower bound on d(s,v) using

distances to L is specified by

 ≥ ′ ′ (32)

Campbell 40

The lower bounds from target t are computed in the same way. This algorithm’s

performance is strongly dependent on the quality of the lower bound. This bound is

determined by both the number of landmarks and the reach threshold. For too high of a

threshold, the lower bounds will be inaccurate. The number of landmarks and landmark

selection vary the performance of the algorithm in the same manner that they do in

regular ALT.

Other Preprocessing Algorithms

Maue’s PCD algorithm demonstrated practical performance benefits over both the

Arc Flags (M et al., 2007) and Geometric Containers (Wagner et al., 2005) preprocessing

algorithms. The Geometric Containers algorithm relies on the concept of edge labeling,

where preprocessing attaches a label to each edge in a graph that represents all nodes to

which a shortest path starts with the individual edge. Specifically, a geometric object,

known as a container, is created that contains at least the edges within a given graph

region. PPSP queries are then answered by Dijkstra’s algorithm as restricted to the edges

that lie inside a container. While geometric containers algorithms maintain only a linear

space requirement, the preprocessing step requires a single source shortest path search

from every node, making it impractical for large-scale graphs.

For Arc Flags algorithms, an input graph is partitioned such that a flag is

computed for each edge within a partition, or region, which indicates whether the edge is

on a shortest path to any node in that partition. It is similar to the Geometric Containers

algorithm in that it considers only the edges whose flag correspond to a specific region.

Campbell 41

This algorithm still realizes a high preprocessing time, as one shortest path search from

every border node of a region is required.

 Finally, it has been noted, from experimentation, that landmark methods such as

ALT begin to drastically underestimate the shortest path when approximating short

distances (relative to the size of the graph) (Maruhashi, Shigezumi, Yugami, & Faloutsos,

2012). For this reason, EigenSP uses eigenvalues and eigenvectors to directly compute

distance. The eigenvalues and eigenvectors of a graph adjacency matrix can indicate path

capacity between any two vertices in an undirected, connected graph (Harary &

Schwenk, 1979). The adjacency matrix A for an undirected, connected graph G is a

symmetric matrix with real eigenvalues. This means that A is a Hermitian matrix.

Because of this, the eigenvalues and eigenvectors for A can be used to count the number

of paths between an arbitrary pair ∈ . Note, from applied mathematics, ,

where is the diagonal matrix for the eigenvalues of A and X is an orthonormal matrix

containing its eigenvectors as columns. Then, from the orthonormality of X, for ∈ :

 (33)

From spectral graph theory, the elements of represent the number of paths of length k.

Specifically, an element e in the i
th

 row and j
th

 column of matrix represents the

number of paths from vertex i to j in G. If there is no path of length k from vertex i to j in

 , e = 0. Therefore, for source and target vertices s and t, the eigenvectors and

eigenvalues of a graph’s adjacency matrix are related to their shortest path length by the

following equation:

 ∈
(34)

Campbell 42

where is the s
th

 entry of the r
th

 eigenvector,
 is the r

th
 eigenvalue of the adjacency

matrix and n is the number of orthogonal eigenvectors.

At query time, EigenSP tests a series of values for k to respond to a query. To

speed up PPSP queries, a set of eigenvectors and corresponding eigenvalues are

precomputed. While this leads to extremely fast PPSP queries, this method of

precomputation does not scale well. Even when using some of the most efficient

algorithms for computing eigensystems (Cullum & Willoughby, 2002), it is simply

infeasible to rely on the number of computations to calculate directly for large-

scale practical implementations. However, as in the Geometric Containers or Arc Flags

algorithms, if a smaller region R of the graph can be extracted such that the shortest path

from any vertex in R to any other vertex in R only traverses edges within R, then EigenSP

can be simply run on the subgraph for R. This is a potential area of future research.

Landmark Selection Algorithms

Landmark selection is crucial to the performance of ALT and ALP algorithms. In

this section, the most common landmark techniques for ALT are reviewed. Identifying

the particular set of vertices to select as landmarks such that the expected number of

settled vertices for shortest path queries is minimal, or what is known as the MINALT

problem, is NP-Hard (Bauer et al., 2010). Comparing, contrasting, and understanding the

fundamental reasons behind modern landmark selection techniques is critical in

identifying new ones for the ALP class of algorithms. The algorithms that work well

under the ALT paradigm do not necessarily work well under the ALP paradigm when

multiple landmarks are used. Studying the development process of these algorithms also

Campbell 43

suggests methods of creating new ones for ALP. The study of the behavior of these

landmark selection algorithms in ALP, modification of their parameters, and the

development of any new ones are the main focus of this dissertation.

Search Space

In terms of pathfinding, the search space is the feasible region of solutions for a

given query. For a set of landmarks L, the search space, (Bauer et al., 2010), of

an ALT query can be explicitly defined as follows:

 ∈
 } (35)

In this space, denotes that the search space expands until the target t is reached.

For ALT, this definition implies that there are no vertices outside of this search space for

 that satisfy
 . Overall, this definition shows that, for any

given set of landmarks, the search space for ALT only takes into account paths that are

less than or equal to the distance between s and t. If landmarks are chosen strategically,

the number of vertices in this search space can decrease, inherently reducing the search

time. Using this definition, the MINALT problem is explicitly defined as follows:

Problem: ∈

In other words, the MINALT problem is the problem of identifying the set of

landmarks that minimizes the summation of all search spaces for any two vertices

 ∈ . In general, increasing the number of landmarks k improves the speedup

performance of ALT search. The optimal solution to this problem, however, minimizes

the preprocessing time, preprocessing space complexity, and average query time.

Identifying the solution to this problem is NP-hard. This has been shown by a polynomial

Campbell 44

time reduction to the MAXCOVER problem (Fuchs, 2010). Typically, an optimization

method is used to get close to a good solution for MINALT. These landmark selection

techniques, also known as embedding methods, typically fall into three categories: global,

local, and distance-based (Sommer, 2012). Global techniques rely on the classic

paradigm of using the entire graph for landmarks, having each landmark relate to all

vertices in the graph. Local techniques require a vertex ∈ to compute path

information only to certain landmarks, usually only recording the shortest path between

and a subset of the landmarks. In these cases, the nearest landmarks to are typically the

ones that have information stored. Finally, distance-based methods vary in the distance

information that is stored, many times storing information about different subsets of the

graph.

Basic Methods

The first proposed landmark selection algorithm and perhaps the most intuitive is

random landmark selection (Goldberg & Harrelson, 2005). Based on the number of

vertices in the graph, k vertices are chosen at random to serve as landmarks. A series of

sample queries are run with each landmark to determine the best set. This is a brute force

method of performing landmark selection for ALT. However, in terms of lower bounds,

random landmarks demonstrate better performance than any of the following methods of

landmark selection (Potamias et al., 2009).

 Goldberg & Harrelson immediately recognized this as a flawed, brute-force

method of choosing landmarks and proposed farthest landmark selection (Goldberg &

Harrelson, 2005). The algorithm works as follows: Identify a start vertex ∈ and find

Campbell 45

the vertex ∈ farthest, in terms of path weight, away from it. Add v′ to the set of

landmarks. Then, proceed in iteration by finding the next vertex farthest away from the

current set of landmarks and adding to the set. The next vertex that is farthest away

maximizes the distance to the closest vertex in the set. Continue until k landmarks have

been identified.

Also initially proposed was planar landmark selection (Goldberg & Harrelson,

2005). This landmark selection algorithm uses graph layout information to divide a graph

into sectors. The vertices of the graph are all given polar coordinates. Based on these

coordinates, a point is placed in the middle of the graph and the sectors are created. For

each sector, the farthest point is selected to be a landmark. If two points for different

sectors happen to be on the border of their respective sector and adjacent to each other,

one of them is removed.

A later version of farthest landmark selection was introduced that computed

farthest based on path distance instead of path weight, meaning that the cost of moving

from vertex to vertex is 1 (A. V. Goldberg & R. F. Werneck, 2005). This will be denoted

here as farthest-d selection. This biases farthest selection to choose separate, dense

regions of the graph to place landmarks in. While the selection algorithm takes a smaller

amount of time than most, there are still better methods of identifying more optimal

landmarks.

Avoid landmark selection, a commonly used and modified landmark selection

algorithm, begins by computing the SPT Tr, rooted at some arbitrary vertex ∈ (A. V.

Goldberg & R. F. Werneck, 2005). Often, r is chosen at random. For Avoid, the term

weight is defined differently and will be denoted here as A-weight. For a set of landmarks

Campbell 46

L, the A-weight of a vertex v ϵ V is the difference between its distance d(r,v) and the

lower bound of d(r,v) as computed in the ALT algorithm. Let Tv be a subtree of Tr. For

every v ϵ V, the size s(v), or the sum of the weights of all vertices in Tv, is computed. If w

is the vertex with the maximum size, Tw is traversed, following the child with the largest

size until a leaf is reached. The first leaf that is reached is a new landmark. This approach

“avoids” existing landmarks to improve coverage of landmarks over the graph.

Advanced Landmark Selection Algorithms

In the previous section, we detailed some very basic embedding methods for

estimating the shortest path using the ALT algorithms. The following algorithms perform

more in-depth graph analysis to strategically select landmarks.

Betweenness Centrality Embedding (Potamias et al., 2009)

One of the first advanced landmark selection algorithms that has shown promise

is based on the betweenness centrality of landmarks. Such mining of the graph before

selecting landmarks has proven to be several orders of magnitude faster than current

methods.

The basic principle behind using betweenness centrality as a guide for landmark

selection stems from the following observations:

Observation 1: Let a landmark node l exist on the shortest path between two nodes s and

t. Then .

Observation 2: Let a node s exist on the shortest path between two nodes l and t or let t

exist on the shortest path between nodes s and l. Then

Campbell 47

Based on these observations, this work attempts to solve a problem that is similar to the

MINALT problem. It proposes the LANDMARKSd problem, which attempts to cover all

(or most) shortest path pairs in the graph by ensuring there are landmarks between them.

Problem LANDMARKSd(G, k): Is there a set of landmarks ⊆ of size at most k such

that the number of pairs of vertices ∈ covered by L is maximized?

A landmark covers a pair of vertices if there exists at least one landmark in L that

lies on the shortest path from to . If a chosen landmark lies on the path between two

nodes and , then the shortest path distance is simply the upper bounds of the triangle

inequality for that landmark. In other words, for a given landmark-source-target set

 ∈ This allows the upper bound of the triangle

inequality to be the answer to the shortest path problem. It follows, then that the optimal

landmarks for the LANDMARKSd problem are the ones with maximum betweenness

centrality in the graph. The LANDMARKSd problem is demonstrated to be NP-hard by

proving that LANDMARKS-COVER is NP-hard. LANDMARKS-COVER is proven to be

NP-hard because there exists a polynomial-time transformation to it from the NP-hard

VERTEX-COVER problem.

Problem LANDMARKS-COVER(G,k): Is there a number of landmarks ⊆ of size at

most k such that all pairs of vertices ∈ are covered?

Problem VERTEX-COVER(G,k): Is there a vertex cover, or set of vertices such that each

edge of the graph is incident to at least one vertex of the set, of size at most k in G?

For a vertex ∈ , let denote the number of paths from to containing

 . Also, let simply denote the total number of paths from to . Then

betweenness centrality of v is formally defined as

Campbell 48

 ∈

(36)

For landmark selections, the optimal landmarks are those with highest

betweenness centrality (Potamias et al., 2009). However, series of nodes with high

betweenness centrality will be clumped together in the graph, reducing their utility.

Therefore, two other metrics that are taken into account are degree and closeness

centrality. To select nodes based on degree, the nodes of the graph are simply sorted from

lowest to highest degree and the highest degree nodes are chosen. Also, choosing a node

with the lowest closeness centrality has demonstrated utility. For a source-target pair

 ∈ , closeness centrality CC of a vertex ∈ is defined as

 ∈

(37)

Choosing the vertices with lowest closeness centrality is the common

convention. However, both the closeness centrality and the betweenness centrality are

very difficult to compute in large scale graphs. Therefore, partitioning the graph into

sections and identifying nodes with the highest betweenness centrality, lowest closeness

centrality, or degree produce the most optimal results. In a series of experiments, the

centrality measures proved to be far more robust than the degree measures, primarily

because centrality measures produce results more indicative of the path structure than

simple degree measures.

Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme

(Miao, 2014)

Recent work has considered the differences between globally selected, query-

independent landmark selection and local, query dependent methods. The global methods

Campbell 49

discussed inherently incur a larger relative error (underestimates), particularly for close

nodes, than local ones. By establishing tighter bounds, the search space is inherently

narrowed. By identifying a query-dependent local landmark, the search no longer falls

prey to a global setting that could be less than optimal for local queries. This dissertation

effort will propose, implement, and test a hybrid, query-independent approach to

landmark selection for the ALP class of algorithms. For breadth, this work in query-

dependent, local embedding is reviewed.

A notional example can be made from the graph in Figure 7. Based on the given

global landmark l1 to the right of the graph, if we were to estimate the distance between a

and b using ALT, the following would result:

 (38)

However, a more accurate estimate could be made from node c, which is much closer to a

and b. This would result in the following estimation:

 (39)

This estimation is clearly tighter, therefore narrowing the search space. Node c is then

referred to as a local landmark.

Identifying such local landmarks demonstrates a benefit by narrowing the search

space. However, the method for actually identifying these landmarks is not intuitive.

Recall that once landmark nodes have been selected, for a given landmark li, ALT

identifies the shortest path between li and every other node in the graph by performing a

breadth-first search that spawns an SPT. By preserving this SPT structure, one can

identify, at query-time, the least common ancestor, or LCA, between a source and target

node pair as a local landmark. The LCA of two nodes ∈ in an SPT is the node

Campbell 50

furthest from the root that is an

ancestor of both s and t. In the

example in Figure 7, node c was the

LCA. Unless the global landmark is

the only common ancestor, the LCA

will always be closer to the two

query nodes than the global

landmark, therefore reducing the

search space.

Storing information in this SPT-based local landmark scheme can incur serious space

complexity costs. Three key pieces of information are stored for this algorithm:

1. Embedded Distances: Basic ALT requires space to record the distance

between landmarks and all other nodes of the graph.

2. Shortest path trees: Each shortest path tree requires space. Also, arrays that

are used to quickly calculate the LCA for larger SPTs require space. The

theoretical space complexity for SPTs and these arrays is also .

3. Range Minimum Query Index Tables: Tables used to efficiently identify least

common ancestors. Also requires space.

Further optimizations are made for this algorithm to enhance performance using

lossless graph compression to limit the amount of space required by landmarks and local

search algorithms to further narrow the search space. The theoretical space requirements

led to massive practical requirements when tested on real data. While the actual search

did not use all the data in memory, each of the separate structures necessary for the

Figure 7 Local Landmarks Example

Campbell 51

algorithm to be executed required being loaded into memory. Therefore, while certainly

increasing the overall time complexity of the ALT algorithm with a new and innovative

method of identifying landmarks at query-time, this algorithm sacrifices large amounts of

memory to be carried out on large datasets.

Campbell 52

Chapter 3

Methodology

Overview

The fundamental problem that this dissertation addresses is the optimization of

landmark selection for the A*, landmarks, and polygon inequalities (ALP) class of

algorithms. In Chapter 2, the ALT methodology for estimating shortest path distances for

A* was described, along with the most modern landmark selection techniques that

attempt to optimize the algorithm’s speedup ratio and comparable shortest path

preprocessing algorithms. Further, other metric-independent shortest path preprocessing

algorithms were highlighted. In this chapter, we demonstrate that using multiple

landmark vertices to guide A* search grants the ability to perform less computations at

both preprocessing and query time. Using a process dubbed distributed embedding, we

demonstrate that ALP has a significantly smaller space requirement in comparison to

ALT and can provide better landmark selection. It is also noted, in this chapter, that the

base heuristic for ALP, using a single landmark, has already been verified and validated

as the ALT algorithm. To begin to characterize ALP’s behavior when using multiple

landmarks, the approach in this effort sought to use two landmarks to guide the search

query.

In this chapter, the methodology for the dissertation is presented in its entirety.

The Methodology chapter provides the framework that guided the design and

implementation of a shortest path software library that includes the ALP dual landmark

Campbell 53

capability. The design for the dissertation’s experiments, along with their corresponding

metrics are described to further demonstrate that domination of one heuristic over the

other depends on the landmark set each is assigned and, in general, the denser the

landmark set, the better the heuristic. The methodology details five specific concepts: (1)

mathematical detail of the lower bounds that are created by the use of two landmark

vertices in the graph as reference points; (2) further theoretical specification of the use of

two landmarks in distributed embedding; (3) theoretical specification of ALT landmark

selection techniques in the ALP environment; (4) new landmark selection techniques that

apply to the characteristics of the ALP environment; and (5) description of the

experimentation and measurements required to fully characterize the ALP algorithm.

A key goal in developing this methodology was to establish the design of the

software experimentation framework that allowed for rapid updating of landmark

selection technique and heuristic function implementations, trivial collection of metrics,

and extraction of details about the data operating environment (i.e., graph structure and

characterization of shortest path queries). The Research Methods section details the

algorithms that were used to characterize ALP and its landmark selection techniques. The

Validation and Verification section contains a high-level explanation of the ALP software

library and dissertation experiments. Finally, the Summary recapitulates the scope of the

complete effort and maps the methodology to the overall contributions of the effort.

Research Methods

Quadrilateral Properties in Graphs

 Previous implementations of embedding methods compute shortest path trees

(SPTs) that cover the entire graph from a selected set of landmarks and use the triangle

Campbell 54

inequality at query time to

establish a lower bound for A*

(Goldberg & Harrelson, 2005).

The use of this geometric

inequality can be expanded to

allow for more lower bounds to

be derived. Such bounds are

derived by forming other types of polygons, of higher order than triangles, in the graph.

Using quadrilaterals, we explain how these heuristics can be derived by identifying any

polygon in a graph and setting the heuristic values for A* equal to the maximum derived

lower bound of one side of the polygon. The development of the ALT algorithm provides

a base case for such a hypothesis. The use of two landmarks, as seen in this dissertation,

provides an inductive step for the proof of the hypothesis. We begin with a description of

how to form a triangle in a graph to establish the triangle inequality as a lower bound.

This proof was derived from the reverse triangle inequality proof for

a metric space, detailed in Chapter 1.

Shown in Figure 8, for a connected graph G
1
, containing vertices ∈ , the

shortest path distances between each vertex form a metric space. If G is undirected, for

the distances between vertices , the following triangle inequalities hold:

 (40)

 (41)

1
 Recall from Chapter 1 that we are addressing graphs that are either directed or undirected. If directed, they

are strongly connected.

Figure 8 Three vertices within a sample connected

graph. The dotted lines represent shortest paths

between each of the vertices

Campbell 55

Both of these inequalities apply to the three vertices in G. The reverse triangle inequality,

which is used as a lower bound for A* in ALT, is derived from these inequalities as

shown in Table 1.

Statements Reasons

1. Triangle

Inequality

2. Subtraction on

both sides (#1)

3. Absolute Value

Definition (#2)

ALT uses this reverse triangle inequality to create a heuristic that estimates the

distance between vertices C and A by setting vertex B equal to a landmark l such that

 (42)

By computing and storing the values and before performing any PPSP

queries, this lower bound is then used as a heuristic to the A* algorithm. Because it is the

lower bound, it will never overestimate the distance between vertices A and C.

For a quadrilateral, the lower

bound of one of its sides can also be

calculated using the other three sides.

This reverse quadrilateral inequality can

also be used to establish the lower

bounds for the shortest path of a graph.

Illustrated in Figure 9, for a graph G with

vertices ∈ , the lower bound can be derived from the following system of

inequalities for quadrilaterals:

Table 1 Derivation of the Reverse Triangle Inequality in Simple, Connected Graphs

Figure 9 Four vertices within a sample

connected graph. The dotted lines

represent shortest paths between each of

the vertices

Campbell 56

 (43)

 (44)

 (45)

Similar to the triangle inequality for Figure 8, a set of inequalities describe the

lower bounds for distances between vertices of the graph represented in Figure 9. Shown

in Table 2, the reverse quadrilateral inequality is derived in a manner similar to that of the

reverse triangle inequality.

The resulting inequalities that bound the distance between two vertices, A and D, are

 (46)

 (47)

 (48)

Statements Reasons

 A B C

1.

Quadrilateral

Inequality

(Given)

2.

Subtraction

on both

sides #1

3.

Subtraction

on both

sides #1

4. Absolute

Value

Definition

(#2A/2B)

5. Absolute

Value

Definition

(#2C/3B)

6. Absolute

Value

Definition

(#3A/3C)

Table 2 Derivation of the Reverse Quadrilateral Inequality in Simple, Connected

Graphs

Campbell 57

A potential problem with these inequalities is that they have the ability to generate

negative lower bound estimates, which is useless for a nonnegative distance metric. For

utility, when attempting to estimate the lower bounds of a quadrilateral, other geometric

inequalities should be considered such that the highest possible lower bound can be used.

In this dissertation, we use two such estimations to inform the heuristic. The first,

Ptolemy’s inequality (Kay, 2011) for quadrilaterals is used as follows for the dual

landmark heuristic to yield a lower bound for the distance between A and D. First, we

begin with the original inequality:

 (49)

Note that when considering these alternative inequalities, we maintain the same notation

for each distance term, as to not disturb the inequality when a directed graph is used.

Then to estimate the distance between A and D, using simple algebra,

(50)

In practical cases, information regarding the values of and (the

diagonals) may be unknown. Therefore, the distance between can be estimated as

follows. First, suppose all the values on the right side of the above equation are known

and the values on the left side are unknown (except, of course, the distance between

vertices A and D). Using the reverse triangle inequality
2
, we understand that

 (51)

 (52)

Because they are non-negative, we also know that

2
 Taking directionality into account.

Campbell 58

 (53)

Using these lower bounds, we can rewrite Ptolemy’s inequality with respect to the lower

bound for the distance between vertices A and D as

(54)

Because we use Ptolemy’s inequality here, this can become a perfect estimate when a

cyclic quadrilateral is formed from the four endpoint vertices, ∈ .

Understanding how to form a cyclic quadrilateral in a graph or quickly verify that a

quadrilateral formed in a graph is cyclic, however, is outside of the scope of this

dissertation effort.

The use of Ptolemy’s inequality, here, serves as one of three examples of using

multiple data points to vary heuristics for A* search in a graph. Because multiple data

points are used, more inequalities can be generated to estimate distances. The maximum

over the set of lower bounds derived by these inequalities can be used to tighten the lower

bound. With that said, the second example gives two more lower bounds for the distance

between A and D, derived from the triangle inequality, are noted here:

 (55)

 (56)

As stated earlier in regards to Ptolemy’s inequality, and are commonly

unknown
3
. Though, in this case, we cannot derive a similar inequality by using the two

values’ lower bounds. However, in ALP’s case, we will see later that these equations will

come in handy when B = C. Therefore, we add it to the set of lower bounds.

3
 These would be the diagonals of the quadrilateral

Campbell 59

 The third example is taken from the four-point condition on metric spaces that is

valid for trees with weighted edges, such as in the case of a shortest path tree. The four-

point condition states that for the nodes in Figure 9, the shortest path tree holds the

following property:

 (57)

Just like with Ptolemy’s, and are commonly unknown. Therefore, we

replace these terms with their lower bounds in the equation:

(58)

Therefore, we have

 (59)

if and only if the following condition holds:

 ≥ (60)

In conclusion, when estimating the distance between two points in a graph such as

the one in Figure 9, the maximum of the following seven equations can result in the

tightest lower bound for the distance between vertices A and D.

Campbell 60

A*, Landmarks, and Polygon Inequalities

Just as with the reverse triangle inequality, the lower bound produced by the

reverse quadrilateral inequality can be used as a heuristic for the A* algorithm. The

establishment of this new heuristic is known as ALP, for its use of the A* algorithm,

Landmarks, and Polygon Inequalities. By choosing two landmark vertices to act as

endpoints B and C from the last section, a new dual landmark heuristic is achieved as

follows: For source and target nodes ∈ and two valid landmark vertices ∈

in a graph G, the following lower bounds hold for the shortest path:

 ≥ Reverse

Quadrilateral

Inequalities

 ≥

 ≥

 ≥ l1=l2

 ≥ l1=l2

 ≥

Ptolemy’s

Inequality

 ≥
Four-Point

Condition

Figure 10 Quadrilateral Inequalities for Graphs

Table 3 Inequalities for a source, target, and two landmark vertices in a directed graph

Campbell 61

These seven lower bounds can all become heuristics for the ALP algorithm.

Because it is based on dual landmarks (DL), let
 ∈ denote each new

heuristic at a visited vertex ∈ . For two given landmarks, , the following seven

heuristics can be used for the A* algorithm:

 (61)

 (62)

 (63)

 (64)

 (65)

(66)

 (67)

Each of these are new, admissible heuristics for A* based on polygon inequalities,

specifically for quadrilaterals. The following is the optimal dual landmark heuristic now

for ALP.

 (68)

As a word of caution, one has to be careful when in the case of directed graphs. In

the undirected case, there is no difference between estimating the distance from to

 and from to (). However, as shown in Figure 11, to generalize ALP

for the directed and undirected case, directionality of the distance terms must be taken

into account. For a directed graph, the shortest path metric space is formed with these as

the distances between four points. For any four-vertex configuration of the graph,

Campbell 62

preprocessing must yield instant access to the three distance values in the figure not in

bold in order to derive this new heuristic.

For ALP, the A* algorithm, described in Chapter 1, is used with this new heuristic

function as input, just as in ALT, with one change. This change involves a process known

as distributed landmark embedding, or simply distributed embedding. The distributed

embedding process is further detailed in a later section. In summary, for dual landmark

ALP, the process works as follows. After landmark selection, each vertex in the graph is

assigned to a single landmark within its respective partition. Distance information is then

computed from each partition’s landmark to (and from, in the directed case) the other

vertices subgraph, as well as between all landmarks in the landmark set of the graph.

These vertices contain distance information for only the landmark to which they are

assigned. As a vertex v is visited, if v does not have distance information at its current

landmark node, , the landmark that does have distance information for v is used to

bound the search. For unidirectional A*, the landmark remains the same for the target

node, as it is the only one containing distance information for that node. This fact, of

course, would change for the bidirectional variant of A*. Note that, when using

distributed embedding,
 and

 can only be used when both the visited

Figure 11 Four vertices within a sample directed connected graph. The dotted lines

represent shortest paths between each of the vertices

Campbell 63

node v and target node t share the same landmark. Otherwise, the information needed for

this heuristic cannot be computed. If the source and target vertex share the same

landmark (i.e.,), then the ALP heuristic is reduced to the ALT heuristic (i.e.,

) as follows:

 (69)

 (70)

 (71)

Because we are taking the maximum,
 and

 simplify to the reverse

triangle inequality.
 and

 are, by their very definition, equal to the reverse

triangle inequality, as well.
 cannot be used over the same set of landmarks because

its equation would result in a division by zero. Finally,
 cannot hold because its

constraint would violate the triangle inequality. Therefore, the dual landmark ALP

heuristic function always reduces to the ALT heuristic (
 and

) when the

currently visited and target nodes share landmarks.

It should be noted that there are other polygon-based inequalities for special cases

and shapes that could also be used to define A* heuristics, as they, too, can yield

estimates that never overestimate the shortest path. Future research can include the use

and selection of varying heuristics for special quadrilaterals along with that of other types

of polygons induced on the graph. Such research would address the difficult problem of

extracting information such as angle and inscribed shapes before the heuristic could be

computed. In this dissertation, however, we will conduct experimentation using only the

heuristics defined in this section. The dual landmark ALP heuristic for the inequalities

Campbell 64

derived in this section will be characterized in the following section and will be used for

experimentation.

Characterizing ALP Heuristics

For a source and target vertex pair, the following theorems for the ALP heuristic

function,
 , apply:

Theorem 1:
 is an admissible heuristic.

Proof. The proofs for the inequalities used for the heuristic are all derived in the previous

section. Because the heuristic function has an upper bound set at the actual shortest path

to the target, the heuristic will never overestimate the distance to the target, rendering it

admissible.

Theorem 2: Using distributed embedding,
 is not consistent.

Proof. This is proven by contradiction. Let c be the cost of transitioning with A* from

vertex v to v′, for ∈ . Recall that c is nonnegative for the A* algorithm. Let

 be the maximum chosen for

 for both of these iterations. Then, for
 to

be consistent,

 (72)

Because c is non-negative and the heuristic takes into account whether or not it moves

towards or away from its landmark, or ,

respectively. Therefore, this equation holds and demonstrates monotonicity over the same

set of landmarks for successive iterations. However, allow the selection of landmarks for

a query to change during the query, due to distributed embedding. For the heuristic to be

consistent, with vertex belonging to landmark and belonging to landmark , once

Campbell 65

again let
 be the maximum chosen for

 for both of these iterations. The

following equation must then hold for
 to be consistent.

 (73)

Let be a chosen landmark such that and .

This scenario yields a contradiction for the equation such that
 is not consistent.

Theorem 3:
 does not dominate

 over the same set of landmarks.

Proof. In the previous section, we demonstrated that the dual landmark heuristic reduces

to the triangle inequality heuristic over the same set of landmarks. This means that when

a visited vertex and target share the same landmark, the heuristic estimates for
 and

 will always be equal. For one heuristic to dominate another, all of its values must be

greater than or equal to the corresponding values of the other heuristic. Therefore, for

 to dominate

 over the same set of landmarks,
 would have to dominate

when a visited vertex and target do not share landmarks. We take two landmarks

 ∈ (for),that reference the visited vertex v and target t, respectively. For

 to dominate

 , any one of the following inequalities must hold:

1. ≥

2. ≥

3. ≥

4.

≥

5. ≥

Campbell 66

Because and are in the set L, we can eliminate the first three equations from validity

as there is no way to guarantee (outside of very specific landmark selection) that

 ≥

For the final two inequalities, we can easily identify the same contradiction for both. Let

all distance values used on the left hand side of the equations equal to one. This results in

a negative left-hand side for the inequality. The right-hand side of the inequality has the

benefit that it can never be negative. Therefore, we no equations left where
 provides

a greater estimate than
 .

Theorem 4:
 does not dominate

 over different landmark sets.

Proof. This can be proven by contradiction. Let
 be the maximum chosen value

for
 . For the triangle inequality heuristic to dominate the dual landmark heuristic:

 ≥ (74)

where is the landmark that maximizes
 and and are the landmarks for v and t,

respectively. Let , meaning the

distance between the two landmarks are much greater than the sum of the landmark

distances for the visited and target vertex. Then it follows that is

significantly larger than all other terms in the equation. If we let the distance between

both and the visited vertex and target nodes be equal for every landmark, the term

 will be significantly small. Then the above equation does not hold for

landmarks that are significantly far apart and we have a contradiction.

To summarize, according to Theorem 1, ALP’s dual landmark heuristic is an

admissible heuristic, making it a viable candidate for the A* algorithm, even though it is

not consistent when using distributed embedding, as shown in the proof of Theorem 2.

Campbell 67

We address Theorem 2 in experimentation for both ALT and ALP by implementing

pathmax for A*, forcing consistency for both heuristics. From Theorem 3, this heuristic

for ALP does not dominate the heuristic for ALT over the same set of landmarks. From

Theorem 4, it is demonstrated that there are scenarios in which the ALP heuristic gives a

higher estimation than the ALT algorithm. In the proof for Theorem 4, a possible

scenario for ALT (with the visited vertex v being very far from the target t) is used to

theoretically demonstrate that it can have a lower heuristic estimate than ALP. The proof

inherently shows the reverse, as well: that ALP can have a lower heuristic estimate than

ALT. Theorem 4 highlights landmark selection as the key to one heuristic theoretically

outperforming the other. We delve into further detail for this finding in the next section.

These four theorems and their respective proofs are the justification for the investigation

of landmark selection techniques for ALP. If landmark selection techniques for ALP

allow for a more informed A* search capability, then it is the overall optimal heuristic as

its landmark selection is inherently faster than that of ALT’s.

A major contribution of this dissertation an experimental characterization of the

real, practical scenarios for better distance estimates with respect to landmark selection

for the ALP and ALT heuristics. Specifically, given that distributed embedding allows

the practical preprocessing time and space complexity to be significantly less, it is worth

exploring the cases that ALP heuristic does outperform the ALT heuristic and vice-versa.

Recall, from Chapter 1, that one heuristic outperforms the other, in terms of the number

of vertices that are searched, by creating a higher estimation of the shortest path lower

bound. Let ∈ be the landmark chosen for ALT that maximizes its heuristic and

 ∈ be the landmarks for the current vertex and the target, respectively. For each

Campbell 68

possible landmark setup, the following are the scenarios in which the ALP dual landmark

heuristic outperforms the ALT triangle inequality heuristic in the context of number of

explored vertices. As the dual landmark heuristic uses seven separate equations to derive

its heuristic, the equations that actually cause the ALP heuristic to dominate ALT are

specified here. Note that the ALP heuristics that are recommended in each of these

scenarios can, but are not guaranteed to, dominate ALT and are not inclusive of all dual

landmark ALP estimates that can dominate ALT. These scenarios specify situations in

which the dual landmark ALP heuristic has a high likelihood of dominating the ALT

heuristic, and will be experimentally verified throughout the dissertation.

Scenario 1:

Outperforms ALT when ≥

This scenario, in particular, outperforms ALT at the beginning of a search in a large

graph, for
 , when the distances between the two landmarks is significantly

large. Particularly, if , the heuristic dominates.

As such,
 and

 are the estimates that have a higher likelihood of yielding

stronger results than the triangle inequality here.

Scenario 2:

Outperforms ALT when ≥

Particularly, if , the heuristic dominates. Since

we cannot rely on to always be significantly larger than , the heuristic

relies on the distance between the respective landmarks being significantly large to

dominate. Therefore, in this scenario, the ALP heuristic dominates ALT when the

distance between the two landmarks is significantly large. As such,
 and

Campbell 69

 are the estimates that have a higher likelihood of yielding stronger results than

the triangle inequality here.

Scenario 3:

Always has the same performance as ALT.

 =0, by definition. Therefore, all of the possible equations for the ALP heuristic

are reduced to the triangle inequality. And the ALP heuristic becomes the ALT

heuristic.

Scenario 4:

Outperforms ALT when ≥

 =0, by definition. Therefore,
 is eliminated as an option for the dual

landmark heuristic. Because this occurs and because the ALT heuristic chooses the

landmark that maximizes the triangle inequality, the best we can hope for is that the ALP

heuristic is reduced to the heuristic for ALT. Therefore, when the ALP algorithm’s

search is within the same partition, the ALP algorithm never dominates the ALT

algorithm.

Scenario 5:

Outperforms ALT when

 ≥ or

 ≥ or

 ≥ or

 ≥ or

 ≥

Campbell 70

 or

 can only reach the equivalence of the ALT heuristic’s estimate over

the same set of landmarks or for landmarks with similar distances to the one’s used in

ALT.

Scenario 5 is the most common situational scenario and will promise interesting

experimental results. This is also the scenario that most significantly demonstrates that

when the landmarks that would be used for both ALT and ALP differ, the heuristic value

for ALP is not always greater than the heuristic value for ALT, producing the results of

Theorems 3 and 4. The key insight here is that if more efficient algorithms for selecting a

better landmark set for ALP exist, ALP will often outperform ALT in practical scenarios.

All of these observations about ALP’s performance are summarized in Table 4.

 Scenario Outperforms ALT when…

1.

2.

3.

4.

5.
 ≥ or

 ≥ or

 ≥ or

 ≥ or

 ≥

Distributed Embedding

For a set of landmarks L, the ALT algorithm has a space complexity of

 from computing and storing distance information for all shortest paths between each

landmark and V. (J Maue et al., 2006) However, when using ALP, this space complexity

Table 4 When ALP Beats ALT

Campbell 71

can be reduced to using the following technique, called distributed

landmark embedding. In the dual landmark preprocessing for ALP, each landmark only

computes the shortest path tree to a specified set of vertices, called a graph partition,

around it
4
. The only other operation is a shortest path calculation among the landmark set,

as the distance between each landmark is needed to compute the ALP heuristic. For best

results, the subgraph induced by each partition should be connected to increase the

likelihood that the shortest path from the landmark to any vertex in the partition lies

within the subgraph induced by the graph partition, though this is not a requirement.

As shown in Figure 12, during preprocessing, each vertex in the graph needs to be

labeled with an identifier, signifying its landmark partition and the distance to (and from,

in the case of directed graphs) its corresponding landmark. When all landmarks have

been chosen, an SPT for each landmark in L is then computed for its respective partition.

To preserve space, this partitioning information is not explicitly stored. Rather, each

vertex maintains distance information about the landmark to which it belongs along with

4
 In this work, we identify the graph partitions first and select landmarks inside of these partitions (rather,

we see the partitions as input to the algorithm, just as with PCD(Jens Maue, 2006)). Future work can

explore the initially identifying landmarks in the graph first and then use these landmarks to form

partitions.

Figure 12 An Example of Distributed Embedding for a Simple Graph with Three

Partitions

Campbell 72

a reference to that landmark. The only information that a landmark maintains is distance

information between it and all other landmarks. For landmark selection algorithms, if an

algorithm requires understanding of all vertices that belong to a particular partition, then

the partition can be discovered by finding all vertices with a common landmark reference.

During query time, ALP carries out the normal A* algorithm with the ALP heuristic

function,
 , that relies on polygon inequalities for quadrilaterals.

Recall from Chapter 2 that the time complexity of ALT’s preprocessing, not

including the selection of landmarks, is og , as an SPT is

generated with Dijkstra’s algorithm, rooted at each landmark. Each of these SPTs covers

the entire graph. For ALP, multiple SPTs are grown with the landmarks as roots such that

the union of their vertices covers all vertices of the graph. Distance information is only

maintained by vertices for one other vertex (i.e., the landmark vertex at the root of its

SPT). For this to occur, it simply grows the Dijkstra SPT from a given landmark until all

vertices in the landmark’s partition are a part of the tree. For overlapping graph

partitions, ALP grows the shortest path tree from each landmark to cover the vertices in

its partition, as usual. During query time, the algorithm uses the set of landmarks with

known distances that produce the highest lower bounds.

The memory and practical runtime saved by doing this is the novelty of

distributed embedding. Note that the theoretical time complexity for preprocessing of

ALP remains the same as that of ALT. The actual shortest path between two vertices

within a graph partition could include vertices from outside the partition. This means that,

in the worst case, the generated SPT includes the entire vertex set of the graph. This, of

course, would rarely happen in practice. In practice, the SPT is significantly small in

Campbell 73

comparison to the size of the graph and its generation runs in a fraction of the time.

Therefore, for a graph in which the vertices of each partition match the vertices in a

partition’s shortest path tree, let E’ be the average number of edges in each partition and

V’ the average number of vertices in each partition. Then the average runtime of ALP

preprocessing, not including landmark selection, is

 og (75)

Because the shortest path tree is computed from every chosen landmark and

distance along with an all-pairs shortest path calculation for the landmarks, ALT’s data

structure requires space
5
. Since , the theoretical space requirement

for ALT can be said to be . Note that this upper limit is only theoretical, as a

relatively small number of landmarks are chosen for any particular graph. Therefore, the

 space requirement is a more practical specification. For ALP, shortest path

data is stored for the landmark-vertex pairs of each graph partition and the pairwise

distances between landmarks. Therefore, ALP’s data structure requires

space. Once again, because , the space requirement for ALP can also be

described as , which is theoretically larger than the worst-case

ALT requirement. Therefore, the ALP space requirement is an improvement on the ALT

space requirement as long as

 (76)

5
 It should be noted that for directed graphs, we compute the shortest path tree to and from every landmark,

requiring twice the space from ALT and twice the number of subgraph vertices to be stored for ALP

 .

Campbell 74

 Finally, recall that, during an arbitrary shortest path query, ALT attempts to

maximize its heuristic by using the triangle inequality for each landmark at each visited

vertex of the search:

 (77)

For a growing number of landmarks, computing this many estimates at each step

becomes computationally expensive. However, the dual landmark heuristic,
 , only

requires that, at most, four estimates be computed and compared at each iteration. This

should drastically reduce ALP’s compute time in comparison to ALT.

Algorithm Degradation

 Thus far, when describing ALP’s performance in comparison to ALT,

performance has been measured by the value calculated by a heuristic function. For A*,

this value determines the size of the search space for any given query. For an admissible

heuristic, the higher the estimates, the smaller the search space and the assumption is

always that this leads to better overall performance. However, one thing that is not taken

into account in this and many shortest path performance surveys is the amount of

processing needed to compute the actual heuristic as each vertex is being visited. As

stated in Chapter 2, for each PPSP query, at each vertex, a number of subtractions equal

to the number of landmarks is performed as well as a max operation. This means a

runtime for each visited node. For large-scale graphs, which require more landmarks to

be preprocessed, this can significantly add to the overall compute time of queries. In

comparison, with the dual landmark ALP heuristic, if the visited vertex and target vertex

are owned by different landmarks, exactly twelve subtraction operations, two

multiplication operations, two additions, and a division operation occurs with a max

Campbell 75

operation. If they are owned by the same landmarks, only one subtraction operation

occurs (to compute the reverse triangle inequality). This means that, in terms of practical,

processor-based performance measurements, over the same set of landmarks, it is

possible for dual landmark ALP to outperform ALT. In particular, for graphs with longer

average path lengths, the search performance for an ALT heuristic with higher estimates

can suffer degradation at a rate significantly less than ALP’s heuristic.

The implementation of operations such as multiplication and division can vary

from system to system and therefore would have an impact on the search strongly

dependent on the processor. As computer architectures and optimization methods for

arithmetic operations and max functions vary greatly, there is no formal computation

model upon which we can compare and contrast this level of detail in performance for the

heuristics. Future research could involve the ALP algorithm being experimentally tested

against ALT over a series of different processor architectures to concretize their

performance on modern day systems. Also, clever ways to reduce the number of

operations for each heuristic calculation while maintaining asymptotic complexity should

be explored.

In this dissertation, experiments not only measure the number of visited nodes

when comparing performance of shortest path algorithms. During experimentation, the

number of each type of arithmetic operation and the computational runtime performed

during each query are stored as measurements. This type of measurement is performed to

better characterize the behavior of ALT and ALP as graph sizes scale.

Campbell 76

ALT Landmark Selection in ALP

 In ALT, solutions to the problem of choosing the best landmarks seek to reduce

the average search space for arbitrary shortest path queries. Recall the search space, as

defined in Chapter 2, is

 ∈
 } (78)

The MinALT problem seeks to choose the minimum set of landmarks L that

reduces the overall search space for arbitrary shortest path queries and can be denoted as

follows:

Problem: ∈

 Landmark selection techniques in ALP seek to solve the exact same problem. The

search space for ALP using the dual landmark heuristic to guide the search is simply

defined as

 ∈
 } (79)

We denote the problem of choosing the minimum set of landmarks L, which

reduces this overall search space for arbitrary shortest path queries as

Problem: ∈

While the goals of the proposed solutions to MinALT and MinALP are the same,

algorithms that have been generated to solve them must differ because of the graph

partitioning requirement of ALP. Further, the goals of these algorithms must differ

because of the arithmetic that maximizes each heuristic. To state the differences

explicitly, high heuristic estimates for the ALT algorithm rely on a landmark being

extremely far from the vertex being visited during the search and extremely close to the

target vertex, or vice-versa. In other words, for
 , either should approach the

Campbell 77

graph diameter while approaches 0 or should approach the graph diameter

while approaches 0 to maximize estimates, thereby maximizing performance. For

the dual landmark ALP heuristic, distributed embedding will typically force smaller

values for and . Therefore, the best strategies for dual landmark ALP will

seek to maximize for any point in the search while minimizing and

 .

The following subsections detail how the embedding methods typically used in

ALT can be applied to ALP and the theoretical details of their impacts when using the

dual landmark heuristic. Each of these algorithms rely on a partitioning of the graph that

attempts to minimize the relative number of edges between partitions in comparison to

the number of edges within partitions. These landmark selection algorithms are designed

with partitioning configurations generated by algorithms such as the Louvain algorithm

(Blondel et al., 2008) that maximize modularity amongst graph partitions in mind. Such

an algorithm can produce partitions that are dense in their number of edges, inherently

reducing preprocessing time and presenting an optimal scenario for higher heuristic

calculations.

Random Landmark Selection

The baseline strategy for ALP, just as with ALT, is random landmark selection.

Two landmark selection methods for ALP are attempted in this work. Both algorithms

take in a graph topology (including partitioning information) as their parameter and

randomly, with uniform distribution, designates a single vertex within each partition as a

landmark vertex. This is where the first algorithm, random-p, stops. The landmarks used

Campbell 78

by ALP are the landmarks that were selected. The second algorithm much, like the ALT

variant, continues with an initial set of test queries to ensure good landmarks have been

chosen. For a number of trials k, we compare the average search space size of these each

trial. The landmark configuration with the lowest search space size is the final landmark

configuration that will be used by ALP. Note that the partitioning is considered a part of

the graph topology and will not be changed during this selection process. This second

landmark selection algorithm is denoted random-opt. The pseudocode for both of these

algorithms follow:

Farthest-d

 Farthest-d landmark selection takes in, as parameters, a graph topology (including

partitioning information). As with normal farthest-d selection, this landmark selection

algorithm works as follows for ALP. Let {C1, …,Cn }ϵ C be the set of partitions in the

input graph. Identify a start vertex ∈ in partition Ci and find the vertex ∈

farthest, in terms of distance, in a partition Cj, away from it. Add to the set of

Figure 13 Random Landmark Selection

Figure 14 Optimized Random Landmark Selection

Random-opt(G = (V,E), num_trials)

1. landmark_set <- list

2. for each partition

3. v = ALT_Random(H, num_trials) //Perform ALT random landmark selection

 Add v to the landmark set

3. return the landmark_set

Random-p(G = (V,E))

1. landmark_set <- list

2. for each partition

3. Choose a random vertex ∈

 Add to the landmark set

3. return the landmark_set

Campbell 79

landmarks. Then, proceed in iteration by finding the next vertex in partition Cm

farthest away from the current set of landmarks and adding to the set. If, on a

particular iteration, the next farthest vertex is in a partition that has a landmark designated

to it, find the next farthest landmark in a neighboring partition that does not have a vertex

in the set of landmarks. Continue until all partitions have an established landmark. Just as

with ALT, this algorithm is denoted farthest-d.

Planar

The planar landmark selection algorithm is suited for ALP’s use of partitioning.

This landmark selection algorithm uses graph layout information to divide a graph into

sectors
6
. Each of these sectors is the respective graph partition for ALP. For dual

landmark ALP, we leverage the partitioning algorithm described in the next section to

implement planar landmark selection. By referencing the partition as sectors, the

landmark for each partition will be selected by identifying the set of vertices within that

partition with maximum eccentricity. If multiple vertices within the partition have the

same eccentricity, one of them is chosen at random to be added to the set. In other words,

we will identify the set of vertices from which the distance to all other vertices within its

partition is maximal. For each sector, this typically is the farthest vector from any center

node. This algorithm is known as planar.

6
 Planar landmark selection for ALP does not assume graph itself is planar.

Campbell 80

Betweenness Centrality-Based

Betweenness centrality is a preferred method for choosing landmarks in ALT. For

ALP, this landmark selection algorithm iterates through each partition in the graph. For

each partition, we induce a subgraph from the vertices in the partition. The vertex with

the largest betweenness centrality in is designated as the landmark for that partition. If

 is not connected, the largest connected subgraph of is used to compute betweenness

centrality and for landmark identification. This algorithm is known as betweenness.

New Landmark Selection for ALP

Here, we discuss landmark selection techniques not based on those from ALT research.

Centrality-Based Landmark Selection

Here, we detail a new landmark selection method, based on PageRank (Brin &

Page, 1998). We will identify this selection technique as PageRank-P. Landmarks need

to be created such that the likelihood of passing through a landmark on a path in the

graph is maximized while ensuring that landmarks are not too close to each other.

Therefore, the probability of encountering a vertex during a random walk of each

subgraph Hi generated by a partition Ci ϵ C can be used to decide which vertex in the

subgraph will be a landmark. The PageRank algorithm, an eigenvector centrality

Figure 15 ALP Planar Landmark Selection

planar(G = (V,E))

1. landmark_set <- list

2. for each partition

3. Compute the eccentricity of H

 Add vertex of maximum eccentricity in H to the landmark set

3. return the landmark_set

Campbell 81

computation, requires O(n+m) time to compute a PageRank vector for a graph. (Han,

Lee, Pham, & Yu, 2010) Each subgraph induced by each partition has a basic PageRank

calculation run on it. For k partitions, k PageRank vectors will be computed. The vertex

with highest PageRank in its partition (and its respective vector) is chosen as the

landmark for that partition. As with betweenness, if the partition is disconnected, the

PageRank calculation will be run on the largest connected subgraph of the partition and a

landmark will be chosen from that.

Formally, let k be the number of partitions in G and L V is the set of landmarks.

The goal is to compute the set L of size k. For each partition Ci, 1 ≤ i ≤ k, and its induced

subgraph Hi, a landmark li ϵ L is chosen by the following equation
7
:

 ∈

 V

 V
 ∈

(80)

where Vj represents a vertex in Hi, N the number of vertices in Ci, d a dampening factor,

M(Vj) the set of vertices that link to a page Vj, L(Vk) the number of outbound links from

Vk, and PR(Vj) the PageRank of Vj. This selection technique probabilistically chooses

appropriate landmarks with comparable computational speed in comparison to the others.

 During experimentation, for PageRank, we establish two more landmark selection

techniques, where we choose landmarks with the minimum and mode scores, as well.

These techniques are denoted PageRank-Min and PageRank-Mode. Further, the same

paradigm is used for the following centrality measures: Closeness centrality, Load

centrality, and Katz centrality (Freeman, 1979; Goh, Kahng, & Kim, 2001; Katz, 1953;

Newman, 2001). We denote these as closeness, load, and katz, respectively.

7
 Just as in the other landmark selection methods, we determine partitions here using the Louvain method.

Campbell 82

The closeness centrality of a particular landmark is simply the reciprocal of its

farness, which is the sum of all distances from all other nodes. Therefore, using the

notation above, closeness landmark selection chooses a subgraph’s landmark using the

following equation:

 ∈

 ∈

 (81)

Load centrality is a variant of betweenness centrality in that it is defined through a

hypothetical flow process. The score for an individual node is the fraction of all shortest

paths that pass through that node. Using the notation for betweenness centrality from

Chapter 2, for a vertex ∈ , let denote the number of shortest paths from to

containing . Also, let simply denote the total number of paths from to . Then

betweenness centrality of v is formally defined as

 ∈

(82)

 Katz centrality is similar to eigenvalue centrality and PageRank measures. It

computes centrality scores by measuring the number of first degree vertices and all other

vertices that connect to the vertex under consideration through these immediate

neighbors.

Centrality measures are an intuitive way of keeping the distances among the landmark set

for ALP large relative to the distances between landmarks and the vertices they own.

Farthest-ECC

 The Farthest-d algorithm for ALT is feasible for the small number of landmarks

supported by the algorithm. However, with ALP, many more landmarks are able to be

Campbell 83

selected. Attempting to run this many shortest path computations becomes intensive and

reduces ALP’s preprocessing benefits. Ideally, identifying nodes with maximum

eccentricity within each partition would be the optimal approach. But this does not

address the computational intensity problem. Therefore, another method was identified

for attempting to find landmarks in the distributed embedding environment that were

farthest away from the other landmarks. This version of farthest seeks to identify

landmarks within each graph partition that are farthest away from a sample set of nodes,

chosen through a uniform random distribution, in the graph. To do this, we first reverse

the graph, so that we are computing distances to each landmark. A set of nodes within

each subgraph, also chosen through uniform random distribution, grow their shortest path

trees out to the full graph’s sample set. The node within each subgraph that has the

maximum distance from the full graph’s sample set of nodes is chosen as the landmark.

The goal of this version of farthest, dubbed farthest-ecc, was too maximize such

that it would unbalance the heuristic estimates, providing the largest possible guesses,

especially over long distances.

Validating and Verification

We end this Chapter with an overview of two experiments used to validate and

verify the claims made in the methodology. In order to characterize the practical

performance of ALP, experiments with both real world and synthetic data must occur.

The main goals of experimentation were to verify ALP’s relatively smaller preprocessing

(for both time and space), validate its behavior in the context of ALT, and gain insight

Campbell 84

into the benefits and detriments of using one algorithm over another. They also establish

the validity and utility of the ALP algorithm in comparison the ALT algorithm.

Experiment 1: Performance and Bounds

To understand how to perform optimal landmark selection in ALP, the algorithm’s

basic behavior must be defined. The only way to do this is in the context of another

landmark-based class of algorithms, ALT. Therefore, Experiment 1 was an initial

investigation of the ALP dual landmark heuristic’s behavior and its performance bounds

based on the scenarios defined earlier in the chapter for ALT. For the base

implementations, comparison between ALT and ALP using the experimental benchmark

road data from Maue’s PCD research and Goldberg’s ALT research occurred. Random

selection was used for a series of controlled trials comparing the two algorithms on these

datasets. To initially test ALP’s heuristics, the algorithm will first be tested without

distributed embedding. An implementation with distributed embedding will be created

after initial testing. The Louvain algorithm (Blondel et al., 2008) will be used for the

partitioning of the graph.

After initial testing, the ALP heuristic was exercised such that its computational

bounds can be verified. This experiment sought the parameters that maximize and

minimize ALP’s computational performance and memory requirements. Using scenarios

defined in this chapter, we were able to identify the optimal conditions for the heuristic,

when it breaks even with the ALT heuristic, and its worst performance conditions. By the

end of Experiment 1, a full characterization of the performance bounds of ALP

algorithms against ALT algorithms was derived.

Campbell 85

In this chapter, we have demonstrated that the advantage of using the ALP heuristic

is that it practically admits more landmarks than ALT and performs faster landmark

selection over the same number of landmarks. However, during query time, over the

same set of landmarks, ALT dominates ALP (though ALT requires more space to store

landmark distance information). The results of trials generated during this experiment

also generate further characterizations of the algorithms to guide later application, as well

as informing how the algorithm compares to other metric-independent preprocessing

algorithms.

Experiment 2: ALP vs. ALT

Experiment 2 fulfilled the key contribution for this dissertation by identifying

optimal landmark selection techniques for dual landmark ALP with distributed

embedding. This experiment sought to arbitrate between each of the aforementioned

algorithms for landmark selection in the ALP environment. Each technique was vetted

using a common partitioning algorithm for multiple graph datasets, both real and

synthetic. Like PCD, the way that the graph partitions are shaped and the actual

partitioning is not determined by the algorithm (J Maue et al., 2006). For this approach,

we continued to leverage an extremely fast algorithm for partitioning graphs known as

the Louvain algorithm (Blondel et al., 2008). This algorithm relies on maximizing

modularity within a graph, ensuring that there is a significantly higher proportion of edge

connections within partitions than between partitions. It has become a standard algorithm

for community detection in graphs and, as such, will lend a significant demonstration and

characterization for ALP’s behavior to this common type of input.

Campbell 86

Summary of Experiments

The table below summarizes each of the experiments in this dissertation.

Experiments are described in much further detail in the next chapter.

Experiment 1

ALP

Performance

Bounds

Goal Investigate and understand the computational bounds of

ALP dual landmark heuristics in comparison with ALT

Research

Questions
 Using ALP with distributed landmark embedding,

what are the ideal characteristics for landmark

shortest path trees? In other words, how much

preprocessing and memory is required for ALP to

maintain its key benefits?

 How does the algorithm behave as the number of

landmarks used to guide the search increases?

 What landmark selection techniques theoretically fit

best with ALP?

Experiment 2

ALT vs ALP

Goal Compare and contrast the ALP and ALT algorithms to

characterize utility

Research

Questions
 What are the key benefits of using the (dual

landmark) ALP heuristic over the ALT heuristic

when performing shortest path queries?

 In what ways can this be applied to path planning?

 What real-world applications exist for ALP that did

not exist for ALT?

Once sufficient data was collected from the first experiment, Experiment 2 trials

were carried out with guidance from the results of Experiment 1. Each experiment

underwent more than 10
6
 trials to sufficiently compare and characterize the two

algorithms under experimentation. Each experiment relied on available data used to

characterize the other metric-independent preprocessing algorithms mentioned in the

literature review, as well as benchmark models common to modern graph libraries. This

ensured that the experiments that are performed here can be replicated and validated upon

publication.

Table 5 Dissertation Experiments

Campbell 87

The trials run for each experiment followed the flow shown in Figure 16. Data for

the particular experiment is loaded into memory. All information regarding the structure

and characterization of this data were previously recorded. The specific parameters for a

given trial will then be established. During simulation, these parameters are used for

searching over a user-specified number of shortest path queries on the particular dataset.

A measurement harness monitors the simulation to extract information related to the

specified metrics for preprocessing and shortest path queries. Finally, the measurements

gathered by the harness will be sent to a relational database that will be used for analysis

and to draw conclusions.

Figure 16 The flow of each trial during Experimentation

Data Ingress
• PCD, ALT, and

Synthetic
Datasets

Parameter
Insertion

• Always includes a
graph, an
algorithm,
metrics, and
algorithm
parameters

Simulation

• Preprocessing
using parameters

• Run the specified
amount of
shortest path
queries over the
graph

Measurement
Egress

•The
measurements
based on the
metrics noted
on input

Report
•Record results

to local MySQL
database for
later analysis

Campbell 88

Summary

 This chapter describes the foundations of a class of algorithms that reduce the

amount of preprocessed information necessary to perform preprocessed shortest path

queries. A new class of algorithms is presented for solving shortest path queries using the

A* algorithm, landmarks, and polygon inequalities (ALP). Its novel feature is that it

computes and stores a reduced amount of preprocessed information while making more

informed search decisions. This new heuristic is applied by using distance information

about two landmarks in a single query to guide the A* algorithm from a source node to a

destination node. A new paradigm for landmark selection, known as distributed

embedding, is proposed for this heuristic. Using this process for shortest path search

reduces the amount of preprocessed information that needs to be stored while also

reducing the level of computation required at each step of the search. In a fixed space

environment, ALP has the potential to have more informed searches than ALT, as it is

able to leverage more landmarks. Domination of one heuristic over the other depends on

the landmark set each is assigned and, in general, the denser the landmark set, the better

the heuristic. While ALP theoretically does not dominate the ALT heuristic, the ALT

heuristic, in turn, does not dominate it. In Chapter 4, we will establish, through

experimentation, that in cases in which the ALT heuristic has greater average estimates

than the ALP dual landmark heuristic, ALP can still computationally outperform ALT.

Therefore, a key contribution of this effort will be the analysis of scenarios in which this

heuristic and its competitors should be used. This will give guidance to future users of

shortest path algorithms.

Campbell 89

Chapter 4

Results

This chapter provides an objective description and analysis of the findings,

results, and outcomes of the research. The experiments for the dissertation are described

in detail. The trials conducted in each of these experiments were strongly motivated by

previous studies for ALT (Fuchs, 2010; A. Goldberg & R. Werneck, 2005; Goldberg &

Harrelson, 2005; Potamias et al., 2009; Takes & Kosters, 2014). In this chapter, the use

of charts, tables, and figures are limited to those that are needed to support the final

conclusions. All other illustrations and summary data can be found in the appendices.

The Data Analysis section describes the methods of collecting the data and summaries of

what has been collected, pointing out ambiguities, inconsistencies, patterns and themes in

the data. In the Findings section, the results described in the Data Analysis section are

synthesized in light of the dissertation’s research questions, literature review, and

methodologies. In the Summary section, the research questions posed in Chapter 1 are

explicitly answered by summarizing the Data Analysis and Findings sections,

enumerating the theoretical and practical implications of the information relayed by those

sections.

In this Chapter, experimentation with ALP, using two landmarks for distance

estimation, compares the class of algorithm’s performance and benefits against ALT, the

class of algorithms from which it was derived. This experimentation also fully

characterizes the heuristics, identifies the optimal, average, and worst-case input

Campbell 90

parameters, and thoroughly compares the dual landmark ALP algorithm to its

predecessor, the ALT algorithm. Experiments are initially performed on synthetic graph

datasets to characterize the algorithm’s performance based on structure. Then, benchmark

datasets that have been called out in academic literature, based on city and state maps, are

used for applied characterization. Experiment 1 resulted in a characterization of the

performance of ALP as a heuristic for A* with regard to graph structure and landmark

selection. Experiment 2 highlights differences in performance of ALP and ALT as

heuristics for A*, with final trials for the experiment simulating the comparative behavior

of both algorithms in a fixed-memory environment. The combined theoretical and

experimental characterization of this algorithm offers the Computer Science community

insight into the applications of the algorithm in other spaces. In the end, a shortest path

analysis software library, the theoretical and experimental characterizations of ALP, and

data sufficient to evidence the innovative claims of this dissertation are contributed.

Data Analysis

This section describes the implementation of the ALP experimentation

environment, the datasets used for experimentation, and the metrics used for

characterization. 9,653 trials, each corresponding to at least 1,000 shortest path queries

were run to vet the performance and bounds of the ALP algorithm, landmark selection in

its environment, and how local/global optima of its performance compares to that of

ALT. In total, over shortest path queries were answered by the experimental

testbed. The data that is analyzed in this section is derived from these queries. Table 6

summarizes the experiment sessions, trials, and queries performed for the experiments in

this dissertation.

Campbell 91

Datasets

Experiments were run on multiple classes of synthetic graphs and graphs of real

road networks. Shown in Table 7, the synthetic graphs used for experimentation have

structures that model data across many fields of study. The use of these graphs allowed us

to experimentally glean how ALP can behave in different environments, and not simply

during road navigation. The number of nodes and edges is not included in Table 7 as a

parameter for these graphs, as they vary throughout experimentation.

Descriptions and further details about the structure of each graph are found in

Appendix A. In-depth detail about the number of nodes and edges that provided specific

 Road Graph

Queries

Synthetic

Graphs Queries

Total

Queries

Landmark Selection

Techniques Attempted

Dijkstra’s 4,144,759 2,826,206 6,970,965 N/A

ALT 3,258,983 1,321,295 4,580,278 5

ALP 4,068,893 2,826,097 6,894,990 13

Table 6 Summary of Experimental Runs

Table 7 Synthetic Graph Problem Families

Name Graph Type Graph Parameters DB Name

M1 Barabási–Albert (BA) model Preferential Attachment = 2 Edges/Node NETWORKX.BARABASI_ALBERT_2

M2 Barabási–Albert (BA) model Preferential Attachment = 3 Edges/Node NETWORKX.BARABASI_ALBERT_3

M3 Barabási–Albert (BA) model Preferential Attachment = 5 Edges/Node NETWORKX.BARABASI_ALBERT_5

M4 Barabási–Albert (BA) model Preferential Attachment = 7 Edges/Node NETWORKX.BARABASI_ALBERT_7

M5 Barabási–Albert (BA) model Preferential Attachment = 9 Edges/Node NETWORKX.BARABASI_ALBERT_9

M6 Barabási–Albert (BA) model Preferential Attachment = 11 Edges/Node NETWORKX.BARABASI_ALBERT_11

M7 Barabási–Albert (BA) model Preferential Attachment = 13 Edges/Node NETWORKX.BARABASI_ALBERT_13

M8 Barbell Graph Equivalent Number of Nodes on each side NETWORKX.BARBELL_GRAPH_EVEN

M9 Barbell Graph 2/3 Nodes on Left Barbell, 1/3 Nodes on Right Barbell NETWORKX.BARBELL_GRAPH_ODD

M10 Circular Ladder Graph NETWORKX.CIRCULAR_LADDER_GRAPH

M11 Complete Graph NETWORKX.COMPLETE_GRAPH

M12 Cycle Graph NETWORKX.CYCLE_GRAPH

M13 Erdős–Rényi model Edge Creation = 15% NETWORKX.ERDOS_RENYI_15

M14 Erdős–Rényi model Edge Creation = 30% NETWORKX.ERDOS_RENYI_30

M15 Ladder Graph NETWORKX.LADDER_GRAPH

M16 Path Graph NETWORKX.PATH_GRAPH

M17 Random Lobster Pbackbone=45%, PBeyondBackbone=45% NETWORKX.RANDOM_LOBSTER_45

M18 Random Lobster Pbackbone=90%, PBeyondBackbone=90% NETWORKX.RANDOM_LOBSTER_90

M19 Watts–Strogatz model 10% nearest neighbor connections, 10% Prewiring NETWORKX.WATTS_STROGATZ_10

M20 Watts–Strogatz model 20% nearest neighbor connections, 20% Prewiring NETWORKX.WATTS_STROGATZ_20

M21 Waxman Graph alpha=0.4,beta=0.1,domain=(0,0,1,1) NETWORKX.WAXMAN_GRAPH

Campbell 92

results of analysis on these graphs can be found in Appendix C.

Graph Type
Average

Transitivity

Average Clustering

Coefficient

NETWORKX.BARABÁSI_ALBERT_2 2.90E-02 0.06

NETWORKX.BARABÁSI_ALBERT_3 6.49E-02 0.10

NETWORKX.BARABÁSI_ALBERT_5 7.97E-02 0.10

NETWORKX.BARABÁSI_ALBERT_7 5.82E-02 0.07

NETWORKX.BARABÁSI_ALBERT_9 1.33E-01 0.15

NETWORKX.BARABÁSI_ALBERT_11 1.48E-01 0.16

NETWORKX.BARABÁSI_ALBERT_13 1.62E-01 0.17

NETWORKX.BARBELL_GRAPH_EVEN 9.96E-01 0.67

NETWORKX.BARBELL_GRAPH_ODD 9.98E-01 0.80

NETWORKX.CIRCULAR_LADDER_GRAPH 0.00E+00 0.00

NETWORKX.COMPLETE_GRAPH 0.00E+00 0.00

NETWORKX.CYCLE_GRAPH 0.00E+00 0.00

NETWORKX.ERDOS_RENYI_15 1.51E-01 0.16

NETWORKX.ERDOS_RENYI_30 3.04E-01 0.30

NETWORKX.LADDER_GRAPH 0.00E+00 0.00

NETWORKX.PATH_GRAPH 0.00E+00 0.00

NETWORKX.RANDOM_LOBSTER_45 0.00E+00 0.00

NETWORKX.RANDOM_LOBSTER_90 0.00E+00 0.00

NETWORKX.WATTS_STROGATZ_10 9.36E-02 0.10

NETWORKX.WATTS_STROGATZ_20 4.12E-01 0.42

NETWORKX.WAXMAN_GRAPH 7.97E-02 0.08

Each of these structures varies in terms of several main properties. In

experimentation, we specifically focus on their average clustering coefficient and

transitivity, as shown in Table 8. The clustering coefficient of each vertex in a graph is

the fraction of triangles connected to the vertex divided by its number of triples, or sets of

two edges connected to the vertex. Therefore, the average clustering coefficient for a

graph is the mean clustering coefficient over all vertices. Transitivity is a relative measure

of the number of triangles in a graph divided by the total number of connected triples of

Table 8 Average Synthetic Graph Transitivity and Local Clustering Coefficient

Campbell 93

nodes. Transitivity is also known as the global clustering coefficient of a graph. Average

clustering coefficient and transitivity measures give strong indications of the clustering of

vertices in the graph. They are significant to the findings in this effort as distributed

embedding relies on a partitioning of the graph and the partitions used in these

experiments (primarily provided by the Louvain method) are strongly dependent on these

properties (Soundarajan & Hopcroft, 2015).

Summary information for the real road graphs that were used in experimentation

is shown in Table 9. These graphs were taken from datasets used in the 9
th

 DIMACS

Implementation Challenge (Demetrescu et al., 2006). This is a benchmark dataset for

much of the shortest path research that occurs in academia at the time of this writing.

These datasets allowed for testing of ALP’s behavior on directed graphs. In some cases,

for testing purposes, we executed trials using real road graphs as undirected graphs. The

differences are noted when reporting summary data.

In general, a vertex in these graphs represents a single intersection of two roads

and an edge represents a road segment. While many previous research efforts with ALT

Description # Vertices # Edges

Pennsylvania 1,087,562 1,541,514

Rome 3,353 4,831

Belgium 746,333 767,786

Luxembourg 84,136 85,579

NYC 264,346 365,050

Washington DC 9,599 14,909

Rhode Island 53,288 68,496

United States (Western) 6,262,104 15,248,146

United States (Central) 14,081,816 34,292,496

United States (Eastern) 3,598,623 8,778,114

United States (Bay Area) 321,270 800,172

Hawaii 64,892 76,809

Great Lakes 2,758,119 6,885,658

New Mexico 467,259 567,084

Table 9 Road Graph Problem Families

Campbell 94

(and other shortest path preprocessing methods) required the dataset to be processed

using only subgraphs of the roadmap, the datasets used in this effort could be used in

their entirety when experimenting with ALP. Subgraphs are only used in ALP during

experimentation to increase the number of trials, not because of computational hardware

limits. Cases in which subgraphs are used are noted in the experiment data. For all

datasets, we analyze the graph’s largest strongly connected component, or the induced

subgraph in which all vertices can reach all other vertices.

In the context of the original work, for each query, source-target pairs among all

vertices are chosen at random using a uniform distribution (Goldberg & Harrelson, 2005).

Testing queries with path lengths uniformly distributed from zero to the diameter of the

graph was necessary in order to adequately characterize the behavior of each algorithm in

each graph. Because the source-target pairs in our runs are chosen with uniform random

distribution, path lengths span the possible distances of the graph.

For each experiment, a series of trials was run over these synthetic and road

graphs at various scales to vet the overall performance of both ALT and ALP. A trial

describes a specific configuration of parameters for a set of shortest path queries. Over

1000 variations of synthetic graphs, as well as over 100 different subgraphs of real road

datasets were used. The two tables shown in Figure 17 categorize each class of graph

used during experimentation by size. Each graph instance falls under categories that are

deemed vertex scales and edge scales. These scales are defined by lower and upper

bounds for the number of vertices and edges contained in a single graph, respectively.

Performance of the shortest path preprocessing algorithms is vetted for each of these

vertex and edge scales.

Campbell 95

Implementation

The implementations used for each experiment were based on the pseudocode and

descriptions in Chapters 1-3. Experimentation was carried out under a 64-bit CentOS 7

instance on a custom-built server, which has 8 GB of RAM and a 2.20GHz Intel(R)

Core(TM) 2 Duo CPU E4500 processor. An additional 40GB of swap space was

allocated on the server. Of note, this swap space was never tapped for ALP processing for

large scale graphs and regularly tapped for ALT.

For the software implementations, all experimentation for ALT and ALP was

implemented using Python. The synthetic graphs for these experiments are generated by

the NetworkX library (Developers, 2010) using Python 2.7. NetworkX’s scripts for

pathfinding (A*, Dijkstra’s algorithm) were instrumented such that metrics such as search

space size could be recorded for each query. The library was also extended by adding a

capability to only grow a Dijkstra SPT until it covers a desired set of vertices. This

capability serves preprocessing in both the ALT and ALP environments. The NetworkX

source code for the A* algorithm was duplicated and modified such that the pathmax

equation was used by default to force consistency.

For smaller graphs (V1-V4), to map vertices to their corresponding landmarks and

partitions, we use NetworkX’s vertex labeling mechanisms to give each vertex an

attribute called “ALP_<landmark_id>” with a value of its distance from its partition’s

Figure 17 Vertex and Edge Graph Scales

Category # Vertices # Experimented Graphs

V1 1-100 2098

V2 101-1000 315

V3 1001-5000 133

V4 5001-20000 85

V5 20001-100000 92

V6 100001-250000 1

V7 250000-1000000 4

Category # Vertices # Experimented Graphs

E1 1-100 1375

E2 101-1000 812

E3 1001-5000 170

E4 5001-20000 146

E5 20001-100000 131

E6 100001-250000 40

E7 250000-1000000 35

Campbell 96

landmark. For larger graphs (V4-V7), we use separate Python dictionaries as data

structures for ALT and ALP, respectively to address memory issues
8
. For ALP, three

separate dictionaries serve the following functions:

(1) Relating a vertex to its reference landmark

(2) Storing the distances from all landmarks and vertices of the subgraph owned by a

landmark to that landmark

(3) Storing the distances to all landmarks and vertices of the subgraph owned by a

landmark from that landmark

For ALT, only two dictionaries are needed
9
 that serve the functions of storing vertex

distances to and from landmarks, respectively.

Unless otherwise specified in this chapter, a NetworkX implementation of the

Louvain method was used for graph partitioning (Aynaud, 2010; Blondel et al., 2008).

Other partitioning methods that grant the flexibility of creating a desired number of

partitions are used and described later in the Chapter for specific trials.

For experimentation with larger graph datasets, NetworkX objects under Python

proved to be too large to run on the basic experimentation server. Because of this, Cython

was used to convert modified NetworkX shortest path algorithms, all preprocessing

algorithms, and all querying mechanisms to C code (Behnel et al., 2011; Summerfield,

2013; Surhone, Tennoe, & Henssonow, 2011). Using GCC 4.9.2, the running binary for

this code was optimized to run each trial for the experiments (Griffith, 2002). The

following GCC flags were used:

8
 When attempting to use NetworkX labeling, a dictionary is populated for every node, creating substantial

overhead in the case of large graphs.
9
 These grow to become much significantly larger than ALP’s dictionaries because they must store

landmark distance information for each landmark to and from all other vertices in the graph.

Campbell 97

gcc -flto -fuse-linker-plugin -Ofast -fivopts -fdata-sections -floop-

parallelize-all -ftree-parallelize-loops=4 -funroll-loops -mtune=native

-march=native -I/usr/include/python2.7

The optimizations are tailored toward the server processor and are focused as

much as possible on speed, not the size of the resulting binary executable. Substantial

efficiency increases stemmed from the combination of the conversion to C code and the

optimizations for GCC.

Appendix B details the structure of our data storage for queries and trials.

Metrics

Throughout this chapter, the following metrics are used to characterize ALP as an

A* heuristic and to compare and contrast it with ALT. Efficiency is the primary metric

identified by the creators of ALT to measure query performance (Goldberg & Harrelson,

2005).
10

 The average efficiency over a set of shortest path queries is used to characterize

a heuristic. Recall that the search space size is the number of vertices visited to discover

the shortest path. The efficiency of a single query is computed as follows:

In other words, the efficiency is defined as the number of vertices on the shortest

path divided by the number of vertices explored by the search for a single query. An

optimal heuristic would have 100% efficiency. For example, for ALP, a perfect search

would mean that . This is a machine and scale independent method

10

 We call this measure “efficiency” because of its use in the original ALT publications.

Figure 18 GCC Optimizations for Large Graph Runs

Campbell 98

of understanding ALP performance. We use this metric throughout both experiments for

evaluating shortest path algorithm performance.

To further identify utility of each algorithm, the tradeoff metric is used to identify

the utility of using each algorithm over a user-defined number of queries. Tradeoff is

calculated as follows:

where is the time to process n queries, is the preprocessing time, and is the

average time (in seconds) to process is each query. Note that this makes tradeoff an

application-based metric which can vary based on the number of queries being executed.

Preprocessing time is the physical time in seconds that it takes to actually run a landmark

selection algorithm plus the time that it takes to actually grow the shortest path trees for

each landmark. In general, a good heuristic brings tradeoff values as close to zero as

possible. It is a machine and implementation-dependent metric that complements

efficiency to provide better understanding of practical performance for ALP and other

shortest path algorithms that require preprocessing.

For some analysis, we take a look at the number of landmarks used for a

particular landmark configuration and the average efficiency of a run with that landmark

configuration respectively as coordinates. This allows us to measure the

performance gain that stems from growing the number of landmarks by computing the

slope of these coordinates. Here, we define performance gain as a simple measure of how

the performance of ALP or ALT increases as the number of landmarks increases.

Campbell 99

Approximation error is another common metric used in the literature for ALT to

understand the efficacy of an embedding on the graph. For a given query, approximation

error is defined as follows:

The approximation error for Dijkstra’s algorithm is always 1, as Dijkstra’s algorithm is

equivalent to A* with a zero heuristic. Like efficiency, it is a measure of the quality of a

heuristic. The two numbers are typically proportional to each other. However, both

average efficiency and average approximation error are needed to measure the quality of

a heuristic. For instance, if a heuristic were to only make good estimates at key waypoints

in a larger graph, the average efficiency from such a heuristic would be large while the

average approximation error would be large, as well. A good heuristic keeps average

efficiency large and approximation error small. Approximation error is a good indicator

of a heuristic being applicable across many datasets. In summary, efficiency is a good

measure of a heuristic’s quality for shortest path search (performance) while

approximation error is a good measure of a heuristic’s quality for estimating distance in a

metric space (utility).

 To recap, the metrics used to characterize performance during experimentation

were:

- Efficiency

- Tradeoff

- Performance Gain

- Approximation Error

Campbell 100

Experiment 1: ALP Performance and Bounds

This section describes the activities carried out in Experiment 1. Experiment 1

sought to characterize the performance and bounds of ALP with distributed embedding as

a heuristic for A* in the experimentation environment described above. The

implementations and schemas used in this first experiment established an operational

experimentation environment for shortest path preprocessing. Note that highly-detailed,

supplemental or extra interesting data from all experimentation can be found in Appendix

C.

Description of Trials

Each trial tested a variety of graph configurations and parameters for ALP such

that its computational bounds could be identified. Unless otherwise noted, we leveraged

optimized random landmark selection to select landmarks for ALP. For every query, we

also ran Dijkstra’s algorithm as A* with a zero heuristic for a consistent sanity check and

basis of comparison. The results of Dijkstra’s algorithm queries are recorded, as well
11

. In

this experiment, we looked at scenarios from a variety of vantage points, teasing out the

performance and bounds of ALP. Table 10 briefly describes the types of trials, or sub-

experiments that were run to vet ALT’s performance and bounds. Results for Experiment

1 yield information about the performance and bounds for ALP in the context of each of

these trials.

11

 For instance, we verify that path lengths are equal for both Dijkstra and ALP to ensure correctness of

each algorithm. Also, if ALP has larger search space size than Dijkstra, it means overestimates have

occurred.

Campbell 101

Varying Graph Structure

In this set of trials, 1000 shortest path queries were run on each synthetic graph

structure in the dataset using the ALP algorithm at all vertex and edge scales
12

. The

number of landmarks that were used for each trial was always equal to the number of

graph partitions for the input graph. The lowest number of partitions made available by

the Louvain dendrogram was used for distributed embedding.

Table 11 describes the number of runs and average ALP efficiency for each graph

class, shown in alphabetical order. For each type of synthetic graph, the efficiency at each

vertex or edge scale was quite similar. We enumerate, in Appendix C, a set of tables that

show every permutation of a graph structure against the average efficiency of queries on

that graph. Here, we highlight noteworthy correlations between graph structures. Table

11 and Figure 19 are sufficient for examining ALP’s behavior for different graph

structures. These results imply that efficiency should grow in proportion to transitivity.

Conversely, graphs such as path graphs, cycle graphs, ladder graphs, and random lobsters

with zero transitivity (having no triangles), exhibit high efficiency rates, as well. Their

high efficiency rates are due to the fact that the very structure of each graph significantly

tightens the quadrilateral inequalities.

12

 We run these queries for each of the road graphs, as well. This data is found in the Appendix.

Table 10 ALP Performance and Bounds Trials

Trial Description

Varying Graph

Structure

Characterize the efficiency and approximation error of ALP

heuristic when run on 20 different synthetic graph structures as well

as real road graphs.

Number of

Landmarks

Identify the degree to which ALP performance increases as the

number of landmarks used is increased.

Landmark

Selection

Details performance of ALP for landmarks chosen through a set of

landmark selection algorithms defined in Chapter 3.

Campbell 102

Graph Type
Average

Efficiency

 Average

Approximation Error

NETWORKX.BARABÁSI_ALBERT_2 9.83% 83.36%

NETWORKX.BARABÁSI_ALBERT_3 16.22% 71.74%

NETWORKX.BARABÁSI_ALBERT_5 11.64% 73.63%

NETWORKX.BARABÁSI_ALBERT_7 7.35% 75.94%

NETWORKX.BARABÁSI_ALBERT_9 13.29% 71.99%

NETWORKX.BARABÁSI_ALBERT_11 13.66% 70.00%

NETWORKX.BARABÁSI_ALBERT_13 14.49% 70.10%

NETWORKX.BARBELL_GRAPH_EVEN 32.26% 54.53%

NETWORKX.BARBELL_GRAPH_ODD 24.09% 57.84%

NETWORKX.CIRCULAR_LADDER_GRAPH 41.20% 28.14%

NETWORKX.COMPLETE_GRAPH 9.18% 99.25%

NETWORKX.CYCLE_GRAPH 80.41% 22.51%

NETWORKX.ERDOS_RENYI_15 27.52% 65.73%

NETWORKX.ERDOS_RENYI_30 24.75% 62.63%

NETWORKX.LADDER_GRAPH 48.90% 16.30%

NETWORKX.PATH_GRAPH 93.34% 20.43%

NETWORKX.RANDOM_LOBSTER_45 61.91% 22.85%

NETWORKX.RANDOM_LOBSTER_90 42.50% 27.52%

NETWORKX.WATTS_STROGATZ_10 19.15% 69.36%

NETWORKX.WATTS_STROGATZ_20 14.87% 68.13%

NETWORKX.WAXMAN_GRAPH 4.76% 75.10%

Table 11 Efficiency and Approximation Error for Varying Synthetic Graph

Structures

Campbell 103

Figure 19 Average Efficiency and Error for Synthetic Graphs

Analysis of each of the experimental graph structures reveals that performance of

ALP for these graph models does not seem to be a significant correlation between the

transitivity or average clustering coefficient of the graph and the average efficiency of an

ALP shortest path query (Figure 20). The only noticeable correlation is that when these

structural properties tend to be zero, the efficiency gets closer to 100. Measures for both

transitivity and average clustering coefficient are zero for ladder, circular ladder, random

lobster, cycle, and path graphs. For each of those graphs, the prediction of where A*

should move next is successful roughly 50% at each vertex visit.

Campbell 104

Figure 20 Average Efficiency of 1000 Queries vs Structural Properties of Graphs
13

Figure 21 Graph of Efficiency measures for Dijkstra’s Algorithm and ALP shortest

path queries on Barabási-Albert preferential attachment graphs
14

Figure 21 further highlights correlations by examining the relationship between

transitivity, efficiency, and the parameters for generating the Barabási-Albert graph. In

the figure, we multiply the transitivity by 100 to demonstrate its variability in relation to

Dijkstra and ALP efficiency. We see that it varies in a way quite similar to ALP and

13

 Initial results show no immediate correlation between efficiency and the properties
14

 The green line on the plot shows the transitivity of each graph for the # of edges attached

0.00

0.20

0.40

0.60

0.80

1.00

0% 20% 40% 60% 80% 100%

R
aw

 V
al

u
e

Average Efficiency

Average Efficiency vs Graph Structural
Properties

 Average Transitivity

 Average Clustering
Coefficient

Campbell 105

Dijkstra’s efficiency for those graphs. ALP’s performance seems to depend on both

transitivity and average clustering.

For each of the synthetic graph structures, Figure 22 illustrates the difference

between ALP and Dijkstra over growing vertex and edge scales. These figures

demonstrate that ALP’s efficiency decreases as the graph gets larger. This behavior is the

same for ALT and Dijkstra’s algorithm, as well. This is why preprocessing as opposed to

simply using Dijkstra’s algorithm becomes more valuable as graphs get larger. We

simply note a decrease in efficiency as paths get larger, a fundamental property of the

search shared by ALT. Results show that these measurements are not correlated in any

meaningful way with respect to growing graph scale.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

V1 V2 V3 V4 V5 V6 V7

E

f

f

i

c

i

e

n

c

y

Vertex Scale

Vertex Scale Efficiency

ALP

Dijkstra

Poly. (ALP)

Campbell 106

Figure 22 ALP Efficiency at each Graph Scale

Number of Landmarks

The structure of the landmark SPTs used by ALP are constrained by partitioning.

One strategic method of increasing ALP’s efficiency is to increase the number of

landmarks that are used, which shortens the SPTs used for ALP. These series of trials

provide evidence as to the degree to which ALP performs better in the context of larger

or smaller SPTs from each landmark. These trials are performed on the following four

road graphs:

Dataset # Nodes # Edges

Average

Clustering Transitivity

Rome 3353 4831 3.027E-02 3.7358E-02

Washington DC 9522 14832 3.919E-02 4.6936E-02

Vermont 95671 209764 1.603E-02 2.8579E-02

New York City 264328 730012 2.077E-02 2.5438E-02

0

0.1

0.2

0.3

0.4

0.5

0.6

E1 E2 E3 E4 E5 E6 E7

E

f

f

i

c

i

e

n

c

y

Edge Scale

Edge Scale Efficiency

ALP

Dijkstra

3 per. Mov. Avg. (ALP)

Table 12 Road Graphs for Increasing Landmark Trials

Campbell 107

Note that the average clustering and transitivity of these graphs are closest to the

Barabási–Albert, Waxman, and Watts-Strogatz graphs in our synthetic graph dataset. In

this series of trials, we leverage the hierarchies of Louvain algorithm community

detection to increase the number landmarks. We partition each graph by the first level of

the Louvain dendrogram (with the least partitions), then the second, the third, and up to

the fourth. This results in a growing number of landmarks used for ALP (as well as

shorter SPTs). For each real graph available in our dataset, we run 1000 shortest path

queries on uniform random source-target pairs. Below, in Table 13, we detail the average

efficiency, average error, and the proportion of the graph searched during 1000 ALP

queries for each of these road graphs. The data for these vertex classes most clearly

demonstrated the differences in efficiency as the number of landmarks grew.

The first and most apparent result is that ALP appears to have greater efficiency

Table 13 ALP Performance for Increasing Landmarks

Name # Landmarks Level Efficiency % Graph Searched Average Error

Rome 48 1 7.00049% 30.98052% 60.34290%

Rome 58 2 7.68830% 28.70882% 55.71418%

Rome 187 3 11.03445% 21.38073% 40.01324%

Rome 818 4 25.13997% 10.43306% 17.37964%

Washington DC 73 1 5.64145% 21.49114% 40.39575%

Washington DC 136 2 6.31846% 18.45890% 33.44018%

Washington DC 624 3 10.96116% 11.21931% 19.90601%

Washington DC 2855 4 31.55521% 4.27612% 7.27658%

Vermont 658 1 0.76603% 58.06448% 87.96134%

Vermont 718 2 0.99790% 51.84114% 40.18168%

Vermont 1923 3 1.01485% 51.19348% 37.31285%

Vermont 7405 4 1.04701% 51.01309% 34.76163%

NYC 418 1 1.44018% 16.43274% 26.45864%

NYC 429 2 1.44114% 15.77193% 25.58507%

NYC 926 3 1.75182% 13.79238% 21.55280%

NYC 3908 4 2.82053% 9.06403% 13.66942%

Campbell 108

as the number of landmarks embedded in the graph grows. For Washington DC, we see

as high as 25% efficiency between the use of level 1 and 4 for the dendrogram. Further

analysis of this increase in efficiency is illustrated in Figure 23. This figure illustrates this

performance gain
15

 in relation to the increase in sheer number of landmarks for each run.

As the ratio of the number of vertices to landmarks increases, the performance gain

converges.
16

 This means that growing the number of landmarks is beneficial up to a limit

for ALP. However, the actual amount that it benefits decreases as the maximum possible

partitioning is approached.

Shown in the tables and plots above, the efficiency of ALP always improves when

the number of landmarks embedded in the graph grows. However, performance gain

converges to zero as the ratio of nodes to landmarks continues to grow. Understanding

this convergence is the key to understanding the optimal number of landmarks for ALP.

15

 Defined earlier in Metrics
16

 Experimental graphs for performance gains as the landmarks increase appear to be a Cauchy sequence.

While the data does not precisely confirm this over all graphs, the limit of this function converges as it

approaches 0.

Figure 23 Landmark Increase vs Performance Gain

-5.0E-04

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
e

rf
o

rm
an

ce
 G

ai
n

Increase in Number of Landmarks

Landmark Increase vs Performance Gain

Performance Gain

Campbell 109

Further, understanding this convergence can inform partitioning algorithms such as the

Louvain method as to the average size that clusters need to be for optimal behavior.

Results also show (Table 14) that preprocessing time typically coincides directly

with the number of landmarks being used. Preprocessing time is measured as the

combined time that it takes to both choose the set of landmarks and then grow the

shortest path trees. The time that it takes to choose the set of landmarks varies based on

the landmark selection technique used. The table below shows that for random landmark

selection, the preprocessing time increases in linear proportion to the number of

landmarks used.

Landmark Selection

The proposed landmark selection techniques from Chapter 3 were implemented in

the Python implementation to identify the critical points of performance for each method.

For reference, these techniques are summarized in Table 15.

Table 14 # Landmarks vs Preprocessing Time

Name # Landmarks Level Preprocessing Time (s)

Rome 48 1 10.8281069

Rome 58 2 9.5090308

Rome 187 3 15.122344

Rome 818 4 34.9846501

Washington DC 73 1 39.6760621

Washington DC 136 2 46.523139

Washington DC 624 3 93.329982

Washington DC 2855 4 296.3415701

Vermont 658 1 918.328876

Vermont 718 2 995.6715961

Vermont 1923 3 2083.487783

Vermont 7405 4 6984.66541

NYC 418 1 2264.852974

NYC 429 2 1981.283189

NYC 926 3 4085.070291

NYC 3908 4 4610.982617

Campbell 110

Each of these landmark selection techniques was applied to graphs in the road

graph dataset. The goal of landmark selection is to optimize query performance and the

tradeoff for the time required by preprocessing. 1000 queries were run on each graph,

iterating through each landmark selection method, for the lower two levels of the

dendrogram produced by the Louvain algorithm for partitioning. In the previous trials, we

experienced intractably high preprocessing times for Farthest-d. We also saw that Katz

centrality did not always converge in quite a few graphs. This is a fundamental property

of Katz centrality, as it is primarily suited for directed acyclic graphs. Because these

Embedding

Method

Description

Optimized

Random

Within each subgraph, choose a set of candidate landmarks at

random and run a series of ALT queries within the subgraph.

Choose the landmark with the most efficient runs.

Farthest-d Chooses a single landmark in each subgraph partition that is farthest

in distance from all other already chosen landmarks

Farthest-ECC Chooses a single landmark in each graph partition that is farthest

from all vertices (highest eccentricity)

Planar Choose a single landmark in each graph partition that is a border

vertex and farthest from all other already chosen landmarks.

Betweenness

Centrality

Compute the betweenness centrality of the largest connected

subgraph of the partition. Select the vertex with the highest

betweenness centrality

PageRank

Maximum

Compute the PageRank of the largest connected subgraph of the

partition. Select the vertex with the highest PageRank value

PageRank

Minimum

Compute the PageRank of the largest connected subgraph of the

partition. Select the vertex with the lowest PageRank value

PageRank Mode Compute the PageRank of the largest connected subgraph of the

partition. Choose a vertex with a PageRank value equal to the mode

of vertex PageRank values

Closeness

Centrality

Compute the closeness centrality of the largest connected subgraph

of the partition. Select the vertex with the highest closeness

centrality

Katz Centrality Compute the Katz centrality of the largest connected subgraph of the

partition. Select the vertex with the highest Katz centrality

Load Centrality Compute the load centrality of the largest connected subgraph of the

partition. Select the vertex with the highest load centrality

Table 15 Experimental Landmarks Selection Techniques for ALP

Campbell 111

techniques were inconsistent in allowing meaningful results to be obtained, the Farthest-d

and Katz centrality are not included in the summaries in this chapter. Their behavior and

the edge cases where they optimize the ALP algorithm can be found in the results shown

in the appendix. Figure 24 and Figure 25 describe the efficiency and tradeoff,

respectively, of each of these runs for two road graphs as a bar chart. The numbers

following the geographical locations for the chart labels describe the number of

landmarks that were used for ALP. Two levels of the Louvain method dendrogram were

used for each graph to appropriately characterize the selection algorithm’s behavior.

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%

A
ve

ra
ge

 E
ff

ic
ie

n
cy

Landmark Selection Technique

Average Efficiency

Hawaii_158

Hawaii_214

Hawaii_675

Washington DC_73

Washington DC_136

Washington DC_624

Figure 24 Landmark Selection Efficiency on Two Graphs for 1000 Query Trials

Campbell 112

As stated before, landmark selection is used to optimize the average efficiency of

the ALP algorithm. This is apparent in Figure 24, as we see at most a 4% difference in

the efficiency for any given graph, with Farthest-ecc showing highest efficiency for the

largest graphs. In Figure 25, we see that the total clock time for both preprocessing and

total query time can vary significantly based on landmark selection. Farthest-ecc

demonstrates the largest tradeoff. Unfortunately, this is because its preprocessing time is

the longest for each graph, as seen in Figure 26 for a 1000 query run on the graph of New

Mexico
17

. Just as stated by Goldberg for some of ALT’s original work, one cannot expect

an improvement of an order of magnitude the average performance (Goldberg &

Harrelson, 2005). These results indicate that this property applies to ALP, as well, which

17

 Remember, Farthest-ecc requires computing the graph eccentricity, a very expensive computation,

particularly for large graphs.

0

100

200

300

400

500

600

Tr
ad

e
o

ff

Landmark Selection Technique

Tradeoff

Hawaii_158

Hawaii_214

Hawaii_675

Washington DC_73

Washington DC_136

Washington DC_624

Figure 25 Landmark Selection Tradeoff on Two Graphs for 1000 Query Trials

Campbell 113

is why we see random landmark selection still performing reasonably well in comparison

to other algorithms.

Figure 26 Preprocessing Time vs Total Query Time for Landmark Selection

Techniques on the New Mexico Graph Dataset

Figure 27 illustrates the average approximation error for each of these runs as a

bar chart. PageRank (max) and Planar landmark selection have the most error in these

scenarios. Meanwhile, PageRank (min and mode), Farthest (eccentricity), and

betweenness, closeness, and load centrality landmark selection techniques have average

approximation errors below that of random. We also see that ALP makes better average

approximations for graphs that are larger.
18

18

 Graphs in Figure 27 are sorted from largest to smallest.

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000

To
ta

l Q
u

e
ry

 T
im

e
 (

s)

Preprocessing Time (s)

New Mexico Tradeoff

betweenness centrality

closeness centrality

farthest-ecc

load centrality

pagerank_max

pagerank_min

pagerank_mode

planar

random

Campbell 114

For each landmark selection technique, Figure 28 illustrates the approximation error of

ALP queries using each landmark selection technique in the context of actual path

lengths, indicating that ALP has a tighter approximation over larger distances. The

landmark selection techniques do not impact the average approximation error as the path

lengths become larger.

Each of the landmark selection methods exhibit similar average efficiency,

tradeoff, and average error as distances become larger. Farthest-ecc has the best

efficiency but the worst tradeoff, as the preprocessing time is significant for an

insignificant benefit in query time. It also maintains the lowest error as path lengths grow.

Random selection demonstrates the best overall tradeoff. ALP Planar is the least efficient,

19

 The labels of the graphs indicate the geographic location prior to the underscore and the number of

chosen landmarks after the underscore.

Figure 27 Landmark Selection Approximation Error on Three Graphs for 1000 Query

Trials
19

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
A

ve
ra

ge
 A

p
p

ro
xi

m
at

io
n

 E
rr

o
r

Landmark Selection Techniques

Landmark Selection vs Average
Approximation Error

Hawaii_158

Hawaii_214

Hawaii_675

Washington DC_73

Washington DC_136

Washington DC_624

Campbell 115

has the worst tradeoff, and exhibits the highest average error of all the featured landmark

selection techniques.

The landmark selection techniques used for ALP can make a difference in its

average efficiency. However, for the datasets used throughout experimentation, at their

size, only a 4-6% difference in efficiency is ever observed. Farthest-ECC shows the best

performance in the context of efficiency, but takes longer time than many other measures

to compute. Therefore, for critical applications, when even the smallest speedup for

query-time is needed, Farthest-ECC demonstrates the best performance, because of its

ability to space landmarks out in the graph. However, its preprocessing time can, in some

cases, be impractical. Overall, all centrality measure-based landmark selection

Figure 28 Path Length(X) vs Approximation Error (Y)

Campbell 116

techniques
20

 gave reliable performance for centrality that can be computed for most

datasets. They all demonstrated better performance than simple random landmark

selection. However, when it comes to common applications, when high landmark

selection times are detrimental to an application, closeness, and load centrality

demonstrated the most consistent performance across all datasets and were quick to

compute landmarks for ALP.

Experiment 2: ALT vs ALP

Experiment 2 leveraged all of the implementations, data gathering, and

knowledge gleaned from Experiment 1. We used this information to identify the key

benefits of using ALP over ALT in practical scenarios. Notably, we do not focus heavily

on the fact that ALT outperforms ALP over the same set of landmarks in terms of our

efficiency metric, as mathematics tells us that the lower bound of the triangle inequality

will always be tighter under that scenario. Rather, the trials in this Experiment focus on

the preferred graph and landmark configurations for their practical use. Therefore, we

compared the tradeoffs of ALT and ALP to answer research questions regarding utility of

each algorithm.

Description of Trials

We again leverage the Python 2.7/NetworkX 1.9 implementations to perform

experimentation. We run each individual trial by inputting a graph dataset, setting up a

number of shortest path source-target pairs, preprocessing both ALT and ALP, and then

executing queries using the ALT, ALP, and uninformed (Dijkstra’s) heuristic. We use the

20

 This is with exception to Katz centrality, which had trouble establishing an appropriate eigenvector for

many datasets.

Campbell 117

pathmax equation for A* such that the heuristics are consistent. First, we compare the

runtimes of ALT and ALP in the previous graph trials. Next we highlight the behavior of

ALT and ALP when they use the same set of landmarks and gain a comparative

understanding of how the algorithms behave given the same parameters. And finally, the

featured trial established a fixed amount of memory and ran each of the algorithms under

varied parameters as gleaned from this study and the academic literature to understand

their utility.

ALT vs. ALP: Runtime

For first comparisons of ALP and ALT, the performance of both algorithms was

analyzed for the experimental benchmark road data from DIMACS and all available

synthetic graphs (up to size 10
6
 nodes) from Experiment 1. Random landmark selection

was used for each trial run of the two algorithms on these datasets. The Louvain

algorithm was used again for the partitioning of each graph prior to distributed

embedding. As illustrated in Figure 29, queries for paths with distances between 1 and

501 were called 10
5
 times. While ALT nearly always out-estimated the dual landmark

ALP algorithm, the resulting data show significant improvement of the runtime of the

dual landmark ALP heuristic over the ALT heuristic on a diverse set of graphs with

larger path lengths, as well as an inherent reduction in required memory. This is a result

Trial Categories Description

ALT vs. ALP: Runtime Analyze the comparative runtimes for shortest path

queries from Experiment 1 trials

ALT vs. ALP: Equal

Landmarks

Compare and contrast the efficiency and average error

between ALT and ALP when the same landmarks are

chosen for both ALT and ALP

ALT vs. ALP: Fixed-Memory ALT and ALP go head to head in a fixed memory

environment for four road graph datasets.

Table 16 ALT vs ALP Trials

Campbell 118

of the reduced number of operations being performed at each visited vertex during the

search, as illustrated in Figure 30.

Figure 30 Graph demonstrating a higher number of operations for ALT (Blue)

compared to ALP (Red) as the length of the paths grow. This corresponds to the

runtime graphic on the previous page

ALT vs. ALP: Equal Landmarks

We proved, in the previous chapter, that ALT has better estimates over the same

set of landmarks. In this set of trials, we look at ALT’s shortest path preprocessing

behavior when using the set of landmarks chosen by ALP. In other words, this set of

Figure 29 Graph demonstrating a higher runtime for ALT (Blue) compared to ALP

(Red) as the length of the paths grow

Campbell 119

trials was performed to see if the landmark selection techniques that were developed for

ALP could be beneficial for ALT in the future. Just as in previous trials, we select 1000

source-target vertex pairs using uniform random distribution. Next, we preprocess ALP,

establish its landmarks, and then use these landmarks to establish the data structure for

both ALP and ALT. We then run the 1000 queries under the ALT and ALP heuristics to

demonstrate ALT’s behavior when using the same landmark set as ALP. We iterate

through this process and work our way down the Louvain dendrogram to understand

behavior as the number of landmarks grow. The figures below display the resulting data.

Figure 31 ALP Preprocessing in ALT: ALP

#Landmarks vs Average Efficiency

Figure 32 ALP Preprocessing in ALT:

ALT #Landmarks vs Average

Efficiency

Figure 33 ALP Preprocessing in ALT: ALP

Average Runtime vs Search Space Size

Figure 34 ALP Preprocessing in ALT:

ALT Average Runtime vs Search Space

Size

Campbell 120

In Figure 31 and Figure 32, we see that ALT maintains its high efficiencies when

leveraging ALP landmark selection. However, Planar and Farthest-ecc demonstrate

significant drops in efficiency for ALT. This is not surprising for Planar. However,

ALP’s version of Farthest landmarks selection does not serve the ALT algorithm well.

In Figure 33 and Figure 34, the efficiency gap is even more noticeable, as the average

search space sizes for Planar and Farthest-ECC have outlier data points for ALT. The

centrality measure-based landmark selection in each of these seems to maintain the

efficiencies of ALT. Each of the centrality measures are computed very quickly in ALP.

Therefore, they are viable candidates to speed up ALT landmark selection, though the

bulk of ALT’s preprocessing time comes from growing its shortest path trees from each

landmark.

ALT vs. ALP: Fixed-Memory

An issue with using ALP preprocessing for ALT is defining the appropriate

number of landmarks to use. As seen in each set of trials and experiments, the triangle

inequality normally yields tighter lower bounds than quadrilateral inequalities over the

same set and number of landmarks. Varying the used landmark selection technique helps

ALP. However, throughout the vast majority of trials discussed thus far, it has not

resulted in a better estimate for A* over ALT. Nonetheless, our dual landmark heuristic

for ALP can outperform ALT when analyzing the same graph by using a greater

number of landmarks. In this final set of trials, we simulated the use of the dual

landmark ALP heuristic against the ALT heuristic in a hardware environment with fixed

Campbell 121

memory requirements. We allowed both preprocessing algorithms to use the most

landmarks possible in the environment and compared their performance.

Simulating a fixed memory hardware environment for the heuristics was done by

specifying upper bounds for the number of distance labels stored by the data structure.

The following upper bounds for number of data labels stored were used:

- 250,000

- 500,000

- 1,000,000

- 2,500,000

- 5,000,000

- 10,000,000

- 25,000,000

- 100,000,000

Each graph in this set of trials uses six of these levels depending on the size of the graph.

For each trial, the partitioning of the graph was performed with parameters such that the

following was true for the landmark set and any of these upper bounds under the

ALP environment:

 (83)

Recall that the number of vertices is multiplied by two here because the distances to and

from each landmark need to be stored for each subgraph in order to accurately compute

the heuristic for directed graphs. For the landmark set in the ALT environment, the

following requirement had to be met:

 (84)

Once again, multiplication by two accounts for the fact that ALT has to store the

distances to and from each landmark in order to compute the heuristic for directed

graphs. We used these constraints to simulate a fixed-memory environment for ALT and

Campbell 122

ALP. We perform each run by using optimized random landmark selection (random-opt).

This is done for two reasons: First, it is done to support a general scenario in which we

must decide whether to apply ALT or ALP, not knowing if the capabilities for complex

mathematical functions such as eigenvector centrality measurement are available in the

real-world environment in which we are operating. Second, the goal of this set of trials is

to demonstrate the impact of number of landmarks, not selection strategies. Appropriate

selection strategies for both ALT and ALP would result in choosing many of the same

landmarks. Both theory and trials have shown that over the same set of landmark, ALT

heuristics nearly always out-estimate ALP heuristics.

 The Louvain method used throughout experimentation has the drawback that the

number of partitions that it produces cannot be fixed. It simply forms a dendrogram at

which each level can be used to signify community structure in a way that optimizes

community modularity. Because of this, we hypothesized that relying on the levels of

partitioning granted by the Louvain method for the levels of fixed memory described

above can be a sub-optimal solution to a path planning implementation. Nonetheless, it is

still a computationally low-cost method of partitioning that can be applied to many

devices with small fixed memory.

However, it is also beneficial to understand ALP’s behavior in this fixed-memory

environment when it can maximize its number of landmarks. Therefore, we use two

different partitioning algorithms for characterizing ALP’s behavior in a fixed-memory

environment. The first of which is the Louvain method, in which we choose the highest

possible level of the resulting dendrogram that produces a number of partitions (which is

equal to the number of landmarks) closest to the fixed-memory upper bound for ALP.

Campbell 123

This allows for good coverage of landmarks but does not allow ALP to reach its

maximum number of landmarks in the fixed-memory environment. To do that, we use a

second partitioning scheme that starts with the partitions of the first level of the Louvain

method dendrogram. Recall from Chapter 1 that the first level of partitioning yields the

maximum modularity score for an input graph. Then, let be the desired number of

landmarks and the number of partitions at the first level of the Louvain method

dendrogram. Then, for the subgraph induced by each partition, another community

detection method, called walktrap community detection, is applied that allows us to

specify the number of communities to be fixed (Pons & Latapy, 2005). This method,

based on the notion that short random walks should tend to stay in the same community,

produces a dendrogram that can be cut to represent a desired number of partitions. This is

done by replaying merges of the dendrogram from the beginning until the membership

vector has exactly the desired number of communities, or until there are no more merges.

The number of communities for each partition is fixed as follows:

(85)

This is true for all but the largest community, which is partitioned into

communities.
21

Here, we break down a run of four road graphs in this environment that were

studied the most over the dissertation effort, in their entirety. For each graph, we ran 1000

shortest path queries using the same source-target pairs selected over a uniform random

distribution. We capture the average search space
22

, error, and runtime (in seconds) for

21

 For each of these trials, the walktrap community detection implementation’s step parameter is set to 10.
22

 We can simply use the search space here as we are not comparing runs between the graphs.

Campbell 124

runs at each memory bound. Each graph is analyzed using both partitioning methods

described above. First, we analyze runs for one of our most tested graphs, a graph of

Washington DC:

Graph Nodes Edges Transitivity Average Clustering Density

Washington DC 9522 29639 0.046936 3.919E-2 3.272E-4

First, we analyze the graph in the fixed memory environment using the Louvain

algorithm. The table below shows the parameters of the run and the result data.

Figure 35 and Figure 36 highlight the average search space and runtime of these runs.
24

ALT has better average error and search space size than ALP landmark selection while

ALP boasts better average runtimes than ALT for the larger memory queries. This is

expected due to the number of arithmetic operations performed at each vertex. We also

see that increasing the number of landmarks in this case does not necessarily mean an

increase in ALP’s algorithmic performance (in terms of search space size).

Practical implementations of ALT suffer from the fact that they have to explore

the space of maximum lower bounds in order to compute its heuristic upon visiting every

node. Even exhausting Python’s latest available optimizations, this is still a hindrance for

23

 ALP is restricted from executing at the 1E6, 2.5E6, and 5E6 fixed memory bounds because the Louvain

algorithm dendrogram only had partitioning suitable for bounds lower than that. Therefore, ALP data, for

comparison, is the next lowest bound.
24

 In this section, for each set of runs, the corresponding figure for Fixed Memory vs Average Error can be

found in Appendix C.

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

Washington DC 2.50E+05 ALP 138 28566 1571.1379 29.81112% 3.5428E-02

Washington DC 2.50E+05 ALT 13 9691 350.5776 4.54692% 6.8026E-03

Washington DC 5.00E+05 ALP 628 403906 1193.6679 26.73488% 2.6641E-02

Washington DC 5.00E+05 ALT 26 10198 278.5031 3.87763% 1.6158E-02

Washington DC 1.00E+06 ALT 52 12226 208.7736 2.61185% 1.9735E-02

Washington DC 2.50E+06 ALT 105 20547 153.1421 2.01167% 4.3317E-02

Washington DC 5.00E+06 ALT 262 78166 110.9219 0.99270% 9.5491E-02

Washington DC 1.00E+07 ALP 2856 8166258 1885.1978 55.36047% 3.7359E-02

Washington DC 1.00E+07 ALT 525 285147 90.4394 0.64338% 2.1970E-01

Table 17 Washington DC Fixed-Memory Performance of ALT vs ALP (Louvain)
23

Campbell 125

ALT. However, much to our chagrin, in this scenario, ALT still outperforms ALP in

terms of average search space, average approximation error, and average runtime.

We see several of the categorized memory bounds that do not have data for ALP.

This is due to restrictions on Louvain method partitioning. In this run, ALP is restricted

from executing at the 1E6, 2.5E6, and 5E6 fixed memory bounds because the Louvain

algorithm dendrogram only had partitioning suitable for bounds lower than that. Below

are results of the graph using the partitioning of the combined Louvain and walktrap

community algorithm.

Table 18 Washington DC Fixed-Memory Performance of ALT vs ALP

(Louvain/Walktrap)

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

Washington DC 2.500E+05 ALP 480 239922 6606.8252 69.2098% 9.4341E-02

Washington DC 2.500E+05 ALT 13 9691 417.7007 6.2752% 8.6301E-03

Washington DC 5.000E+05 ALT 689 484243 7400.9269 55.0702% 1.0007E-01

Washington DC 5.000E+05 ALT 26 10198 255.1752 3.4808% 8.3438E-03

Washington DC 1.000E+06 ALP 978 966006 7506.3653 52.9431% 1.0037E-01

Washington DC 1.000E+06 ALP 52 12226 220.4454 3.1801% 1.1773E-02

Washington DC 2.500E+06 ALP 1539 2378043 7596.7606 51.1063% 1.0487E-01

Washington DC 2.500E+06 ALT 131 26683 140.9479 1.5360% 2.0862E-02

Washington DC 5.000E+06 ALP 2141 4593403 7615.4187 51.0071% 1.0571E-01

Washington DC 5.000E+06 ALT 262 78166 113.3003 1.0035% 3.8670E-02

Washington DC 1.000E+07 ALP 2974 8854198 7627.7683 50.4975% 1.0593E-01

Washington DC 1.000E+07 ALT 525 285147 94.5616 0.6249% 1.1075E-01

Figure 35 Washington DC Fixed

Memory vs Average Search Space Size

Figure 36 Washington DC Fixed Memory

vs Average Runtime

Campbell 126

Figure 37 and Figure 38 highlight the average search space and runtime of these

runs. The first recognizable impact of the use of the combined Louvain/Walktrap

community detection method is the significantly larger search space, error, and runtime

used by ALP at all levels. The second is that we do see the average search space

increasing as the number of landmarks increases.

Figure 37 Washington DC Fixed Memory

vs Average Search Space Size

(Louvain/Walktrap)

Figure 38 Washington DC Fixed Memory

vs Average Runtime (Louvain/Walktrap)

The next graph of New Mexico indicates whether or not this behavior is

consistent:

Graph Nodes Edges Transitivity Average

Clustering

Density

New Mexico (subgraph) 21,866 70,867 0.059988 0.04285 0.00011829

The following table shows the parameters of running ALT and ALP on the graph when

partitioned with the Louvain method:

Campbell 127

Once again, we see the average search space size of queries for dual-landmark ALP being

much larger than that of ALT, with an average approximation error that is embarrassingly

higher. And we can only run ALP twice under this configuration. This time, performance

is even worse for ALP when it comes to runtime, as shown in the figures below.

Figure 39 New Mexico Fixed Memory vs

Average Search Space Size

Figure 40 New Mexico Fixed Memory vs

Average Runtime

The table below details the results of running the combined Louvain/Walktrap

method on New Mexico:

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New Mexico 2.50E+05 ALP 401 182667 3399.1715 25.2513% 5.9344E-02

New Mexico 2.50E+05 ALT 5 21891 2207.8979 16.6621% 2.7334E-02

New Mexico 5.00E+05 ALT 11 21987 1613.1371 9.9733% 3.5869E-02

New Mexico 1.00E+06 ALT 22 22350 856.8704 4.9121% 2.9102E-02

New Mexico 2.50E+06 ALP 1554 2436782 2540.1837 23.8242% 4.5226E-02

New Mexico 2.50E+06 ALT 57 25115 544.3954 2.7099% 3.1163E-02

New Mexico 5.00E+06 ALT 114 34862 416.4034 2.0523% 6.4603E-02

Table 19 New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain)

Campbell 128

The behavior for the combined Louvain/Walktrap community detection algorithm is

consistent. As further illustrated in the figures below, this experimentally verifies that the

partitioning of the input graph can impact ALP, which was evident previously given that

landmark selection is significant to optimization.

Figure 41 New Mexico Fixed Memory

vs Average Search Space Size

(Louvain/Walktrap)

Figure 42 New Mexico Fixed Memory vs

Average Runtime (Louvain/Walktrap)

We now move onto a much larger graph than these first two that truly

demonstrates the utility of dual-landmark ALP. Instead of taking subgraphs, the next

graphs are entire graphs of a geographical region.

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New Mexico 2.50E+05 ALP 405 185891 3067.7518 21.4430% 4.4960E-02

New Mexico 2.50E+05 ALT 5 21891 1940.958 15.8205% 2.5976E-02

New Mexico 5.00E+05 ALP 675 477491 14615.2136 65.4098% 2.1472E-01

New Mexico 5.00E+05 ALT 11 21987 1209.9349 7.3536% 2.4114E-02

New Mexico 1.00E+06 ALP 933 892355 17284.5399 56.9401% 2.3689E-01

New Mexico 1.00E+06 ALT 22 22350 886.4815 5.4194% 2.3737E-02

New Mexico 2.50E+06 ALP 1563 2464835 16170.4717 57.7529% 2.2554E-01

New Mexico 2.50E+06 ALT 57 25115 544.3954 2.7099% 3.1163E-02

New Mexico 5.00E+06 ALP 2206 4888302 16195.4176 57.1753% 2.2700E-01

New Mexico 5.00E+06 ALT 114 34862 399.3674 2.0399% 4.4304E-02

Table 20 New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap)

Campbell 129

The following are details of the graph representing the full roadmap of New York City

(NYC):

Graph Nodes Edges Transitivity Average Clustering Density

New York City 264,328 730,012 0.025438 0.020772 0.000010448

The following table shows the parameters of the run and the result data under Louvain

method partitioning:

Highlighted in red, for this run, are the levels of fixed memory in which dual landmark

ALP has a smaller average search space, smaller runtime, and smaller average

approximation error than ALT. Seen in Figure 43 and Figure 44, the difference in search

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

New York City 1.00E+06 ALP 427 42821 27.11% 7.3090E-01

New York City 1.00E+06 ALT 1 78460 57.10% 9.8260E-01

New York City 2.50E+06 ALP 942 35003 21.73% 6.0750E-01

New York City 2.50E+06 ALT 4 40943 27.68% 6.4930E-01

New York City 5.00E+06 ALT 9 28827 14.43% 6.0200E-01

New York City 1.00E+07 ALT 18 48060 14.67% 1.3790E+00

New York City 2.50E+07 ALP 3934 18975 12.81% 5.1060E-01

New York City 2.50E+07 ALT 47 40189 17.29% 2.0390E+00

New York City 1.00E+08 ALT 189 81338 13.52% 1.1060E+02

Table 21 New York City Fixed-Memory Performance of ALT vs ALP (Louvain)

Figure 43 New York City Fixed Memory

vs Average Search Space Size

Figure 44 New York City Fixed Memory vs

Average Runtime

Campbell 130

space is substantial here. Even more notably, ALT experiences a sharp increase in both

search size and runtime as the number of landmarks increase. This is the first research

result that demonstrates ALP’s dominance in a fixed-memory environment.

For the NYC graph, ALT has been limited to as low as a single landmark in our

5E4 upper bound memory configuration
25

. In that scenario, ALT loses out. Of note, even

its average runtime, which depends not only on the search space size but on the number

of arithmetic operations that occur for each node visit, is still worse for ALT in this

scenario. This becomes very apparent for the 1E8 upper bound result, where the query

runtimes were on the minute scale. ALT runtime simply becomes impractical when

leveraging that many landmarks because it has to compute the triangle inequality for all

landmarks at every visited node. As the amount of allowable memory grows, ALT does

begin to algorithmically perform better, averaging a smaller search space, but does not

catch up with dual landmark ALP.

 We take a single scenario for the NYC graph, when the memory is limited to

2.5E6 labels. We separate the lengths of paths for queries on this graph into five different

classes and attempt to understand the difference between ALT and ALP for estimations at

these ranges. Table 22 details the average query search space, runtime, and

approximation error for each of these path classes.

25

 Nothing could be executed in our lowest memory configuration at this point because it is smaller than the

number of nodes in the graph.

Campbell 131

Heuristic

Average Search

Space

Average Runtime

(s)

Average Approx.

Error

Path

Class

ALP 5,984.9231 0.095420387 0.310469725 0-200

ALT 4,941.0321 0.078824321 0.23462107 0-200

ALP 21,469.9707 0.365463074 0.215048211 200-400

ALT 22,222.9149 0.375098283 0.186812221 200-400

ALP 46,883.8047 0.815239528 0.184229549 400-600

ALT 56,051.3401 0.94817963 0.245895748 400-600

ALP 70,101.7847 1.236932435 0.164547937 600-800

ALT 86,528.5764 1.468556752 0.299505343 600-800

ALP 97,784.4615 1.707975973 0.18256267 800-

ALT 12,9913.6538 2.155318469 0.482575857 800-

We see for smaller path lengths, the two algorithms are on par with each other,

with ALT actually outperforming ALP for path lengths of 0-200. Beyond that range, ALP

has better estimates than ALT. Figure 45 is a clear illustration of the delta in search space

size between the two algorithms as the path lengths get larger.

Table 22 ALP's dominance of ALT over Large Path Lengths for 2.5E6 Data Label

Upper Bound

Figure 45 Performance of ALT vs ALP for 2.5M Data Labels

Campbell 132

The ability to outperform ALT in this scenario under a Louvain method partitioning

demonstrates ALP’s utility. Just as with the previous two graphs, this graph was run

under the combined Louvain/Walktrap partitioning:

The average runtime shown in the figure below is telling of the ability of ALP to

outperform ALT even when it visits more nodes for large graphs.

Figure 46 New York City Fixed Memory

vs. Average Search Space Size

(Louvain/Walktrap)

Figure 47 New York City Fixed Memory

vs. Average Runtime (Louvain/Walktrap)

This is not a phenomenon. We take a look at the next largest graph in our dataset

to further validate this finding.

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New York City 1.00E+06 ALP 686 734924 44626.7177 26.5428% 7.8985E-01

New York City 1.00E+06 ALT 1 264329 80723.4855 53.5135% 1.1611E+00

New York City 2.50E+06 ALP 1404 2235544 41409.3974 24.4544% 7.4700E-01

New York City 2.50E+06 ALT 4 264344 38028.7618 19.3056% 6.4815E-01

New York City 5.00E+06 ALP 2114 4733324 181830.958 82.5024% 3.2057E+00

New York City 5.00E+06 ALT 9 264409 71152.4154 30.8865% 1.5934E+00

New York City 1.00E+07 ALP 3077 9732257 182189.99 81.9870% 2.9852E+00

New York City 1.00E+07 ALT 18 264652 53287.5345 18.6009% 1.5012E+00

New York City 2.50E+07 ALP 4945 24717353 204581.2643 98.2239% 3.3681E+00

New York City 2.50E+07 ALT 47 266537 78984.6877 38.7101% 4.2289E+00

New York City 1.00E+08 ALT 7027 49643057 210180.5084 99.0932% 6.6567E+00

New York City 1.00E+08 ALT 189 273164 81244.2647 30.2203% 8.1485E+00

Table 23 New York City Fixed-Memory Performance of ALT vs ALP

(Louvain/Walktrap)

Campbell 133

Graph Nodes Edges Transitivity Average

Clustering

Density

San Francisco

Bay
321,258 794,788 0.02225 0.016565 0.000007701

In the following table, we see similar results when ALT and ALP go head to head in this

graph:

Figure 48 San Francisco Bay Fixed

Memory vs. Average Search Space Size

Figure 49 San Francisco Bay Fixed

Memory vs. Average Runtime

Here, ALT beats ALP’s search space size at the 5E6, 1E7, 2.5E7, 5E7, and 1E8 upper

bounds. ALT also has comparable runtimes. This, however, could be attributed to the

Louvain method’s partitioning restrictions on number of landmarks used. This limited the

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

San Francisco Bay 1.0E+08 ALT 155 4701 1.77% 4.667E+00

San Francisco Bay 5.0E+07 ALP 4984 20534 9.53% 1.722E+00

San Francisco Bay 5.0E+07 ALT 77 6518 2.14% 1.256E+00

San Francisco Bay 2.5E+07 ALT 38 9960 3.55% 1.107E+00

San Francisco Bay 1.0E+07 ALT 15 15983 5.33% 1.193E+00

San Francisco Bay 5.0E+06 ALT 7 26016 11.49% 1.541E+00

San Francisco Bay 2.5E+06 ALP 1185 33444 14.31% 5.656E-01

San Francisco Bay 2.5E+06 ALT 3 45357 18.83% 6.392E-01

Table 24 San Francisco Fixed-Memory Performance of ALT vs ALP (Louvain)

Campbell 134

number of runs that were performed. However, looking at the first four levels of fixed

memory, we see that the combined partitioning method does not do better:

At these levels, ALP is simply outmatched and is more comparable to Dijkstra’s. The

figures below illustrate the significance of partitioning for ALP.

Figure 50 San Francisco Bay Fixed

Memory vs. Average Search Space Size

(Louvain/Walktrap)

Figure 51 San Francisco Bay Fixed

Memory vs. Average Runtime

(Louvain/Walktrap)

Because ALP did not outperform ALT in all contexts of the last scenario, we look at a

smaller run of one final dataset.

Graph Nodes Edges Transitivity Average Clustering Density

Colorado 435,550 1,042,104 0.02518184 0.017235 0.0000054933

The following is a table of our results from analysis of Colorado:

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

San Francisco 1.00E+07 ALP 3059 9678739 107292.2482 0.00676206 0.874311631

San Francisco 1.00E+07 ALT 15 321483 13753.011 0.08387688 0.049901005

San Francisco 5.00E+06 ALP 2087 4676827 107596.2693 0.0066022 0.876781686

San Francisco 5.00E+06 ALT 7 321307 25038.7648 0.05575716 0.114934876

San Francisco 2.50E+06 ALP 1362 2176302 108738.7758 0.00654484 0.882508475

San Francisco 2.50E+06 ALT 3 321267 39706.4424 0.03150861 0.196388122

San Francisco 1.00E+06 ALP 597 677667 108462.5846 0.00624014 0.880367487

San Francisco 1.00E+06 ALT 1 321259 87979.2272 0.01357608 0.500051364

Table 25 San Francisco Bay Fixed-Memory Performance of ALT vs ALP

(Louvain/Walktrap)

Campbell 135

We see enough data in the Colorado result to verify our claim. ALP can

outperform ALT when analyzing large graphs
26

 in a fixed-memory environment.

However, it can fall prey to the constraint that it is restricted to one landmark per

partition. We address this constraint a bit more with a suggestion for future research in

Chapter 5.

Figure 52 Colorado Fixed Memory vs.

Average Search Space Size (Louvain)

Figure 53 Colorado Fixed Memory vs.

Average Runtime (Louvain)

Overall, this behavior for ALP against ALT is quite consistent for large graphs

and has been seen in numerous test trials conducted outside of this fixed-memory

experiment. The following figure summarizes, for all trials performed on real road graphs

in all experiments, using random landmark selection, where ALP performs equally to or

26

 > ~1E5 Vertices, 5E5 Edges

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

Colorado 2.5E+07 ALT 28 6.461E+04 8.52% 9.441203811

Colorado 1.0E+07 ALT 11 6.369E+04 11.68% 5.643167405

Colorado 5.0E+06 ALP 1886 4.580E+04 14.14% 3.166834619

Colorado 5.0E+06 ALT 5 4.930E+04 13.01% 3.245015286

Colorado 2.5E+06 ALP 1132 5.275E+04 17.19% 3.406351286

Colorado 2.5E+06 ALT 2 6.791E+04 22.83% 3.937390599

Campbell 136

better than ALT in terms of search space. The figure shows the percentage of queries for

each graph of a given size in which ALP has equal or better performance.

Figure 54 Percentage Of Queries in Which ALP has Equal or Better performance than

ALT

Overall, this research result directly addresses the problem statement stated in

Chapter 1 of this dissertation. We have shown that in a fixed-memory environment, ALP

can outperform ALT on larger graphs with appropriate partitioning. We discuss what this

appropriate partitioning requirement could be in the next section.

Findings

The intent of this section is to synthesize and discuss the results of data analysis in

light of the research questions, literature review, and methodology laid out in the first

three chapters. We note again here, that the novel feature of ALP is that it is a practical

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

70.0000%

0 100000 200000 300000 400000 500000 600000

%
 Q

u
e

ri
e

s

Nodes in Graph

ALP Beats (or ties) ALT

ALP Beats (or ties) ALT (%)

Campbell 137

landmark-based heuristic, requiring significantly less storage space and computational

time to preprocess its data structure while speeding up shortest path search. Here, we

highlight patterns and themes that support this claim while also highlighting any

ambiguities and inconsistencies that could leave the claim to question. Each subsection is

broken down by a key observation of the behavior of ALP.

Key Observations: Greater Landmark Set Density Allows ALP to Outperform ALT

 This is the primary finding of the research. While landmark selection algorithms

have an effect on overall query performance, the density of the landmark set comparative

to the size of the graph are the key factors that allow ALP to outperform ALT. The

triangle inequality simply yields a tighter bound than the quadrilateral inequality for the

path metric over the same or even a similar landmark set. Even for the metric space-based

inequalities such as the one derived from the four-point condition, the triangle inequality

is a simpler, stronger approach to achieving a lower bound. From the practical

perspective, however, the final results of Experiment 2 show that ALT can suffer from its

large space complexity in a real application scenario.

 Using results from experimentation, we characterize this activity in terms of

tradeoff for real graphs, here. For ALT and ALP, Figure 55 is a 3D logarithmic plot that

illustrates the relationships between the number of nodes in the graph, number of

landmarks used by each algorithm, and the tradeoff measurement described in the

previous section for all trials run using real road graphs
27

. The plot shows a greater

number of trials with ALT that demonstrate higher tradeoff values than trials of ALP.

This trend continues to grow as the number of nodes in the graph gets larger. It also

shows, in these instances, ALP’s ability to use more landmarks with smaller tradeoff.

27

 This was done using trials in which ALT and ALP executed the same number of queries.

Campbell 138

 For smaller graph datasets such as the Washington DC graph or the Rome graph

from the experimental dataset, the benefit of landmark density for ALP will rarely aid it

against ALT. The result data shows that this behavior is quite consistent, regardless of

landmark selection. The only benefit ALT truly has when the number of nodes and edges

in the graph grow as they do in Experiment 2 is the flexibility of the number of

landmarks that it can choose. And recall, ALP’s restriction in that regard is not a

fundamental property of the algorithm, as the partitioning information simply serves as

input. While we did not use a community detection algorithm that forms partitions that

outperforms ALP results for Louvain partitions in our experiments, future research can

focus on identifying the key properties of partitioning methods that optimize the choice

of landmarks.

Figure 55 Log Plot of #Nodes vs # Landmarks vs Tradeoff for road graph trials shows

worse tradeoff using less landmarks with ALT

Campbell 139

Key Observations: ALP Performance Gain Converges for Smaller Landmark Shortest

Path Trees

 A key observation during experimentation was that the average efficiency of

shortest path queries almost always grows when the number of landmarks is increased.

However, as shown in Figure 23, we see that performance gain tends to converge as the

number of landmarks increases. The efficiency of a query in the ALP algorithm is

dependent on the ALP estimate. The closer the estimate is to its actual distance (without

overestimating) the better the estimate. To observe ALP’s behavior in an environment

with increasing landmarks, let us first look again at its heuristic estimates:

Now, we define the behavior of this heuristic when the number of landmarks increases.

An increase in landmarks inherently means a decrease in the distances between all

landmarks (). For the distances between landmarks and their vertices, the overall

distances either stay the same or decrease. When vertices ∈ do not share the same

landmark, the following occurs:

 (93)

 (94)

 (86)

 (87)

 (88)

 (89)

 (90)

(91)

 (92)

Campbell 140

 (95)

 (96)

 (97)

Because the shortest path graph is a metric space, will never be negative, by

definition. Therefore, in a weighted graph, we characterize the limit of the heuristic

function as approaches 0 from the right. Based on the above limits, as the

number of landmarks increase, we can characterize the heuristic estimates as the search

approaches the target as follows:

 (98)

Note that this characterizes the ALP heuristic as the number of landmarks increase and

simply as the search nears the target. However, this limit at zero is still equal to the

triangle inequality.

In the truly random (non-optimized) landmark selection case, because

preprocessing is actually faster with smaller clusters and there is not a significant impact

on preprocessing time for using more landmarks, the more landmarks that can be used to

cover the graph, the better. However, we must be careful to cover the expensive

preprocessing cost of computing the distance between all landmarks. Hypothetically, if

all landmark nodes existed at an appropriate position on the graph border, this could

result in growing out the full SPT for preprocessing time. Our results show that

selectively choosing a moderate number of landmarks can result in optimal

measurements across the board.

But what is this moderate number? While structural graph properties can play a

significant role in the average efficiency on queries in a graph, the average efficiency

Campbell 141

increase created by increasing the number of chosen landmarks is strongly correlated to

the number of vertices. In the context of landmark-to-node ratio, Figure 56 represents the

average efficiency over 200 trials.
28

 For ALT, we see a sharp increase as the number of

vertices increase, maxing out in efficiency when approximately 10% of the vertices are

chosen to be landmarks.

For ALP, we see this number is about at 25%. For ALT, it is difficult to tell from

the acquired data precisely where its efficacy ends before hitting the 100% efficiency

limit. The ALP trendline is approximately characterized by a sextic function, with an R-

squared value of 0.9482
30

. We can analyze this function’s derivative to get a sense of

28

 Each trial had 1000 queries.
29

 The line drawn for ALT is a very loose approximation of the data. Of linear, polynomial, and log scale, it

was, however, the log scale was the best fit for the data that we had on hand. Nonetheless, we cannot make

as adequate of assumptions about ALT based on this equation as we can about ALP based on the

polynomial. Hence, no equation is featured in the image.
30

 The R-squared value grew as the degree of the polynomial grew.

Figure 56 Plot of Landmark to Vertex Ratio vs Average Efficiency for 200 Trials

29

Campbell 142

when gains in efficiency begin to decrease as the number of landmarks grows. As seen in

the figure, for ALP, let

(99)

Where equals the landmark-to-vertex ratio and equals the average efficiency of

trials with that landmark-to-vertex ratio. The derivative is then defined as

(100)

The only real root of this function’s derivative is at 0.2567, where the function itself

begins to have 100% efficiency scores
31

. The heuristic’s efficiency cannot grow beyond

100% because it is admissible. Therefore, it makes sense that it would have a slope of

zero once average efficiency becomes 100%. Finding a moderate number of landmarks to

choose for preprocessing ALP requires, however, looking at the second derivative:

 (101)

The zeros for are 0.04199 and 0.12763. At these values for landmark-to-vertex

ratio, the rate of increase of efficiency increase creeps to zero, which is very apparent in

the graph. In other words, only an ordinary increase in efficiency will occur at these

points.

 It should be noted that the analysis of the sextic equation provides a good

approximation for these data collected over the course of experimentation. The

polynomial of degree six was used because it had a significant R-squared value and was

the lowest degree polynomial with real roots for both its first and second derivatives. The

first five polynomials either had first or second derivatives close to this one. These roots

31

 Solved using Newton’s Method

Campbell 143

appear to be correct in terms of understanding the lull in efficiency gain after choosing a

certain number of landmarks in the data.

Key Observations: Better Tradeoff through BFS during landmark selection

 Prior to labeling for distributed embedding, a speedup in preprocessing time was

achieved by leveraging breadth-first search (BFS) as opposed to Dijkstra’s shortest path

algorithm for path weights during the landmark selection. When dealing with weighted

graphs, we cannot use a BFS measurement for the actual labeling of graph vertices.

However, treating the graph as unweighted when selecting the landmarks produces strong

results, as they give a rough estimate of actual path cost. Often, particularly for road

graph datasets, the path length can act as a (somewhat) rough estimate of the distance. In

the figures below, the path length and path weight histograms for an NYC road graph

dataset take on roughly the same structure.

Table 26 NYC Path Histograms

Campbell 144

The use of BFS is quick, granting better tradeoff in practical applications. Therefore, to

speed up ALP’s farthest and planar landmark selection, we use a BFS algorithm to

identify farthest nodes or to compute the distance between coordinates. This is the same

strategy that the originators of ALT used to improve farthest, creating farthest-d. This

paradigm should be used when developing future landmark selection techniques and is,

of course, subject to the application of the graph and shortest path search.

Key Observations: ALP Performance behaviors are consistent with ALT, except for

tradeoff.

After a certain point, a higher landmark-to-node ratio has insignificant efficiency

increases for ALP. Therefore, its true benefit is speeding up preprocessing, handling

larger graph datasets, and faster practical implementations due to its ability to make fewer

computations at each node. Outside of this, the heuristic’s behavior changes similarly to

ALT with respect to graph structure and algorithm parameters.

- Both algorithms see performance increases as the number of landmarks

grows. Both heuristics demonstrate performance increases over a larger set of

landmarks, with the increase in performance being capped by the ratio of number

of landmarks to number of vertices.

- Both algorithms show landmark selection’s utility is simply to optimize

efficiency within a set of bounds. However, dramatic efficiency increases are not

seen by varying landmark selection. As shown earlier, dramatic increases are

guided much more by the number of landmarks. Though, clear optimality can be

found at the ceiling of a roughly 4% efficiency window for both ALP and ALT.

Campbell 145

- Both algorithms have similar correlation between graph transitivity and

query efficiency. Both algorithms exhibit a straightforward relationship to this

property of the graph structure. Transitivity (and like its close property, clustering

coefficient) measures the relative frequency of triangles in the graph. Given that

both ALT and ALP heuristics are heavily dependent on the triangle inequality, it

makes sense that they are both influenced by the measure of triangles in the

graph, at both extremes of the measure.

The second bullet point drives home a strong point. The primary, practical use

case for the ALP algorithm is for landmark-based heuristic search in large graphs. The

data show that when the graphs grow in size, both ALT and ALP experience a decrease

in average efficiency.

In relation to the third bullet, another factor that can shift the behavior of ALP to

outperform ALT is the length of the path being queried. Smaller values for transitivity

and average clustering coefficient typically correlate to longer paths in the graph.

However, the inverse is not necessarily true. Large paths could simply imply a large

graph. Figure 57 illustrates the average approximation error for queries performed over

all trials for ALP and ALT at given path lengths. Both algorithms have fairly similar

theoretical performance as the path lengths grow larger, with the average approximation

error approaching zero. And as noted earlier and illustrated in Figure 29, ALT begins to

experience greater runtimes than ALP as path lengths become larger. This performance

over large path lengths may be the second largest benefit of the ALP heuristic
32

.

However, if a method could be created to implement ALT such that it could use a subset

of its landmarks to compute its heuristic while maintaining a tighter lower bound, it could

32

 With the largest benefit being the drastic reduction in space complexity.

Campbell 146

see better runtime performance that ALP. This method would inherently not be ALT, but

a new class of algorithms that can get close to ALT’s approximations while reducing its

memory requirements.

Despite the algorithms’ similarities, the tradeoff and query runtime (if the number

of landmarks scale along with the graph size) of ALT is not practical in many use cases

for graphs of size V5 and up. The plots below take the two key variables for computing

tradeoff and illustrate them for all trials of 1000 queries.
33

 Note the drastic difference in

the scales for each plot. We see that the ALP graph most closely follows a quadratic

polynomial function whereas the ALT graph follows more of a power law (albeit with a

somewhat low R-squared value). The trials of this experiment demonstrate that ALP

typically has both a lower preprocessing time and a lower rate of increasing tradeoff over

all collected data.

33

 Intentionally excluded are the synthetic graph trials. The shapes of those graphs would skew this picture.

Figure 57 ALT Experiences Better Runtimes and better Approximation Error while

ALP Experiences Better Runtimes over Growing Path Length

Campbell 147

Figure 58 ALP Preprocessing vs Query Runtime for Trials of 1000 Queries on Real

Road Graphs

Figure 59 ALT Preprocessing vs. Query Runtime for Trials of 1000 Queries on Real

Road Graphs

In practical use cases, such as when road graphs are loaded for temporary path

query sessions, ALP serves much higher utility than ALT both for preprocessing time and

runtime in a normal computing environment. The four bar graphs below illustrates the

degree to which ALP presents a better overall tradeoff and average preprocessing time

y = 0.0061x0.5039
R² = 0.5962

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000

A
vg

 Q
u

e
ry

 R
u

n
ti

m
e

 (
s)

Preprocessing Time

ALP Preprocessing vs Query Runtime

ALP

Power (ALP)

y = 0.0039x0.7277
R² = 0.7846

0

2

4

6

8

10

12

14

16

18

0 20000 40000 60000 80000 100000

A
vg

 Q
u

e
ry

 R
u

n
ti

m
e

 (
s)

Preprocessing Time

ALT Preprocessing vs Query Runtime

ALT

Power (ALT)

Campbell 148

for all real road graph trials studied in this dissertation. They also further drive home the

notion that ALP has greater utility in larger graphs in a normal compute environment.

While runtime is a machine-dependent and implementation-dependent metric, the result

data described in this chapter demonstrate ALP outperforming ALT for a straightforward

Python implementation in large graphs.

Summary

 We have evaluated the performance bounds and landmark selection algorithms for

ALP, as well as its performance in comparison to ALT. We have successfully

demonstrated and given justification for ALP having stronger performance in a fixed

memory environment over larger graphs. We end this chapter by summarizing the

answers to the first two research questions proposed in Chapter 1.

Figure 60 Four Charts demonstrating Overall Tradeoff for ALP vs ALT Trials on Real

Road Graphs

Campbell 149

What landmark selection techniques theoretically fit best with ALP?

The landmark selection methods that were used for experimentation demonstrate

approximately a four percent range of efficiency. At the scale of millions of vertices, this

becomes significant. The average preprocessing time and efficiency over ALP trials is

displayed in Table 27. Katz centrality is explicitly excluded from this table because of its

inability to converge on some larger graphs. PageRank, load, and closeness centrality

worked best with ALP, providing consistent efficiency across datasets while supporting.

In certain trials, particularly in larger graphs, betweenness centrality also provided

sufficient speedups, as well. Random can provide sufficient speedups, but is clearly non-

deterministic. In this table, optimized random has fairly high efficiency because it has

been computed in every trial, even on graphs where average efficiency is quite high. In

general, centrality measure-based landmark selection has much better tradeoff as it

informs the heuristic of the graph structure while efficiently identifying landmarks and

growing shortest path trees. This type of selection is trivial to compute and could provide

for the fastest form of preprocessing to achieve a speedup over Dijkstra’s algorithm.

Future research will demonstrate the benefits and detriments for both the use of more

centrality measures for preprocessing and the use of max, min, and mode for the vectors

Landmark Selection Average Preprocessing Time Average Efficiency

Optimized random 321.24661469117 0.29315061

Farthest-d 1335.61578881421 0.24726657

Planar 37.05859077324 0.25356666

Betweenness Centrality 57.55697033005 0.25227837

PageRank (Max) 119.04858074428 0.29675092

PageRank (Mode) 67.41231769577 0.28929956

PageRank (Min) 52.29438178512 0.28659692

Closeness Centrality 52.30552490364 0.28664093

Load Centrality 62.45711426451 0.29073376

Farthest (Eccentricity) 499.05140597165 0.29271267

Table 27 Average Preprocessing and Efficiency for ALP Landmark Selection over All

Trials

Campbell 150

produced by these centrality measures to select landmarks.

What are the ideal characteristics for landmark shortest path trees? In other words, how

much preprocessing and memory is required for ALP to maintain its key benefits?

In terms of the ideal characteristics of landmark shortest path trees, the ALP

heuristic provides more efficient search over a larger number of landmarks. The use of a

larger number of landmarks implies smaller shorter path trees and larger knowledge of

the overall graph, as the distances between all landmarks must be recorded. The optimal

properties of the shortest path tree require larger paths between the landmarks with short

paths between the vertices owned by the landmark and the landmark itself. The data show

that this provides the most optimal ALP estimates. This is also what allows ALP to

outperform ALT in the fixed-memory environment. The opposite can also be true

(rarely), where the trees create small paths between the landmarks and significantly large

paths between the vertices owned by the landmarks. This second scenario happens only

for a few instances, which is why ALP systematically shows improvement over a

growing number of landmarks.

The informal answer to this second question is that ALP requires significantly less

preprocessing than that of ALT. However, the more memory ALP uses, the more on par

it can be with algorithms such as ALT. Because ALP’s data structure is typically so

small, the number of landmarks used can often be chosen liberally. The time that it takes

to grow ALT shortest path trees for each landmark over the entire graph is astounding as

the graphs grow. Meanwhile, ALP maintains fairly consistent preprocessing times. The

bottleneck in preprocessing for larger number of landmarks in ALP only comes from

computing the distances between landmarks, meaning that partitioning with too much

Campbell 151

fidelity can result in preprocessing times similar to ALT. However, most trials

demonstrated significantly smaller preprocessing time for ALP in comparison to ALT. In

the context of memory, ALT consistently filled up memory and tapped into swap space

for graphs of over 40,000 nodes. This will vary for different implementations, as

NetworkX objects turned out to be large and clunky. As will be discussed further in the

next chapter, a full C/C++ implementation, and not simply the Cython conversion, should

be used in the future to compare both algorithms.

How does the algorithm behave as the number of landmarks used to guide the search

increases?

This correlates strongly with the previous question. ALP always experiences a

performance increase over a larger number of landmarks, reaching 100% efficiency for

our trials when the landmarks make up 25.6% of the graph and suffering smaller gains in

efficiency after 4.2% and 12.8%. Once again, these cutoff points are for the structure of

our datasets and the fact that this many landmarks can be used during preprocessing is a

testament to ALP’s benefits. ALP can handle a larger number of landmarks without

significant increase to preprocessing time, whereas ALT preprocessing time grows

substantially. This property makes ALP a more feasible preprocessing algorithm than

ALT and other similar algorithms in fixed-memory environments, such as embedded

systems.

Campbell 152

Chapter 5

Conclusions, Implications, Recommendations, and Summary

In this chapter, we interpret, examine, and qualify the results of the investigation

and draw inferences from them.

Conclusions

In this dissertation, we identified a heuristic for A* that leverages a data structure

of size as opposed to ALT’s . This data structure is formed

through a new embedding process, which only requires growing and storing the distances

of a shortest path tree for a subgraph (graph partition) owned by a landmark. With this

type of embedding, the new heuristic for A* search, dubbed ALP, leverages polygon

inequalities to estimate the distance from a vertex to the search goal. This dissertation

primarily used quadrilateral inequalities to guide A* search. We experimentally tested the

performance bounds of this heuristic, multiple landmark selection techniques based on

those of ALT, as well as new techniques that leverage the structure of the partition, and

trials that compare the heuristic directly to ALT over the same datasets in a fixed-

memory environment. Through experimentation and theory, we have identified the key

parameters, bounds, and behaviors of the algorithm in the context of road graphs and

synthetic graph data structures.

Campbell 153

Implications

We have identified each theoretical scenario in which ALP’s heuristic function

can give a better estimate of the distance to an A* search goal than ALT’s. We have

established that ALP typically outperforms ALT when analyzing larger graphs in a fixed-

memory environment due to ALP’s ability to leverage more landmarks. We also

established that in cases in which the ALT heuristic has greater average estimates than

the ALP dual landmark heuristic, ALP can still computationally outperform ALT and

Dijkstra’s algorithm can potentially outperform A* using either ALP or ALT. The fact

that Dijkstra’s algorithm can computationally outperform both of these methods as

graphs scale should serve as a cautionary example for other methods of shortest path

preprocessing. Too many computations at a particular vertex can mean a substantial

decrease in practical performance on average, even with significant theoretical

performance.

One more open-ended research question has not been answered: In what ways can

this be applied to path planning? What real-world applications exist for ALP that were

previously impractical to solve with ALT? Experimentation with ALP in comparison to

ALT led us towards an answer to this question. First, ALT in the Python NetworkX

environment created an extremely high memory cost. For larger graphs, this cost often

came without significant speedup to Dijkstra’s (though still more algorithmically more

efficient than ALP). If coded using a lower-level language in a smaller environment, such

as a C++ program for a Raspberry Pi (Halfacree & Upton, 2012), ALT would still be an

infeasible heuristic for A* for graphs on the order of tens of thousands of vertices. ALP

now makes operations in such an environment possible. Even if a device could handle

Campbell 154

ALT in that environment, if the device were processing graphs on the order of hundreds

of thousands of nodes, the experiments in this dissertation allow us to conclude that ALP

would outperform ALT in terms of runtime efficiency (and still in terms of memory).

Prior to this research, forming graphs based on collected data and running

analytics such as shortest path queries would be infeasible for graphs above such a

threshold, as the search space would grow too high for Dijkstra’s algorithm and the

memory requirement would grow too high for ALT. Now, A* has a class of algorithms

for heuristic estimation that require neither the massive search space size of Dijkstra nor

the massive data structures of algorithms such as ALT. It even has the capacity to store

less information than algorithms such as PCD, which were created to reduce search space

size. In the real world, ALP can enable smaller, memory-limited devices without constant

internet or local network connection to efficiently navigate paths in large graph datasets.

Note that distributed embedding is the real memory-reducing property, here. Much of

ALP’s benefits over ALT are derived from the fact that ALP can leverage the distributed

embedding environment while ALT cannot.

ALP’s benefit can reduces the requirement of energy required to power small-

scale devices that have to perform path computation on graphs. Such localized navigation

planning can allow for more intelligent planning to occur in denied areas such as space or

military domains. Also, ALP can be a reasonable algorithm to use in cloud computing,

when a large graph dataset is updated periodically but would benefit from a speedup to

Dijkstra. Depending on the period of time between graph changes, ALP provides a

reasonable preprocessing time to speed up shortest path queries in this scenario.

Campbell 155

Recommendations

In this dissertation, experiments were initially conducted on diverse classes of

synthetic networks and then the focus turned to road networks. The next step in

characterizing ALP would be to further explore ALP’s behavior in comparison to ALT’s

on a broader range of graphs. This broader dataset should contain graphs possessing

particular characteristics such that more comparative information about both ALT and

ALP can be gleaned. Further, the other algorithms mentioned in Chapter 2 for

preprocessing shortest path queries should be run on this broader set of graphs as well to

identify similarities and differences among algorithms, as well as identifying where they

have optimal utility.

In these studies, ALP uses only the basic quadrilateral inequalities derived from

triangle inequalities as well as Ptolemy’s inequality and the Four-Point inequality
34

.

Future research can include the use and selection of varying heuristics for special

quadrilaterals along with that of other polygons induced on the graph. Such research

would address the difficult problem of extracting information such as angle and inscribed

shapes before the heuristic could be computed. Future theoretical research could also

contribute to automated methods of deriving these inequalities for higher-sided shapes.

Also, we know that quadrilateral inequality bounds are not typically tighter than

triangle inequality bounds for more moderate size graphs. However, they consistently

showed performance on par with the triangle inequality over larger path lengths. This

meant that the inefficiency often stemmed from the visited vertex and target sharing the

same landmark during the search. At that point, the search becomes equivalent to ALT

with one (very close) landmark. Once the search reaches that point, it is obvious that

34

 Conditionally

Campbell 156

ALT would outperform ALP as long as ALT is using more than one landmark.

Performance can be increased by allowing multiple landmarks within a subgraph, such

that once the visited vertex and target do fall within the same partition, they can execute a

more efficient version of ALT.

The ALP class of algorithms differs in behavior from the ALT class of algorithms

because of ALPs lower asymptotic space complexity (i.e., distributed landmark

embedding). These properties change the average expected computational performance of

PPSP queries for each landmark selection technique. Because of this, the ALP paradigm

may speed up other algorithms that leverage the triangle inequality. One example comes

from identifying duplicate strings and objects in XML databases (Weis & Naumann,

2004). Specifically, because pairwise calculations of all string tokens in a dataset need to

be performed to accurately identify duplicate strings, expensive edit distance calculations

for this type of query are infeasible for larger datasets. Instead, a series of filters are

typically applied to these string token pairs to drastically reduce the total number of edit

distance calculations required. A new class of filters could be created that actively use

information about relationships between other string tokens in the corpus to significantly

reduce the required number of candidate pairs for comparison. The new filters would rely

on the generalized polygon inequality to bound the possibility of chunks of data to be

candidate duplicates. Identifying the use of other geometric inequalities in this manner

could provide previously unforeseen benefits to such algorithms.

Before such a thing could be studied, however, we note that one of the limitations

of the experiments in this dissertation is that we assume some partitioning of the graph as

an input parameter to ALP when forming its data structure. For utility, another class of

Campbell 157

experiments would be to start with as many landmarks as each method allows (where

memory is bounded) and then, in the case of ALP, to grow classes of the partition around

each of the landmarks. This would provide maximum utility in these other application

spaces.

Summary

Modern navigation planning requires the ability to regularly compute the shortest

path between two points in massive road networks. In such cases, preprocessing

algorithms are used to increase the performance of shortest path queries. Many such

algorithms require heavy upfront computation and storage. Few algorithms concern

themselves with the space complexity required to aid queries. The problem that this

research addresses is that modern shortest path preprocessing algorithms have space and

preprocessing time requirements for large-scale graphs that are impractical for resource-

limited devices.

ALT describes a preprocessing technique for shortest path queries that, prior to

query time, chooses a relatively small number of landmark nodes in a graph and

computes the distances between all vertices and these landmarks, allowing the A*

algorithm to leverage the triangle inequality during search queries. The algorithm works

as follows: For a simple graph with vertices ∈ , where is a landmark vertex

chosen beforehand, the shortest path distances between each vertex serves as a distance

metric, allowing the graph to form a metric space. Therefore, for the distances between

vertices ∈ , the following reverse triangle inequality holds:

 (1)

Campbell 158

ALT uses this inequality to create a heuristic estimate for A* upon a visit to

vertex A. By computing and storing the values between each chosen landmark and all

vertices in the graph apriori, this lower bound is computed for each chosen landmark

vertex . The maximum of these lower bounds is the ALT heuristic function’s value,

denoted as . By using information about multiple landmarks, new lower bounds can be

computed from either generalized polygon inequalities or inequalities specific to any

shape embedded within the graph. The use of these new lower bounds as a heuristic has

resulted in a new class of algorithms called ALP, for A*, Landmarks, and Polygon

Inequalities. The base case for this class of algorithms is the heuristic used for the ALT

algorithm. Here, we demonstrate that polygon inequalities for quadrilaterals can also be

used to establish the lower bounds for shortest path queries in a graph. The following

reverse quadrilateral inequalities hold for a graph with source and target vertices

 ∈ and chosen landmarks ∈ :

 ≥ Reverse

Quadrilateral

Inequalities ≥

 ≥

 ≥ l1=l2

 ≥ l1=l2

 ≥

Ptolemy’s

Inequality

 ≥ Four-Point

Condition

Campbell 159

The first five are derived from the triangle inequality as applied to quadrilaterals.

A potential problem with these inequalities is that they have ability to generate negative

lower bound estimates. However, because multiple points are used, a varying set of

inequalities can be generated to estimate distances. When attempting to estimate lower

bounds using ALP, other inequalities should be considered such that the highest possible

estimate can be used. We use the sixth and seventh equation, derived from Ptolemy’s

inequality and the Four-Point condition on metric spaces, respectively, as a concrete

example for the dual landmark case. Just as with ALT, the maximum over the set of these

lower bounds are used to tighten the lower bound for the distance between two vertices.

We denote the maximum of the six equations for ALP as , ALP’s dual-landmark

heuristic for A*. The following describes as a heuristic:

 is an admissible heuristic for A*.

 Using distributed embedding,
 is not consistent.

 does not dominate

 over the same set of landmarks.

 does not dominate

 over different landmark sets.

ALP’s data structure can exhibit a space complexity of (as opposed to

ALT’s using the following technique, called distributed embedding. With a

partitioned graph as input, the dual landmark approach identifies a single landmark

within each partition and computes a shortest path tree for the subgraph induced by each

chosen landmark’s graph partition. Each vertex in the graph is labeled with an identifier,

signifying its landmark partition and the distance to and from its corresponding landmark.

Any of the landmark selection methods for ALT can be used for the subgraph induced by

the graph partition to select an optimal set. The final step of this process is a shortest path

Campbell 160

calculation between the selected landmarks. This is achieved by a Dijkstra’s shortest path

tree computation from each landmark that has a stopping condition of all landmarks

being in the tree. Allowing each landmark in the graph to access only a subgraph limits

the size of the data structure used at query time, significantly reduces the preprocessing

time, and bounds the number of operations performed to compute the heuristic.

 We implemented both the ALP and ALT algorithms in a Python 2.7 environment

with the aid of the NetworkX 1.9 library. For larger graphs, we enhanced this

implementation using Cython and GCC optimizations. We used this environment to

implement the following ALT-based landmark selection techniques for ALP:

 random and random-p

o Simple random landmark selection and randomly selected vertices over a

series of trials, respectively

 farthest-d and farthest-ecc

o Choosing the farthest landmarks from the current set of landmark vertices

and choosing the landmark in each cluster with highest eccentricity,

respectively

 planar

o Choose landmarks on the periphery of their respective subgraph

 betweenness

o Choose landmarks with the highest betweenness centrality in their

subgraph

Each of these techniques were used within each subgraph to identify a single landmark

within the subgraph to add to the overall set. During development, it was noticed that

Campbell 161

good landmark selection for ALP is focused on computations made within the subgraph.

That combined with the ability to trivially compute centrality measures for a subgraph

allowed us to also create landmark selection techniques similar to betweenness for the

following types of centrality measures:

 PageRank

 Load

 Katz

 (Vertex) Closeness

For PageRank, the maximum, minimum, and mode vertices were trialed to identify which

would provide optimal results.

 During experimentation, we ran thousands of trials for ALP with different road

graph and synthetic graph datasets to characterize its behavior, comprehend its

performance bounds, compare landmark selection methods, and understand how it

compares to ALT. We see that graph transitivity and average clustering coefficients are

strong factors in the efficiency of ALP, much like other search algorithms. More

importantly, we see that it has significantly high performance over large path lengths,

allowing the ALP heuristic to outperform the ALT heuristic. Further, as the number of

landmarks for ALP grows, its efficiency increases. Though, gains in performance start to

become fairly constant after the ratio of number of landmarks to vertices grows beyond a

certain point. In terms of landmark selection, we see that centrality measure-based

landmark selection provides a trivial method to select landmarks based on a graph

partition’s structure and has strong performance in the ALP environment. We also

showed that varying amongst the type of landmark selection techniques proposed here

Campbell 162

results in a 4% difference in average query efficiency. In each of the runs against ALT,

we see that ALP’s behavior varies in similar ways to ALT, with ALT simply providing a

better estimate on average. The two algorithms behave similarly in the context of graph

structure and size, but not in terms of number of chosen landmarks. ALT can reach 100%

efficiency scores with fewer landmarks than ALP. However, performing preprocessing

and storing a data structure for graphs that have nodes that are more than in the tens of

thousands requires significant resources. Finally, in a fixed-memory environment,

simulating a small or embedded system with limited resources, ALP heuristics

outperformed ALT as the size of the graphs grew. On the order of hundreds of thousands

of vertices, ALP was able to leverage denser landmark sets to make better heuristic

estimates than ALT. Further, ALP’s preprocessing time requirements grew more slowly

than ALT’s as the number of landmarks grew. Because of this, ALP is a more practical

algorithm that can be used for a variety of applications when preprocessing is an option.

Campbell 163

Appendices

Appendices contain all research instruments used, as well as any relevant additional

materials such as sample interview transcripts, sample coding schemes, summary charts,

and so forth. Each item that is included as an appendix is given a letter or number and

listed in the table of contents.

Appendix A: Graphs and Applied Mathematics Concepts

Recall that the following graphs were used for experimentation. Below the table are their

definitions and sources on their origin:

1. Barabási–Albert model (Zadorozhnyi & Yudin, 2012) – random scale free graph

using a preferential attachment mechanism

2. Barbell Graph (Ghosh, Boyd, & Saberi, 2008) – simple graph obtained by

connecting two copies of a complete graph by a bridge (path)

Name Graph Type Graph Parameters DB Name

M1 Barabási–Albert (BA) model Preferential Attachment = 2 Edges/Node NETWORKX.BARABASI_ALBERT_2

M2 Barabási–Albert (BA) model Preferential Attachment = 3 Edges/Node NETWORKX.BARABASI_ALBERT_3

M3 Barabási–Albert (BA) model Preferential Attachment = 5 Edges/Node NETWORKX.BARABASI_ALBERT_5

M4 Barabási–Albert (BA) model Preferential Attachment = 7 Edges/Node NETWORKX.BARABASI_ALBERT_7

M5 Barabási–Albert (BA) model Preferential Attachment = 9 Edges/Node NETWORKX.BARABASI_ALBERT_9

M6 Barabási–Albert (BA) model Preferential Attachment = 11 Edges/Node NETWORKX.BARABASI_ALBERT_11

M7 Barabási–Albert (BA) model Preferential Attachment = 13 Edges/Node NETWORKX.BARABASI_ALBERT_13

M8 Barbell Graph Equivalent Number of Nodes on each side NETWORKX.BARBELL_GRAPH_EVEN

M9 Barbell Graph 2/3 Nodes on Left Barbell, 1/3 Nodes on Right Barbell NETWORKX.BARBELL_GRAPH_ODD

M10 Circular Ladder Graph NETWORKX.CIRCULAR_LADDER_GRAPH

M11 Complete Graph NETWORKX.COMPLETE_GRAPH

M12 Cycle Graph NETWORKX.CYCLE_GRAPH

M13 Erdős–Rényi model Edge Creation = 15% NETWORKX.ERDOS_RENYI_15

M14 Erdős–Rényi model Edge Creation = 30% NETWORKX.ERDOS_RENYI_30

M15 Ladder Graph NETWORKX.LADDER_GRAPH

M16 Path Graph NETWORKX.PATH_GRAPH

M17 Random Lobster Pbackbone=45%, PBeyondBackbone=45% NETWORKX.RANDOM_LOBSTER_45

M18 Random Lobster Pbackbone=90%, PBeyondBackbone=90% NETWORKX.RANDOM_LOBSTER_90

M19 Watts–Strogatz model 10% nearest neighbor connections, 10% Prewiring NETWORKX.WATTS_STROGATZ_10

M20 Watts–Strogatz model 20% nearest neighbor connections, 20% Prewiring NETWORKX.WATTS_STROGATZ_20

M21 Waxman Graph alpha=0.4,beta=0.1,domain=(0,0,1,1) NETWORKX.WAXMAN_GRAPH

Campbell 164

3. Circular Ladder Graph (Ghosh et al., 2008) – graph corresponding to the skeleton

of an n-prism

4. Complete graph (Alspach, Bermond, & Sotteau, 1990)– graph in which each pair

of graph vertices is connected by an edge

5. Cycle graph (Gross & Yellen, 2005) – a graph containing a single cycle through

all nodes

6. Erdős–Rényi graph (Erdős & Rényi, 1959) – Random graph in which all pairs of

vertices share an edge with a common probability

7. Ladder Graph (Noy & Ribó, 2004) – A planar undirected graph obtained as the

Cartesian product of two path graphs, one of which has only one edge

8. Path Graph (Gross & Yellen, 2005) – A tree containing only vertices of degree 2

and 1

9. Random Lobster Graph (Golomb & Lushbaugh, 1996) – A tree in which the

removal of leaf nodes leaves a tree in which every vertex is either on the central

stalk or one edge away from the central stalk known as a caterpillar graph

10. Watts-Strogatz Graph (Watts & Strogatz, 1998)- Random graph formed with

small world properties, such as short path lengths and high clustering coefficients

Campbell 165

Appendix B: Data Description

This section of the appendix hosts the description of data used collected during

experimentation. The following series of tables is the data dictionary for the dissertation

MySQL database.

alt_alp_comparison_trials

Table comments: Table connecting Trial IDs, Experiment IDs, and Graph IDs

Column
Type Null Default Comments

trial_id (Primary) int(11) No

Trial ID

experiment_id int(11) No

Experiment ID

graph_id int(11) Yes NULL Graph ID

Indexes

Keyname Type
Uniq

ue

Packe

d
Column

Cardinali

ty

Collati

on

Nu

ll

Comme

nt

PRIMARY
BTRE

E
Yes No trial_id 32362 A No

fk_graph_id_idx
BTRE

E
No No graph_id 3236 A

Ye

s

fk_experiment_id

_idx

BTRE

E
No No

experiment

_id
42 A No

embedding_techniques

Table comments: Descriptions of landmark selection techniques

Column
Type Null Default Comments

et_id (Primary) int(11) No

Embedding method ID

Campbell 166

description varchar(45) No

Description of Embedding Method

Indexes

Keyname Type Unique Packed Column Cardinality Collation Null Comment

PRIMARY BTREE Yes No et_id 13 A No

error

Table comments: Table of Approximation Error for Each Query

Column Type Null Default Comments

query_id int(11) No

Query ID

error decimal(30,15) No

Initial Approximation Error for search

Indexes

Keyname Type
Uniqu

e

Packe

d
Column

Cardinalit

y

Collatio

n

Nul

l

Commen

t

query_fk_id

x

BTRE

E
No No

query_i

d
3224515 A No

experiments

Table comments: Table of experiments

Column Type Null Default Comments

experiment_id (Primary) int(11) No

Experiment ID

description varchar(250) Yes NULL Description of Experiment

start_time datetime Yes NULL Experiment Time (US Eastern

Campbell 167

Standard Time)

result varchar(10) Yes NULL SUCCESS OR FAILURE

Indexes

Keyname Type
Uniqu

e

Packe

d
Column

Cardinalit

y

Collatio

n

Nul

l

Commen

t

PRIMAR

Y

BTRE

E
Yes No

experiment_i

d
741 A No

graphs

Table comments: Table of the graphs used for experimentation

Column Type
Nul

l

Defau

lt
Comments

graph_id (Primary) int(11) No

Graph ID

directed bit(1) No

nx.is_directed

num_nodes int(11) Yes NULL Number of Nodes in the graph

num_edges int(11) Yes NULL Number of Edges in the graph

estrada_index
decimal(60,

30)
Yes NULL Estrada Index of the graph

is_chordal bit(1) Yes NULL
Whether or not the graph has

chordal structure

largest_clique_size int(11) Yes NULL nx.graph_clique_number

num_max_cliques int(11) Yes NULL
nx.graph_number_of_cliques(

g)

transitivity
decimal(20,

15)
Yes NULL Transitivity of graph structure

average_clustering
decimal(20,

15)
Yes NULL

Average Clustering of the

graph

average_node_connectivity
decimal(20,

15)
Yes NULL

nx.average_node_connectivity

(g)

edge_connectivity int(11) Yes NULL nx.edge_connectivity(g)

node_connectivity int(11) Yes NULL nx.node_connectivity(g)

Campbell 168

diameter int(11) Yes NULL nx.diameter(g)

size_periphery int(11) Yes NULL

Number of nodes with

eccentricity equal to the

diameter len(nx.periphery(g))

is_eulerian bit(1) Yes NULL nx.is_eulerian(g)

average_shortest_path_length
decimal(20,

16)
Yes NULL

Average length of shortest

paths in the graph

num_connected_double_edge_

swaps
int(11) Yes NULL

Number of successful double

edge swaps where the number

of swaps is set to the number

of edges in the graph:

nx.connected_double_edge_s

wap(g, num_edges)

is_tree bit(1) Yes NULL
Whether or not the graph is a

tree

density
decimal(20,

17)
Yes NULL Density of the graph

graph_name
varchar(250

)
Yes NULL

What data does the graph

represent? (e.g. NYC, San

Francisco)

Indexes

Keyname Type Unique Packed Column Cardinality Collation Null Comment

PRIMARY BTREE Yes No graph_id 3045 A No

heuristics

Table comments: Table of A* heuristics

Column Type Null Default Comments

heuristic_id (Primary) int(11) No

Heuristic ID

description varchar(15) No

Description of Heuristic (e.g. ALT,

ALP, Dijkstra)

Campbell 169

Indexes

Keyname Type
Uniqu

e

Packe

d
Column

Cardinalit

y

Collatio

n

Nul

l

Commen

t

PRIMAR

Y

BTRE

E
Yes No

heuristic_i

d
12 A No

preprocessing

Table comments: Stores preprocessing information about the trial run for each

heuristic used

Column Type Null Default Comments

preprocessing_id (Primary) int(11) No

Preprocessing ID

trial_id int(11) No

Trial ID

heuristic_id int(11) Yes NULL Heuristic ID

graph_id int(11) Yes NULL Graph ID

preprocessing_time decimal(20,7) Yes NULL

Total time for preprocessing

(Landmark Selection +

Shortest Path Tree Growth)

Indexes

Keyname Type
Uniq

ue

Packe

d
Column

Cardinali

ty

Collati

on

Nu

ll

Comme

nt

PRIMARY
BTRE

E
Yes No

preprocessing

_id
16701 A No

fk_graph_id_id

x

BTRE

E
No No graph_id 1670 A

Ye

s

fk_heuristic_id_

idx

BTRE

E
No No heuristic_id 16 A

Ye

s

query

Table comments: Table of shortest path queries. Each row is a single source-

target PPSP query

Campbell 170

Column Type Null Default Comments

query_id (Primary) int(11) No

Query ID

trial_id int(11) No

Trial ID

heuristic_id int(11) No

Heuristic ID

embedding_method int(11) Yes NULL Landmark Selection Technique

source int(11) No

Source vertex

target int(11) No

Target Vertex

path_length int(11) No

Number of vertices traversed

num_landmarks int(11) Yes NULL Number of Landmarks

runtime decimal(14,7) No

Runtime

search_space_size int(11) No

Search Space Size

num_operations int(20) No

number of arithmetic operations

executed for this query

total_estimates int(20) No

Total estimates made. (Should be

equal to the number of visits)

path_weight decimal(30,10) Yes NULL
Actual path cost of shortest path

query

Indexes

Keyname Type
Uniq

ue

Pack

ed
Column

Cardina

lity

Collati

on

Nu

ll

Comm

ent

PRIMARY
BTR

EE
Yes No query_id

1521323

5
A No

fk_heuristic_id_idx
BTR

EE
No No heuristic_id 18 A No

fk_embedding_meth

od_idx

BTR

EE
No No

embedding_m

ethod
18 A

Ye

s

fk_trial_id_idx
BTR

EE
No No trial_id 16428 A No

Campbell 171

Appendix C: Supplemental Experiment Data

In this section of the appendix, we attach extra results of interests that further support the

claims made in this dissertation. This section also provides more detailed data regarding

the experiments of Chapter 4. While these details were not critical in proving our claims

and answering the research questions, they do further characterize the ALP algorithm in

the context of the ALT algorithm and could prove useful in future research.

Experiment 1 Extension: Graph Efficiency vs Structure

The following is a table of the average efficiency of queries at each graph scale.

Graph Category Algorithm # Queries Efficiency

V1 ALP 1058124 0.35639541

V1 Dijkstra 1068912 0.22648232

V2 ALP 880766 0.46972808

V2 Dijkstra 890455 0.20704487

V3 ALP 873815 0.31745607

V3 Dijkstra 629171 0.08550012

V4 ALP 109302 0.23096096

V4 Dijkstra 182254 0.12391506

V5 ALP 253818 0.11325759

V5 Dijkstra 267314 0.02320272

V7 ALP 19073 0.03724294

V7 Dijkstra 16287 0.00320424

E1 ALP 384815 0.37774329

E1 Dijkstra 321820 0.33719738

E2 ALP 1091292 0.55122999

E2 Dijkstra 1133013 0.24995331

E3 ALP 1009983 0.28840927

E3 Dijkstra 830083 0.0882232

E4 ALP 349616 0.11146852

E4 Dijkstra 351080 0.06686537

E5 ALP 305159 0.12243344

E5 Dijkstra 358145 0.04312324

E6 ALP 16481 0.19287126

E6 Dijkstra 17486 0.09854249

E7 ALP 36055 0.14320232

Campbell 172

Graph Category Algorithm # Queries Efficiency

E7 Dijkstra 41269 0.08432151

One other measurement that was used to measure ALP performance involves

using performance of the Dijkstra’s shortest path algorithm as an basis for runtime

measurement. At every graph scale, both ALP and ALT have speedups over Dijkstra. For

each vertex and edge scale, we divide the average efficiency of ALP with A* runs by the

average efficiency of Dijkstra runs to establish a Vertex Efficiency Multiplier and an Edge

Efficiency Multiplier, respectively. Figure 61 and Figure 62 illustrate the efficiency of

ALP over basic Dijkstra’s for the graph scales noted in Figure 17.

Figure 61 Efficiency Multipliers for Vertex Scales
35

35

 The two equations noted in the figure are anecdotal and will always differ as graph structures vary.

Simply, these are the equations derived for these runs. Nonetheless, the methods of deriving them may be

useful in determining whether to use ALP or not for similar graphs.

Table 28 Average Efficiency of Queries at Each Graph Scale

Campbell 173

Figure 62 Efficiency Multiplier for Edge Scales

Experiment 1 Extension: Varying Graph Structure Trials

For real road datasets, we take the largest directed subgraph of the dataset and

also execute 1000 queries on 1000 random source-target vertex pairs. The real graphs fell

into all vertex classes except for V2 and V6. Each edge class was used during this

experiment. Just as with synthetic graphs, for each real road graph dataset, for

communities derived from each hierarchy level, we analyze the efficiency of all queries

run on ALP with optimized random landmark selection. We set a maximum number of

communities and inherently, a maximum number of landmarks, to 2500. This maximum

allowed for querying enough graph variants such that trends could be confirmed. Table

29 and Figure 63 describe the number of runs and average ALP efficiency for each graph.

To perform more trials, we used subgraphs of each of the datasets. In Table 29,

the names of the graph datasets are suffixed with their number of vertices and number of

edges. Some graphs were run as both undirected and directed graphs during

Campbell 174

experimentation.
36

 We see, here, that directed graphs have higher average efficiency in

ALP, as do smaller graphs.

36

 Real road graphs are directed graphs unless otherwise specified.

Name #Nodes #Edges # Queries Avereage Efficiency

Washington DC 9522 14832 23993 0.02035347

NYC (Undirected) 264346 365050 19073 0.03724294

Rhode Island 53288 68496 6990 0.03760536

Rome (Undirected) 3353 4831 27919 0.04239815

United States (Eastern) 35103 42902 3543 0.04337649

United States (Eastern) 49404 57960 2997 0.04827491

Vermont 95671 105124 1998 0.05703919

United States (Western) 28652 36906 3996 0.06557798

United States (Western) 51447 62272 2997 0.07205112

Great Lakes 34198 42957 3996 0.083298

Luxembourg 84136 85579 193294 0.08340697

United States (Western) 13499 17421 3996 0.08795465

United States (Eastern) 24728 30000 3996 0.09198804

New Mexico 29381 33476 3996 0.11281136

Great Lakes 11773 15861 3996 0.11348083

United States (Eastern) 13816 16819 2997 0.12692009

United States (Eastern) 29796 32528 4041 0.12784286

New Mexico 28115 32736 3996 0.13894572

United States (Central) 11584 13188 2997 0.13962499

New Mexico 15221 17919 3996 0.14147232

Hawaii 9237 10711 5994 0.14916109

United States (Western) 8294 9851 3001 0.16377774

Great Lakes 3700 4483 2997 0.17008902

United States (Eastern) 5573 6391 2997 0.17019366

United States (Central) 5327 6121 2997 0.18771198

United States (Central) 9549 10677 2997 0.19655155

United States (Central) 7276 7856 2997 0.21757875

United States (Central) 5422 6105 2997 0.223868

Rome (Directed) 3353 4831 614089 0.3252697

Table 29 Real Road Graph Shortest Path Average Query Efficiency

Campbell 175

Experiment 1 Extension: Landmark Selection Trials

We pull samples from the landmark selection series of trials and plot it in Figure 64 and

Figure 65 to demonstrate the behavior of each trial with respect to a trial’s average query

distance and the three metrics. We once again confirm a small difference in efficiency

between the most efficient landmark selection technique (in this case, farthest-ecc) and

the least efficient (planar).

Figure 63 Average Efficiency for Real Road Graphs

Campbell 176

Figure 65 Average Distance vs Average Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20000 40000 60000 80000 100000 120000

A
ve

ra
ge

 E
rr

o
r

Average Distance

Average Distance vs Average Error

betweenness centrality closeness centrality farthest-ecc

load centrality pagerank_max pagerank_min

pagerank_mode planar random

Figure 64 Average Distance vs Efficiency

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000 120000

A
ve

ra
ge

 E
ff

ic
ie

n
cy

Average Distance

Average Distance vs Average Efficiency

betweenness centrality closeness centrality farthest-ecc

load centrality pagerank_max pagerank_min

pagerank_mode planar random

Campbell 177

Experiment 2 Extension: ALT vs. ALP: Graph Structure and Landmark Selection

We began Experiment 2 with a small set of trials involving measurement of ALT’s

performance against ALP’s performance over four synthetic graph structures using ALT-

based landmark selection techniques. Using a small set of graph structures comprised of

the graphs that have significantly variable behavior under different parameters, optimized

random, farthest-d, planar, and betweenness centrality landmark selection were

performed on each graph. For the synthetic graphs, the following graphs were used:

- Barabási Albert Graph with 3 edges per vertex

- Barabási Albert Graph with 7 edges per vertex

- Erdős–Rényi Graph with 15% Edge Creation

- Watts-Strogatz Model with 10% Nearest Neighbor

Each of these graphs were created for scales V1, V2, and V4 by starting with 100 nodes

and multiplying the nodes by 10 until we got to 10000. Each of the figures below

illustrates the dramatic difference in average efficiency between ALT and ALP for varied

graph structures. We used the four implemented types of landmark selection for ALT and

their ALP equivalent for embedding.
37

 The runs with maximum efficiency are

highlighted in the illustration. During analysis, the structure of the graph did not have a

significant impact for graphs at these scales. However, for these scales, it is obvious that

ALT is the more efficient algorithm to use, with average efficiency scores as large as ten

times that of ALP.

37

 Optimized Random, Farthest-D, Planar, Betweenness Centrality

Campbell 178

Size seems to have more of an impact on the difference in efficiency than structure. This

is because ALT and ALP are based on the same kind of geometric inequalities.

Therefore, they behave similarly over different graph structures.

 In the next set of trials, we highlight the differences in performance for each type

of landmark selection in real graphs. First, we run each landmark selection technique that

is native to ALT (random, farthest-d, planar, and betweenness centrality) for both ALT

and ALP, respectively. In Table 30, we take a look at an exemplar of the dramatic

difference in preprocessing between ALT and ALP. The results highlight preprocessing

times for a dataset representing a subset of the United States Eastern seaboard. The goal

Figure 66 ALT vs ALP: Significant Difference in Efficiency for Graphs of size V1, V2,

and V4

Campbell 179

was to identify and label 389 landmarks. The preprocessing time for ALT for this

~30,000 vertex graph was almost five times that of ALP, at best, for the ALT

preprocessing techniques. This, along with the results above, is a clear demonstration,

that with straightforward implementations, ALT is a heuristic that is simple to run on

smaller graphs (<V4), but begins to lose its utility in comparison to ALP at a certain

scale. Meanwhile, as shown in our previous experiments, ALP’s utility, in the context of

tradeoff, improves for larger graphs. As stated earlier, the vast difference in

preprocessing time is obvious from the methodology.

Table 30 ALT vs ALP Preprocessing

Because of this, the figures below demonstrate the utility of ALP in comparison to ALT.

ALP should be used for larger graphs, barring restrictions on application. We observe

data taken from 291 combinations of graph types and landmark selection methods for

ALP and compare it to 109 that were run for ALT.
38

 The runtimes for each data point

was measured for 1,000 queries. ALT exhibits such high preprocessing times that the

total time for its trial runs significantly exceeds that of ALT’s after about 7,500 nodes or

15,000 edges. The values in the charts below are on a log scale. ALT commonly suffers

from having larger tradeoff values, due to its significantly long preprocessing times.

38

 It was infeasible to run as many ALT trials, particularly when it came to larger graphs, because of ALT’s

preprocessing times and significant memory requirements. Therefore, we leverage a scatter plot to make

the comparisons in this section apparent.

Heuristic Landmark Selection Time (s)

ALT Random 471.0266

ALP Random 55.49462

ALT Planar 942.0947

ALP Planar 69.54433

ALT Betweenness Centrality 964.592

ALP Betweenness Centrality 88.71064

Campbell 180

 Finally, among these trials, we identify three graphs from which to further analyze

landmark selection. Each of these graphs were run with 1000 queries for ALT and ALP

after using each landmark selection method, using the same number of landmarks, but

their own individual landmark selection. In Figure 69, we see that the average efficiency

of each of these three graphs under each landmark selection stays fairly the same, with

the exclusion of planar and Farthest-D for ALT. In particular, we see orders of magnitude

difference between ALT and ALP, in terms of efficiency. In Figure 70 and Figure 71, we

see orders of magnitude difference for preprocessing time, as well, as ALT takes a

significant amount of time to compute its shortest path trees. The preprocessing time bar

chart is at the log scale, as the preprocessing times scale exponentially for ALT as the

graph grows. We see that Planar and Farthest-ecc demonstrate the worst tradeoffs for the

larger New Mexico graph, but not for the smaller graphs. Overall, the tradeoff for ALT

grows to be significantly worse than that of ALP, over larger graphs, regardless of

landmark selection.
39

 In comparison with ALP, we see that the efficiencies across

landmark selection techniques are roughly the same at each graph, regardless of landmark

selection. This is because landmark selection for ALP is guided significantly influenced

by the partitioning of the graph.

39

 A bar chart of these tradeoffs can be found in the backmatter.

Campbell 181

Figure 67 ALT vs ALP: Total Trial Time for Increasing Nodes

Figure 68 ALT vs ALP: Total Trial Time for Increasing Edges

1

10

100

1000

10000

100000

0 10000 20000 30000 40000 50000 60000

To
ta

l T
ri

al
 T

im
e

 (
Lo

g)

Nodes

Total Trial Time vs # Nodes

ALP

ALT

1

10

100

1000

10000

100000

0 10000 20000 30000 40000 50000 60000 70000 80000

To
ta

l T
ri

al
 T

im
e

 (
Lo

g)

Edges

Total Trial Time vs # Edges

ALP

ALT

Campbell 182

Figure 70 ALT vs. ALP: Total Times for

Each Landmark selection Technique with

the Same Number of Landmarks
Figure 71 ALT vs. ALP: Preprocessing

Times for Each Landmark selection

Technique with the Same Number of

Landmarks

Figure 69 ALT vs ALP: Average Efficiency among Landmark Selection Techniques

using the Same Number of Landmarks

Campbell 183

Detailed Graph Performance Measurements

This section enumerates graph performance for each graph structure at the scales defined in Chapter 4. This section should be used to

answer any further questions about the capabilities of ALP. More data concerning these runs can be found in the ALP dataset

(available upon request). Efficiency is multiplied by 100 in these data. Tables spanning more than one page have a caption located at

the beginning of the table.

Table 31 V1 Synthetic Graphs Performance and Structure

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.WAXMAN_GRAPH 10 1500 36473 0.03244 0 37204 0.0786406 0.082064328

NETWORKX.WAXMAN_GRAPH 5 2000 66454 0.03324 0 82805 0.0793045 0.08278744

NETWORKX.WAXMAN_GRAPH 5 4000 264030 0.03301 0 565746 0.0791687 0.082595149

NETWORKX.RANDOM_LOBSTER_90 212 1223 1222 0.00164 1 1222 0 0

NETWORKX.RANDOM_LOBSTER_90 95 1223 1222 0.00164 1 1222 0 0

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges Density Average Path Length Average Clustering

NETWORKX.RANDOM_LOBSTER_45 10 0.000511224 19.072 64.44249 60 59 0.033333 11.485 0

NETWORKX.RANDOM_LOBSTER_45 8 0.000535808 20.375 63.40044 60 59 0.033333 11.578 0

Table 32 V3 Synthetic Graph Structure

Campbell 184

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.RANDOM_LOBSTER_90 44 1223 1222 0.00164 1 1222 0 0

NETWORKX.RANDOM_LOBSTER_90 39 1223 1222 0.00164 1 1222 0 0

NETWORKX.RANDOM_LOBSTER_90 343 2088 2087 0.00096 1 2087 0 0

NETWORKX.RANDOM_LOBSTER_90 159 2088 2087 0.00096 1 2087 0 0

NETWORKX.RANDOM_LOBSTER_90 75 2088 2087 0.00096 1 2087 0 0

NETWORKX.RANDOM_LOBSTER_90 44 2088 2087 0.00096 1 2087 0 0

NETWORKX.RANDOM_LOBSTER_90 434 2613 2612 0.00077 1 2612 0 0

NETWORKX.RANDOM_LOBSTER_90 200 2613 2612 0.00077 1 2612 0 0

NETWORKX.RANDOM_LOBSTER_90 95 2613 2612 0.00077 1 2612 0 0

NETWORKX.RANDOM_LOBSTER_90 52 2613 2612 0.00077 1 2612 0 0

NETWORKX.RANDOM_LOBSTER_45 308 1528 1527 0.00131 1 1527 0 0

NETWORKX.RANDOM_LOBSTER_45 143 1528 1527 0.00131 1 1527 0 0

NETWORKX.RANDOM_LOBSTER_45 65 1528 1527 0.00131 1 1527 0 0

NETWORKX.RANDOM_LOBSTER_45 40 1528 1527 0.00131 1 1527 0 0

NETWORKX.PATH_GRAPH 40 1500 1499 0.00133 1 1499 0 0

NETWORKX.PATH_GRAPH 499 2000 1999 0.001 1 1999 0 0

NETWORKX.PATH_GRAPH 249 2000 1999 0.001 1 1999 0 0

NETWORKX.PATH_GRAPH 124 2000 1999 0.001 1 1999 0 0

NETWORKX.PATH_GRAPH 61 2000 1999 0.001 1 1999 0 0

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0

Campbell 185

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

Campbell 186

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0

NETWORKX.LADDER_GRAPH 36 3000 4498 0.001 0 4498 0 0

NETWORKX.LADDER_GRAPH 499 4000 5998 0.00075 0 5998 0 0

NETWORKX.LADDER_GRAPH 249 4000 5998 0.00075 0 5998 0 0

NETWORKX.LADDER_GRAPH 124 4000 5998 0.00075 0 5998 0 0

NETWORKX.LADDER_GRAPH 62 4000 5998 0.00075 0 5998 0 0

NETWORKX.CYCLE_GRAPH 499 2000 2000 0.001 0 2000 0 0

Campbell 187

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.CYCLE_GRAPH 249 2000 2000 0.001 0 2000 0 0

NETWORKX.CYCLE_GRAPH 124 2000 2000 0.001 0 2000 0 0

NETWORKX.CYCLE_GRAPH 62 2000 2000 0.001 0 2000 0 0

NETWORKX.CYCLE_GRAPH 499 4000 4000 0.0005 0 4000 0 0

NETWORKX.CYCLE_GRAPH 249 4000 4000 0.0005 0 4000 0 0

NETWORKX.CYCLE_GRAPH 124 4000 4000 0.0005 0 4000 0 0

NETWORKX.CYCLE_GRAPH 63 4000 4000 0.0005 0 4000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 249 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 249 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 124 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 124 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 62 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 62 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 32 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 32 2000 3000 0.0015 0 3000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 499 4000 6000 0.00075 0 6000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 249 4000 6000 0.00075 0 6000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 124 4000 6000 0.00075 0 6000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 124 4000 6000 0.00075 0 6000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 62 4000 6000 0.00075 0 6000 0 0

NETWORKX.CIRCULAR_LADDER_GRAPH 62 4000 6000 0.00075 0 6000 0 0

NETWORKX.BARBELL_GRAPH_ODD 12 1665 443224 0.31995 1 336 0.9999943 0.799996393

Campbell 188

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.BARBELL_GRAPH_ODD 7 1665 443224 0.31995 1 336 0.9999943 0.799996393

NETWORKX.BARBELL_GRAPH_ODD 4 1665 443224 0.31995 1 336 0.9999943 0.799996393

NETWORKX.BARBELL_GRAPH_ODD 3 1665 443224 0.31995 1 336 0.9999943 0.799996393

NETWORKX.BARBELL_GRAPH_ODD 7 3332 1776223 0.32007 1 669 0.9999986 0.800119147

NETWORKX.BARBELL_GRAPH_ODD 4 3332 1776223 0.32007 1 669 0.9999986 0.800119147

NETWORKX.BARBELL_GRAPH_ODD 3 3332 1776223 0.32007 1 669 0.9999986 0.800119147

NETWORKX.BARBELL_GRAPH_EVEN 17 1500 250001 0.22237 1 503 0.9999879 0.666661333

NETWORKX.BARBELL_GRAPH_EVEN 9 1500 250001 0.22237 1 503 0.9999879 0.666661333

NETWORKX.BARBELL_GRAPH_EVEN 5 1500 250001 0.22237 1 503 0.9999879 0.666661333

NETWORKX.BARBELL_GRAPH_EVEN 3 1500 250001 0.22237 1 503 0.9999879 0.666661333

NETWORKX.BARBELL_GRAPH_EVEN 17 3000 1000001 0.2223 1 1003 0.999997 0.666665333

NETWORKX.BARBELL_GRAPH_EVEN 9 3000 1000001 0.2223 1 1003 0.999997 0.666665333

NETWORKX.BARBELL_GRAPH_EVEN 5 3000 1000001 0.2223 1 1003 0.999997 0.666665333

NETWORKX.BARBELL_GRAPH_EVEN 3 3000 1000001 0.2223 1 1003 0.999997 0.666665333

NETWORKX.BARABÁSI_ALBERT_9 9 1500 13419 0.01194 0 11104 0.0366696 0.040707013

NETWORKX.BARABÁSI_ALBERT_9 12 2000 17919 0.00896 0 14960 0.0311779 0.037446104

NETWORKX.BARABÁSI_ALBERT_9 8 2000 17919 0.00896 0 14960 0.0311779 0.037446104

NETWORKX.BARABÁSI_ALBERT_9 15 4000 35919 0.00449 0 31263 0.0180052 0.02119164

NETWORKX.BARABÁSI_ALBERT_9 10 4000 35919 0.00449 0 31263 0.0180052 0.02119164

NETWORKX.BARABÁSI_ALBERT_7 8 1500 10451 0.0093 0 8714 0.0305568 0.039336318

NETWORKX.BARABÁSI_ALBERT_7 17 2000 13951 0.00698 0 11938 0.0232755 0.028426648

NETWORKX.BARABÁSI_ALBERT_7 11 2000 13951 0.00698 0 11938 0.0232755 0.028426648

Campbell 189

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.BARABÁSI_ALBERT_7 10 2000 13951 0.00698 0 11938 0.0232755 0.028426648

NETWORKX.BARABÁSI_ALBERT_7 18 2500 17451 0.00559 0 15102 0.0199917 0.023478844

NETWORKX.BARABÁSI_ALBERT_7 10 2500 17451 0.00559 0 15102 0.0199917 0.023478844

NETWORKX.BARABÁSI_ALBERT_7 37 4000 27951 0.00349 0 24927 0.0144269 0.018219935

NETWORKX.BARABÁSI_ALBERT_7 13 4000 27951 0.00349 0 24927 0.0144269 0.018219935

NETWORKX.BARABÁSI_ALBERT_7 12 4000 27951 0.00349 0 24927 0.0144269 0.018219935

NETWORKX.BARABÁSI_ALBERT_6 11 1500 8964 0.00797 0 7752 0.0253886 0.029550621

NETWORKX.BARABÁSI_ALBERT_5 11 1500 7475 0.00665 0 6492 0.0228157 0.031865762

NETWORKX.BARABÁSI_ALBERT_5 46 2000 9975 0.00499 0 8904 0.0171176 0.022560463

NETWORKX.BARABÁSI_ALBERT_5 13 2000 9975 0.00499 0 8904 0.0171176 0.022560463

NETWORKX.BARABÁSI_ALBERT_5 11 2000 9975 0.00499 0 8904 0.0171176 0.022560463

NETWORKX.BARABÁSI_ALBERT_5 44 4000 19975 0.0025 0 18451 0.0106202 0.014365793

NETWORKX.BARABÁSI_ALBERT_5 14 4000 19975 0.0025 0 18451 0.0106202 0.014365793

NETWORKX.BARABÁSI_ALBERT_4 14 1500 5984 0.00532 0 5446 0.0168498 0.023264593

NETWORKX.BARABÁSI_ALBERT_3 82 2000 5991 0.003 0 5648 0.0091858 0.015717906

NETWORKX.BARABÁSI_ALBERT_3 76 2000 5991 0.003 0 5619 0.011163 0.018371522

NETWORKX.BARABÁSI_ALBERT_3 22 2000 5991 0.003 0 5619 0.011163 0.018371522

NETWORKX.BARABÁSI_ALBERT_3 19 2000 5991 0.003 0 5619 0.011163 0.018371522

NETWORKX.BARABÁSI_ALBERT_3 19 2000 5991 0.003 0 5648 0.0091858 0.015717906

NETWORKX.BARABÁSI_ALBERT_3 17 2000 5991 0.003 0 5648 0.0091858 0.015717906

NETWORKX.BARABÁSI_ALBERT_3 121 4000 11991 0.0015 0 11516 0.0059219 0.010684208

NETWORKX.BARABÁSI_ALBERT_3 26 4000 11991 0.0015 0 11516 0.0059219 0.010684208

Campbell 190

Name

Landm
arks # Nodes # Edges Density

Ch
ord
al

Max
Cliques Transitivity

Average
Clustering

NETWORKX.BARABÁSI_ALBERT_3 20 4000 11991 0.0015 0 11516 0.0059219 0.010684208

NETWORKX.BARABÁSI_ALBERT_2 23 1500 2996 0.00266 0 2912 0.0053115 0.01241446

NETWORKX.BARABÁSI_ALBERT_2 18 2500 4996 0.0016 0 4880 0.0045243 0.009747668

NETWORKX.BARABÁSI_ALBERT_2 10 2500 4996 0.0016 0 4880 0.0045243 0.009747668

NETWORKX.BARABÁSI_ALBERT_13 11 2000 25831 0.01292 0 21857 0.0398079 0.043506926

NETWORKX.BARABÁSI_ALBERT_13 8 4000 51831 0.00648 0 44434 0.0237987 0.025350993

NETWORKX.BARABÁSI_ALBERT_11 8 2000 21879 0.01094 0 18138 0.0355809 0.038044008

NETWORKX.BARABÁSI_ALBERT_11 8 4000 43879 0.00549 0 37727 0.0211312 0.023212327

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.WAXMAN_GRAPH 10 0.055467024 746.94736 3.1912 1.160282 1500 36473

NETWORKX.WAXMAN_GRAPH 5 0.094738145 975.8488 3.2813 1.02974 2000 66454

NETWORKX.WAXMAN_GRAPH 5 0.269477554 2002.1622 3.1652 0.497598 4000 264030

NETWORKX.RANDOM_LOBSTER_90 212 0.011926244 367.232 156.495 43.8782 1223 1222

NETWORKX.RANDOM_LOBSTER_90 95 0.010520858 394.297 157.545 40.96436 1223 1222

Table 33 V3 Synthetic Graph Performance

Campbell 191

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.RANDOM_LOBSTER_90 44 0.009802136 411.273 157.187 39.09726 1223 1222

NETWORKX.RANDOM_LOBSTER_90 39 0.010022001 424.471 162.286 38.50999 1223 1222

NETWORKX.RANDOM_LOBSTER_90 343 0.014707763 619.9289 255.5596 42.53912 2088 2087

NETWORKX.RANDOM_LOBSTER_90 159 0.019793989 679.998 258.079 38.48101 2088 2087

NETWORKX.RANDOM_LOBSTER_90 75 0.017555335 691.057 252.995 36.86849 2088 2087

NETWORKX.RANDOM_LOBSTER_90 44 0.017395397 713.825 257.887 36.60131 2088 2087

NETWORKX.RANDOM_LOBSTER_90 434 0.019393084 764.998 322.7928 43.54557 2613 2612

NETWORKX.RANDOM_LOBSTER_90 200 0.027931002 863.405 333.934 39.1759 2613 2612

NETWORKX.RANDOM_LOBSTER_90 95 0.023308151 838.624 314.181 37.52181 2613 2612

NETWORKX.RANDOM_LOBSTER_90 52 0.02357689 907.856 335.812 37.04381 2613 2612

NETWORKX.RANDOM_LOBSTER_45 308 0.017333188 467.88 305.821 65.74632 1528 1527

NETWORKX.RANDOM_LOBSTER_45 143 0.013820886 484.45 305.462 62.95169 1528 1527

NETWORKX.RANDOM_LOBSTER_45 65 0.01266592 504.59 308.111 61.01867 1528 1527

NETWORKX.RANDOM_LOBSTER_45 40 0.012804669 543.152 323.475 59.26136 1528 1527

NETWORKX.PATH_GRAPH 40 0.010638514 521.24844 506.2713 94.76616 1500 1499

NETWORKX.PATH_GRAPH 499 0.017287046 669.024 667.8699 99.39805 2000 1999

NETWORKX.PATH_GRAPH 249 0.025150551 669.485 666.913 98.908 2000 1999

NETWORKX.PATH_GRAPH 124 0.021305844 661.817 655.965 97.85148 2000 1999

NETWORKX.PATH_GRAPH 61 0.01987497 663.818 650.948 96.05947 2000 1999

NETWORKX.PATH_GRAPH 499 0.028369162 1336.3964 1333.667 99.17086 4000 3999

NETWORKX.PATH_GRAPH 499 0.029679637 1305.2162 1302.907 99.33023 4000 3999

Campbell 192

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.PATH_GRAPH 499 0.033669614 1326.5696 1323.772 99.17364 4000 3999

NETWORKX.PATH_GRAPH 249 0.035472603 1364.033 1358.958 98.86861 4000 3999

NETWORKX.PATH_GRAPH 249 0.028614471 1351.7257 1345.975 98.77093 4000 3999

NETWORKX.PATH_GRAPH 249 0.029254625 1316.1942 1310.505 98.63464 4000 3999

NETWORKX.PATH_GRAPH 124 0.035543398 1311.792 1300.269 97.75051 4000 3999

NETWORKX.PATH_GRAPH 124 0.03947176 1290.081 1278.347 97.71102 4000 3999

NETWORKX.PATH_GRAPH 124 0.03533038 1361.564 1349.446 97.80879 4000 3999

NETWORKX.PATH_GRAPH 64 0.033654166 1380.431 1355.614 96.14231 4000 3999

NETWORKX.PATH_GRAPH 64 0.035708795 1383.649 1360.311 96.46316 4000 3999

NETWORKX.PATH_GRAPH 64 0.039881881 1396.295 1374.016 96.54972 4000 3999

NETWORKX.LADDER_GRAPH 499 0.015652372 668.5125 347.026 52.32163 2000 2998

NETWORKX.LADDER_GRAPH 499 0.015878414 668.1942 346.4234 52.40885 2000 2998

NETWORKX.LADDER_GRAPH 499 0.01594825 660.3724 342.5345 52.39372 2000 2998

NETWORKX.LADDER_GRAPH 499 0.015056354 643.7708 331.3944 52.05124 2000 2998

NETWORKX.LADDER_GRAPH 499 0.015866916 649.2713 336.7698 52.29019 2000 2998

NETWORKX.LADDER_GRAPH 249 0.016466344 677.8158 347.4094 51.36999 2000 2998

NETWORKX.LADDER_GRAPH 249 0.015905344 682.7668 349.3984 51.52546 2000 2998

NETWORKX.LADDER_GRAPH 249 0.015368899 629.2993 322.2212 51.43448 2000 2998

NETWORKX.LADDER_GRAPH 249 0.015351082 660.7247 338.5806 51.49247 2000 2998

NETWORKX.LADDER_GRAPH 249 0.023341279 675.34 346.425 51.32334 2000 2998

NETWORKX.LADDER_GRAPH 249 0.015472122 656.1041 336.4244 51.5769 2000 2998

Campbell 193

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.LADDER_GRAPH 124 0.019176952 653.731 331.218 50.46436 2000 2998

NETWORKX.LADDER_GRAPH 124 0.015224438 656.8168 332.5235 50.57294 2000 2998

NETWORKX.LADDER_GRAPH 124 0.015373114 642.4394 327.4484 51.10467 2000 2998

NETWORKX.LADDER_GRAPH 124 0.015874915 683.4154 346.6436 50.63131 2000 2998

NETWORKX.LADDER_GRAPH 124 0.015763692 661.8488 335.5536 50.82275 2000 2998

NETWORKX.LADDER_GRAPH 124 0.014814325 642.2553 324.7367 50.39013 2000 2998

NETWORKX.LADDER_GRAPH 61 0.016403922 670.3964 339.8619 50.48532 2000 2998

NETWORKX.LADDER_GRAPH 61 0.015590305 672.7317 336.6567 49.63934 2000 2998

NETWORKX.LADDER_GRAPH 61 0.018256605 673.851 337.32 49.98553 2000 2998

NETWORKX.LADDER_GRAPH 61 0.015467196 663.2833 332.011 49.87475 2000 2998

NETWORKX.LADDER_GRAPH 61 0.016246931 687.8328 346.3994 50.1129 2000 2998

NETWORKX.LADDER_GRAPH 61 0.015091519 647.7447 325.4464 49.80288 2000 2998

NETWORKX.LADDER_GRAPH 33 0.015736654 663.7848 326.4334 48.83879 2000 2998

NETWORKX.LADDER_GRAPH 33 0.015297337 652.3133 325.3143 49.51195 2000 2998

NETWORKX.LADDER_GRAPH 33 0.015966044 669.5896 333.1752 49.15448 2000 2998

NETWORKX.LADDER_GRAPH 33 0.016450556 716.0691 350.0961 48.52898 2000 2998

NETWORKX.LADDER_GRAPH 33 0.018578129 675.866 336.553 49.36814 2000 2998

NETWORKX.LADDER_GRAPH 33 0.015419692 657.2593 327.1622 49.76974 2000 2998

NETWORKX.LADDER_GRAPH 36 0.045794711 1495.97016 10.5776 1.693635 3000 4498

NETWORKX.LADDER_GRAPH 499 0.036878761 1297.1632 663.9159 51.32118 4000 5998

NETWORKX.LADDER_GRAPH 249 0.03991301 1360.9139 691.3223 50.74776 4000 5998

Campbell 194

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.LADDER_GRAPH 124 0.04846504 1359.492 688.955 50.42764 4000 5998

NETWORKX.LADDER_GRAPH 62 0.043796067 1317.419 661.973 49.60765 4000 5998

NETWORKX.CYCLE_GRAPH 499 0.012621767 507.8699 506.5896 99.30139 2000 2000

NETWORKX.CYCLE_GRAPH 249 0.021090964 509.506 503.078 98.5578 2000 2000

NETWORKX.CYCLE_GRAPH 124 0.015925891 494.518 486.108 97.6634 2000 2000

NETWORKX.CYCLE_GRAPH 62 0.01602904 528.599 509.512 95.82431 2000 2000

NETWORKX.CYCLE_GRAPH 499 0.022196118 1001.5726 998.7988 99.24962 4000 4000

NETWORKX.CYCLE_GRAPH 249 0.022201269 1003.2262 993.4655 98.44171 4000 4000

NETWORKX.CYCLE_GRAPH 124 0.029588307 1054.772 1039.059 97.74112 4000 4000

NETWORKX.CYCLE_GRAPH 63 0.028494363 1048.29 1020.792 96.06976 4000 4000

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.018850444 491.979 250.868 51.0116 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.0064497 221.25 113.75 52.7325 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.015534152 490.107 245.821 50.48463 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.013278003 505.2773 254.1221 50.64453 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.014286425 511.221 250.097 49.21524 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.012738555 504.5926 248.6366 49.79435 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 32 0.014873145 523.682 251.116 48.69981 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 32 0.016378737 518.1221 251.3544 48.78238 2000 3000

NETWORKX.CIRCULAR_LADDER_GRAPH 499 0.027456708 984.8619 504.5165 51.42 4000 6000

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.027394978 1001.0851 504.3844 50.51295 4000 6000

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.031709929 1017.4955 507.4324 50.14378 4000 6000

Campbell 195

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.036367474 975.865 488.003 50.17864 4000 6000

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.035299103 1021.284 500.165 49.06832 4000 6000

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.027559318 1013.1371 502.2913 49.28862 4000 6000

NETWORKX.BARBELL_GRAPH_ODD 12 0.267714257 741.6597 162.4895 21.01702 1665 443224

NETWORKX.BARBELL_GRAPH_ODD 7 0.256901449 769.1902 170.6597 20.77086 1665 443224

NETWORKX.BARBELL_GRAPH_ODD 4 0.252819649 762.8448 170.0631 21.12617 1665 443224

NETWORKX.BARBELL_GRAPH_ODD 3 0.256378367 768.3303 174.025 22.0402 1665 443224

NETWORKX.BARBELL_GRAPH_ODD 7 1.014840501 1533.1672 335.7177 20.49526 3332 1776223

NETWORKX.BARBELL_GRAPH_ODD 4 1.072889113 1474.2082 319.4264 20.52234 3332 1776223

NETWORKX.BARBELL_GRAPH_ODD 3 1.011720556 1514.2152 333.014 21.1022 3332 1776223

NETWORKX.BARBELL_GRAPH_EVEN 17 0.127165421 643.4855 241.7477 36.80949 1500 250001

NETWORKX.BARBELL_GRAPH_EVEN 9 0.120824437 620.4905 234.4164 36.08183 1500 250001

NETWORKX.BARBELL_GRAPH_EVEN 5 0.123599628 651.3333 252.2983 37.71891 1500 250001

NETWORKX.BARBELL_GRAPH_EVEN 3 0.122485971 636.7167 244.4484 37.8418 1500 250001

NETWORKX.BARBELL_GRAPH_EVEN 17 0.496028897 1293.2833 494.8488 37.32289 3000 1000001

NETWORKX.BARBELL_GRAPH_EVEN 9 0.494851285 1278.1832 491.038 36.82193 3000 1000001

NETWORKX.BARBELL_GRAPH_EVEN 5 0.494510013 1304.9019 479.3433 35.00984 3000 1000001

NETWORKX.BARBELL_GRAPH_EVEN 3 0.482507466 1276.0731 492.4555 38.83312 3000 1000001

NETWORKX.BARABÁSI_ALBERT_9 9 0.038634122 754.8238 3.7077 1.431025 1500 13419

NETWORKX.BARABÁSI_ALBERT_9 12 0.06077012 964.1592 3.7487 0.943123 2000 17919

NETWORKX.BARABÁSI_ALBERT_9 8 0.060346278 979.985 3.7728 1.108929 2000 17919

Campbell 196

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.BARABÁSI_ALBERT_9 15 0.106309873 2012.8979 3.9179 0.697768 4000 35919

NETWORKX.BARABÁSI_ALBERT_9 10 0.105891223 1878.3243 3.8869 0.62009 4000 35919

NETWORKX.BARABÁSI_ALBERT_7 8 0.035828095 751.21442 3.8348 1.545141 1500 10451

NETWORKX.BARABÁSI_ALBERT_7 17 0.056699913 995.979 3.9049 1.198619 2000 13951

NETWORKX.BARABÁSI_ALBERT_7 11 0.056671879 1008.1992 3.9189 1.085385 2000 13951

NETWORKX.BARABÁSI_ALBERT_7 10 0.055639405 1015.1582 3.9399 1.134895 2000 13951

NETWORKX.BARABÁSI_ALBERT_7 18 0.054930805 1284.8028 4.002 1.133964 2500 17451

NETWORKX.BARABÁSI_ALBERT_7 10 0.054646077 1229.2412 4 0.817167 2500 17451

NETWORKX.BARABÁSI_ALBERT_7 37 0.099659625 1935.2633 4.0791 0.614585 4000 27951

NETWORKX.BARABÁSI_ALBERT_7 13 0.097212028 1904.7427 4.0811 0.698729 4000 27951

NETWORKX.BARABÁSI_ALBERT_7 12 0.100160735 1988.2442 4.1301 0.843133 4000 27951

NETWORKX.BARABÁSI_ALBERT_6 11 0.034587752 770.37658 3.984 1.479355 1500 8964

NETWORKX.BARABÁSI_ALBERT_5 11 0.032678317 752.50552 4.0911 1.561642 1500 7475

NETWORKX.BARABÁSI_ALBERT_5 46 0.053001714 1015.1071 4.1872 1.198969 2000 9975

NETWORKX.BARABÁSI_ALBERT_5 13 0.053475886 1048.4885 4.2533 1.042122 2000 9975

NETWORKX.BARABÁSI_ALBERT_5 11 0.053401707 1035.8649 4.2212 1.123814 2000 9975

NETWORKX.BARABÁSI_ALBERT_5 44 0.09360658 1999.3093 4.4084 0.477497 4000 19975

NETWORKX.BARABÁSI_ALBERT_5 14 0.090803667 1918.5666 4.4034 0.618068 4000 19975

NETWORKX.BARABÁSI_ALBERT_4 14 0.030932879 782.5971 4.3704 1.390721 1500 5984

NETWORKX.BARABÁSI_ALBERT_3 82 0.043339349 958.0591 4.7918 1.348218 2000 5991

NETWORKX.BARABÁSI_ALBERT_3 76 0.05455953 1026.203 4.792 1.29832 2000 5991

Campbell 197

Name # Landmarks Avg Runtime
Avg Search
Space

Average
Path
Length Efficiency # Nodes # Edges

NETWORKX.BARABÁSI_ALBERT_3 22 0.052871013 1079.852 4.771 1.16898 2000 5991

NETWORKX.BARABÁSI_ALBERT_3 19 0.051465703 1024.67 4.723 1.27499 2000 5991

NETWORKX.BARABÁSI_ALBERT_3 19 0.058855596 1023.326 4.773 1.26934 2000 5991

NETWORKX.BARABÁSI_ALBERT_3 17 0.050921925 948.402 4.801 1.36665 2000 5991

NETWORKX.BARABÁSI_ALBERT_3 121 0.077737156 1927.7067 5.009 0.632593 4000 11991

NETWORKX.BARABÁSI_ALBERT_3 26 0.077238052 2025.7207 5.021 0.834655 4000 11991

NETWORKX.BARABÁSI_ALBERT_3 20 0.075645678 1941.0761 5.002 0.606286 4000 11991

NETWORKX.BARABÁSI_ALBERT_2 23 0.026608852 802.44324 5.4685 1.80191 1500 2996

NETWORKX.BARABÁSI_ALBERT_2 18 0.040212441 1155.7618 5.4184 1.522372 2500 4996

NETWORKX.BARABÁSI_ALBERT_2 10 0.041262981 1220.4605 5.5305 1.084384 2500 4996

NETWORKX.BARABÁSI_ALBERT_13 11 0.067197296 986.6757 3.5866 1.063153 2000 25831

NETWORKX.BARABÁSI_ALBERT_13 8 0.122725864 1941.4254 3.7508 0.550881 4000 51831

NETWORKX.BARABÁSI_ALBERT_11 8 0.067848633 1011.4715 3.7017 0.779419 2000 21879

NETWORKX.BARABÁSI_ALBERT_11 8 0.117220611 1862.7187 3.7978 0.687658 4000 43879

Campbell 198

Table 34 V3 Real Graph Performance

Table 35 V3 Real Graph Structure

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

Great Lakes 267 0.015718917 498.3053 21.93133 3700 4483

Great Lakes 97 0.022094637 753.3323 14.17775 3700 4483

Great Lakes 86 0.021475039 724.6547 14.91763 3700 4483

Rome 299 0.041006723 1211.8981 3.321693 3353 4831

Rome 262 0.044333826 1310.9817 2.689657 3353 4831

Rome 183 0.023491724 856.8128 10.23698 3353 4831

Rome 58 0.031587066 1222.4304 6.980097 3353 4831

Rome 48 0.031979783 1255.113367 6.564847 3353 4831

Name # Landmarks # Nodes # Edges Directed Density Chordal Largest Clique Size # Max Cliques Transitivity Average Clustering Average Path Length

Great Lakes 267 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 76.9249

Great Lakes 97 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 74.0591

Great Lakes 86 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 74.0861

Rome 299 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 12.2581

Rome 262 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 12.2552

Rome 183 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 40.6727

Rome 58 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 38.9046

Rome 48 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 40.4484

Campbell 199

Table 36 V4 Synthetic Graph Structure

Name # Landmarks # Nodes # Edges Density Chordal Largest Clique Size # Max CliquesTransitivity Average Clustering Average Path Length

NETWORKX.PATH_GRAPH 2499 10000 9999 0.0002 1 2 9999 0 0 3329.7628

NETWORKX.PATH_GRAPH 1249 10000 9999 0.0002 1 2 9999 0 0 3399.5495

NETWORKX.PATH_GRAPH 624 10000 9999 0.0002 1 2 9999 0 0 3264.0851

NETWORKX.PATH_GRAPH 311 10000 9999 0.0002 1 2 9999 0 0 3414.4985

NETWORKX.PATH_GRAPH 155 10000 9999 0.0002 1 2 9999 0 0 3243.026

NETWORKX.PATH_GRAPH 81 10000 9999 0.0002 1 2 9999 0 0 3332.7828

NETWORKX.LADDER_GRAPH 499 8000 11998 0.000375 0 2 11998 0 0 1335.1171

NETWORKX.LADDER_GRAPH 249 8000 11998 0.000375 0 2 11998 0 0 1291.3674

NETWORKX.LADDER_GRAPH 124 8000 11998 0.000375 0 2 11998 0 0 1268.1141

NETWORKX.LADDER_GRAPH 64 8000 11998 0.000375 0 2 11998 0 0 1385.6597

NETWORKX.LADDER_GRAPH 155 20000 29998 0.00015 0 2 29998 0 0 3312.9271

NETWORKX.CYCLE_GRAPH 79 10000 10000 0.0002 0 2 10000 0 0 2558.7227

NETWORKX.CIRCULAR_LADDER_GRAPH 499 8000 12000 0.000375 0 2 12000 0 0 1004.1231

NETWORKX.CIRCULAR_LADDER_GRAPH 249 8000 12000 0.000375 0 2 12000 0 0 984.2793

NETWORKX.CIRCULAR_LADDER_GRAPH 124 8000 12000 0.000375 0 2 12000 0 0 1003.6917

NETWORKX.CIRCULAR_LADDER_GRAPH 63 8000 12000 0.000375 0 2 12000 0 0 977.6466

NETWORKX.CIRCULAR_LADDER_GRAPH 156 20000 30000 0.00015 0 2 30000 0 0 2521.1341

NETWORKX.BARABASI_ALBERT_9 13 10000 89919 0.001799 0 7 82326 0.008592076 0.010003391 4.1762

NETWORKX.BARABASI_ALBERT_9 9 10000 89919 0.001799 0 7 82057 0.008860695 0.010512408 4.1301

NETWORKX.BARABASI_ALBERT_6 1249 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4755

NETWORKX.BARABASI_ALBERT_6 624 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4825

NETWORKX.BARABASI_ALBERT_6 311 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4685

NETWORKX.BARABASI_ALBERT_6 155 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4885

NETWORKX.BARABASI_ALBERT_6 81 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4775

NETWORKX.BARABASI_ALBERT_6 15 10000 59964 0.001199 0 6 56468 0.005944305 0.007894655 4.4675

NETWORKX.BARABASI_ALBERT_6 15 10000 59964 0.001199 0 6 56613 0.005733517 0.00763192 4.5095

NETWORKX.BARABASI_ALBERT_5 20 10000 49975 0.001 0 5 47683 0.00497716 0.007111235 4.6486

Campbell 200

Table 37 V4 Synthetic Graph Performance

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

NETWORKX.PATH_GRAPH 2499 0.068842525 3331.04 99.881982 10000 9999

NETWORKX.PATH_GRAPH 1249 0.068173933 3402.3964 99.62037 10000 9999

NETWORKX.PATH_GRAPH 624 0.065755312 3269.7898 99.571201 10000 9999

NETWORKX.PATH_GRAPH 311 0.068494629 3426.044 98.857267 10000 9999

NETWORKX.PATH_GRAPH 155 0.065067191 3269.1261 98.071071 10000 9999

NETWORKX.PATH_GRAPH 81 0.067794454 3384.0861 96.816727 10000 9999

NETWORKX.LADDER_GRAPH 499 0.067978507 2629.1602 50.795115 8000 11998

NETWORKX.LADDER_GRAPH 249 0.067041001 2543.3233 50.731401 8000 11998

NETWORKX.LADDER_GRAPH 124 0.064860955 2519.9149 50.208258 8000 11998

NETWORKX.LADDER_GRAPH 64 0.071977737 2782.0851 49.495866 8000 11998

NETWORKX.LADDER_GRAPH 155 0.367831638 6582.944 49.898784 20000 29998

NETWORKX.CYCLE_GRAPH 79 0.054701921 2649.7297 95.639289 10000 10000

NETWORKX.CIRCULAR_LADDER_GRAPH 499 0.049047699 1970.8589 51.045996 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.048405474 1955.1672 50.311622 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.049360576 1999.5556 49.863143 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 63 0.048025332 1992.5566 49.283143 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 156 0.124017879 5041.006 49.871892 20000 30000

NETWORKX.BARABASI_ALBERT_9 13 0.272763037 5277.8098 0.194354 10000 89919

NETWORKX.BARABASI_ALBERT_9 9 0.288305324 4895.957 0.242883 10000 89919

NETWORKX.BARABASI_ALBERT_6 1249 0.24778024 4545.4855 0.368408 10000 59964

NETWORKX.BARABASI_ALBERT_6 624 0.254611392 4790.1572 0.297167 10000 59964

NETWORKX.BARABASI_ALBERT_6 311 0.251446031 4811.1341 0.328208 10000 59964

NETWORKX.BARABASI_ALBERT_6 155 0.241420774 4977.6687 0.242092 10000 59964

NETWORKX.BARABASI_ALBERT_6 81 0.249340214 4918.8298 0.266587 10000 59964

NETWORKX.BARABASI_ALBERT_6 15 0.238799786 5082.4484 0.421201 10000 59964

NETWORKX.BARABASI_ALBERT_6 15 0.313661984 5216.018 0.306567 10000 59964

NETWORKX.BARABASI_ALBERT_5 20 0.317060164 5105.044 0.222853 10000 49975

Campbell 201

Table 38 V4 Real Graph Structure

Name # Landmarks# Nodes # Edges Density Chordal # Max Cliques TransitivityAverage Clustering Average Path Length

United States (Western) 639 8294 9851 0.000286 0 9225 0.05882 0.035905474 116.9329

United States (Western) 197 8294 9851 0.000286 0 9225 0.05882 0.035905474 121.7097

United States (Western) 156 8294 9851 0.000286 0 9225 0.05882 0.035905474 115

United States (Western) 1069 13499 17421 0.000191 0 17140 0.013094 0.010790923 137.2022

United States (Western) 256 13499 17421 0.000191 0 17140 0.013094 0.010790923 137.8188

United States (Western) 127 13499 17421 0.000191 0 17140 0.013094 0.010790923 141.5676

United States (Western) 123 13499 17421 0.000191 0 17140 0.013094 0.010790923 143.1491

Great Lakes 867 11773 15861 0.000229 0 15546 0.014845 0.012531499 139.6707

Great Lakes 220 11773 15861 0.000229 0 15546 0.014845 0.012531499 141.3303

Great Lakes 121 11773 15861 0.000229 0 15546 0.014845 0.012531499 143.3413

Great Lakes 120 11773 15861 0.000229 0 15546 0.014845 0.012531499 136.1922

United States (Eastern) 410 5573 6391 0.000412 0 6199 0.02804 0.017040493 89.4675

United States (Eastern) 136 5573 6391 0.000412 0 6199 0.02804 0.017040493 94.8799

United States (Eastern) 110 5573 6391 0.000412 0 6199 0.02804 0.017040493 89.9269

United States (Central) 588 7276 7856 0.000297 0 7709 0.019395 0.01019333 177.2352

United States (Central) 213 7276 7856 0.000297 0 7709 0.019395 0.01019333 181.993

United States (Central) 191 7276 7856 0.000297 0 7709 0.019395 0.01019333 175.9419

United States (Central) 413 5327 6121 0.000431 0 5803 0.048901 0.030573806 102.3323

United States (Central) 140 5327 6121 0.000431 0 5803 0.048901 0.030573806 104.6386

United States (Central) 119 5327 6121 0.000431 0 5803 0.048901 0.030573806 103.8028

New Mexico 1140 15221 17919 0.000155 0 16656 0.058933 0.0360445 222.6256

New Mexico 335 15221 17919 0.000155 0 16656 0.058933 0.0360445 217.4525

New Mexico 216 15221 17919 0.000155 0 16656 0.058933 0.0360445 215.4695

New Mexico 213 15221 17919 0.000155 0 16656 0.058933 0.0360445 218.9209

Hawaii 676 9237 10711 0.000251 0 10233 0.038371 0.023730648 194.0501

Hawaii 216 9237 10711 0.000251 0 10233 0.038371 0.023730648 194.3293

Hawaii 159 9237 10711 0.000251 0 10233 0.038371 0.023730648 193.3554

Washington DC 626 9522 14832 0.000327 0 13720 0.046936 0.039189946 73.4364

Washington DC 582 9522 14832 0.000327 0 13720 0.046936 0.039189946 12.5976

Washington DC 508 9522 14832 0.000327 0 13720 0.046936 0.039189946 12.6044

Washington DC 136 9522 14832 0.000327 0 13720 0.046936 0.039189946 74.2412

Washington DC 71 9522 14832 0.000327 0 13720 0.046936 0.039189946 74.3223

Campbell 202

Table 39 V4 Real Graph Performance

Name # LandmarksAverage Runtime Average Search Space Size Efficiency # Nodes # Edges

United States (Western) 639 0.022174926 761.968 23.69344 8294 9851

United States (Western) 197 0.041423797 1299.01 13.51363 8294 9851

United States (Western) 156 0.038698718 1415.6724 10.47789 8294 9851

United States (Western) 1069 0.04439088 1343.0891 14.98197 13499 17421

United States (Western) 256 0.076482814 2544.6877 7.576346 13499 17421

United States (Western) 127 0.089534322 3055.4615 6.407888 13499 17421

United States (Western) 123 0.093477266 3209.8949 6.215656 13499 17421

Great Lakes 867 0.034411663 1084.1742 16.99392 11773 15861

Great Lakes 220 0.048285952 1662.1431 10.96033 11773 15861

Great Lakes 121 0.060118319 2109.6697 9.131241 11773 15861

Great Lakes 120 0.064795337 2296.5656 8.306837 11773 15861

United States (Eastern) 410 0.016992073 528.4194 23.47322 5573 6391

United States (Eastern) 136 0.02764795 910.5085 14.65439 5573 6391

United States (Eastern) 110 0.028131704 933.1602 12.93048 5573 6391

United States (Central) 588 0.023168264 785.045 30.52616 7276 7856

United States (Central) 213 0.044543578 1337.4174 17.51926 7276 7856

United States (Central) 191 0.036169253 1299.7928 17.22821 7276 7856

United States (Central) 413 0.019570923 604.3744 24.7907 5327 6121

United States (Central) 140 0.027698786 887.4935 17.41308 5327 6121

United States (Central) 119 0.032490168 1053.4885 14.10981 5327 6121

New Mexico 1140 0.044394453 1408.5806 21.49428 15221 17919

New Mexico 335 0.069501981 2330.5866 12.24492 15221 17919

New Mexico 216 0.069054206 2329.5986 11.58909 15221 17919

New Mexico 213 0.0747001 2537.2292 11.26064 15221 17919

Hawaii 676 0.041771099 1365.3969 19.60609 9237 10711

Hawaii 216 0.05561454 1971.8774 13.05845 9237 10711

Hawaii 159 0.060690221 2130.475 12.08379 9237 10711

Washington DC 626 0.03679279 1310.8859 9.577548 9522 14832

Washington DC 582 0.134296621 3655.3239 1.291211 9522 14832

Washington DC 508 0.147273851 3915.2281 1.134729 9522 14832

Washington DC 136 0.058449629 2293.5225 5.45973 9522 14832

Washington DC 71 0.064369123 2526.8468 4.663093 9522 14832

Campbell 203

Table 40 V5 Synthetic Graph Structure

Table 41 V5 Synthetic Graph Performance

Name # Landmarks # Nodes # Edges Density Chordal # Max Cliques Transitivity Average Clustering Average Path Length

NETWORKX.PATH_GRAPH 197 50000 49999 0.00004 1 49999 0 0 17150.3774

NETWORKX.PATH_GRAPH 197 50000 49999 0.00004 1 49999 0 0 16958.1474

NETWORKX.CYCLE_GRAPH 196 50000 50000 4E-05 0 50000 0 0 12240.1992

NETWORKX.CYCLE_GRAPH 196 50000 50000 4E-05 0 50000 0 0 12621.5576

NETWORKX.CIRCULAR_LADDER_GRAPH 198 100000 150000 3E-05 0 150000 0 0 12262.683

NETWORKX.BARABASI_ALBERT_5 19 50000 249975 0.0002 0 245716 0.00138186 0.00194037 5.0931

NETWORKX.BARABASI_ALBERT_4 24 50000 199984 0.00016 0 197598 0.000995137 0.001763283 5.4234

NETWORKX.BARABASI_ALBERT_2 68 50000 99996 8E-05 0 99702 0.000338713 0.001146708 6.7027

NETWORKX.BARABASI_ALBERT_2 61 50000 99996 8E-05 0 99657 0.000373794 0.001395318 6.6346

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

NETWORKX.PATH_GRAPH 197 1.162572475 17274.7538 98.027918 50000 49999

NETWORKX.PATH_GRAPH 197 1.338624261 17073.5527 98.317513 50000 49999

NETWORKX.CYCLE_GRAPH 196 0.811346265 12383.5686 97.868078 50000 50000

NETWORKX.CYCLE_GRAPH 196 0.829821832 12766.96 97.838298 50000 50000

NETWORKX.CIRCULAR_LADDER_GRAPH 198 1.803097851 24450.5978 50.114674 100000 150000

NETWORKX.BARABASI_ALBERT_5 19 1.532056167 26169.5085 0.057668 50000 249975

NETWORKX.BARABASI_ALBERT_4 24 1.471386127 27511.977 0.093213 50000 199984

NETWORKX.BARABASI_ALBERT_2 68 1.717726896 27918.3924 0.084815 50000 99996

NETWORKX.BARABASI_ALBERT_2 61 1.673248201 28048.5936 0.084815 50000 99996

Campbell 204

Name

Landmarks # Nodes # Edges Density Chordal

Max
Cliques Transitivity

Average
Clustering

Average
Path
Length

United States (Western) 2165 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 128.3984

United States (Western) 460 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 131.979

United States (Western) 161 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 135.7367

United States (Western) 145 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 132.5916

United States (Western) 936 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 364.011

United States (Western) 398 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 364.4875

United States (Western) 384 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 358.7568

Great Lakes 2384 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 133.0701

Great Lakes 540 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 136.2492

Great Lakes 204 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 138.2272

Great Lakes 193 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 138.2212

United States (Eastern) 390 29796 32528 7.33E-05 0 31873 0.020404445 0.01158545 373.7355

United States (Eastern) 799 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 157.4114

United States (Eastern) 302 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 157.4935

United States (Eastern) 277 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 158.0531

United States (Eastern) 613 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 154.989

United States (Eastern) 229 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 156.0961

United States (Eastern) 210 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 151.0806

Rhode Island 917 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 207.1892

Rhode Island 306 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 206.3524

Rhode Island 255 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 203.025

Table 42 V5 Real Graph Structure

Campbell 205

Name

Landmarks # Nodes # Edges Density Chordal

Max
Cliques Transitivity

Average
Clustering

Average
Path
Length

Rhode Island 254 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 204.0781

New Mexico 2246 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 235.4324

New Mexico 599 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 238.044

New Mexico 350 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 245.3554

New Mexico 343 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 234.0631

New Mexico 2161 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 249.2362

New Mexico 596 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.1321

New Mexico 317 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.9129

New Mexico 315 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.3904

Luxembourg 1063 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 378.0985

Luxembourg 392 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 377.5447

Luxembourg 386 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 378.4762

Luxembourg 249 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 381.6023

Luxembourg 247 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 383.8765

Name

Landmarks

Average
Runtime

Average Search Space
Size

Efficiency
(%) # Nodes # Edges

United States (Western) 2165 0.06864359 1645.6857 12.85869 28652 36906

United States (Western) 460 0.112180543 3738.6647 5.618649 28652 36906

Table 43 V5 Real Graph Performance

Campbell 206

United States (Western) 161 0.147076599 5029.4294 3.860621 28652 36906

United States (Western) 145 0.14743869 5077.1491 3.893233 28652 36906

United States (Western) 936 0.165575983 5339.035 9.319389 51447 62272

United States (Western) 398 0.226476887 7611.0821 6.355375 51447 62272

United States (Western) 384 0.231567124 7720.3824 5.940571 51447 62272

Great Lakes 2384 0.074080025 1260.3824 17.4718 34198 42957

Great Lakes 540 0.100425051 3146.6086 7.092262 34198 42957

Great Lakes 204 0.166356931 5366.6817 4.283223 34198 42957

Great Lakes 193 0.159183911 5140.0981 4.471912 34198 42957

United States (Eastern) 390 0.120883669 4037.9265 12.78429 29796 32528

United States (Eastern) 799 0.135431556 4154.988 7.308468 49404 57960

United States (Eastern) 302 0.227272182 7173.5195 3.708939 49404 57960

United States (Eastern) 277 0.236171585 7458.1101 3.465065 49404 57960

United States (Eastern) 613 0.15333767 4256.5075 6.135425 35103 42902

United States (Eastern) 229 0.191003423 6563.6647 3.871391 35103 42902

United States (Eastern) 210 0.203058066 7046.22185 3.544912 35103 42902

Rhode Island 917 0.184251335 6427.5295 5.544675 53288 68496

Rhode Island 306 0.255614322 9257.7037 3.86979 53288 68496

Rhode Island 255 0.276409393 10001.1982 3.35997 53288 68496

Rhode Island 254 0.265858525 9658.993 3.46967 53288 68496

New Mexico 2246 0.073057754 2370.4755 18.43823 29381 33476

New Mexico 599 0.105529631 3578.7257 10.62985 29381 33476

New Mexico 350 0.137659912 4753.6026 8.000731 29381 33476

New Mexico 343 0.132616894 4527.7928 8.055736 29381 33476

Campbell 207

New Mexico 2161 0.046677033 1440.6126 23.08611 28115 32736

New Mexico 596 0.079765107 2614.7087 12.85735 28115 32736

New Mexico 317 0.108490007 3608.3123 9.558649 28115 32736

New Mexico 315 0.102721638 3384.8158 10.07619 28115 32736

Luxembourg 1063 0.095687627 3425.1552 20.22771 84136 85579

Luxembourg 392 0.271665576 7639.6507 9.820803 84136 85579

Luxembourg 386 0.123748903 8573.2232 8.716143 84136 85579

Luxembourg 249 0.157580806 10999.7651 6.895078 84136 85579

Luxembourg 247 0.292890311 10626.5334 7.054766 84136 85579

Table 44 V7 Real Graph Structure

Table 45 V7 Real Graph Performance

Name # Landmarks# Nodes # Edges Directed Density Chordal # Max Cliques Transitivity Average Clustering Average Path Length

New York City 280 264346 365050 0 1.04481E-05 0 352355 0.025446321 0.020779882 284.6637

New York City 233 264346 365050 0 1.04481E-05 0 352355 0.025446321 0.020779882 267.8894

Name # LandmarksAverage Runtime Average Search Space Size Efficiency # Nodes # Edges

New York City 280 1.099790801 37105.43138 1.1585642 264346 365050

New York City 233 1.31172116 40166.16357 1.059572545 264346 365050

Campbell 208

ALT-Based Landmark Selection

Name Efficiency Selection

NETWORKX.BARABÁSI_ALBERT_11 0.07332625 random

NETWORKX.BARABÁSI_ALBERT_11 0.06418928 farthest-d

NETWORKX.BARABÁSI_ALBERT_11 0.07571031 planar

NETWORKX.BARABÁSI_ALBERT_11 0.07587722 betweenness centrality

NETWORKX.BARABÁSI_ALBERT_11 0.16729419 farthest-ecc

NETWORKX.BARABÁSI_ALBERT_13 0.30886323 random

NETWORKX.BARABÁSI_ALBERT_13 0.3233789 farthest-d

NETWORKX.BARABÁSI_ALBERT_13 0.30883986 planar

NETWORKX.BARABÁSI_ALBERT_13 0.32916084 betweenness centrality

NETWORKX.BARABÁSI_ALBERT_3 0.10972896 random

NETWORKX.BARABÁSI_ALBERT_3 0.10473636 farthest-d

NETWORKX.BARABÁSI_ALBERT_3 0.10926481 planar

NETWORKX.BARABÁSI_ALBERT_3 0.10969018 betweenness centrality

NETWORKX.BARABÁSI_ALBERT_5 0.09167031 random

NETWORKX.BARABÁSI_ALBERT_5 0.0761458 farthest-d

NETWORKX.BARABÁSI_ALBERT_5 0.08736555 planar

NETWORKX.BARABÁSI_ALBERT_5 0.08885303 betweenness centrality

Table 46 ALT-Based Landmark Selection over Synthetic Graphs

Campbell 209

NETWORKX.BARABÁSI_ALBERT_5 0.14827956 farthest-ecc

NETWORKX.BARABÁSI_ALBERT_7 0.06162094 random

NETWORKX.BARABÁSI_ALBERT_7 0.05603413 farthest-d

NETWORKX.BARABÁSI_ALBERT_7 0.06396991 planar

NETWORKX.BARABÁSI_ALBERT_7 0.06365355 betweenness centrality

NETWORKX.BARABÁSI_ALBERT_7 0.17620701 farthest-ecc

NETWORKX.BARABÁSI_ALBERT_9 0.07793635 random

NETWORKX.BARABÁSI_ALBERT_9 0.07002625 farthest-d

NETWORKX.BARABÁSI_ALBERT_9 0.07776382 planar

NETWORKX.BARABÁSI_ALBERT_9 0.08039156 betweenness centrality

NETWORKX.BARABÁSI_ALBERT_9 0.15977675 farthest-ecc

NETWORKX.BARBELL_GRAPH_EVEN 0.073432 random

NETWORKX.BARBELL_GRAPH_EVEN 0.07634492 farthest-d

NETWORKX.BARBELL_GRAPH_EVEN 0.07487301 planar

NETWORKX.BARBELL_GRAPH_EVEN 0.07635513 betweenness centrality

NETWORKX.BARBELL_GRAPH_ODD 0.07456582 random

NETWORKX.BARBELL_GRAPH_ODD 0.0769721 farthest-d

NETWORKX.BARBELL_GRAPH_ODD 0.07638805 planar

NETWORKX.BARBELL_GRAPH_ODD 0.07777363 betweenness centrality

NETWORKX.CIRCULAR_LADDER_GRAPH 0.22774735 random

NETWORKX.CIRCULAR_LADDER_GRAPH 0.23844454 farthest-d

NETWORKX.CIRCULAR_LADDER_GRAPH 0.21353256 planar

NETWORKX.CIRCULAR_LADDER_GRAPH 0.26295345 betweenness centrality

Campbell 210

NETWORKX.COMPLETE_GRAPH 0.19454333 random

NETWORKX.COMPLETE_GRAPH 0.23383333 farthest-d

NETWORKX.COMPLETE_GRAPH 0.22621 planar

NETWORKX.COMPLETE_GRAPH 0.23251667 betweenness centrality

NETWORKX.CYCLE_GRAPH 0.92052778 random

NETWORKX.CYCLE_GRAPH 0.91600154 farthest-d

NETWORKX.CYCLE_GRAPH 0.9077191 planar

NETWORKX.CYCLE_GRAPH 0.93834186 betweenness centrality

NETWORKX.CYCLE_GRAPH 0.96070461 farthest-ecc

NETWORKX.ERDOS_RENYI_15 0.06646538 random

NETWORKX.ERDOS_RENYI_15 0.06908302 farthest-d

NETWORKX.ERDOS_RENYI_15 0.06604975 planar

NETWORKX.ERDOS_RENYI_15 0.06698582 betweenness centrality

NETWORKX.ERDOS_RENYI_30 0.2989426 random

NETWORKX.ERDOS_RENYI_30 0.37306945 farthest-d

NETWORKX.ERDOS_RENYI_30 0.30568982 planar

NETWORKX.ERDOS_RENYI_30 0.28313647 betweenness centrality

NETWORKX.LADDER_GRAPH 0.25560181 random

NETWORKX.LADDER_GRAPH 0.24253707 farthest-d

NETWORKX.LADDER_GRAPH 0.20743344 planar

NETWORKX.LADDER_GRAPH 0.25252634 betweenness centrality

NETWORKX.LADDER_GRAPH 0.18189499 farthest-ecc

NETWORKX.PATH_GRAPH 0.94652043 random

Campbell 211

NETWORKX.PATH_GRAPH 0.94830543 farthest-d

NETWORKX.PATH_GRAPH 0.93117669 planar

NETWORKX.PATH_GRAPH 0.95403131 betweenness centrality

NETWORKX.RANDOM_LOBSTER_45 0.43970513 random

NETWORKX.RANDOM_LOBSTER_45 0.5726334 farthest-d

NETWORKX.RANDOM_LOBSTER_45 0.4154184 planar

NETWORKX.RANDOM_LOBSTER_45 0.42582864 betweenness centrality

NETWORKX.RANDOM_LOBSTER_90 0.26528347 random

NETWORKX.RANDOM_LOBSTER_90 0.34019603 farthest-d

NETWORKX.RANDOM_LOBSTER_90 0.26457455 planar

NETWORKX.RANDOM_LOBSTER_90 0.24160878 betweenness centrality

NETWORKX.WATTS_STROGATZ_10 0.0857167 random

NETWORKX.WATTS_STROGATZ_10 0.08798697 farthest-d

NETWORKX.WATTS_STROGATZ_10 0.09040027 planar

NETWORKX.WATTS_STROGATZ_10 0.09307308 betweenness centrality

NETWORKX.WATTS_STROGATZ_20 0.10739018 random

NETWORKX.WATTS_STROGATZ_20 0.1075506 farthest-d

NETWORKX.WATTS_STROGATZ_20 0.11082154 planar

NETWORKX.WATTS_STROGATZ_20 0.1085017 betweenness centrality

NETWORKX.WAXMAN_GRAPH 0.19642262 random

NETWORKX.WAXMAN_GRAPH 0.21845825 farthest-d

NETWORKX.WAXMAN_GRAPH 0.1896359 planar

NETWORKX.WAXMAN_GRAPH 0.18904927 betweenness centrality

Campbell 212

NETWORKX.WAXMAN_GRAPH 0.28171423 farthest-ecc

Campbell 213

References

Aardal, K., Nemhauser, G. L., & Weismantel, R. (2005). Handbooks in Operations

Research and Management Science: Discrete Optimization: Elsevier Science.

Alspach, B., Bermond, J. C., & Sotteau, D. (1990). Decomposition into Cycles I:

Hamilton Decompositions. In G. Hahn, G. Sabidussi & R. Woodrow (Eds.),

Cycles and Rays (Vol. 301, pp. 9-18): Springer Netherlands.

Andersen, R., Chung, F., & Lang, K. (2006). Local Graph Partitioning using PageRank

Vectors. Paper presented at the Proceedings of the 47th Annual IEEE Symposium

on Foundations of Computer Science (FOCS '06), Washington DC.

Awasthi, A., Lechevallier, Y., Parent, M., & Proth, J. M. (2005, 13-15 Sept. 2005). Rule

based prediction of fastest paths on urban networks. Paper presented at the

Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE.

Aynaud, T. (2010). Community detection for NetworkX’s documentation¶. from

http://perso.crans.org/aynaud/communities/index.html

Bao, Y., Feng, G., Liu, T.-Y., Ma, Z.-M., & Wang, Y. (2006). Ranking Websites: A

Probabilistic View. Internet Mathematics, 3(3), 295-320. doi:

10.1080/15427951.2006.10129125

Bard, J. F., Yu, G., & Arguello, M. F. (2001). Optimizing aircraft routings in response to

groundings and delays. Iie Transactions, 33(10), 931-947. doi:

10.1080/07408170108936885

Bauer, R., Columbus, T., Katz, B., Krug, M., & Wagner, D. (2010). Preprocessing speed-

up techniques is hard. Paper presented at the Proceedings of the 7th international

conference on Algorithms and Complexity, Rome, Italy.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011).

Cython: The Best of Both Worlds. Computing in Science and Engg., 13(2), 31-39.

doi: 10.1109/mcse.2010.118

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of

communities in large networks. Journal of Statistical Mechanics-Theory and

Experiment, 12. doi: 10.1088/1742-5468/2008/10/p10008

Bo, W., & Dong, J.-X. (2010). The System of GPS Navigation Based on ARM Processor.

Paper presented at the Proceedings of the 2010 International Forum on

Information Technology and Applications - Volume 02.

http://perso.crans.org/aynaud/communities/index.html

Campbell 214

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual (Web) search

engine. Computer Networks and ISDN Systems, 30, 107-117.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., . . . Weiss, H.

(2007). {RFC 4838, Delay-Tolerant Networking Architecture}. IRTF DTN

Research Group. doi: citeulike-article-id:7179323

Chan, T. M. (2007). More algorithms for all-pairs shortest paths in weighted graphs.

Paper presented at the Proceedings of the thirty-ninth annual ACM symposium on

Theory of computing, San Diego, California, USA.

Chen, J., Bardes, E. E., Aronow, B. J., & Jegga, A. G. (2009). ToppGene Suite for gene

list enrichment analysis and candidate gene prioritization. Nucleic Acids

Research, 37, W305-W311. doi: 10.1093/nar/gkp427

Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google's

PageRank algorithm. Journal of Informetrics, 1(1), 8-15. doi:

10.1016/j.joi.2006.06.001

Chittka, L., Geiger, K., & Kunze, J. A. N. (1995). The influences of landmarks on

distance estimation of honey bees. Animal Behaviour, 50(1), 23-31. doi:

http://dx.doi.org/10.1006/anbe.1995.0217

Costa, M., Castro, M., Rowstron, A., & Key, P. (2004, 2004). PIC: practical Internet

coordinates for distance estimation. Paper presented at the Distributed Computing

Systems, 2004. Proceedings. 24th International Conference on.

Cowen, L. J. (1999). Compact routing with minimum stretch. Paper presented at the

Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms,

Baltimore, Maryland, USA.

Cullum, J. K., & Willoughby, R. A. (2002). Lanczos Algorithms for Large Symmetric

Eigenvalue Computations, Vol. 1: Society for Industrial and Applied

Mathematics.

Das Sarma, A., Gollapudi, S., & Panigrahy, R. (2011). Estimating PageRank on Graph

Streams. Journal of the Acm, 58(3). doi: 10.1145/1970392.1970397

Delling, D., Goldberg, A. V., Pajor, T., & Werneck, R. F. (2011). Customizable route

planning. Paper presented at the Proceedings of the 10th international conference

on Experimental algorithms, Crete, Greece.

Delling, D., Sanders, P., Schultes, D., & Wagner, D. (2009). Highway Hierarchies Star

(Vol. 74).

Delling, D., & Wagner, D. (2007). Landmark-based routing in dynamic graphs. Paper

presented at the Proceedings of the 6th international conference on Experimental

algorithms, Rome, Italy.

http://dx.doi.org/10.1006/anbe.1995.0217

Campbell 215

Demetrescu, C., Goldberg, A., & Johnson, D. (2006). Challenge Datasets [TIGER/Line

graph]. Retrieved from: http://www.dis.uniroma1.it/challenge9/download.shtml

Developers, N. (2010). NetworkX. networkx. lanl. gov.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1), 269-271. doi: citeulike-article-id:2215313

doi: 10.1007/BF01386390

Dong, Z., ZuKuan, W., Jae-Hong, K., & ShuGuang, T. (2010, 25-27 June 2010). An

optimized Dijkstra algorithm for Embedded-GIS. Paper presented at the Computer

Design and Applications (ICCDA), 2010 International Conference on.

Duan, R., Pettie, S., & Siam/Acm. (2009). Dual-Failure Distance and Connectivity

Oracles. Proceedings of the Twentieth Annual Acm-Siam Symposium on Discrete

Algorithms, 506-515.

Erdős, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae

Debrecen, 6, 290-297.

Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Graph Theory

1736-1936. doi: citeulike-article-id:6649492

Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6), 345. doi:

10.1145/367766.368168

Fortz, B., & Thorup, M. (2000, 2000). Internet traffic engineering by optimizing OSPF

weights. Paper presented at the INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34(3), 596-615. doi:

10.1145/28869.28874

Freedman, D. (1971). Markov chains: Holden-Day.

Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social

networks, 1(3), 215-239.

Fuchs, F. (2010). On Preprocessing the ALT-Algorithm. (Master's thesis), University of

Karlsruhe, Institute for Theoretical Informatics.

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008a). Contraction hierarchies:

Faster and simpler hierarchical routing in road networks. In C. C. McGeoch (Ed.),

Experimental Algorithms, Proceedings (Vol. 5038).

http://www.dis.uniroma1.it/challenge9/download.shtml

Campbell 216

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008b). Contraction

hierarchies: faster and simpler hierarchical routing in road networks. Paper

presented at the Proceedings of the 7th international conference on Experimental

algorithms, Provincetown, MA, USA.

Ghosh, A., Boyd, S., & Saberi, A. (2008). Minimizing Effective Resistance of a Graph.

SIAM Rev., 50(1), 37-66. doi: 10.1137/050645452

Goh, K.-I., Kahng, B., & Kim, D. (2001). Universal behavior of load distribution in

scale-free networks. Physical Review Letters, 87(27), 278701.

Goldberg, A., & Werneck, R. (2005). Computing Point-to-Point Shortest Paths from

External Memory. Paper presented at the Proceedings of the Seventh Workshop

on Algorithm Engineering and Experiments (ALENEX'05).

Goldberg, A. V., & Harrelson, C. (2005). Computing the Shortest Path: A* Search Meets

Graph Theory. Proceedings of the Sixteenth Annual Acm-Siam Symposium on

Discrete Algorithms, 156-165.

Goldberg, A. V., Kaplan, H., & Werneck, R. F. (2009). Reach for A*: Shortest Path

Algorithms with Preprocessing. In C. Demetrescu, A. V. Goldberg & D. S.

Johnson (Eds.), Shortest Path Problem (Vol. 74, pp. 93-139). Providence: Amer

Mathematical Soc.

Goldberg, A. V., & Werneck, R. F. (2005). Computing point-to-point shortest paths from

external memory. Paper presented at the Proceedings of the 7th Workshop on

Algorithm Engineering and Experiments (ALENEX’05).

Goldman, R., Shivakumar, N., Venkatasubramanian, S., & Garcia-Molina, H. (1998).

Proximity search in databases. In A. Gupta, O. Shmueli & J. Widom (Eds.),

Proceedings of the Twenty-Fourth International Conference on Very-Large

Databases (pp. 26-3737): Morgan Kaufmann Publishers Inc.

Golomb, S. W., & Lushbaugh, W. (1996). Polyominoes: Puzzles, Patterns, Problems,

and Packings: Princeton University Press.

Griffith, A. (2002). GCC: The Complete Reference: McGraw-Hill, Inc.

Gross, J. L., & Yellen, J. (2005). Graph Theory and Its Applications, Second Edition:

CRC Press.

Gutman, R. (2004). Reach-Based Routing: A New Approach to Shortest Path Algorithms

Optimized for Road Networks. Paper presented at the Proceedings 6th Workshop

on Algorithm Engineering and Experiments (ALENEX).

Halfacree, G., & Upton, E. (2012). Raspberry Pi User Guide: Wiley Publishing.

Campbell 217

Han, W.-S., Lee, J., Pham, M.-D., & Yu, J. X. (2010). iGraph: a framework for

comparisons of disk-based graph indexing techniques. Proc. VLDB Endow., 3(1-

2), 449-459.

Harary, F., & Schwenk, A. J. (1979). The spectral approach to determining the number of

walks in a graph. 443-449.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2), 100-107. doi: 10.1109/TSSC.1968.300136

Holdsworth, J. J., & Lui, S. M. (2009). GPS-enabled mobiles for learning shortest paths:

a pilot study. Paper presented at the Proceedings of the 4th International

Conference on Foundations of Digital Games, Orlando, Florida.

Hutchinson, D., Maheshwari, A., & Zeh, N. (2003). An external memory data structure

for shortest path queries. Discrete Appl. Math., 126(1), 55-82. doi:

10.1016/s0166-218x(02)00217-2

Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network (Vol. 34):

ACM.

Johnson, D. B. (1977). Efficient Algorithms for Shortest Paths in Sparse Networks. J.

ACM, 24(1), 1-13. doi: 10.1145/321992.321993

Kamvar, S., Haveliwala, T., & Golub, G. (2004). Adaptive methods for the computation

of PageRank. Linear Algebra and Its Applications, 386, 51-65. doi:

10.1016/j.laa.2003.12.008

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika,

18(1), 39-43.

Kay, D. C. (2011). College Geometry: A Unified Development: Taylor & Francis.

Lauther, U. (2004). An extremely fast, exact algorithm for finding shortest paths in static

networks with geographical background. Geoinformation und Mobilität - von der

Forschung zur praktischen Anwendung, 22, 219-230.

Lin, X. H., Kwok, Y. K., & Lau, V. K. N. (2003). A genetic algorithm based approach to

route selection and capacity flow assignment. Computer Communications, 26(9),

961-974. doi: 10.1016/s0140-3664(02)00240-2

Liu, X. M., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship

networks in the digital library research community. Information Processing &

Management, 41(6), 1462-1480. doi: 10.1016/j.ipm.2005.03.012

Campbell 218

Luo, D. J., Zhu, X. J., Wu, X. B., Chen, G. H., & Ieee. (2011). Maximizing Lifetime for

the Shortest Path Aggregation Tree in Wireless Sensor Networks 2011

Proceedings Ieee Infocom (pp. 1566-1574). New York: Ieee.

M, R. H., #246, hring, Schilling, H., Sch, B., #252, . . . Willhalm, T. (2007). Partitioning

graphs to speedup Dijkstra's algorithm. J. Exp. Algorithmics, 11, 2.8. doi:

10.1145/1187436.1216585

Maruhashi, K., Shigezumi, J., Yugami, N., & Faloutsos, C. (2012). EigenSP: A More

Accurate Shortest Path Distance Estimation on Large-Scale Networks. Paper

presented at the Proceedings of the 2012 IEEE 12th International Conference on

Data Mining Workshops.

Maue, J. (2006). A Goal-Directed Shortest Path Algorithm Using Precomputed Cluster

Distances. (Master's Thesis), Saarland University, Saarbr{\"u}cken. Retrieved

from http://www.n.ethz.ch/~mauej/publications/maue-06.pdf

Maue, J., Sanders, P., & Matijevic, D. (2010). Goal-directed shortest-path queries using

precomputed cluster distances. J. Exp. Algorithmics, 14, 3.2-3.27. doi:

10.1145/1498698.1564502

Maue, J., Sanders, P., Matijevic, D., Alvarez, C., & Serna, M. (2006). Goal directed

shortest path queries using precomputed cluster distances. Experimental

Algorithms, Proceedings, 4007, 316-327.

Miao, Q. (2014). Approximate Shortest Distance Computing: A Query-Dependent Local

Landmark Scheme. IEEE Transactions on Knowledge and Data Engineering,

26(1), 55-68.

Millman, R. S., & Parker, G. D. (1991). Geometry: A Metric Approach with Models:

Springer.

Mises, R. V., & Pollaczek-Geiringer, H. (1929). Praktische Verfahren der

Gleichungsauflösung. ZAMM - Journal of Applied Mathematics and Mechanics /

Zeitschrift für Angewandte Mathematik und Mechanik, 9(2), 152-164. doi:

10.1002/zamm.19290090206

Newman, M. E. (2001). Scientific collaboration networks. II. Shortest paths, weighted

networks, and centrality. Physical review E, 64(1), 016132.

Noy, M., & Ribó, A. (2004). Recursively constructible families of graphs. Advances in

Applied Mathematics, 32(1–2), 350-363. doi: http://dx.doi.org/10.1016/S0196-

8858(03)00088-5

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking:

Bringing order to the Web. Stanford: Stanford University.

http://www.n.ethz.ch/~mauej/publications/maue-06.pdf
http://dx.doi.org/10.1016/S0196-8858(03)00088-5
http://dx.doi.org/10.1016/S0196-8858(03)00088-5

Campbell 219

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving:

Addison-Wesley Longman Publishing Co., Inc.

Pons, P., & Latapy, M. (2005). Computing Communities in Large Networks Using

Random Walks. In p. Yolum, T. Güngör, F. Gürgen & C. Özturan (Eds.),

Computer and Information Sciences - ISCIS 2005 (Vol. 3733, pp. 284-293):

Springer Berlin Heidelberg.

Potamias, M., Bonchi, F., Castillo, C., & Gionis, A. (2009). Fast shortest path distance

estimation in large networks. Paper presented at the Proceedings of the 18th ACM

conference on Information and knowledge management, Hong Kong, China.

Royset, J. O., Carlyle, W. M., & Wood, R. K. (2009). Routing Military Aircraft With A

Constrained Shortest-Path Algorithm. Military Operations Research, 14(3), 31-

52.

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach: Prentice

Hall Press.

Sanders, P., & Schultes, D. (2007). Engineering fast route planning algorithms.

Experimental Algorithms, Proceedings, 4525, 23-36.

Sankaranarayanan, J., & Samet, H. (2010). Query Processing Using Distance Oracles for

Spatial Networks. Knowledge and Data Engineering, IEEE Transactions on,

22(8), 1158-1175. doi: 10.1109/TKDE.2010.75

Sankaranarayanan, J., Samet, H., & Alborzi, H. (2009). Path oracles for spatial networks.

Proc. VLDB Endow., 2(1), 1210-1221.

Santhosh, S. S., Sasiprabha, T., & Jeberson, R. (2010, 13-15 Nov. 2010). BLI - NAV

embedded navigation system for blind people. Paper presented at the Recent

Advances in Space Technology Services and Climate Change (RSTSCC), 2010.

Seidel, R. (1995). On the all-pairs-shortest-path problem in unweighted undirected

graphs. J. Comput. Syst. Sci., 51(3), 400-403. doi: 10.1006/jcss.1995.1078

Shimbel, A. (1953). Structural parameters of communication networks. The bulletin of

mathematical biophysics, 15(4), 501-507. doi: 10.1007/BF02476438

Sommer, C. (2012). Shortest-Path Queries in Static Networks.

Soundarajan, S., & Hopcroft, J. E. (2015). Use of Local Group Information to Identify

Communities in Networks. ACM Trans. Knowl. Discov. Data, 9(3), 1-27. doi:

10.1145/2700404

Strang, G. (2007). Computational Science and Engineering: Wellesley-Cambridge Press.

Campbell 220

Summerfield, M. (2013). Python in Practice: Create Better Programs Using

Concurrency, Libraries, and Patterns: Addison-Wesley Professional.

Sun, T. L., Deng, K. Y., & Deng, J. W. (2008). Novel numerical methods for rapid

computation of PageRank. Beijing: Publishing House Electronics Industry.

Surhone, L. M., Tennoe, M. T., & Henssonow, S. F. (2011). Cython: VDM Publishing.

Takes, F. W., & Kosters, W. A. (2014). Adaptive Landmark Selection Strategies for Fast

Shortest Path Computation in Large Real-World Graphs. Paper presented at the

Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on

Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01.

Thorup, M., & Zwick, U. (2001). Approximate distance oracles. Paper presented at the

Proceedings of the thirty-third annual ACM symposium on Theory of computing,

Hersonissos, Greece.

Voevodski, K., Teng, S.-H., & Xia, Y. (2009a). Finding local communities in protein

networks. BMC Bioinformatics, 10, 297.

Voevodski, K., Teng, S.-H., & Xia, Y. (2009b). Spectral affinity in protein networks.

BMC Systems Biology, 3(112).

Wagner, D., Willhalm, T., & Zaroliagis, C. (2005). Geometric containers for efficient

shortest-path computation. J. Exp. Algorithmics, 10, 1.3. doi:

10.1145/1064546.1103378

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of /`small-world/' networks.

Nature, 393(6684), 440-442.

Weis, M., & Naumann, F. (2004). Detecting duplicate objects in XML documents. Paper

presented at the Proceedings of the 2004 international workshop on Information

quality in information systems, Paris, France.

Yussof, S., Razali, R. A., Ong Hang, S., Ghapar, A. A., & Din, M. M. (2009, 25-27 June

2009). A Coarse-Grained Parallel Genetic Algorithm with Migration for Shortest

Path Routing Problem. Paper presented at the High Performance Computing and

Communications, 2009. HPCC '09. 11th IEEE International Conference on.

Zadorozhnyi, V. N., & Yudin, E. B. (2012). Structural properties of the scale-free

Barabasi-Albert graph. Autom. Remote Control, 73(4), 702-716. doi:

10.1134/s0005117912040091

Zakzouk, A. A. A., Zaher, H. M., & El-Deen, R. A. Z. (2010, 28-30 March 2010). An ant

colony optimization approach for solving shortest path problem with fuzzy

constraints. Paper presented at the Informatics and Systems (INFOS), 2010 The

7th International Conference on.

Campbell 221

Zongyan, X., Haihua, L., & Ye, G. (2012, 17-19 Aug. 2012). A Study on the Shortest

Path Problem Based on Improved Genetic Algorithm. Paper presented at the

Computational and Information Sciences (ICCIS), 2012 Fourth International

Conference on.

	Nova Southeastern University
	NSUWorks
	2016

	Algorithmic Foundations of Heuristic Search using Higher-Order Polygon Inequalities
	Newton Henry Campbell Jr.
	Share Feedback About This Item
	NSUWorks Citation

	Investigation of Embedding Methods for A*, Landmarks, and Polygon Inequalities

