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The shortest path problem in graphs is both a classic combinatorial optimization problem 

and a practical problem that admits many applications. Techniques for preprocessing a 

graph are useful for reducing shortest path query times. This dissertation studies the 

foundations of a class of algorithms that use preprocessed landmark information and the 

triangle inequality to guide A* search in graphs. A new heuristic is presented for solving 

shortest path queries that enables the use of higher order polygon inequalities. We 

demonstrate this capability by leveraging distance information from two landmarks when 

visiting a vertex as opposed to the common single landmark paradigm. The new 

heuristic’s novel feature is that it computes and stores a reduced amount of preprocessed 

information (in comparison to previous landmark-based algorithms) while enabling more 

informed search decisions. We demonstrate that domination of this heuristic over its 

predecessor depends on landmark selection and that, in general, the denser the landmark 

set, the better heuristic performs. Due to the reduced memory requirement, this new 

heuristic admits much denser landmark sets.  

We conduct experiments to characterize the impact that landmark configurations have on 

this new heuristic, demonstrating that centrality-based landmark selection has the best 

tradeoff between preprocessing and runtime. Using a developed graph library and static 

information from benchmark road map datasets, the algorithm is compared 

experimentally with previous landmark-based shortest path techniques in a fixed-memory 

environment to demonstrate a reduction in overall computational time and memory 

requirements. Experimental results are evaluated to detail the significance of landmark 

selection and density, the tradeoffs of performing preprocessing, and the practical use 

cases of the algorithm.  
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Chapter 1 

Introduction 

From topic areas such as urban planning to space exploration, graph theory 

encompasses some of the oldest and most interesting areas of algorithmics. A graph, or 

network, is one of the most important types of models used in discrete applied 

mathematics (Strang, 2007). This model is used to analyze a wide variety of real-life 

applications. And as computable aspects of the real world are being analyzed more each 

day, the study of these large-scale interaction networks is a growing trend. Protein 

networks (Voevodski, Teng, & Xia, 2009a, 2009b), communications networks (Fortz & 

Thorup, 2000; Luo, Zhu, Wu, Chen, & Ieee, 2011), aircraft networks (Bard, Yu, & 

Arguello, 2001; Royset, Carlyle, & Wood, 2009), and road networks (Delling & Wagner, 

2007; Geisberger, Sanders, Schultes, & Delling, 2008a) are studied frequently by 

abstracting them onto a graph. In practice, these networks are mined for structural and 

relational information to solve problems with respect to their domains.  

One of the fundamental, most commonly studied problems in this space is the 

shortest path problem. The shortest path problem is a query for the lowest cost to get 

from one node of a graph to another by way of its edges. Computing this query quickly 

and in a resource efficient manner is beneficial for many applications. The brute force 

solution for the problem involves testing every path from source to destination in the 

graph. Methods for efficiently solving the shortest path problem apply a combination of 

dynamic programming and greedy algorithms to speed up the search. Though these 
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methods are theoretically efficient solutions, their computational time and space 

requirement is insufficient for graphs at the practical scale of many modern, real-world 

networks. In this dissertation, a new class of algorithms for solving this problem for 

large-scale graphs is defined and evaluated through experimentation. In particular, this 

new method presents a feasible capability for storing basic information about the graph 

and using this information to guide future searches. To demonstrate its utility, this class 

of algorithms is applied to a set of benchmark datasets for navigational planning on road 

networks in a fixed-memory environment. 

 

Background 

 The problem of pathfinding in a graph was mathematically established in early 

works by Euler through analysis of the map of Königsberg, a large city in pre-World War 

II Germany, shown in Figure 1 (Euler, 1736). In 1736, his Königsberg Bridge Problem, 

modernly known as the Eulerian circuit problem, represented the beginning of not only 

mathematical pathfinding, but of modern graph theory itself.  Heavy research into the 

point to point shortest path (PPSP) problem started relatively late compared to most other 

 

Figure 1 Map of the Seven Bridges of Königsberg, Euler's Inspiration for Studying the 

Königsberg Bridge Problem 
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combinatorial optimization problems in graph theory (Aardal, Nemhauser, & 

Weismantel, 2005). In all likelihood, this may have been because the size of data used for 

the problem was typically smaller, making the problem seem trivial while anything larger 

was deemed intractable. At the time of this writing, progress in practically solving the 

problem has only occurred in the last six decades. Much of the true scientific 

investigation started with Alfonso Shimbel, in his introduction of the all-pairs shortest 

path (APSP) problem (Shimbel, 1953). All possible path queries are automatically 

answered and stored for the APSP problem, while querying is done upon request for the 

PPSP problem. The solution to the PPSP problem requires an efficient computation of the 

shortest path between an arbitrary pair of nodes be established.  

 Shortly after Shimbel, Edsger W. Dijkstra was credited with discovering the 

algorithm that, at the time of this writing, is the best, most well-known, commonly used, 

and simplest method of solving the shortest path algorithm in a graph (Dijkstra, 1959). 

This algorithm is widely known as Dijkstra’s algorithm. A decade after its creation, the 

A* search algorithm showed, by adding a heuristic that estimates distance, that it could 

run a shortest path query in significantly faster time than Dijkstra’s algorithm (Hart, 

Nilsson, & Raphael, 1968). Fundamentally, the A* algorithm is Dijkstra’s algorithm that 

takes into account a distance estimation heuristic derived from characteristics of the 

graph. While other algorithms have been developed in an attempt to contest them, these 

two greedy optimization algorithms serve as the basis for most modern day shortest path 

solutions. 

 As researchers find more use for graph theory in the storage, retrieval, and 

analysis of big data, extremely fast solutions to problems such as the shortest path 
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problem are in great demand. However, not even Dijkstra’s or the A* algorithm can solve 

the problem for massive datasets without a significant increase in their requirements for 

computational time and space. For this reason, modern research focuses on performing 

computations on the graph prior to allowing it to be queried for shortest path. The results 

of these computations are used to guide, narrow, or inform the search such that arbitrary 

queries can be performed significantly faster on graphs that represent huge data corpuses.  

Modern approaches typically exploit mathematical approximation techniques (Delling, 

Sanders, Schultes, & Wagner, 2009; Delling & Wagner, 2007; Goldberg & Harrelson, 

2005; Jens Maue, Sanders, & Matijevic, 2010), large-scale storage (Duan, Pettie, & 

Siam/Acm, 2009; Goldman, Shivakumar, Venkatasubramanian, & Garcia-Molina, 1998; 

J. Sankaranarayanan & Samet, 2010; Thorup & Zwick, 2001), artificial intelligence 

algorithms (Awasthi, Lechevallier, Parent, & Proth, 2005; Yussof, Razali, Ong Hang, 

Ghapar, & Din, 2009; Zakzouk, Zaher, & El-Deen, 2010; Zongyan, Haihua, & Ye, 2012), 

and combinations of preprocessing algorithms (Sanders & Schultes, 2007). Of these 

approaches, the focus of this dissertation is an evaluation of strategies for aiding shortest 

path approximation known as landmark selection strategies. A series of landmark 

selection strategies is applied to a new class of algorithms to address one of the original 

applications of the problem, road navigation planning. 

 

Problem Statement 

Large-scale navigation planning requires the ability to regularly compute the 

shortest path for massive road networks. In such cases, preprocessing algorithms are used 

to increase the performance of queries. Many shortest path preprocessing algorithms 
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require very heavy upfront computation and storage. In some cases, they require 

structural information about the graph that may not be able to be obtained in real-world 

applications. Moreover, many require a significant amount of information to be stored in 

order to yield reasonable speedups. Few algorithms concern themselves with the space 

complexity required by such preprocessing techniques. The problem that this dissertation 

addresses is that modern PPSP preprocessing algorithms have space and preprocessing 

time requirements for large-scale graphs that are impractical in terms of utility in real-

world applications. While cloud computing is often used to perform navigation planning 

for devices that report location, network connectivity issues can prevent reasonable 

responses to navigation planning queries. For such mission-oriented devices that then 

must perform navigation planning locally, particularly with limited memory resources, 

these computational requirements must be reduced. 

 

Dissertation Goal 

The primary contribution of this dissertation is the description, software 

implementation, and experimental evaluation of a new class of algorithms for generating 

a heuristic function for the A* algorithm (Hart et al., 1968). Its novel feature is that it 

uses more information about the graph to generate the heuristic while requiring 

significantly less computational space, making it a favorable algorithm to use in a fixed 

memory environment. This new heuristic is based on a class of algorithms known as ALT 

(Goldberg & Harrelson, 2005). ALT describes a preprocessing technique for shortest path 

queries that chooses a relatively small number of landmark nodes in a graph, computes 

the distances between all vertices and these landmarks, and establishes lower bounds 
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using this distance information and the triangle inequality during search queries. 

However, by using information about multiple landmarks, new lower bounds can be 

computed from other polygon inequalities. These inequalities can be derived from either 

generalized polygon inequalities or ones specific to a shape embedded within the graph. 

The use of these new lower bounds as a heuristic has resulted in a new class of 

algorithms called ALP, an acronym for A*, Landmarks, and Polygon Inequalities. 

The ALT algorithm requires a spanning shortest path tree, rooted at each 

landmark to be generated and stored, in a process known as landmark embedding. 

However, through a process called distributed landmark embedding, hereafter referred to 

as distributed embedding, ALP generates shortest path trees only encompassing the local 

areas surrounding each landmark, resulting in a significant reduction in required memory. 

By using smaller shortest path trees with multiple landmarks to guide the search, ALP 

also reduces the amount of required apriori computation for shortest path search. In many 

practical cases, it also increases the efficiency of computing the A* heuristic. This 

heuristic’s domination over ALT’s depends on the landmark set that each is assigned. 

Therefore, if an optimal landmark set can be determined more efficiently under the ALP 

paradigm than under ALT, then ALP is the more efficient heuristic to use for A* search. 

The goal of this dissertation is to identify and characterize landmark selection techniques 

for a concrete ALP heuristic function that lends a significant memory and preprocessing 

time reduction while maintaining the experimental speedups that ALT provides. 
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The base case function for ALP, using one landmark to compute the A* heuristic 

function, is already characterized as the ALT algorithm. To begin to characterize the 

behavior of this class of algorithms with increasing information, this research theorizes 

and experiments with the behavior of A* using two landmarks as shown in Figure 2. The 

use of two landmarks, in this way, acts as an inductive step for using multiple landmarks 

to guide A* search.  In the first three chapters of this report, the characterization of this 

dual landmark approach for ALP is formed. The ALP algorithm was implemented and 

tested using benchmark road graph datasets on which the ALT algorithm and several 

other major algorithms were tested (Demetrescu, Goldberg, & Johnson, 2006). The 

algorithm’s performance bounds are compared with ALT’s in common environments. 

ALP is tested using the most common modern landmark selection techniques to 

characterize its behavior for each of them. Data is collected to identify how large the 

shortest path tree actually has to grow for each landmark in the dataset to maintain an 

overall performance benefit. The scenarios in which each of the different shortest path 

preprocessing techniques and landmark selection techniques are optimal are characterized 

and experimentally tested. A suite of software tools for future use in situational shortest 

 

Figure 2 Notional diagram of changing the approach for guiding shortest path search 

from a Single Landmark(ALT) to a Dual Landmark approach (ALP) 
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path solving is generated. In the end, an applicable algorithm for shortest path speedup 

under limited memory resources is demonstrated and verified. 

 

Research Questions 

The following questions pertain to the contribution of this effort and are answered 

through a combination of theory and experimentation: 

 What landmark selection techniques theoretically fit best with ALP?  

The ALP class of algorithms differs in behavior from the ALT class of algorithms 

because of ALP’s memory-reducing properties (i.e., distributed landmark 

embedding). These properties change the average expected computational 

performance of PPSP queries for each landmark selection technique. Some landmark 

selection techniques perform better under ALP while others will perform worse. 

However, because ALP with distributed embedding has to perform significantly less 

preprocessing, landmark selection techniques that result in heuristics that are on par 

with ALT’s allow ALP to be leveraged as a more efficient approach than ALT. 

 Using ALP with distributed landmark embedding, what are the ideal characteristics 

for landmark shortest path trees? In other words, how much preprocessing and 

memory is required for ALP to maintain its key benefits? 

Due to distributed landmark embedding, ALP requires preprocessing at a level 

significantly less than ALT. Each landmark grows significantly smaller shortest path 

trees in comparison. While guaranteed to be less than that of ALT, the exact amount 

of preprocessing is not theoretically defined as it is relative to the inputted graph 
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information. If the graph has a very small number of partitions, the preprocessing 

may not see a significant reduction in compute time.  

 How does the algorithm behave as the number of landmarks used to guide the search 

increases? 

A single landmark approach (ALT) and a dual landmark approach (ALP with 

distributed embedding) for guiding shortest path search using polygon inequalities is 

studied in this dissertation. These studies identify the benefits and drawbacks of each 

approach. Experimental results corresponding to each type of shape being identified 

in the graph are detailed in this effort. Future research will involve identifying other 

shapes with a larger number of sides (pentagons, hexagons, heptagons, etc.) to 

discover the benefits and detriments of continuously increasing the number of 

landmarks used for guiding the search. 

The following open question pertains to how ALP’s contributions can be further 

characterized. 

 In what ways can this be applied to path planning? What real-world applications 

exist for ALP that were previously impractical to solve with ALT?  

In the real world, memory-limited capabilities for quickly computing shortest 

paths can enable smaller, memory-limited devices without constant internet or local 

network connection to navigate paths in large graph datasets. The reduced 

requirement of a persistent connection for path planning reduces the amount of 

energy required to power such devices. Such localized navigation planning also 

allows for more intelligent planning to occur in denied areas such as space or military 

domains. 
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Relevance and Significance 

The shortest path problem is a classic problem in computer science (Dijkstra, 

1959). Many developed preprocessing methods for Dijkstra’s algorithm efficiently solve 

the problem, but incur tradeoffs for large graphs that are impractical in some use cases. 

The need to analyze large real-world networks is steadily growing as more information is 

being accumulated about the real world and the use of digital services, networks, and 

devices grows. This scaling-up of networks creates a need for algorithms to be able to 

compute over large datasets without incurring a significant operational cost.  

In areas such as navigation planning, smaller and smaller devices are required to 

do computing while using minimal bandwidth for communication. While newer devices 

are becoming more powerful, many still lack the ability to perform shortest path queries 

efficiently on large datasets using naïve algorithms. The required preprocessing for most 

real-world applications is slower for large-scale graphs, as the time to generate shortest 

path trees grows as a function of the number of graph elements. These problems need to 

be solved quickly, using minimal resources and, in some cases, limited preprocessing 

time. The problem has been cited in many other works and is commonly solved by 

pushing the problem off to an external memory source (A. Goldberg & R. Werneck, 

2005; Hutchinson, Maheshwari, & Zeh, 2003). However, the problem must also be 

solved for devices that have very little to no external memory sources in various 

scenarios (Dong, ZuKuan, Jae-Hong, & ShuGuang, 2010; Santhosh, Sasiprabha, & 

Jeberson, 2010). For these types of devices, memory and processor usage play a large 

role in the energy consumption of the system and overall cost. Many modern approaches 
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for pathfinding on these types of devices lack the dual benefit of low memory usage and 

efficient computation. In general, one is sacrificed for the other. 

In particular, modern GPS-enabled devices are commonly tasked with computing 

the shortest path on the fly for downloaded map data (Bo & Dong, 2010; Holdsworth & 

Lui, 2009). Also, many such devices have very little external memory to store the 

massive amount of preprocessing information required by other methods. For small 

multipurpose devices without persistent network connections, this computation needs to 

be performed repeatedly on the same dataset as it is held in primary memory (Cerf et al., 

2007; Jain, Fall, & Patra, 2004). A reduction in computation when solving this problem 

can reduce the amount of energy required for these devices, as well, while allowing them 

to efficiently perform other tasks at the same time. For these reasons, precomputing a 

reasonable amount of data to help guide the search such that a query can be practically 

executed on a device is a common need for individual consumers, businesses, and 

governments.  

Aside from shortest path queries, landmark selection techniques are employed in a 

host of other applications. The notion of using landmarks to estimate distance 

information in a graph structure was actually conceptualized before their use in PPSP 

queries. Common routing protocols typically rely on landmarks such as key routing 

devices to decide whether or not other devices are too far away (Cowen, 1999). Internet 

distance information (in hops) and a concept of Internet coordinates is often measured 

using landmarks as a guide (Costa, Castro, Rowstron, & Key, 2004).  Landmarks are 

naturally used by honey bees to estimate the flight path to their hives (Chittka, Geiger, & 

Kunze, 1995). And finally, landmarks have been used to create filters for string 
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comparisons when detecting duplicates among large datasets  (Weis & Naumann, 2004). 

In general, discoveries about the benefits and detriments of using multiple landmarks to 

perform estimation can benefit many landmark-based research efforts. 

Barriers and Issues 

The dual landmark heuristic demonstrated in this dissertation for ALP only 

outperforms ALT in certain scenarios. Over the same set of landmarks, the estimates 

computed by the dual landmark ALP heuristic has equal or worse performance than ALT. 

However, given ALP’s ability to choose a denser landmark set, we see a performance 

increase over ALT. In this dissertation, we demonstrate how much more dense this set 

has to be for ALP. Regardless, even when ALP demonstrates little or no average time 

complexity reduction, its space complexity reduction is guaranteed.  

One main goal of this dissertation is to explore the efficacy of landmark selection 

strategies that can optimize ALP algorithms. As of the time of this writing, this is still an 

open problem for ALT. Many authors have experimentally concluded that random 

selection of landmarks is good enough in many cases, with no theoretical backing 

(Goldberg & Harrelson, 2005; Potamias, Bonchi, Castillo, & Gionis, 2009). We 

characterize what “good enough” would mean for ALP in this dissertation, leaving the 

use of landmark selection techniques up to implementers. We are able to characterize this 

because of the ability to perform more experiments, a direct benefit of the smaller 

preprocessing time and space requirement of dual landmark ALP with distributed 

embedding. Therefore, a significant number of trials were performed for each experiment 

with a wide array of landmarks to obtain a better experimental characterization than seen 

in previous efforts. 



Campbell 13 

 

 

 

Assumptions, Limitations, and Delimitations 

 This dissertation relies on a theoretically proven heuristic. Timing and memory 

usage, measured on a developer-class system, are recorded through program 

instrumentation for a host of metrics (e.g. number of nodes/edges explored, number of 

arithmetic operations, memory usage, % CPU usage, computed runtime in seconds, etc.). 

Conclusions about ALP’s behavior in navigation planning environments shall be drawn 

from the measurements reported by this instrumentation. Such conclusions, however, fall 

prey to a small set of limitations. The first limitation stems from randomness (or more 

appropriately, pseudo-randomness). The random landmark selection technique is 

currently seen as a good technique for ALT (Goldberg, Kaplan, & Werneck, 2009). In 

ALT, testing a significant number of queries for various trials of random landmark 

selection becomes difficult because of the time that it takes to generate a shortest path 

tree from each node. For extremely large graph datasets, such computations for a 

significant number of trials (~10
6
) should sufficiently justify the behavior of the random 

landmark selection technique along with all other landmark selection techniques for ALP. 

The second primary limitation stems from the data used for experimentation. In this 

dissertation, the benchmark data used for experimentation is collected from the same 

sources used in each of the original research efforts that the algorithm will be compared 

against. Some of this data was not be able to be obtained due to insufficient citation of the 

source or simply a lack of access. For experimentation, all datasets used in these studies 

were either downloaded or replicated to sufficiently duplicate the results found in each 

study. 
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 Intentionally excluded from this research is any experimentation using more than 

two landmarks for ALP. The main polygon inequalities that are used in this study are 

quadrilateral inequalities, as the use of two landmarks forms the shape of a quadrilateral 

in the graph. This allows the research to serve as a base demonstration of how a heuristic 

function behaves when more than one landmark is used to form a polygon in a graph. The 

focus, however, will not be on further increasing the number of landmarks that are used 

by the heuristic function. Rather, it will be on characterizing the behavior of the landmark 

selection techniques for ALP’s dual landmark heuristic function. This full 

characterization provides an experimental template for future heuristics that use even 

more landmarks in their functions. 

Definition of Terms 

Throughout this dissertation, for clarity, a common set of graph theoretical 

definitions, concepts, and notations will be used. Let G = (V,E) be an undirected graph, 

where V is the set of vertices in G and E ⊆ V × V is the set of edges in G, with n = |V| and 

m = |E|. For any edge e ∈ E, let w(e) be the positive real weight of the e. In an unweighted 

graph, for every edge e ∈ E, w(e) = 1. In a weighted graph, w(e) is subject to the graph’s 

application. A finite graph is one in which       and      .If an edge e ∈ E 

connects two vertices vi,vj ∈ V, vi is called the neighbor of vj and vj the neighbor of vi. The 

vertices vi and vj are also said to be adjacent to each other and incident to their shared 

edge e. A graph H = (V(H), E(H)) is a subgraph of G if V(H) ⊆ V and E(H) ⊆ E, with 

edges of E(H) incident to only the vertices in V(H). A spanning subgraph H of G is a 

subgraph in which V(H) = V.  
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An induced subgraph H of G is a subgraph of G such that     ⊆      and two 

vertices of H are adjacent if and only if they are adjacent in G. In other words, H is an 

induced (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008)subgraph of G if and only if 

it has exactly the edges that exist for G over the same vertex set. A graph cluster, 

partition, or community is a collection of vertices in a graph such that the vertices 

assigned to a particular community are similar or connected by some predefined criteria. 

A sequence (v0,…,vk-1), k ≥ 1, of vertices of G = (V,E) is known as a path from v0 

to vk-1 if there is an edge (vi, vi+1) ∈ E for every 0 ≤ i < k. A path is denoted as P(v0,vk-1) = 

‹v0,…,vk-1›. A path P is a subgraph of G. The length of P is the number of edges (i.e., 

   ) on the path P(v0,vk-1), denoted as d(v0,vk-1) or d(P),  and the weight of P is the sum 

of the weights of the path edges, denoted as w(P) or w(v0,vk-1). If, for every pair of 

vertices vi,vj  ∈ V, there exists a path from vi to vj, the graph is called connected. An 

acyclic, connected, spanning subgraph of G is called a spanning tree of G.  In this 

dissertation, the experiments are performed on finite, connected graphs, both directed and 

undirected. Directed graphs will be strongly connected, meaning that each vertex can be 

reached from every other vertex in the graph. 

Many algorithms exist for identifying communities in graphs, a process known as 

community detection. A common community detection algorithm used throughout this 

dissertation is an algorithm dubbed the Louvain method (Blondel et al., 2008). The 

algorithm is a greedy optimization method that attempts to optimize a score known as 

modularity, a measurement of the fraction of edges that fall within a community minus 

the expected fraction if edges were distributed at random. The Louvain method occurs in 

two phases: In the first phase, the method identifies small communities by optimizing 
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modularity locally.  This is done by assigning each vertex in a network its own 

community, computing the modularity increase of moving the vertex into each of its 

neighbors’ communities, and keeping the vertex in the community that resulted in the 

highest modularity increase for the graph (or in its own community, if no modularity 

increase occurs). This process is repeated for all nodes until no more modularity increases 

are possible. In the second phase, the nodes determined to be those of the same 

community are grouped together and a new graph is built where vertices are the 

communities from the first phase and weighted edges represent the edges between 

multiple border nodes from the first phase and self-loops for edges within the community. 

These two phases are repeated iteratively until a maximum modularity is attained and a 

hierarchy of communities, often modeled as a dendrogram, is formed for each phase. A 

dendrogram is a tree-like representation of the hierarchical clustering where each level of 

the tree represents the partitioning for the graph at that level, with the first level 

indicating maximum modularity for the Louvain method. 

Also, this paper references several fundamental graph theoretic problems and 

algorithms. Given a graph G = (V,E), the point-to-point shortest path problem (PPSP) is 

one of finding the path that comprises the shortest path in the graph from a specified 

vertex s, known as the source, to a specified vertex t, known as the destination. For two 

vertices s,t ∈ V, a path P(s,t) ∈ G is called a shortest path from s to t if there exists no 

path P′(s,t) ∈ G such that d(P′)  < d(P) and     . The distance between two vertices s,t 

∈ V is the sum of the weights on the shortest path and is denoted by d(s,t). For weighted 

graphs, the weight of an individual edge is a numeric value that identifies the cost of 

traversing the edge in a path calculation. The weight of the edge that connects two 
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vertices     ∈   is denoted as        . In Chapter 2, many of the reviewed algorithms 

apply to both weighted and unweighted graphs.  

A single-source shortest path tree (SPT), is a spanning tree of a connected graph 

G, rooted at s, connecting all the vertices such that the length of the path to each vertex t 

in the tree is d(s,t). The problem of computing this tree is known as the single-source 

shortest path problem (SSSP). The all pairs shortest path problem (APSP) attempts to 

find a shortest path from u to v for every pair of vertices u,v ∈ V.  

With respect to algorithmic complexity, the preprocessing time of a shortest path 

algorithm refers to the worst-case time required to construct the data structure used to 

speed up shortest path queries. The space complexity is the worst-case size of such a data 

structure. And finally, the query time refers to the worst-case time required to compute 

either d(s,t), P(s,t), or both for s,t ∈ V. 

 Another important class of problems for large graphs involves the idea of 

probabilistic movement from one vertex of a graph to another vertex by way of incident 

edges. This is another way that graphs can characterize real-world interactions. For 

instance, a web surfer browsing from site to site or a disease spreading between humans 

by means of direct contact are two applications that can be modeled by probabilistic 

movement from vertex to vertex in a graph. In these problems, a surfer is an entity that is 

able to walk from vertex to vertex in the graph by way of its edges. A random walk on a 

graph is a finite, time-reversible Markov chain (Freedman, 1971). Given a graph G = 

(V,E) and a starting vertex for the surfer, at each time step t, a neighbor is selected at 

random and the surfer moves to it. When the graph is unweighted, the surfer moves to a 
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neighbor with uniform probability. When it is weighted, it moves to a neighbor with 

probability proportional to the weight of the incident edge. 

The most common algorithm used to solve the shortest path problem in both 

directed and undirected graphs is known as Dijkstra’s shortest path algorithm, or simply 

Dijkstra’s algorithm (Dijkstra, 1959). Dijkstra’s algorithm naturally creates an SPT in a 

graph, rooted at the source vertex, by finding the shortest path from the source vertex to 

one additional vertex at each iteration of the algorithm’s primary loop. Each vertex v ∈ V 

is in one of three states: visited, unvisited, or settled. The shortest path from the source 

vertex s to a vertex u ∈ V is found once the state of u is settled. This settling occurs in the 

process specified by the pseudocode for the algorithm in Figure 3. Steps 11-15 are 

  

Figure 3 Dijkstra's Algorithm for SSSP Queries 

Dijkstra(G = (V,E), w : E, s , t∈ V) 

1. for each vertex u ∈ V 

  Set the parent of u to null 

  Set the state of u to unvisited 

  Initialize d(s,u  to ∞ 

2. Set the state of s as visited 

3. Set d(s,s) to 0 

4. Insert all nodes  into Priority Queue Q  //Open Set 

5. while Q is not empty and t has not been visited 

6.  Extract minimum u ∈ V  from Q 

7.  Mark the state of u as settled 

8.  if u = t: stop 

9.  For each vertex v ∈Q adjacent to u that has not been settled 

   //Relax the edge 

10.   if d(s,u) + w (u,v) < d(s,v): 

11.    Set the parent of v to u 

12.    Set d(s,v) = d(s,u) + w (u,v) 

13.    if v is not visited: 

14.     Insert v into Q with priority d(s, v) 

Set the state of v to visited 

    Else: 

15.     Decrease the priority of v in Q to d(s,v) 

16. return d(s,t) 
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referred to as relaxing an edge.  

This algorithm is an efficient greedy algorithm that effectively solves the single-

source shortest path problem for graphs with non-negative edge weights. However, this 

restriction on edge weights can be removed using Johnson’s algorithm to convert 

negative edge weights to non-negative in O(      ) (Johnson, 1977). Overall, the naïve 

version of Dijkstra’s answers single-source shortest path queries in O(   2
) time. The best 

version of the algorithm, using Fibonacci heaps (O(log    ) deletions and insertions), 

manages to answer PPSP queries with a query time of O(    +    log    ) (Fredman & 

Tarjan, 1987). For APSP, computing Dijkstra’s from every vertex simply requires 

multiplying this query time by the total number of vertices, leaving the worst case bounds 

at O(       +    2
 log    ). To date, there is no general sub-cubic algorithm that 

calculates an APSP solution for any type of simple graph, though faster solutions have 

been provided for graphs with certain constraints (Chan, 2007; Seidel, 1995). For general 

APSP, the Floyd-Warshall algorithm is the industry-standard algorithm with a time 

complexity of         (Floyd, 1962). If a target vertex t is provided, the bidirectional 

version of Dijkstra’s algorithm can start a second search from the target vertex, 

alternating the search direction at each iteration and finishing when the frontiers of both 

searches meet. 

The A* algorithm behaves similarly to Dijkstra’s but with a heuristic function, πt, 

guiding the search (Hart et al., 1968). Throughout this paper, πt(s) will denote the 

estimated cost of the shortest path from a vertex s ϵ V to target vertex t ϵ V. This is also 

known as the heuristic cost. The A* search strategy uses this function to add additional 

knowledge about graph structure to the shortest path problem, pruning from the search 
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space vertices that do not need to be considered. The pseudocode that demonstrates this 

addition is displayed in Figure 4. The figure also demonstrates that Dijkstra’s algorithm is 

simply the A* algorithm without a search heuristic (or πt = 0). 

In terms of identifying shortest path, Dijkstra’s algorithm is both complete and 

optimal, meaning that the algorithm both always finds the shortest path if one exists and 

it is guaranteed that there is no shorter path than the one that it finds, respectively 

(Russell & Norvig, 2009). However, A* possesses these properties only if the heuristic 

function πt adheres to certain constraints. First, it must satisfy the constraints of Dijkstra’s 

algorithm, meaning that the graph is finite and that it has non-negative edge weights. To 

 

Figure 4 A* Algorithm for PPSP Queries 

 

A*(G = (V,E), w : E, s ,t∈ V, πt) 

1. for each vertex u ∈ V 

  Set the parent of u to null 

  Set the state of u to unvisited 

  Initialize d(s,u  to ∞ 

2. Set the state of s as visited 

3. Set d(s,s) to 0 

4. Insert all nodes  into Priority Queue Q  //Open Set 

5. Create empty set R  //Closed Set 

5. while Q is not empty and t has not been visited 

6.  Remove minimum u ∈ V  from Q 

7.  Mark the state of u as settled 

8.  if u = t : stop 

9.  Add u to R 

10.  For each vertex v ∈V adjacent to u ∈V 

11.   g’ =  d(s,u) + w(u,v) 

12.   f’ = g’ + πt v       //πt is the A* heuristic function 

13.   if v ∈ R and f’  ≥ d(s,v): continue 

14.   if v ∉ Q or f’  < d(s,v): 

15.    Set the parent of v to u 

16.    g[v] = g’ 

17.    f[v] = f’ 

18.    if v ∉ Q: add v to Q 
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achieve optimality, the first constraint is that the heuristic function, πt, must be 

admissible, never overestimating the distance to the target vertex. This means that, in the 

case of graphs, for a heuristic function to be admissible, for any vertex v ∈V, 

              (1)  

An intuitive example of an admissible heuristic is in the case of routing 

applications, in which the straight line distance to a target point is used as the admissible 

heuristic. Because the shortest distance between two points on a map is a straight line, it 

can never overestimate the distance of the path to the target at any point in the search. 

 The second constraint for optimality states that πt must be consistent, meaning 

that the algorithm never traces its steps backward when attempting to settle the path 

(Russell & Norvig, 2009). More formally, when settling vertices on a path, if for every 

vertex n and every successor vertex n′, the heuristic cost πt(n) should be no greater than 

the cost of getting to n′ plus πt(n′). So 

           ′       ′  (2)  

Every consistent heuristic is also admissible, as it can never overestimate the cost 

of reaching the target vertex (Russell & Norvig, 2009). The consistency constraint 

requires a heuristic to obey the triangle inequality, which requires that one side of a 

triangle can be no longer than the sum of its other two sides. In the case of Equation 2, 

the triangle’s endpoints are represented by n, n′, and t.  

For an A* query, let   be the vertex currently being visited on the search and let 

  be the previously visited node. An admissible heuristic   can be made into a consistent 

heuristic    can by making the following adjustment: 

                                (3)  
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The equation for this heuristic is known as the pathmax equation and can be used to force 

consistency for any admissible heuristic. It is extremely useful when a proof of 

consistency has not been found for an admissible heuristic. 

Finally, let           and           each be an admissible heuristic function for any 

vertex v ∈V of the graph, let 

          ≥                         (4)   

If Equation 3 holds, then        dominates       , verifying that       
 
is a more 

efficient heuristic. An A* search using       
 
as a heuristic visits no more nodes than        

on its way from source to target, allowing it to reach the target while visiting fewer nodes 

in the graph. A* can never suffer a performance degradation by switching from one 

heuristic to another consistent heuristic that dominates it (Pearl, 1984). Therefore, the 

best possible heuristic is the most dominant, consistent heuristic. Just as with Dijkstra’s 

algorithm, A* also has a bidirectional variant. In the bidirectional variant, two heuristic 

functions are used with the same criteria of being consistent (and inherently, admissible). 

 A metric space is a set with a global distance function d known as a metric that, 

for any points x, y in the set, gives a nonnegative real number as the distance between 

them. A metric satisfies the following properties for all points x, y, z in the set: 

 d(x,y) ≥ 0  (nonnegative) 

 d(x,y) = 0 if and only if x = y (identity) 

 d(x,y) = d(y,x)  (symmetry) 

                       (the triangle inequality) 

Using the shortest path between two vertices as the distance function, a finite, connected, 

undirected graph with positive edge weights fits each of these requirements and is, 
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therefore, a metric space. A directed graph with non-negative edge weights is a quasi-

metric space, meaning it has all the properties of a metric space except the symmetry 

property. The triangle inequality, originally proposed by Euclid in Elements around 300 

BC, specifies that for three points in a metric space, the distance between any two of 

those points is no greater than the sum of the other two distances that form the triangle 

(Millman & Parker, 1991). For points x, y, z in a metric space, the triangle inequality 

states: 

                      (5)  

This establishes an upper bound for the distance between points x and z. A lower bound 

can also be derived from the triangle inequality.  

      ≥                  (6)  

This is known as the reverse triangle inequality and is derived from the triangle 

inequality as follows. First, subtract        from both sides from Equation 4: 

      ≥                (7)  

For              ≥  , Equation 5 holds. Then, for              , we examine 

the following triangle inequality for points y and z. 

                     (8)  

Subtracting        on both sides, we get 

      ≥               (9)  

By combining Equations 6 and 9, the new lower bound for x and y becomes 

      ≥                  (10)  

Because obeying the triangle inequality is a required property of a metric space, the 

reverse triangle inequality is a required property, as well.  
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The triangle inequality can be generalized for all polygons through induction 

(Millman & Parker, 1991). Given a set of points P1, P2, …, Pn in a metric space, 

                                        (11)  

This is known as the generalized polygon inequality and follows from induction from the 

triangle inequality.  

Finally, another geometry-based inequality for metric spaces is known as 

Ptolemy’s Inequality. For four points w, x, y, z in a metric space, Ptolemy’s Inequality 

states that 

                           ≥               (12)  

This inequality is derived from measuring the sides of quadrilaterals (Kay, 2011).  

PageRank is an edge analysis algorithm that is used to compute the probability 

that a vertex in a network will be visited on a random walk of the network (Brin & Page, 

1998). Its initial intention was to act as a ranking system for distinct vertices (web pages), 

indicating their individual popularity in a random walk of the graph. However, the 

algorithm has demonstrated utility in a wide variety of graph applications in which 

analyzing the priority of particular vertices is a concern (Andersen, Chung, & Lang, 

2006; J. Chen, Bardes, Aronow, & Jegga, 2009; P. Chen, Xie, Maslov, & Redner, 2007; 

Liu, Bollen, Nelson, & Van de Sompel, 2005).  

PageRank is an eigenvector centrality measure that is computed as follows. Given 

a graph G with n = |V| vertices and vertices numbered 1 through n, an adjacency matrix A 

is an n×n matrix formed such that 

     
                                         
           

   
(13)  
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for i,jϵ[1,n]. This is the simplest type of adjacency matrix. In other applications, the 

weight of the edge or number of edges between two nodes is used for edges between two 

vertices. 

After forming the adjacency matrix, an n×n transition probability matrix P′ is 

computed, where each element P′ij contains the probability that a surfer would move from 

vertex i to vertex j. For each vertex i ϵ V represented by a row Ai in the adjacency matrix, 

let L(i) represent the set of vertices adjacent to i. P′ij is then computed as follows: 

 ′   

 
 

 
 

      
      ∈     

 

   
          

                       

    

(14)  

(Page, Brin, Motwani, & Winograd, 

1999) 

The goal of PageRank is to identify the principal eigenvector of the 

transformation of this matrix that takes into account surfer teleportation, the likelihood of 

a surfer to move to another vertex without following any specific path in the graph. To 

compare this to web browsing behavior, this is the likelihood of a surfer “getting bored” 

and finding a new web page to start surfing. Let α ϵ [0,1] represent this probability. Then 

P, the transition probability matrix taking into account surfer teleportation, is computed 

as follows: 

          ′   
 

   
   (15)  

The principal eigenvector of P can be computed by a variety of different methods for 

speed or application (Das Sarma, Gollapudi, & Panigrahy, 2011; Kamvar, Haveliwala, & 

Golub, 2004; Sun, Deng, & Deng, 2008). The basic algorithm that is used to quickly 

approximate the principal eigenvector is known as the power method (Mises & 
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Pollaczek-Geiringer, 1929). A delta vector δ and initial guess vector x0 for x of size n 

with arbitrary inputs is created and is continuously updated by 

            (16)  

until 

             (17)  

The final derived vector xk is known as the PageRank vector, with the value in xk[i], 1 ≤ i 

≤ n, representing the PageRank value of the vertex corresponding to i. Using this method, 

PageRank maintains a time complexity of O(|E|) (Bao, Feng, Liu, Ma, & Wang, 2006). 

 

Summary 

Modern day techniques for preprocessing large graphs to aid shortest path queries 

are insufficient in many real-world applications for devices with limited resources. Some 

algorithms rely on large amounts of memory, removing the ability for the device to 

perform other operations while performing navigation planning. Others rely on heavy 

compute resources, which can be expensive at smaller scales and consume a large amount 

of energy. To address this problem, this dissertation characterizes and compares the 

theoretical and practical performance of ALP, a new class of algorithms against ALT, the 

preprocessing technique from which it was derived. When combined with distributed 

embedding, ALP’s novel feature is that it can rely on more precomputed distance 

information than ALT to derive a heuristic for A* while realizing a significant reduction 

in both space complexity and preprocessing time. Its ability to quickly perform 

preprocessing lends itself to better landmark selection, as more trials to vet landmarks can 

occur. It is also able to compute and store more landmark information with a fixed 
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amount of required memory. Because of its improved preprocessing, heuristics can be 

generated that are on par or even better than those generated by ALT. The algorithms’ 

characterization will occur through the identification of optimal landmark selection 

strategies in an effort to advise future users of the algorithm of the initial computations 

that need to be performed in a network. Such experiments will occur with both synthetic 

and real world benchmark data to truly test the algorithms in a variety of scenarios.  In 

the end, a set of portable graph libraries, a theoretical and experimental characterization 

of ALP against ALT, and a characterization of landmark selection techniques for the ALP 

approach will be generated. 

This dissertation is organized as follows. Chapter 2 introduces the problem of 

preprocessing the shortest path algorithm and reviews existing methodologies for path 

planning and landmark selection. Chapter 3 introduces the motivations for using the 

polygon inequality to guide A* shortest path searching, laying the foundations of the 

ALP class of algorithms and establishes several theoretical techniques for identifying 

landmarks. Chapter 4 describes data analysis, findings, and results of experimentation 

with respect to the bounds and landmark selection algorithms for ALP contrasted with 

that of ALT. Chapter 5 summarizes the conclusions of the study based on the analysis 

described in Chapter 4 in relation to the theoretical characterization described in Chapter 

3. 
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Chapter 2 

Review of the Literature 

To understand the principles of preprocessing a graph to perform shortest path 

queries, identify new methods of approximate distance estimation, address techniques for 

identifying landmark elements of the graph from which to base distance estimation, and 

develop algorithms that maintain realistic space complexity, this chapter provides a 

review of key papers from the academic literature. 

 

Metric-Independent Shortest Path Preprocessing 

Significant work has been done in preemptively analyzing graphs to store 

information that can assist in solving the point-to-point shortest path (PPSP) problem 

(Awasthi et al., 2005; Duan et al., 2009; Lin, Kwok, & Lau, 2003; Sanders & Schultes, 

2007). Performance for algorithms that attempt to maintain exact distance information 

degrades for large-scale graphs. In this literature review, algorithms that focus on 

distance estimation are described. In particular, because ALP and ALT algorithms rely on 

the same fundamental principles, the preprocessing algorithms in this review have been 

vetted through their comparison to ALT algorithms. 

In practice, the applications of a graph are taken into account to create metrics 

that advise shortest path search queries (Delling, Goldberg, Pajor, & Werneck, 2011). 

The development of such preprocessing algorithms is an acknowledgement, on behalf of 

the academic community, that more efficient algorithms than normal Dijkstra’s or A* are 
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needed to handle the challenges of real-world pathfinding applications. While this 

dissertation is concerned with practical applications of shortest path search, the goal is to 

make practical a general class of algorithms for shortest path preprocessing. Therefore, 

the preprocessing performed by the ALP algorithm will be compared and contrasted with 

other forms of metric-independent preprocessing, which are preprocessing algorithms 

that only take the graph topology as input (Delling et al., 2011). Such algorithms have the 

shortcoming of producing a large amount of auxiliary data for use during query time. As 

shown in Figure 5 below, metric-independent preprocessing commonly involves 

performing some computations and storage of a subset of possible distance information 

for key points in a graph prior to running PPSP queries. One of the main contributions of 

this dissertation is to demonstrate a class of algorithms that significantly reduce the 

amount of auxiliary data while maintaining a practical speedup to the A* algorithm.  

 

Figure 5 Common Paradigm for Metric-Independent Preprocessing 

 

A*, Landmarks, and Triangle Inequality (A. V. Goldberg & Harrelson, 2005) 

While many other metric-independent preprocessing algorithms exist, ALT, 

developed by Goldberg and Harrelson, was the original algorithm to propose using 

landmark methods to speed up A*. ALT describes a class of algorithms that compute a 



Campbell 30 

 

 

 

heuristic for A* by using precomputed shortest path trees (SPTs). These SPTs are rooted 

at strategically chosen landmark vertices in the graph. Using the triangle inequality, the 

distance information stored by these SPTs is exploited to estimate the distance between a 

visited vertex and a search target (Goldberg & Harrelson, 2005). The ALT algorithm is 

one of the central focuses of this dissertation. Both the ALT and ALP algorithms depend 

on the same fundamental principles to estimate distances in a graph. Specifically, we will 

investigate landmark selection methods that optimize heuristics for the new ALP class of 

algorithms and how they compare to the landmark selection methods created for ALT. 

Goldberg and Harrelson’s original work provided three contributions. First, their 

main contribution was a preprocessing technique for computing distance bounds that 

depends on identifying a carefully chosen, relatively small (in comparison to |V|) number 

of vertices, called landmarks, in a graph. Second, they provided the first exact shortest 

path preprocessing algorithm for arbitrary graphs (no restricted graph classes). And 

finally, they tested this algorithm in an experimental study comparing new and previously 

known algorithms both on synthetic graphs and on real-world road graphs. 

In ALT, a PPSP query uses computed distance estimate, derived from the triangle 

 

Figure 6 Illustration of distance information for three vertices not necessarily incident 

to each other in a graph  
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inequality, to guide the search. Using the distances illustrated in Figure 6 for a graph 

        this inequality yields two important equations for any three vertices       ∈

 : 

                        (18)  

      ≥                    (19)  

Let L ⊆ V be the set of landmarks with distance d (v, li) stored for all vertices v ϵ V and 

any landmark li ϵ L, 1 ≤ i ≤ |L|. Due to the triangle inequality, the following equation 

holds for vertices s,t ϵ V:  

      ≥                     (20)  

Based on the above arguments, the ALT algorithm works as follows: In a 

preprocessing step, the Dijkstra’s SPT algorithm is used to compute and store the 

distances to each landmark in L from all other vertices in V. Then, during PPSP queries, 

the triangle inequality is used as follows: let πt
L
 (v) be the heuristic function based on 

landmarks that will be used for the A* algorithm seen in Figure 4. Then the following 

equation represents the heuristic function when visiting vertex v ϵ V on the way to a 

target vertex t: 

  
              

                      (21)  

Recall that a dominating heuristic function for A* yields a larger estimate than 

other heuristics without overestimating distance. For this reason, in ALT, to compute the 

best estimate, the maximum triangle inequality estimate is taken over all landmarks. 

Using this heuristic for A* tailors the bounds to the graph being analyzed, greatly 

reducing the search space, along with memory requirements and processing time. The 
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proof that   
  is an admissible heuristic for the shortest path between two vertices s,t ϵ V 

follows: 

Proof. Let P(s,t) be a shortest s-t path. For any vi ϵ V, i≤1<k,           
       

  
        ≥  . Therefore,            ≥

   

   
    

         
         

   

   
. Because of 

this,       ≥   
       

       
     (Bauer, Columbus, Katz, Krug, & Wagner, 2010). 

The runtime of ALT’s preprocessing, not including the actual selection of l 

landmarks, is              og     , as a breadth-first search is performed from each 

landmark to form each SPT. Because an SPT is computed from every chosen landmark, 

ALT’s data structure requires          space. Since      , the theoretical space 

requirement for ALT is        . This quadratic space requirement means that the 

preprocessing algorithm does not scale well in terms of memory. As a dataset (or more 

specifically, its number of vertices) grows, the number of chosen landmarks must be 

increased in order to maintain an appropriate distribution of distances. 

The ALT algorithm’s preprocessing technique is faster than other preprocessing 

techniques for shortest path search, due to the fact that it only performs one shortest path 

search from each landmark to create each SPT. In experimentation on large European 

roadmap datasets (         nodes), it was shown that preprocessing only 16 

landmarks can lead to a speedup factor of nearly 50 using the bidirectional 

implementation of A*(Jens Maue, 2006). However, identifying the set of landmarks that 

optimizes overall performance during preprocessing and querying on any graph is an NP-

hard problem known as MINALT(Bauer et al., 2010).  

For sparse graphs, a larger number of landmarks are also required by ALT to be 

effective. Storing distance information for each landmark is quite space intensive, as an 
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individual measurement of distance must be kept for each node-landmark pair. Therefore, 

the ALT algorithms lack the ability to maintain reasonable space complexity while 

achieving efficient speedup for sparse graphs.  

Increasing the number of landmarks or the size of the graph can present another 

drawback to the ALT approach. Note that, for ALT, as each vertex is visited for A*, 

  
      must be computed, such that for l landmarks, l subtraction operations need to 

occur along with a max operation (of time complexity O(l)). For a large enough l or for 

long enough paths, performing this many operations for every visit to a vertex in the 

graph can drastically slow down a query’s actual runtime. In some cases, this will result 

in Dijkstra’s algorithm (A* with a 0 heuristic) outperforming A* with the ALT heuristic. 

This dissertation advocates that the number of visited vertices cannot be the only reliable 

measure of the effectiveness when defining a new heuristic function for A*. Future 

research must measure the actual number of operations that occur during queries and not 

simply the size of the search space to clarify an algorithm’s behavior.  

 

Precomputed Cluster Distances (J Maue, Sanders, Matijevic, Alvarez, & Serna, 2006) 

The precomputed cluster distances (PCD) algorithm was designed with the 

intention of reducing the space requirements of metric-independent preprocessing 

algorithms such as ALT. PCD uses the distances between graph clusters to inform the 

heuristic for A* (Jens Maue et al., 2010). The preprocessing step of the PCD algorithm 

assumes that the graph has been partitioned into k clusters that will be used in the query 

process to maintain an upper bound, where k is predetermined. This preprocessing 

method is metric-independent, as clustering is seen as a part of topology input. Also, the 
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algorithm operates in the same manner regardless of the type of clustering and, in 

practical cases, this clustering is done ad-hoc by quickly splitting the graph into cells. 

These ad-hoc methods are much faster than more accurate methods as the Louvain 

algorithm (Blondel et al., 2008).  

To begin PCD preprocessing, the minimum distance between each pair of clusters 

is computed by connecting, with zero weight, a single vertex to all border vertices of a 

cluster and computing the shortest path from that “single source”. A border vertex is a 

vertex with an adjacent vertex that is in another cluster C. Border vertices realize the 

shortest distance to other clusters in the graph. These cluster distances are then used to 

advise A* during query time. Only k
2
 shortest paths are calculated with this approach and 

only k
2
 distances are then stored. The impact of this preprocessing step is dependent on 

the structure, size, and number of clusters that the graph is partitioned on. But with 

adequate parameters, the algorithm is flexible enough to allow many different types of 

clustering. 

PCD’s preprocessing method is significant as it experimentally provides greater 

speedup than the ALT algorithm and achieves drastically reduced space complexity. The 

PCD algorithm only computes and stores distance information for border nodes of 

partitions of the graph. Therefore, the algorithm benefits from a significant reduction in 

preprocessing time and required memory.  

The querying step for PCD is a modification of a bidirectional version of 

Dijkstra’s algorithm. This means that the lower and upper bounds that need to be updated 

are computed differently based on the iteration of the search. From the start vertex and 

end vertex, lower bounds for the length of any path from source to target containing a 
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settled vertex in an intermediate cluster are repeatedly estimated. Let C be the set of 

clusters in a graph G. The shortest path between two clusters P,Q is  

            ∈    ∈            (22)  

For an intermediate vertex, u ∈ V, being settled, the lower bounds of the shortest 

path between vertices s,t ∈ V can be estimated to be 

      ≥                    ′  (23)  

      ≥      ′                (24)  

where S, T, U are clusters that respectively contain s,t,u ∈ V, and cluster border vertices 

s′,t′∈ V . 

The upper bound is also updated at every iteration of the search. The settled 

vertex gets pruned if the path from the source to destination using it is greater than the 

maintained upper bound. For clusters      ∈   and source-target pair s ∈  , and t ∈  , 

let    ∈       ∈   represent the source-target pair for the shortest path from cluster   to 

 . This target pair is denoted          . Also, let    ∈      ∈   represent the source-

target pair for the shortest path from cluster   to  , denoted          . The upper bound 

is initialized as the sum of the diameters of the source and target clusters and the 

precomputed distance between their clusters using one of the following equations: 

where, for a cluster A ∈ G, r(A) denotes the radius of the cluster. Each of these equations 

hold for the upper bound of       . The upper bound is then maintained with one of 

                                (25)  

                                (26)  

                             (27)  

                             (28)  
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these equations based on the upper bound and whether or not    ,    ,    , or    is 

settled. 

Attempting to set bounds on a search space to prune the space has been a common 

technique for speeding up shortest path queries. Often, however, many algorithms require 

a significant amount of storage, inherently rendering them not scalable for larger datasets 

(Lauther, 2004; Jagan Sankaranarayanan, Samet, & Alborzi, 2009; Wagner, Willhalm, & 

Zaroliagis, 2005). The previously discussed ALT algorithm maintains a space complexity 

of          for l landmarks. The ALT algorithm was also cited by PCD’s authors as a 

key reason for developing their own space-efficient algorithm. 

PCD’s chief benefit is that while, in practice, it requires more preprocessing than 

landmarks, it achieves PPSP speedups through far more space-efficient means. In Maue’s 

work, when comparing the amount of space required by PCD to ALT, he notes that the 

space complexity for PCD is         compared to ALT’s         , where   is equal 

to the number of border nodes for clusters. However, since the actual clustering 

information is stored, as well, the space complexity is actually            , as 

information about which cluster every vertex belongs to needs to be referenced. In 

Maue’s experiment, the landmark method also had an experimental average speedup to 

normal PPSP less than that of PCD (Jens Maue et al., 2010) and a higher preprocessing 

time complexity. However, as shown later in the methodology for ALP, the space 

requirement for landmarks can be significantly reduced while benefiting from a sufficient 

performance increase. PCD will be a key algorithm to compare ALP against when using 

speed as a metric. 
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Note also that the clustering takes place before preprocessing, meaning that the 

algorithm itself ignores the type of clusters when computing distances. Clustering 

information is presumed to be input parameters, limiting the application of this algorithm. 

The downside to this algorithm is that the complexity benefits are only gained if the 

clusters inherently come with the topology information or are quickly computed. This is 

computationally intensive and is optimal only for graphs that have the proper structure 

for clustering, such as small-world or scale-free graphs. The fastest known algorithms for 

graph clustering rely on modularity optimization, another NP-hard problem, and run 

experimentally in O(    log    ) (Blondel et al., 2008). 

The key issue here is that data that can be overlaid onto a graph does not 

necessarily cluster or partition well. This can have a significant impact on the PCD 

algorithm. Optimal clustering (with maximum modularity) can sometimes result in 

clusters that are extremely small, which could potentially require PCD’s preprocessing 

algorithm to store nearly as much information as ALT preprocessing. In such cases, while 

the space benefit is still clearly better, the performance benefit of PCD over ALT for a 

high number of clusters has not been tested. 

 

Reach-Based Routing  (Goldberg et al., 2009; Gutman, 2004) 

Reach-based pruning is another method for speeding up shortest-path queries such 

as Dijkstra’s algorithm. Reach is a centrality measure that identifies how central a vertex 

is on a shortest path (Gutman, 2004). The reach of a vertex v ∈ V is larger when v is 

closer to the middle of a shortest path and smaller otherwise. Based on this measure, the 
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algorithm was created to deal with large-scale graphs, which inherently contain shortest 

paths that are larger in size.  

Let the reach of a node v ∈ V be denoted as       for shortest path P. For a reach 

metric m and a path P, let m(P) represent the sum of m(e) over all edges e of P (or zero 

for |P| = 1). Then for two nodes u,v ∈ V, m(u,v,P) represents m(Q) where Q is the subpath 

in P from u to v. Formally, for path P(s,t) and graph G, 

                              (29)  

            ∈      ∈        (30)  

where       is the reach of v in G, SP the set of all shortest paths in G, and  ∈       ∈

  represents any shortest path in G containing v. 

For the purposes of creating a feasible algorithm, computing exact reaches for all 

elements in a graph is not scalable. Therefore, an upper bounds for      , denoted as  

  
       , is computed instead. Let      be the lower bound of     . If, for a source-target 

pair s,t ϵ V,   
                  and   

                 , then v is not on a shortest path 

from s to t. Therefore, reach-based pruning for shortest path search occurs as follows. 

During a run of Dijkstra’s algorithm (seen in Figure 3), before inserting a vertex v ϵ V 

into the priority queue, a test is run on the reach values for  . Vertex   is inserted into the 

priority queue if 

     ≥       (31)  

Otherwise, the vertex is not considered to be on the shortest path.  These reach upper 

bounds are computed during the preprocessing phase. Lower bounds are iteratively 

computed. The bidirectional variant is achieved by setting implicit bounds in both 

directions. Note that in the bidirectional variant, searching between s,t ϵ V by way of 



Campbell 39 

 

 

 

vertex v ϵ V the goal is to identify d(s,v), d(v,t), P(s,v), and P(v,t). With this in mind, 

      is likely to be high, making v a high-reach vertex. This bidirectional variant is 

often used to optimize the speedup. 

In practice, the reach measure along with reach-based pruning is combined with 

other approaches such as contraction hierarchies (Geisberger, Sanders, Schultes, & 

Delling, 2008b) or ALT (Goldberg et al., 2009). In this research, the combination of 

reach-based pruning and ALT, known as REAL, is studied. REAL is a partial landmark 

algorithm which stores landmark distances for all vertices with high reach, set by 

establishing a reach threshold R. A query begins by running normal bidirectional 

Dijkstra’s (or A* with no heuristic) with normal reach-based pruning. Bidirectional 

Dijkstra’s continues until either the algorithm terminates or the search frontiers, both 

forward and backward, have crossed into the region of vertices with reach R or higher.  

Once the search radii of the front and backward searches have crossed the 

threshold, the algorithm then uses ALT to accomplish the remainder of its task. The way 

that the remainder of the path is found in forward search is symmetrical to the way it is 

found in backward search in the following description. For identifying P(s,t), suppose 

that s has low reach. Denote s′ as the proxy, or highest reach vertex closest to s. The 

vertex s′ is computed either during preprocessing or by a multiple-source version of 

Dijkstra’s algorithm. Then store the length of the shortest path between s′ and s, d(s′,s). 

The lower bound for the vertex where both search frontiers meet is computed using the 

precomputed landmark distances. For a landmark L, the lower bound on d(s,v) using 

distances to L is specified by 

      ≥     ′              ′     (32)  
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The lower bounds from target t are computed in the same way. This algorithm’s 

performance is strongly dependent on the quality of the lower bound. This bound is 

determined by both the number of landmarks and the reach threshold. For too high of a 

threshold, the lower bounds will be inaccurate. The number of landmarks and landmark 

selection vary the performance of the algorithm in the same manner that they do in 

regular ALT.  

 

Other Preprocessing Algorithms 

Maue’s PCD algorithm demonstrated practical performance benefits over both the 

Arc Flags (M et al., 2007) and Geometric Containers (Wagner et al., 2005) preprocessing 

algorithms. The Geometric Containers algorithm relies on the concept of edge labeling, 

where preprocessing attaches a label to each edge in a graph that represents all nodes to 

which a shortest path starts with the individual edge. Specifically, a geometric object, 

known as a container, is created that contains at least the edges within a given graph 

region. PPSP queries are then answered by Dijkstra’s algorithm as restricted to the edges 

that lie inside a container. While geometric containers algorithms maintain only a linear 

space requirement, the preprocessing step requires a single source shortest path search 

from every node, making it impractical for large-scale graphs. 

For Arc Flags algorithms, an input graph is partitioned such that a flag is 

computed for each edge within a partition, or region, which indicates whether the edge is 

on a shortest path to any node in that partition. It is similar to the Geometric Containers 

algorithm in that it considers only the edges whose flag correspond to a specific region. 
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This algorithm still realizes a high preprocessing time, as one shortest path search from 

every border node of a region is required. 

 Finally, it has been noted, from experimentation, that landmark methods such as 

ALT begin to drastically underestimate the shortest path when approximating short 

distances (relative to the size of the graph) (Maruhashi, Shigezumi, Yugami, & Faloutsos, 

2012). For this reason, EigenSP uses eigenvalues and eigenvectors to directly compute 

distance. The eigenvalues and eigenvectors of a graph adjacency matrix can indicate path 

capacity between any two vertices in an undirected, connected graph (Harary & 

Schwenk, 1979). The adjacency matrix A for an undirected, connected graph G is a 

symmetric matrix with real eigenvalues. This means that A is a Hermitian matrix. 

Because of this, the eigenvalues and eigenvectors for A can be used to count the number 

of paths between an arbitrary pair    ∈  . Note, from applied mathematics,       , 

where   is the diagonal matrix for the eigenvalues of A and X is an orthonormal matrix 

containing its eigenvectors as columns. Then, from the orthonormality of X, for  ∈   : 

         (33)  

From spectral graph theory, the elements of    represent the number of paths of length k. 

Specifically, an element e in the i
th

 row and j
th

 column of matrix    represents the 

number of paths from vertex i to j in G. If there is no path of length k from vertex i to j in 

  , e = 0. Therefore, for source and target vertices s and t, the eigenvectors and 

eigenvalues of a graph’s adjacency matrix are related to their shortest path length by the 

following equation: 

                   
    

 

   

    ∈     
(34)  
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where     is the s
th

 entry of the r
th

 eigenvector,   
  is the r

th
 eigenvalue of the adjacency 

matrix and n is the number of orthogonal eigenvectors.  

At query time, EigenSP tests a series of values for k to respond to a query. To 

speed up PPSP queries, a set of eigenvectors and corresponding eigenvalues are 

precomputed. While this leads to extremely fast PPSP queries, this method of 

precomputation does not scale well. Even when using some of the most efficient 

algorithms for computing eigensystems (Cullum & Willoughby, 2002), it is simply 

infeasible to rely on the number of computations to calculate        directly for large-

scale practical implementations. However, as in the Geometric Containers or Arc Flags 

algorithms, if a smaller region R of the graph can be extracted such that the shortest path 

from any vertex in R to any other vertex in R only traverses edges within R, then EigenSP 

can be simply run on the subgraph for R. This is a potential area of future research. 

 

Landmark Selection Algorithms 

Landmark selection is crucial to the performance of ALT and ALP algorithms. In 

this section, the most common landmark techniques for ALT are reviewed. Identifying 

the particular set of vertices to select as landmarks such that the expected number of 

settled vertices for shortest path queries is minimal, or what is known as the MINALT 

problem, is NP-Hard (Bauer et al., 2010). Comparing, contrasting, and understanding the 

fundamental reasons behind modern  landmark selection techniques is critical in 

identifying new ones for the ALP class of algorithms. The algorithms that work well 

under the ALT paradigm do not necessarily work well under the ALP paradigm when 

multiple landmarks are used. Studying the development process of these algorithms also 
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suggests methods of creating new ones for ALP. The study of the behavior of these 

landmark selection algorithms in ALP, modification of their parameters, and the 

development of any new ones are the main focus of this dissertation. 

 

Search Space 

In terms of pathfinding, the search space is the feasible region of solutions for a 

given query. For a set of landmarks L, the search space,          (Bauer et al., 2010), of 

an ALT query can be explicitly defined as follows: 

          ∈            
                  } (35)  

In this space,      denotes that the search space expands until the target t is reached. 

For ALT, this definition implies that there are no vertices outside of this search space for 

    that satisfy          
            . Overall, this definition shows that, for any 

given set of landmarks, the search space for ALT only takes into account paths that are 

less than or equal to the distance between s and t. If landmarks are chosen strategically, 

the number of vertices in this search space can decrease, inherently reducing the search 

time. Using this definition, the MINALT problem is explicitly defined as follows: 

Problem:                                    ∈    

In other words, the MINALT problem is the problem of identifying the set of 

landmarks that minimizes the summation of all search spaces for any two vertices 

   ∈  . In general, increasing the number of landmarks k improves the speedup 

performance of ALT search. The optimal solution to this problem, however, minimizes 

the preprocessing time, preprocessing space complexity, and average query time. 

Identifying the solution to this problem is NP-hard. This has been shown by a polynomial 
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time reduction to the MAXCOVER problem (Fuchs, 2010). Typically, an optimization 

method is used to get close to a good solution for MINALT. These landmark selection 

techniques, also known as embedding methods, typically fall into three categories: global, 

local, and distance-based (Sommer, 2012). Global techniques rely on the classic 

paradigm of using the entire graph for landmarks, having each landmark relate to all 

vertices in the graph. Local techniques require a vertex  ∈   to compute path 

information only to certain landmarks, usually only recording the shortest path between   

and a subset of the landmarks. In these cases, the nearest landmarks to   are typically the 

ones that have information stored. Finally, distance-based methods vary in the distance 

information that is stored, many times storing information about different subsets of the 

graph. 

 

Basic Methods 

The first proposed landmark selection algorithm and perhaps the most intuitive is 

random landmark selection (Goldberg & Harrelson, 2005). Based on the number of 

vertices in the graph, k vertices are chosen at random to serve as landmarks. A series of 

sample queries are run with each landmark to determine the best set. This is a brute force 

method of performing landmark selection for ALT. However, in terms of lower bounds, 

random landmarks demonstrate better performance than any of the following methods of 

landmark selection (Potamias et al., 2009). 

 Goldberg & Harrelson immediately recognized this as a flawed, brute-force 

method of choosing landmarks and proposed farthest landmark selection (Goldberg & 

Harrelson, 2005). The algorithm works as follows: Identify a start vertex  ∈   and find 
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the vertex   ∈   farthest, in terms of path weight, away from it. Add v′ to the set of 

landmarks. Then, proceed in iteration by finding the next vertex    farthest away from the 

current set of landmarks and adding     to the set. The next vertex that is farthest away 

maximizes the distance to the closest vertex in the set. Continue until k landmarks have 

been identified. 

Also initially proposed was planar landmark selection (Goldberg & Harrelson, 

2005). This landmark selection algorithm uses graph layout information to divide a graph 

into sectors. The vertices of the graph are all given polar coordinates. Based on these 

coordinates, a point is placed in the middle of the graph and the sectors are created. For 

each sector, the farthest point is selected to be a landmark. If two points for different 

sectors happen to be on the border of their respective sector and adjacent to each other, 

one of them is removed.  

A later version of farthest landmark selection was introduced that computed 

farthest based on path distance instead of path weight, meaning that the cost of moving 

from vertex to vertex is 1 (A. V. Goldberg & R. F. Werneck, 2005). This will be denoted 

here as farthest-d selection. This biases farthest selection to choose separate, dense 

regions of the graph to place landmarks in. While the selection algorithm takes a smaller 

amount of time than most, there are still better methods of identifying more optimal 

landmarks. 

Avoid landmark selection, a commonly used and modified landmark selection 

algorithm, begins by computing the SPT Tr, rooted at some arbitrary vertex  ∈   (A. V. 

Goldberg & R. F. Werneck, 2005). Often, r is chosen at random. For Avoid, the term 

weight is defined differently and will be denoted here as A-weight. For a set of landmarks 
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L, the A-weight of a vertex v ϵ V is the difference between its distance d(r,v) and the 

lower bound of d(r,v) as computed in the ALT algorithm. Let Tv be a subtree of Tr. For 

every v ϵ V, the size s(v), or the sum of the weights of all vertices in Tv, is computed. If w 

is the vertex with the maximum size, Tw is traversed, following the child with the largest 

size until a leaf is reached. The first leaf that is reached is a new landmark. This approach 

“avoids” existing landmarks to improve coverage of landmarks over the graph. 

Advanced Landmark Selection Algorithms 

In the previous section, we detailed some very basic embedding methods for 

estimating the shortest path using the ALT algorithms. The following algorithms perform 

more in-depth graph analysis to strategically select landmarks.  

Betweenness Centrality Embedding (Potamias et al., 2009) 

One of the first advanced landmark selection algorithms that has shown promise 

is based on the betweenness centrality of landmarks. Such mining of the graph before 

selecting landmarks has proven to be several orders of magnitude faster than current 

methods. 

The basic principle behind using betweenness centrality as a guide for landmark 

selection stems from the following observations: 

Observation 1: Let a landmark node l exist on the shortest path between two nodes s and 

t. Then                     . 

Observation 2: Let a node s exist on the shortest path between two nodes l and t or let t 

exist on the shortest path between nodes s and l. Then                         
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Based on these observations, this work attempts to solve a problem that is similar to the 

MINALT problem. It proposes the LANDMARKSd problem, which attempts to cover all 

(or most) shortest path pairs in the graph by ensuring there are landmarks between them. 

Problem LANDMARKSd(G, k): Is there a set of  landmarks  ⊆   of size at most k such 

that the number of pairs of vertices      ∈     covered by L is maximized? 

A landmark covers a pair of vertices       if there exists at least one landmark in L that 

lies on the shortest path from   to  . If a chosen landmark lies on the path between two 

nodes   and  , then the shortest path distance is simply the upper bounds of the triangle 

inequality for that landmark. In other words, for a given landmark-source-target set 

       ∈                            This allows the upper bound of the triangle 

inequality to be the answer to the shortest path problem. It follows, then that the optimal 

landmarks for the LANDMARKSd problem are the ones with maximum betweenness 

centrality in the graph. The LANDMARKSd problem is demonstrated to be NP-hard by 

proving that LANDMARKS-COVER is NP-hard. LANDMARKS-COVER is proven to be 

NP-hard because there exists a polynomial-time transformation to it from the NP-hard 

VERTEX-COVER problem.  

Problem  LANDMARKS-COVER(G,k): Is there a number of landmarks  ⊆   of size at 

most k such that all pairs of vertices      ∈     are covered? 

Problem  VERTEX-COVER(G,k): Is there a vertex cover, or set of vertices such that each 

edge of the graph is incident to at least one vertex of the set, of size at most k in G? 

For a vertex  ∈  , let        denote the number of paths from   to   containing 

 . Also, let          simply denote the total number of paths from   to  . Then 

betweenness centrality of v is formally defined as 
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     ∈ 

 
(36)  

For landmark selections, the optimal landmarks are those with highest 

betweenness centrality (Potamias et al., 2009). However, series of nodes with high 

betweenness centrality will be clumped together in the graph, reducing their utility. 

Therefore, two other metrics that are taken into account are degree and closeness 

centrality. To select nodes based on degree, the nodes of the graph are simply sorted from 

lowest to highest degree and the highest degree nodes are chosen.  Also, choosing a node 

with the lowest closeness centrality has demonstrated utility.  For a source-target pair 

   ∈  , closeness centrality CC of a vertex  ∈   is defined as 

      
 

   
       

 ∈ 

 
(37)  

Choosing the   vertices with lowest closeness centrality is the common 

convention. However, both the closeness centrality and the betweenness centrality are 

very difficult to compute in large scale graphs. Therefore, partitioning the graph into 

sections and identifying nodes with the highest betweenness centrality, lowest closeness 

centrality, or degree produce the most optimal results. In a series of experiments, the 

centrality measures proved to be far more robust than the degree measures, primarily 

because centrality measures produce results more indicative of the path structure than 

simple degree measures. 

Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme 

(Miao, 2014) 

Recent work has considered the differences between globally selected, query-

independent landmark selection and local, query dependent methods. The global methods 



Campbell 49 

 

 

 

discussed inherently incur a larger relative error (underestimates), particularly for close 

nodes, than local ones. By establishing tighter bounds, the search space is inherently 

narrowed. By identifying a query-dependent local landmark, the search no longer falls 

prey to a global setting that could be less than optimal for local queries. This dissertation 

effort will propose, implement, and test a hybrid, query-independent approach to 

landmark selection for the ALP class of algorithms. For breadth, this work in query-

dependent, local embedding is reviewed. 

A notional example can be made from the graph in Figure 7. Based on the given 

global landmark l1 to the right of the graph, if we were to estimate the distance between a 

and b using ALT, the following would result: 

                        (38)  

However, a more accurate estimate could be made from node c, which is much closer to a 

and b. This would result in the following estimation: 

                      (39)  

This estimation is clearly tighter, therefore narrowing the search space. Node c is then 

referred to as a local landmark. 

Identifying such local landmarks demonstrates a benefit by narrowing the search 

space. However, the method for actually identifying these landmarks is not intuitive. 

Recall that once landmark nodes have been selected, for a given landmark li, ALT 

identifies the shortest path between li and every other node in the graph by performing a 

breadth-first search that spawns an SPT. By preserving this SPT structure, one can 

identify, at query-time, the least common ancestor, or LCA, between a source and target 

node pair as a local landmark. The LCA of two nodes    ∈   in an SPT is the node 



Campbell 50 

 

 

 

furthest from the root that is an 

ancestor of both s and t. In the 

example in Figure 7, node c was the 

LCA. Unless the global landmark is 

the only common ancestor, the LCA 

will always be closer to the two 

query nodes than the global 

landmark, therefore reducing the 

search space. 

Storing information in this SPT-based local landmark scheme can incur serious space 

complexity costs. Three key pieces of information are stored for this algorithm: 

1. Embedded Distances: Basic ALT requires        space to record the distance 

between landmarks and all other nodes of the graph.  

2. Shortest path trees: Each shortest path tree requires      space. Also, arrays that 

are used to quickly calculate the LCA for larger SPTs require      space. The 

theoretical space complexity for SPTs and these arrays is also       . 

3. Range Minimum Query Index Tables: Tables used to efficiently identify least 

common ancestors. Also requires        space. 

Further optimizations are made for this algorithm to enhance performance using 

lossless graph compression to limit the amount of space required by landmarks and local 

search algorithms to further narrow the search space. The theoretical space requirements 

led to massive practical requirements when tested on real data. While the actual search 

did not use all the data in memory, each of the separate structures necessary for the 

 

Figure 7 Local Landmarks Example 
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algorithm to be executed required being loaded into memory. Therefore, while certainly 

increasing the overall time complexity of the ALT algorithm with a new and innovative 

method of identifying landmarks at query-time, this algorithm sacrifices large amounts of 

memory to be carried out on large datasets.  
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Chapter 3 

Methodology 

Overview 

The fundamental problem that this dissertation addresses is the optimization of 

landmark selection for the A*, landmarks, and polygon inequalities (ALP) class of 

algorithms. In Chapter 2, the ALT methodology for estimating shortest path distances for 

A* was described, along with the most modern landmark selection techniques that 

attempt to optimize the algorithm’s speedup ratio and comparable shortest path 

preprocessing algorithms. Further, other metric-independent shortest path preprocessing 

algorithms were highlighted. In this chapter, we demonstrate that using multiple 

landmark vertices to guide A* search grants the ability to perform less computations at 

both preprocessing and query time. Using a process dubbed distributed embedding, we 

demonstrate that ALP has a significantly smaller space requirement in comparison to 

ALT and can provide better landmark selection. It is also noted, in this chapter, that the 

base heuristic for ALP, using a single landmark, has already been verified and validated 

as the ALT algorithm. To begin to characterize ALP’s behavior when using multiple 

landmarks, the approach in this effort sought to use two landmarks to guide the search 

query.  

In this chapter, the methodology for the dissertation is presented in its entirety. 

The Methodology chapter provides the framework that guided the design and 

implementation of a shortest path software library that includes the ALP dual landmark 
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capability. The design for the dissertation’s experiments, along with their corresponding 

metrics are described to further demonstrate that domination of one heuristic over the 

other depends on the landmark set each is assigned and, in general, the denser the 

landmark set, the better the heuristic. The methodology details five specific concepts: (1) 

mathematical detail of the lower bounds that are created by the use of two landmark 

vertices in the graph as reference points; (2) further theoretical specification of the use of 

two landmarks in distributed embedding; (3) theoretical specification of ALT landmark 

selection techniques in the ALP environment; (4) new landmark selection techniques that 

apply to the characteristics of the ALP environment; and (5) description of the 

experimentation and measurements required to fully characterize the ALP algorithm. 

A key goal in developing this methodology was to establish the design of the 

software experimentation framework that allowed for rapid updating of landmark 

selection technique and heuristic function implementations, trivial collection of metrics, 

and extraction of details about the data operating environment (i.e., graph structure and 

characterization of shortest path queries). The Research Methods section details the 

algorithms that were used to characterize ALP and its landmark selection techniques. The 

Validation and Verification section contains a high-level explanation of the ALP software 

library and dissertation experiments. Finally, the Summary recapitulates the scope of the 

complete effort and maps the methodology to the overall contributions of the effort. 

Research Methods 

Quadrilateral Properties in Graphs 

 Previous implementations of embedding methods compute shortest path trees 

(SPTs) that cover the entire graph from a selected set of landmarks and use the triangle 
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inequality at query time to 

establish a lower bound for A* 

(Goldberg & Harrelson, 2005). 

The use of this geometric 

inequality can be expanded to 

allow for more lower bounds to 

be derived. Such bounds are 

derived by forming other types of polygons, of higher order than triangles, in the graph. 

Using quadrilaterals, we explain how these heuristics can be derived by identifying any 

polygon in a graph and setting the heuristic values for A* equal to the maximum derived 

lower bound of one side of the polygon. The development of the ALT algorithm provides 

a base case for such a hypothesis. The use of two landmarks, as seen in this dissertation, 

provides an inductive step for the proof of the hypothesis. We begin with a description of 

how to form a triangle in a graph to establish the triangle inequality as a lower bound. 

This proof was derived from the reverse triangle inequality proof for  

a metric space, detailed in Chapter 1. 

Shown in Figure 8, for a connected graph G
1
, containing vertices       ∈   , the 

shortest path distances between each vertex form a metric space. If G is undirected, for 

the distances between vertices      , the following triangle inequalities hold: 

                       (40)  

                       (41)  

                                                 
1
 Recall from Chapter 1 that we are addressing graphs that are either directed or undirected. If directed, they 

are strongly connected. 

 

Figure 8 Three vertices within a sample connected 

graph. The dotted lines represent shortest paths 

between each of the vertices 
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Both of these inequalities apply to the three vertices in G. The reverse triangle inequality, 

which is used as a lower bound for A* in ALT, is derived from these inequalities as 

shown in Table 1.  

# Statements Reasons 

1.                                               Triangle 

Inequality  

2.                                               Subtraction on 

both sides (#1) 

3.                           Absolute Value 

Definition (#2) 

ALT uses this reverse triangle inequality to create a heuristic that estimates the 

distance between vertices C and A by setting vertex B equal to a landmark l such that 

                         (42)  

By computing and storing the values        and        before performing any PPSP 

queries, this lower bound is then used as a heuristic to the A* algorithm. Because it is the 

lower bound, it will never overestimate the distance between vertices A and C. 

For a quadrilateral, the lower 

bound of one of its sides can also be 

calculated using the other three sides. 

This reverse quadrilateral inequality can 

also be used to establish the lower 

bounds for the shortest path of a graph. 

Illustrated in Figure 9, for a graph G with 

vertices        ∈  , the lower bound can be derived from the following system of 

inequalities for quadrilaterals:  

Table 1 Derivation of the Reverse Triangle Inequality in Simple, Connected Graphs 

 

Figure 9 Four vertices within a sample 

connected graph. The dotted lines 

represent shortest paths between each of 

the vertices 
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                            (43)  

                            (44)  

                            (45)  

Similar to the triangle inequality for Figure 8, a set of inequalities describe the 

lower bounds for distances between vertices of the graph represented in Figure 9. Shown 

in Table 2, the reverse quadrilateral inequality is derived in a manner similar to that of the 

reverse triangle inequality.  

The resulting inequalities that bound the distance between two vertices, A and D, are 

                               (46)  

                               (47)  

                               (48)  

# Statements Reasons 

 A B C  

1.        
              
        

             
       
        

      
              
        

Quadrilateral 

Inequality 

(Given) 

2.               
               

             
       
        

 

             
                

 

Subtraction 

on both 

sides #1 

3.               
               

             
       
        

 

             
               

Subtraction 

on both 

sides #1 

4.                                 Absolute 

Value 

Definition 

(#2A/2B) 

5.                                 Absolute 

Value 

Definition 

(#2C/3B)  

6.                                 Absolute 

Value 

Definition 

(#3A/3C) 

Table 2 Derivation of the Reverse Quadrilateral Inequality in Simple, Connected 

Graphs 
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A potential problem with these inequalities is that they have the ability to generate 

negative lower bound estimates, which is useless for a nonnegative distance metric. For 

utility, when attempting to estimate the lower bounds of a quadrilateral, other geometric 

inequalities should be considered such that the highest possible lower bound can be used. 

In this dissertation, we use two such estimations to inform the heuristic. The first, 

Ptolemy’s inequality (Kay, 2011) for quadrilaterals is used as follows for the dual 

landmark heuristic to yield a lower bound for the distance between A and D. First, we 

begin with the original inequality: 

                                          (49)  

Note that when considering these alternative inequalities, we maintain the same notation 

for each distance term, as to not disturb the inequality when a directed graph is used. 

Then to estimate the distance between A and D, using simple algebra, 

                           

      
        

(50)  

In practical cases, information regarding the values of        and        (the 

diagonals) may be unknown. Therefore, the distance between can be estimated as 

follows. First, suppose all the values on the right side of the above equation are known 

and the values on the left side are unknown (except, of course, the distance between 

vertices A and D). Using the reverse triangle inequality
2
, we understand that 

                          (51)  

                          (52)  

Because they are non-negative, we also know that 

                                                 
2
 Taking directionality into account. 
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                                                 (53)  

Using these lower bounds, we can rewrite Ptolemy’s inequality with respect to the lower 

bound for the distance between vertices A and D as 

                                             

      
        

(54)  

Because we use Ptolemy’s inequality here, this can become a perfect estimate when a 

cyclic quadrilateral is formed from the four endpoint vertices,        ∈  . 

Understanding how to form a cyclic quadrilateral in a graph or quickly verify that a 

quadrilateral formed in a graph is cyclic, however, is outside of the scope of this 

dissertation effort.  

The use of Ptolemy’s inequality, here, serves as one of three examples of using 

multiple data points to vary heuristics for A* search in a graph. Because multiple data 

points are used, more inequalities can be generated to estimate distances. The maximum 

over the set of lower bounds derived by these inequalities can be used to tighten the lower 

bound. With that said, the second example gives two more lower bounds for the distance 

between A and D, derived from the triangle inequality, are noted here: 

                        (55)  

                        (56)  

As stated earlier in regards to Ptolemy’s inequality,        and        are commonly 

unknown
3
. Though, in this case, we cannot derive a similar inequality by using the two 

values’ lower bounds. However, in ALP’s case, we will see later that these equations will 

come in handy when B = C. Therefore, we add it to the set of lower bounds. 

                                                 
3
 These would be the diagonals of the quadrilateral 
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 The third example is taken from the four-point condition on metric spaces that is 

valid for trees with weighted edges, such as in the case of a shortest path tree. The four-

point condition states that for the nodes in Figure 9, the shortest path tree holds the 

following property: 

                                                (57)  

Just like with Ptolemy’s,        and        are commonly unknown. Therefore, we 

replace these terms with their lower bounds in the equation: 

                               

                                   

(58)  

Therefore, we have 

                                                (59)  

if and only if the following condition holds: 

             ≥                (60)  

In conclusion, when estimating the distance between two points in a graph such as 

the one in Figure 9, the maximum of the following seven equations can result in the 

tightest lower bound for the distance between vertices A and D. 
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A*, Landmarks, and Polygon Inequalities 

Just as with the reverse triangle inequality, the lower bound produced by the 

reverse quadrilateral inequality can be used as a heuristic for the A* algorithm. The 

establishment of this new heuristic is known as ALP, for its use of the A* algorithm, 

Landmarks, and Polygon Inequalities. By choosing two landmark vertices to act as 

endpoints B and C from the last section, a new dual landmark heuristic is achieved as 

follows: For source and target nodes    ∈   and two valid landmark vertices      ∈   

in a graph G, the following lower bounds hold for the shortest path: 

      ≥                              Reverse 

Quadrilateral 

Inequalities 

      ≥                              

      ≥                            

      ≥                   l1=l2 

      ≥                   l1=l2 

      ≥
                                                     

        
 

Ptolemy’s 

Inequality 

      ≥                                                
Four-Point 

Condition 

Figure 10 Quadrilateral Inequalities for Graphs 

Table 3 Inequalities for a source, target, and two landmark vertices in a directed graph 
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These seven lower bounds can all become heuristics for the ALP algorithm. 

Because it is based on dual landmarks (DL), let       
       ∈       denote each new 

heuristic at a visited vertex  ∈  . For two given landmarks,      , the following seven 

heuristics can be used for the A* algorithm: 

      
                                 (61)  

      
                                 (62)  

      
                                 (63)  

      
                        (64)  

      
                        (65)  

      
      

                                                     

        
 

(66)  

      
                                                     (67)  

Each of these are new, admissible heuristics for A* based on polygon inequalities, 

specifically for quadrilaterals. The following is the optimal dual landmark heuristic now 

for ALP. 

  
                    

       (68)  

As a word of caution, one has to be careful when in the case of directed graphs. In 

the undirected case, there is no difference between estimating the distance from   to   

        and from   to   (      ). However, as shown in Figure 11, to generalize ALP 

for the directed and undirected case, directionality of the distance terms must be taken 

into account.  For a directed graph, the shortest path metric space is formed with these as 

the distances between four points. For any four-vertex configuration of the graph, 
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preprocessing must yield instant access to the three distance values in the figure not in 

bold in order to derive this new heuristic. 

For ALP, the A* algorithm, described in Chapter 1, is used with this new heuristic 

function as input, just as in ALT, with one change. This change involves a process known 

as distributed landmark embedding, or simply distributed embedding. The distributed 

embedding process is further detailed in a later section. In summary, for dual landmark 

ALP, the process works as follows. After landmark selection, each vertex in the graph is 

assigned to a single landmark within its respective partition. Distance information is then 

computed from each partition’s landmark to (and from, in the directed case) the other 

vertices subgraph, as well as between all landmarks in the landmark set of the graph. 

These vertices contain distance information for only the landmark to which they are 

assigned. As a vertex v is visited, if v does not have distance information at its current 

landmark node,   , the landmark that does have distance information for v is used to 

bound the search. For unidirectional A*, the    landmark remains the same for the target 

node, as it is the only one containing distance information for that node. This fact, of 

course, would change for the bidirectional variant of A*. Note that, when using 

distributed embedding,       
      and       

      can only be used when both the visited 

 

Figure 11 Four vertices within a sample directed connected graph. The dotted lines 

represent shortest paths between each of the vertices 
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node v and target node t share the same landmark. Otherwise, the information needed for 

this heuristic cannot be computed. If the source and target vertex share the same 

landmark (i.e.,      ), then the ALP heuristic is reduced to the ALT heuristic (i.e., 

       ) as follows: 

      
                                                           (69)  

      
                                                             (70)  

      
                                                            (71)  

Because we are taking the maximum,       
   and       

   simplify to the reverse 

triangle inequality.        
   and       

   are, by their very definition, equal to the reverse 

triangle inequality, as well.       
   cannot be used over the same set of landmarks because 

its equation would result in a division by zero. Finally,       
   cannot hold because its 

constraint would violate the triangle inequality. Therefore, the dual landmark ALP 

heuristic function always reduces to the ALT heuristic (      
      and       

     ) when the 

currently visited and target nodes share landmarks.  

It should be noted that there are other polygon-based inequalities for special cases 

and shapes that could also be used to define A* heuristics, as they, too, can yield 

estimates that never overestimate the shortest path. Future research can include the use 

and selection of varying heuristics for special quadrilaterals along with that of other types 

of polygons induced on the graph. Such research would address the difficult problem of 

extracting information such as angle and inscribed shapes before the heuristic could be 

computed. In this dissertation, however, we will conduct experimentation using only the 

heuristics defined in this section. The dual landmark ALP heuristic for the inequalities 
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derived in this section will be characterized in the following section and will be used for 

experimentation.  

Characterizing ALP Heuristics 

For a source and target vertex pair, the following theorems for the ALP heuristic 

function,   
  , apply: 

Theorem 1:   
   is an admissible heuristic. 

Proof. The proofs for the inequalities used for the heuristic are all derived in the previous 

section. Because the heuristic function has an upper bound set at the actual shortest path 

to the target, the heuristic will never overestimate the distance to the target, rendering it 

admissible. 

Theorem 2: Using distributed embedding,   
   is not consistent. 

Proof. This is proven by contradiction. Let c be the cost of transitioning with A* from 

vertex v to v′, for     ∈  . Recall that c is nonnegative for the A* algorithm. Let 

      
       be the maximum chosen for   

   for both of these iterations. Then, for   
   to 

be consistent,  

                                                           (72)  

Because c is non-negative and the heuristic takes into account whether or not it moves 

towards or away from its landmark,                    or                   , 

respectively. Therefore, this equation holds and demonstrates monotonicity over the same 

set of landmarks for successive iterations. However, allow the selection of landmarks for 

a query to change during the query, due to distributed embedding. For the heuristic to be 

consistent, with vertex   belonging to landmark    and    belonging to landmark   , once 
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again let       
       be the maximum chosen for   

   for both of these iterations. The 

following equation must then hold for    
   to be consistent.  

                                                           (73)  

Let    be a chosen landmark such that                     and                 . 

This scenario yields a contradiction for the equation such that   
   is not consistent. 

Theorem 3:   
   does not dominate   

  over the same set of landmarks. 

Proof. In the previous section, we demonstrated that the dual landmark heuristic reduces 

to the triangle inequality heuristic over the same set of landmarks. This means that when 

a visited vertex and target share the same landmark, the heuristic estimates for   
   and 

  
  will always be equal. For one heuristic to dominate another, all of its values must be 

greater than or equal to the corresponding values of the other heuristic.  Therefore, for 

  
   to dominate   

  over the same set of landmarks,   
   would have to dominate   

  

when a visited vertex and target do not share landmarks. We take two landmarks 

     ∈     (for      ),that reference the visited vertex v and target t, respectively. For 

  
   to dominate   

 , any one of the following inequalities must hold: 

1.                            ≥        
                       

2.                             ≥        
                      

3.                           ≥        
                      

4. 
                                                     

        
≥        

                      

5.                                               ≥        
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Because    and    are in the set L, we can eliminate the first three equations from validity 

as there is no way to guarantee (outside of very specific landmark selection) that  

                 ≥        
                      

For the final two inequalities, we can easily identify the same contradiction for both. Let 

all distance values used on the left hand side of the equations equal to one. This results in 

a negative left-hand side for the inequality. The right-hand side of the inequality has the 

benefit that it can never be negative. Therefore, we no equations left where   
   provides 

a greater estimate than   
 . 

Theorem 4:   
  does not dominate   

   over different landmark sets. 

Proof. This can be proven by contradiction. Let       
      be the maximum chosen value 

for   
  . For the triangle inequality heuristic to dominate the dual landmark heuristic: 

               ≥                            (74)  

where   is the landmark that maximizes   
  and    and    are the landmarks for  v and t, 

respectively. Let                                           , meaning the 

distance between the two landmarks are much greater than the sum of the landmark 

distances for the visited and target vertex. Then it follows that                    is 

significantly larger than all other terms in the equation. If we let the distance between 

both   and the visited vertex and target nodes be equal for every landmark, the term 

                will be significantly small. Then the above equation does not hold for 

landmarks that are significantly far apart and we have a contradiction. 

To summarize, according to Theorem 1, ALP’s dual landmark heuristic is an 

admissible heuristic, making it a viable candidate for the A* algorithm, even though it is 

not consistent when using distributed embedding, as shown in the proof of Theorem 2. 
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We address Theorem 2 in experimentation for both ALT and ALP by implementing 

pathmax for A*, forcing consistency for both heuristics. From Theorem 3, this heuristic 

for ALP does not dominate the heuristic for ALT over the same set of landmarks. From 

Theorem 4, it is demonstrated that there are scenarios in which the ALP heuristic gives a 

higher estimation than the ALT algorithm. In the proof for Theorem 4, a possible 

scenario for ALT (with the visited vertex v being very far from the target t) is used to 

theoretically demonstrate that it can have a lower heuristic estimate than ALP. The proof 

inherently shows the reverse, as well: that ALP can have a lower heuristic estimate than 

ALT. Theorem 4 highlights landmark selection as the key to one heuristic theoretically 

outperforming the other.  We delve into further detail for this finding in the next section. 

These four theorems and their respective proofs are the justification for the investigation 

of landmark selection techniques for ALP. If landmark selection techniques for ALP 

allow for a more informed A* search capability, then it is the overall optimal heuristic as 

its landmark selection is inherently faster than that of ALT’s. 

A major contribution of this dissertation an experimental characterization of the 

real, practical scenarios for better distance estimates with respect to landmark selection 

for the ALP and ALT heuristics. Specifically, given that distributed embedding allows 

the practical preprocessing time and space complexity to be significantly less, it is worth 

exploring the cases that ALP heuristic does outperform the ALT heuristic and vice-versa. 

Recall, from Chapter 1, that one heuristic outperforms the other, in terms of the number 

of vertices that are searched, by creating a higher estimation of the shortest path lower 

bound. Let   ∈   be the landmark chosen for ALT that maximizes its heuristic and 

     ∈   be the landmarks for the current vertex and the target, respectively. For each 
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possible landmark setup, the following are the scenarios in which the ALP dual landmark 

heuristic outperforms the ALT triangle inequality heuristic in the context of number of 

explored vertices. As the dual landmark heuristic uses seven separate equations to derive 

its heuristic, the equations that actually cause the ALP heuristic to dominate ALT are 

specified here. Note that the ALP heuristics that are recommended in each of these 

scenarios can, but are not guaranteed to, dominate ALT and are not inclusive of all dual 

landmark ALP estimates that can dominate ALT. These scenarios specify situations in 

which the dual landmark ALP heuristic has a high likelihood of dominating the ALT 

heuristic, and will be experimentally verified throughout the dissertation. 

Scenario 1:          

Outperforms ALT when                           ≥                   

This scenario, in particular, outperforms ALT at the beginning of a search in a large 

graph, for       
     , when the distances between the two landmarks is significantly 

large. Particularly, if                                   , the heuristic dominates. 

As such,       
      and       

      are the estimates that have a higher likelihood of yielding 

stronger results than the triangle inequality here. 

Scenario 2:          

Outperforms ALT when                            ≥                   

Particularly, if                                   , the heuristic dominates. Since 

we cannot rely on         to always be significantly larger than        , the heuristic 

relies on the distance between the respective landmarks being significantly large to 

dominate. Therefore, in this scenario, the ALP heuristic dominates ALT when the 

distance between the two landmarks is significantly large. As such,       
      and 
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      are the estimates that have a higher likelihood of yielding stronger results than 

the triangle inequality here. 

Scenario 3:          

Always has the same performance as ALT. 

        =0, by definition. Therefore, all of the possible equations for the ALP heuristic 

are reduced to the triangle inequality. And the ALP heuristic becomes the ALT 

heuristic. 

Scenario 4:          

Outperforms ALT when                            ≥                   

        =0, by definition. Therefore,   
        is eliminated as an option for the dual 

landmark heuristic. Because this occurs and because the ALT heuristic chooses the 

landmark that maximizes the triangle inequality, the best we can hope for is that the ALP 

heuristic is reduced to the heuristic for ALT. Therefore, when the ALP algorithm’s 

search is within the same partition, the ALP algorithm never dominates the ALT 

algorithm. 

Scenario 5:          

Outperforms ALT when   

      
     ≥                   or 

      
     ≥                   or 

      
     ≥                   or 

      
     ≥                   or 

      
     ≥                   
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      or       

      can only reach the equivalence of the ALT heuristic’s estimate over 

the same set of landmarks or for landmarks with similar distances to the one’s used in 

ALT. 

Scenario 5 is the most common situational scenario and will promise interesting 

experimental results. This is also the scenario that most significantly demonstrates that 

when the landmarks that would be used for both ALT and ALP differ, the heuristic value 

for ALP is not always greater than the heuristic value for ALT, producing the results of 

Theorems 3 and 4. The key insight here is that if more efficient algorithms for selecting a 

better landmark set for ALP exist, ALP will often outperform ALT in practical scenarios. 

All of these observations about ALP’s performance are summarized in Table 4. 

 Scenario Outperforms ALT when… 

1.                                             

2.                                             

3.                                          

4.                                           

5.                
     ≥                   or       

     ≥                   or 

      
     ≥                   or       

     ≥                   or 

      
     ≥                   

 

Distributed Embedding 

For a set of landmarks L, the ALT algorithm has a space complexity of       

     from computing and storing distance information for all shortest paths between each 

landmark and V. (J Maue et al., 2006) However, when using ALP, this space complexity 

Table 4 When ALP Beats ALT 
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can be reduced to             using the following technique, called distributed 

landmark embedding. In the dual landmark preprocessing for ALP, each landmark only 

computes the shortest path tree to a specified set of vertices, called a graph partition, 

around it
4
. The only other operation is a shortest path calculation among the landmark set, 

as the distance between each landmark is needed to compute the ALP heuristic. For best 

results, the subgraph induced by each partition should be connected to increase the 

likelihood that the shortest path from the landmark to any vertex in the partition lies 

within the subgraph induced by the graph partition, though this is not a requirement. 

As shown in Figure 12, during preprocessing, each vertex in the graph needs to be 

labeled with an identifier, signifying its landmark partition and the distance to (and from, 

in the case of directed graphs) its corresponding landmark. When all landmarks have 

been chosen, an SPT for each landmark in L is then computed for its respective partition. 

To preserve space, this partitioning information is not explicitly stored. Rather, each 

vertex maintains distance information about the landmark to which it belongs along with 

                                                 
4
 In this work, we identify the graph partitions first and select landmarks inside of these partitions (rather, 

we see the partitions as input to the algorithm, just as with PCD(Jens Maue, 2006)). Future work can 

explore the initially identifying landmarks in the graph first and then use these landmarks to form 

partitions. 

 

Figure 12 An Example of Distributed Embedding for a Simple Graph with Three 

Partitions 
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a reference to that landmark. The only information that a landmark maintains is distance 

information between it and all other landmarks. For landmark selection algorithms, if an 

algorithm requires understanding of all vertices that belong to a particular partition, then 

the partition can be discovered by finding all vertices with a common landmark reference. 

During query time, ALP carries out the normal A* algorithm with the ALP heuristic 

function,   
  , that relies on polygon inequalities for quadrilaterals. 

Recall from Chapter 2 that the time complexity of ALT’s preprocessing, not 

including the selection of   landmarks, is                og     , as an SPT is 

generated with Dijkstra’s algorithm, rooted at each landmark. Each of these SPTs covers 

the entire graph. For ALP, multiple SPTs are grown with the landmarks as roots such that 

the union of their vertices covers all vertices of the graph. Distance information is only 

maintained by vertices for one other vertex (i.e., the landmark vertex at the root of its 

SPT). For this to occur, it simply grows the Dijkstra SPT from a given landmark until all 

vertices in the landmark’s partition are a part of the tree.  For overlapping graph 

partitions, ALP grows the shortest path tree from each landmark to cover the vertices in 

its partition, as usual. During query time, the algorithm uses the set of landmarks with 

known distances that produce the highest lower bounds. 

The memory and practical runtime saved by doing this is the novelty of 

distributed embedding. Note that the theoretical time complexity for preprocessing of 

ALP remains the same as that of ALT. The actual shortest path between two vertices 

within a graph partition could include vertices from outside the partition. This means that, 

in the worst case, the generated SPT includes the entire vertex set of the graph. This, of 

course, would rarely happen in practice. In practice, the SPT is significantly small in 
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comparison to the size of the graph and its generation runs in a fraction of the time. 

Therefore, for a graph in which the vertices of each partition match the vertices in a 

partition’s shortest path tree, let E’  be the average number of edges in each partition and 

V’ the average number of vertices in each partition. Then the average runtime of ALP 

preprocessing, not including landmark selection, is 

                 og       (75)  

Because the shortest path tree is computed from every chosen landmark and 

distance along with an all-pairs shortest path calculation for the landmarks, ALT’s data 

structure requires            space
5
. Since        , the theoretical space requirement 

for ALT can be said to be        . Note that this upper limit is only theoretical, as a 

relatively small number of landmarks are chosen for any particular graph. Therefore, the 

           space requirement is a more practical specification. For ALP, shortest path 

data is stored for the landmark-vertex pairs of each graph partition and the pairwise 

distances between landmarks. Therefore, ALP’s data structure requires             

space. Once again, because        , the space requirement for ALP can also be 

described as                    , which is theoretically larger than the worst-case 

ALT requirement. Therefore, the ALP space requirement is an improvement on the ALT 

space requirement as long as 

              (76)  

                                                 
5
 It should be noted that for directed graphs, we compute the shortest path tree to and from every landmark, 

requiring twice the space from ALT and twice the number of subgraph vertices to be stored for ALP 

            . 
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 Finally, recall that, during an arbitrary shortest path query, ALT attempts to 

maximize its heuristic by using the triangle inequality for each landmark at each visited 

vertex of the search: 

  
              

    
   (77)  

For a growing number of landmarks, computing this many estimates at each step 

becomes computationally expensive. However, the dual landmark heuristic,   
  , only 

requires that, at most, four estimates be computed and compared at each iteration. This 

should drastically reduce ALP’s compute time in comparison to ALT. 

Algorithm Degradation 

 Thus far, when describing ALP’s performance in comparison to ALT, 

performance has been measured by the value calculated by a heuristic function. For A*, 

this value determines the size of the search space for any given query. For an admissible 

heuristic, the higher the estimates, the smaller the search space and the assumption is 

always that this leads to better overall performance. However, one thing that is not taken 

into account in this and many shortest path performance surveys is the amount of 

processing needed to compute the actual heuristic as each vertex is being visited. As 

stated in Chapter 2, for each PPSP query, at each vertex, a number of subtractions equal 

to the number of landmarks is performed as well as a max operation. This means a        

runtime for each visited node. For large-scale graphs, which require more landmarks to 

be preprocessed, this can significantly add to the overall compute time of queries. In 

comparison, with the dual landmark ALP heuristic, if the visited vertex and target vertex 

are owned by different landmarks, exactly twelve subtraction operations, two 

multiplication operations, two additions, and a division operation occurs with a      max 
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operation. If they are owned by the same landmarks, only one subtraction operation 

occurs (to compute the reverse triangle inequality). This means that, in terms of practical, 

processor-based performance measurements, over the same set of landmarks, it is 

possible for dual landmark ALP to outperform ALT. In particular, for graphs with longer 

average path lengths, the search performance for an ALT heuristic with higher estimates 

can suffer degradation at a rate significantly less than ALP’s heuristic.  

The implementation of operations such as multiplication and division can vary 

from system to system and therefore would have an impact on the search strongly 

dependent on the processor. As computer architectures and optimization methods for 

arithmetic operations and max functions vary greatly, there is no formal computation 

model upon which we can compare and contrast this level of detail in performance for the 

heuristics. Future research could involve the ALP algorithm being experimentally tested 

against ALT over a series of different processor architectures to concretize their 

performance on modern day systems. Also, clever ways to reduce the number of 

operations for each heuristic calculation while maintaining asymptotic complexity should 

be explored. 

In this dissertation, experiments not only measure the number of visited nodes 

when comparing performance of shortest path algorithms. During experimentation, the 

number of each type of arithmetic operation and the computational runtime performed 

during each query are stored as measurements. This type of measurement is performed to 

better characterize the behavior of ALT and ALP as graph sizes scale. 
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ALT Landmark Selection in ALP 

 In ALT, solutions to the problem of choosing the best landmarks seek to reduce 

the average search space for arbitrary shortest path queries. Recall the search space, as 

defined in Chapter 2, is 

          ∈            
                  } (78)  

The MinALT problem seeks to choose the minimum set of landmarks L that 

reduces the overall search space for arbitrary shortest path queries and can be denoted as 

follows:  

Problem:                                    ∈  

 Landmark selection techniques in ALP seek to solve the exact same problem. The 

search space for ALP using the dual landmark heuristic to guide the search is simply 

defined as 

           ∈            
                   } (79)  

We denote the problem of choosing the minimum set of landmarks L, which 

reduces this overall search space for arbitrary shortest path queries as 

Problem:                                     ∈  

While the goals of the proposed solutions to MinALT and MinALP are the same, 

algorithms that have been generated to solve them must differ because of the graph 

partitioning requirement of ALP. Further, the goals of these algorithms must differ 

because of the arithmetic that maximizes each heuristic. To state the differences 

explicitly, high heuristic estimates for the ALT algorithm rely on a landmark being 

extremely far from the vertex being visited during the search and extremely close to the 

target vertex, or vice-versa. In other words, for   
 , either        should approach the 
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graph diameter while        approaches 0 or         should approach the graph diameter 

while        approaches 0 to maximize estimates, thereby maximizing performance. For 

the dual landmark ALP heuristic, distributed embedding will typically force smaller 

values for         and        . Therefore, the best strategies for dual landmark ALP will 

seek to maximize          for any point in the search while minimizing         and 

       .  

The following subsections detail how the embedding methods typically used in 

ALT can be applied to ALP and the theoretical details of their impacts when using the 

dual landmark heuristic. Each of these algorithms rely on a partitioning of the graph that 

attempts to minimize the relative number of edges between partitions in comparison to 

the number of edges within partitions. These landmark selection algorithms are designed 

with partitioning configurations generated by algorithms such as the Louvain algorithm 

(Blondel et al., 2008) that maximize modularity amongst graph partitions in mind. Such 

an algorithm can produce partitions that are dense in their number of edges, inherently 

reducing preprocessing time and presenting an optimal scenario for higher heuristic 

calculations. 

 

Random Landmark Selection 

The baseline strategy for ALP, just as with ALT, is random landmark selection. 

Two landmark selection methods for ALP are attempted in this work. Both algorithms 

take in a graph topology (including partitioning information) as their parameter and 

randomly, with uniform distribution, designates a single vertex within each partition as a 

landmark vertex. This is where the first algorithm, random-p, stops. The landmarks used 
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by ALP are the landmarks that were selected. The second algorithm much, like the ALT 

variant, continues with an initial set of test queries to ensure good landmarks have been 

chosen. For a number of trials k, we compare the average search space size of these each 

trial. The landmark configuration with the lowest search space size is the final landmark 

configuration that will be used by ALP. Note that the partitioning is considered a part of 

the graph topology and will not be changed during this selection process. This second 

landmark selection algorithm is denoted random-opt. The pseudocode for both of these 

algorithms follow: 

Farthest-d 

 Farthest-d landmark selection takes in, as parameters, a graph topology (including 

partitioning information). As with normal farthest-d selection, this landmark selection 

algorithm works as follows for ALP. Let {C1, …,Cn }ϵ C be the set of partitions in the 

input graph. Identify a start vertex  ∈   in partition Ci and find the vertex   ∈   

farthest, in terms of distance, in a partition Cj, away from it. Add    to the set of 

  

Figure 13 Random Landmark Selection 

  

Figure 14 Optimized Random Landmark Selection 

Random-opt(G = (V,E), num_trials) 

1. landmark_set <- list 

2. for each partition     

3.  v = ALT_Random(H, num_trials)  //Perform ALT random landmark selection 

  Add v to the landmark set 

3. return the landmark_set 

 

Random-p(G = (V,E)) 

1. landmark_set <- list 

2. for each partition     

3.  Choose a random vertex  ∈      

  Add to the landmark set 

3. return the landmark_set 
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landmarks. Then, proceed in iteration by finding the next vertex     in partition Cm 

farthest away from the current set of landmarks and adding     to the set. If, on a 

particular iteration, the next farthest vertex is in a partition that has a landmark designated 

to it, find the next farthest landmark in a neighboring partition that does not have a vertex 

in the set of landmarks. Continue until all partitions have an established landmark. Just as 

with ALT, this algorithm is denoted farthest-d. 

Planar 

The planar landmark selection algorithm is suited for ALP’s use of partitioning. 

This landmark selection algorithm uses graph layout information to divide a graph into 

sectors
6
. Each of these sectors is the respective graph partition for ALP. For dual 

landmark ALP, we leverage the partitioning algorithm described in the next section to 

implement planar landmark selection. By referencing the partition as sectors, the 

landmark for each partition will be selected by identifying the set of vertices within that 

partition with maximum eccentricity. If multiple vertices within the partition have the 

same eccentricity, one of them is chosen at random to be added to the set. In other words, 

we will identify the set of vertices from which the distance to all other vertices within its 

partition is maximal. For each sector, this typically is the farthest vector from any center 

node. This algorithm is known as planar. 

                                                 
6
 Planar landmark selection for ALP does not assume graph itself is planar. 
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Betweenness Centrality-Based  

Betweenness centrality is a preferred method for choosing landmarks in ALT. For 

ALP, this landmark selection algorithm iterates through each partition in the graph. For 

each partition, we induce a subgraph    from the vertices in the partition. The vertex with 

the largest betweenness centrality in    is designated as the landmark for that partition. If 

   is not connected, the largest connected subgraph of    is used to compute betweenness 

centrality and for landmark identification. This algorithm is known as betweenness. 

 

New Landmark Selection for ALP 

Here, we discuss landmark selection techniques not based on those from ALT research. 

Centrality-Based Landmark Selection 

Here, we detail a new landmark selection method, based on PageRank (Brin & 

Page, 1998). We will identify this selection technique as PageRank-P. Landmarks need 

to be created such that the likelihood of passing through a landmark on a path in the 

graph is maximized while ensuring that landmarks are not too close to each other. 

Therefore, the probability of encountering a vertex during a random walk of each 

subgraph Hi generated by a partition Ci ϵ C can be used to decide which vertex in the 

subgraph will be a landmark. The PageRank algorithm, an eigenvector centrality 

  

Figure 15 ALP Planar Landmark Selection 

planar(G = (V,E)) 

1. landmark_set <- list 

2. for each partition     

3.  Compute the eccentricity of H 

  Add vertex of maximum eccentricity in H to the landmark set 

3. return the landmark_set 
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computation, requires O(n+m) time to compute a PageRank vector for a graph. (Han, 

Lee, Pham, & Yu, 2010) Each subgraph induced by each partition has a basic PageRank 

calculation run on it. For k partitions, k PageRank vectors will be computed. The vertex 

with highest PageRank in its partition (and its respective vector) is chosen as the 

landmark for that partition. As with betweenness, if the partition is disconnected, the 

PageRank calculation will be run on the largest connected subgraph of the partition and a 

landmark will be chosen from that. 

Formally, let k be the number of partitions in G and L   V is the set of landmarks. 

The goal is to compute the set L of size k. For each partition Ci, 1 ≤ i ≤ k, and its induced 

subgraph Hi, a landmark li ϵ L is chosen by the following equation
7
: 

        ∈  

   

 
   

   V  

  V  
  ∈     

 
(80)  

where Vj represents a vertex in Hi, N the number of vertices in Ci, d a dampening factor, 

M(Vj) the set of vertices that link to a page Vj, L(Vk) the number of outbound links from 

Vk, and PR(Vj) the PageRank of Vj. This selection technique probabilistically chooses 

appropriate landmarks with comparable computational speed in comparison to the others. 

 During experimentation, for PageRank, we establish two more landmark selection 

techniques, where we choose landmarks with the minimum and mode scores, as well. 

These techniques are denoted PageRank-Min and PageRank-Mode. Further, the same 

paradigm is used for the following centrality measures: Closeness centrality, Load 

centrality, and Katz centrality (Freeman, 1979; Goh, Kahng, & Kim, 2001; Katz, 1953; 

Newman, 2001). We denote these as closeness, load, and katz, respectively.  

                                                 
7
 Just as in the other landmark selection methods, we determine partitions here using the Louvain method.  
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The closeness centrality of a particular landmark is simply the reciprocal of its 

farness, which is the sum of all distances from all other nodes. Therefore, using the 

notation above, closeness landmark selection chooses a subgraph’s landmark using the 

following equation: 

        ∈  

 

        
 ∈  

 (81)  

Load centrality is a variant of betweenness centrality in that it is defined through a 

hypothetical flow process. The score for an individual node is the fraction of all shortest 

paths that pass through that node. Using the notation for betweenness centrality from 

Chapter 2, for a vertex  ∈  , let        denote the number of shortest paths from   to   

containing  . Also, let          simply denote the total number of paths from   to  . Then 

betweenness centrality of v is formally defined as 

        
      

        
     ∈ 

 
(82)  

 Katz centrality is similar to eigenvalue centrality and PageRank measures. It 

computes centrality scores by measuring the number of first degree vertices and all other 

vertices that connect to the vertex under consideration through these immediate 

neighbors. 

Centrality measures are an intuitive way of keeping the distances among the landmark set 

for ALP large relative to the distances between landmarks and the vertices they own. 

 

Farthest-ECC 

 The Farthest-d algorithm for ALT is feasible for the small number of landmarks 

supported by the algorithm. However, with ALP, many more landmarks are able to be 
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selected.  Attempting to run this many shortest path computations becomes intensive and 

reduces ALP’s preprocessing benefits. Ideally, identifying nodes with maximum 

eccentricity within each partition would be the optimal approach. But this does not 

address the computational intensity problem. Therefore, another method was identified 

for attempting to find landmarks in the distributed embedding environment that were 

farthest away from the other landmarks.  This version of farthest seeks to identify 

landmarks within each graph partition that are farthest away from a sample set of nodes, 

chosen through a uniform random distribution, in the graph. To do this, we first reverse 

the graph, so that we are computing distances to each landmark. A set of nodes within 

each subgraph, also chosen through uniform random distribution, grow their shortest path 

trees out to the full graph’s sample set. The node within each subgraph that has the 

maximum distance from the full graph’s sample set of nodes is chosen as the landmark. 

The goal of this version of farthest, dubbed farthest-ecc, was too maximize          such 

that it would unbalance the heuristic estimates, providing the largest possible guesses, 

especially over long distances. 

 

Validating and Verification 

We end this Chapter with an overview of two experiments used to validate and 

verify the claims made in the methodology. In order to characterize the practical 

performance of ALP, experiments with both real world and synthetic data must occur. 

The main goals of experimentation were to verify ALP’s relatively smaller preprocessing 

(for both time and space), validate its behavior in the context of ALT, and gain insight 
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into the benefits and detriments of using one algorithm over another. They also establish 

the validity and utility of the ALP algorithm in comparison the ALT algorithm.  

Experiment 1: Performance and Bounds 

To understand how to perform optimal landmark selection in ALP, the algorithm’s 

basic behavior must be defined. The only way to do this is in the context of another 

landmark-based class of algorithms, ALT. Therefore, Experiment 1 was an initial 

investigation of the ALP dual landmark heuristic’s behavior and its performance bounds 

based on the scenarios defined earlier in the chapter for ALT. For the base 

implementations, comparison between ALT and ALP using the experimental benchmark 

road data from Maue’s PCD research and Goldberg’s ALT research occurred. Random 

selection was used for a series of controlled trials comparing the two algorithms on these 

datasets.  To initially test ALP’s heuristics, the algorithm will first be tested without 

distributed embedding. An implementation with distributed embedding will be created 

after initial testing. The Louvain algorithm (Blondel et al., 2008) will be used for the 

partitioning of the graph.  

After initial testing, the ALP heuristic was exercised such that its computational 

bounds can be verified. This experiment sought the parameters that maximize and 

minimize ALP’s computational performance and memory requirements. Using scenarios 

defined in this chapter, we were able to identify the optimal conditions for the heuristic, 

when it breaks even with the ALT heuristic, and its worst performance conditions. By the 

end of Experiment 1, a full characterization of the performance bounds of ALP 

algorithms against ALT algorithms was derived. 
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In this chapter, we have demonstrated that the advantage of using the ALP heuristic 

is that it practically admits more landmarks than ALT and performs faster landmark 

selection over the same number of landmarks. However, during query time, over the 

same set of landmarks, ALT dominates ALP (though ALT requires more space to store 

landmark distance information). The results of trials generated during this experiment 

also generate further characterizations of the algorithms to guide later application, as well 

as informing how the algorithm compares to other metric-independent preprocessing 

algorithms. 

Experiment 2: ALP vs. ALT 

Experiment 2 fulfilled the key contribution for this dissertation by identifying 

optimal landmark selection techniques for dual landmark ALP with distributed 

embedding. This experiment sought to arbitrate between each of the aforementioned 

algorithms for landmark selection in the ALP environment. Each technique was vetted 

using a common partitioning algorithm for multiple graph datasets, both real and 

synthetic. Like PCD, the way that the graph partitions are shaped and the actual 

partitioning is not determined by the algorithm (J Maue et al., 2006). For this approach, 

we continued to leverage an extremely fast algorithm for partitioning graphs known as 

the Louvain algorithm (Blondel et al., 2008). This algorithm relies on maximizing 

modularity within a graph, ensuring that there is a significantly higher proportion of edge 

connections within partitions than between partitions. It has become a standard algorithm 

for community detection in graphs and, as such, will lend a significant demonstration and 

characterization for ALP’s behavior to this common type of input. 
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Summary of Experiments 

The table below summarizes each of the experiments in this dissertation. 

Experiments are described in much further detail in the next chapter.  

Experiment 1 

 

ALP 

Performance 

Bounds 

Goal Investigate and understand the computational bounds of 

ALP dual landmark heuristics in comparison with ALT 

Research 

Questions 
 Using ALP with distributed landmark embedding, 

what are the ideal characteristics for landmark 

shortest path trees? In other words, how much 

preprocessing and memory is required for ALP to 

maintain its key benefits? 

 How does the algorithm behave as the number of 

landmarks used to guide the search increases? 

 What landmark selection techniques theoretically fit 

best with ALP?  

Experiment 2 

 

ALT vs ALP 

Goal Compare and contrast the ALP and ALT algorithms to 

characterize utility 

Research 

Questions 
 What are the key benefits of using the (dual 

landmark) ALP heuristic over the ALT heuristic 

when performing shortest path queries? 

 In what ways can this be applied to path planning? 

 What real-world applications exist for ALP that did 

not exist for ALT? 

 

Once sufficient data was collected from the first experiment, Experiment 2 trials 

were carried out with guidance from the results of Experiment 1. Each experiment 

underwent more than 10
6
 trials to sufficiently compare and characterize the two 

algorithms under experimentation. Each experiment relied on available data used to 

characterize the other metric-independent preprocessing algorithms mentioned in the 

literature review, as well as benchmark models common to modern graph libraries. This 

ensured that the experiments that are performed here can be replicated and validated upon 

publication. 

Table 5 Dissertation Experiments 
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The trials run for each experiment followed the flow shown in Figure 16. Data for 

the particular experiment is loaded into memory. All information regarding the structure 

and characterization of this data were previously recorded. The specific parameters for a 

given trial will then be established. During simulation, these parameters are used for 

searching over a user-specified number of shortest path queries on the particular dataset. 

A measurement harness monitors the simulation to extract information related to the 

specified metrics for preprocessing and shortest path queries. Finally, the measurements 

gathered by the harness will be sent to a relational database that will be used for analysis 

and to draw conclusions. 

 

 

Figure 16 The flow of each trial during Experimentation 

Data Ingress 
• PCD, ALT, and 

Synthetic 
Datasets 

Parameter 
Insertion 

• Always includes a 
graph, an 
algorithm, 
metrics, and 
algorithm 
parameters 

Simulation 

• Preprocessing 
using parameters 

• Run the specified 
amount of 
shortest path 
queries over the 
graph 

Measurement 
Egress 

•The 
measurements 
based on the 
metrics noted 
on input 

Report 
•Record results 

to local MySQL 
database for 
later analysis 
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Summary 

 This chapter describes the foundations of a class of algorithms that reduce the 

amount of preprocessed information necessary to perform preprocessed shortest path 

queries. A new class of algorithms is presented for solving shortest path queries using the 

A* algorithm, landmarks, and polygon inequalities (ALP). Its novel feature is that it 

computes and stores a reduced amount of preprocessed information while making more 

informed search decisions. This new heuristic is applied by using distance information 

about two landmarks in a single query to guide the A* algorithm from a source node to a 

destination node. A new paradigm for landmark selection, known as distributed 

embedding, is proposed for this heuristic. Using this process for shortest path search 

reduces the amount of preprocessed information that needs to be stored while also 

reducing the level of computation required at each step of the search. In a fixed space 

environment, ALP has the potential to have more informed searches than ALT, as it is 

able to leverage more landmarks.  Domination of one heuristic over the other depends on 

the landmark set each is assigned and, in general, the denser the landmark set, the better 

the heuristic. While ALP theoretically does not dominate the ALT heuristic, the ALT 

heuristic, in turn, does not dominate it. In Chapter 4, we will establish, through 

experimentation, that in cases in which the ALT heuristic has greater average estimates 

than the ALP dual landmark heuristic, ALP can still computationally outperform ALT. 

Therefore, a key contribution of this effort will be the analysis of scenarios in which this 

heuristic and its competitors should be used. This will give guidance to future users of 

shortest path algorithms. 
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Chapter 4 

Results 

This chapter provides an objective description and analysis of the findings, 

results, and outcomes of the research. The experiments for the dissertation are described 

in detail. The trials conducted in each of these experiments were strongly motivated by 

previous studies for ALT (Fuchs, 2010; A. Goldberg & R. Werneck, 2005; Goldberg & 

Harrelson, 2005; Potamias et al., 2009; Takes & Kosters, 2014). In this chapter, the use 

of charts, tables, and figures are limited to those that are needed to support the final 

conclusions. All other illustrations and summary data can be found in the appendices. 

The Data Analysis section describes the methods of collecting the data and summaries of 

what has been collected, pointing out ambiguities, inconsistencies, patterns and themes in 

the data. In the Findings section, the results described in the Data Analysis section are 

synthesized in light of the dissertation’s research questions, literature review, and 

methodologies. In the Summary section, the research questions posed in Chapter 1 are 

explicitly answered by summarizing the Data Analysis and Findings sections, 

enumerating the theoretical and practical implications of the information relayed by those 

sections. 

In this Chapter, experimentation with ALP, using two landmarks for distance 

estimation, compares the class of algorithm’s performance and benefits against ALT, the 

class of algorithms from which it was derived. This experimentation also fully 

characterizes the heuristics, identifies the optimal, average, and worst-case input 
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parameters, and thoroughly compares the dual landmark ALP algorithm to its 

predecessor, the ALT algorithm. Experiments are initially performed on synthetic graph 

datasets to characterize the algorithm’s performance based on structure. Then, benchmark 

datasets that have been called out in academic literature, based on city and state maps, are 

used for applied characterization. Experiment 1 resulted in a characterization of the 

performance of ALP as a heuristic for A* with regard to graph structure and landmark 

selection. Experiment 2 highlights differences in performance of ALP and ALT as 

heuristics for A*, with final trials for the experiment simulating the comparative behavior 

of both algorithms in a fixed-memory environment. The combined theoretical and 

experimental characterization of this algorithm offers the Computer Science community 

insight into the applications of the algorithm in other spaces. In the end, a shortest path 

analysis software library, the theoretical and experimental characterizations of ALP, and 

data sufficient to evidence the innovative claims of this dissertation are contributed. 

Data Analysis 

This section describes the implementation of the ALP experimentation 

environment, the datasets used for experimentation, and the metrics used for 

characterization. 9,653 trials, each corresponding to at least 1,000 shortest path queries 

were run to vet the performance and bounds of the ALP algorithm, landmark selection in 

its environment, and how local/global optima of its performance compares to that of 

ALT. In total, over          shortest path queries were answered by the experimental 

testbed. The data that is analyzed in this section is derived from these queries. Table 6 

summarizes the experiment sessions, trials, and queries performed for the experiments in 

this dissertation. 
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Datasets 

Experiments were run on multiple classes of synthetic graphs and graphs of real 

road networks. Shown in Table 7, the synthetic graphs used for experimentation have 

structures that model data across many fields of study. The use of these graphs allowed us 

to experimentally glean how ALP can behave in different environments, and not simply 

during road navigation.  The number of nodes and edges is not included in Table 7 as a 

parameter for these graphs, as they vary throughout experimentation.  

Descriptions and further details about the structure of each graph are found in 

Appendix A. In-depth detail about the number of nodes and edges that provided specific 

 Road Graph 

Queries 

Synthetic 

Graphs Queries 

Total 

Queries 

Landmark Selection 

Techniques Attempted 

Dijkstra’s 4,144,759 2,826,206 6,970,965 N/A 

ALT 3,258,983 1,321,295 4,580,278 5 

ALP 4,068,893 2,826,097 6,894,990 13 

Table 6 Summary of Experimental Runs 

Table 7 Synthetic Graph Problem Families 

 

Name Graph Type Graph Parameters DB Name

M1 Barabási–Albert (BA) model Preferential Attachment = 2 Edges/Node NETWORKX.BARABASI_ALBERT_2

M2 Barabási–Albert (BA) model Preferential Attachment = 3 Edges/Node NETWORKX.BARABASI_ALBERT_3

M3 Barabási–Albert (BA) model Preferential Attachment = 5 Edges/Node NETWORKX.BARABASI_ALBERT_5

M4 Barabási–Albert (BA) model Preferential Attachment = 7 Edges/Node NETWORKX.BARABASI_ALBERT_7

M5 Barabási–Albert (BA) model Preferential Attachment = 9 Edges/Node NETWORKX.BARABASI_ALBERT_9

M6 Barabási–Albert (BA) model Preferential Attachment = 11 Edges/Node NETWORKX.BARABASI_ALBERT_11

M7 Barabási–Albert (BA) model Preferential Attachment = 13 Edges/Node NETWORKX.BARABASI_ALBERT_13

M8 Barbell Graph Equivalent Number of Nodes on each side NETWORKX.BARBELL_GRAPH_EVEN

M9 Barbell Graph 2/3 Nodes on Left Barbell, 1/3 Nodes on Right Barbell NETWORKX.BARBELL_GRAPH_ODD

M10 Circular Ladder Graph NETWORKX.CIRCULAR_LADDER_GRAPH

M11 Complete Graph NETWORKX.COMPLETE_GRAPH

M12 Cycle Graph NETWORKX.CYCLE_GRAPH

M13 Erdős–Rényi model Edge Creation = 15% NETWORKX.ERDOS_RENYI_15

M14 Erdős–Rényi model Edge Creation = 30% NETWORKX.ERDOS_RENYI_30

M15 Ladder Graph NETWORKX.LADDER_GRAPH

M16 Path Graph NETWORKX.PATH_GRAPH

M17 Random Lobster Pbackbone=45%, PBeyondBackbone=45% NETWORKX.RANDOM_LOBSTER_45

M18 Random Lobster Pbackbone=90%, PBeyondBackbone=90% NETWORKX.RANDOM_LOBSTER_90

M19 Watts–Strogatz model 10% nearest neighbor connections, 10% Prewiring NETWORKX.WATTS_STROGATZ_10

M20 Watts–Strogatz model 20% nearest neighbor connections, 20% Prewiring NETWORKX.WATTS_STROGATZ_20

M21 Waxman Graph alpha=0.4,beta=0.1,domain=(0,0,1,1) NETWORKX.WAXMAN_GRAPH
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results of analysis on these graphs can be found in Appendix C. 

Graph Type 
Average 

Transitivity 

Average Clustering 

Coefficient 

NETWORKX.BARABÁSI_ALBERT_2 2.90E-02 0.06 

NETWORKX.BARABÁSI_ALBERT_3 6.49E-02 0.10 

NETWORKX.BARABÁSI_ALBERT_5 7.97E-02 0.10 

NETWORKX.BARABÁSI_ALBERT_7 5.82E-02 0.07 

NETWORKX.BARABÁSI_ALBERT_9 1.33E-01 0.15 

NETWORKX.BARABÁSI_ALBERT_11 1.48E-01 0.16 

NETWORKX.BARABÁSI_ALBERT_13 1.62E-01 0.17 

NETWORKX.BARBELL_GRAPH_EVEN 9.96E-01 0.67 

NETWORKX.BARBELL_GRAPH_ODD 9.98E-01 0.80 

NETWORKX.CIRCULAR_LADDER_GRAPH 0.00E+00 0.00 

NETWORKX.COMPLETE_GRAPH 0.00E+00 0.00 

NETWORKX.CYCLE_GRAPH 0.00E+00 0.00 

NETWORKX.ERDOS_RENYI_15 1.51E-01 0.16 

NETWORKX.ERDOS_RENYI_30 3.04E-01 0.30 

NETWORKX.LADDER_GRAPH 0.00E+00 0.00 

NETWORKX.PATH_GRAPH 0.00E+00 0.00 

NETWORKX.RANDOM_LOBSTER_45 0.00E+00 0.00 

NETWORKX.RANDOM_LOBSTER_90 0.00E+00 0.00 

NETWORKX.WATTS_STROGATZ_10 9.36E-02 0.10 

NETWORKX.WATTS_STROGATZ_20 4.12E-01 0.42 

NETWORKX.WAXMAN_GRAPH 7.97E-02 0.08 

Each of these structures varies in terms of several main properties. In 

experimentation, we specifically focus on their average clustering coefficient and 

transitivity, as shown in Table 8.  The clustering coefficient of each vertex in a graph is 

the fraction of triangles connected to the vertex divided by its number of triples, or sets of 

two edges connected to the vertex. Therefore, the average clustering coefficient for a 

graph is the mean clustering coefficient over all vertices. Transitivity is a relative measure 

of the number of triangles in a graph divided by the total number of connected triples of 

Table 8 Average Synthetic Graph Transitivity and Local Clustering Coefficient 
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nodes. Transitivity is also known as the global clustering coefficient of a graph. Average 

clustering coefficient and transitivity measures give strong indications of the clustering of 

vertices in the graph. They are significant to the findings in this effort as distributed 

embedding relies on a partitioning of the graph and the partitions used in these 

experiments (primarily provided by the Louvain method) are strongly dependent on these 

properties (Soundarajan & Hopcroft, 2015). 

Summary information for the real road graphs that were used in experimentation 

is shown in Table 9. These graphs were taken from datasets used in the 9
th

 DIMACS 

Implementation Challenge (Demetrescu et al., 2006). This is a benchmark dataset for 

much of the shortest path research that occurs in academia at the time of this writing. 

These datasets allowed for testing of ALP’s behavior on directed graphs. In some cases, 

for testing purposes, we executed trials using real road graphs as undirected graphs. The 

differences are noted when reporting summary data.  

In general, a vertex in these graphs represents a single intersection of two roads 

and an edge represents a road segment. While many previous research efforts with ALT 

Description # Vertices # Edges 

Pennsylvania 1,087,562 1,541,514 

Rome 3,353 4,831 

Belgium 746,333 767,786 

Luxembourg 84,136 85,579 

NYC 264,346 365,050 

Washington DC 9,599 14,909 

Rhode Island 53,288 68,496 

United States (Western) 6,262,104 15,248,146 

United States (Central) 14,081,816 34,292,496 

United States (Eastern) 3,598,623 8,778,114 

United States (Bay Area) 321,270 800,172 

Hawaii 64,892 76,809 

Great Lakes 2,758,119 6,885,658 

New Mexico 467,259 567,084 

Table 9 Road Graph Problem Families 
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(and other shortest path preprocessing methods) required the dataset to be processed 

using only subgraphs of the roadmap, the datasets used in this effort could be used in 

their entirety when experimenting with ALP. Subgraphs are only used in ALP during 

experimentation to increase the number of trials, not because of computational hardware 

limits. Cases in which subgraphs are used are noted in the experiment data. For all 

datasets, we analyze the graph’s largest strongly connected component, or the induced 

subgraph in which all vertices can reach all other vertices.  

In the context of the original work, for each query, source-target pairs among all 

vertices are chosen at random using a uniform distribution (Goldberg & Harrelson, 2005). 

Testing queries with path lengths uniformly distributed from zero to the diameter of the 

graph was necessary in order to adequately characterize the behavior of each algorithm in 

each graph. Because the source-target pairs in our runs are chosen with uniform random 

distribution, path lengths span the possible distances of the graph.  

For each experiment, a series of trials was run over these synthetic and road 

graphs at various scales to vet the overall performance of both ALT and ALP. A trial 

describes a specific configuration of parameters for a set of shortest path queries. Over 

1000 variations of synthetic graphs, as well as over 100 different subgraphs of real road 

datasets were used. The two tables shown in Figure 17 categorize each class of graph 

used during experimentation by size.  Each graph instance falls under categories that are 

deemed vertex scales and edge scales. These scales are defined by lower and upper 

bounds for the number of vertices and edges contained in a single graph, respectively. 

Performance of the shortest path preprocessing algorithms is vetted for each of these 

vertex and edge scales. 
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Implementation 

The implementations used for each experiment were based on the pseudocode and 

descriptions in Chapters 1-3. Experimentation was carried out under a 64-bit CentOS 7 

instance on a custom-built server, which has 8 GB of RAM and a 2.20GHz Intel(R) 

Core(TM) 2 Duo CPU E4500 processor. An additional 40GB of swap space was 

allocated on the server. Of note, this swap space was never tapped for ALP processing for 

large scale graphs and regularly tapped for ALT. 

For the software implementations, all experimentation for ALT and ALP was 

implemented using Python. The synthetic graphs for these experiments are generated by 

the NetworkX library (Developers, 2010) using Python 2.7. NetworkX’s scripts for 

pathfinding (A*, Dijkstra’s algorithm) were instrumented such that metrics such as search 

space size could be recorded for each query. The library was also extended by adding a 

capability to only grow a Dijkstra SPT until it covers a desired set of vertices. This 

capability serves preprocessing in both the ALT and ALP environments. The NetworkX 

source code for the A* algorithm was duplicated and modified such that the pathmax 

equation was used by default to force consistency.  

For smaller graphs (V1-V4), to map vertices to their corresponding landmarks and 

partitions, we use NetworkX’s vertex labeling mechanisms to give each vertex an 

attribute called “ALP_<landmark_id>” with a value of its distance from its partition’s 

 

Figure 17 Vertex and Edge Graph Scales 

Category # Vertices # Experimented Graphs

V1 1-100 2098

V2 101-1000 315

V3 1001-5000 133

V4 5001-20000 85

V5 20001-100000 92

V6 100001-250000 1

V7 250000-1000000 4

Category # Vertices # Experimented Graphs

E1 1-100 1375

E2 101-1000 812

E3 1001-5000 170

E4 5001-20000 146

E5 20001-100000 131

E6 100001-250000 40

E7 250000-1000000 35
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landmark. For larger graphs (V4-V7), we use separate Python dictionaries as data 

structures for ALT and ALP, respectively to address memory issues
8
. For ALP, three 

separate dictionaries serve the following functions: 

(1) Relating a vertex to its reference landmark 

(2) Storing the distances from all landmarks and vertices of the subgraph owned by a 

landmark to that landmark 

(3) Storing the distances to all landmarks and vertices of the subgraph owned by a 

landmark from that landmark 

For ALT, only two dictionaries are needed
9
 that serve the functions of storing vertex 

distances to and from landmarks, respectively. 

Unless otherwise specified in this chapter, a NetworkX implementation of the 

Louvain method was used for graph partitioning (Aynaud, 2010; Blondel et al., 2008). 

Other partitioning methods that grant the flexibility of creating a desired number of 

partitions are used and described later in the Chapter for specific trials. 

For experimentation with larger graph datasets, NetworkX objects under Python 

proved to be too large to run on the basic experimentation server. Because of this, Cython 

was used to convert modified NetworkX shortest path algorithms, all preprocessing 

algorithms, and all querying mechanisms to C code (Behnel et al., 2011; Summerfield, 

2013; Surhone, Tennoe, & Henssonow, 2011). Using GCC 4.9.2, the running binary for 

this code was optimized to run each trial for the experiments (Griffith, 2002). The 

following GCC flags were used: 

                                                 
8
 When attempting to use NetworkX labeling, a dictionary is populated for every node, creating substantial 

overhead in the case of large graphs. 
9
 These grow to become much significantly larger than ALP’s dictionaries because they must store 

landmark distance information for each landmark to and from all other vertices in the graph. 
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gcc -flto -fuse-linker-plugin -Ofast -fivopts -fdata-sections -floop-

parallelize-all -ftree-parallelize-loops=4 -funroll-loops -mtune=native 

-march=native -I/usr/include/python2.7 

 

The optimizations are tailored toward the server processor and are focused as 

much as possible on speed, not the size of the resulting binary executable. Substantial 

efficiency increases stemmed from the combination of the conversion to C code and the 

optimizations for GCC. 

Appendix B details the structure of our data storage for queries and trials. 

 

Metrics 

Throughout this chapter, the following metrics are used to characterize ALP as an 

A* heuristic and to compare and contrast it with ALT. Efficiency is the primary metric 

identified by the creators of ALT to measure query performance (Goldberg & Harrelson, 

2005).
10

 The average efficiency over a set of shortest path queries is used to characterize 

a heuristic. Recall that the search space size is the number of vertices visited to discover 

the shortest path. The efficiency of a single query is computed as follows: 

In other words, the efficiency is defined as the number of vertices on the shortest 

path divided by the number of vertices explored by the search for a single query. An 

optimal heuristic would have 100% efficiency. For example, for ALP, a perfect search 

would mean that                    . This is a machine and scale independent method 

                                                 
10

 We call this measure “efficiency” because of its use in the original ALT publications.  

Figure 18 GCC Optimizations for Large Graph Runs 
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of understanding ALP performance. We use this metric throughout both experiments for 

evaluating shortest path algorithm performance.  

To further identify utility of each algorithm, the tradeoff metric is used to identify 

the utility of using each algorithm over a user-defined number of queries. Tradeoff is 

calculated as follows: 

            

where      is the time to process n queries,    is the preprocessing time, and    is the 

average time (in seconds) to process is each query. Note that this makes tradeoff an 

application-based metric which can vary based on the number of queries being executed. 

Preprocessing time is the physical time in seconds that it takes to actually run a landmark 

selection algorithm plus the time that it takes to actually grow the shortest path trees for 

each landmark. In general, a good heuristic brings tradeoff values as close to zero as 

possible. It is a machine and implementation-dependent metric that complements 

efficiency to provide better understanding of practical performance for ALP and other 

shortest path algorithms that require preprocessing. 

For some analysis, we take a look at the number of landmarks used for a 

particular landmark configuration and the average efficiency of a run with that landmark 

configuration respectively as       coordinates. This allows us to measure the 

performance gain that stems from growing the number of landmarks by computing the 

slope of these coordinates. Here, we define performance gain as a simple measure of how 

the performance of ALP or ALT increases as the number of landmarks increases. 
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Approximation error is another common metric used in the literature for ALT to 

understand the efficacy of an embedding on the graph. For a given query, approximation 

error is defined as follows: 

                    
          

       

      
 

The approximation error for Dijkstra’s algorithm is always 1, as Dijkstra’s algorithm is 

equivalent to A* with a zero heuristic. Like efficiency, it is a measure of the quality of a 

heuristic. The two numbers are typically proportional to each other. However, both 

average efficiency and average approximation error are needed to measure the quality of 

a heuristic. For instance, if a heuristic were to only make good estimates at key waypoints 

in a larger graph, the average efficiency from such a heuristic would be large while the 

average approximation error would be large, as well. A good heuristic keeps average 

efficiency large and approximation error small. Approximation error is a good indicator 

of a heuristic being applicable across many datasets. In summary, efficiency is a good 

measure of a heuristic’s quality for shortest path search (performance) while 

approximation error is a good measure of a heuristic’s quality for estimating distance in a 

metric space (utility). 

 To recap, the metrics used to characterize performance during experimentation 

were: 

- Efficiency 

- Tradeoff 

- Performance Gain 

- Approximation Error 
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Experiment 1: ALP Performance and Bounds 

This section describes the activities carried out in Experiment 1. Experiment 1 

sought to characterize the performance and bounds of ALP with distributed embedding as 

a heuristic for A* in the experimentation environment described above. The 

implementations and schemas used in this first experiment established an operational 

experimentation environment for shortest path preprocessing. Note that highly-detailed, 

supplemental or extra interesting data from all experimentation can be found in Appendix 

C. 

Description of Trials 

Each trial tested a variety of graph configurations and parameters for ALP such 

that its computational bounds could be identified. Unless otherwise noted, we leveraged 

optimized random landmark selection to select landmarks for ALP. For every query, we 

also ran Dijkstra’s algorithm as A* with a zero heuristic for a consistent sanity check and 

basis of comparison. The results of Dijkstra’s algorithm queries are recorded, as well
11

. In 

this experiment, we looked at scenarios from a variety of vantage points, teasing out the 

performance and bounds of ALP. Table 10 briefly describes the types of trials, or sub-

experiments that were run to vet ALT’s performance and bounds. Results for Experiment 

1 yield information about the performance and bounds for ALP in the context of each of 

these trials. 

                                                 
11

 For instance, we verify that path lengths are equal for both Dijkstra and ALP to ensure correctness of 

each algorithm. Also, if ALP has larger search space size than Dijkstra, it means overestimates have 

occurred.  
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Varying Graph Structure 

In this set of trials, 1000 shortest path queries were run on each synthetic graph 

structure in the dataset using the ALP algorithm at all vertex and edge scales
12

. The 

number of landmarks that were used for each trial was always equal to the number of 

graph partitions for the input graph. The lowest number of partitions made available by 

the Louvain dendrogram was used for distributed embedding.  

Table 11 describes the number of runs and average ALP efficiency for each graph 

class, shown in alphabetical order. For each type of synthetic graph, the efficiency at each 

vertex or edge scale was quite similar. We enumerate, in Appendix C, a set of tables that 

show every permutation of a graph structure against the average efficiency of queries on 

that graph. Here, we highlight noteworthy correlations between graph structures. Table 

11 and Figure 19 are sufficient for examining ALP’s behavior for different graph 

structures. These results imply that efficiency should grow in proportion to transitivity. 

Conversely, graphs such as path graphs, cycle graphs, ladder graphs, and random lobsters 

with zero transitivity (having no triangles), exhibit high efficiency rates, as well. Their 

high efficiency rates are due to the fact that the very structure of each graph significantly 

tightens the quadrilateral inequalities.  

                                                 
12

 We run these queries for each of the road graphs, as well. This data is found in the Appendix. 

Table 10 ALP Performance and Bounds Trials 

Trial Description 

Varying Graph 

Structure 

Characterize the efficiency and approximation error of ALP 

heuristic when run on 20 different synthetic graph structures as well 

as real road graphs. 

Number of 

Landmarks 

Identify the degree to which ALP performance increases as the 

number of landmarks used is increased. 

Landmark 

Selection 

Details performance of ALP for landmarks chosen through a set of 

landmark selection algorithms defined in Chapter 3. 
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Graph Type 
Average  

Efficiency 

 Average 

Approximation Error 

NETWORKX.BARABÁSI_ALBERT_2 9.83% 83.36% 

NETWORKX.BARABÁSI_ALBERT_3 16.22% 71.74% 

NETWORKX.BARABÁSI_ALBERT_5 11.64% 73.63% 

NETWORKX.BARABÁSI_ALBERT_7 7.35% 75.94% 

NETWORKX.BARABÁSI_ALBERT_9 13.29% 71.99% 

NETWORKX.BARABÁSI_ALBERT_11 13.66% 70.00% 

NETWORKX.BARABÁSI_ALBERT_13 14.49% 70.10% 

NETWORKX.BARBELL_GRAPH_EVEN 32.26% 54.53% 

NETWORKX.BARBELL_GRAPH_ODD 24.09% 57.84% 

NETWORKX.CIRCULAR_LADDER_GRAPH 41.20% 28.14% 

NETWORKX.COMPLETE_GRAPH 9.18% 99.25% 

NETWORKX.CYCLE_GRAPH 80.41% 22.51% 

NETWORKX.ERDOS_RENYI_15 27.52% 65.73% 

NETWORKX.ERDOS_RENYI_30 24.75% 62.63% 

NETWORKX.LADDER_GRAPH 48.90% 16.30% 

NETWORKX.PATH_GRAPH 93.34% 20.43% 

NETWORKX.RANDOM_LOBSTER_45 61.91% 22.85% 

NETWORKX.RANDOM_LOBSTER_90 42.50% 27.52% 

NETWORKX.WATTS_STROGATZ_10 19.15% 69.36% 

NETWORKX.WATTS_STROGATZ_20 14.87% 68.13% 

NETWORKX.WAXMAN_GRAPH 4.76% 75.10% 

Table 11 Efficiency and Approximation Error for Varying Synthetic Graph 

Structures 
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Figure 19 Average Efficiency and Error for Synthetic Graphs 

Analysis of each of the experimental graph structures reveals that performance of 

ALP for these graph models does not seem to be a significant correlation between the 

transitivity or average clustering coefficient of the graph and the average efficiency of an 

ALP shortest path query  (Figure 20). The only noticeable correlation is that when these 

structural properties tend to be zero, the efficiency gets closer to 100.  Measures for both 

transitivity and average clustering coefficient are zero for ladder, circular ladder, random 

lobster, cycle, and path graphs. For each of those graphs, the prediction of where A* 

should move next is successful roughly 50% at each vertex visit. 
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Figure 20  Average Efficiency of 1000 Queries vs Structural Properties of Graphs
13

 

 

 
Figure 21 Graph of Efficiency measures for Dijkstra’s Algorithm and ALP shortest 

path queries on Barabási-Albert preferential attachment graphs
14

  

 

Figure 21 further highlights correlations by examining the relationship between 

transitivity, efficiency, and the parameters for generating the Barabási-Albert graph. In 

the figure, we multiply the transitivity by 100 to demonstrate its variability in relation to 

Dijkstra and ALP efficiency. We see that it varies in a way quite similar to ALP and 

                                                 
13

 Initial results show no immediate correlation between efficiency and the properties 
14

 The green line on the plot shows the transitivity of each graph for the # of edges attached 
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Dijkstra’s efficiency for those graphs. ALP’s performance seems to depend on both 

transitivity and average clustering. 

For each of the synthetic graph structures, Figure 22 illustrates the difference 

between ALP and Dijkstra over growing vertex and edge scales. These figures 

demonstrate that ALP’s efficiency decreases as the graph gets larger. This behavior is the 

same for ALT and Dijkstra’s algorithm, as well. This is why preprocessing as opposed to 

simply using Dijkstra’s algorithm becomes more valuable as graphs get larger. We 

simply note a decrease in efficiency as paths get larger, a fundamental property of the 

search shared by ALT.  Results show that these measurements are not correlated in any 

meaningful way with respect to growing graph scale. 
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Figure 22 ALP Efficiency at each Graph Scale 

 

 

Number of Landmarks  

The structure of the landmark SPTs used by ALP are constrained by partitioning. 

One strategic method of increasing ALP’s efficiency is to increase the number of 

landmarks that are used, which shortens the SPTs used for ALP. These series of trials 

provide evidence as to the degree to which ALP performs better in the context of larger 

or smaller SPTs from each landmark. These trials are performed on the following four 

road graphs: 

Dataset # Nodes # Edges 

Average 

Clustering Transitivity 

Rome 3353 4831 3.027E-02 3.7358E-02 

Washington DC 9522 14832 3.919E-02 4.6936E-02 

Vermont 95671 209764 1.603E-02 2.8579E-02 

New York City 264328 730012 2.077E-02 2.5438E-02 
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Table 12 Road Graphs for Increasing Landmark Trials 
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Note that the average clustering and transitivity of these graphs are closest to the 

Barabási–Albert, Waxman, and Watts-Strogatz graphs in our synthetic graph dataset. In 

this series of trials, we leverage the hierarchies of Louvain algorithm community 

detection to increase the number landmarks. We partition each graph by the first level of 

the Louvain dendrogram (with the least partitions), then the second, the third, and up to 

the fourth. This results in a growing number of landmarks used for ALP (as well as 

shorter SPTs). For each real graph available in our dataset, we run 1000 shortest path 

queries on uniform random source-target pairs. Below, in Table 13, we detail the average 

efficiency, average error, and the proportion of the graph searched during 1000 ALP 

queries for each of these road graphs. The data for these vertex classes most clearly 

demonstrated the differences in efficiency as the number of landmarks grew. 

The first and most apparent result is that ALP appears to have greater efficiency 

 
Table 13 ALP Performance for Increasing Landmarks 

 

Name # Landmarks Level Efficiency % Graph Searched Average Error

Rome 48 1 7.00049% 30.98052% 60.34290%

Rome 58 2 7.68830% 28.70882% 55.71418%

Rome 187 3 11.03445% 21.38073% 40.01324%

Rome 818 4 25.13997% 10.43306% 17.37964%

Washington DC 73 1 5.64145% 21.49114% 40.39575%

Washington DC 136 2 6.31846% 18.45890% 33.44018%

Washington DC 624 3 10.96116% 11.21931% 19.90601%

Washington DC 2855 4 31.55521% 4.27612% 7.27658%

Vermont 658 1 0.76603% 58.06448% 87.96134%

Vermont 718 2 0.99790% 51.84114% 40.18168%

Vermont 1923 3 1.01485% 51.19348% 37.31285%

Vermont 7405 4 1.04701% 51.01309% 34.76163%

NYC 418 1 1.44018% 16.43274% 26.45864%

NYC 429 2 1.44114% 15.77193% 25.58507%

NYC 926 3 1.75182% 13.79238% 21.55280%

NYC 3908 4 2.82053% 9.06403% 13.66942%
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as the number of landmarks embedded in the graph grows. For Washington DC, we see 

as high as 25% efficiency between the use of level 1 and 4 for the dendrogram. Further 

analysis of this increase in efficiency is illustrated in Figure 23. This figure illustrates this 

performance gain
15

 in relation to the increase in sheer number of landmarks for each run. 

As the ratio of the number of vertices to landmarks increases, the performance gain 

converges.
16

 This means that growing the number of landmarks is beneficial up to a limit 

for ALP. However, the actual amount that it benefits decreases as the maximum possible 

partitioning is approached. 

Shown in the tables and plots above, the efficiency of ALP always improves when 

the number of landmarks embedded in the graph grows. However, performance gain 

converges to zero as the ratio of nodes to landmarks continues to grow. Understanding 

this convergence is the key to understanding the optimal number of landmarks for ALP. 

                                                 
15

 Defined earlier in Metrics 
16

 Experimental graphs for performance gains as the landmarks increase appear to be a Cauchy sequence. 

While the data does not precisely confirm this over all graphs, the limit of this function converges as it 

approaches 0. 

 

Figure 23 Landmark Increase vs Performance Gain 
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Further, understanding this convergence can inform partitioning algorithms such as the 

Louvain method as to the average size that clusters need to be for optimal behavior. 

Results also show (Table 14) that preprocessing time typically coincides directly 

with the number of landmarks being used. Preprocessing time is measured as the 

combined time that it takes to both choose the set of landmarks and then grow the 

shortest path trees. The time that it takes to choose the set of landmarks varies based on 

the landmark selection technique used. The table below shows that for random landmark 

selection, the preprocessing time increases in linear proportion to the number of 

landmarks used. 

Landmark Selection 

The proposed landmark selection techniques from Chapter 3 were implemented in 

the Python implementation to identify the critical points of performance for each method. 

For reference, these techniques are summarized in Table 15. 

 
Table 14 # Landmarks vs Preprocessing Time 

 

Name # Landmarks Level Preprocessing Time (s)

Rome 48 1 10.8281069

Rome 58 2 9.5090308

Rome 187 3 15.122344

Rome 818 4 34.9846501

Washington DC 73 1 39.6760621

Washington DC 136 2 46.523139

Washington DC 624 3 93.329982

Washington DC 2855 4 296.3415701

Vermont 658 1 918.328876

Vermont 718 2 995.6715961

Vermont 1923 3 2083.487783

Vermont 7405 4 6984.66541

NYC 418 1 2264.852974

NYC 429 2 1981.283189

NYC 926 3 4085.070291

NYC 3908 4 4610.982617
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Each of these landmark selection techniques was applied to graphs in the road 

graph dataset. The goal of landmark selection is to optimize query performance and the 

tradeoff for the time required by preprocessing. 1000 queries were run on each graph, 

iterating through each landmark selection method, for the lower two levels of the 

dendrogram produced by the Louvain algorithm for partitioning. In the previous trials, we 

experienced intractably high preprocessing times for Farthest-d. We also saw that Katz 

centrality did not always converge in quite a few graphs. This is a fundamental property 

of Katz centrality, as it is primarily suited for directed acyclic graphs. Because these 

Embedding 

Method 

Description 

Optimized 

Random 

Within each subgraph, choose a set of candidate landmarks at 

random and run a series of ALT queries within the subgraph. 

Choose the landmark with the most efficient runs. 

Farthest-d Chooses a single landmark in each subgraph partition that is farthest 

in distance from all other already chosen landmarks 

Farthest-ECC Chooses a single landmark in each graph partition that is farthest 

from all vertices (highest eccentricity) 

Planar Choose a single landmark in each graph partition that is a border 

vertex and farthest from all other already chosen landmarks. 

Betweenness 

Centrality 

Compute the betweenness centrality of the largest connected 

subgraph of the partition. Select the vertex with the highest 

betweenness centrality 

PageRank 

Maximum 

Compute the PageRank of the largest connected subgraph of the 

partition. Select the vertex with the highest PageRank value 

PageRank 

Minimum 

Compute the PageRank of the largest connected subgraph of the 

partition. Select the vertex with the lowest PageRank value 

PageRank Mode Compute the PageRank of the largest connected subgraph of the 

partition. Choose a vertex with a  PageRank value equal to the mode 

of vertex PageRank values 

Closeness 

Centrality 

Compute the closeness centrality of the largest connected subgraph 

of the partition. Select the vertex with the highest closeness 

centrality 

Katz Centrality Compute the Katz centrality of the largest connected subgraph of the 

partition. Select the vertex with the highest Katz centrality 

Load Centrality Compute the load centrality of the largest connected subgraph of the 

partition. Select the vertex with the highest load centrality 

Table 15 Experimental Landmarks Selection Techniques for ALP 
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techniques were inconsistent in allowing meaningful results to be obtained, the Farthest-d 

and Katz centrality are not included in the summaries in this chapter. Their behavior and 

the edge cases where they optimize the ALP algorithm can be found in the results shown 

in the appendix. Figure 24 and Figure 25 describe the efficiency and tradeoff, 

respectively, of each of these runs for two road graphs as a bar chart.  The numbers 

following the geographical locations for the chart labels describe the number of 

landmarks that were used for ALP. Two levels of the Louvain method dendrogram were 

used for each graph to appropriately characterize the selection algorithm’s behavior. 

 

0.00% 
5.00% 

10.00% 
15.00% 
20.00% 
25.00% 
30.00% 

A
ve

ra
ge

 E
ff

ic
ie

n
cy

 

Landmark Selection Technique 

Average Efficiency 

Hawaii_158 

Hawaii_214 

Hawaii_675 

Washington DC_73 

Washington DC_136 

Washington DC_624 
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As stated before, landmark selection is used to optimize the average efficiency of 

the ALP algorithm. This is apparent in Figure 24, as we see at most a 4% difference in 

the efficiency for any given graph, with Farthest-ecc showing highest efficiency for the 

largest graphs. In Figure 25, we see that the total clock time for both preprocessing and 

total query time can vary significantly based on landmark selection. Farthest-ecc 

demonstrates the largest tradeoff. Unfortunately, this is because its preprocessing time is 

the longest for each graph, as seen in Figure 26 for a 1000 query run on the graph of New 

Mexico
17

. Just as stated by Goldberg for some of ALT’s original work, one cannot expect 

an improvement of an order of magnitude the average performance (Goldberg & 

Harrelson, 2005). These results indicate that this property applies to ALP, as well, which 

                                                 
17

 Remember, Farthest-ecc requires computing the graph eccentricity, a very expensive computation, 

particularly for large graphs. 
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Figure 25 Landmark Selection Tradeoff on Two Graphs for 1000 Query Trials 
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is why we see random landmark selection still performing reasonably well in comparison 

to other algorithms. 

 
Figure 26 Preprocessing Time vs Total Query Time for Landmark Selection 

Techniques on the New Mexico Graph Dataset 

 

Figure 27 illustrates the average approximation error for each of these runs as a 

bar chart. PageRank (max) and Planar landmark selection have the most error in these 

scenarios. Meanwhile, PageRank (min and mode), Farthest (eccentricity), and 

betweenness, closeness, and load centrality landmark selection techniques have average 

approximation errors below that of random. We also see that ALP makes better average 

approximations for graphs that are larger.
18

 

                                                 
18

 Graphs in Figure 27 are sorted from largest to smallest. 
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For each landmark selection technique, Figure 28 illustrates the approximation error of 

ALP queries using each landmark selection technique in the context of actual path 

lengths, indicating that ALP has a tighter approximation over larger distances. The 

landmark selection techniques do not impact the average approximation error as the path 

lengths become larger. 

Each of the landmark selection methods exhibit similar average efficiency, 

tradeoff, and average error as distances become larger. Farthest-ecc has the best 

efficiency but the worst tradeoff, as the preprocessing time is significant for an 

insignificant benefit in query time. It also maintains the lowest error as path lengths grow. 

Random selection demonstrates the best overall tradeoff. ALP Planar is the least efficient, 

                                                 
19

 The labels of the graphs indicate the geographic location prior to the underscore and the number of 

chosen landmarks after the underscore. 

 

Figure 27 Landmark Selection Approximation Error on Three Graphs for 1000 Query 

Trials
19

 

0 
0.05 

0.1 
0.15 

0.2 
0.25 

0.3 
0.35 

0.4 
0.45 

0.5 
A

ve
ra

ge
 A

p
p

ro
xi

m
at

io
n

 E
rr

o
r 

Landmark Selection Techniques 

Landmark Selection vs Average 
Approximation Error 

Hawaii_158 

Hawaii_214 

Hawaii_675 

Washington DC_73 

Washington DC_136 

Washington DC_624 



Campbell 115 

 

 

 

has the worst tradeoff, and exhibits the highest average error of all the featured landmark 

selection techniques. 

The landmark selection techniques used for ALP can make a difference in its 

average efficiency. However, for the datasets used throughout experimentation, at their 

size, only a 4-6% difference in efficiency is ever observed. Farthest-ECC shows the best 

performance in the context of efficiency, but takes longer time than many other measures 

to compute. Therefore, for critical applications, when even the smallest speedup for 

query-time is needed, Farthest-ECC demonstrates the best performance, because of its 

ability to space landmarks out in the graph. However, its preprocessing time can, in some 

cases, be impractical. Overall, all centrality measure-based landmark selection 

 
Figure 28  Path Length(X) vs Approximation Error (Y) 
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techniques
20

 gave reliable performance for centrality that can be computed for most 

datasets. They all demonstrated better performance than simple random landmark 

selection. However, when it comes to common applications, when high landmark 

selection times are detrimental to an application, closeness, and load centrality 

demonstrated the most consistent performance across all datasets and were quick to 

compute landmarks for ALP. 

 

Experiment 2: ALT vs ALP 

Experiment 2 leveraged all of the implementations, data gathering, and 

knowledge gleaned from Experiment 1. We used this information to identify the key 

benefits of using ALP over ALT in practical scenarios. Notably, we do not focus heavily 

on the fact that ALT outperforms ALP over the same set of landmarks in terms of our 

efficiency metric, as mathematics tells us that the lower bound of the triangle inequality 

will always be tighter under that scenario. Rather, the trials in this Experiment focus on 

the preferred graph and landmark configurations for their practical use. Therefore, we 

compared the tradeoffs of ALT and ALP to answer research questions regarding utility of 

each algorithm. 

Description of Trials 

We again leverage the Python 2.7/NetworkX 1.9 implementations to perform 

experimentation. We run each individual trial by inputting a graph dataset, setting up a 

number of shortest path source-target pairs, preprocessing both ALT and ALP, and then 

executing queries using the ALT, ALP, and uninformed (Dijkstra’s) heuristic. We use the 

                                                 
20

 This is with exception to Katz centrality, which had trouble establishing an appropriate eigenvector for 

many datasets. 
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pathmax equation for A* such that the heuristics are consistent. First, we compare the 

runtimes of ALT and ALP in the previous graph trials. Next we highlight the behavior of 

ALT and ALP when they use the same set of landmarks and gain a comparative 

understanding of how the algorithms behave given the same parameters. And finally, the 

featured trial established a fixed amount of memory and ran each of the algorithms under 

varied parameters as gleaned from this study and the academic literature to understand 

their utility. 

ALT vs. ALP: Runtime 

For first comparisons of ALP and ALT, the performance of both algorithms was 

analyzed for the experimental benchmark road data from DIMACS and all available 

synthetic graphs (up to size 10
6
 nodes) from Experiment 1. Random landmark selection 

was used for each trial run of the two algorithms on these datasets. The Louvain 

algorithm was used again for the partitioning of each graph prior to distributed 

embedding. As illustrated in Figure 29, queries for paths with distances between 1 and 

501 were called 10
5
 times. While ALT nearly always out-estimated the dual landmark 

ALP algorithm, the resulting data show significant improvement of the runtime of the 

dual landmark ALP heuristic over the ALT heuristic on a diverse set of graphs with 

larger path lengths, as well as an inherent reduction in required memory. This is a result 

Trial Categories Description 

ALT vs. ALP: Runtime Analyze the comparative runtimes for shortest path 

queries from Experiment 1 trials 

ALT vs. ALP: Equal 

Landmarks 

Compare and contrast the efficiency and average error 

between ALT and ALP when the same landmarks are 

chosen for both ALT and ALP 

ALT vs. ALP: Fixed-Memory ALT and ALP go head to head in a fixed memory 

environment for four road graph datasets.  

Table 16 ALT vs ALP Trials 
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of the reduced number of operations being performed at each visited vertex during the 

search, as illustrated in Figure 30.  

 
Figure 30 Graph demonstrating a higher number of operations for ALT (Blue) 

compared to ALP (Red) as the length of the paths grow. This corresponds to the 

runtime graphic on the previous page 

 

ALT vs. ALP: Equal Landmarks 

We proved, in the previous chapter, that ALT has better estimates over the same 

set of landmarks. In this set of trials, we look at ALT’s shortest path preprocessing 

behavior when using the set of landmarks chosen by ALP. In other words, this set of 

 
Figure 29 Graph demonstrating a higher runtime for ALT (Blue) compared to ALP 

(Red) as the length of the paths grow 
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trials was performed to see if the landmark selection techniques that were developed for 

ALP could be beneficial for ALT in the future. Just as in previous trials, we select 1000 

source-target vertex pairs using uniform random distribution. Next, we preprocess ALP, 

establish its landmarks, and then use these landmarks to establish the data structure for 

both ALP and ALT. We then run the 1000 queries under the ALT and ALP heuristics to 

demonstrate ALT’s behavior when using the same landmark set as ALP. We iterate 

through this process and work our way down the Louvain dendrogram to understand 

behavior as the number of landmarks grow. The figures below display the resulting data. 

 

Figure 31 ALP Preprocessing in ALT: ALP   

#Landmarks vs Average Efficiency  

 

Figure 32 ALP Preprocessing  in ALT: 

ALT  #Landmarks vs Average 

Efficiency 

 

Figure 33 ALP Preprocessing in ALT: ALP 

Average Runtime vs Search Space Size 

 

Figure 34 ALP Preprocessing in ALT: 

ALT Average Runtime vs Search Space 

Size 
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In Figure 31 and Figure 32, we see that ALT maintains its high efficiencies when 

leveraging ALP landmark selection. However, Planar and Farthest-ecc demonstrate 

significant drops in efficiency for ALT. This is not surprising for Planar. However, 

ALP’s version of Farthest landmarks selection does not serve the ALT algorithm well.  

In Figure 33 and Figure 34, the efficiency gap is even more noticeable, as the average 

search space sizes for Planar and Farthest-ECC have outlier data points for ALT. The 

centrality measure-based landmark selection in each of these seems to maintain the 

efficiencies of ALT. Each of the centrality measures are computed very quickly in ALP. 

Therefore, they are viable candidates to speed up ALT landmark selection, though the 

bulk of ALT’s preprocessing time comes from growing its shortest path trees from each 

landmark. 

 

ALT vs. ALP: Fixed-Memory 

An issue with using ALP preprocessing for ALT is defining the appropriate 

number of landmarks to use. As seen in each set of trials and experiments, the triangle 

inequality normally yields tighter lower bounds than quadrilateral inequalities over the 

same set and number of landmarks. Varying the used landmark selection technique helps 

ALP. However, throughout the vast majority of trials discussed thus far, it has not 

resulted in a better estimate for A* over ALT. Nonetheless, our dual landmark heuristic 

for ALP can outperform ALT when analyzing the same graph by using a greater 

number of landmarks. In this final set of trials, we simulated the use of the dual 

landmark ALP heuristic against the ALT heuristic in a hardware environment with fixed 
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memory requirements. We allowed both preprocessing algorithms to use the most 

landmarks possible in the environment and compared their performance. 

Simulating a fixed memory hardware environment for the heuristics was done by 

specifying upper bounds for the number of distance labels stored by the data structure. 

The following upper bounds for number of data labels stored were used: 

- 250,000 

- 500,000 

- 1,000,000 

- 2,500,000 

- 5,000,000 

- 10,000,000 

- 25,000,000 

- 100,000,000 

Each graph in this set of trials uses six of these levels depending on the size of the graph. 

For each trial, the partitioning of the graph was performed with parameters such that the 

following was true for the landmark set   and any of these upper bounds   under the 

ALP environment: 

             (83)  

Recall that the number of vertices is multiplied by two here because the distances to and 

from each landmark need to be stored for each subgraph in order to accurately compute 

the heuristic for directed graphs. For the landmark set    in the ALT environment, the 

following requirement had to be met: 

             (84)  

Once again, multiplication by two accounts for the fact that ALT has to store the 

distances to and from each landmark in order to compute the heuristic for directed 

graphs. We used these constraints to simulate a fixed-memory environment for ALT and 
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ALP. We perform each run by using optimized random landmark selection (random-opt). 

This is done for two reasons: First, it is done to support a general scenario in which we 

must decide whether to apply ALT or ALP, not knowing if the capabilities for complex 

mathematical functions such as eigenvector centrality measurement are available in the 

real-world environment in which we are operating. Second, the goal of this set of trials is 

to demonstrate the impact of number of landmarks, not selection strategies. Appropriate 

selection strategies for both ALT and ALP would result in choosing many of the same 

landmarks. Both theory and trials have shown that over the same set of landmark, ALT 

heuristics nearly always out-estimate ALP heuristics.  

 The Louvain method used throughout experimentation has the drawback that the 

number of partitions that it produces cannot be fixed. It simply forms a dendrogram at 

which each level can be used to signify community structure in a way that optimizes 

community modularity. Because of this, we hypothesized that relying on the levels of 

partitioning granted by the Louvain method for the levels of fixed memory described 

above can be a sub-optimal solution to a path planning implementation. Nonetheless, it is 

still a computationally low-cost method of partitioning that can be applied to many 

devices with small fixed memory.  

However, it is also beneficial to understand ALP’s behavior in this fixed-memory 

environment when it can maximize its number of landmarks. Therefore, we use two 

different partitioning algorithms for characterizing ALP’s behavior in a fixed-memory 

environment. The first of which is the Louvain method, in which we choose the highest 

possible level of the resulting dendrogram that produces a number of partitions (which is 

equal to the number of landmarks) closest to the fixed-memory upper bound for ALP. 
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This allows for good coverage of landmarks but does not allow ALP to reach its 

maximum number of landmarks in the fixed-memory environment. To do that, we use a 

second partitioning scheme that starts with the partitions of the first level of the Louvain 

method dendrogram. Recall from Chapter 1 that the first level of partitioning yields the 

maximum modularity score for an input graph. Then, let   be the desired number of 

landmarks and   the number of partitions at the first level of the Louvain method 

dendrogram. Then, for the subgraph induced by each partition, another community 

detection method, called walktrap community detection, is applied that allows us to 

specify the number of communities to be fixed (Pons & Latapy, 2005). This method, 

based on the notion that short random walks should tend to stay in the same community, 

produces a dendrogram that can be cut to represent a desired number of partitions. This is 

done by replaying merges of the dendrogram from the beginning until the membership 

vector has exactly the desired number of communities, or until there are no more merges. 

The number of communities for each partition is fixed as follows: 

                            
 

 
  

(85)  

This is true for all but the largest community, which is partitioned into  
 

 
          

communities.
21

 

Here, we break down a run of four road graphs in this environment that were 

studied the most over the dissertation effort, in their entirety. For each graph, we ran 1000 

shortest path queries using the same source-target pairs selected over a uniform random 

distribution. We capture the average search space
22

, error, and runtime (in seconds) for 

                                                 
21

 For each of these trials, the walktrap community detection implementation’s step parameter is set to 10. 
22

 We can simply use the search space here as we are not comparing runs between the graphs. 
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runs at each memory bound. Each graph is analyzed using both partitioning methods 

described above. First, we analyze runs for one of our most tested graphs, a graph of 

Washington DC: 

Graph Nodes Edges Transitivity Average Clustering Density 

Washington DC 9522 29639 0.046936 3.919E-2 3.272E-4 

First, we analyze the graph in the fixed memory environment using the Louvain 

algorithm. The table below shows the parameters of the run and the result data. 

 

Figure 35 and Figure 36 highlight the average search space and runtime of these runs.
24

 

ALT has better average error and search space size than ALP landmark selection while 

ALP boasts better average runtimes than ALT for the larger memory queries. This is 

expected due to the number of arithmetic operations performed at each vertex. We also 

see that increasing the number of landmarks in this case does not necessarily mean an 

increase in ALP’s algorithmic performance (in terms of search space size). 

Practical implementations of ALT suffer from the fact that they have to explore 

the space of maximum lower bounds in order to compute its heuristic upon visiting every 

node. Even exhausting Python’s latest available optimizations, this is still a hindrance for 

                                                 
23

 ALP is restricted from executing at the 1E6, 2.5E6, and 5E6 fixed memory bounds because the Louvain 

algorithm dendrogram only had partitioning suitable for bounds lower than that. Therefore, ALP data, for 

comparison, is the next lowest bound. 
24

 In this section, for each set of runs, the corresponding figure for Fixed Memory vs Average Error can be 

found in Appendix C. 

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

Washington DC 2.50E+05 ALP 138 28566 1571.1379 29.81112% 3.5428E-02

Washington DC 2.50E+05 ALT 13 9691 350.5776 4.54692% 6.8026E-03

Washington DC 5.00E+05 ALP 628 403906 1193.6679 26.73488% 2.6641E-02

Washington DC 5.00E+05 ALT 26 10198 278.5031 3.87763% 1.6158E-02

Washington DC 1.00E+06 ALT 52 12226 208.7736 2.61185% 1.9735E-02

Washington DC 2.50E+06 ALT 105 20547 153.1421 2.01167% 4.3317E-02

Washington DC 5.00E+06 ALT 262 78166 110.9219 0.99270% 9.5491E-02

Washington DC 1.00E+07 ALP 2856 8166258 1885.1978 55.36047% 3.7359E-02

Washington DC 1.00E+07 ALT 525 285147 90.4394 0.64338% 2.1970E-01

Table 17 Washington DC Fixed-Memory Performance of ALT vs ALP (Louvain)
23
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ALT. However, much to our chagrin, in this scenario, ALT still outperforms ALP in 

terms of average search space, average approximation error, and average runtime.  

We see several of the categorized memory bounds that do not have data for ALP. 

This is due to restrictions on Louvain method partitioning. In this run, ALP is restricted 

from executing at the 1E6, 2.5E6, and 5E6 fixed memory bounds because the Louvain 

algorithm dendrogram only had partitioning suitable for bounds lower than that. Below 

are results of the graph using the partitioning of the combined Louvain and walktrap 

community algorithm. 

 
Table 18 Washington DC Fixed-Memory Performance of ALT vs ALP 

(Louvain/Walktrap) 

 

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

Washington DC 2.500E+05 ALP 480 239922 6606.8252 69.2098% 9.4341E-02

Washington DC 2.500E+05 ALT 13 9691 417.7007 6.2752% 8.6301E-03

Washington DC 5.000E+05 ALT 689 484243 7400.9269 55.0702% 1.0007E-01

Washington DC 5.000E+05 ALT 26 10198 255.1752 3.4808% 8.3438E-03

Washington DC 1.000E+06 ALP 978 966006 7506.3653 52.9431% 1.0037E-01

Washington DC 1.000E+06 ALP 52 12226 220.4454 3.1801% 1.1773E-02

Washington DC 2.500E+06 ALP 1539 2378043 7596.7606 51.1063% 1.0487E-01

Washington DC 2.500E+06 ALT 131 26683 140.9479 1.5360% 2.0862E-02

Washington DC 5.000E+06 ALP 2141 4593403 7615.4187 51.0071% 1.0571E-01

Washington DC 5.000E+06 ALT 262 78166 113.3003 1.0035% 3.8670E-02

Washington DC 1.000E+07 ALP 2974 8854198 7627.7683 50.4975% 1.0593E-01

Washington DC 1.000E+07 ALT 525 285147 94.5616 0.6249% 1.1075E-01

 

Figure 35 Washington DC Fixed 

Memory vs Average Search Space Size  

 

Figure 36 Washington DC Fixed Memory 

vs Average Runtime 
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Figure 37 and Figure 38 highlight the average search space and runtime of these 

runs. The first recognizable impact of the use of the combined Louvain/Walktrap 

community detection method is the significantly larger search space, error, and runtime 

used by ALP at all levels. The second is that we do see the average search space 

increasing as the number of landmarks increases. 

 

Figure 37 Washington DC Fixed Memory 

vs Average Search Space Size 

(Louvain/Walktrap) 

 

Figure 38 Washington DC Fixed Memory 

vs Average Runtime (Louvain/Walktrap) 

The next graph of New Mexico indicates whether or not this behavior is 

consistent: 

Graph Nodes Edges Transitivity Average 

Clustering 

Density 

New Mexico (subgraph) 21,866 70,867 0.059988 0.04285 0.00011829 

 

The following table shows the parameters of running ALT and ALP on the graph when 

partitioned with the Louvain method: 
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Once again, we see the average search space size of queries for dual-landmark ALP being 

much larger than that of ALT, with an average approximation error that is embarrassingly 

higher.  And we can only run ALP twice under this configuration. This time, performance 

is even worse for ALP when it comes to runtime, as shown in the figures below. 

 

Figure 39 New Mexico Fixed Memory vs 

Average Search Space Size 

 

Figure 40 New Mexico Fixed Memory vs 

Average Runtime 

 

The table below details the results of running the combined Louvain/Walktrap 

method on New Mexico: 

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New Mexico 2.50E+05 ALP 401 182667 3399.1715 25.2513% 5.9344E-02

New Mexico 2.50E+05 ALT 5 21891 2207.8979 16.6621% 2.7334E-02

New Mexico 5.00E+05 ALT 11 21987 1613.1371 9.9733% 3.5869E-02

New Mexico 1.00E+06 ALT 22 22350 856.8704 4.9121% 2.9102E-02

New Mexico 2.50E+06 ALP 1554 2436782 2540.1837 23.8242% 4.5226E-02

New Mexico 2.50E+06 ALT 57 25115 544.3954 2.7099% 3.1163E-02

New Mexico 5.00E+06 ALT 114 34862 416.4034 2.0523% 6.4603E-02

Table 19 New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain) 
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The behavior for the combined Louvain/Walktrap community detection algorithm is 

consistent. As further illustrated in the figures below, this experimentally verifies that the 

partitioning of the input graph can impact ALP, which was evident previously given that 

landmark selection is significant to optimization. 

 

Figure 41 New Mexico Fixed Memory 

vs Average Search Space Size 

(Louvain/Walktrap) 

 

Figure 42 New Mexico Fixed Memory vs 

Average Runtime (Louvain/Walktrap) 

 

We now move onto a much larger graph than these first two that truly 

demonstrates the utility of dual-landmark ALP. Instead of taking subgraphs, the next 

graphs are entire graphs of a geographical region.  

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New Mexico 2.50E+05 ALP 405 185891 3067.7518 21.4430% 4.4960E-02

New Mexico 2.50E+05 ALT 5 21891 1940.958 15.8205% 2.5976E-02

New Mexico 5.00E+05 ALP 675 477491 14615.2136 65.4098% 2.1472E-01

New Mexico 5.00E+05 ALT 11 21987 1209.9349 7.3536% 2.4114E-02

New Mexico 1.00E+06 ALP 933 892355 17284.5399 56.9401% 2.3689E-01

New Mexico 1.00E+06 ALT 22 22350 886.4815 5.4194% 2.3737E-02

New Mexico 2.50E+06 ALP 1563 2464835 16170.4717 57.7529% 2.2554E-01

New Mexico 2.50E+06 ALT 57 25115 544.3954 2.7099% 3.1163E-02

New Mexico 5.00E+06 ALP 2206 4888302 16195.4176 57.1753% 2.2700E-01

New Mexico 5.00E+06 ALT 114 34862 399.3674 2.0399% 4.4304E-02

Table 20 New Mexico Fixed-Memory Performance of ALT vs ALP (Louvain/Walktrap) 
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The following are details of the graph representing the full roadmap of New York City 

(NYC): 

Graph Nodes Edges Transitivity Average Clustering Density 

New York City 264,328 730,012 0.025438 0.020772 0.000010448 

 

The following table shows the parameters of the run and the result data under Louvain 

method partitioning: 

 

Highlighted in red, for this run, are the levels of fixed memory in which dual landmark 

ALP has a smaller average search space, smaller runtime, and smaller average 

approximation error than ALT. Seen in Figure 43 and Figure 44, the difference in search 

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

New York City 1.00E+06 ALP 427 42821 27.11% 7.3090E-01

New York City 1.00E+06 ALT 1 78460 57.10% 9.8260E-01

New York City 2.50E+06 ALP 942 35003 21.73% 6.0750E-01

New York City 2.50E+06 ALT 4 40943 27.68% 6.4930E-01

New York City 5.00E+06 ALT 9 28827 14.43% 6.0200E-01

New York City 1.00E+07 ALT 18 48060 14.67% 1.3790E+00

New York City 2.50E+07 ALP 3934 18975 12.81% 5.1060E-01

New York City 2.50E+07 ALT 47 40189 17.29% 2.0390E+00

New York City 1.00E+08 ALT 189 81338 13.52% 1.1060E+02

Table 21 New York City Fixed-Memory Performance of ALT vs ALP (Louvain) 

 

Figure 43 New York City Fixed Memory 

vs Average Search Space Size 

 

Figure 44  New York City Fixed Memory vs 

Average Runtime 
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space is substantial here. Even more notably, ALT experiences a sharp increase in both 

search size and runtime as the number of landmarks increase. This is the first research 

result that demonstrates ALP’s dominance in a fixed-memory environment.  

For the NYC graph, ALT has been limited to as low as a single landmark in our 

5E4 upper bound memory configuration
25

.  In that scenario, ALT loses out. Of note, even 

its average runtime, which depends not only on the search space size but on the number 

of arithmetic operations that occur for each node visit, is still worse for ALT in this 

scenario. This becomes very apparent for the 1E8 upper bound result, where the query 

runtimes were on the minute scale. ALT runtime simply becomes impractical when 

leveraging that many landmarks because it has to compute the triangle inequality for all 

landmarks at every visited node. As the amount of allowable memory grows, ALT does 

begin to algorithmically perform better, averaging a smaller search space, but does not 

catch up with dual landmark ALP.  

 We take a single scenario for the NYC graph, when the memory is limited to 

2.5E6 labels. We separate the lengths of paths for queries on this graph into five different 

classes and attempt to understand the difference between ALT and ALP for estimations at 

these ranges. Table 22 details the average query search space, runtime, and 

approximation error for each of these path classes.  

                                                 
25

 Nothing could be executed in our lowest memory configuration at this point because it is smaller than the 

number of nodes in the graph. 
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Heuristic 

Average Search 

Space 

Average Runtime 

(s) 

Average Approx. 

Error 

Path 

Class 

ALP 5,984.9231 0.095420387 0.310469725 0-200 

ALT 4,941.0321 0.078824321 0.23462107 0-200 

ALP 21,469.9707 0.365463074 0.215048211 200-400 

ALT 22,222.9149 0.375098283 0.186812221 200-400 

ALP 46,883.8047 0.815239528 0.184229549 400-600 

ALT 56,051.3401 0.94817963 0.245895748 400-600 

ALP 70,101.7847 1.236932435 0.164547937 600-800 

ALT 86,528.5764 1.468556752 0.299505343 600-800 

ALP 97,784.4615 1.707975973 0.18256267 800- 

ALT 12,9913.6538 2.155318469 0.482575857 800- 

We see for smaller path lengths, the two algorithms are on par with each other, 

with ALT actually outperforming ALP for path lengths of 0-200. Beyond that range, ALP 

has better estimates than ALT. Figure 45 is a clear illustration of the delta in search space 

size between the two algorithms as the path lengths get larger. 

Table 22 ALP's dominance of ALT over Large Path Lengths for 2.5E6 Data Label 

Upper Bound 

 

Figure 45 Performance of ALT vs ALP for 2.5M Data Labels 
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The ability to outperform ALT in this scenario under a Louvain method partitioning 

demonstrates ALP’s utility. Just as with the previous two graphs, this graph was run 

under the combined Louvain/Walktrap partitioning: 

 

The average runtime shown in the figure below is telling of the ability of ALP to 

outperform ALT even when it visits more nodes for large graphs. 

 

Figure 46 New York City Fixed Memory 

vs. Average Search Space Size 

(Louvain/Walktrap) 

 

Figure 47 New York City Fixed Memory 

vs. Average Runtime (Louvain/Walktrap) 

 

This is not a phenomenon. We take a look at the next largest graph in our dataset 

to further validate this finding.  

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

New York City 1.00E+06 ALP 686 734924 44626.7177 26.5428% 7.8985E-01

New York City 1.00E+06 ALT 1 264329 80723.4855 53.5135% 1.1611E+00

New York City 2.50E+06 ALP 1404 2235544 41409.3974 24.4544% 7.4700E-01

New York City 2.50E+06 ALT 4 264344 38028.7618 19.3056% 6.4815E-01

New York City 5.00E+06 ALP 2114 4733324 181830.958 82.5024% 3.2057E+00

New York City 5.00E+06 ALT 9 264409 71152.4154 30.8865% 1.5934E+00

New York City 1.00E+07 ALP 3077 9732257 182189.99 81.9870% 2.9852E+00

New York City 1.00E+07 ALT 18 264652 53287.5345 18.6009% 1.5012E+00

New York City 2.50E+07 ALP 4945 24717353 204581.2643 98.2239% 3.3681E+00

New York City 2.50E+07 ALT 47 266537 78984.6877 38.7101% 4.2289E+00

New York City 1.00E+08 ALT 7027 49643057 210180.5084 99.0932% 6.6567E+00

New York City 1.00E+08 ALT 189 273164 81244.2647 30.2203% 8.1485E+00

Table 23 New York City Fixed-Memory Performance of ALT vs ALP 

(Louvain/Walktrap) 
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Graph Nodes Edges Transitivity Average 

Clustering 

Density 

San Francisco 

Bay 
321,258 794,788 0.02225 0.016565 0.000007701 

 

In the following table, we see similar results when ALT and ALP go head to head in this 

graph: 

 

 

Figure 48 San Francisco Bay Fixed 

Memory vs. Average Search Space Size 

 

Figure 49 San Francisco Bay Fixed 

Memory vs. Average Runtime 

 

Here, ALT beats ALP’s search space size at the 5E6, 1E7, 2.5E7, 5E7, and 1E8 upper 

bounds. ALT also has comparable runtimes. This, however, could be attributed to the 

Louvain method’s partitioning restrictions on number of landmarks used. This limited the 

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

San Francisco Bay 1.0E+08 ALT 155 4701 1.77% 4.667E+00

San Francisco Bay 5.0E+07 ALP 4984 20534 9.53% 1.722E+00

San Francisco Bay 5.0E+07 ALT 77 6518 2.14% 1.256E+00

San Francisco Bay 2.5E+07 ALT 38 9960 3.55% 1.107E+00

San Francisco Bay 1.0E+07 ALT 15 15983 5.33% 1.193E+00

San Francisco Bay 5.0E+06 ALT 7 26016 11.49% 1.541E+00

San Francisco Bay 2.5E+06 ALP 1185 33444 14.31% 5.656E-01

San Francisco Bay 2.5E+06 ALT 3 45357 18.83% 6.392E-01

Table 24 San Francisco Fixed-Memory Performance of ALT vs ALP (Louvain) 
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number of runs that were performed. However, looking at the first four levels of fixed 

memory, we see that the combined partitioning method does not do better: 

 

At these levels, ALP is simply outmatched and is more comparable to Dijkstra’s. The 

figures below illustrate the significance of partitioning for ALP.  

 

Figure 50 San Francisco Bay Fixed 

Memory vs. Average Search Space Size 

(Louvain/Walktrap) 

 

Figure 51 San Francisco Bay Fixed 

Memory vs. Average Runtime 

(Louvain/Walktrap) 

 

Because ALP did not outperform ALT in all contexts of the last scenario, we look at a 

smaller run of one final dataset. 

Graph Nodes Edges Transitivity Average Clustering Density 

Colorado 435,550 1,042,104 0.02518184 0.017235 0.0000054933 

 

The following is a table of our results from analysis of Colorado: 

Dataset Memory Heuristic # Landmarks # Labels Avg Search Space Avg Error Avg Runtime (s)

San Francisco 1.00E+07 ALP 3059 9678739 107292.2482 0.00676206 0.874311631

San Francisco 1.00E+07 ALT 15 321483 13753.011 0.08387688 0.049901005

San Francisco 5.00E+06 ALP 2087 4676827 107596.2693 0.0066022 0.876781686

San Francisco 5.00E+06 ALT 7 321307 25038.7648 0.05575716 0.114934876

San Francisco 2.50E+06 ALP 1362 2176302 108738.7758 0.00654484 0.882508475

San Francisco 2.50E+06 ALT 3 321267 39706.4424 0.03150861 0.196388122

San Francisco 1.00E+06 ALP 597 677667 108462.5846 0.00624014 0.880367487

San Francisco 1.00E+06 ALT 1 321259 87979.2272 0.01357608 0.500051364

Table 25 San Francisco Bay Fixed-Memory Performance of ALT vs ALP 

(Louvain/Walktrap) 
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We see enough data in the Colorado result to verify our claim. ALP can 

outperform ALT when analyzing large graphs
26

 in a fixed-memory environment. 

However, it can fall prey to the constraint that it is restricted to one landmark per 

partition. We address this constraint a bit more with a suggestion for future research in 

Chapter 5. 

 

Figure 52 Colorado Fixed Memory vs. 

Average Search Space Size (Louvain) 

 

Figure 53 Colorado Fixed Memory vs. 

Average Runtime (Louvain) 

 

Overall, this behavior for ALP against ALT is quite consistent for large graphs 

and has been seen in numerous test trials conducted outside of this fixed-memory 

experiment. The following figure summarizes, for all trials performed on real road graphs 

in all experiments, using random landmark selection, where ALP performs equally to or 

                                                 
26

 > ~1E5 Vertices, 5E5 Edges 

Dataset Memory Heuristic # Landmarks Avg Search Space Avg Error Avg Runtime (s)

Colorado 2.5E+07 ALT 28 6.461E+04 8.52% 9.441203811

Colorado 1.0E+07 ALT 11 6.369E+04 11.68% 5.643167405

Colorado 5.0E+06 ALP 1886 4.580E+04 14.14% 3.166834619

Colorado 5.0E+06 ALT 5 4.930E+04 13.01% 3.245015286

Colorado 2.5E+06 ALP 1132 5.275E+04 17.19% 3.406351286

Colorado 2.5E+06 ALT 2 6.791E+04 22.83% 3.937390599
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better than ALT in terms of search space. The figure shows the percentage of queries for 

each graph of a given size in which ALP has equal or better performance. 

 

Figure 54 Percentage Of Queries in Which ALP has Equal or Better performance than 

ALT 

Overall, this research result directly addresses the problem statement stated in 

Chapter 1 of this dissertation. We have shown that in a fixed-memory environment, ALP 

can outperform ALT on larger graphs with appropriate partitioning. We discuss what this 

appropriate partitioning requirement could be in the next section. 

 

Findings 

The intent of this section is to synthesize and discuss the results of data analysis in 

light of the research questions, literature review, and methodology laid out in the first 

three chapters. We note again here, that the novel feature of ALP is that it is a practical 
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landmark-based heuristic, requiring significantly less storage space and computational 

time to preprocess its data structure while speeding up shortest path search. Here, we 

highlight patterns and themes that support this claim while also highlighting any 

ambiguities and inconsistencies that could leave the claim to question. Each subsection is 

broken down by a key observation of the behavior of ALP. 

Key Observations: Greater Landmark Set Density Allows ALP to Outperform ALT  

 This is the primary finding of the research. While landmark selection algorithms 

have an effect on overall query performance, the density of the landmark set comparative 

to the size of the graph are the key factors that allow ALP to outperform ALT. The 

triangle inequality simply yields a tighter bound than the quadrilateral inequality for the 

path metric over the same or even a similar landmark set. Even for the metric space-based 

inequalities such as the one derived from the four-point condition, the triangle inequality 

is a simpler, stronger approach to achieving a lower bound. From the practical 

perspective, however, the final results of Experiment 2 show that ALT can suffer from its 

large space complexity in a real application scenario.  

 Using results from experimentation, we characterize this activity in terms of 

tradeoff for real graphs, here. For ALT and ALP, Figure 55 is a 3D logarithmic plot that 

illustrates the relationships between the number of nodes in the graph, number of 

landmarks used by each algorithm, and the tradeoff measurement described in the 

previous section for all trials run using real road graphs
27

. The plot shows a greater 

number of trials with ALT that demonstrate higher tradeoff values than trials of ALP. 

This trend continues to grow as the number of nodes in the graph gets larger. It also 

shows, in these instances, ALP’s ability to use more landmarks with smaller tradeoff. 

                                                 
27

 This was done using trials in which ALT and ALP executed the same number of queries. 
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 For smaller graph datasets such as the Washington DC graph or the Rome graph 

from the experimental dataset, the benefit of landmark density for ALP will rarely aid it 

against ALT.  The result data shows that this behavior is quite consistent, regardless of 

landmark selection. The only benefit ALT truly has when the number of nodes and edges 

in the graph grow as they do in Experiment 2 is the flexibility of the number of 

landmarks that it can choose. And recall, ALP’s restriction in that regard is not a 

fundamental property of the algorithm, as the partitioning information simply serves as 

input. While we did not use a community detection algorithm that forms partitions that 

outperforms ALP results for Louvain partitions in our experiments, future research can 

focus on identifying the key properties of partitioning methods that optimize the choice 

of landmarks. 

 
Figure 55 Log Plot of  #Nodes vs # Landmarks vs Tradeoff for road graph trials shows 

worse tradeoff using less landmarks with ALT 



Campbell 139 

 

 

 

Key Observations: ALP Performance Gain Converges for Smaller Landmark Shortest 

Path Trees 

 A key observation during experimentation was that the average efficiency of 

shortest path queries almost always grows when the number of landmarks is increased. 

However, as shown in Figure 23, we see that performance gain tends to converge as the 

number of landmarks increases. The efficiency of a query in the ALP algorithm is 

dependent on the ALP estimate. The closer the estimate is to its actual distance (without 

overestimating) the better the estimate. To observe ALP’s behavior in an environment 

with increasing landmarks, let us first look again at its heuristic estimates: 

Now, we define the behavior of this heuristic when the number of landmarks increases. 

An increase in landmarks inherently means a decrease in the distances between all 

landmarks (        ). For the distances between landmarks and their vertices, the overall 

distances either stay the same or decrease. When vertices    ∈   do not share the same 

landmark, the following occurs: 
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                      (97)  

Because the shortest path graph is a metric space,          will never be negative, by 

definition. Therefore, in a weighted graph, we characterize the limit of the heuristic 

function as          approaches 0 from the right. Based on the above limits, as the 

number of landmarks increase, we can characterize the heuristic estimates as the search 

approaches the target as follows: 

   
           

                       (98)  

Note that this characterizes the ALP heuristic as the number of landmarks increase and 

simply as the search nears the target. However, this limit at zero is still equal to the 

triangle inequality.  

In the truly random (non-optimized) landmark selection case, because 

preprocessing is actually faster with smaller clusters and there is not a significant impact 

on preprocessing time for using more landmarks, the more landmarks that can be used to 

cover the graph, the better. However, we must be careful to cover the expensive 

preprocessing cost of computing the distance between all landmarks. Hypothetically, if 

all landmark nodes existed at an appropriate position on the graph border, this could 

result in growing out the full SPT for preprocessing time. Our results show that 

selectively choosing a moderate number of landmarks can result in optimal 

measurements across the board. 

But what is this moderate number? While structural graph properties can play a 

significant role in the average efficiency on queries in a graph, the average efficiency 
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increase created by increasing the number of chosen landmarks is strongly correlated to 

the number of vertices. In the context of landmark-to-node ratio, Figure 56 represents the 

average efficiency over 200 trials.
28

 For ALT, we see a sharp increase as the number of 

vertices increase, maxing out in efficiency when approximately 10% of the vertices are 

chosen to be landmarks. 

For ALP, we see this number is about at 25%. For ALT, it is difficult to tell from 

the acquired data precisely where its efficacy ends before hitting the 100% efficiency 

limit. The ALP trendline is approximately characterized by a sextic function, with an R-

squared value of 0.9482
30

. We can analyze this function’s derivative to get a sense of 

                                                 
28

 Each trial had 1000 queries. 
29

 The line drawn for ALT is a very loose approximation of the data. Of linear, polynomial, and log scale, it 

was, however, the log scale was the best fit for the data that we had on hand. Nonetheless, we cannot make 

as adequate of assumptions about ALT based on this equation as we can about ALP based on the 

polynomial. Hence, no equation is featured in the image. 
30

 The R-squared value grew as the degree of the polynomial grew. 

 
Figure 56  Plot of Landmark to Vertex Ratio vs Average Efficiency for 200 Trials

29
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when gains in efficiency begin to decrease as the number of landmarks grows. As seen in 

the figure, for ALP, let 

                                                        
                   

(99)  

Where   equals the landmark-to-vertex ratio and      equals the average efficiency of 

trials with that landmark-to-vertex ratio. The derivative is then defined as 

                                                   
        

(100)  

The only real root of this function’s derivative is at 0.2567, where the function itself 

begins to have 100% efficiency scores
31

. The heuristic’s efficiency cannot grow beyond 

100% because it is admissible. Therefore, it makes sense that it would have a slope of 

zero once average efficiency becomes 100%. Finding a moderate number of landmarks to 

choose for preprocessing ALP requires, however, looking at the second derivative: 

                                                     (101)  

The zeros for        are 0.04199 and 0.12763. At these values for landmark-to-vertex 

ratio, the rate of increase of efficiency increase creeps to zero, which is very apparent in 

the graph. In other words, only an ordinary increase in efficiency will occur at these 

points. 

 It should be noted that the analysis of the sextic equation provides a good 

approximation for these data collected over the course of experimentation. The 

polynomial of degree six was used because it had a significant R-squared value and was 

the lowest degree polynomial with real roots for both its first and second derivatives. The 

first five polynomials either had first or second derivatives close to this one. These roots 

                                                 
31

 Solved using Newton’s Method 
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appear to be correct in terms of understanding the lull in efficiency gain after choosing a 

certain number of landmarks in the data.  

  

Key Observations: Better Tradeoff through BFS during landmark selection 

 Prior to labeling for distributed embedding, a speedup in preprocessing time was 

achieved by leveraging breadth-first search (BFS) as opposed to Dijkstra’s shortest path 

algorithm for path weights during the landmark selection.  When dealing with weighted 

graphs, we cannot use a BFS measurement for the actual labeling of graph vertices. 

However, treating the graph as unweighted when selecting the landmarks produces strong 

results, as they give a rough estimate of actual path cost. Often, particularly for road 

graph datasets, the path length can act as a (somewhat) rough estimate of the distance. In 

the figures below, the path length and path weight histograms for an NYC road graph 

dataset take on roughly the same structure.  

  

 

Table 26 NYC Path Histograms 
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The use of BFS is quick, granting better tradeoff in practical applications. Therefore, to 

speed up ALP’s farthest and planar landmark selection, we use a BFS algorithm to 

identify farthest nodes or to compute the distance between coordinates. This is the same 

strategy that the originators of ALT used to improve farthest, creating farthest-d. This 

paradigm should be used when developing future landmark selection techniques and is, 

of course, subject to the application of the graph and shortest path search. 

 

Key Observations: ALP Performance behaviors are consistent with ALT, except for 

tradeoff. 

After a certain point, a higher landmark-to-node ratio has insignificant efficiency 

increases for ALP. Therefore, its true benefit is speeding up preprocessing, handling 

larger graph datasets, and faster practical implementations due to its ability to make fewer 

computations at each node. Outside of this, the heuristic’s behavior changes similarly to 

ALT with respect to graph structure and algorithm parameters.  

- Both algorithms see performance increases as the number of landmarks 

grows. Both heuristics demonstrate performance increases over a larger set of 

landmarks, with the increase in performance being capped by the ratio of number 

of landmarks to number of vertices. 

- Both algorithms show landmark selection’s utility is simply to optimize 

efficiency within a set of bounds. However, dramatic efficiency increases are not 

seen by varying landmark selection. As shown earlier, dramatic increases are 

guided much more by the number of landmarks. Though, clear optimality can be 

found at the ceiling of a roughly 4% efficiency window for both ALP and ALT. 
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- Both algorithms have similar correlation between graph transitivity and 

query efficiency. Both algorithms exhibit a straightforward relationship to this 

property of the graph structure. Transitivity (and like its close property, clustering 

coefficient) measures the relative frequency of triangles in the graph. Given that 

both ALT and ALP heuristics are heavily dependent on the triangle inequality, it 

makes sense that they are both influenced by the measure of triangles in the 

graph, at both extremes of the measure. 

The second bullet point drives home a strong point. The primary, practical use 

case for the ALP algorithm is for landmark-based heuristic search in large graphs. The 

data show that when the graphs grow in size, both ALT and ALP experience a decrease 

in average efficiency.   

In relation to the third bullet, another factor that can shift the behavior of ALP to 

outperform ALT is the length of the path being queried. Smaller values for transitivity 

and average clustering coefficient typically correlate to longer paths in the graph. 

However, the inverse is not necessarily true. Large paths could simply imply a large 

graph. Figure 57 illustrates the average approximation error for queries performed over 

all trials for ALP and ALT at given path lengths. Both algorithms have fairly similar 

theoretical performance as the path lengths grow larger, with the average approximation 

error approaching zero. And as noted earlier and illustrated in Figure 29, ALT begins to 

experience greater runtimes than ALP as path lengths become larger. This performance 

over large path lengths may be the second largest benefit of the ALP heuristic
32

. 

However, if a method could be created to implement ALT such that it could use a subset 

of its landmarks to compute its heuristic while maintaining a tighter lower bound, it could 

                                                 
32

 With the largest benefit being the drastic reduction in space complexity. 
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see better runtime performance that ALP. This method would inherently not be ALT, but 

a new class of algorithms that can get close to ALT’s approximations while reducing its 

memory requirements.  

  

Despite the algorithms’ similarities, the tradeoff and query runtime (if the number 

of landmarks scale along with the graph size) of ALT is not practical in many use cases 

for graphs of size V5 and up. The plots below take the two key variables for computing 

tradeoff and illustrate them for all trials of 1000 queries.
33

 Note the drastic difference in 

the scales for each plot. We see that the ALP graph most closely follows a quadratic 

polynomial function whereas the ALT graph follows more of a power law (albeit with a 

somewhat low R-squared value). The trials of this experiment demonstrate that ALP 

typically has both a lower preprocessing time and a lower rate of increasing tradeoff over 

all collected data. 

                                                 
33

 Intentionally excluded are the synthetic graph trials. The shapes of those graphs would skew this picture. 

Figure 57 ALT Experiences Better Runtimes and better Approximation Error while 

ALP Experiences Better Runtimes over Growing Path Length 
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Figure 58 ALP Preprocessing vs Query Runtime for Trials of 1000 Queries on Real 

Road Graphs 

 

Figure 59 ALT Preprocessing vs. Query Runtime for Trials of 1000 Queries on Real 

Road Graphs 

 

In practical use cases, such as when road graphs are loaded for temporary path 

query sessions, ALP serves much higher utility than ALT both for preprocessing time and 

runtime in a normal computing environment. The four bar graphs below illustrates the 

degree to which ALP presents a better overall tradeoff and average preprocessing time 
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for all real road graph trials studied in this dissertation. They also further drive home the 

notion that ALP has greater utility in larger graphs in a normal compute environment. 

While runtime is a machine-dependent and implementation-dependent metric, the result 

data described in this chapter demonstrate ALP outperforming ALT for a straightforward 

Python implementation in large graphs.  

  

  

Summary 

  We have evaluated the performance bounds and landmark selection algorithms for 

ALP, as well as its performance in comparison to ALT. We have successfully 

demonstrated and given justification for ALP having stronger performance in a fixed 

memory environment over larger graphs. We end this chapter by summarizing the 

answers to the first two research questions proposed in Chapter 1. 

Figure 60 Four Charts demonstrating Overall Tradeoff for ALP vs ALT Trials on Real 

Road Graphs 
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What landmark selection techniques theoretically fit best with ALP?  

The landmark selection methods that were used for experimentation demonstrate 

approximately a four percent range of efficiency. At the scale of millions of vertices, this 

becomes significant. The average preprocessing time and efficiency over ALP trials is 

displayed in Table 27. Katz centrality is explicitly excluded from this table because of its 

inability to converge on some larger graphs. PageRank, load, and closeness centrality 

worked best with ALP, providing consistent efficiency across datasets while supporting. 

In certain trials, particularly in larger graphs, betweenness centrality also provided 

sufficient speedups, as well. Random can provide sufficient speedups, but is clearly non-

deterministic. In this table, optimized random has fairly high efficiency because it has 

been computed in every trial, even on graphs where average efficiency is quite high. In 

general, centrality measure-based landmark selection has much better tradeoff as it 

informs the heuristic of the graph structure while efficiently identifying landmarks and 

growing shortest path trees. This type of selection is trivial to compute and could provide 

for the fastest form of preprocessing to achieve a speedup over Dijkstra’s algorithm.  

Future research will demonstrate the benefits and detriments for both the use of more 

centrality measures for preprocessing and the use of max, min, and mode for the vectors 

Landmark Selection Average Preprocessing Time Average Efficiency 

Optimized random 321.24661469117 0.29315061 

Farthest-d 1335.61578881421 0.24726657 

Planar 37.05859077324 0.25356666 

Betweenness Centrality 57.55697033005 0.25227837 

PageRank (Max) 119.04858074428 0.29675092 

PageRank (Mode) 67.41231769577 0.28929956 

PageRank (Min) 52.29438178512 0.28659692 

Closeness Centrality 52.30552490364 0.28664093 

Load Centrality 62.45711426451 0.29073376 

Farthest (Eccentricity) 499.05140597165 0.29271267 

Table 27 Average Preprocessing and Efficiency for ALP Landmark Selection over All 

Trials 
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produced by these centrality measures to select landmarks. 

What are the ideal characteristics for landmark shortest path trees? In other words, how 

much preprocessing and memory is required for ALP to maintain its key benefits? 

In terms of the ideal characteristics of landmark shortest path trees, the ALP 

heuristic provides more efficient search over a larger number of landmarks. The use of a 

larger number of landmarks implies smaller shorter path trees and larger knowledge of 

the overall graph, as the distances between all landmarks must be recorded. The optimal 

properties of the shortest path tree require larger paths between the landmarks with short 

paths between the vertices owned by the landmark and the landmark itself. The data show 

that this provides the most optimal ALP estimates. This is also what allows ALP to 

outperform ALT in the fixed-memory environment. The opposite can also be true 

(rarely), where the trees create small paths between the landmarks and significantly large 

paths between the vertices owned by the landmarks. This second scenario happens only 

for a few instances, which is why ALP systematically shows improvement over a 

growing number of landmarks. 

The informal answer to this second question is that ALP requires significantly less 

preprocessing than that of ALT. However, the more memory ALP uses, the more on par 

it can be with algorithms such as ALT. Because ALP’s data structure is typically so 

small, the number of landmarks used can often be chosen liberally. The time that it takes 

to grow ALT shortest path trees for each landmark over the entire graph is astounding as 

the graphs grow. Meanwhile, ALP maintains fairly consistent preprocessing times. The 

bottleneck in preprocessing for larger number of landmarks in ALP only comes from 

computing the distances between landmarks, meaning that partitioning with too much 
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fidelity can result in preprocessing times similar to ALT. However, most trials 

demonstrated significantly smaller preprocessing time for ALP in comparison to ALT. In 

the context of memory, ALT consistently filled up memory and tapped into swap space 

for graphs of over 40,000 nodes. This will vary for different implementations, as 

NetworkX objects turned out to be large and clunky. As will be discussed further in the 

next chapter, a full C/C++ implementation, and not simply the Cython conversion, should 

be used in the future to compare both algorithms. 

How does the algorithm behave as the number of landmarks used to guide the search 

increases? 

This correlates strongly with the previous question. ALP always experiences a 

performance increase over a larger number of landmarks, reaching 100% efficiency for 

our trials when the landmarks make up 25.6% of the graph and suffering smaller gains in 

efficiency after 4.2% and 12.8%. Once again, these cutoff points are for the structure of 

our datasets and the fact that this many landmarks can be used during preprocessing is a 

testament to ALP’s benefits. ALP can handle a larger number of landmarks without 

significant increase to preprocessing time, whereas ALT preprocessing time grows 

substantially. This property makes ALP a more feasible preprocessing algorithm than 

ALT and other similar algorithms in fixed-memory environments, such as embedded 

systems. 
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Chapter 5 

 

Conclusions, Implications, Recommendations, and Summary 

In this chapter, we interpret, examine, and qualify the results of the investigation 

and draw inferences from them.  

Conclusions 

In this dissertation, we identified a heuristic for A* that leverages a data structure 

of size             as opposed to ALT’s           . This data structure is formed 

through a new embedding process, which only requires growing and storing the distances 

of a shortest path tree for a subgraph (graph partition) owned by a landmark. With this 

type of embedding, the new heuristic for A* search, dubbed ALP, leverages polygon 

inequalities to estimate the distance from a vertex to the search goal. This dissertation 

primarily used quadrilateral inequalities to guide A* search. We experimentally tested the 

performance bounds of this heuristic, multiple landmark selection techniques based on 

those of ALT, as well as new techniques that leverage the structure of the partition, and 

trials that compare the heuristic directly to ALT over the same datasets in a fixed-

memory environment. Through experimentation and theory, we have identified the key 

parameters, bounds, and behaviors of the algorithm in the context of road graphs and 

synthetic graph data structures. 
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Implications 

We have identified each theoretical scenario in which ALP’s heuristic function 

can give a better estimate of the distance to an A* search goal than ALT’s. We have 

established that ALP typically outperforms ALT when analyzing larger graphs in a fixed-

memory environment due to ALP’s ability to leverage more landmarks. We also 

established that in cases in which the ALT heuristic has greater average estimates than 

the ALP dual landmark heuristic, ALP can still computationally outperform ALT and 

Dijkstra’s algorithm can potentially outperform A* using either ALP or ALT. The fact 

that Dijkstra’s algorithm can computationally outperform both of these methods as 

graphs scale should serve as a cautionary example for other methods of shortest path 

preprocessing. Too many computations at a particular vertex can mean a substantial 

decrease in practical performance on average, even with significant theoretical 

performance. 

One more open-ended research question has not been answered: In what ways can 

this be applied to path planning? What real-world applications exist for ALP that were 

previously impractical to solve with ALT? Experimentation with ALP in comparison to 

ALT led us towards an answer to this question. First, ALT in the Python NetworkX 

environment created an extremely high memory cost. For larger graphs, this cost often 

came without significant speedup to Dijkstra’s (though still more algorithmically more 

efficient than ALP). If coded using a lower-level language in a smaller environment, such 

as a C++ program for a Raspberry Pi (Halfacree & Upton, 2012), ALT would still be an 

infeasible heuristic for A* for graphs on the order of tens of thousands of vertices. ALP 

now makes operations in such an environment possible. Even if a device could handle 
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ALT in that environment, if the device were processing graphs on the order of hundreds 

of thousands of nodes, the experiments in this dissertation allow us to conclude that ALP 

would outperform ALT in terms of runtime efficiency (and still in terms of memory).  

Prior to this research, forming graphs based on collected data and running 

analytics such as shortest path queries would be infeasible for graphs above such a 

threshold, as the search space would grow too high for Dijkstra’s algorithm and the 

memory requirement would grow too high for ALT. Now, A* has a class of algorithms 

for heuristic estimation that require neither the massive search space size of Dijkstra nor 

the massive data structures of algorithms such as ALT. It even has the capacity to store 

less information than algorithms such as PCD, which were created to reduce search space 

size. In the real world, ALP can enable smaller, memory-limited devices without constant 

internet or local network connection to efficiently navigate paths in large graph datasets.  

Note that distributed embedding is the real memory-reducing property, here. Much of 

ALP’s benefits over ALT are derived from the fact that ALP can leverage the distributed 

embedding environment while ALT cannot. 

ALP’s benefit can reduces the requirement of energy required to power small-

scale devices that have to perform path computation on graphs. Such localized navigation 

planning can allow for more intelligent planning to occur in denied areas such as space or 

military domains. Also, ALP can be a reasonable algorithm to use in cloud computing, 

when a large graph dataset is updated periodically but would benefit from a speedup to 

Dijkstra. Depending on the period of time between graph changes, ALP provides a 

reasonable preprocessing time to speed up shortest path queries in this scenario.  
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Recommendations 

In this dissertation, experiments were initially conducted on diverse classes of 

synthetic networks and then the focus turned to road networks. The next step in 

characterizing ALP would be to further explore ALP’s behavior in comparison to ALT’s 

on a broader range of graphs. This broader dataset should contain graphs possessing 

particular characteristics such that more comparative information about both ALT and 

ALP can be gleaned. Further, the other algorithms mentioned in Chapter 2 for 

preprocessing shortest path queries should be run on this broader set of graphs as well to 

identify similarities and differences among algorithms, as well as identifying where they 

have optimal utility. 

In these studies, ALP uses only the basic quadrilateral inequalities derived from 

triangle inequalities as well as Ptolemy’s inequality and the Four-Point inequality
34

. 

Future research can include the use and selection of varying heuristics for special 

quadrilaterals along with that of other polygons induced on the graph. Such research 

would address the difficult problem of extracting information such as angle and inscribed 

shapes before the heuristic could be computed. Future theoretical research could also 

contribute to automated methods of deriving these inequalities for higher-sided shapes. 

Also, we know that quadrilateral inequality bounds are not typically tighter than 

triangle inequality bounds for more moderate size graphs. However, they consistently 

showed performance on par with the triangle inequality over larger path lengths. This 

meant that the inefficiency often stemmed from the visited vertex and target sharing the 

same landmark during the search. At that point, the search becomes equivalent to ALT 

with one (very close) landmark. Once the search reaches that point, it is obvious that 

                                                 
34

 Conditionally 
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ALT would outperform ALP as long as ALT is using more than one landmark. 

Performance can be increased by allowing multiple landmarks within a subgraph, such 

that once the visited vertex and target do fall within the same partition, they can execute a 

more efficient version of ALT. 

The ALP class of algorithms differs in behavior from the ALT class of algorithms 

because of ALPs lower asymptotic space complexity (i.e., distributed landmark 

embedding). These properties change the average expected computational performance of 

PPSP queries for each landmark selection technique. Because of this, the ALP paradigm 

may speed up other algorithms that leverage the triangle inequality. One example comes 

from identifying duplicate strings and objects in XML databases (Weis & Naumann, 

2004). Specifically, because pairwise calculations of all string tokens in a dataset need to 

be performed to accurately identify duplicate strings, expensive edit distance calculations 

for this type of query are infeasible for larger datasets. Instead, a series of filters are 

typically applied to these string token pairs to drastically reduce the total number of edit 

distance calculations required. A new class of filters could be created that actively use 

information about relationships between other string tokens in the corpus to significantly 

reduce the required number of candidate pairs for comparison. The new filters would rely 

on the generalized polygon inequality to bound the possibility of chunks of data to be 

candidate duplicates. Identifying the use of other geometric inequalities in this manner 

could provide previously unforeseen benefits to such algorithms.  

Before such a thing could be studied, however, we note that one of the limitations 

of the experiments in this dissertation is that we assume some partitioning of the graph as 

an input parameter to ALP when forming its data structure. For utility, another class of 
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experiments would be to start with as many landmarks as each method allows (where 

memory is bounded) and then, in the case of ALP, to grow classes of the partition around 

each of the landmarks. This would provide maximum utility in these other application 

spaces. 

 

Summary 

Modern navigation planning requires the ability to regularly compute the shortest 

path between two points in massive road networks. In such cases, preprocessing 

algorithms are used to increase the performance of shortest path queries. Many such 

algorithms require heavy upfront computation and storage. Few algorithms concern 

themselves with the space complexity required to aid queries. The problem that this 

research addresses is that modern shortest path preprocessing algorithms have space and 

preprocessing time requirements for large-scale graphs that are impractical for resource-

limited devices. 

ALT describes a preprocessing technique for shortest path queries that, prior to 

query time, chooses a relatively small number of landmark nodes in a graph and 

computes the distances between all vertices and these landmarks, allowing the A* 

algorithm to leverage the triangle inequality during search queries. The algorithm works 

as follows: For a simple graph   with vertices     ∈   , where   is a landmark vertex 

chosen beforehand, the shortest path distances between each vertex serves as a distance 

metric, allowing the graph to form a metric space. Therefore, for the distances between 

vertices      ∈  , the following reverse triangle inequality holds: 

                        (1)  
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ALT uses this inequality to create a heuristic estimate for A* upon a visit to 

vertex A. By computing and storing the values between each chosen landmark and all 

vertices in the graph apriori, this lower bound is computed for each chosen landmark 

vertex  . The maximum of these lower bounds is the ALT heuristic function’s value, 

denoted as   . By using information about multiple landmarks, new lower bounds can be 

computed from either generalized polygon inequalities or inequalities specific to any 

shape embedded within the graph. The use of these new lower bounds as a heuristic has 

resulted in a new class of algorithms called ALP, for A*, Landmarks, and Polygon 

Inequalities. The base case for this class of algorithms is the heuristic used for the ALT 

algorithm. Here, we demonstrate that polygon inequalities for quadrilaterals can also be 

used to establish the lower bounds for shortest path queries in a graph. The following 

reverse quadrilateral inequalities hold for a graph    with source and target vertices  

   ∈   and chosen landmarks       ∈  : 

      ≥                              Reverse 

Quadrilateral 

Inequalities       ≥                              

      ≥                            

      ≥                   l1=l2 

      ≥                   l1=l2 

      ≥
                                                     

        
 

Ptolemy’s 

Inequality 

      ≥                                                Four-Point 

Condition 
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The first five are derived from the triangle inequality as applied to quadrilaterals. 

A potential problem with these inequalities is that they have ability to generate negative 

lower bound estimates. However, because multiple points are used, a varying set of 

inequalities can be generated to estimate distances. When attempting to estimate lower 

bounds using ALP, other inequalities should be considered such that the highest possible 

estimate can be used. We use the sixth and seventh equation, derived from Ptolemy’s 

inequality and the Four-Point condition on metric spaces, respectively, as a concrete 

example for the dual landmark case. Just as with ALT, the maximum over the set of these 

lower bounds are used to tighten the lower bound for the distance between two vertices. 

We denote the maximum of the six equations for ALP as    , ALP’s dual-landmark 

heuristic for A*. The following describes     as a heuristic: 

     is an admissible heuristic for A*. 

  Using distributed embedding,    
 is not consistent. 

    
 does not dominate   

 over the same set of landmarks. 

   
  does not dominate   

   over different landmark sets. 

ALP’s data structure can exhibit a space complexity of             (as opposed to 

ALT’s             using the following technique, called distributed embedding. With a 

partitioned graph as input, the dual landmark approach identifies a single landmark 

within each partition and computes a shortest path tree for the subgraph induced by each 

chosen landmark’s graph partition. Each vertex in the graph is labeled with an identifier, 

signifying its landmark partition and the distance to and from its corresponding landmark. 

Any of the landmark selection methods for ALT can be used for the subgraph induced by 

the graph partition to select an optimal set. The final step of this process is a shortest path 
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calculation between the selected landmarks. This is achieved by a Dijkstra’s shortest path 

tree computation from each landmark that has a stopping condition of all landmarks 

being in the tree. Allowing each landmark in the graph to access only a subgraph limits 

the size of the data structure used at query time, significantly reduces the preprocessing 

time, and bounds the number of operations performed to compute the heuristic. 

 We implemented both the ALP and ALT algorithms in a Python 2.7 environment 

with the aid of the NetworkX 1.9 library. For larger graphs, we enhanced this 

implementation using Cython and GCC optimizations.  We used this environment to 

implement the following ALT-based landmark selection techniques for ALP: 

 random and random-p 

o Simple random landmark selection and randomly selected vertices over a 

series of trials, respectively 

 farthest-d and farthest-ecc 

o Choosing the farthest landmarks from the current set of landmark vertices 

and choosing the landmark in each cluster with highest eccentricity, 

respectively 

 planar 

o Choose landmarks on the periphery of their respective subgraph 

 betweenness 

o Choose landmarks with the highest betweenness centrality in their 

subgraph 

Each of these techniques were used within each subgraph to identify a single landmark 

within the subgraph to add to the overall set. During development, it was noticed that 
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good landmark selection for ALP is focused on computations made within the subgraph. 

That combined with the ability to trivially compute centrality measures for a subgraph 

allowed us to also create landmark selection techniques similar to betweenness for the 

following types of centrality measures: 

 PageRank 

 Load 

 Katz 

 (Vertex) Closeness 

For PageRank, the maximum, minimum, and mode vertices were trialed to identify which 

would provide optimal results. 

 During experimentation, we ran thousands of trials for ALP with different road 

graph and synthetic graph datasets to characterize its behavior, comprehend its 

performance bounds, compare landmark selection methods, and understand how it 

compares to ALT. We see that graph transitivity and average clustering coefficients are 

strong factors in the efficiency of ALP, much like other search algorithms. More 

importantly, we see that it has significantly high performance over large path lengths, 

allowing the ALP heuristic to outperform the ALT heuristic. Further, as the number of 

landmarks for ALP grows, its efficiency increases. Though, gains in performance start to 

become fairly constant after the ratio of number of landmarks to vertices grows beyond a 

certain point. In terms of landmark selection, we see that centrality measure-based 

landmark selection provides a trivial method to select landmarks based on a graph 

partition’s structure and has strong performance in the ALP environment. We also 

showed that varying amongst the type of landmark selection techniques proposed here 
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results in a 4% difference in average query efficiency. In each of the runs against ALT, 

we see that ALP’s behavior varies in similar ways to ALT, with ALT simply providing a 

better estimate on average. The two algorithms behave similarly in the context of graph 

structure and size, but not in terms of number of chosen landmarks. ALT can reach 100% 

efficiency scores with fewer landmarks than ALP. However, performing preprocessing 

and storing a data structure for graphs that have nodes that are more than in the tens of 

thousands requires significant resources. Finally, in a fixed-memory environment, 

simulating a small or embedded system with limited resources, ALP heuristics 

outperformed ALT as the size of the graphs grew. On the order of hundreds of thousands 

of vertices, ALP was able to leverage denser landmark sets to make better heuristic 

estimates than ALT. Further, ALP’s preprocessing time requirements grew more slowly 

than ALT’s as the number of landmarks grew. Because of this, ALP is a more practical 

algorithm that can be used for a variety of applications when preprocessing is an option. 
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Appendices 

Appendices contain all research instruments used, as well as any relevant additional 

materials such as sample interview transcripts, sample coding schemes, summary charts, 

and so forth. Each item that is included as an appendix is given a letter or number and 

listed in the table of contents. 

Appendix A: Graphs and Applied Mathematics Concepts 

Recall that the following graphs were used for experimentation. Below the table are their 

definitions and sources on their origin: 

 

1. Barabási–Albert model (Zadorozhnyi & Yudin, 2012) – random scale free graph 

using a preferential attachment mechanism 

2. Barbell Graph (Ghosh, Boyd, & Saberi, 2008) – simple graph obtained by 

connecting two copies of a complete graph by a bridge (path) 

Name Graph Type Graph Parameters DB Name

M1 Barabási–Albert (BA) model Preferential Attachment = 2 Edges/Node NETWORKX.BARABASI_ALBERT_2

M2 Barabási–Albert (BA) model Preferential Attachment = 3 Edges/Node NETWORKX.BARABASI_ALBERT_3

M3 Barabási–Albert (BA) model Preferential Attachment = 5 Edges/Node NETWORKX.BARABASI_ALBERT_5

M4 Barabási–Albert (BA) model Preferential Attachment = 7 Edges/Node NETWORKX.BARABASI_ALBERT_7

M5 Barabási–Albert (BA) model Preferential Attachment = 9 Edges/Node NETWORKX.BARABASI_ALBERT_9

M6 Barabási–Albert (BA) model Preferential Attachment = 11 Edges/Node NETWORKX.BARABASI_ALBERT_11

M7 Barabási–Albert (BA) model Preferential Attachment = 13 Edges/Node NETWORKX.BARABASI_ALBERT_13

M8 Barbell Graph Equivalent Number of Nodes on each side NETWORKX.BARBELL_GRAPH_EVEN

M9 Barbell Graph 2/3 Nodes on Left Barbell, 1/3 Nodes on Right Barbell NETWORKX.BARBELL_GRAPH_ODD

M10 Circular Ladder Graph NETWORKX.CIRCULAR_LADDER_GRAPH

M11 Complete Graph NETWORKX.COMPLETE_GRAPH

M12 Cycle Graph NETWORKX.CYCLE_GRAPH

M13 Erdős–Rényi model Edge Creation = 15% NETWORKX.ERDOS_RENYI_15

M14 Erdős–Rényi model Edge Creation = 30% NETWORKX.ERDOS_RENYI_30

M15 Ladder Graph NETWORKX.LADDER_GRAPH

M16 Path Graph NETWORKX.PATH_GRAPH

M17 Random Lobster Pbackbone=45%, PBeyondBackbone=45% NETWORKX.RANDOM_LOBSTER_45

M18 Random Lobster Pbackbone=90%, PBeyondBackbone=90% NETWORKX.RANDOM_LOBSTER_90

M19 Watts–Strogatz model 10% nearest neighbor connections, 10% Prewiring NETWORKX.WATTS_STROGATZ_10

M20 Watts–Strogatz model 20% nearest neighbor connections, 20% Prewiring NETWORKX.WATTS_STROGATZ_20

M21 Waxman Graph alpha=0.4,beta=0.1,domain=(0,0,1,1) NETWORKX.WAXMAN_GRAPH
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3. Circular Ladder Graph (Ghosh et al., 2008) – graph corresponding to the skeleton 

of an n-prism 

4. Complete graph (Alspach, Bermond, & Sotteau, 1990)– graph in which each pair 

of graph vertices is connected by an edge 

5. Cycle graph  (Gross & Yellen, 2005) – a graph containing a single cycle through 

all nodes  

6. Erdős–Rényi graph (Erdős & Rényi, 1959) – Random graph  in which all pairs of 

vertices share an edge with a common probability 

7. Ladder Graph (Noy & Ribó, 2004) – A planar undirected graph obtained as the 

Cartesian product of two path graphs, one of which has only one edge 

8. Path Graph (Gross & Yellen, 2005) – A tree containing only vertices of degree 2 

and 1 

9. Random Lobster Graph (Golomb & Lushbaugh, 1996) – A tree in which the 

removal of leaf nodes leaves a tree in which every vertex is either on the central 

stalk or one edge away from the central stalk known as a caterpillar graph 

10. Watts-Strogatz Graph (Watts & Strogatz, 1998)- Random graph formed with 

small world properties, such as short path lengths and high clustering coefficients 
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Appendix B: Data Description 

This section of the appendix hosts the description of data used collected during 

experimentation. The following series of tables is the data dictionary for the dissertation 

MySQL database. 

alt_alp_comparison_trials 

Table comments: Table connecting Trial IDs, Experiment IDs, and Graph IDs  

Column 
Type Null Default Comments 

trial_id (Primary) int(11) No 
 

Trial ID 

experiment_id int(11) No 
 

Experiment ID 

graph_id int(11) Yes NULL Graph ID 

 

Indexes 

Keyname Type 
Uniq

ue 

Packe

d 
Column 

Cardinali

ty 

Collati

on 

Nu

ll 

Comme

nt 

PRIMARY 
BTRE

E 
Yes No trial_id 32362 A No 

 

fk_graph_id_idx 
BTRE

E 
No No graph_id 3236 A 

Ye

s  

fk_experiment_id

_idx 

BTRE

E 
No No 

experiment

_id 
42 A No 

 

 

embedding_techniques 

Table comments: Descriptions of landmark selection techniques 

Column 
Type Null Default Comments 

et_id (Primary) int(11) No 

 

Embedding method ID 
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description varchar(45) No 

 

Description of Embedding Method 

 

Indexes 

Keyname Type Unique Packed Column Cardinality Collation Null Comment 

PRIMARY BTREE Yes No et_id 13 A No 

 

 

error 

Table comments: Table of Approximation Error for Each Query 

Column Type Null Default Comments 

query_id int(11) No 

 

Query ID 

error decimal(30,15) No 

 

Initial Approximation Error for search 

 

Indexes 

Keyname Type 
Uniqu

e 

Packe

d 
Column 

Cardinalit

y 

Collatio

n 

Nul

l 

Commen

t 

query_fk_id

x 

BTRE

E 
No No 

query_i

d 
3224515 A No 

 

 

experiments 

Table comments: Table of experiments 

Column Type Null Default Comments 

experiment_id (Primary) int(11) No 
 

Experiment ID 

description varchar(250) Yes NULL Description of Experiment 

start_time datetime Yes NULL Experiment Time (US Eastern 
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Standard Time) 

result varchar(10) Yes NULL SUCCESS OR FAILURE 

 

Indexes 

Keyname Type 
Uniqu

e 

Packe

d 
Column 

Cardinalit

y 

Collatio

n 

Nul

l 

Commen

t 

PRIMAR

Y 

BTRE

E 
Yes No 

experiment_i

d 
741 A No 

 

 

graphs 

Table comments: Table of the graphs used for experimentation 

Column Type 
Nul

l 

Defau

lt 
Comments 

graph_id (Primary) int(11) No 
 

Graph ID 

directed bit(1) No 
 

nx.is_directed 

num_nodes int(11) Yes NULL Number of Nodes in the graph 

num_edges int(11) Yes NULL Number of Edges in the graph 

estrada_index 
decimal(60,

30) 
Yes NULL Estrada Index of the graph 

is_chordal bit(1) Yes NULL 
Whether or not the graph has 

chordal structure 

largest_clique_size int(11) Yes NULL nx.graph_clique_number 

num_max_cliques int(11) Yes NULL 
nx.graph_number_of_cliques(

g) 

transitivity 
decimal(20,

15) 
Yes NULL Transitivity of graph structure 

average_clustering 
decimal(20,

15) 
Yes NULL 

Average Clustering of the 

graph 

average_node_connectivity 
decimal(20,

15) 
Yes NULL 

nx.average_node_connectivity

(g) 

edge_connectivity int(11) Yes NULL nx.edge_connectivity(g) 

node_connectivity int(11) Yes NULL nx.node_connectivity(g) 
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diameter int(11) Yes NULL nx.diameter(g) 

size_periphery int(11) Yes NULL 

Number of nodes with 

eccentricity equal to the 

diameter len(nx.periphery(g)) 

is_eulerian bit(1) Yes NULL nx.is_eulerian(g) 

average_shortest_path_length 
decimal(20,

16) 
Yes NULL 

Average length of shortest 

paths in the graph 

num_connected_double_edge_

swaps 
int(11) Yes NULL 

Number of successful double 

edge swaps where the number 

of swaps is set to the number 

of edges in the graph: 

nx.connected_double_edge_s

wap(g, num_edges) 

is_tree bit(1) Yes NULL 
Whether or not the graph is a 

tree 

density 
decimal(20,

17) 
Yes NULL Density of the graph 

graph_name 
varchar(250

) 
Yes NULL 

What data does the graph 

represent? (e.g. NYC, San 

Francisco) 

 

Indexes 

Keyname Type Unique Packed Column Cardinality Collation Null Comment 

PRIMARY BTREE Yes No graph_id 3045 A No 
 

 

heuristics 

Table comments: Table of A* heuristics 

Column Type Null Default Comments 

heuristic_id (Primary) int(11) No 
 

Heuristic ID 

description varchar(15) No 
 

Description of Heuristic (e.g. ALT, 

ALP, Dijkstra) 
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Indexes 

Keyname Type 
Uniqu

e 

Packe

d 
Column 

Cardinalit

y 

Collatio

n 

Nul

l 

Commen

t 

PRIMAR

Y 

BTRE

E 
Yes No 

heuristic_i

d 
12 A No 

 

 

preprocessing 

Table comments: Stores preprocessing information about the trial run for each 

heuristic used 

Column Type Null Default Comments 

preprocessing_id (Primary) int(11) No 
 

Preprocessing ID 

trial_id int(11) No 
 

Trial ID 

heuristic_id int(11) Yes NULL Heuristic ID 

graph_id int(11) Yes NULL Graph ID 

preprocessing_time decimal(20,7) Yes NULL 

Total time for preprocessing 

(Landmark Selection + 

Shortest Path Tree Growth) 

 

Indexes 

Keyname Type 
Uniq

ue 

Packe

d 
Column 

Cardinali

ty 

Collati

on 

Nu

ll 

Comme

nt 

PRIMARY 
BTRE

E 
Yes No 

preprocessing

_id 
16701 A No 

 

fk_graph_id_id

x 

BTRE

E 
No No graph_id 1670 A 

Ye

s  

fk_heuristic_id_

idx 

BTRE

E 
No No heuristic_id 16 A 

Ye

s  

 

query 

Table comments: Table of shortest path queries. Each row is a single source-

target PPSP query 
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Column Type Null Default Comments 

query_id (Primary) int(11) No 
 

Query ID 

trial_id int(11) No 
 

Trial ID 

heuristic_id int(11) No 
 

Heuristic ID 

embedding_method int(11) Yes NULL Landmark Selection Technique 

source int(11) No 
 

Source vertex 

target int(11) No 
 

Target Vertex 

path_length int(11) No 
 

Number of vertices traversed 

num_landmarks int(11) Yes NULL Number of Landmarks 

runtime decimal(14,7) No 
 

Runtime 

search_space_size int(11) No 
 

Search Space Size 

num_operations int(20) No 
 

number of arithmetic operations 

executed for this query 

total_estimates int(20) No 
 

Total estimates made. (Should be 

equal to the number of visits) 

path_weight decimal(30,10) Yes NULL 
Actual path cost of shortest path 

query 

 

Indexes 

Keyname Type 
Uniq

ue 

Pack

ed 
Column 

Cardina

lity 

Collati

on 

Nu

ll 

Comm

ent 

PRIMARY 
BTR

EE 
Yes No query_id 

1521323

5 
A No 

 

fk_heuristic_id_idx 
BTR

EE 
No No heuristic_id 18 A No 

 

fk_embedding_meth

od_idx 

BTR

EE 
No No 

embedding_m

ethod 
18 A 

Ye

s  

fk_trial_id_idx 
BTR

EE 
No No trial_id 16428 A No 
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Appendix C: Supplemental Experiment Data 

In this section of the appendix, we attach extra results of interests that further support the 

claims made in this dissertation. This section also provides more detailed data regarding 

the experiments of Chapter 4. While these details were not critical in proving our claims 

and answering the research questions, they do further characterize the ALP algorithm in 

the context of the ALT algorithm and could prove useful in future research. 

Experiment 1 Extension: Graph Efficiency vs Structure 

The following is a table of the average efficiency of queries at each graph scale. 

Graph Category Algorithm # Queries Efficiency 

V1 ALP 1058124 0.35639541 

V1 Dijkstra 1068912 0.22648232 

V2 ALP 880766 0.46972808 

V2 Dijkstra 890455 0.20704487 

V3 ALP 873815 0.31745607 

V3 Dijkstra 629171 0.08550012 

V4 ALP 109302 0.23096096 

V4 Dijkstra 182254 0.12391506 

V5 ALP 253818 0.11325759 

V5 Dijkstra 267314 0.02320272 

V7 ALP 19073 0.03724294 

V7 Dijkstra 16287 0.00320424 

E1 ALP 384815 0.37774329 

E1 Dijkstra 321820 0.33719738 

E2 ALP 1091292 0.55122999 

E2 Dijkstra 1133013 0.24995331 

E3 ALP 1009983 0.28840927 

E3 Dijkstra 830083 0.0882232 

E4 ALP 349616 0.11146852 

E4 Dijkstra 351080 0.06686537 

E5 ALP 305159 0.12243344 

E5 Dijkstra 358145 0.04312324 

E6 ALP 16481 0.19287126 

E6 Dijkstra 17486 0.09854249 

E7 ALP 36055 0.14320232 
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Graph Category Algorithm # Queries Efficiency 

E7 Dijkstra 41269 0.08432151 

One other measurement that was used to measure ALP performance involves 

using performance of the Dijkstra’s shortest path algorithm as an basis for runtime 

measurement. At every graph scale, both ALP and ALT have speedups over Dijkstra. For 

each vertex and edge scale, we divide the average efficiency of ALP with A* runs by the 

average efficiency of Dijkstra runs to establish a Vertex Efficiency Multiplier and an Edge 

Efficiency Multiplier, respectively. Figure 61 and Figure 62 illustrate the efficiency of 

ALP over basic Dijkstra’s for the graph scales noted in Figure 17. 

 

Figure 61 Efficiency Multipliers for Vertex Scales
35

 

 

                                                 
35

 The two equations noted in the figure are anecdotal and will always differ as graph structures vary. 

Simply, these are the equations derived for these runs. Nonetheless, the methods of deriving them may be 

useful in determining whether to use ALP or not for similar graphs. 

Table 28  Average Efficiency of Queries at Each Graph Scale 
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Figure 62 Efficiency Multiplier for Edge Scales 

 

Experiment 1 Extension: Varying Graph Structure Trials 

For real road datasets, we take the largest directed subgraph of the dataset and 

also execute 1000 queries on 1000 random source-target vertex pairs. The real graphs fell 

into all vertex classes except for V2 and V6. Each edge class was used during this 

experiment. Just as with synthetic graphs, for each real road graph dataset, for 

communities derived from each hierarchy level, we analyze the efficiency of all queries 

run on ALP with optimized random landmark selection. We set a maximum number of 

communities and inherently, a maximum number of landmarks, to 2500. This maximum 

allowed for querying enough graph variants such that trends could be confirmed. Table 

29 and Figure 63 describe the number of runs and average ALP efficiency for each graph.  

To perform more trials, we used subgraphs of each of the datasets. In Table 29, 

the names of the graph datasets are suffixed with their number of vertices and number of 

edges. Some graphs were run as both undirected and directed graphs during 
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experimentation.
36

 We see, here, that directed graphs have higher average efficiency in 

ALP, as do smaller graphs. 

 

 

 

                                                 
36

 Real road graphs are directed graphs unless otherwise specified. 

Name #Nodes #Edges # Queries Avereage Efficiency

Washington DC 9522 14832 23993 0.02035347

NYC (Undirected) 264346 365050 19073 0.03724294

Rhode Island 53288 68496 6990 0.03760536

Rome (Undirected) 3353 4831 27919 0.04239815

United States (Eastern) 35103 42902 3543 0.04337649

United States (Eastern) 49404 57960 2997 0.04827491

Vermont 95671 105124 1998 0.05703919

United States (Western) 28652 36906 3996 0.06557798

United States (Western) 51447 62272 2997 0.07205112

Great Lakes 34198 42957 3996 0.083298

Luxembourg 84136 85579 193294 0.08340697

United States (Western) 13499 17421 3996 0.08795465

United States (Eastern) 24728 30000 3996 0.09198804

New Mexico 29381 33476 3996 0.11281136

Great Lakes 11773 15861 3996 0.11348083

United States (Eastern) 13816 16819 2997 0.12692009

United States (Eastern) 29796 32528 4041 0.12784286

New Mexico 28115 32736 3996 0.13894572

United States (Central) 11584 13188 2997 0.13962499

New Mexico 15221 17919 3996 0.14147232

Hawaii 9237 10711 5994 0.14916109

United States (Western) 8294 9851 3001 0.16377774

Great Lakes 3700 4483 2997 0.17008902

United States (Eastern) 5573 6391 2997 0.17019366

United States (Central) 5327 6121 2997 0.18771198

United States (Central) 9549 10677 2997 0.19655155

United States (Central) 7276 7856 2997 0.21757875

United States (Central) 5422 6105 2997 0.223868

Rome (Directed) 3353 4831 614089 0.3252697

Table 29 Real Road Graph Shortest Path Average Query Efficiency 



Campbell 175 

 

 

 

 

 

 

Experiment 1 Extension: Landmark Selection Trials 

We pull samples from the landmark selection series of trials and plot it in Figure 64  and 

Figure 65 to demonstrate the behavior of each trial with respect to a trial’s average query 

distance and the three metrics. We once again confirm a small difference in efficiency 

between the most efficient landmark selection technique (in this case, farthest-ecc) and 

the least efficient (planar). 

Figure 63 Average Efficiency for Real Road Graphs 
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Figure 65 Average Distance vs Average Error 
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Figure 64  Average Distance vs Efficiency 
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Experiment 2 Extension: ALT vs. ALP: Graph Structure and Landmark Selection 

We began Experiment 2 with a small set of trials involving measurement of ALT’s 

performance against ALP’s performance over four synthetic graph structures using ALT-

based landmark selection techniques. Using a small set of graph structures comprised of 

the graphs that have significantly variable behavior under different parameters, optimized 

random, farthest-d, planar, and betweenness centrality landmark selection were 

performed on each graph. For the synthetic graphs, the following graphs were used: 

- Barabási Albert Graph with 3 edges per vertex 

- Barabási Albert Graph with 7 edges per vertex 

- Erdős–Rényi Graph with 15% Edge Creation 

- Watts-Strogatz Model with 10% Nearest Neighbor 

Each of these graphs were created for scales V1, V2, and V4 by starting with 100 nodes 

and multiplying the nodes by 10 until we got to 10000. Each of the figures below 

illustrates the dramatic difference in average efficiency between ALT and ALP for varied 

graph structures. We used the four implemented types of landmark selection for ALT and 

their ALP equivalent for embedding.
37

 The runs with maximum efficiency are 

highlighted in the illustration. During analysis, the structure of the graph did not have a 

significant impact for graphs at these scales. However, for these scales, it is obvious that 

ALT is the more efficient algorithm to use, with average efficiency scores as large as ten 

times that of ALP. 

                                                 
37

 Optimized Random, Farthest-D, Planar, Betweenness Centrality 
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Size seems to have more of an impact on the difference in efficiency than structure. This 

is because ALT and ALP are based on the same kind of geometric inequalities. 

Therefore, they behave similarly over different graph structures. 

 In the next set of trials, we highlight the differences in performance for each type 

of landmark selection in real graphs. First, we run each landmark selection technique that 

is native to ALT (random, farthest-d, planar, and betweenness centrality) for both ALT 

and ALP, respectively. In Table 30, we take a look at an exemplar of the dramatic 

difference in preprocessing between ALT and ALP. The results highlight preprocessing 

times for a dataset representing a subset of the United States Eastern seaboard. The goal 

Figure 66 ALT vs ALP: Significant Difference in Efficiency for Graphs of size V1, V2, 

and V4 
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was to identify and label 389 landmarks. The preprocessing time for ALT for this 

~30,000 vertex graph was almost five times that of ALP, at best, for the ALT 

preprocessing techniques. This, along with the results above, is a clear demonstration, 

that with straightforward implementations, ALT is a heuristic that is simple to run on 

smaller graphs (<V4), but begins to lose its utility in comparison to ALP at a certain 

scale. Meanwhile, as shown in our previous experiments, ALP’s utility, in the context of 

tradeoff, improves for larger graphs. As stated earlier, the vast difference in 

preprocessing time is obvious from the methodology.  

  
Table 30 ALT vs ALP Preprocessing 

 

Because of this, the figures below demonstrate the utility of ALP in comparison to ALT. 

ALP should be used for larger graphs, barring restrictions on application. We observe 

data taken from 291 combinations of graph types and landmark selection methods for 

ALP and compare it to 109 that were run for ALT.
38

  The runtimes for each data point 

was measured for 1,000 queries. ALT exhibits such high preprocessing times that the 

total time for its trial runs significantly exceeds that of ALT’s after about 7,500 nodes or 

15,000 edges. The values in the charts below are on a log scale. ALT commonly suffers 

from having larger tradeoff values, due to its significantly long preprocessing times.  

                                                 
38

 It was infeasible to run as many ALT trials, particularly when it came to larger graphs, because of ALT’s 

preprocessing times and significant memory requirements. Therefore, we leverage a scatter plot to make 

the comparisons in this section apparent. 

Heuristic Landmark Selection Time (s)

ALT Random 471.0266

ALP Random 55.49462

ALT Planar 942.0947

ALP Planar 69.54433

ALT Betweenness Centrality 964.592

ALP Betweenness Centrality 88.71064



Campbell 180 

 

 

 

 Finally, among these trials, we identify three graphs from which to further analyze 

landmark selection. Each of these graphs were run with 1000 queries for ALT and ALP 

after using each landmark selection method, using the same number of landmarks, but 

their own individual landmark selection. In Figure 69, we see that the average efficiency 

of each of these three graphs under each landmark selection stays fairly the same, with 

the exclusion of planar and Farthest-D for ALT. In particular, we see orders of magnitude 

difference between ALT and ALP, in terms of efficiency. In Figure 70 and Figure 71, we 

see orders of magnitude difference for preprocessing time, as well, as ALT takes a 

significant amount of time to compute its shortest path trees. The preprocessing time bar 

chart is at the log scale, as the preprocessing times scale exponentially for ALT as the 

graph grows. We see that Planar and Farthest-ecc demonstrate the worst tradeoffs for the 

larger New Mexico graph, but not for the smaller graphs. Overall, the tradeoff for ALT 

grows to be significantly worse than that of ALP, over larger graphs, regardless of 

landmark selection.
39

 In comparison with ALP, we see that the efficiencies across 

landmark selection techniques are roughly the same at each graph, regardless of landmark 

selection. This is because landmark selection for ALP is guided significantly influenced 

by the partitioning of the graph.  

                                                 
39

 A bar chart of these tradeoffs can be found in the backmatter. 
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Figure 67 ALT vs ALP: Total Trial Time for Increasing Nodes 

 

 

 

 
Figure 68 ALT vs ALP: Total Trial Time for Increasing Edges 
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Figure 70 ALT vs. ALP: Total Times for 

Each Landmark selection Technique with 

the Same Number of Landmarks  
Figure 71 ALT vs. ALP: Preprocessing 

Times for Each Landmark selection 

Technique with the Same Number of 

Landmarks 

 

 
Figure 69 ALT vs ALP: Average Efficiency among Landmark Selection Techniques 

using the Same Number of Landmarks 
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Detailed Graph Performance Measurements 

This section enumerates graph performance for each graph structure at the scales defined in Chapter 4. This section should be used to 

answer any further questions about the capabilities of ALP. More data concerning these runs can be found in the ALP dataset 

(available upon request). Efficiency is multiplied by 100 in these data. Tables spanning more than one page have a caption located at 

the beginning of the table. 

 

Table 31 V1 Synthetic Graphs Performance and Structure 

 

 

Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.WAXMAN_GRAPH 10 1500 36473 0.03244 0 37204 0.0786406 0.082064328 

NETWORKX.WAXMAN_GRAPH 5 2000 66454 0.03324 0 82805 0.0793045 0.08278744 

NETWORKX.WAXMAN_GRAPH 5 4000 264030 0.03301 0 565746 0.0791687 0.082595149 

NETWORKX.RANDOM_LOBSTER_90 212 1223 1222 0.00164 1 1222 0 0 

NETWORKX.RANDOM_LOBSTER_90 95 1223 1222 0.00164 1 1222 0 0 

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges Density Average Path Length Average Clustering

NETWORKX.RANDOM_LOBSTER_45 10 0.000511224 19.072 64.44249 60 59 0.033333 11.485 0

NETWORKX.RANDOM_LOBSTER_45 8 0.000535808 20.375 63.40044 60 59 0.033333 11.578 0

Table 32 V3 Synthetic Graph Structure 
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Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.RANDOM_LOBSTER_90 44 1223 1222 0.00164 1 1222 0 0 

NETWORKX.RANDOM_LOBSTER_90 39 1223 1222 0.00164 1 1222 0 0 

NETWORKX.RANDOM_LOBSTER_90 343 2088 2087 0.00096 1 2087 0 0 

NETWORKX.RANDOM_LOBSTER_90 159 2088 2087 0.00096 1 2087 0 0 

NETWORKX.RANDOM_LOBSTER_90 75 2088 2087 0.00096 1 2087 0 0 

NETWORKX.RANDOM_LOBSTER_90 44 2088 2087 0.00096 1 2087 0 0 

NETWORKX.RANDOM_LOBSTER_90 434 2613 2612 0.00077 1 2612 0 0 

NETWORKX.RANDOM_LOBSTER_90 200 2613 2612 0.00077 1 2612 0 0 

NETWORKX.RANDOM_LOBSTER_90 95 2613 2612 0.00077 1 2612 0 0 

NETWORKX.RANDOM_LOBSTER_90 52 2613 2612 0.00077 1 2612 0 0 

NETWORKX.RANDOM_LOBSTER_45 308 1528 1527 0.00131 1 1527 0 0 

NETWORKX.RANDOM_LOBSTER_45 143 1528 1527 0.00131 1 1527 0 0 

NETWORKX.RANDOM_LOBSTER_45 65 1528 1527 0.00131 1 1527 0 0 

NETWORKX.RANDOM_LOBSTER_45 40 1528 1527 0.00131 1 1527 0 0 

NETWORKX.PATH_GRAPH 40 1500 1499 0.00133 1 1499 0 0 

NETWORKX.PATH_GRAPH 499 2000 1999 0.001 1 1999 0 0 

NETWORKX.PATH_GRAPH 249 2000 1999 0.001 1 1999 0 0 

NETWORKX.PATH_GRAPH 124 2000 1999 0.001 1 1999 0 0 

NETWORKX.PATH_GRAPH 61 2000 1999 0.001 1 1999 0 0 

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 499 4000 3999 0.0005 1 3999 0 0 
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Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 249 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 124 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0 

NETWORKX.PATH_GRAPH 64 4000 3999 0.0005 1 3999 0 0 

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 499 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 249 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 
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Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 124 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 61 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 33 2000 2998 0.0015 0 2998 0 0 

NETWORKX.LADDER_GRAPH 36 3000 4498 0.001 0 4498 0 0 

NETWORKX.LADDER_GRAPH 499 4000 5998 0.00075 0 5998 0 0 

NETWORKX.LADDER_GRAPH 249 4000 5998 0.00075 0 5998 0 0 

NETWORKX.LADDER_GRAPH 124 4000 5998 0.00075 0 5998 0 0 

NETWORKX.LADDER_GRAPH 62 4000 5998 0.00075 0 5998 0 0 

NETWORKX.CYCLE_GRAPH 499 2000 2000 0.001 0 2000 0 0 



Campbell 187 

 

 

 

Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.CYCLE_GRAPH 249 2000 2000 0.001 0 2000 0 0 

NETWORKX.CYCLE_GRAPH 124 2000 2000 0.001 0 2000 0 0 

NETWORKX.CYCLE_GRAPH 62 2000 2000 0.001 0 2000 0 0 

NETWORKX.CYCLE_GRAPH 499 4000 4000 0.0005 0 4000 0 0 

NETWORKX.CYCLE_GRAPH 249 4000 4000 0.0005 0 4000 0 0 

NETWORKX.CYCLE_GRAPH 124 4000 4000 0.0005 0 4000 0 0 

NETWORKX.CYCLE_GRAPH 63 4000 4000 0.0005 0 4000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 32 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 32 2000 3000 0.0015 0 3000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 499 4000 6000 0.00075 0 6000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 4000 6000 0.00075 0 6000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 4000 6000 0.00075 0 6000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 4000 6000 0.00075 0 6000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 4000 6000 0.00075 0 6000 0 0 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 4000 6000 0.00075 0 6000 0 0 

NETWORKX.BARBELL_GRAPH_ODD 12 1665 443224 0.31995 1 336 0.9999943 0.799996393 
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Name 

# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.BARBELL_GRAPH_ODD 7 1665 443224 0.31995 1 336 0.9999943 0.799996393 

NETWORKX.BARBELL_GRAPH_ODD 4 1665 443224 0.31995 1 336 0.9999943 0.799996393 

NETWORKX.BARBELL_GRAPH_ODD 3 1665 443224 0.31995 1 336 0.9999943 0.799996393 

NETWORKX.BARBELL_GRAPH_ODD 7 3332 1776223 0.32007 1 669 0.9999986 0.800119147 

NETWORKX.BARBELL_GRAPH_ODD 4 3332 1776223 0.32007 1 669 0.9999986 0.800119147 

NETWORKX.BARBELL_GRAPH_ODD 3 3332 1776223 0.32007 1 669 0.9999986 0.800119147 

NETWORKX.BARBELL_GRAPH_EVEN 17 1500 250001 0.22237 1 503 0.9999879 0.666661333 

NETWORKX.BARBELL_GRAPH_EVEN 9 1500 250001 0.22237 1 503 0.9999879 0.666661333 

NETWORKX.BARBELL_GRAPH_EVEN 5 1500 250001 0.22237 1 503 0.9999879 0.666661333 

NETWORKX.BARBELL_GRAPH_EVEN 3 1500 250001 0.22237 1 503 0.9999879 0.666661333 

NETWORKX.BARBELL_GRAPH_EVEN 17 3000 1000001 0.2223 1 1003 0.999997 0.666665333 

NETWORKX.BARBELL_GRAPH_EVEN 9 3000 1000001 0.2223 1 1003 0.999997 0.666665333 

NETWORKX.BARBELL_GRAPH_EVEN 5 3000 1000001 0.2223 1 1003 0.999997 0.666665333 

NETWORKX.BARBELL_GRAPH_EVEN 3 3000 1000001 0.2223 1 1003 0.999997 0.666665333 

NETWORKX.BARABÁSI_ALBERT_9 9 1500 13419 0.01194 0 11104 0.0366696 0.040707013 

NETWORKX.BARABÁSI_ALBERT_9 12 2000 17919 0.00896 0 14960 0.0311779 0.037446104 

NETWORKX.BARABÁSI_ALBERT_9 8 2000 17919 0.00896 0 14960 0.0311779 0.037446104 

NETWORKX.BARABÁSI_ALBERT_9 15 4000 35919 0.00449 0 31263 0.0180052 0.02119164 

NETWORKX.BARABÁSI_ALBERT_9 10 4000 35919 0.00449 0 31263 0.0180052 0.02119164 

NETWORKX.BARABÁSI_ALBERT_7 8 1500 10451 0.0093 0 8714 0.0305568 0.039336318 

NETWORKX.BARABÁSI_ALBERT_7 17 2000 13951 0.00698 0 11938 0.0232755 0.028426648 

NETWORKX.BARABÁSI_ALBERT_7 11 2000 13951 0.00698 0 11938 0.0232755 0.028426648 
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# 
Landm
arks # Nodes # Edges Density 

Ch
ord
al 

# Max 
Cliques Transitivity 

Average 
Clustering 

NETWORKX.BARABÁSI_ALBERT_7 10 2000 13951 0.00698 0 11938 0.0232755 0.028426648 

NETWORKX.BARABÁSI_ALBERT_7 18 2500 17451 0.00559 0 15102 0.0199917 0.023478844 

NETWORKX.BARABÁSI_ALBERT_7 10 2500 17451 0.00559 0 15102 0.0199917 0.023478844 

NETWORKX.BARABÁSI_ALBERT_7 37 4000 27951 0.00349 0 24927 0.0144269 0.018219935 

NETWORKX.BARABÁSI_ALBERT_7 13 4000 27951 0.00349 0 24927 0.0144269 0.018219935 

NETWORKX.BARABÁSI_ALBERT_7 12 4000 27951 0.00349 0 24927 0.0144269 0.018219935 

NETWORKX.BARABÁSI_ALBERT_6 11 1500 8964 0.00797 0 7752 0.0253886 0.029550621 

NETWORKX.BARABÁSI_ALBERT_5 11 1500 7475 0.00665 0 6492 0.0228157 0.031865762 

NETWORKX.BARABÁSI_ALBERT_5 46 2000 9975 0.00499 0 8904 0.0171176 0.022560463 

NETWORKX.BARABÁSI_ALBERT_5 13 2000 9975 0.00499 0 8904 0.0171176 0.022560463 

NETWORKX.BARABÁSI_ALBERT_5 11 2000 9975 0.00499 0 8904 0.0171176 0.022560463 

NETWORKX.BARABÁSI_ALBERT_5 44 4000 19975 0.0025 0 18451 0.0106202 0.014365793 

NETWORKX.BARABÁSI_ALBERT_5 14 4000 19975 0.0025 0 18451 0.0106202 0.014365793 

NETWORKX.BARABÁSI_ALBERT_4 14 1500 5984 0.00532 0 5446 0.0168498 0.023264593 

NETWORKX.BARABÁSI_ALBERT_3 82 2000 5991 0.003 0 5648 0.0091858 0.015717906 

NETWORKX.BARABÁSI_ALBERT_3 76 2000 5991 0.003 0 5619 0.011163 0.018371522 

NETWORKX.BARABÁSI_ALBERT_3 22 2000 5991 0.003 0 5619 0.011163 0.018371522 

NETWORKX.BARABÁSI_ALBERT_3 19 2000 5991 0.003 0 5619 0.011163 0.018371522 

NETWORKX.BARABÁSI_ALBERT_3 19 2000 5991 0.003 0 5648 0.0091858 0.015717906 

NETWORKX.BARABÁSI_ALBERT_3 17 2000 5991 0.003 0 5648 0.0091858 0.015717906 

NETWORKX.BARABÁSI_ALBERT_3 121 4000 11991 0.0015 0 11516 0.0059219 0.010684208 

NETWORKX.BARABÁSI_ALBERT_3 26 4000 11991 0.0015 0 11516 0.0059219 0.010684208 
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NETWORKX.BARABÁSI_ALBERT_3 20 4000 11991 0.0015 0 11516 0.0059219 0.010684208 

NETWORKX.BARABÁSI_ALBERT_2 23 1500 2996 0.00266 0 2912 0.0053115 0.01241446 

NETWORKX.BARABÁSI_ALBERT_2 18 2500 4996 0.0016 0 4880 0.0045243 0.009747668 

NETWORKX.BARABÁSI_ALBERT_2 10 2500 4996 0.0016 0 4880 0.0045243 0.009747668 

NETWORKX.BARABÁSI_ALBERT_13 11 2000 25831 0.01292 0 21857 0.0398079 0.043506926 

NETWORKX.BARABÁSI_ALBERT_13 8 4000 51831 0.00648 0 44434 0.0237987 0.025350993 

NETWORKX.BARABÁSI_ALBERT_11 8 2000 21879 0.01094 0 18138 0.0355809 0.038044008 

NETWORKX.BARABÁSI_ALBERT_11 8 4000 43879 0.00549 0 37727 0.0211312 0.023212327 

 

 

 

Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.WAXMAN_GRAPH 10 0.055467024 746.94736 3.1912 1.160282 1500 36473 

NETWORKX.WAXMAN_GRAPH 5 0.094738145 975.8488 3.2813 1.02974 2000 66454 

NETWORKX.WAXMAN_GRAPH 5 0.269477554 2002.1622 3.1652 0.497598 4000 264030 

NETWORKX.RANDOM_LOBSTER_90 212 0.011926244 367.232 156.495 43.8782 1223 1222 

NETWORKX.RANDOM_LOBSTER_90 95 0.010520858 394.297 157.545 40.96436 1223 1222 

Table 33 V3 Synthetic Graph Performance 
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Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.RANDOM_LOBSTER_90 44 0.009802136 411.273 157.187 39.09726 1223 1222 

NETWORKX.RANDOM_LOBSTER_90 39 0.010022001 424.471 162.286 38.50999 1223 1222 

NETWORKX.RANDOM_LOBSTER_90 343 0.014707763 619.9289 255.5596 42.53912 2088 2087 

NETWORKX.RANDOM_LOBSTER_90 159 0.019793989 679.998 258.079 38.48101 2088 2087 

NETWORKX.RANDOM_LOBSTER_90 75 0.017555335 691.057 252.995 36.86849 2088 2087 

NETWORKX.RANDOM_LOBSTER_90 44 0.017395397 713.825 257.887 36.60131 2088 2087 

NETWORKX.RANDOM_LOBSTER_90 434 0.019393084 764.998 322.7928 43.54557 2613 2612 

NETWORKX.RANDOM_LOBSTER_90 200 0.027931002 863.405 333.934 39.1759 2613 2612 

NETWORKX.RANDOM_LOBSTER_90 95 0.023308151 838.624 314.181 37.52181 2613 2612 

NETWORKX.RANDOM_LOBSTER_90 52 0.02357689 907.856 335.812 37.04381 2613 2612 

NETWORKX.RANDOM_LOBSTER_45 308 0.017333188 467.88 305.821 65.74632 1528 1527 

NETWORKX.RANDOM_LOBSTER_45 143 0.013820886 484.45 305.462 62.95169 1528 1527 

NETWORKX.RANDOM_LOBSTER_45 65 0.01266592 504.59 308.111 61.01867 1528 1527 

NETWORKX.RANDOM_LOBSTER_45 40 0.012804669 543.152 323.475 59.26136 1528 1527 

NETWORKX.PATH_GRAPH 40 0.010638514 521.24844 506.2713 94.76616 1500 1499 

NETWORKX.PATH_GRAPH 499 0.017287046 669.024 667.8699 99.39805 2000 1999 

NETWORKX.PATH_GRAPH 249 0.025150551 669.485 666.913 98.908 2000 1999 

NETWORKX.PATH_GRAPH 124 0.021305844 661.817 655.965 97.85148 2000 1999 

NETWORKX.PATH_GRAPH 61 0.01987497 663.818 650.948 96.05947 2000 1999 

NETWORKX.PATH_GRAPH 499 0.028369162 1336.3964 1333.667 99.17086 4000 3999 

NETWORKX.PATH_GRAPH 499 0.029679637 1305.2162 1302.907 99.33023 4000 3999 
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Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.PATH_GRAPH 499 0.033669614 1326.5696 1323.772 99.17364 4000 3999 

NETWORKX.PATH_GRAPH 249 0.035472603 1364.033 1358.958 98.86861 4000 3999 

NETWORKX.PATH_GRAPH 249 0.028614471 1351.7257 1345.975 98.77093 4000 3999 

NETWORKX.PATH_GRAPH 249 0.029254625 1316.1942 1310.505 98.63464 4000 3999 

NETWORKX.PATH_GRAPH 124 0.035543398 1311.792 1300.269 97.75051 4000 3999 

NETWORKX.PATH_GRAPH 124 0.03947176 1290.081 1278.347 97.71102 4000 3999 

NETWORKX.PATH_GRAPH 124 0.03533038 1361.564 1349.446 97.80879 4000 3999 

NETWORKX.PATH_GRAPH 64 0.033654166 1380.431 1355.614 96.14231 4000 3999 

NETWORKX.PATH_GRAPH 64 0.035708795 1383.649 1360.311 96.46316 4000 3999 

NETWORKX.PATH_GRAPH 64 0.039881881 1396.295 1374.016 96.54972 4000 3999 

NETWORKX.LADDER_GRAPH 499 0.015652372 668.5125 347.026 52.32163 2000 2998 

NETWORKX.LADDER_GRAPH 499 0.015878414 668.1942 346.4234 52.40885 2000 2998 

NETWORKX.LADDER_GRAPH 499 0.01594825 660.3724 342.5345 52.39372 2000 2998 

NETWORKX.LADDER_GRAPH 499 0.015056354 643.7708 331.3944 52.05124 2000 2998 

NETWORKX.LADDER_GRAPH 499 0.015866916 649.2713 336.7698 52.29019 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.016466344 677.8158 347.4094 51.36999 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.015905344 682.7668 349.3984 51.52546 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.015368899 629.2993 322.2212 51.43448 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.015351082 660.7247 338.5806 51.49247 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.023341279 675.34 346.425 51.32334 2000 2998 

NETWORKX.LADDER_GRAPH 249 0.015472122 656.1041 336.4244 51.5769 2000 2998 
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Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.LADDER_GRAPH 124 0.019176952 653.731 331.218 50.46436 2000 2998 

NETWORKX.LADDER_GRAPH 124 0.015224438 656.8168 332.5235 50.57294 2000 2998 

NETWORKX.LADDER_GRAPH 124 0.015373114 642.4394 327.4484 51.10467 2000 2998 

NETWORKX.LADDER_GRAPH 124 0.015874915 683.4154 346.6436 50.63131 2000 2998 

NETWORKX.LADDER_GRAPH 124 0.015763692 661.8488 335.5536 50.82275 2000 2998 

NETWORKX.LADDER_GRAPH 124 0.014814325 642.2553 324.7367 50.39013 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.016403922 670.3964 339.8619 50.48532 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.015590305 672.7317 336.6567 49.63934 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.018256605 673.851 337.32 49.98553 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.015467196 663.2833 332.011 49.87475 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.016246931 687.8328 346.3994 50.1129 2000 2998 

NETWORKX.LADDER_GRAPH 61 0.015091519 647.7447 325.4464 49.80288 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.015736654 663.7848 326.4334 48.83879 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.015297337 652.3133 325.3143 49.51195 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.015966044 669.5896 333.1752 49.15448 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.016450556 716.0691 350.0961 48.52898 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.018578129 675.866 336.553 49.36814 2000 2998 

NETWORKX.LADDER_GRAPH 33 0.015419692 657.2593 327.1622 49.76974 2000 2998 

NETWORKX.LADDER_GRAPH 36 0.045794711 1495.97016 10.5776 1.693635 3000 4498 

NETWORKX.LADDER_GRAPH 499 0.036878761 1297.1632 663.9159 51.32118 4000 5998 

NETWORKX.LADDER_GRAPH 249 0.03991301 1360.9139 691.3223 50.74776 4000 5998 



Campbell 194 

 

 

 

Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.LADDER_GRAPH 124 0.04846504 1359.492 688.955 50.42764 4000 5998 

NETWORKX.LADDER_GRAPH 62 0.043796067 1317.419 661.973 49.60765 4000 5998 

NETWORKX.CYCLE_GRAPH 499 0.012621767 507.8699 506.5896 99.30139 2000 2000 

NETWORKX.CYCLE_GRAPH 249 0.021090964 509.506 503.078 98.5578 2000 2000 

NETWORKX.CYCLE_GRAPH 124 0.015925891 494.518 486.108 97.6634 2000 2000 

NETWORKX.CYCLE_GRAPH 62 0.01602904 528.599 509.512 95.82431 2000 2000 

NETWORKX.CYCLE_GRAPH 499 0.022196118 1001.5726 998.7988 99.24962 4000 4000 

NETWORKX.CYCLE_GRAPH 249 0.022201269 1003.2262 993.4655 98.44171 4000 4000 

NETWORKX.CYCLE_GRAPH 124 0.029588307 1054.772 1039.059 97.74112 4000 4000 

NETWORKX.CYCLE_GRAPH 63 0.028494363 1048.29 1020.792 96.06976 4000 4000 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.018850444 491.979 250.868 51.0116 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.0064497 221.25 113.75 52.7325 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.015534152 490.107 245.821 50.48463 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.013278003 505.2773 254.1221 50.64453 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.014286425 511.221 250.097 49.21524 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.012738555 504.5926 248.6366 49.79435 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 32 0.014873145 523.682 251.116 48.69981 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 32 0.016378737 518.1221 251.3544 48.78238 2000 3000 

NETWORKX.CIRCULAR_LADDER_GRAPH 499 0.027456708 984.8619 504.5165 51.42 4000 6000 

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.027394978 1001.0851 504.3844 50.51295 4000 6000 

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.031709929 1017.4955 507.4324 50.14378 4000 6000 
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NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.036367474 975.865 488.003 50.17864 4000 6000 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.035299103 1021.284 500.165 49.06832 4000 6000 

NETWORKX.CIRCULAR_LADDER_GRAPH 62 0.027559318 1013.1371 502.2913 49.28862 4000 6000 

NETWORKX.BARBELL_GRAPH_ODD 12 0.267714257 741.6597 162.4895 21.01702 1665 443224 

NETWORKX.BARBELL_GRAPH_ODD 7 0.256901449 769.1902 170.6597 20.77086 1665 443224 

NETWORKX.BARBELL_GRAPH_ODD 4 0.252819649 762.8448 170.0631 21.12617 1665 443224 

NETWORKX.BARBELL_GRAPH_ODD 3 0.256378367 768.3303 174.025 22.0402 1665 443224 

NETWORKX.BARBELL_GRAPH_ODD 7 1.014840501 1533.1672 335.7177 20.49526 3332 1776223 

NETWORKX.BARBELL_GRAPH_ODD 4 1.072889113 1474.2082 319.4264 20.52234 3332 1776223 

NETWORKX.BARBELL_GRAPH_ODD 3 1.011720556 1514.2152 333.014 21.1022 3332 1776223 

NETWORKX.BARBELL_GRAPH_EVEN 17 0.127165421 643.4855 241.7477 36.80949 1500 250001 

NETWORKX.BARBELL_GRAPH_EVEN 9 0.120824437 620.4905 234.4164 36.08183 1500 250001 

NETWORKX.BARBELL_GRAPH_EVEN 5 0.123599628 651.3333 252.2983 37.71891 1500 250001 

NETWORKX.BARBELL_GRAPH_EVEN 3 0.122485971 636.7167 244.4484 37.8418 1500 250001 

NETWORKX.BARBELL_GRAPH_EVEN 17 0.496028897 1293.2833 494.8488 37.32289 3000 1000001 

NETWORKX.BARBELL_GRAPH_EVEN 9 0.494851285 1278.1832 491.038 36.82193 3000 1000001 

NETWORKX.BARBELL_GRAPH_EVEN 5 0.494510013 1304.9019 479.3433 35.00984 3000 1000001 

NETWORKX.BARBELL_GRAPH_EVEN 3 0.482507466 1276.0731 492.4555 38.83312 3000 1000001 

NETWORKX.BARABÁSI_ALBERT_9 9 0.038634122 754.8238 3.7077 1.431025 1500 13419 

NETWORKX.BARABÁSI_ALBERT_9 12 0.06077012 964.1592 3.7487 0.943123 2000 17919 

NETWORKX.BARABÁSI_ALBERT_9 8 0.060346278 979.985 3.7728 1.108929 2000 17919 
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Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.BARABÁSI_ALBERT_9 15 0.106309873 2012.8979 3.9179 0.697768 4000 35919 

NETWORKX.BARABÁSI_ALBERT_9 10 0.105891223 1878.3243 3.8869 0.62009 4000 35919 

NETWORKX.BARABÁSI_ALBERT_7 8 0.035828095 751.21442 3.8348 1.545141 1500 10451 

NETWORKX.BARABÁSI_ALBERT_7 17 0.056699913 995.979 3.9049 1.198619 2000 13951 

NETWORKX.BARABÁSI_ALBERT_7 11 0.056671879 1008.1992 3.9189 1.085385 2000 13951 

NETWORKX.BARABÁSI_ALBERT_7 10 0.055639405 1015.1582 3.9399 1.134895 2000 13951 

NETWORKX.BARABÁSI_ALBERT_7 18 0.054930805 1284.8028 4.002 1.133964 2500 17451 

NETWORKX.BARABÁSI_ALBERT_7 10 0.054646077 1229.2412 4 0.817167 2500 17451 

NETWORKX.BARABÁSI_ALBERT_7 37 0.099659625 1935.2633 4.0791 0.614585 4000 27951 

NETWORKX.BARABÁSI_ALBERT_7 13 0.097212028 1904.7427 4.0811 0.698729 4000 27951 

NETWORKX.BARABÁSI_ALBERT_7 12 0.100160735 1988.2442 4.1301 0.843133 4000 27951 

NETWORKX.BARABÁSI_ALBERT_6 11 0.034587752 770.37658 3.984 1.479355 1500 8964 

NETWORKX.BARABÁSI_ALBERT_5 11 0.032678317 752.50552 4.0911 1.561642 1500 7475 

NETWORKX.BARABÁSI_ALBERT_5 46 0.053001714 1015.1071 4.1872 1.198969 2000 9975 

NETWORKX.BARABÁSI_ALBERT_5 13 0.053475886 1048.4885 4.2533 1.042122 2000 9975 

NETWORKX.BARABÁSI_ALBERT_5 11 0.053401707 1035.8649 4.2212 1.123814 2000 9975 

NETWORKX.BARABÁSI_ALBERT_5 44 0.09360658 1999.3093 4.4084 0.477497 4000 19975 

NETWORKX.BARABÁSI_ALBERT_5 14 0.090803667 1918.5666 4.4034 0.618068 4000 19975 

NETWORKX.BARABÁSI_ALBERT_4 14 0.030932879 782.5971 4.3704 1.390721 1500 5984 

NETWORKX.BARABÁSI_ALBERT_3 82 0.043339349 958.0591 4.7918 1.348218 2000 5991 

NETWORKX.BARABÁSI_ALBERT_3 76 0.05455953 1026.203 4.792 1.29832 2000 5991 



Campbell 197 

 

 

 

Name # Landmarks Avg Runtime 
Avg Search 
Space 

Average 
Path 
Length Efficiency # Nodes # Edges 

NETWORKX.BARABÁSI_ALBERT_3 22 0.052871013 1079.852 4.771 1.16898 2000 5991 

NETWORKX.BARABÁSI_ALBERT_3 19 0.051465703 1024.67 4.723 1.27499 2000 5991 

NETWORKX.BARABÁSI_ALBERT_3 19 0.058855596 1023.326 4.773 1.26934 2000 5991 

NETWORKX.BARABÁSI_ALBERT_3 17 0.050921925 948.402 4.801 1.36665 2000 5991 

NETWORKX.BARABÁSI_ALBERT_3 121 0.077737156 1927.7067 5.009 0.632593 4000 11991 

NETWORKX.BARABÁSI_ALBERT_3 26 0.077238052 2025.7207 5.021 0.834655 4000 11991 

NETWORKX.BARABÁSI_ALBERT_3 20 0.075645678 1941.0761 5.002 0.606286 4000 11991 

NETWORKX.BARABÁSI_ALBERT_2 23 0.026608852 802.44324 5.4685 1.80191 1500 2996 

NETWORKX.BARABÁSI_ALBERT_2 18 0.040212441 1155.7618 5.4184 1.522372 2500 4996 

NETWORKX.BARABÁSI_ALBERT_2 10 0.041262981 1220.4605 5.5305 1.084384 2500 4996 

NETWORKX.BARABÁSI_ALBERT_13 11 0.067197296 986.6757 3.5866 1.063153 2000 25831 

NETWORKX.BARABÁSI_ALBERT_13 8 0.122725864 1941.4254 3.7508 0.550881 4000 51831 

NETWORKX.BARABÁSI_ALBERT_11 8 0.067848633 1011.4715 3.7017 0.779419 2000 21879 

NETWORKX.BARABÁSI_ALBERT_11 8 0.117220611 1862.7187 3.7978 0.687658 4000 43879 

 



Campbell 198 

 

 

 

 

Table 34 V3 Real Graph Performance 

 

 

 

Table 35 V3 Real Graph Structure 

 

 

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

Great Lakes 267 0.015718917 498.3053 21.93133 3700 4483

Great Lakes 97 0.022094637 753.3323 14.17775 3700 4483

Great Lakes 86 0.021475039 724.6547 14.91763 3700 4483

Rome 299 0.041006723 1211.8981 3.321693 3353 4831

Rome 262 0.044333826 1310.9817 2.689657 3353 4831

Rome 183 0.023491724 856.8128 10.23698 3353 4831

Rome 58 0.031587066 1222.4304 6.980097 3353 4831

Rome 48 0.031979783 1255.113367 6.564847 3353 4831

Name # Landmarks # Nodes # Edges Directed Density Chordal Largest Clique Size # Max Cliques Transitivity Average Clustering Average Path Length

Great Lakes 267 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 76.9249

Great Lakes 97 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 74.0591

Great Lakes 86 3700 4483 1 0.000655108 0 3 4375 0.021273901 0.014108108 74.0861

Rome 299 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 12.2581

Rome 262 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 12.2552

Rome 183 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 40.6727

Rome 58 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 38.9046

Rome 48 3353 4831 0 0.000859665 0 3 4571 0.037358491 0.030271399 40.4484
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Table 36 V4 Synthetic Graph Structure 

 

Name # Landmarks # Nodes # Edges Density Chordal Largest Clique Size # Max CliquesTransitivity Average Clustering Average Path Length

NETWORKX.PATH_GRAPH 2499 10000 9999 0.0002 1 2 9999 0 0 3329.7628

NETWORKX.PATH_GRAPH 1249 10000 9999 0.0002 1 2 9999 0 0 3399.5495

NETWORKX.PATH_GRAPH 624 10000 9999 0.0002 1 2 9999 0 0 3264.0851

NETWORKX.PATH_GRAPH 311 10000 9999 0.0002 1 2 9999 0 0 3414.4985

NETWORKX.PATH_GRAPH 155 10000 9999 0.0002 1 2 9999 0 0 3243.026

NETWORKX.PATH_GRAPH 81 10000 9999 0.0002 1 2 9999 0 0 3332.7828

NETWORKX.LADDER_GRAPH 499 8000 11998 0.000375 0 2 11998 0 0 1335.1171

NETWORKX.LADDER_GRAPH 249 8000 11998 0.000375 0 2 11998 0 0 1291.3674

NETWORKX.LADDER_GRAPH 124 8000 11998 0.000375 0 2 11998 0 0 1268.1141

NETWORKX.LADDER_GRAPH 64 8000 11998 0.000375 0 2 11998 0 0 1385.6597

NETWORKX.LADDER_GRAPH 155 20000 29998 0.00015 0 2 29998 0 0 3312.9271

NETWORKX.CYCLE_GRAPH 79 10000 10000 0.0002 0 2 10000 0 0 2558.7227

NETWORKX.CIRCULAR_LADDER_GRAPH 499 8000 12000 0.000375 0 2 12000 0 0 1004.1231

NETWORKX.CIRCULAR_LADDER_GRAPH 249 8000 12000 0.000375 0 2 12000 0 0 984.2793

NETWORKX.CIRCULAR_LADDER_GRAPH 124 8000 12000 0.000375 0 2 12000 0 0 1003.6917

NETWORKX.CIRCULAR_LADDER_GRAPH 63 8000 12000 0.000375 0 2 12000 0 0 977.6466

NETWORKX.CIRCULAR_LADDER_GRAPH 156 20000 30000 0.00015 0 2 30000 0 0 2521.1341

NETWORKX.BARABASI_ALBERT_9 13 10000 89919 0.001799 0 7 82326 0.008592076 0.010003391 4.1762

NETWORKX.BARABASI_ALBERT_9 9 10000 89919 0.001799 0 7 82057 0.008860695 0.010512408 4.1301

NETWORKX.BARABASI_ALBERT_6 1249 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4755

NETWORKX.BARABASI_ALBERT_6 624 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4825

NETWORKX.BARABASI_ALBERT_6 311 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4685

NETWORKX.BARABASI_ALBERT_6 155 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4885

NETWORKX.BARABASI_ALBERT_6 81 10000 59964 0.001199 0 5 56615 0.005916068 0.007714927 4.4775

NETWORKX.BARABASI_ALBERT_6 15 10000 59964 0.001199 0 6 56468 0.005944305 0.007894655 4.4675

NETWORKX.BARABASI_ALBERT_6 15 10000 59964 0.001199 0 6 56613 0.005733517 0.00763192 4.5095

NETWORKX.BARABASI_ALBERT_5 20 10000 49975 0.001 0 5 47683 0.00497716 0.007111235 4.6486
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Table 37 V4 Synthetic Graph Performance 

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

NETWORKX.PATH_GRAPH 2499 0.068842525 3331.04 99.881982 10000 9999

NETWORKX.PATH_GRAPH 1249 0.068173933 3402.3964 99.62037 10000 9999

NETWORKX.PATH_GRAPH 624 0.065755312 3269.7898 99.571201 10000 9999

NETWORKX.PATH_GRAPH 311 0.068494629 3426.044 98.857267 10000 9999

NETWORKX.PATH_GRAPH 155 0.065067191 3269.1261 98.071071 10000 9999

NETWORKX.PATH_GRAPH 81 0.067794454 3384.0861 96.816727 10000 9999

NETWORKX.LADDER_GRAPH 499 0.067978507 2629.1602 50.795115 8000 11998

NETWORKX.LADDER_GRAPH 249 0.067041001 2543.3233 50.731401 8000 11998

NETWORKX.LADDER_GRAPH 124 0.064860955 2519.9149 50.208258 8000 11998

NETWORKX.LADDER_GRAPH 64 0.071977737 2782.0851 49.495866 8000 11998

NETWORKX.LADDER_GRAPH 155 0.367831638 6582.944 49.898784 20000 29998

NETWORKX.CYCLE_GRAPH 79 0.054701921 2649.7297 95.639289 10000 10000

NETWORKX.CIRCULAR_LADDER_GRAPH 499 0.049047699 1970.8589 51.045996 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 249 0.048405474 1955.1672 50.311622 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 124 0.049360576 1999.5556 49.863143 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 63 0.048025332 1992.5566 49.283143 8000 12000

NETWORKX.CIRCULAR_LADDER_GRAPH 156 0.124017879 5041.006 49.871892 20000 30000

NETWORKX.BARABASI_ALBERT_9 13 0.272763037 5277.8098 0.194354 10000 89919

NETWORKX.BARABASI_ALBERT_9 9 0.288305324 4895.957 0.242883 10000 89919

NETWORKX.BARABASI_ALBERT_6 1249 0.24778024 4545.4855 0.368408 10000 59964

NETWORKX.BARABASI_ALBERT_6 624 0.254611392 4790.1572 0.297167 10000 59964

NETWORKX.BARABASI_ALBERT_6 311 0.251446031 4811.1341 0.328208 10000 59964

NETWORKX.BARABASI_ALBERT_6 155 0.241420774 4977.6687 0.242092 10000 59964

NETWORKX.BARABASI_ALBERT_6 81 0.249340214 4918.8298 0.266587 10000 59964

NETWORKX.BARABASI_ALBERT_6 15 0.238799786 5082.4484 0.421201 10000 59964

NETWORKX.BARABASI_ALBERT_6 15 0.313661984 5216.018 0.306567 10000 59964

NETWORKX.BARABASI_ALBERT_5 20 0.317060164 5105.044 0.222853 10000 49975
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Table 38 V4 Real Graph Structure 

 

Name # Landmarks# Nodes # Edges Density Chordal # Max Cliques TransitivityAverage Clustering Average Path Length

United States (Western) 639 8294 9851 0.000286 0 9225 0.05882 0.035905474 116.9329

United States (Western) 197 8294 9851 0.000286 0 9225 0.05882 0.035905474 121.7097

United States (Western) 156 8294 9851 0.000286 0 9225 0.05882 0.035905474 115

United States (Western) 1069 13499 17421 0.000191 0 17140 0.013094 0.010790923 137.2022

United States (Western) 256 13499 17421 0.000191 0 17140 0.013094 0.010790923 137.8188

United States (Western) 127 13499 17421 0.000191 0 17140 0.013094 0.010790923 141.5676

United States (Western) 123 13499 17421 0.000191 0 17140 0.013094 0.010790923 143.1491

Great Lakes 867 11773 15861 0.000229 0 15546 0.014845 0.012531499 139.6707

Great Lakes 220 11773 15861 0.000229 0 15546 0.014845 0.012531499 141.3303

Great Lakes 121 11773 15861 0.000229 0 15546 0.014845 0.012531499 143.3413

Great Lakes 120 11773 15861 0.000229 0 15546 0.014845 0.012531499 136.1922

United States (Eastern) 410 5573 6391 0.000412 0 6199 0.02804 0.017040493 89.4675

United States (Eastern) 136 5573 6391 0.000412 0 6199 0.02804 0.017040493 94.8799

United States (Eastern) 110 5573 6391 0.000412 0 6199 0.02804 0.017040493 89.9269

United States (Central) 588 7276 7856 0.000297 0 7709 0.019395 0.01019333 177.2352

United States (Central) 213 7276 7856 0.000297 0 7709 0.019395 0.01019333 181.993

United States (Central) 191 7276 7856 0.000297 0 7709 0.019395 0.01019333 175.9419

United States (Central) 413 5327 6121 0.000431 0 5803 0.048901 0.030573806 102.3323

United States (Central) 140 5327 6121 0.000431 0 5803 0.048901 0.030573806 104.6386

United States (Central) 119 5327 6121 0.000431 0 5803 0.048901 0.030573806 103.8028

New Mexico 1140 15221 17919 0.000155 0 16656 0.058933 0.0360445 222.6256

New Mexico 335 15221 17919 0.000155 0 16656 0.058933 0.0360445 217.4525

New Mexico 216 15221 17919 0.000155 0 16656 0.058933 0.0360445 215.4695

New Mexico 213 15221 17919 0.000155 0 16656 0.058933 0.0360445 218.9209

Hawaii 676 9237 10711 0.000251 0 10233 0.038371 0.023730648 194.0501

Hawaii 216 9237 10711 0.000251 0 10233 0.038371 0.023730648 194.3293

Hawaii 159 9237 10711 0.000251 0 10233 0.038371 0.023730648 193.3554

Washington DC 626 9522 14832 0.000327 0 13720 0.046936 0.039189946 73.4364

Washington DC 582 9522 14832 0.000327 0 13720 0.046936 0.039189946 12.5976

Washington DC 508 9522 14832 0.000327 0 13720 0.046936 0.039189946 12.6044

Washington DC 136 9522 14832 0.000327 0 13720 0.046936 0.039189946 74.2412

Washington DC 71 9522 14832 0.000327 0 13720 0.046936 0.039189946 74.3223



Campbell 202 

 

 

 

 

Table 39 V4 Real Graph Performance 

 

Name # LandmarksAverage Runtime Average Search Space Size Efficiency # Nodes # Edges

United States (Western) 639 0.022174926 761.968 23.69344 8294 9851

United States (Western) 197 0.041423797 1299.01 13.51363 8294 9851

United States (Western) 156 0.038698718 1415.6724 10.47789 8294 9851

United States (Western) 1069 0.04439088 1343.0891 14.98197 13499 17421

United States (Western) 256 0.076482814 2544.6877 7.576346 13499 17421

United States (Western) 127 0.089534322 3055.4615 6.407888 13499 17421

United States (Western) 123 0.093477266 3209.8949 6.215656 13499 17421

Great Lakes 867 0.034411663 1084.1742 16.99392 11773 15861

Great Lakes 220 0.048285952 1662.1431 10.96033 11773 15861

Great Lakes 121 0.060118319 2109.6697 9.131241 11773 15861

Great Lakes 120 0.064795337 2296.5656 8.306837 11773 15861

United States (Eastern) 410 0.016992073 528.4194 23.47322 5573 6391

United States (Eastern) 136 0.02764795 910.5085 14.65439 5573 6391

United States (Eastern) 110 0.028131704 933.1602 12.93048 5573 6391

United States (Central) 588 0.023168264 785.045 30.52616 7276 7856

United States (Central) 213 0.044543578 1337.4174 17.51926 7276 7856

United States (Central) 191 0.036169253 1299.7928 17.22821 7276 7856

United States (Central) 413 0.019570923 604.3744 24.7907 5327 6121

United States (Central) 140 0.027698786 887.4935 17.41308 5327 6121

United States (Central) 119 0.032490168 1053.4885 14.10981 5327 6121

New Mexico 1140 0.044394453 1408.5806 21.49428 15221 17919

New Mexico 335 0.069501981 2330.5866 12.24492 15221 17919

New Mexico 216 0.069054206 2329.5986 11.58909 15221 17919

New Mexico 213 0.0747001 2537.2292 11.26064 15221 17919

Hawaii 676 0.041771099 1365.3969 19.60609 9237 10711

Hawaii 216 0.05561454 1971.8774 13.05845 9237 10711

Hawaii 159 0.060690221 2130.475 12.08379 9237 10711

Washington DC 626 0.03679279 1310.8859 9.577548 9522 14832

Washington DC 582 0.134296621 3655.3239 1.291211 9522 14832

Washington DC 508 0.147273851 3915.2281 1.134729 9522 14832

Washington DC 136 0.058449629 2293.5225 5.45973 9522 14832

Washington DC 71 0.064369123 2526.8468 4.663093 9522 14832
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Table 40 V5 Synthetic Graph Structure 

 

 

Table 41 V5 Synthetic Graph Performance 

 

 

Name # Landmarks # Nodes # Edges Density Chordal # Max Cliques Transitivity Average Clustering Average Path Length

NETWORKX.PATH_GRAPH 197 50000 49999 0.00004 1 49999 0 0 17150.3774

NETWORKX.PATH_GRAPH 197 50000 49999 0.00004 1 49999 0 0 16958.1474

NETWORKX.CYCLE_GRAPH 196 50000 50000 4E-05 0 50000 0 0 12240.1992

NETWORKX.CYCLE_GRAPH 196 50000 50000 4E-05 0 50000 0 0 12621.5576

NETWORKX.CIRCULAR_LADDER_GRAPH 198 100000 150000 3E-05 0 150000 0 0 12262.683

NETWORKX.BARABASI_ALBERT_5 19 50000 249975 0.0002 0 245716 0.00138186 0.00194037 5.0931

NETWORKX.BARABASI_ALBERT_4 24 50000 199984 0.00016 0 197598 0.000995137 0.001763283 5.4234

NETWORKX.BARABASI_ALBERT_2 68 50000 99996 8E-05 0 99702 0.000338713 0.001146708 6.7027

NETWORKX.BARABASI_ALBERT_2 61 50000 99996 8E-05 0 99657 0.000373794 0.001395318 6.6346

Name # Landmarks Average Runtime Average Search Space Size Efficiency # Nodes # Edges

NETWORKX.PATH_GRAPH 197 1.162572475 17274.7538 98.027918 50000 49999

NETWORKX.PATH_GRAPH 197 1.338624261 17073.5527 98.317513 50000 49999

NETWORKX.CYCLE_GRAPH 196 0.811346265 12383.5686 97.868078 50000 50000

NETWORKX.CYCLE_GRAPH 196 0.829821832 12766.96 97.838298 50000 50000

NETWORKX.CIRCULAR_LADDER_GRAPH 198 1.803097851 24450.5978 50.114674 100000 150000

NETWORKX.BARABASI_ALBERT_5 19 1.532056167 26169.5085 0.057668 50000 249975

NETWORKX.BARABASI_ALBERT_4 24 1.471386127 27511.977 0.093213 50000 199984

NETWORKX.BARABASI_ALBERT_2 68 1.717726896 27918.3924 0.084815 50000 99996

NETWORKX.BARABASI_ALBERT_2 61 1.673248201 28048.5936 0.084815 50000 99996
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Name 
# 
Landmarks # Nodes # Edges Density Chordal 

# Max 
Cliques Transitivity 

Average 
Clustering 

Average 
Path 
Length 

United States (Western) 2165 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 128.3984 

United States (Western) 460 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 131.979 

United States (Western) 161 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 135.7367 

United States (Western) 145 28652 36906 8.99E-05 0 36486 0.009180182 0.00792848 132.5916 

United States (Western) 936 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 364.011 

United States (Western) 398 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 364.4875 

United States (Western) 384 51447 62272 4.71E-05 0 57378 0.069277523 0.04312918 358.7568 

Great Lakes 2384 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 133.0701 

Great Lakes 540 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 136.2492 

Great Lakes 204 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 138.2272 

Great Lakes 193 34198 42957 7.35E-05 0 42033 0.017760608 0.01452911 138.2212 

United States (Eastern) 390 29796 32528 7.33E-05 0 31873 0.020404445 0.01158545 373.7355 

United States (Eastern) 799 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 157.4114 

United States (Eastern) 302 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 157.4935 

United States (Eastern) 277 49404 57960 4.75E-05 0 56146 0.027095911 0.01774485 158.0531 

United States (Eastern) 613 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 154.989 

United States (Eastern) 229 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 156.0961 

United States (Eastern) 210 35103 42902 6.96E-05 0 41241 0.03231088 0.02300373 151.0806 

Rhode Island 917 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 207.1892 

Rhode Island 306 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 206.3524 

Rhode Island 255 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 203.025 

Table 42 V5 Real Graph Structure 
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Name 
# 
Landmarks # Nodes # Edges Density Chordal 

# Max 
Cliques Transitivity 

Average 
Clustering 

Average 
Path 
Length 

Rhode Island 254 53288 68496 4.82E-05 0 65847 0.028935623 0.02228457 204.0781 

New Mexico 2246 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 235.4324 

New Mexico 599 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 238.044 

New Mexico 350 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 245.3554 

New Mexico 343 29381 33476 7.76E-05 0 32041 0.038542474 0.02285491 234.0631 

New Mexico 2161 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 249.2362 

New Mexico 596 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.1321 

New Mexico 317 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.9129 

New Mexico 315 28115 32736 8.28E-05 0 30549 0.059531971 0.03542119 253.3904 

Luxembourg 1063 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 378.0985 

Luxembourg 392 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 377.5447 

Luxembourg 386 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 378.4762 

Luxembourg 249 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 381.6023 

Luxembourg 247 84136 85579 2.42E-05 0 85361 0.003364786 0.0016822 383.8765 

 

Name 
# 
Landmarks 

Average 
Runtime 

Average Search Space 
Size 

Efficiency 
(%) # Nodes # Edges 

United States (Western) 2165 0.06864359 1645.6857 12.85869 28652 36906 

United States (Western) 460 0.112180543 3738.6647 5.618649 28652 36906 

Table 43 V5 Real Graph Performance 
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United States (Western) 161 0.147076599 5029.4294 3.860621 28652 36906 

United States (Western) 145 0.14743869 5077.1491 3.893233 28652 36906 

United States (Western) 936 0.165575983 5339.035 9.319389 51447 62272 

United States (Western) 398 0.226476887 7611.0821 6.355375 51447 62272 

United States (Western) 384 0.231567124 7720.3824 5.940571 51447 62272 

Great Lakes 2384 0.074080025 1260.3824 17.4718 34198 42957 

Great Lakes 540 0.100425051 3146.6086 7.092262 34198 42957 

Great Lakes 204 0.166356931 5366.6817 4.283223 34198 42957 

Great Lakes 193 0.159183911 5140.0981 4.471912 34198 42957 

United States (Eastern) 390 0.120883669 4037.9265 12.78429 29796 32528 

United States (Eastern) 799 0.135431556 4154.988 7.308468 49404 57960 

United States (Eastern) 302 0.227272182 7173.5195 3.708939 49404 57960 

United States (Eastern) 277 0.236171585 7458.1101 3.465065 49404 57960 

United States (Eastern) 613 0.15333767 4256.5075 6.135425 35103 42902 

United States (Eastern) 229 0.191003423 6563.6647 3.871391 35103 42902 

United States (Eastern) 210 0.203058066 7046.22185 3.544912 35103 42902 

Rhode Island 917 0.184251335 6427.5295 5.544675 53288 68496 

Rhode Island 306 0.255614322 9257.7037 3.86979 53288 68496 

Rhode Island 255 0.276409393 10001.1982 3.35997 53288 68496 

Rhode Island 254 0.265858525 9658.993 3.46967 53288 68496 

New Mexico 2246 0.073057754 2370.4755 18.43823 29381 33476 

New Mexico 599 0.105529631 3578.7257 10.62985 29381 33476 

New Mexico 350 0.137659912 4753.6026 8.000731 29381 33476 

New Mexico 343 0.132616894 4527.7928 8.055736 29381 33476 
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New Mexico 2161 0.046677033 1440.6126 23.08611 28115 32736 

New Mexico 596 0.079765107 2614.7087 12.85735 28115 32736 

New Mexico 317 0.108490007 3608.3123 9.558649 28115 32736 

New Mexico 315 0.102721638 3384.8158 10.07619 28115 32736 

Luxembourg 1063 0.095687627 3425.1552 20.22771 84136 85579 

Luxembourg 392 0.271665576 7639.6507 9.820803 84136 85579 

Luxembourg 386 0.123748903 8573.2232 8.716143 84136 85579 

Luxembourg 249 0.157580806 10999.7651 6.895078 84136 85579 

Luxembourg 247 0.292890311 10626.5334 7.054766 84136 85579 

 

 

Table 44 V7 Real Graph Structure 

 

 

 

Table 45 V7 Real Graph Performance 

 

 

Name # Landmarks# Nodes # Edges Directed Density Chordal # Max Cliques Transitivity Average Clustering Average Path Length

New York City 280 264346 365050 0 1.04481E-05 0 352355 0.025446321 0.020779882 284.6637

New York City 233 264346 365050 0 1.04481E-05 0 352355 0.025446321 0.020779882 267.8894

Name # LandmarksAverage Runtime Average Search Space Size Efficiency # Nodes # Edges

New York City 280 1.099790801 37105.43138 1.1585642 264346 365050

New York City 233 1.31172116 40166.16357 1.059572545 264346 365050
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ALT-Based Landmark Selection 

Name Efficiency Selection 

NETWORKX.BARABÁSI_ALBERT_11 0.07332625 random 

NETWORKX.BARABÁSI_ALBERT_11 0.06418928 farthest-d 

NETWORKX.BARABÁSI_ALBERT_11 0.07571031 planar 

NETWORKX.BARABÁSI_ALBERT_11 0.07587722 betweenness centrality 

NETWORKX.BARABÁSI_ALBERT_11 0.16729419 farthest-ecc 

NETWORKX.BARABÁSI_ALBERT_13 0.30886323 random 

NETWORKX.BARABÁSI_ALBERT_13 0.3233789 farthest-d 

NETWORKX.BARABÁSI_ALBERT_13 0.30883986 planar 

NETWORKX.BARABÁSI_ALBERT_13 0.32916084 betweenness centrality 

NETWORKX.BARABÁSI_ALBERT_3 0.10972896 random 

NETWORKX.BARABÁSI_ALBERT_3 0.10473636 farthest-d 

NETWORKX.BARABÁSI_ALBERT_3 0.10926481 planar 

NETWORKX.BARABÁSI_ALBERT_3 0.10969018 betweenness centrality 

NETWORKX.BARABÁSI_ALBERT_5 0.09167031 random 

NETWORKX.BARABÁSI_ALBERT_5 0.0761458 farthest-d 

NETWORKX.BARABÁSI_ALBERT_5 0.08736555 planar 

NETWORKX.BARABÁSI_ALBERT_5 0.08885303 betweenness centrality 

Table 46 ALT-Based Landmark Selection over Synthetic Graphs 
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NETWORKX.BARABÁSI_ALBERT_5 0.14827956 farthest-ecc 

NETWORKX.BARABÁSI_ALBERT_7 0.06162094 random 

NETWORKX.BARABÁSI_ALBERT_7 0.05603413 farthest-d 

NETWORKX.BARABÁSI_ALBERT_7 0.06396991 planar 

NETWORKX.BARABÁSI_ALBERT_7 0.06365355 betweenness centrality 

NETWORKX.BARABÁSI_ALBERT_7 0.17620701 farthest-ecc 

NETWORKX.BARABÁSI_ALBERT_9 0.07793635 random 

NETWORKX.BARABÁSI_ALBERT_9 0.07002625 farthest-d 

NETWORKX.BARABÁSI_ALBERT_9 0.07776382 planar 

NETWORKX.BARABÁSI_ALBERT_9 0.08039156 betweenness centrality 

NETWORKX.BARABÁSI_ALBERT_9 0.15977675 farthest-ecc 

NETWORKX.BARBELL_GRAPH_EVEN 0.073432 random 

NETWORKX.BARBELL_GRAPH_EVEN 0.07634492 farthest-d 

NETWORKX.BARBELL_GRAPH_EVEN 0.07487301 planar 

NETWORKX.BARBELL_GRAPH_EVEN 0.07635513 betweenness centrality 

NETWORKX.BARBELL_GRAPH_ODD 0.07456582 random 

NETWORKX.BARBELL_GRAPH_ODD 0.0769721 farthest-d 

NETWORKX.BARBELL_GRAPH_ODD 0.07638805 planar 

NETWORKX.BARBELL_GRAPH_ODD 0.07777363 betweenness centrality 

NETWORKX.CIRCULAR_LADDER_GRAPH 0.22774735 random 

NETWORKX.CIRCULAR_LADDER_GRAPH 0.23844454 farthest-d 

NETWORKX.CIRCULAR_LADDER_GRAPH 0.21353256 planar 

NETWORKX.CIRCULAR_LADDER_GRAPH 0.26295345 betweenness centrality 
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NETWORKX.COMPLETE_GRAPH 0.19454333 random 

NETWORKX.COMPLETE_GRAPH 0.23383333 farthest-d 

NETWORKX.COMPLETE_GRAPH 0.22621 planar 

NETWORKX.COMPLETE_GRAPH 0.23251667 betweenness centrality 

NETWORKX.CYCLE_GRAPH 0.92052778 random 

NETWORKX.CYCLE_GRAPH 0.91600154 farthest-d 

NETWORKX.CYCLE_GRAPH 0.9077191 planar 

NETWORKX.CYCLE_GRAPH 0.93834186 betweenness centrality 

NETWORKX.CYCLE_GRAPH 0.96070461 farthest-ecc 

NETWORKX.ERDOS_RENYI_15 0.06646538 random 

NETWORKX.ERDOS_RENYI_15 0.06908302 farthest-d 

NETWORKX.ERDOS_RENYI_15 0.06604975 planar 

NETWORKX.ERDOS_RENYI_15 0.06698582 betweenness centrality 

NETWORKX.ERDOS_RENYI_30 0.2989426 random 

NETWORKX.ERDOS_RENYI_30 0.37306945 farthest-d 

NETWORKX.ERDOS_RENYI_30 0.30568982 planar 

NETWORKX.ERDOS_RENYI_30 0.28313647 betweenness centrality 

NETWORKX.LADDER_GRAPH 0.25560181 random 

NETWORKX.LADDER_GRAPH 0.24253707 farthest-d 

NETWORKX.LADDER_GRAPH 0.20743344 planar 

NETWORKX.LADDER_GRAPH 0.25252634 betweenness centrality 

NETWORKX.LADDER_GRAPH 0.18189499 farthest-ecc 

NETWORKX.PATH_GRAPH 0.94652043 random 
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NETWORKX.PATH_GRAPH 0.94830543 farthest-d 

NETWORKX.PATH_GRAPH 0.93117669 planar 

NETWORKX.PATH_GRAPH 0.95403131 betweenness centrality 

NETWORKX.RANDOM_LOBSTER_45 0.43970513 random 

NETWORKX.RANDOM_LOBSTER_45 0.5726334 farthest-d 

NETWORKX.RANDOM_LOBSTER_45 0.4154184 planar 

NETWORKX.RANDOM_LOBSTER_45 0.42582864 betweenness centrality 

NETWORKX.RANDOM_LOBSTER_90 0.26528347 random 

NETWORKX.RANDOM_LOBSTER_90 0.34019603 farthest-d 

NETWORKX.RANDOM_LOBSTER_90 0.26457455 planar 

NETWORKX.RANDOM_LOBSTER_90 0.24160878 betweenness centrality 

NETWORKX.WATTS_STROGATZ_10 0.0857167 random 

NETWORKX.WATTS_STROGATZ_10 0.08798697 farthest-d 

NETWORKX.WATTS_STROGATZ_10 0.09040027 planar 

NETWORKX.WATTS_STROGATZ_10 0.09307308 betweenness centrality 

NETWORKX.WATTS_STROGATZ_20 0.10739018 random 

NETWORKX.WATTS_STROGATZ_20 0.1075506 farthest-d 

NETWORKX.WATTS_STROGATZ_20 0.11082154 planar 

NETWORKX.WATTS_STROGATZ_20 0.1085017 betweenness centrality 

NETWORKX.WAXMAN_GRAPH 0.19642262 random 

NETWORKX.WAXMAN_GRAPH 0.21845825 farthest-d 

NETWORKX.WAXMAN_GRAPH 0.1896359 planar 

NETWORKX.WAXMAN_GRAPH 0.18904927 betweenness centrality 
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NETWORKX.WAXMAN_GRAPH 0.28171423 farthest-ecc 
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