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Group
Identity
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material. The paper concludes with an extensive list of open 
problems.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC license (http://

creativecommons .org /licenses /by -nc /4 .0/).
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1. Introduction

1.1. Motivation

We assume familiarity with the general theory of varieties, semigroups, and groups. As 
references, we suggest the monographs of Almeida [1], Burris and Sankappanavar [10], 
Howie [38], McKenzie et al. [69], and H. Neumann [73].

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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Table 1
The semigroups U1 and U2.

U1 1 2 3 4
1 1 1 3 3
2 2 2 4 4
3 1 1 3 3
4 2 2 4 4

U2 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 2 2
3 1 1 1 3 3
4 1 1 3 4 5
5 1 3 3 4 5

The lattice of varieties of semigroups has been the subject of intensive investigation 
that started as early as the 1960s, but given its complexity, it remains an active area 
of research. There are several very good surveys, such as Evans [20], Gusev et al. [31], 
and Shevrin et al. [90], that allow the reader to become familiar with the main results 
and problems. Our goal is different: we aim to provide a living survey powered by a 
companion computational tool that helps the working mathematician find new results 
or locate known ones in the literature.

As an illustration, suppose that we need to investigate semigroups satisfying the 
implication

xy ≈ yx =⇒ x ≈ y,

objects we call anti-commutative semigroups. To understand their properties, we could 
use GAP [24] to find some small models, as for example, the semigroup U1 in Table 1. At 
a certain point, we observe that all elements of U1 are idempotents—such a semigroup 
satisfies the idempotency identity x2 ≈ x and is commonly called a band—and searching 
for varieties of bands we find a reference [21] that contains the lattice L (B) of varieties 
of bands; see Fig. 1.

Again we could use GAP to see that our semigroup U1 satisfies the identity xyx ≈ x

but violates the identities xy ≈ x and xy ≈ y. Therefore, the variety var{U1} gener-
ated by U1 is contained in the variety of bands defined by the identity xyx ≈ x—the 
variety RB of rectangular bands—but is excluded from its two maximal subvarieties LZ
and RZ, whence var{U1} = RB. Now an easy exercise shows that a semigroup is anti-
commutative if and only if it satisfies the identity xyx ≈ x, and from here we get access 
to an enormous amount of literature on our original object U1. The key steps in the 
above process were the observation that U1 is a band and the complete knowledge of the 
lattice of varieties of bands.

Now suppose that we are working with a different theory and our test semigroup is U2

in Table 1. Since U2 is not a band, there is no general lattice, similar to L (B) in Fig. 1, 
that allows us to repeat what we did with U1. It turns out that the variety var{U2} is 
defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, x2
1x2y

2
1y2z

2 ≈ y2
1y2x

2
1x2z

2,
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Fig. 1. The lattice L (B) of varieties of bands, where [u ≈ v]B = B ∩ [u ≈ v] and details on the words 
Gn, Hn, In, ←−Gn, ←−Hn, ←−In are given in Section 2.4.

and this result is only available from Trahtman [98, Proposition 2], a paper published in 
Russian.

In general, given a semigroup S of order at most 6, there is a good chance that 
information on the variety var{S} and its subvarieties can be found in the literature, 
since such varieties have received much attention over the years (see, for example, Lee 
[52], Lee et al. [62], Mel’nik [70], Perkins [78], Tishchenko [97], and Zhang and Luo [103]), 
especially in the investigation of the finite basis problem for small semigroups (see Lee 
et al. [60] and the references therein). The first goal of this survey is to provide such 
information, but we go far beyond that. The overall aim is twofold: survey identity bases 
defining varieties generated by finite semigroups; and provide a companion website [87], 
running in the background GAP, a SAT solver, automated reasoning tools, and finite 
model builders. The website will be periodically updated.

The following briefly describes the resources provided by the present survey and the 
website.

(A) Identity bases:
(i) The website provides identity bases for all varieties generated by a semigroup 

of order up to 5. Proofs and references for varieties generated by a semigroup of 
order up to 4 are given in the supplementary material (Appendix A)—the first 
complete source providing such information. Information on varieties generated 
by a semigroup of order 5, given its relatively large volume, will be disseminated 
elsewhere.
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Fig. 2. Companion website: the variety generated by a band of order 8.

(ii) For some classes of semigroups, which include all bands, the website finds iden-
tity bases for varieties generated by an arbitrarily (but reasonably) large finite 
model; see Fig. 2.

(iii) The website provides identity bases for varieties generated by various groups, 
including all groups of order less than 24 and all metabelian groups G such 
that gcd(|N |, |G/N |) = 1 for some abelian normal subgroup N of G. It also 
provides the maximal subgroups of the given semigroup and hence identity 
bases for them when available.

(iv) The website provides identity bases for the varieties covered by a given vari-
ety V, provided that it is known. Therefore, the website can determine whether 
an input semigroup S generates a variety V by checking if S satisfies the iden-
tity basis for V and violates the identities defining the varieties covered by V; 
see Section 4.1. The same procedure is used when varieties of groups are in-
volved.

(v) Some semigroups S are non-finitely based and some are inherently non-finitely 
based in the sense that every locally finite variety containing S is non-finitely 
based. We list many results related to these two properties and provide the 
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Fig. 3. Companion website: the variety generated by the symmetric group Sym4.

first list of all inherently non-finitely based semigroups of order up to 8 (The-
orem 4.8).

(vi) We also established the new results that proper subvarieties of var{Sym4} and 
of var{SL(2, 3)} are metabelian; see Fig. 3.

(B) To enter a semigroup or group into the website, the user has the option of inputing 
the multiplication table (in a very flexible way); GAP identifier; or a V-presentation, 
where V is any variety, quasivariety, or more generally, any class of algebras defin-
able by first order formulas. The website also provides several tools to manipulate 
presentations.

(C) For many finite semigroups S, the companion website provides bibliographic infor-
mation about the variety var{S}, such as its prime decomposition, the varieties that 
cover it, a generator of minimum order, and the semilattice decomposition of S and 
the varieties generated by the components; see Fig. 4.

1.2. Organization

Section 2 contains some background information on varieties of semigroups, groups, 
and epigroups; the lattice of varieties of bands; varieties with infinitely many subvarieties; 
and semilattice decompositions of semigroups.

Section 3 surveys some results on varieties generated by small groups; it consists 
of mostly known material and the main results here highlight the gaps in the literature 
waiting to be filled. It is our conviction that within the class of groups, the topic that is of 
most interest to us—explicit identity bases for varieties generated by small groups—was 
more or less abandoned, not because everything was too easy but exactly the opposite. 
Given the classification of finite simple groups, perhaps it is time for group theorists to 
start looking into varieties of groups again. It is worth mentioning that many closely 
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Fig. 4. Companion website: example of information displayed if the identity basis for the variety generated 
by the given semigroup is found.

connected areas are still very active, for instance, construction of short identities in 
symmetric groups (see Bulatov et al. [8], Karpova and Shur [46], and the references 
therein) and computational complexity of checking whether a given identity holds in a 
fixed finite group (see Burris and Lawrence [9], Földvári and Horváth [22], Horváth [34,
35], Horváth et al. [36], Horváth and Szabó [37], Kompatscher [48], and the references 
therein). For semigroup theorists, given a semigroup S, it might be useful to know to 
which varieties of groups belong the maximal subgroups (the H-classes of idempotents) 
of S. In both this survey and the companion website [87], we make intensive use of the 
library of small groups [2,14,19,27,74,76] accessed through GAP and the library of the 
small semigroups [15] accessed through the GAP package Smallsemi [17].

Section 4 is concerned with an equational method to check if a variety is generated by 
a semigroup; non-finitely based semigroups of order 6; and inherently non-finitely based 
finite semigroups, in particular, a complete description of those that are of order up to 8.

The survey ends with a list of open problems in Section 5.
Information on all varieties generated by a semigroup of order up to 4 is given in the 

supplementary material (Appendix A).



J. Araújo et al. / Journal of Algebra 635 (2023) 698–735 705

Table 2
The semigroups J and J ′.

J 1 2 3
1 1 1 1
2 1 1 1
3 1 2 3

J ′ 1 2 3
1 3 3 3
2 1 2 3
3 3 3 3

2. Preliminaries

2.1. Isomorphic semigroups and lexicographic minimum

Two algebras A and B of the same type are isomorphic, indicated by A ∼= B, if there 
exists an isomorphism between them. The relation ∼= is an equivalence relation on any 
class of algebras of the same type. Occasionally, given a finite algebra A, it is practical to 
have a canonical representative of the equivalence class [A]∼=. The following is a standard 
convention to determine such a representative when A is a semigroup.

Given a semigroup S of order n whose elements are labeled 1, 2, . . . , n, the vector of S, 
denoted by �v(S), is the vector of dimension n2 that is formed by concatenating the n

rows of the multiplication table of S. For instance, the vector �v(J) of the semigroup J in 
Table 2 is [1, 1, 1, 1, 1, 1, 1, 2, 3]. (For semigroups of order at most 9, it is unambiguous, 
and in fact clearer, to use commas only to separate different rows, for example, �v(J) =
[111, 111, 123].) The isomorphic copies of a given semigroup can then be lexicographically 
ordered as vectors. For instance, the semigroup J ′ in Table 2 is isomorphic to J , but 
since

�v(J) = [111, 111, 123] <lex [333, 123, 333] = �v(J ′),

we place J before J ′.
For a semigroup S, an obvious choice for the representative of the class [S]∼= is the 

semigroup whose vector lexicographically precedes the vectors of all other semigroups in 
[S]∼=. For instance, consider the semigroup

P = 〈a, b | ab = a, ba = 0, b2 = b〉 = {0, a, b}.

There are six semigroups on the set {1, 2, 3} that are isomorphic to P , as shown in 
Table 3. Since �v(S1) ≤lex �v(Si) for all i �= 1, the semigroup S1 is the representative of 
the class [P ]∼=.

The dual of a semigroup S, denoted by ←−
S , is the semigroup obtained from S by 

reversing its operation, that is, for every a, b ∈ ←−
S = S, the product ab in ←−

S is equal to 
the product ba in S. The multiplication table of ←−S is obtained simply by transposing the 
multiplication table of S. For instance, the semigroup ←−

S1 is isomorphic to the semigroup J

in Table 2. The dual of a variety V is the variety

←−V = {←−S |S ∈ V}.
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Table 3
Semigroups isomorphic to P .

S1 1 2 3
1 1 1 1
2 1 1 2
3 1 1 3

S2 1 2 3
1 1 1 1
2 1 2 1
3 1 3 1

S3 1 2 3
1 1 2 2
2 2 2 2
3 3 2 2

S4 1 2 3
1 1 3 3
2 2 3 3
3 3 3 3

S5 1 2 3
1 2 2 1
2 2 2 2
3 2 2 3

S6 1 2 3
1 3 1 3
2 3 2 3
3 3 3 3

A variety V is self-dual if V = ←−V.
Two semigroups S and T are equivalent if either S ∼= T or ←−S ∼= T . In the GAP

package Smallsemi, semigroups are stored up to equivalence but not up to isomorphism, 
a decision with some disadvantages. In the present survey, unless otherwise stated, we 
work with semigroups up to isomorphism.

2.2. Varieties of semigroups

A class of algebras of the same type is a variety if it is closed under the formation of 
homomorphic images, subalgebras, and arbitrary direct products. The variety generated 
by a class K of algebras of the same type, denoted by varK, is the smallest variety 
containing K; such a smallest variety exists because the intersection of varieties is a 
variety. A variety is finitely generated if it is generated by a single finite algebra. For any 
finitely generated variety V of semigroups, there exist only finitely many non-isomorphic 
generators of minimum order, say S1, S2, . . . , Sk with

�v(S1) <lex �v(S2) <lex · · · <lex �v(Sk).

Then S1 is the primitive generator of V.
By a theorem of Birkhoff [4], a class V of algebras of the same type is a variety if 

and only if it coincides with the class of algebras satisfying some set Σ of identities; in 
this case, the variety V is defined by Σ and Σ is an identity basis for V. A variety is 
finitely based if it possesses a finite identity basis. Since an algebra satisfies the same 
identities as the variety it generates, it is unambiguous to define an identity basis for an 
algebra A to be an identity basis for var{A} and say that A is finitely based whenever 
var{A} is finitely based. Every semigroup of order at most 5 is finitely based, but there 
exist semigroups of order 6 that are non-finitely based; see Section 4.2.

It is clear that if two algebras A and B are isomorphic, then var{A} = var{B}; the 
converse, however, does not hold in general. For instance, the dihedral group D4 and 
the quaternion group Q8 are non-isomorphic groups of order 8 that generate the same 
variety [73, 54.23].
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Table 4
Some data on semigroups of order n ≤ 9.

n Number of semi-
groups of order n
up to equivalence

Number of semi-
groups of order n
up to isomorphism

Number of varieties 
with a primitive 
generator of order n

1 1 1 1
2 4 5 5
3 18 24 14
4 126 188 53
5 1,160 1,915 145
6 15,973 28,634 At least 463
7 836,021 1,627,672 Unknown
8 1,843,120,128 3,684,030,417 Unknown
9 52,989,400,714,478 105,978,177,936,292 Unknown

Up to isomorphism, the number of semigroups of order at most 5 is 2,133, while the 
number of varieties generated by such a semigroup is only 218; see Table 4 [16, Tables 1 
and 3].

2.3. Varieties of groups

For a general reference on varieties of groups, we recommend the monograph of H. Neu-
mann [73].

Two sets of identities that define the same variety are equivalent. Unlike the case for 
semigroups, every variety generated by a finite group has a finite identity basis, and every 
finite set of group identities is equivalent to a single identity. Therefore, every variety 
generated by a finite group can be defined by a single identity. We will see a similar 
phenomenon for varieties of bands in Section 2.4.

More details on varieties of groups can be found in Section 3.

2.4. The lattice of varieties of bands

A description of the lattice L (B) of varieties of bands can be found in Birjukov [3], 
Fennemore [21], Gerhard [25], Gerhard and Petrich [26], and Howie [38]; see Fig. 1. At 
the very top of the lattice is the variety B = [x2 ≈ x] of all bands. In the lower region is 
the sublattice L (NB) of L (B) consisting of eight varieties:

NB = [xyzx ≈ xzyx]B, normal bands;

LN = [xyz ≈ xzy]B, left normal bands;

RN = [xyz ≈ yxz]B, right normal bands;

SL = [xy ≈ yx]B, semilattices;

RB = [xyx ≈ x], rectangular bands;

LZ = [xy ≈ x], left zero bands;

RZ = [xy ≈ y], right zero bands;



708 J. Araújo et al. / Journal of Algebra 635 (2023) 698–735

0 = [x ≈ y], trivial semigroups.

The remaining varieties in the lattice L (B) are defined by identities that are formed by 
the words Gn, Hn, In, n ≥ 2, inductively defined as follows:

G2 = x2x1, H2 = x2, I2 = x2x1x2,

and Gn = xn
←−−Gn−1, Hn = Gnxn

←−−Hn−1, In = Gnxn
←−−In−1, for all n ≥ 3,

where ←−
W is the word W written in reverse. For example,

[G3 ≈ H3]B = [x3x1x2 ≈ x3x1x2x3x2, x
2 ≈ x].

By simple inspection of the identities in Fig. 1, it is clear that the varieties in column 3 
are self-dual, the varieties in columns 1 and 5 are dual to each other, and the varieties 
in columns 2 and 4 are dual to each other.

The variety generated by a band B is the variety V of bands that satisfies both of the 
following properties: B belongs to V and B is excluded from every maximal subvariety 
of V. When a semigroup S is entered into the companion website, there is a first test to 
check if S is a band. In the affirmative case, the website crawls up the lattice in Fig. 1; 
the first identity satisfied by S defines the variety var{S}.

2.5. Varieties with infinitely many subvarieties

A variety that contains only finitely many subvarieties is small. It easily follows from 
the well-known theorem of Oates and Powell [75] that every finite group generates a 
small variety of semigroups. But this result does not hold in general. A counterexample 
is the monoid N1

2 obtained by adjoining an identity element to the nilpotent semigroup

N2 = 〈a | a2 = 0〉 = {0, a};

see Fig. 5. Not only is the variety var{N1
2 } not small [20], it is the only non-small variety 

among all varieties generated by a semigroup of order 3 or less; see the supplementary 
material (Appendix A).

Properties more extreme than being non-small can be satisfied by a variety generated 
by a semigroup of order greater than 3. For instance, there exist

• semigroups of order 4 that generate a variety that is finitely universal in the sense 
that its lattice of subvarieties embeds every finite lattice [51];

• semigroups of order 6 that generate finitely universal varieties with continuum many 
subvarieties [18,40].

Every variety with continuum many subvarieties discovered so far is also finitely uni-
versal. It is unknown if there exists a variety of semigroups with continuum many 
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Fig. 5. The lattice of subvarieties of var{N1
2 }.

subvarieties that is not finitely universal. Refer to Shevrin et al. [90] for a survey of 
results regarding other properties satisfied by lattices of varieties of semigroups.

Given a finite semigroup, it is of natural interest to determine if it generates a small 
variety. Whether or not smallness of a variety is decidable remains open, but one special 
case is known. An identity of the form

x1x2 · · ·xn ≈ xπ(1)xπ(2) · · ·xπ(n),

where π is some nontrivial permutation on {1, 2, . . . , n}, is a permutation identity. A 
nontrivial identity of the form x1x2 · · ·xn ≈ w that is not a permutation identity is 
diverse.

Proposition 2.1 (Malyshev [67]). Every variety of semigroups that satisfies some permu-
tation identity and some diverse identity is small.

2.6. Varieties of epigroups

An element a of a semigroup S is an epigroup element of index n if n is the least 
positive integer such that an belongs to a subgroup of S, that is, the H-class Han of 
an is a group; epigroup elements of index one are completely regular. If e is the identity 
element of Han , then ae is in Han and we define the pseudo-inverse of a by a′ = (ae)−1, 
where (ae)−1 denotes the inverse of ae in the group Han [89, Section 2.1]. An epigroup is 
a semigroup consisting entirely of epigroup elements, and a completely regular semigroup
is a semigroup whose elements are all completely regular. An important result is that 
all finite semigroups are examples of epigroups. Following Petrich and Reilly [79] for 
completely regular semigroups and Shevrin [89] for epigroups, it is now customary to 
consider an epigroup or a completely regular semigroup (S, · ) as a unary semigroup 
(S, · , ′ ), where x �→ x′ is the map that sends each element to its pseudo-inverse.
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For any semigroup S, let Epi(S) denote the set of all epigroup elements of S of 
any index and let Epin(S) denote the subset of Epi(S) consisting of elements of index 
bounded by n. Then the inclusions

Epi1(S) ⊆ Epi2(S) ⊆ · · · ⊆
⋃

{Epin(S) |n ≥ 1} = Epi(S)

hold, where Epi1(S) consists of completely regular elements of S, and Epi(S) = S if and 
only if S is an epigroup.

For any a ∈ Epin(S), let ea denote the identity element of the group Han . Then 
aea = eaa is in Han and the definition of pseudo-inverse introduced above leads to a 
characterization of the epigroup elements of the semigroup: a ∈ Epi(S) if and only if 
there exist some n ≥ 1 and some (necessarily unique) a′ ∈ S such that

a′aa′ = a′, aa′ = a′a, an+1a′ = an; (2.1)

see Shevrin [89, Section 2]. If a is an epigroup element, then so is a′ with a′′ = aa′a. 
The element a′′ is always completely regular and a′′′ = a′. A standard notation in finite 
semigroup theory is to write aω = aa′ for an epigroup element a; see, for example, 
Almeida [1]. Then

aω = a′′a′ = a′a′′, (a′)ω = (a′′)ω = aω,

and more generally, for any m ≥ 1,

aω = (aa′)m = (a′)mam = am(a′)m.

For each n ≥ 1, the class En consisting of all epigroups S such that S = Epin(S) is a 
variety; in particular, E1 is the class of completely regular semigroups. The variety En

is defined by the identities

xx′ ≈ x′x, x(x′)2 ≈ x′, xn+1x′ ≈ xn.

It is clear that the inclusions E1 ⊂ E2 ⊂ E3 ⊂ · · · hold and are proper, and that any 
variety of epigroups is contained in En for all sufficiently large n ≥ 1 [89].

2.7. Semilattice decomposition of semigroups

There are several methods where a semigroup can be decomposed into smaller sub-
semigroups, for example, direct products, subdirect products, and Zappa–Szép exten-
sions. Some have the property that each component cannot be further decomposed 
using the same method, in which case the decomposition is atomic. An obvious ex-
ample of atomic decompositions for finite algebras is the direct product decomposition 
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as—resorting to an argument similar to the one used to prove that every natural num-
ber is a product of prime numbers—we can easily show that every finite algebra can be 
decomposed into a direct product of directly indecomposable algebras. Finding atomic 
decompositions of infinite semigroups is more difficult; according to Bogdanović et al. [5], 
there are only five known atomic decompositions of general semigroups: semilattice 
decomposition [94], ordinal decomposition [66], U -decomposition [88], orthogonal de-
composition [6], and the general subdirect decomposition whose atomicity was proved 
by Birkhoff.

In this survey, we will concentrate on semilattice decompositions of semigroups. A 
semilattice is a partially ordered set (Y, ≤) in which every pair i, j ∈ Y of elements has a 
greatest lower bound i ∧j in Y , called the meet of i and j. A semigroup S is a semilattice 
of semigroups if there exist a semilattice (Y, ≤) and a family {Si | i ∈ Y } of semigroups 
indexed by Y such that S =

⋃
{Si | i ∈ Y } and SiSj ⊆ Si∧j . Every semigroup can be 

decomposed into a semilattice of semigroups {Si | i ∈ Y } with each Si being semilattice 
indecomposable [94].

It is easy to prove that every semilattice Y induces a commutative semigroup of 
idempotents and conversely. Therefore, the term semilattice is commonly used to refer 
to a commutative band or a partially ordered set admitting meet of every pair of elements.

Tamura [95] provided two equivalent ways to find the smallest semilattice congruence. 
For any semigroup S, let S1 denote the smallest monoid containing S, that is,

S1 =
{
S if S is not a monoid,
S ∪ {1} otherwise.

Then the smallest semilattice decomposition of S is the smallest partition containing the 
sets 

{
{xy, yx, xyx} 

∣∣ (x, y) ∈ S1 × S1}.

3. Varieties of groups

The theory of varieties of groups differs from that of semigroups in several ways, which 
will be briefly mentioned here. In particular, after a decade of activities around the 1960s, 
the monograph of H. Neumann [73] was published; this is still the best reference for the 
subject, and its notation became standard among group theorists. But one deviation 
is necessary in the present survey: varieties of groups in H. Neumann [73] are denoted 
by Fraktur capital letters, such as A for the variety of abelian groups; for the sake of 
consistency, we will use bold-face letters such as A instead.

3.1. The basics

Since the symbols A0 and A2 are reserved for important semigroups in this survey 
(see Section 4.2) and in the companion website [87], to avoid confusion, the alternating 
group over n symbols is denoted by Altn. Similarly, since Sn is often used to represent 
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semigroups, the symmetric group over n symbols is denoted by Symn. Other important 
finite groups required in the present survey include the cyclic group Zn of order n, the 
dihedral group Dn of order 2n, the quaternion group Q8 of order 8, the special linear 
group SL(n, q) of degree n over a field of order q, and the projective special linear group 
PSL(2, q) of degree 2 over a field of order q.

As briefly noted in Section 2.3, every finite group has an identity basis that consists 
of one single group identity. Every group identity is equivalent to one of the form w ≈ 1, 
where w is a word in the variables and their inverses. We can regard w as an element 
of the free group F (X) over a countable set X of variables. The identities satisfied 
by a variety form a fully invariant subgroup of F (X), one mapped into itself by all 
endomorphisms of the group. Hence there is a bijection between varieties of groups and 
fully invariant subgroups of F (X).

Each finite group of finite exponent e ≥ 2 satisfies the identity xe ≈ 1 and so also 
the identity xe−1 ≈ x−1. Therefore, any identity of a finite group G is equivalent to one 
of the form w ≈ 1, where w is a semigroup word. In fact, a more specific result holds. 
Recall that the derived subgroup of G is the subgroup generated by all commutators
[g, h] = g−1h−1gh with g, h ∈ G. A commutator word is an element of the derived 
subgroup of the free group. Alternatively, a commutator word can be described as one 
in which the sum of the exponents of every variable is 0.

Theorem 3.1 (B. H. Neumann [72]). Every identity of a finite group of exponent e is 
equivalent to {xe ≈ 1, w ≈ 1} for some commutator word w.

A factor of a group G is a quotient of a subgroup of G, that is, H/K where K�H ≤ G; 
it is proper unless H = G and K = {1}. A chief factor is one where K � G and H/K

is a minimal normal subgroup of G/K; a composition factor is a factor H/K, when H

and K are subnormal in G (that is, terms in a descending series in which each term is 
normal in its predecessor) and K is a maximal normal subgroup of H.

For any subgroups A, B ≤ G, let [A, B] denote the subgroup of G generated by the 
commutators in {[a, b] | a ∈ A, b ∈ B}. The lower central series is the descending series

G = G1 > G2 > G3 > · · ·

with Gi+1 = [Gi, G]. If c is the smallest integer such that Gc+1 = {1}, then G is nilpotent 
of class c. The derived series is the descending series

G = G(0) > G(1) > G(2) > · · ·

with G(i+1) = [G(i), G(i)]. If � is the smallest integer such that G(�) = {1}, then G is 
solvable of derived length �.

The product UV of varieties U and V consists of all groups G that are extensions of 
a group H ∈ U by a group K ∈ V, that is, G has a normal subgroup isomorphic to H
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with quotient isomorphic to K. The product of two varieties is a variety, and the product 
operation is associative. But product varieties are not usually generated by finite groups.

Theorem 3.2 (Šmel’kin [92]). A product of three or more nontrivial varieties is not gen-
erated by a finite group. A product UV is generated by some finite group if and only if U
and V have coprime exponents, U is nilpotent, and V is abelian.

The variety UV has an identity basis of the form u(v1, v2, . . . , vn) ≈ 1, where 
u(x1, x2, . . . , xn) ≈ 1 is an identity of U and each vi ≈ 1 is an identity of V. (Note 
that, even if we can do better for some cases, usually all identities of V are needed, 
not just an identity basis.) We will give more details in an important special case in 
Section 3.3.

Many other results about varieties of groups are known, but our interest lies in those 
that are finitely generated.

One important result on varieties of groups is the Oates–Powell theorem, asserting 
that every finite group generates a finitely based variety. The result is actually much 
stronger. A variety is Cross if it is finitely based, finitely generated, and small.

Theorem 3.3 (Oates and Powell [75]). The variety generated by any finite group is Cross.

A finite group is critical if it does not belong to the variety generated by all its proper 
factors. Every locally finite variety of groups is generated by its critical groups [73, 51.41]. 
However, this result is not true for varieties that are not locally finite [77].

Sometimes one critical group is enough to generate the variety but sometimes it is 
not. For example, the variety A6 of abelian groups of exponent dividing 6 has Z2 and 
Z3 as critical groups and both are needed to generate the variety. On the other hand, 
the product A2A2 is generated by any one of its critical groups D4 and Q8.

If a group G contains a unique minimal normal subgroup N , then G is monolithic
and N is the monolith of G. Two non-isomorphic critical groups that generate the same 
variety have abelian monoliths; it follows that non-isomorphic finite simple groups cannot 
generate the same variety [73, 53.35].

3.2. Abelian groups

The structure of the lattice of varieties generated by abelian groups is very easy to 
describe. The class A of all abelian groups is the variety defined by the identity [x, y] ≈ 1; 
for each integer m ≥ 1, the class Am of abelian groups of exponent dividing m is the 
variety defined by the identities xm ≈ [x, y] ≈ 1. Hence the lattice of varieties of abelian 
groups is isomorphic to the set of positive integers ordered by divisibility with a top 
element adjoined. We remark that GAP includes commands IsAbelian and Exponent, 
so the inclusion var{G} ⊆ Am is easily checked.

Checking the reverse inclusion Am ⊆ var{G} is more problematic. For sufficiently 
large m, there are continuum many varieties of groups covering Am [39,50].
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3.3. Metabelian groups

A group is metabelian if it lies in the product variety AA, that is, it has an abelian 
normal subgroup with abelian quotient. Among small groups, many are metabelian; for 
example, 1,005 of the 1,048 groups of order at most 100 are metabelian. The smallest 
non-metabelian groups are the groups Sym4 and SL(2, 3) of order 24.

Every finite metabelian group belongs to the variety AmAn for some m, n ≥ 1. The 
smallest subgroup of a group G whose quotient is abelian of exponent dividing n is 
generated by the nth powers and commutators in G, so the variety AmAn is defined by 
the identities

xmn ≈ [x, y]m ≈ [xn, yn] ≈
[
xn, [y, z]

]
≈

[
[x, y], [z, w]

]
≈ 1.

However, finding an identity basis for individual finite metabelian groups is more diffi-
cult. To this end, the commutator of n ≥ 3 elements—the left-normed commutator—is 
required:

[x1, x2, . . . , xn−1, xn] =
[
[x1, x2, . . . , xn−1], xn

]
.

Higman [33] showed that for each prime p that does not divide n ≥ 1, the proper 
subvarieties of ApAn containing Apn are characterized by an identity of the form

[xn, yd1 , yd2 , . . . , ydk ] ≈ 1,

where d1 > d2 > · · · > dk ≥ 1 are divisors of n such that di does not divide dj whenever 
i > j.

As an example which we will examine later, consider the subvariety var{Alt4} of A2A3. 
The only possible Higman identity is [x3, y] ≈ 1, which does not hold in Alt4. Therefore, 
var{Alt4} = A2A3.

H. Neumann [73, 54.42] quotes a generalization of this, an unpublished result of 
C. H. Houghton according to which, assuming that gcd(m, n) = 1, any such variety 
lies between Ars and ArAs for some r, s ≥ 1 such that r divides m and s divides n. 
Moreover, such a variety is defined by identities of the form

[xs, yd1 , . . . , ydk ]t ≈ 1,

where t is a divisor of r and d1 > d2 > · · · > dk ≥ 1 are divisors of n such that di
does not divide dj whenever i > j. See Mikaelian [71] for a proof of this result and for a 
generalization that determines when the equality var{A} var{B} = var{A �B} holds for 
abelian groups A and B with A �B being their wreath product.

There are also results for the case when the condition gcd(m, n) = 1 is relaxed. An 
important example, which consists of dihedral groups, is discussed below.
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For an example, consider SmallGroup(12,1) in GAP with presentation

〈a, b | a3 = 1, b4 = 1, b−1ab = a2〉.

Clearly, this group belongs to A3A4. Since gcd(3, 4) = 1, this group can be handled with 
Higman’s theorem. The possible Higman identities are [x4, y] ≈ 1 and [x4, y2] ≈ 1. It is 
readily shown that the second is satisfied but the first is not. Adding [x4, y2] ≈ 1 to the 
identity basis we see that the identity [x4, y4] ≈ 1 is redundant and can be discarded. 
Further reductions are possible, but we do not strive for the simplest identity basis.

A result of Kovács [49] describes the variety generated by a finite dihedral group. We 
restate his theorem in a format that is more useful for us.

Theorem 3.4. Let n = 2dm with d ≥ 0 and m odd.

(i) If d ≤ 1, then var{Dn} = AmA2.
(ii) If d ≥ 2 and m = 1, then var{Dn} = A2d−1A2 ∩ Nd, where Nd is the variety of 

nilpotent groups of class at most d.
(iii) If d ≥ 2 and m > 1, then var{Dn} = var{D2d , Dm}.

Now it follows from our general remarks on metabelian groups that an identity basis 
for AnA2 is given by x2n ≈ [x2, y2] ≈ 1 (since a group belongs to AnA2 if and only if 
the squares commute and have orders dividing n). An identity basis for Nd is given by 
[x1, x2, . . . , xd+1] ≈ 1. Given varieties V and W, an identity basis for V∩W consists of 
the union of the identity bases for V and W. Finally, the identities of var{G, H} consist 
of all products of an identity of G and an identity of H (in disjoint sets of variables). So 
the identities of varieties of dihedral groups can be described explicitly.

3.4. Other groups

Apart from the groups considered so far, results on particular finite groups are scarce. 
Cossey and Macdonald [11] and Cossey et al. [12] found explicit identity bases for the 
varieties var{Sym4}, var{Alt5}, and var{PSL(2, 7)}; they also found identities that hold 
in var{PSL(2, pm)} with prime p and m ≥ 1 but without proof that these identities 
form an identity basis. An identity basis for var{PSL(2, 2m)} with m ≥ 2 was found by 
Southcott [93].

A description of the identities of the group SL(2, q) is also available in some cases: 
q = 9 or q = pm for some odd prime p �≡ ±1 (mod 16) and odd m ≥ 1. In these cases, 
the identities are of the form [w, x] ≈ 1 and w2 ≈ 1, where w ≈ 1 ranges over an identity 
basis for PSL(2, q) and x is a variable not occurring in w. In particular, this result holds 
for SL(2, 3) and PSL(2, 3) ∼= Alt4, where identities of the latter group have been described 
in Section 3.3.

Cossey et al. [12, Theorem 3.6] claim to have an identity basis for the variety 
var{Sym5}, but the identity
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{(
(x25y25)36 ·

{
(x35y25)50 · (x25y35)50

}36
)36

·
[[

[x25, y25]15, y15]25, y50
]}5

≈ 1

they gave, as observed by Leedham-Green and O’Brien [65], does not hold in Sym5. 
(However, if the last exponent 5 is replaced with 15, then the resulting identity holds in 
Sym5.) We have not found a correct identity basis for var{Sym5}.

Regarding the variety var{PSL(2, 5)}, an identity basis was first found by Cossey and 
Macdonald [11], but one of its identities involve 61 variables. Shortly after, an identity 
basis that involves only 2 variables was exhibited by Bryant and Powell [7].

3.5. Non-metabelian groups of order 24

As noted earlier, Sym4 and SL(2, 3) are the only non-metabelian groups of order 24. 
An identity basis for the variety var{Sym4} is in Cossey et al. [12]:

x12 ≈
(
(x3y3)4[x3, y6]3

)3 ≈ [x2, y2]2 ≈ [x, y]6 ≈ [x6, y6] ≈
[
[x, y]3, y3, y2] ≈ 1.

Our goal here is to describe the subvarieties of the varieties var{Sym4} and 
var{SL(2, 3)}, and to show each of their proper subvarieties is metabelian.

Lemma 3.5. Let G be any non-abelian group in var{Sym3}. Then G has a subgroup 
isomorphic to Sym3 and so var{G} = var{Sym3}.

Proof. We know that G′ is a nontrivial elementary abelian 3-group while G/G′ is an 
abelian group that is a direct product of elementary abelian 2-groups and 3-groups. 
Since G is not abelian, there exist a, b ∈ G that fail to commute. We consider various 
cases, assuming that there is no subgroup isomorphic to Sym3 and aiming for a contra-
diction. Note that any two elements of order 3 commute, since each of them is a square 
and [x2, y2] ≈ 1 is an identity of Sym3.

• |a| = |b| = 2. Then 〈a, b〉 is a dihedral group of order 6 or 12 and so contains a 
subgroup isomorphic to Sym3. So we may assume that involutions commute.

• |a| = 2 and |b| = 3. Then c = ba is another element of order 3 and c commutes 
with b. Since (bc−1)a = cb−1 = (bc−1)−1, the subgroup 〈a, b〉 is isomorphic to Sym3. 
Hence we can assume that elements of prime orders commute.

• |a| ∈ {2, 3} and |b| = 6. Then a commutes with b2 and b3, and so with b.
• |a| = |b| = 6. Then a2 and a3 both commute with b, so a and b commute.

The proof is thus complete. �
Theorem 3.6. Let G be any critical group in var{Sym4} that is not metabelian. Then 
var{G} = var{Sym4}.
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Proof. Let N be the verbal subgroup of G corresponding to the identities of var{Sym3}, 
that is, the subgroup generated by values in G of the identities of Sym3. Then N is an 
elementary abelian 2-group, and it is nontrivial because {1} �= G′′ ≤ N . Further, G/N

belongs to var{Sym3}.
If G/N is abelian, then G′ ≤ N , so the contradiction G′′ = {1} is deduced. Therefore, 

G/N is non-abelian. Further, G/N has order divisible by 3, since otherwise G is a 2-
group; but 2-groups in var{Sym4} belong to var{D4} and so are metabelian. Therefore, 
by Lemma 3.5, the group G/N must contain a subgroup K isomorphic to Sym3.

Moreover, such a subgroup in G/N cannot centralize N . For if it did, then the central-
izer CG(N) of N (and hence G) would have a normal 3-subgroup; but G is critical and 
therefore monolithic (it contains a unique minimal normal subgroup, which is a 2-group) 
[73, 51.32].

An orbit of K on N has order at most 6 and so generates a subgroup of order at 
most 26. We show that there must be such a subgroup of order 22. First, consider the 
action of an element of order 3 in K; let {x1, x2, x3} be an orbit. The subgroup 〈x1, x2, x3〉
has order 22 or 23; in the latter case, the subgroup 〈x1x2, x2x3, x3x1〉 has order 22.

If such a subgroup {1, y1, y2, y3} of order 22 is invariant under an element t of or-
der 2 in K, then our claim is proved; so suppose not. Let zi = yti where i ∈ {1, 2, 3}. 
Then the group 〈yi, zi | i = 1, 2, 3〉 has order 24 and is invariant under Sym3. We can 
assume that conjugation by an element u of order 3 in K induces the permutation 
(y1, y2, y3)(z1, z3, z2) (since t inverts u). Then the subgroup 〈y1z1, y2z3, y3z2〉 has order 22

and is Sym3-invariant.
Now the group generated by K together with this K-invariant subgroup of N is 

isomorphic to Sym4, and belongs to var{G}. So var{Sym4} ⊆ var{G}, and we have 
equality as required. �
Corollary 3.7. Any proper subvariety of var{Sym4} is metabelian.

The analogous result for SL(2, 3) is similar but easier to establish. We have noted in 
Section 3.3 that the identities of SL(2, 3) have the form [w, x] ≈ w2 ≈ 1, where w ≈ 1
ranges over the identities of Alt4 and x is a variable not in w.

Theorem 3.8. Let G be any critical group in var{SL(2, 3)} that is not metabelian. Then 
var{G} = var{SL(2, 3)}.

Proof. The preliminary result that a non-abelian group in var{Alt4} contains a subgroup 
isomorphic to Alt4 is proved in a manner similar to the analogous result for Sym3.

Let G ∈ var{SL(2, 3)} be critical and non-metabelian. Then G′′ is an elementary 
abelian 2-group and is contained in the center Z(G), so all its subgroups are normal 
in G. Since G is monolithic, |G′′| = 2. Now G/G′′ has a subgroup isomorphic to Alt4, 
and it is easy to see that this lifts to a subgroup of G isomorphic to SL(2, 3). �
Corollary 3.9. Any proper subvariety of var{SL(2, 3)} is metabelian.
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3.6. Small groups

We now demonstrate that we have covered all groups of order less than 24. We 
have seen that identity bases for abelian groups are trivial. The remaining groups are 
metabelian, and in most cases Higman’s theorem applies. We note, for example, that 
the two non-abelian groups of order 8—the dihedral group D4 and quaternion group 
Q8—generate the same variety [73, 54.23].

The outstanding cases are the three groups of order 16 whose derived subgroups are 
cyclic of order 4:

• the dihedral group

D8 = 〈a, b | a8 = b2 = 1, b−1ab = a−1〉;

• the semi-dihedral group

SD8 = 〈x, y |x8 = y2 = 1, y−1xy = x3〉;

• the generalized quaternion group

Q16 = 〈p, q | p8 = 1, q2 = p4, q−1pq = p−1〉.

We sketch a proof that these three groups generate the same variety, whose description 
follows from Kovács [49]; see Theorem 3.4. (Details of the calculations in this proof were 
carefully checked with GAP.)

Take two copies of the dihedral group, the second generated by elements c and d

satisfying the same relations as a and b; let G be the central product of these two groups 
(the quotient by the central subgroup generated by a4c4). Now D8 is a subgroup of G, 
and G is a quotient of a direct product of two copies of D8, so that var{D8} = var{G}.

Now we can find copies of the other two groups in G as follows:

• Q16 = 〈p, q〉, where p = a and q = bc2;
• SD8 = 〈x, y〉, where x = ac2 and y = b.

Clearly q2 = c4 = p4, and the other relations of Q16 are clear; and y−1xy = a−1c2 =
a3c6 = x3, and the other relations of SD8 are clear. Therefore, var{Q16} and var{SD8}
are subvarieties of var{D8}.

To show equality in the first case, we note that G has an automorphism ϕ interchang-
ing a and c and also b and d. The image of 〈p, q〉 under ϕ is 〈c, a2d〉. Now these groups 
commute, since bc2 ·a2d = c2a−2bd while a2d ·bc2 = a2c−2bd, and we have c2a−2 = a2c−2

since a4 = b4. Moreover, it is easy to see that they are distinct. So they generate their 
central product, which is G. Thus G, and hence D8, belongs to var{Q16}.



J. Araújo et al. / Journal of Algebra 635 (2023) 698–735 719

The same method does not work for the second case since the two copies of SD8 in G

do not commute; so we reverse the argument. Take two copies of SD8, generated by x, y
and z, w, respectively, and let H be their central product (the quotient of the direct 
product by 〈x4z4〉). Put a = xz2 and b = y. Then a8 = b2 = 1 and

b−1ab = y−1xz2y = x3z2 = x7z−2 = (xz2)−1,

so that 〈a, b〉 is isomorphic to D8. Therefore, D8 is a subgroup of H, so that var{D8} ⊆
var{H} = var{SD8}, whence we have equality.

3.7. Toward an explicit bound

It follows from the Oates–Powell theorem (Theorem 3.3) that the variety generated 
by a finite group is Cross. Can explicit bounds on the orders of critical groups in such a 
variety be extracted from the proof of this result?

The proof of the Oates–Powell theorem rests on three lemmas: the third concerns 
the class C(e, m, c) of finite groups of exponent e, whose chief factors are of order at 
most m and whose nilpotent factors have class at most c. Then C(e, m, c) is a class of 
finite groups in a variety such that for all G ∈ C(e, m, c), every critical group in var{G}
belongs to C(e, m, c).

Lemma 3.10 (H. Neumann [73, 52.23]). The class C(e, m, c) contains only finitely many 
critical groups up to isomorphism.

Lemma 3.11 (H. Neumann [73, page 156]). Suppose that G ∈ C(e, m, c) is any critical 
group with non-abelian monolith. Then |G| ≤ m!.

The abelian monolith case is much harder. Let Φ(G) denote the intersection of all 
maximal subgroups of G, called the Frattini subgroup of G. As H. Neumann [73, page 156]
says:

If a bound for the index of Φ(G) in G is found, then a bound for |G| can be derived. 
For, since Φ(G) consists of all non-generators of G, the number of elements needed to 
generate G can be at most |G/Φ(G)|. But from bounds for the number of generators 
of G and the index of Φ(G) in G, one obtains a bound for the number of generators 
of Φ(G) by means of Schreier’s formula. As Φ(G) is nilpotent, of class at most c and 
exponent dividing e, this leads to a bound for the order of Φ(G), and so for the order 
of G.

Suppose we can show that |G/Φ(G)| ≤ b. Then G has at most log2 b generators, so our 
bound for the number of generators of Φ(G) is 1 +(b −1) log2 b, or in broad brush terms, 
d ≤ b log b. This gives a bound for the order of Φ(G) which is roughly exp(d +d2+· · ·+dc), 
since the lower central factors are generated by commutators.
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A small improvement is possible. If Φ(G) is not a p-group, then it is the direct product 
of its Sylow p-subgroups, each of which contains a nontrivial normal subgroup of G, 
contradicting the fact that G is monolithic. So we can replace e in the above bound by 
the largest prime divisor of e.

Continuing, the proof considers a series

Φ(G) < F < C < G,

and shows that |G/C| ≤ (m!)c and |F/Φ(G)| ≤ mc, while |C/F | ≤ (m!)t, where t ≤
1 + ce(m!). The bound for b is the product of these numbers.

Even for very moderate values of e, m, and c, the resulting bound is typically large.

4. Varieties of semigroups

4.1. Identity bases for finitely generated varieties

Let V be any finitely generated variety. Then the number of maximal subvarieties of V
is some positive integer k ≥ 1 [61, Proposition 4.1]; let M1, M2, . . . , Mk be these maximal 
subvarieties. By maximality, each Mi can be defined within V by some identity μi. If 
k ≥ 2, then V = Mi ∨ Mj for all distinct i and j; if k = 1, then M1 is the unique 
maximal subvariety of V and so V is said to be prime. It follows that each finitely 
generated variety is either prime or a join of some of its prime subvarieties.

Regardless of the value of k ≥ 1, it is easily seen that for any semigroup S, the equality 
V = var{S} holds if and only if S ∈ V and S /∈ Mi for all i. Further, if the variety V
is finitely based and a finite identity basis Σ is available, then the equality V = var{S}
holds whenever S |= Σ and S �|= μi for all i. Therefore, the system (Σ; μ1, μ2, . . . , μk) of 
identities, called a Bas-Max system for V, provides an easily verifiable sufficient condition 
to check if a finite semigroup S generates V.

Presently, the website database contains Bas-Max systems for many varieties, which 
include all of the following:

(a) varieties with a primitive generator of order at most 4;
(b) proper subvarieties of Cross varieties in (a);
(c) varieties with a primitive generator of order 5.

If a semigroup S entered into the website is shown to generate a variety V via its 
Bas-Max system (Σ; μ1, μ2, . . . , μk), then the website reports the identity basis Σ for 
var{S}, and other important information including the primitive generator for V, any 
decomposition of V into a join of its prime subvarieties, and in many cases, the number 
of subvarieties of V.

Bas-Max systems for varieties in (a) and (b), together with the aforementioned prop-
erties, will be established in the supplementary material (Appendix A). Justification of 
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Fig. 6. Companion website: information for GAP smallgroup (254,1).

the Bas-Max systems for varieties in (c), due to their relatively large volume, will be 
disseminated elsewhere.

The website will be regularly updated with newly established Bas-Max systems for 
varieties.

For groups of order at most 255, the website displays any known information; see, for 
example, Fig. 6.

4.2. Non-finitely based semigroups of order 6

Every variety generated by a semigroup of order at most 5 is finitely based [53,98]. 
Among all varieties generated by a semigroup of order 6, precisely four are non-finitely 
based [59,64]; these varieties are generated by the following semigroups:

• the monoid B1
2 obtained from the Brandt semigroup

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉 = {0, a, b, ab, ba};

• the monoid A1
2 obtained from the 0-simple semigroup

A2 = 〈a, b | a2 = aba = a, bab = b, b2 = 0〉 = {0, a, b, ab, ba};

• the semigroup Ag
2 obtained by adjoining a new element g to A2, where multiplication 

involving g is given by g2 = 0 and gx = xg = g for all x ∈ A2;
• the J -trivial semigroup

L3 = 〈a, b | a2 = a, b2 = b, aba = 0〉 = {0, a, b, ab, ba, bab}.
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Table 5
Non-finitely based semigroups of order 6.

B1
2 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 1 1 2 2 3
3 1 2 3 1 3 1
4 1 1 1 4 4 6
5 1 2 3 4 5 6
6 1 4 6 1 6 1

A1
2 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 1 1 2 2 3
3 1 2 3 2 3 3
4 1 1 1 4 4 6
5 1 2 3 4 5 6
6 1 4 6 4 6 6

Ag
2 1 2 3 4 5 6

1 1 1 1 1 1 6
2 1 1 1 2 3 6
3 1 2 3 2 3 6
4 1 1 1 4 5 6
5 1 4 5 4 5 6
6 6 6 6 6 6 1

L3 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 1 2
3 1 1 1 1 1 3
4 1 1 2 1 4 2
5 1 1 3 1 5 3
6 1 2 2 4 4 6

The multiplication tables of these semigroups are given in Table 5; refer to Lee et al. [60]
for more information on their discovery.

Remark 4.1. For semigroups endowed with additional unary operations, such as invo-
lution semigroups and restriction semigroups, there exist examples with fewer than six 
elements that generate non-finitely based varieties [23,45].

Besides the four non-finitely based semigroups of order 6, many other non-finitely 
based finite semigroups have been discovered since the 1970s; see Volkov [101]. But 
explicit identity bases have not been found for varieties generated by most of these semi-
groups because the task is neither necessary (in establishing the non-finite basis property) 
nor trivial. Nevertheless, explicit identity bases are available for a few examples.

Proposition 4.2 (Jackson [42, Proposition 4.1]). The identities

x4 ≈ x3, x3y ≈ yx3, x2yx ≈ x3y, xyx2 ≈ x3y, xyxzx ≈ x3yz,( m∏
i=1

xi

)( 1∏
i=m

xi

)
y2 ≈ y2

( m∏
i=1

xi

)( 1∏
i=m

xi

)
, m = 1, 2, 3, . . .

constitute an identity basis for a non-finitely based variety generated by a certain semi-
group of order 211.

Proposition 4.3 (Lee and Volkov [63, Section 1]). For each n ≥ 2, the identities

xn+2 ≈ x2, (xy)n+1x ≈ xyx, xyxzx ≈ xzxyx,( m∏
i=1

xn
i

)3

≈
( m∏

i=1
xn
i

)2

, m = 2, 3, 4, . . .
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constitute an identity basis for the non-finitely based variety var{A2, Zn}. In particular, 
var{A2, Z2} = var{Ag

2}.

Proposition 4.4 (Lee [54, Corollary 3.5]). For each n ≥ 1, the identities

xn+2 ≈ x2, xn+1yxn+1 ≈ xyx, xhykxty ≈ yhxkytx,

x

( m∏
i=1

(yihiyi)
)
x ≈ x

( 1∏
i=m

(yihiyi)
)
x, m = 2, 3, 4, . . .

constitute an identity basis for the non-finitely based variety var{L3, Zn}. In particular, 
var{L3, Z1} = var{L3}.

4.3. Inherently non-finitely based finite semigroups

The finite basis problem—first posed by Tarski [96] in the 1960s as a decision 
problem—asks which finite algebras are finitely based. This problem is undecidable for 
general algebras [68] but remains open for semigroups. In contrast, it is decidable if a 
finite semigroup S is inherently non-finitely based in the sense that every locally finite va-
riety containing S is non-finitely based. This result follows from the work of Sapir [80,81], 
a description of which requires the following important concepts:

• the period of a semigroup S is the least number d such that S satisfies the identity 
xm+d ≈ xm for some m ≥ 1;

• the upper hypercenter of a group G, denoted by Γ(G), is the last term in the upper 
central series of G;

• a word w is an isoterm for a semigroup S if for any word w′ that is different from w, 
one has S �|= w ≈ w′;

• the Zimin words z1, z2, z3, . . . are words over {x1, x2, x3, . . .} defined inductively by 
z1 = x1 and zk+1 = zkxk+1zk for each k ≥ 1.

Theorem 4.5 (Sapir [83, Theorem 3.6.34]).

(i) A finite semigroup S is inherently non-finitely based if and only if there exists some 
idempotent e ∈ S such that the submonoid eSe of S is inherently non-finitely based.

(ii) A finite monoid M with period d is inherently non-finitely based if and only if there 
exist a ∈ M and an idempotent e ∈ MaM such that the elements eae and ead+1e

do not belong to the same Γ(Me)-coset of Me, where Me is the maximal subgroup 
of M containing e.

(iii) A finite semigroup S is inherently non-finitely based if and only if the Zimin words 
z1, z2, . . . , zm, where m = |S|3, are isoterms for S.
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The non-finitely based semigroups Ag
2 and L3 are not inherently non-finitely based 

because z2 = x1x2x1 is not an isoterm; they satisfy the identities z2 ≈ x1(x2x1)3 and 
z2 ≈ x1x2x

2
1, respectively. On the other hand, the semigroups B1

2 and A1
2 are inher-

ently non-finitely based since all Zimin words are isoterms [81, Lemma 3.7]. It follows 
that a finite semigroup S is inherently non-finitely based if the variety var{S} contains 
either B1

2 or A1
2. Observe that the condition in Theorem 4.5(ii) can hold in a trivial way, 

namely, when eae or ead+1e does not belong to Me, so that both elements do not belong 
to the same coset of Me. This is the case for B1

2 ; see, for example, Volkov and Gol’berg 
[102, observation after Proposition 1].

For certain finite monoids M , the condition B1
2 ∈ var{M} is not only sufficient but 

also necessary for M to be inherently non-finitely based.

Lemma 4.6. Let M be any finite monoid that satisfies the identity x2n ≈ xn for some 
n ≥ 2. Suppose that M satisfies at least one of the following four conditions: |M | ≤ 55, 
M is regular, the idempotents of M form a submonoid, and all subgroups of M are 
nilpotent. Then the following conditions are equivalent:

(a) M is inherently non-finitely based;
(b) B1

2 ∈ var{M};
(c) M violates the identity

(
(xy)n(yx)n(xy)n

)n ≈ (xy)n. (4.1)

Proof. (a) ⇔ (b): This holds by Jackson [41, Theorems 1.4 and 2.2] and Sapir [80, The-
orem 2].

(c) ⇒ (b): If M violates the identity (4.1), then B2 ∈ var{M} by Sapir and Suhanov 
[84, Theorem 1], so B1

2 ∈ var{M} by Jackson [43, Lemma 1.1].
(b) ⇒ (c): The semigroup B1

2 violates the identity (4.1) under the substitution 
(x, y) �→ (a, b). Hence, the negation of (c) implies the negation of (b). �

The companion website [87] uses the following procedure to decide whether a finite 
semigroup S is inherently non-finitely based. Suppose that e1, e2, . . . , er are all the idem-
potents of S. Then by Theorem 4.5(i), it suffices to check if some submonoid Mi = eiSei
of S is inherently non-finitely based; this can be achieved by applying Theorem 4.5(ii). 
As this is the most general result, the website can handle semigroups of order higher 
than 55; if the semigroup is inherently non-finitely based, then the website would pro-
vide its upper hypercenter. The website also allows the user to check if a semigroup is 
inherently non-finitely based with Lemma 4.6. Results on isoterms are computationally 
demanding and hence not used by us.

There is yet another method to check if a finite monoid is inherently non-finitely 
based. For each n ≥ 2, define the words [x, y]n1 , [x, y]n2 , [x, y]n3 , . . . over {x, y} inductively 
by [x, y]n1 = xn−1yn−1xy and [x, y]nk+1 =

[
[x, y]nk , y

]n
1 for each k ≥ 1. Then for any 
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Table 6
The semigroups U7, V7, and W7.

U7 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3
3 1 2 3 1 1 3 1
4 4 4 4 4 4 4 4
5 4 4 4 4 5 5 7
6 1 2 3 4 5 6 7
7 4 5 7 4 4 7 4

V7 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3
3 1 2 3 1 2 3 3
4 4 4 4 4 4 4 4
5 4 4 4 4 5 5 7
6 1 2 3 4 5 6 7
7 4 5 7 4 5 7 7

W7 1 2 3 4 5 6 7
1 1 1 1 1 5 5 5
2 1 2 1 2 5 5 7
3 1 1 3 3 5 6 5
4 1 2 3 4 5 6 7
5 5 5 5 5 1 1 1
6 5 6 5 6 1 1 3
7 5 5 7 7 1 2 1

Table 7
The semigroups U8 and V8.

U8 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3 4
3 1 2 3 4 3 4 4 4
4 4 4 4 4 4 4 4 4
5 1 2 3 4 5 6 7 8
6 4 4 4 4 6 6 7 8
7 4 6 7 8 7 8 8 8
8 8 8 8 8 8 8 8 8

V8 1 2 3 4 5 6 7 8
1 1 1 1 1 5 5 7 7
2 1 2 1 2 5 5 7 8
3 1 1 3 3 5 6 7 7
4 1 2 3 4 5 6 7 8
5 5 5 5 5 7 7 1 1
6 5 6 5 6 7 7 1 3
7 7 7 7 7 1 1 5 5
8 7 7 8 8 1 2 5 5

variety V generated by a finite semigroup that satisfies the identity x2n ≈ xn, the 
subsequence {[x, y]nk!} converges in the V-free semigroup over {x, y}; let [x, y]n∞ denote 
the limit of this subsequence [100, Section 4.4].

Lemma 4.7 (Volkov [100, Proposition 4.4]). Let M be any finite monoid that satisfies the 
identity x2n ≈ xn for some n ≥ 2. Then M is inherently non-finitely based if and only 
if it violates either (4.1) or

[eze, (eye)n−1eyn+1e]n∞ ≈ e,

where e = (xyzt)n.

The GAP package Smallsemi contains all semigroups of order at most 8 and hence 
we could routinely run the algorithm outlined after Lemma 4.7 to describe all inherently 
non-finitely based semigroups of order at most 8. The description involves the following 
semigroups:

• the minimal inherently non-finitely based semigroups A1
2 and B1

2 ;
• the semigroups U7, V7, and W7 of order 7 given in Table 6;
• the semigroups U8 and V8 of order 8 given in Table 7.

The semigroups U7, W7, and V8 generate self-dual varieties while the semigroups V7
and U8 do not. Since these five semigroups are monoids, it is routinely checked by 
Lemma 4.6 that they are all inherently non-finitely based.
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Theorem 4.8. Let S be any semigroup of order at most 8.

(i) If |S| ≤ 6, then S is inherently non-finitely based if and only if it is isomorphic to 
either A1

2 or B1
2 .

(ii) If |S| = 7, then S is inherently non-finitely based if and only if either S is isomor-
phic to some semigroup from {U7, V7, 

←−
V 7, W7} or S embeds some semigroup from 

{A1
2, B

1
2}.

(iii) If |S| = 8, then S is inherently non-finitely based if and only if either S is iso-
morphic to some semigroup from {U8, 

←−
U 8, V8} or S embeds some semigroup from 

{A1
2, B

1
2 , U7, V7, 

←−
V 7, W7}.

We refer to the surveys by Volkov [100,101] for more information on inherently non-
finitely based semigroups and the finite basis problem for finite semigroups in general.

5. Open problems

In this section, we pose a number of problems that are naturally prompted by results 
reported in this survey.

5.1. Varieties with extreme number of subvarieties

Recall that a variety is small if it contains only finitely many subvarieties. The variety 
generated by any finite group is Cross and therefore small [75]. But besides the sufficient 
condition of Malyshev [67] (Proposition 2.1), very little is known about small varieties 
generated by a finite semigroup that is not a group.

Problem 5.1. Characterize small varieties generated by a finite semigroup.

The more general problem of investigating all small varieties of semigroups was first 
suggested by Evans [20, page 38] over 50 years ago. But this problem is infeasible because 
there exist continuum many varieties of groups with precisely three subvarieties [50].

Example 5.2 (Sapir [82]). The class of small varieties of semigroups is closed under 
neither joins nor covers. More specifically,

(i) there exist finitely generated small varieties V1 and V2 whose join V1∨V2 contains 
countably infinitely many subvarieties;

(ii) there exists a finitely generated small variety covered by a finitely generated variety 
with countably infinitely many subvarieties.

In Example 5.2(i), it is possible for the join V1∨V2 to contain continuum many subva-
rieties if either V1 or V2 is allowed to contain countably infinitely many subvarieties [40]. 
This naturally leads to the following problem.
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Table 8
The semigroups E1, E2, and E3.

E1 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 1 2
3 1 1 1 1 2 3
4 1 2 3 4 3 4
5 1 1 1 1 2 5
6 1 2 3 4 5 6

E2 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 1 2
3 1 1 2 1 4 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 1 2 3 4 5 6

E3 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 2 2
3 1 1 2 2 3 3
4 1 1 2 2 4 4
5 1 2 3 4 5 6
6 1 2 4 3 6 5

Problem 5.3 (Jackson [40, Question 3.15]). Do small varieties of semigroups V1 and V2

exist whose join V1 ∨ V2 contains continuum many subvarieties?

Problem 5.3 has recently been positively solved for varieties of other related algebras 
such as monoids [28,44], involution semigroups [56], and involution monoids [57]. In fact, 
for varieties of monoids, Gusev [28] exhibited two Cross varieties M1 and M2 whose join 
M1 ∨M2 does not only contain continuum many subvarieties but also covers M1. This 
example, together with Example 5.2(ii), motivates the following problem.

Problem 5.4. Does a small variety of semigroups exist that is covered by a variety with 
continuum many subvarieties?

For an overview of results on the lattice of varieties of semigroups, the lattice of 
varieties of monoids, and the lattice of varieties of involution semigroups, see Shevrin 
et al. [90], Gusev et al. [31], and Crvenković and Dolinka [13], respectively.

The smallest semigroups currently known to generate varieties with continuum many 
subvarieties are of order 6, and five examples have so far been found: the inherently 
non-finitely based semigroups B1

2 and A1
2 [40] and the finitely based semigroups E1, 

E2, and E2 [18,59] in Table 8. As for the other two non-finitely based semigroups of 
order 6—Ag

2 and L3—the variety var{Ag
2} contains countably infinitely many subvari-

eties [63], but it is only known that var{L3} contains at least infinitely many subvarieties.

Problem 5.5. Determine if the variety var{L3} contains continuum many subvarieties.

It is natural to ask if a semigroup of order less than 6 can generate a variety with 
continuum many subvarieties. As shown in the supplementary material (Appendix A), 
every semigroup of order at most 4 generates a variety with at most countably many 
subvarieties. This is in fact a consequence of a more general result: every variety generated 
by a semigroup of order at most 4 is hereditarily finitely based [51] in the sense that all 
its subvarieties are finitely based. Since only countably many finite sets of identities exist 
up to renaming of variables, a hereditarily finitely based variety of algebras with finitely 
many operations, such as semigroups and monoids, can contain at most countably many 
subvarieties.
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Regarding semigroups of order 5, the monoid P 1
2 obtained from

P2 = 〈a, b | a2 = ab = a, b2a = b2〉 = {a, b, ba, b2}

plays a crucial role: every semigroup of order 5 that is not equivalent to P 1
2 generates 

a hereditarily finitely based variety, and it remains open whether or not the variety 
var{P 1

2 } is hereditarily finitely based [53]. Therefore, depending on the solution of the 
following problem, the semigroup P 1

2 may turn out to be special.

Problem 5.6. Determine which of the following mutually exclusive outcomes is true:

(a) var{P 1
2 } contains continuum many subvarieties;

(b) var{P 1
2 } contains only countably infinitely many subvarieties but is not hereditarily 

finitely based;
(c) var{P 1

2 } is hereditarily finitely based.

The most striking outcome would be (a): up to equivalence, P 1
2 would be the unique 

smallest semigroup to generate a variety with continuum many subvarieties. Outcome (b) 
is also interesting because up to equivalence, P 1

2 would be the unique smallest semigroup 
that is not hereditarily finitely based. If outcome (c) is true, then every variety generated 
by a semigroup of order 5 or less would be hereditarily finitely based and so would 
contain at most countably many subvarieties. Note that if either (b) or (c) is true, then 
the smallest semigroups that generate a variety with continuum many subvarieties would 
be of order 6.

Remark 5.7. Recently, Gusev et al. [32] have shown that the variety of monoids generated 
by P 1

2 is hereditarily finitely based. Consequently, every variety of monoids generated by 
a monoid of order at most 5 is hereditarily finitely based.

5.2. Finitely universal varieties

Recall that a variety is finitely universal if its lattice of subvarieties embeds every 
finite lattice. Volkov [99] proved that the variety

H = [x2 ≈ yxy]

is finitely universal. As observed by Gusev and Lee [30], every known example of finitely 
generated finitely universal variety contains H.

Problem 5.8. Is there a finite semigroup S such that the variety var{S} is finitely uni-
versal but does not contain H?

Every known example of a finitely generated variety with continuum many subvarieties 
is also finitely universal. It is thus of interest to find a counterexample.
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Problem 5.9. Is there a finite semigroup S such that the variety var{S} contains contin-
uum many subvarieties but is not finitely universal?

A finitely generated finitely universal variety can be decomposed as the join of two 
varieties that are not finitely universal. This is illustrated by the monoids LZ1

2 and N1
2 , 

where LZ2 is the left zero band of order 2 and N2 is the null semigroup of order 2: the 
varieties var{LZ1

2} and var{N1
2 } are not finitely universal but their join is finitely uni-

versal [30, Section 6.3]. Since var{LZ1
2} is small while var{N1

2 } is not [20], the following 
problem is of fundamental importance.

Problem 5.10. Do small varieties of semigroups V1 and V2 exist whose join V1 ∨ V2 is 
finitely universal?

Remark 5.11. There exist two Cross varieties of monoids whose join is finitely universal 
and has continuum many subvarieties [29].

Problem 5.12. Characterize finitely universal varieties generated by a finite semigroup.

5.3. Identity bases

Recall from Section 4.2 that, up to equivalence, the semigroups B1
2 , A1

2, A
g
2, and L3

of order 6 are precisely all minimal non-finitely based semigroups of order 6, and explicit 
identity bases have been found for the latter two semigroups. Doing the same for B1

2 and 
A1

2 seems extremely challenging.

Problem 5.13. Find explicit identity bases for the semigroups B1
2 and A1

2.

The problem of deciding if an identity holds in B1
2 is co-NP-complete [47,85], while 

the same problem for A1
2 is polynomial [47,86]. Therefore, it may be easier to find an 

explicit identity basis for A1
2 than for B1

2 .
An identity basis Σ for an algebra A is irredundant if every proper subset of Σ fails 

to be an identity basis for A. Every finitely based algebra has an irredundant identity 
basis—remove redundant identities from any finite identity basis, one by one, until no 
redundancies exist. It seemed plausible that any finite semigroup without finite identity 
bases had an irredundant one. But this optimism was refuted by subsequent examples of 
finite semigroups without irredundant identity bases, with the non-finitely based semi-
group L3 of order 6 being a smallest possible example; see Lee [54] and the references 
therein.

On the other hand, it was unknown if a finite semigroup can have an infinite irredun-
dant identity basis, and the existence of such a semigroup has been questioned since the 
1970s; see Shevrin and Volkov [91, Question 8.6] and Volkov [101, Problem 2.6]. This 
question remained open until 2005, when Jackson [42] published a few examples, the 
smallest of which is of order 9.
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Problem 5.14. Is there a semigroup of order at most 8 with an infinite irredundant 
identity basis?

Remark 5.15. There exists an involution semigroup of order 8 that has an infinite irre-
dundant identity basis [55]. But counterintuitively, when considered as a semigroup, it 
generates the variety var{L3 × Z3}, which has no irredundant identity bases [54].

The finite basis problem has been solved for all semigroups of order at most 6 [60]. 
One of the most important outcomes of this investigation is the discovery of L3, a non-
finitely based semigroup that has stimulated research in several directions; see Lee [58, 
Chapter 1].

Problem 5.16. Investigate the finite basis problem for semigroups of order 7.

Apart from completely solving this problem, it would be very interesting to discover 
new examples of non-finitely based semigroups S that are essentially “different” from 
the four minimal non-finitely based semigroups B1

2 , A1
2, A

g
2, and L3, for instance, S is 

not constructed from any of them.

5.4. Number of varieties

The number of varieties generated by a semigroup of order at most 5 is 218. The 
number of varieties with a primitive generator of order 6 has not yet been determined 
but is known to be at least 463; see Table 4. Among these 463 varieties, 49 are known 
(45 finitely based and 4 non-finitely based). Therefore, the following problem consists of 
at least 414 different cases.

Problem 5.17. Identify all varieties with a primitive generator of order 6. Find a Bas-Max 
system for each of these varieties.

In the companion website [87], the tab Conjectures contains 463 conjectures, each one 
a problem by itself. We expect to include a similar file for semigroups of order 7. There 
are 73,807 non-isomorphic semigroups of order 7 whose varieties do not coincide with 
known varieties stored in our database.

Problem 5.18. Let ν(n) denote the number of varieties with a primitive generator of 
order n.

(i) Find good upper and lower bounds for ν(n).
(ii) Find a closed formula or a recursive function for ν(n).

It follows from Table 4 that ν(1) = 1, ν(2) = 5, ν(3) = 14, ν(4) = 53, ν(5) = 145, and 
ν(6) ≥ 463.
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5.5. Groups

Problem 5.19. Given a finite group G, find good bounds for

(i) the number of critical groups in var{G};
(ii) the order of the largest critical group in var{G};
(iii) the number of subvarieties of var{G};
(iv) the number of varieties covered by var{G}.

Solve the same problems for the class C(e, m, c) introduced in Section 3.7.

Identity bases for the varieties generated by dihedral groups are known. However, the 
varieties covered by them are not completely known; see (iv) on page 702. The dihedral 
groups Dn and D2n with odd n belong to AnA2. Therefore, Houghton’s theorem (see 
page 714) solves the problem of finding the subvarieties. But the problem is open for the 
other cases.

Problem 5.20. Find all the varieties covered by a variety generated by a dihedral group 
and provide an identity basis for each.

The smallest undecided case in Problem 5.20 is the dihedral group D8.
Identity bases are known for many other groups [11,12,93]. Therefore, the previous 

problem applies to them as well.

Problem 5.21. Let G be a finite group for which an identity basis is known. Find all the 
varieties covered by var{G} and provide an identity basis for each.

5.6. Computational questions

Recall that a description of all inherently non-finitely based semigroups of order at 
most 8 is given in Theorem 4.8.

Problem 5.22. Describe all inherently non-finitely based semigroups of order n, for each 
n ≥ 9.

The website contains implementations of algorithms that answer questions about va-
rieties of semigroups or groups, but it would be interesting to investigate the algorithms 
from a complexity point of view.

Problem 5.23. Study the complexity of the algorithmic problems of this paper and other 
related problems.
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