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Abstract 

 

Microplastics (plastic particles < 5 mm) pose a serious threat to marine organisms, as 

researchers have documented such particles in the gut contents of numerous species. In 

particular, filter feeders are at risk of consuming microplastics because they may accidentally 

consume the particulates when feeding or they may prey on species that have already 

consumed them. The goals of this research were to evaluate the risks that different filter 

feeders face in regards to microplastic consumption through the analysis of the calculated 

Microplastic Consumption Rates for numerous species of filter feeders. Factors that could 

potentially affect this risk were also considered, including ocean basin, environment type, 

salinity, life stage, IUCN status, and filtration technique. Initial analysis showed that body 

size greatly impacted a species’ risk of microplastic consumption and further tests were 

completed to evaluate overall microplastic contamination for each species. Microplastic 

consumption and microplastic contamination values were evaluated and analyzed to 

determine which filter feeding species were most at risk of experiencing ecological effects 

from microplastic pollution. From a resource management perspective, this research 

highlights the filter feeding species most at risk, contributing to the development of more 

effective plastic waste management policies. 
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I. Introduction 

 

More than nine million tons of plastic fibers are produced every year, and 

microplastics (plastics < 5 mm) are now found in aquatic environments around the globe 

(Barrows et al. 2018). Plastics were first produced in the 1950s and became popular very 

quickly due to their durability and low production costs (Lusher et al. 2017).  Although they 

offer many benefits to the average consumer, including lower prices and convenience, plastic 

materials have become a danger to the environment. When improperly managed, plastic 

waste is often allowed to reach freshwater and marine environments. There, the material is 

exposed to the sun’s ultraviolet rays, causing it to degrade slowly (Lusher et al. 2017). This 

leads to the breakdown of the material and formation of small, microplastic particles, which 

have become such a prevalent problem today that they are now considered one of the greatest 

threats to the health of ecosystems and biodiversity on land and in marine and freshwater 

regions (Barrows et al. 2018, Lusher et al. 2017).  

Microplastics can generally be categorized as either primary or secondary. Primary 

microplastics are fibers and beads manufactured to a small size, which are often used in the 

cosmetic industry. These particles might be used in soaps, shampoos, toothpastes, shaving 

cream, makeup, bubble bath, and other cosmetic products around the world (Leslie 2014). 

When consumers rinse off the product and wash it down the drain, these plastics find their 

way into wastewater. And while effective management facilities will retain a small portion of 

these microplastics, the rest flow into freshwater or marine environments (Leslie 2014). 

Secondary microplastics, on the other hand, are produced from the degradation of larger 

items (Lusher et al. 2017), such as plastic bottles, bags, and other forms of waste. This 

degradation occurs as a result of exposure to saltwater and ultraviolet sunlight (Lusher et al. 

2017).  

Plastics are known to include a variety of toxins, as they are often comprised of toxic 

chemicals and various additives that can have adverse effects on the health of marine 

organisms (Gallo et al. 2018). A variety of chemicals, such as monomers, plasticizers, and 

flame-retardants, are added to plastics during production (Lusher et al. 2017). The material 

can also adsorb contaminants like polychlorinated biphenyls (PCBS), polycyclic aromatic 

hydrocarbons (PAH), and persistent bioaccumulative toxic substances (PBTs) from the 
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surrounding environment. Contaminants accumulate through predator-prey relationships and 

trophic transfers, potentially leading to adverse health effects, such as increased immune 

responses, decreased growth, and decreased fecundity (Gallo et al. 2018, Lusher et al. 2017).  

Due to their popularity, long lifespan, process of degradation, and potential for 

toxicity, microplastics have become ubiquitous and a persistent pollutant. As such, it is 

increasingly important to understand their distribution and concentration around the globe 

(Barrows et al. 2018). In recent years, new research has expanded knowledge in this area, 

with much of the work being completed by citizen science initiatives (Barrows et al. 2018). 

A great example is the Global and Gallatin Microplastics Initiative, which launched a 

massive project that called for environmentally minded citizens who spend time on the water 

to take water samples and send it to their facilities for processing. The response was 

enormous, with samples collected from around the globe, encompassing marine and 

freshwater environments; this initiative has produced a large microplastic concentration 

dataset that can be used to bridge knowledge gaps (Global & Gallatin Microplastic Initiatives 

2018). 

It is widely known that many species, including filter feeders, consume microplastics 

as previous studies have found such particles in the stomachs and guts of various organisms 

(Cole et al. 2013, Taylor et al. 2016, Wieczorek et al. 2018). Even some of the smallest 

species, like copepods, bivalve larvae, and decapod larvae, ingest microplastics although the 

ability to uptake these particles may depend on size (Cole et al. 2013). Species that are larger 

in size or at higher trophic levels have also been documented interacting with microplastic 

pollution, whether directly or indirectly (Lusher et al. 2017). Although the direct ingestion of 

plastic particulates is more commonly studied, trophic transfer might also occur when an 

organism ingests a prey species that has already consumed the microplastics (Cole et al. 

2013, Moore et al. 2001). Evidence even suggests that organisms in the deep sea have been 

exposed, as they frequently ingest microplastic fibers (Taylor et al. 2016) 

Like most other marine species, filter feeding organisms ranging in size and 

complexity from sponges and jellyfish to whale sharks are also known to consume 

microplastics either directly if mistaken for food or indirectly as a result of prey consumption 

of plastic particles or fibers (Cole et al. 2013, Moore et al. 2001). Because filter feeders must 

filter small food items from the water, such as zooplankton and phytoplankton, they cannot 
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always be selective and avoid the consumption of other particulates that may also be present 

(Cole et al. 2013). Some organisms have developed adaptations prevent the consumption of 

unwanted materials, such as the mesh size of gill rakers and other anatomical components 

that can prevent consumption of items larger than a specific size (Roesch et al. 2013). 

Microplastics can still easily be consumed, however, even if the filter feeder has such 

adaptations to prevent it. After all, these adaptations were developed over thousands of 

generations, but microplastics have only been an issue within our oceans for less than a 

century (Roesch et al. 2013, Lusher et al. 2017). In order to assess the risks that microplastics 

may pose to filter feeding organisms, it is thus necessary to determine how likely it is that a 

filter feeder might consume microplastics by considering their filtration rate and the 

concentration of microplastics in the water.  

Most recent studies involving the interactions between living organisms and 

microplastics rely on the use of molluscs or crustaceans, though some may also focus on 

various fish species, both in the laboratory and in field observations (Lusher et al. 2017). In 

almost every niche environment, whether at the sea surface, on beaches, within the water 

column, or in the deep sea, microplastic uptake occurs among the organisms living there. 

Seabirds and marine mammals ingest microplastics regularly – an occurrence that can have 

significant consequences for both the organism and human health (Lusher et al. 2017, Taylor 

et al. 2016). However, little research has been done to better understand the ecological 

consequences of this phenomenon, particularly among filter feeders. Though some 

researchers believe the effects of microplastic consumption would not extend beyond the 

level of the individual, others have demonstrated that the trend might reduce primary 

productivity, either directly or indirectly (Lusher et al. 2017). In this study, the risk of 

microplastic consumption among filter feeders was assessed to bridge such knowledge gaps. 

  

 

II. Statement of Purpose and Objectives 

 

The goal of this research was to quantitatively assess the risks faced by different filter 

feeding organisms with regards to the consumption of microplastics based on three primary 

factors: the abundance of marine plastic debris across geographic locations, as demonstrated 
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by recent studies (Global & Gallatin Microplastic Initiatives 2018, Barrows et al. 2018, 

Woodall et al. 2014); the location that filter feeding species primarily live and feed; and the 

different filtration rates utilized by filter feeders. Such information can be used to determine 

the likelihood filter feeders might consume microplastic particles. 

In addition to the quantification of the microplastics consumed by these species while 

feeding, the study also determined if various factors had a significant impact on the estimated 

consumption of such particles. Perhaps most importantly, the study considered the impact of 

feeding location on these risks, potentially allowing conservation and waste managers in 

different areas to fully understand the risks filter feeding species face in their region. Feeding 

locations – including specific ocean basins, regions, types of environments, and whether the 

species feeds in marine or freshwater – provided insight into whether the specific variables 

could potentially impact a species’ risk of microplastic consumption. Some species – such as 

basking sharks, jellyfish, and others – are globally distributed (Priede et al. 2008, Sims et al. 

2003), leading to the expectation that they might be more likely to consume microplastics in 

areas with greater abundance of these particles than in those with less abundance. Other 

species are specific to smaller regions. The blue mussel, for instance, is generally found in 

the North Atlantic, in both the east and west regions of the basin (Boström & Bonsdorff 

1997, Wildish & Miyares 1990).  

The study also considered the vulnerability of each species by considering IUCN Red 

List status labels (IUCN 2019), as well as the effect of organism age. The filtration technique 

used by these species was also considered, as distinctive strategies result in differing 

filtration rates that affect the quantity of microplastics potentially consumed. Filtration 

technique was expected to have an effect on the quantity of microplastics potentially 

consumed by filter feeders. Most filter feeders rely on at least one of four primary 

techniques: ram filtration, suspension feeding, water pumping, and lunge feeding. Ram 

filtration occurs when a species, such as the whale shark Rhincodon typus), swims forward 

slowly with an open mouth to capture food-laden water (Motta et al. 2010). Suspension 

feeding, however, occurs when an organism like the Pacific oyster (Crassostrea gigas) can 

capture and extract food items out of the surrounding water as it flows over the animal 

(Harris 2008). Water pumping occurs when an organism actively pumps water through the 

mouth to capture food (Wildish & Miyares 1990), while lunge feeding is frequently seen in 
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large species, such as whales, to capture large quantities of food in one mouthful (Simon et 

al. 2012).  

Involving a comparison of multiple representative filter feeders, this study 

hypothesized that: 1) filter feeders searching for food and feeding in geographic locations 

with higher microplastic abundance would be more likely to consume plastic; and 2) specific 

factors, such as filtration technique, could have a significant effect on the risk of microplastic 

consumption. 

This study aimed to fill knowledge gaps by analyzing relevant datasets, including 

filtration rates and microplastic abundance worldwide. Altogether, this valuable information 

will enable managers to make informed environmental decisions and may aid in the 

development of more effective resource and waste management policies. Until now, little 

research has been done to attempt to quantify to what extent different species might consume 

such particles. After an extensive literature review was performed, a new database of 50 

different species of filter feeding organisms was created to facilitate the evaluation of a wide 

range of filter feeders, from sea worms and bryozoans to whale sharks and fin whales.  

 

 

II. Materials & Methods 

 

Data Acquisition 

  

This research study required a metadata analysis approach and a risk analysis 

framework, necessitating the use of various datasets to effectively characterize the risks 

associated with microplastics (Lusher et al. 2017). To accurately assess these risks, data was 

collated from a variety of sources, spanning decades of research.  

 

a. Microplastic Abundance Data 

 

The Global & Gallatin Microplastics Initiatives of Adventure Scientists conducted 

microplastic pollution surveys in aquatic environments around the globe from 2013 to 2017 

(2018). This made it possible to assess and analyze where microplastics typically accumulate 
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geographically. After the collection of 2,677 surface water samples in four years, this dataset 

demonstrates the ubiquity of microplastics in marine and freshwater environments worldwide 

(Global & Gallatin Microplastics Initiative, 2018).  

The datasets provided from this research project included 1,394 samples of marine 

water and 1,009 samples of freshwater (Global & Gallatin Microplastics Initiative, 2018). 

Samples were taken from a broad range of water sources including coastal regions and open 

ocean areas of all ocean basins within the marine water dataset. In general, these data points 

only include surface water because all samples were obtained within the first 50 meters 

(Global & Gallatin Microplastics Initiative, 2018).  

Microplastic abundance data was also confirmed with a study conducted by Kanhai et 

al. (2017). The researchers collated data from previously conducted studies to review 

microplastic abundance in various locations. They included data for each of the ocean basins, 

including the region from which samples were taken and the method used to collect water 

samples (Kanhai et al. 2017). Although this dataset was not directly used in the statistical 

analysis and calculations within this paper, it was useful in confirming the validity of the 

mean microplastic abundances determined in the Global & Gallatin Microplastics Initiative 

project.  

 

b. Filter Feeder Species Selection 

 

Next, datasets illustrating filtration rates for specific representative species was 

acquired. Because these studies typically focus on one species at a time, data points were 

gathered individually and collated for further analysis. It was necessary to acquire data for a 

large variety of filter feeding species, including cnidarians, sponges, bivalves, baleen whales, 

and fish, to accurately represent the diversity of such organisms. Because no filter feeder 

database currently exists in an easily accessible manner, one had to be created. Filtration 

rates for 50 species were collected from 44 published research papers (Table 1).  
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c. Species Characteristics 

 

Other types of characteristic data were also collected for each filter feeding species 

because this information was necessary to determine which factors have a potentially 

significant effect on microplastic consumption in different species. This required a more in-

depth review of literature for each of the 50 species. The information was included in the 

filter feeder database to allow for the tracking and analysis of each characteristic. These traits 

were: feeding locations and distribution, IUCN Red List Status, filtration techniques, whether 

the species lives in marine or freshwater areas, and whether the species tends to feed in 

coastal or open ocean areas. To obtain data for all these characteristics, the process entailed a 

review of an additional 190 papers (Table 1).  

 

Table 1. The different species reviewed in this paper, as well as all the sources from which 

filtration data and other characteristics were drawn. 

Species Sources of Data 

Whale Shark  

(Rhincondon typus) 

Motta et al. (2010); Duffy (2002); Heyman et al. (2001); de la Parra Venegas et al. 

(2011); Taylor (2006); Graham et al. (2005) 

Basking Shark  

(Cetorhinus maximus) Sims (1999); Skomal et al. (2004); Sims et al. (2003); Priede & Miller (2008)  

Blue mussels  

(Mytilus edulis) 

Wildish et al. (1990); Bostrom & Bonsdorf (1996); Kotta & Orav (2001); Riisgard 

(1991) 

Jellyfish  

(Aurelia aurita) Linnaeus (1758); Segura-Puertas  et al. (2009); Oleson (1995) 

Bowhead whales  

(Balaena mysticetus) 

Simon et al. (2009); Goldbogen et al. (2017); Laidre et al. (2007); Wursig et al. (1989); 

Moore et al. (2010); Ashjian et al. (2010); Schick & Urban (2000) 

Humpback whale 

 (Megaptera novaeangliae)  

Simon et al. (2012); Clapham (2018); D'vincent (1985); Goldbogen et al. (2008); Hain 

et al (1982) 

Blue whales  

(Balaenoptera musculus) 

Doniol-Valcroze et al. (2011); Goldbogen et al. (2011); Acevedo-Gutierrez (2002); 

Watkins & Schevill (1979); Fiedler et al. (1998); Gill et al. (2011); Gill (2002);  

Copepod  

(Calanus finmarchicus) 

Fuller & Clark (1936); Prokopchuk & Sentyabox (2006); Speirs et al. (2006); Aksnes & 

Magnusen (1979); Marshall & Nicholls (1934) 

Atlantic mackerel  

(Scomber scombrus) Sutherland et al. (1995) Langoy et al. (2012); Overholtz & Keith (2011) 

Antarctic minke whale 

(Balaenoptera bonaerensis)  

Friedlaender et al. (2014); Thiele et al. (2004); Ohsumi et al. (1970); Goldbogen et al. 

(2017); Tamura & Konishi (2009);  

Pacific Oyster  

(Crassostrea gigas) Qiu et al. (2015); Gerdes (1982); Harris (2008); Fey et al. (2010); Cognie et al. (2006) 

Tunicate  

(Oikopleura dioica) 

Bochdansky & Deibel (1998); Gorsky et al. (1982); Tomita et al. (2019); Sato et al. 

(2001); Shelbourne (1953); Hopcroft & Roff (1995) 

Silver Carp  

(Hypophthalmichthys molitrix) Zhao et al. (2011); Lazarro (1987) 

Manta Ray  

(Manta birostis) 

Divi et al. (2018); Paig-Tran et al. (2013); Paig-Tran et al. (2011); Dewar et al. (2008); 

Braun et al. (2014); Stewart et al. (2016) 

Pelagic Tunicate  

(Pegea confederata ) Harbison & Gilmer (1976); Harbison & Campenot (1979); Sutherland et al. (2010) 

Fin whales  

(Balaenoptera physalus) 

Goldbogen et al. (2010); Vikingsson et al. (2009); Mizroch et al. (1984); Monestiez et 

al. (2004); Panigada et al. (1999) 
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Glass sponge  

(Aphrocallistes vastus) 

Leys et al. (2011); Kahn et al. (2015); Yahel et al. (2007); Austin et al. (2007); Buhl-

Mortensen (2009) 

Cockle  

(Cardium edule) Riisgard et al. (2002); Richardson et al. (1993); Kater et al. (2006) 

Soft-shell clam 

 (Mya arenia) 

Riisgard et al. (2002); Strasser (1999); Snelgrove et al. (1999); Seitz et al. (2001); 

Armonies & Reise (2003) 

Atlantic menhaden  

(Brevoortis tyrannus) Durbin & Durbin (1975); Love et al. (2006); Buchheister et al. (2016) 

Mysid shrimp 

(Rhopalophthalmus 

terranatalis) 

Jerling & Wooldridge (1994); Webb et al. (1997); Wooldridge (1986); Shlachler & 

Wooldridge (1995) 

Mysid shrimp  

(Mesopodopsis wooldridgei)  

Jerling & Wooldridge (1994); Webb et al. (1997); Paul & Calliari (2017); Froneman 

(2001) 

Burrowing shrimp (Upogebia 

deltaura) Lindahl & Baden (1997); Christiansen (2000); Tunberg (1985); Howe et al. (2004) 

Antarctic Krill (Euphausia 

superba) 

Boyd et al. (1984); Atkinson et al. (2008); Hill et al. (2013); Clarke & Tyler (2008); 

Schmidt et al. (2014) 

Porcelain Crab (Porcellana 

longicornis) Achituv & Pedrotti (1999); Lance (1964); Werding et al. (2003) 

Ocean Quahog (Arctica 

islandica) Winter (1969); Cargnelli et al. (1999); Witbaard & Bergman (2003) 

Wrinkled Rockborer (Hiatella 

arctica) Ali (1970); Gordillo (2001); Sejr et al. (2002); Wlodarska-Kowalczuk (2007) 

Bay Scallop (Pecten irradians) Chipman & Hawkins (1954); MacKenzie (2008); Smith et al. (1988) 

Orange Sea Pen (Ptilosarcus 

gurneyi) Best (1988); Stone (2006) 

Feather star (Oligometra 

serripinna) Leonard et al. (1988)); Holland et al. (1991); Tay et al. (2016); Hellal (2012) 

Manila Clam  

(Ruditapes philippinarum) Nakamura (2001); Velez et al. (2015); Dang et al. (2010); Lewis et al. (2007)  

Yesso scallop (Patinopecten 

yessoensis) Yamamoto (1968); Sato et al. (2004); Silina (1996) 

Spaghetti Bryozoan 

(Zoobotryon verticillatum) 

Bullivant (1967); Minchin (2012); Amat & Tempera (2009); McCann et al. (2015); 

Jebakumar et al. (2017) 

Bryozoan  

(Electra pylosa) Riisgard & Manriquez (1997); Nikulina et al. (2007); Hermansen et al. (2007) 

Bryozoan  

(Conopeum reticulum) Riisgard & Manriquez (1997) 

Bryozoan  

(Celleporella hyalina) Riisgard & Manriquez (1997); Hermansen et al. (2007) 

Sea vase  

(Ciona intestinalis) 

Randlov & Riisgard (1979); Runnstrom (1936); Havenhand (1991); Therriault & 

Herborg (2008) 

Sea squirt  

(Ascidella aspersa) Randlov & Riisgard (1979); Schmidt (1983); Chebbi et al. (2010); Mastrotaro (2008) 

Polychaete worm (Myxicola 

infundibulum) Dales (1957); Gotshall (2005); Greathead et al. (2011) 

Peacock worm (Sabella 

pavonina) Dales (1957); Greathead et al. (2011); Murray et al. (2011) 

Keel worm (Pomatoceros 

triqueter) 

Dales (1957); Kupriyanova & Badyaev (1998); Ponti et al. (2002); Southward (1957); 

Ekaratne et al. (1982) 

Polychaete worm (Hydroides 

norvegica) Dales (1957); Moen (2006); Southward (1957) 

Sinistral spiral tubeworm  

(Spirorbis borealis) Dales (1957); O'Connor & Lamont (1978) 

Polychaete worm (Salmacina 

dysteri) Dales (1957); Isaac (1974); Eldredge & Smith (2001); Nishi (1992); Parnell (2001) 

Breadcrumb sponge 

(Halichondria panicea) 

Riisgard et al. (1993); Hansen et al. (1995); Vethaak et al. (1982); Forester (1979); 

Peattie & Hoare (1981) 

Common Bream (Abramis 

brama) van den Berg (1993); Lammens (1986); Kuparinen et al. (2014); Lyons & Lucas (2002) 
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White Bream (Blicca bjoerkna) van den Berg (1993); Lammens (1986) 

Roach (Rutilus rutilus) van den Berg (1993) 

Gizzard shad (Dorosoma 

cepedianum) van den Berg (1993); Drenner et al. (1984); Wuellner et al. (2008) 

North Atlantic Right Whale 

(Eubalaena glacialis) 

van der Hoop et al. (2019); Baumgartner & Mate (2005); Baumgartner et al. (2003); 

Baumgartner & Mate (2003) 

 

 

Data Analysis 

 

The sources reviewed to obtain these data points provided a more in-depth look at the 

risk each filter feeder faced regarding their consumption of microplastics. With the creation 

of the database, a risk assessment framework was used to evaluate the likelihood of adverse 

ecological effects as a result of filter feeder exposure to microplastics.  

More than 2,000 data points illustrated global microplastic abundance. To simplify 

calculations, the values were categorized based on larger regions, encompassing specific 

locations as well as surrounding areas (Global & Gallatin Microplastics Initiative 2018). The 

relationship between microplastic abundance and geographic location were assessed based on 

two distinct factors: ocean basin and environment. The ocean basin variable had five fixed 

levels. Microplastic abundance in various ocean basins were not normally distributed 

(p<0.05, Shapiro-Wilkes) or homoschedastic (p=0.01, Bartlett’s). A fixed factor One Way 

ANOVA of log-transformed data was thus used in the assessment. The environment variable 

had only two fixed levels, and the data were not normally distributed (p<0.05, Shapiro-

Wilkes) or homoschedastic (p=0.005, Bartlett’s). A two-tailed, two sample t-test of log-

transformed data was used to assess any significant differences between microplastic 

abundance and environment.  

Using the collated filtration rates, the Microplastic Consumption Rate (MCR) was 

then calculated in order to quantify how many microplastic particles are likely to be 

consumed by each filter feeding species. Calculation of the MCR required that filtration rates 

for each species be converted to mL s-1. Additionally, each filter feeder needed an assigned 

estimated feeding location based on its known geographic distribution. Once filter feeders 

were assigned at least one location, the corresponding mean microplastic abundance for that 

region was multiplied by the species’ filtration rate, as in the following equation:  
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Equation 1. Determination of the Microplastic Consumption Rate 

 

Filtration Rate (mL/s) * Mean Microplastic Abundance (particles/mL) = Microplastic 

Consumption Rate (particles/s) 

 

After calculating MCR values, the mean, median, and mode of microplastic 

consumption were determined. In total, 68 data points were considered for the 50 different 

filter feeding species, as some species were assessed at multiple feeding locations or life 

stages.  

The significance of various factors, including salinity, IUCN status, filtration 

technique, life stage, ocean basin, and environment, in relation to MCR were assessed using 

R software. In determining the influence of salinity on MCR values, the factor was defined as 

a categorical variable, indicating whether each species feeds in marine or freshwater areas. 

Raw and transformed data were not normally distributed (p<0.05, Shapiro-Wilkes) or 

homoschedastic (p<0.05, Bartlett’s), so the non-parametric two-tailed Mann-Whitney 

Wilcoxon test was used to compare MCR values between salinity levels.  

Also defined as a categorical variable, the IUCN Red List Status included five levels 

at which the different filter feeding species were labeled: Not Evaluated, Least Concern, 

Near Threatened, Vulnerable, or Endangered (IUCN 2019).  Raw and transformed data were 

not normally distributed (p<0.05, Shapiro-Wilkes) or homoschedastic (p<0.05, Bartlett’s), so 

the non-parametric Kruskal-Wallis test was used to determine the significance of the 

relationship because the categorical factor had more than three levels in this assessment. 

Filtration technique was defined as another categorical variable with four levels: 

lunging, suspension, pumping, and ram. The levels were determined through a review of 

literature, which indicated the typical techniques used by study species. Raw and transformed 

data were not normally distributed (p<0.05, Shapiro-Wilkes) or homoschedastic (p<0.05, 

Bartlett’s), so the non-parametric Kruskal-Wallis test was used to assess the significance of 

filtration technique. This factor was also further reviewed to consider which species is most 

likely to experience higher MCR values at each of the four techniques by only analyzing 

each level at a time.  
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To determine whether filter feeders experienced significant differences in MCR as 

adults or juveniles, only those species that included data at different life stages were 

considered. In this case, life stage was defined as simply being Adult or Juvenile. Data were 

normally distributed (p>0.05, Shapiro-Wilkes) and homoschedastic (p=0.075, Bartlett’s). 

Thus, a two-tailed, two sample t-test was used because this factor only had two levels. 

To consider if the ocean basin influenced the MCR, the feeding locations for filter 

feeding species were estimated. For example, whale sharks are known to feed in coastal areas 

near Mexico (Motta et al. 2010, de la Parra Venegas et al. 2011). For this reason, the mean 

microplastic abundance value for Pacific Central America Coastal was used to calculate the 

whale shark’s microplastic consumption rate. Like a few other species, whale sharks were 

assessed at multiple locations. Because they might also feed near the coast of New Zealand 

(Duffy 2002), they were also assessed using the mean microplastic abundance values from 

the Pacific West Coastal category.  

Although basking sharks are known to be a global species, they are often found in 

waters near Scotland and thus their feeding location was estimated to be around the Atlantic 

East Coastal category for the purpose of this research study (Priede & Miller 2008, Sims et 

al. 2003, Skomal et al. 2004). Blue mussels were analyzed in both Atlantic NW Coastal and 

Atlantic NE Coastal regions (Bostrom & Bonsdorf 1996, Kotta & Orav 2001, Riisgard 1991, 

Wildish & Miyares 1990), and bowhead whales were also estimated to feed in multiple 

locations: Atlantic NW Coastal and Pacific SE Alaska Coastal (Ashjian et al. 2010, 

Goldbogen et al. 2017, Laidre et al. 2007, Moore et al. 2010, Schick & Urban 2000, Simon et 

al. 2009). Continuing through the database of 50 species, feeding locations for all filter 

feeders were estimated, and some relied on the analysis of more than one region.  

Raw and transformed data for the ocean basin variable were not normally distributed 

(p<0.05, Shapiro-Wilkes) or homoschedastic (p<0.05, Bartlett’s), so the non-parametric 

Kruskal-Wallis test was used to assess the significance of feeding location. Additionally, an 

unbalanced Two Way ANOVA was completed to analyze both filtration technique and ocean 

basin to determine if any significant interactions occurred between these variables. Because 

the same dataset was used, parametric assumptions were once again not met and a non-

parametric Kruskal-Wallis test was used.    
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Finally, the significance of the environment in relation to MCR was assessed. Defined 

as another categorical variable, the environment indicated whether species fed in coastal or 

open ocean locations. Data were not normally distributed (p<0.05, Shapiro-Wilkes) or 

homoschedastic (p<0.05, Bartlett’s). Thus, a two-tailed, two sample t-test of log-transformed 

data was used. 

Analysis of the MCR values for each species indicated the possibility that organism 

size played a key role in a species’ risk of microplastic consumption. To determine the nature 

of this relationship, further data regarding average bodyweight for each review species was 

collated. MCR values were then normalized as an MCR-to-bodyweight ratio with the values 

reported in units of particles/s/kg. After the data was normalized, analytical tests were run 

once again to determine if bodyweight affected the significant differences in MCR values for 

each of the six factors considered.  

In the consideration of Normalized Microplastic Consumption Rates (or NMCR), 

data for salinity was once again not normal (p<0.05, Shapiro-Wilkes) or homoschedastic 

(p<0.05, Bartlett’s). To analyze this factor, the non-parametric Mann-Whitney Wilcoxon test 

was used. Data for IUCN status was also found to be not normal (p<0.05, Shapiro-Wilkes) or 

homoschedastic (p<0.05, Bartlett’s). The normalized data for this variable, then, required a 

non-parametric Kruskal-Wallis test for analysis. 

Analysis of the normalized data for filtration technique indicated that data was still 

not normal (p<0.05, Shapiro-Wilkes) or homoschedastic (p<0.05, Bartlett’s). The non-

parametric Kruskal-Wallis ANOVA, thus, was used for analysis. The life stage factor once 

again required analysis of only data from relevant species. Normalized data were found to be 

normal (p>0.05, Shapiro-Wilkes) and homoschedastic (p=0.614, Barlett’s), so analysis 

required a two-tailed two sample t-test. 

After the normalized data for the ocean basin variable was transformed, however, the 

data was found to be normal (p>0.05, Shapiro-Wilkes) and homoschedastic (p=0.08, 

Bartlett’s). For this variable, a One Way ANOVA could be used for the analysis. Similarly 

normalized data for the environment variable was found to be normal (p>0.05, Shapiro-

Wilkes) and homoschedastic (p=0.497, Bartlett’s) after a log transformation. Thus, analysis 

required the use of a two-tailed, two sample t-test.  
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The analysis also showed that there was a possible interaction between the two 

factors, filtration technique and ocean basin. To investigate further, an unbalanced two-way 

ANOVA was run to determine if interactions between the two factors had any significant 

effect on MCR. As previously noted, data was not normal or homoschedastic for either 

variable, so non-parametric tests were used in the analysis. Additionally, NMCR data was 

also considered and the test was run a second time to determine if taking body weight into 

consideration impacted the results.  

As a final step in this project, the different filter feeding species were then divided 

into groups based on one factor found to be significant in the analysis: filtration technique. 

Once they were grouped as such, mean MCR and NMCR values were graphed to determine 

which species within each sub-category were most at risk of microplastic consumption or 

contamination. While it would be useful to determine if filtration technique had a significant 

impact on MCR and NMCR values for each of the subcategories, it was not possible to test 

with a One Way ANOVA because there were not enough data points for each species.  

 

 

IV. Results and Discussion 

 

Microplastic Abundance 

 

Because several of the ocean basins are so large, spanning across different nations 

and localities, the microplastic abundance data were first categorized to make cross-

referencing with filtration rates simpler. (Table 2). For example, coastal samples from the 

Atlantic Ocean were considered part of Caribbean, Gulf of Mexico, Mediterranean, 

Northwest (including North America, Bermuda, and Canada), Northeast (including United 

Kingdom, Europe, and Africa), and the South Atlantic regions. The Pacific coastal data 

points were also categorically divided into Central America, Gulf of Alaska, SE Alaska, SE 

Asia, West (including Australia, New Zealand, Niue, and Beveridge), and East (North and 

South America, Hawaii, Mexico, and Canada) regions (Figure 1). To analyze the factors 

affecting microplastic abundance, data was then further grouped by ocean basin.  
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The raw data shows that samples from the open ocean typically contain the greatest 

abundance of particles compared to coastal water samples (Table 2). The mean value of 

54.57 ± 16.07 particles/L was found for open ocean samples from the Arctic basin, while 

coastal values of the same basin were 23.87 ± 6.46 particles/L (Table 2). Of the open ocean 

samples, highest mean values of microplastic abundance were found for the Arctic, Pacific 

(18.42 ± 3.47 particles/L), Atlantic (17.96 ± 1.22 particles/L), Southern (17.5 ±  1.22 

particles/L), and Indian (16.87 ± 10.22 particles/L) oceans, respectively (Table 2) (Global & 

Gallatin Microplastic Initiative, 2018).  

 

Table 2. Microplastic abundance data calculated at ocean basins and environments. 

Ocean 

Basin Regional Sea  

Coastal or 

Open Ocean 

Mean Microplastic Abundance 

(particles / L)(± SE) 

Arctic   Coastal 23.8708 (± 6.4608) 

Arctic   Open Ocean 54.5680 (± 16.0698) 

Atlantic Caribbean Coastal 9.9372 (± 3.5674) 

Atlantic Gulf of Mexico Coastal 3.0120 (± 1.4593) 

Atlantic Mediterranean Coastal 2.1180 (± 0.8149) 

Atlantic NW (America, bermuda, canada) Coastal 5.8342 (± 0.6392) 

Atlantic NE (UK, Europe, Africa) Coastal 1.9975 (± 0.4088) 

Atlantic South Coastal 2.2262 (± 0.6452) 

Atlantic Caribbean Open Ocean 5.840 (± 3.7176) 

Atlantic Mediterranean Open Ocean 9.0476 (± 1.3877) 

Atlantic   Open Ocean 18.0176 (± 1.2235) 

Indian   Coastal 2.9480 (± 0.5434) 

Indian   Open Ocean 16.8722 (± 10.2184) 

Pacific Central America Coastal 4.3898 (± 0.7205) 

Pacific Gulf of Alaska Coastal 8.1858 (± 1.8316) 

Pacific SE Alaska Coastal 5.6129 (± 1.2623) 

Pacific SE Asia Coastal 5.3268 (± 1.4358) 

Pacific 

West (Australia, New Zealand, Niue, 

Beveridge) Coastal 1.0850 (± 0.2545) 

Pacific 

East (America, Mexico, Canada, 

Hawaii, S. America) Coastal 2.7056 (± 0.8773) 

Pacific Central America Open Ocean 3.1231 (± 1.7898) 

Pacific SE Asia Open Ocean 19.0741 (± 12.2426) 

Pacific   Open Ocean 18.4176 (± 3.4670) 

Southern   Coastal 15.29 (± 8.7241) 

Southern   Open Ocean 17.5 

Freshwater North America  1.1493 (± 0.0858) 

Freshwater Europe  1.5720 (± 0.3808) 
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The analysis showed that ocean basins experience significant difference in mean 

microplastic abundance (p = 0.0432, F4,19=0.0323, One-Way ANOVA). The Arctic had the 

highest mean and the Indian had the lowest mean compared to other sample locations (Figure 

2). Furthermore, post-hoc analysis (Multiple Comparisons) indicated that microplastic 

abundance in the Arctic Ocean was significantly higher than abundance data in the Atlantic 

Ocean, while the Indian, Pacific, and Southern Oceans were not significantly different from 

each other.  

The Open Ocean and coastal environments were also compared to determine if this 

factor affected microplastic abundance. Open ocean environments had a significantly higher 

mean microplastic abundance compared to coastal samples (p = 0.005, t = -3.22, two-tailed 

two sample t-test) (Figure 3). When considering the results from these analyses, it is 

important to know that the raw data was not evenly distributed throughout the global ocean. 

Rather, very few samples were taken from the Arctic and Southern Oceans, likely because 

data was collected on a volunteer basis and fewer individuals were able to visit these 

locations. The Atlantic and Pacific Oceans, however, had a far greater quantity of data points 

available. Such an unbalanced distribution could affect the reliability of these results.  

 

Figure 1. Mean microplastic abundance (particles/L ± SE) for each of the sample locations as 

categorized for further analysis. 
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Figure 2. Mean microplastic abundance (particles/L ± SE) for each of the marine sample 

locations. 

 

 

Figure 3. Mean microplastic abundance (particles/L ± SE) found in the two different types of 

environment, Coastal and Open Ocean. 
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Filtration Rates 

 

 In general, species of the smallest sizes, such as oyster larvae, bryozoans, copepods, 

seaworms, and tunicates, filter the least amount of water (Table 3). Larvae of Pacific oysters, 

for example, filter 1.39x10-6 mL water/second. Much larger – and therefore, stronger and 

faster – species, however, tend to filter greater quantities of water. Fin whales, for example, 

can filter volumes of water as large as 9.75x106 mL/second (Table 3). Following this 

filtration rate would be that of bowhead whales (3.02x10-6 mL/s), then North Atlantic right 

whales (1.39x106 mL/s), humpback whales (7.0x105 mL/s), basking sharks (1.20x10-5 mL/s), 

and whale sharks (9.06x104 mL/s).  

 

Table 3. Mean minimum and maximum filtration rates for each species (mL/s). 

Species Name (Scientific)  

Filtration Rate 

Minimum (mL/s) 

Filtration Rate 

Maximum 

(mL/s) Source 

Whale Shark (Rhincondon typus) 9.06E+04 1.71E+05 Motta et al. (2010) 

Basking Shark (Cetorhinus 

maximus) 1.20E+05 1.20E+05 Sims (1999) 

Blue mussels (Mytilus edulis) 6 38 Wildish et al. (1990); Riisgard et al. (2002) 

Jellyfish (Aurelia aurita) 2.17E-03 7.56E-02 Oleson (1995) 

Bowhead whales (Balaena 

mysticetus) 3.20E+06 3.20E+06 Simon et al. (2009); Goldbogen et al. (2017) 

Humpback whale (Megaptera 

novaeangliae)  7.00E+05 7.00E+05 Simon et al. (2012) 

Blue whales (Balaenoptera 

musculus) 5.85E+02 5.85E+02 

Doniol-Valcroze et al. (2011); Goldbogen et 

al. (2011) 

Copepod (Calanus finmarchicus) 5.21E-05 5.21E-05 Fuller & Clark (1936) 

Atlantic mackerel (Scomber 

scombrus) 26.67 51.67 Sutherland et al. (1995) 

Antarctic minke whale 

(Balaenoptera bonaerensis)  5.36E+04 5.36E+04 Friedlaender et al. (2014) 

Oyster LARVAE (Crassostrea 

gigas) 1.39E-06 1.39E-06 Qiu et al. (2015) 

Pacific Oyster ADULT (C. gigas)  - 

smaller size 0.108 0.108 Gerdes (1982) 

Pacific Oyster ADULT (C. gigas)  - 

larger size 0.288 0.288 Gerdes (1982) 

Tunicate (Oikopleura dioica) 2.31E-04 2.31E-04 Bochdansky & Deibel (1998) 

Silver Carp (Hypophthalmichthys 

molitrix Val.) 9.58 10.42 Zhao et al. 2011  

Manta Ray (Manta birostis) 1.51E+04 1.51E+04 Divi et al. (2018); Paig-Tran et al. (2013) 

Pelagic Tunicate (Pegea confederata 

) 6.17E-03 7.77E-02 Harbison & Gilmer (1976) 

Fin whales (Balaenoptera physalus) 9.75E+06 9.75E+06 Goldbogen et al. (2010) 

Glass sponge (Aphrocallistes vastus) 17.25 1.73E+01 Leys et al. (2011) 



 22 

Cockle (Cardium edule) 0.111 1.03 Riisgard et al. (2002) 

Soft-shell clam (Mya arenia) 0.333 1.056 Riisgard et al. (2002) 

Atlantic menhaden (Brevoortis 

tyrannus) 41.67 87.83 Durbin & Durbin (1975) 

Mysid shrimp (Rhopalophthalmus 

terranatalis) ADULTS 2.36E-03 2.36E-03 Jerling & Wooldridge (1994) 

(Rhopalophthalmus terranatalis) 

JUVENILES 3.75E-03 3.75E-03 Jerling & Wooldridge (1994) 

Mysid shrimp (Mesopodopsis 

wooldridgei) ADULTS 9.50E-03 9.50E-03 Jerling & Wooldridge (1994) 

(Mesopodopsis wooldridgei) 

JUVENILES 5.17E-03 5.17E-03 Jerling & Wooldridge (1994) 

Burrowing shrimp (Upogebia 

deltaura) 0.972 9.72E-01 Lindahl & Baden (1997) 

Antarctic Krill (Euphausia superba) 0.125 0.125 Boyd et al. (1984) 

Porcelain Crab (Porcellana 

longicornis) 3.94E-02 7.42E-02 Achituv & Pedrotti (1999) 

Ocean Quahog (Arctica islandica) 0.555 1.14E+00 Winter (1969) 

Wrinkled Rockborer (Hiatella 

arctica) 1.53E-03 9.47E-03 Ali (1970) 

Bay Scallop (Pecten irradians) 0.906 4.089 Chipman & Hawkins (1954) 

Orange Sea Pen (Ptilosarcus 

gurneyi) 100 1000 Best (1988) 

Feather star (Oligometra serripinna) 68 111.6 Leonard et al. (1988) 

Manila Clam (Tapes philippinarum) 2.78E-02 0.278 Nakamura (2001); Hosokawa (1988) 

Yesso scallop (Patinopecten 

yessoensis) 0.694 1.1 Yamamoto (1968) 

Spaghetti Bryozoan (Zoobotryon 

verticillatum) 4.22E-05 2.92E-04 Bullivant (1967) 

Bryozoan (Electra pylosa) 6.94E-05 7.78E-05 Riisgard & Manriquez (1997) 

Bryozoan (Conopeum reticulum) 4.72E-05 5.56E-05 Riisgard & Manriquez (1997) 

Bryozoan (Celleporella hyalina) 3.33E-05 4.17E-05 Riisgard & Manriquez (1997) 

Sea vase (Ciona intestinalis) 0.05 0.2 Randlov & Riisgard (1979) 

Sea squirt (Ascidella aspersa) 0.067 0.333 Randlov & Riisgard (1979) 

Polychaete worm (Myxicola 

infundibulum) 7.90E-02 7.94E-02 Dales (1957) 

Peacock worm (Sabella pavonina) 2.03E-02 2.03E-02 Dales (1957) 

Keel worm (Pomatoceros triqueter) 7.50E-03 7.50E-03 Dales (1957) 

Polychaete worm (Hydroides 

norvegica) 3.10E-03 3.10E-03 Dales (1957) 

Sinistral spiral tubeworm (Spirorbis 

borealis) 6.39E-05 6.39E-05 Dales (1957) 

Polychaete worm (Salmacina 

dysteri) 8.06E-04 8.06E-04 Dales (1957) 

Breadcrumb sponge (Halichondria 

panicea) 7.17E-02 7.17E-02 Riisgard et al. (1993) 

Common Bream (Abramis brama) 7.6389 7.6389 van den Berg (1993) 

White Bream (Blicca bjoerkna) 6.389 6.389 van den Berg (1993) 

Roach (Rutilus rutilus) 9.833 9.833 van den Berg (1993) 

Gizzard shad (Dorosoma 

cepedianum) 20.833 20.833 

van den Berg (1993)  & Drenner et al. 

(1984) 

North Atlantic Right Whale 

(Eubalaena glacialis) 1.39E+06 1.39E+06 van der Hoop et al. (2019) 



 23 

Microplastic Consumption Rates 

 

With filtration rates and microplastic abundance data collated, the estimated 

microplastic abundance was determined for each species’ location categories and the MCR 

(in particles/s) was calculated (Table 4). The species with the highest maximum microplastic 

consumption rate (MCR) while feeding was the fin whale in the Pacific Open Ocean 

(1.79x105 particles/s). Among the species reviewed in this paper, the lowest maximum MCR 

occurred in larvae of Pacific Oysters (1.51x10-9 particles/s). However, among only the adults 

(and thus, excluding juveniles), the lowest maximum MCR occurred in the bryozoan, E. 

pylosa (8.48x10-8 particles/s). 

 The minimum mean MCR was found to be 1.51x10 -09 particles/s, while the 

maximum mean MCR was found to be 6.235x103. The variance and standard deviation 

values, 9.21x108 and 3.03x104, respectively, further indicated that the data was very spread 

out.  

 The MCR data indicated a strong increasing trend with increasing body weight 

(Figure 4), suggesting that an organism’s size played a significant role in MCR values. For 

this reason, the data was further analyzed to create a new dataset of with these values 

reported as a MCR-to-bodyweight ratio in units of particles/s/kg (Table 4). While MCR 

values provide information regarding a species’ risk of microplastic consumption, these 

Normalized MCR (or NMCR) values provide information regarding a species’ risk of 

microplastic contamination because the values are reported in terms of body weight. Analysis 

of the data showed that the pelagic tunicate (P. confederata) actually experiences the highest 

risk of microplastic contamination, as it had a NMCR value of 5.17x104 particles/s/kg. The 

bryozoan (E. pylosa), however, experiences the lowest risk of microplastic contamination 

with a NMCR value of 1.88x10 -07 particles/s/kg (Figure 5). 

 Analysis of the relationship between body size and MCR showed that bodyweight 

does have a significant relationship with MCR values (p=1.92x10-11, z=6.71, tau=0.563, 

Non-parametric correlation). This relationship indicates that smaller organisms are more at 

risk of microplastic contamination, as they appear to consume larger quantities of 

microplastics on a per-kg basis.  
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Table 4. Mean minimum and maximum MCR (particles/s) for each species. 

Species 

Microplastic Abundance 

Sample Locations Mean MCR (particles/s) 

Mean 

Normalized 

MCR 

(particles/s/kg) 

Antarctic Krill (Euphausia superba) Southern, Coastal 1.91E-03 3.35E+00 

Antarctic minke whale (Balaenoptera 

bonaerensis)  Southern, Open Ocean 9.38E+02 
9.90E-02 

Atlantic mackerel (Scomber scombrus) Atlantic, NW, Coastal 3.01E-01 9.77E-01 

Atlantic mackerel (Scomber scombrus) Atlantic, NE, Coastal 1.03E-01 3.34E-01 

Atlantic mackerel (Scomber scombrus) 

Atlantic, Mediterranean, 

Coastal 3.39E-02 
1.10E-01 

Atlantic menhaden (Brevoortis 

tyrannus) Atlantic, NW, Coastal 5.12E-01 
8.53E-01 

Basking Shark (Cetorhinus maximus) Pacific, East, Coastal 3.25E+02 8.13E-02 

Bay Scallop (Pecten irradians) Atlantic, NW, Coastal 2.38E-02 9.52E-02 

Blue mussels (Mytilus edulis) Atlantic, NW, Coastal 2.22E-01 3.36E+01 

Blue mussels (Mytilus edulis) Atlantic, NE, Coastal 7.59E-02 1.15E+01 

Blue whales (Balaenoptera musculus) Pacific, East, Coastal 1.59E+00 2.00E-05 

Bowhead whales (Balaena mysticetus) Atlantic, NW, Coastal 1.87E+04 2.49E-01 

Bowhead whales (Balaena mysticetus) Pacific, SE Alaska, Coastal 1.80E+04 2.40E-01 

Breadcrumb sponge (Halichondria 

panicea) Atlantic, NE, Coastal 1.43E-04 
2.20E-03 

Breadcrumb sponge (Halichondria 

panicea) Pacific, West, Coastal 7.82E-05 
1.20E-03 

Bryozoan (Celleporella hyalina) Atlantic, NW, Coastal 2.43E-07 5.40E-07 

Bryozoan (Celleporella hyalina) Pacific, East, Coastal 1.13E-07 2.41E-07 

Bryozoan (Conopeum reticulum) Atlantic, NE, Coastal 1.11E-07 2.46E-07 

Bryozoan (Electra pylosa) Pacific, West, Coastal 8.48E-08 1.88E-07 

Burrowing shrimp (Upogebia deltaura) 

Atlantic, Mediterranean, 

Coastal 2.06E-03 
1.03E+00 

Cockle (Cardium edule) Atlantic, NE, Coastal 2.06E-03 2.58E-01 

Common Bream (Abramis brama) Freshwater, Europe 1.17E-02 1.95E-03 

Copepod (Calanus finmarchicus) Atlantic Open Ocean (surface) 9.37E-07 2.86E+00 

Feather star (Oligometra serripinna) Pacific, SE Asia, Coastal 2.13E+00 7.10E+02 

Fin whales (Balaenoptera physalus) Pacific Open Ocean 1.79E+05 3.58E+00 

Fin whales (Balaenoptera physalus) Atlantic, Open Ocean 1.76E+05 3.52E+00 

Gizzard shad (Dorosoma cepedianum) Freshwater, North America 2.40E-02 1.26E-02 

Glass sponge (Aphrocallistes vastus) 

Pacific, Gulf of Alaska, 

Coastal 1.41E-01 
1.57E-01 

Humpback whale (Megaptera 

novaeangliae)  Atlantic, NW, Coastal 4.08E+03 
1.41E-01 

Humpback whale (Megaptera 

novaeangliae)  Pacific, West, Coastal 7.63E+02 
2.63E-02 

Jellyfish (Aurelia aurita) Atlantic, NW, Coastal 4.41E-04 6.35E-03 

Keel worm (Pomatoceros triqueter) Atlantic, NE, Coastal 1.50E-05 3.75E+00 

Keel worm (Pomatoceros triqueter) Arctic, Coastal 1.79E-04 4.48E+01 

Manila Clam (Tapes philippinarum) Indian, Coastal 8.20E-04 7.13E-02 
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Manta Ray (Manta birostis) Atlantic, Caribbean, Coastal 1.50E+02 9.10E-02 

Manta Ray (Manta birostis) Pacific, SE Asia, Coastal 8.05E+01 4.88E-02 

Mysid shrimp (Mesopodopsis 

wooldridgei) ADULTS Indian, Coastal 2.80E-05 
1.18E+02 

Mysid shrimp (Mesopodopsis 

wooldridgei) JUVENILES Indian, Coastal 1.53E-05 
3.19E+02 

Mysid shrimp (Rhopalophthalmus 

terranatalis) ADULTS Indian, Coastal 6.96E-06 
2.32E+00 

Mysid shrimp (Rhopalophthalmus 

terranatalis) JUVENILES Indian, Coastal 1.11E-05 
1.11E+01 

North Atlantic Right Whale (Eubalaena 

glacialis) Atlantic, Open Ocean 2.50E+04 
1.09E+00 

Ocean Quahog (Arctica islandica) Atlantic, NW, Coastal 6.64E-03 2.92E-02 

Orange Sea Pen (Ptilosarcus gurneyi) Pacific, East, Coastal 2.71E+00 1.81E+01 

Pacific Oyster ADULT (C. gigas)  - 

larger size Pacific, West, Coastal 3.14E-04 
7.85E-04 

Pacific Oyster ADULT (C. gigas)  - 

smaller size Pacific, West, Coastal 1.18E-04 
5.10E-04 

Pacific Oyster LARVAE (Crassostrea 

gigas) Pacific, West, Coastal 1.51E-09 
7.55E-02 

Peacock worm (Sabella pavonina) 

Atlantic, Mediterranean, 

Coastal 4.30E-05 
1.08E+01 

Pelagic Tunicate (Pegea confederata ) Atlantic, NE, Coastal 1.55E-04 5.17E+04 

Polychaete worm (Hydroides norvegica) 

Atlantic, Mediterranean, 

Coastal 6.57E-06 
1.64E+00 

Polychaete worm (Myxicola 

infundibulum) Atlantic, Open Ocean 1.43E-03 
3.58E+02 

Polychaete worm (Myxicola 

infundibulum) Pacific Open Ocean 1.45E-03 
3.63E+02 

Polychaete worm (Salmacina dysteri) Pacific Open Ocean 1.48E-05 3.70E+00 

Porcelain Crab (Porcellana longicornis) Atlantic, NE, Coastal 1.48E-04 5.92E+00 

Roach (Rutilus rutilus) Freshwater, Europe 1.50E-02 8.33E-03 

Sea squirt (Ascidella aspersa) Atlantic, NE, Coastal 6.65E-04 4.43E-03 

Sea vase (Ciona intestinalis) Atlantic, Open Ocean 3.60E-03 1.76E-04 

Silver Carp (Hypophthalmichthys 

molitrix Val.) Freshwater, Asia 2.34E-02 
4.68E-04 

Sinistral spiral tubeworm (Spirorbis 

borealis) Atlantic, NE, Coastal 1.28E-07 
3.20E-02 

Sinistral spiral tubeworm (Spirorbis 

borealis) Pacific, East, Coastal 1.73E-07 
4.33E-02 

Soft-shell clam (Mya arenia) Atlantic, NW, Coastal 6.16E-03 1.81E-01 

Soft-shell clam (Mya arenia) Atlantic, NE, Coastal 2.11E-03 6.20E-02 

Spaghetti Bryozoan (Zoobotryon 

verticillatum) Atlantic, Caribbean, Coastal 2.90E-06 
4.83E-04 

Tunicate (Oikopleura dioica) Atlantic, NE, Coastal 4.62E-07 1.54E+02 

Whale Shark (Rhincondon typus) 

Pacific, Central America, 

Coastal 7.51E+02 
2.20E-02 

Whale Shark (Rhincondon typus) Pacific, West, Coastal 1.86E+02 5.50E-03 

White Bream (Blicca bjoerkna) Freshwater, Europe 9.78E-03 9.78E-03 

Wrinkled Rockborer (Hiatella arctica) Atlantic, South, Coastal 2.13E-05 1.42E-02 

Yesso scallop (Patinopecten yessoensis) Pacific, West, Coastal 1.20E-03 9.23E-04 
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Figure 4. Mean microplastic consumption rate (particles/s ± SE) for each filter feeding 

species in order of bodysize. Multiple columns indicate data at different geographic locations 

for a single species, as described in Table 8. 
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Figure 5. Mean normalized microplastic consumption rate (particles/s/kg ± SE) for each filter 

feeder in order of body size. Multiple columns indicate data at different geographic locations 

for a single species, as described in Table 8. 
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Filter Feeder Characteristics 

 

a. Salinity 

 

Salinity was analyzed to allow for comparison between marine and freshwater 

species. Only a few freshwater species were considered in this review, including silver carp 

(Hypophthalamichthys molitrix), common bream (Abramis brama), white bream (Blicca 

bjoerkna), roach (Rutilus rutilus), and gizzard shad (Dorosoma cepedianum). The remaining 

49 were marine species (Table 4).  

 

Table 4. The salinity type (Marine or Freshwater) to which each species belongs. 

Species Salinity 

Whale Shark (Rhincondon typus) Marine 

Basking Shark (Cetorhinus maximus) Marine 

Blue mussels (Mytilus edulis) Marine 

Jellyfish (Aurelia aurita) Marine 

Bowhead whales (Balaena mysticetus) Marine 

Humpback whale (Megaptera novaeangliae)  Marine 

Blue whales (Balaenoptera musculus) Marine 

Copepod (Calanus finmarchicus) Marine 

Atlantic mackerel (Scomber scombrus) Marine 

Antarctic minke whale (Balaenoptera bonaerensis)  Marine 

Pacific Oyster LARVAE (Crassostrea gigas) Marine 

Pacific Oyster ADULT (C. gigas)  - smaller size Marine 

Pacific Oyster ADULT (C. gigas)  - larger size Marine 

Tunicate (Oikopleura dioica) Marine 

Silver Carp (Hypophthalmichthys molitrix Val.) Freshwater 

Manta Ray (Manta birostis) Marine 

Pelagic Tunicate (Pegea confederata ) Marine 

Fin whales (Balaenoptera physalus) Marine 

Glass sponge (Aphrocallistes vastus) Marine 

Cockle (Cardium edule) Marine 

Soft-shell clam (Mya arenia) Marine 

Atlantic menhaden (Brevoortis tyrannus) Marine 

Mysid shrimp (Rhopalophthalmus terranatalis) ADULTS Marine 

Mysid shrimp (Rhopalophthalmus terranatalis) JUVENILES Marine 

Mysid shrimp (Mesopodopsis wooldridgei) ADULTS Marine 

Mysid shrimp (Mesopodopsis wooldridgei) JUVENILES Marine 
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Burrowing shrimp (Upogebia deltaura) Marine 

Antarctic Krill (Euphausia superba) Marine 

Porcelain Crab (Porcellana longicornis) Marine 

Ocean Quahog (Arctica islandica) Marine 

Wrinkled Rockborer (Hiatella arctica) Marine 

Bay Scallop (Pecten irradians) Marine 

Orange Sea Pen (Ptilosarcus gurneyi) Marine 

Feather star (Oligometra serripinna) Marine 

Manila Clam (Tapes philippinarum) Marine 

Yesso scallop (Patinopecten yessoensis) Marine 

Spaghetti Bryozoan (Zoobotryon verticillatum) Marine 

Bryozoan (Electra pylosa) Marine 

Bryozoan (Conopeum reticulum) Marine 

Bryozoan (Celleporella hyalina) Marine 

Sea vase (Ciona intestinalis) Marine 

Sea squirt (Ascidella aspersa) Marine 

Polychaete worm (Myxicola infundibulum) Marine 

Peacock worm (Sabella pavonina) Marine 

Keel worm (Pomatoceros triqueter) Marine 

Polychaete worm (Hydroides norvegica) Marine 

Sinistral spiral tubeworm (Spirorbis borealis) Marine 

Polychaete worm (Salmacina dysteri) Marine 

Breadcrumb sponge (Halichondria panicea) Marine 

Common Bream (Abramis brama) Freshwater 

White Bream (Blicca bjoerkna) Freshwater 

Roach (Rutilus rutilus) Freshwater 

Gizzard shad (Dorosoma cepedianum) Freshwater 

North Atlantic Right Whale (Eubalaena glacialis) Marine 

 

Salinity was assessed to have no significant relationship with microplastic 

consumption rates (p = 0.3719, w = 196, Mann-Whitney Wilcoxon test). Although marine 

species had a higher mean MCR than freshwater species (Figure 4), the difference was not 

significant. The differences seen are likely due to the Marine outliers, which are above 

1.5x105 particles/s. However, it is important to note that the differences are likely results of 

the few data points collected for freshwater species. Only five species out of the 50 live in 

freshwater environments, and the sample size can easily impact the reliability and precision 

of the non-parametric test used to analyze the relationship.  
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When taking bodyweight into consideration, however, significant differences did 

occur in NMCR values between salinity levels (p = 0.026, w=62, Mann-Whitney Wilcoxon 

test). Marine species had a significantly higher NMCR than freshwater species (Figure 7). 

This suggests that species in marine water would experience higher risks of microplastic 

contamination.  

 

Figure 6. The calculated MCR (particles/s ± SE) at both types of salinity, freshwater and 

marine. 

 

Figure 7. The calculated NMCR (particles/s/kg ± SE) at both types of salinity, freshwater and 

marine. 
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b. IUCN Red List Status 

 

 To effectively determine which species are most at risk of experiencing harmful 

ecological impacts from microplastics, the IUCN Red List status for each species was also 

collected (Table 5) (IUCN 2019). The IUCN generally categorizes species based on the 

vulnerability status, including labels that range from Least Concern to Vulnerable, 

Endangered, Critically Endangered, Extinct in the Wild, and Extinct. For those species on 

which very little data has been collected, the organization generates the default label, Not 

Evaluated (IUCN 2019). Of the 50 different filter feeding species, most have yet to be 

evaluated and are thus given the label “NE.” Of the evaluated species, only three were 

considered endangered (EN) –whale sharks (Rhindondon typus), blue whales (Balaenoptera 

musculus), and North Atlantic right whales (Eubalaena glacialis) (IUCN 2019).  

Those labeled Least Concern (LC) include bowhead whales (Balaena mysticetus), 

humpback whales (Megaptera novaeangliae), Atlantic mackerel (Scomber scombrus), 

Atlantic menhaden (Brevoortis tyrannus), Antarctic krill (Euphausia superba), common 

bream (Abramis brama), white bream (Blicca bjoerkna), roach (Rutilus rutilus), and gizzard 

shad (Dorosoma cepedianum) (IUCN 2019). A few were considered to be vulnerable (VU) 

species, including the basking shark (Cetorhinus maximus), the manta ray (Manta birostis), 

and fin whales (Balaenoptera physalus). Antarctic minke whales (Balaenoptera bonaerensis) 

and silver carp (Hypophthalmichthys molitrix) were considered near threatened (NT), while 

only the whale sharks (Rhincondon typus), blue whales (Balaenoptera musculus), and North 

Atlantic right whales (Eubalaena glacialis) were considered endangered (EN) species (IUCN 

2019). 
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Table 5. IUCN Red List Status of study species (IUCN 2019). 

Species IUCN Red List Status 

Whale Shark (Rhincondon typus) EN 

Basking Shark (Cetorhinus maximus) VU 

Blue mussels (Mytilus edulis) Not Evaluated 

Jellyfish (Aurelia aurita) Not Evaluated 

Bowhead whales (Balaena mysticetus) LC 

Humpback whale (Megaptera novaeangliae)  LC 

Blue whales (Balaenoptera musculus) EN 

Copepod (Calanus finmarchicus) Not Evaluated 

Atlantic mackerel (Scomber scombrus) LC 

Antarctic minke whale (Balaenoptera bonaerensis)  NT 

Pacific Oyster JUVENILES (Crassostrea gigas) Not Evaluated 

Pacific Oyster ADULT (C. gigas)  - smaller size Not Evaluated 

Pacific Oyster ADULT (C. gigas)  - larger size Not Evaluated 

Tunicate (Oikopleura dioica) Not Evaluated 

Silver Carp (Hypophthalmichthys molitrix Val.) NT 

Manta Ray (Manta birostis) VU 

Pelagic Tunicate (Pegea confederata ) Not Evaluated 

Fin whales (Balaenoptera physalus) VU 

Glass sponge (Aphrocallistes vastus) Not Evaluated 

Cockle (Cardium edule) Not Evaluated 

Soft-shell clam (Mya arenia) Not Evaluated 

Atlantic menhaden (Brevoortis tyrannus) LC 

Mysid shrimp (Rhopalophthalmus terranatalis) ADULTS Not Evaluated 

Mysid shrimp (Rhopalophthalmus terranatalis) JUVENILES Not Evaluated 

Mysid shrimp (Mesopodopsis wooldridgei) ADULTS Not Evaluated 

Mysid shrimp (Mesopodopsis wooldridgei) JUVENILES Not Evaluated 

Burrowing shrimp (Upogebia deltaura) Not Evaluated 

Antarctic Krill (Euphausia superba) LC 

Porcelain Crab (Porcellana longicornis) Not Evaluated 

Ocean Quahog (Arctica islandica) Not Evaluated 

Wrinkled Rockborer (Hiatella arctica) Not Evaluated 

Bay Scallop (Pecten irradians) Not Evaluated 

Ornage Sea Pen (Ptilosarcus gurneyi) Not Evaluated 

Feather star (Oligometra serripinna) Not Evaluated 

Manila Clam (Tapes philippinarum) Not Evaluated 

Yesso scallop (Patinopecten yessoensis) Not Evaluated 

Spaghetti Bryozoan (Zoobotryon verticillatum) Not Evaluated 

Bryozoan (Electra pylosa) Not Evaluated 

Bryozoan (Conopeum reticulum) Not Evaluated 
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Bryozoan (Celleporella hyalina) Not Evaluated 

Sea vase (Ciona intestinalis) Not Evaluated 

Sea squirt (Ascidella aspersa) Not Evaluated 

Polychaete worm (Myxicola infundibulum) Not Evaluated 

Peacock worm (Sabella pavonina) Not Evaluated 

Keel worm (Pomatoceros triqueter) Not Evaluated 

Polychaete worm (Hydroides norvegica) Not Evaluated 

Sinistral spiral tubeworm (Spirorbis borealis) Not Evaluated 

Polychaete worm (Salmacina dysteri) Not Evaluated 

Breadcrumb sponge (Halichondria panicea) Not Evaluated 

Common Bream (Abramis brama) LC 

White Bream (Blicca bjoerkna) LC 

Roach (Rutilus rutilus) LC 

Gizzard shad (Dorosoma cepedianum) LC 

North Atlantic Right Whale (Eubalaena glacialis) EN 

 

The quantitative analysis of the IUCN status for each species allowed determination 

of whether a significant relationship exists with the corresponding MCR for the species.  

VU-labeled species had a significantly higher mean MCR than any other status  (p<<0.000, 

χ2= 38.195, df = 4, Kruskal-Wallis test). Not Evaluated species, however, had a significantly 

lower mean MCR than any other status (Figure 8). The significance of these results indicate 

that IUCN status could be used as a potential indicator of a species’ microplastic 

consumption risk. However, similar biological characteristics must be met when drawing 

similar conclusions for other species. Post-hoc analysis (Multiple Comparisons) found that 

species categorized as endangered, least concern, near threatened, and vulnerable were not 

significantly different from each other. Species categorized as endangered and near 

threatened were also not significantly different from each other. 

 Once bodyweight was taken into account and NMCR values were calculated, the 

statistical tests were re-run to determine if this impacted the results. It was determined that no 

significant differences occurred in NMCR values between IUCN statuses (p = 0.51, χ2=3.29, 

df=4, Kruskal-Wallis Test). This suggests that IUCN status does not indicate whether a 

species is at more or less risk of microplastic contamination (Figure 9). 
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Figure 8. Mean MCR (particles/s ± SE) for each IUCN Red List Status labels, including EN, 

LC, NE, NT, and VU. 

 

Figure 9. Mean NMCR (particles/s/kg ± SE) for each IUCN Red List Status labels, including 

EN, LC, NE, NT, and VU. 
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Atlantic mackerel, manta rays, Atlantic menhaden, and North Atlantic right whales are 

primarily considered to use ram filtration techniques. Humpback whales, blue whales, 

Antarctic minke whales, and fin whales typically rely on lunge feeding methods, while blue 

mussels, copepods, tunicates, and pelagic tunicates use water-pumping methods (Table 6). 

The remaining species, including jellyfish, Pacific oysters, glass sponges, cockles, soft-shell 

clams, porcelain crabs, ocean quahogs, wrinkled rockborers, bay scallops, orange sea pens, 

feather stars, Manila clams, Yesso scallops, bryozoans, sea vase, sea squirts, polychaete 

worms, peacock worms, and keel worms, are considered suspension feeders (Table 6).  

In some cases, a species might be known to use more than one technique, such as 

whale sharks. Although these gentle giants primarily rely on ram filtration techniques by 

swimming forward at slow speeds, they have also been documented using an active suction 

feeding method. To do this, they frequently position themselves vertically just below the 

water’s surface and use a powerful buccal pump to create a suction, trapping their prey in gill 

rakers (Heyman et al. 2001). Despite multiple techniques, the mean filtration rate obtained 

for this review corresponds with the whale shark’s use of ram filtration, and the species is 

considered a ram filter feeder.  

Although some species may use highly specialized methods to obtain prey, their 

overall technique is still considered to fall into one of these four categories. For example, 

tunicates (Pegea confederata and Oikopleura doica) are considered to use the water pumping 

technique, accomplishing filtration by creating a “house” and pumping water through it 

(Bochdansky & Deibel 1998, Tomita et al. 2019). Antarctic krill (Euphausia superba) offer 

another excellent example, as these suspension feeders frequently create a feeding apparatus 

with the use of their front legs (Boyd et al. 1984, Clark & Tyler 2014). Manta rays are also 

unique in that, although they use a ram filtration technique, their specific strategy is known 

as ricochet filtration (Divi et al. 2018). Despite the unique methods and adaptations these 

species use in water filtration, an overall assessment required the categorization of their 

techniques into one of the four primary methods.   
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Table 6. Filtration technique (ram, suspension, lunge, or pumping) used by study species. 

Species Filtration Technique 

Whale Shark (Rhincondon typus) Ram filtration 

Basking Shark (Cetorhinus maximus) Ram filtration  

Blue mussels (Mytilus edulis) Suspension  

Jellyfish (Aurelia aurita) Suspension 

Bowhead whales (Balaena mysticetus) Ram filtration  

Humpback whale (Megaptera novaeangliae)  Lunge feeding 

Blue whales (Balaenoptera musculus) Lunge feeding 

Copepod (Calanus finmarchicus) Suspension feeding 

Atlantic mackerel (Scomber scombrus) Ram Filtration 

Antarctic minke whale (Balaenoptera bonaerensis)  Lunge feeding 

Oyster JUVENILES (Crassostrea gigas) Suspension feeding 

Pacific Oyster ADULT (C. gigas)  - smaller size Suspension feeding 

Pacific Oyster ADULT (C. gigas)  - larger size Suspension feeding 

Tunicate (Oikopleura dioica) Water pumping 

Silver Carp (Hypophthalmichthys molitrix Val.) Water pumping 

Manta Ray (Manta birostis) Ram Filtration 

Pelagic Tunicate (Pegea confederata ) Water pumping 

Fin whales (Balaenoptera physalus) Lunge feeding 

Glass sponge (Aphrocallistes vastus) Suspension feeding 

Cockle (Cardium edule) Suspension feeding 

Soft-shell clam (Mya arenia) Suspension feeding 

Atlantic menhaden (Brevoortis tyrannus) Ram Filtration 

Mysid shrimp (Rhopalophthalmus terranatalis) ADULTS Suspension feeding 

Mysid shrimp (Rhopalophthalmus terranatalis) JUVENILES Suspension feeding 

Mysid shrimp (Mesopodopsis wooldridgei) ADULTS Suspension feeding 

Mysid shrimp (Mesopodopsis wooldridgei) JUVENILES Suspension feeding 

Burrowing shrimp (Upogebia deltaura) Suspension feeding 

Antarctic Krill (Euphausia superba) Suspension feeding 

Porcelain Crab (Porcellana longicornis) Suspension feeding  

Ocean Quahog (Arctica islandica) Suspension feeding 

Wrinkled Rockborer (Hiatella arctica) Suspension feeding 

Bay Scallop (Pecten irradians) Suspension feeding 

Ornage Sea Pen (Ptilosarcus gurneyi) Suspension feeding 

Feather star (Oligometra serripinna) Suspension feeding 

Manila Clam (Tapes philippinarum) Suspension feeding 

Yesso scallop (Patinopecten yessoensis) Suspension feeding 

Spaghetti Bryozoan (Zoobotryon verticillatum) Suspension feeding 

Bryozoan (Electra pylosa) Suspension feeding 

Bryozoan (Conopeum reticulum) Suspension feeding 
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Bryozoan (Celleporella hyalina) Suspension feeding 

Sea vase (Ciona intestinalis) Suspension feeding 

Sea squirt (Ascidella aspersa) Suspension feeding 

Polychaete worm (Myxicola infundibulum) Suspension feeding 

Peacock worm (Sabella pavonina) Suspension feeding 

Keel worm (Pomatoceros triqueter) Suspension feeding 

Polychaete worm (Hydroides norvegica) Suspension feeding 

Sinistral spiral tubeworm (Spirorbis borealis) Suspension feeding 

Polychaete worm (Salmacina dysteri) Suspension feeding 

Breadcrumb sponge (Halichondria panicea) Suspension feeding 

Common Bream (Abramis brama) Ram or Suction 

White Bream (Blicca bjoerkna) Ram or Suction 

Roach (Rutilus rutilus) Ram or Suction 

Gizzard shad (Dorosoma cepedianum) Ram or Suction 

North Atlantic Right Whale (Eubalaena glacialis) Ram Filtration  

 

In assessing the effect of filtration technique on Microplastic Consumption Rates, 

significant differences occurred in MCR values at the different levels of filtration technique. 

(p = 2.015e-08, χ2 = 38.694, df = 3, Kruskal-Wallis test This is likely due to the tendency that 

such species, including whales, are often much larger than other filter feeders and can 

therefore filter far greater quantities of particulates from water (Figure 10). 

Furthermore, a post-hoc analysis (Multiple Comparisons) determined that species 

using lunge and ram filtration techniques had significantly higher MCR values than the 

others. Species that relied on water pumping and ram filtration were not significantly 

different from each other, while those that relied on suspension feeding and water pumping 

were had significantly lower MCR values than the techniques. 

However, the results appeared to change when taking bodyweight into account. No 

significant differences occurred in NMCR values between filtration techniques (p = 0.185, 

χ2=4.83, df=3, Kruskal-Wallis ANOVA). Thus, the different filtration techniques used by 

filter feeders are not associated with higher risks of microplastic contamination (Figure 11).  

The filter feeding species were also further separated into groups based on their 

filtration techniques to determine which species of each category faced the greatest risks. 

When bodyweight was not taken into account, this analysis showed that of the lunge feeding 

species, fin whales experience the highest MCR values, while blue whales (B. musculus) 

experienced the lowest MCR values (Figure 12). Taking bodyweight into consideration did 
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not cause any change to this result in regards to NMCR values (Figure 13). Of the water 

pumping filter feeders, blue mussels (M. edulis) had the highest MCR values but copepods 

(C. finmarchicus) had the lowest MCR values when bodyweight was not considered (Figure 

14). When considering bodyweight, however, the pelagic tunicate (P. confederata) had the 

highest NMCR values, while the silver carp (H. molitrix) had the lowest NMCR values 

(Figure 15). Of ram filter feeders, the North Atlantic right whale (E. glacialis) had the 

highest MCR values, while the white bream (B. bjoerkna) had the lowest MCR values 

(Figure 16). When taking bodyweight into account, the North Atlantic right whale still has 

the highest NMCR values, but the common bream (A. brama) has the lowest NMCR values 

(Figure 17). Finally, among suspension feeders, the orange sea pen (P. gurneyi) had the 

highest MCR values but Pacific oyster larvae (C. gigas) had the lowest MCR values when 

bodyweight was not considered (Figure 18). When organism size was considered, the feather 

star (O. serripinna) had the highest NMCR values but the bryozoan (E. pylosa) had the 

lowest NMCR values (Figure 19). While this analysis provides new insight into the filtration 

technique categories, it was not possible to test for significant differences because only one 

data point existed for each species.  

 

 

Figure 10.  Calculated MCR (particles/s ± SE) for each of the four types of filtration 

technique: lunge feeding, water pumping, ram filtration, and suspension feeding. 
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Figure 11.  Calculated NMCR (particles/s/kg ± SE) for each of the four types of filtration 

technique: lunge feeding, water pumping, ram filtration, and suspension feeding. 

 

 

Figure 12.  Calculated MCR (particles/s ± SE) for lunge feeders. Multiple columns indicate 

data at different geographic locations for a single species, as described in Table 8. 
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Figure 13.  Calculated NMCR (particles/s/kg ± SE) for lunge feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 

 

 

Figure 14.  Calculated MCR (particles/s ± SE) for pumping feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 
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Figure 15.  Calculated NMCR (particles/s/kg ± SE) for pumping feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 

 

Figure 16.  Calculated MCR (particles/s ± SE) for ram feeders. Multiple columns indicate 

data at different geographic locations for a single species, as described in Table 8. 
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Figure 17.  Calculated NMCR (particles/s/kg ± SE) for ram feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 

 

Figure 18.  Calculated MCR (particles/s ± SE) for suspension feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 
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Figure 19.  Calculated NMCR (particles/s/kg ± SE) for suspension feeders. Multiple columns 

indicate data at different geographic locations for a single species, as described in Table 8. 
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Table 7. The life stages (Adult or Juvenile) at which they each of the three species were 

considered and their MCR (particles/s) 

Species LifeStage 

Mean Microplastic 

Consumption  

Rate (particles/s) 

Blue mussel (Crassostrea gigas) Juvenile 1.51E-09 

Blue mussel (Crassostrea gigas) – small size Adult 1.18E-04 

Blue mussel (Crassostrea gigas) – large size Adult 3.14E-04 

Mysid shrimp (Rhopalophthalmus terranatalis) Adult 2.36E-03 

Mysid shrimp (Rhopalophthalmus terranatalis) Juvenile 3.75E-03 

Mysid shrimp (Mesopodopsis wooldridgei) Adult 9.50E-03 

Mysid shrimp (Mesopodopsis wooldridgei) Juvenile 5.17E-03 

 

Life stage was assessed to have no significant relationship with microplastic 

consumption rates (p = 0.2209, t = 1.5382, Welch two-sample t-test). The adult group has a 

higher mean MCR (Figure 20), though the difference is not significant. This difference likely 

occurs because only a few species were considered at both life stages, constricting the sample 

size. It might also occur as a result of the juveniles being less efficient at water filtration.  

Similarly, significant differences still did not occur in NMCR values between the life 

stages when bodyweight was taken into account (p = 0.336, t = 1.06, df = 4.997, two-tailed 

two-sample t-test). This result suggests both adults and juveniles organisms experience equal 

risks of microplastic contamination (Figure 21). 

 

Figure 20. The calculated MCR value (particles/s ± SE) at both types of life stages, Adult or 

Juvenile. 
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Figure 21. The calculated NMCR value (particles/s/kg ± SE) at both types of life stages, 

Adult or Juvenile. 
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clams are located in ANWC and ANEC waters; bryozoans (Celleporella hyaline) are 

generally found in ANWC and PEC waters; polychaete worms (Myxicola infundibulum) are 

found in AO and PO waters; keel worms are in ANEC and AC waters; sinistral spinal 

tubeworms are found in ANEC and PEC locations; and, finally, breadcrumb sponges have 

been documented in ANEC and PWC waters.  

 

Table 8. Estimated geographic distribution and sampling locations (indicating ocean basin 

and environment) for each species. Cross-referenced with the microplastic abundance data 

to be used in calculation of MCR. 

Species Estimated Geographic Distribution 

(Microplastic Abundance Sample Locations) 

Ocean Basin Environment 

Whale Shark (Rhincondon typus) Pacific, Central America, Coastal Pacific Coastal 

Whale Shark (Rhincondon typus) Pacific, West, Coastal Pacific Coastal 

Basking Shark (Cetorhinus maximus) Pacific, East, Coastal Pacific Coastal 

Blue mussels (Mytilus edulis) Atlantic, NW, Coastal Atlantic Coastal 

Blue mussels (Mytilus edulis) Atlantic, NE, Coastal Atlantic Coastal 

Jellyfish (Aurelia aurita) Atlantic, NW, Coastal Atlantic Coastal 

Bowhead whales (Balaena mysticetus) Atlantic, NW, Coastal Atlantic Coastal 

Bowhead whales (Balaena mysticetus) Pacific, SE Alaska, Coastal Pacific Coastal 

Humpback whale (Megaptera 

novaeangliae)  

Atlantic, NW, Coastal Atlantic Coastal 

Humpback whale (Megaptera 

novaeangliae)  

Pacific, West, Coastal Pacific Coastal 

Blue whales (Balaenoptera musculus) Pacific, East, Coastal Pacific Coastal 

Copepod (Calanus finmarchicus) Atlantic Open Ocean (surface) Atlantic Open Ocean 

Atlantic mackerel (Scomber scombrus) Atlantic, NW, Coastal Atlantic Coastal 

Atlantic mackerel (Scomber scombrus) Atlantic, NE, Coastal Atlantic Coastal 

Atlantic mackerel (Scomber scombrus) Atlantic, Mediterranean, Coastal Atlantic Coastal 

Antarctic minke whale (Balaenoptera 

bonaerensis)  

Southern, Open Ocean Southern Open Ocean 
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Pacific Oyster JUVENILES (Crassostrea 

gigas) 

Pacific, West, Coastal Pacific Coastal 

Pacific Oyster ADULT (C. gigas)  - 

smaller size 

Pacific, West, Coastal Pacific Coastal 

Pacific Oyster ADULT (C. gigas)  - 

larger size 

Pacific, West, Coastal Pacific Coastal 

Tunicate (Oikopleura dioica) Atlantic, NE, Coastal Atlantic Coastal 

Silver Carp (Hypophthalmichthys 

molitrix) 

Freshwater, Asia Freshwater Coastal 

Manta Ray (Manta birostis) Atlantic, Caribbean, Coastal Atlantic Coastal 

Manta Ray (Manta birostis) Pacific, SE Asia, Coastal Pacific Coastal 

Pelagic Tunicate (Pegea confederata ) Atlantic, NE, Coastal Atlantic Coastal 

Fin whales (Balaenoptera physalus) Pacific Open Ocean Pacific Open Ocean 

Fin whales (Balaenoptera physalus) Atlantic, Open Ocean Atlantic Open Ocean 

Glass sponge (Aphrocallistes vastus) Pacific, Gulf of Alaska, Coastal Pacific Coastal 

Cockle (Cardium edule) Atlantic, NE, Coastal Atlantic Coastal 

Soft-shell clam (Mya arenia) Atlantic, NW, Coastal Atlantic Coastal 

Soft-shell clam (Mya arenia) Atlantic, NE, Coastal Atlantic Coastal 

Atlantic menhaden (Brevoortis tyrannus) Atlantic, NW, Coastal Atlantic Coastal 

Mysid shrimp (Rhopalophthalmus 

terranatalis) ADULTS 

Indian, Coastal Indian Coastal 

Mysid shrimp (Rhopalophthalmus 

terranatalis) JUVENILES 

Indian, Coastal Indian Coastal 

Mysid shrimp (Mesopodopsis 

wooldridgei) ADULTS 

Indian, Coastal Indian Coastal 

Mysid shrimp (Mesopodopsis 

wooldridgei) JUVENILES 

Indian, Coastal Indian Coastal 

Burrowing shrimp (Upogebia deltaura) Atlantic, Mediterranean, Coastal Atlantic Coastal 

Antarctic Krill (Euphausia superba) Southern, Coastal Southern Coastal 

Porcelain Crab (Porcellana longicornis) Atlantic, NE, Coastal Atlantic Coastal 

Ocean Quahog (Arctica islandica) Atlantic, NW, Coastal Atlantic Coastal 

Wrinkled Rockborer (Hiatella arctica) Atlantic, South, Coastal Atlantic Coastal 
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Bay Scallop (Pecten irradians) Atlantic, NW, Coastal Atlantic Coastal 

Orange Sea Pen (Ptilosarcus gurneyi) Pacific, East, Coastal Pacific Coastal 

Feather star (Oligometra serripinna) Pacific, SE Asia, Coastal Pacific Coastal 

Manila Clam (Tapes philippinarum) Indian, Coastal Indian Coastal 

Yesso scallop (Patinopecten yessoensis) Pacific, West, Coastal Pacific Coastal 

Spaghetti Bryozoan (Zoobotryon 

verticillatum) 

Atlantic, Caribbean, Coastal Atlantic Coastal 

Bryozoan (Electra pylosa) Pacific, West, Coastal Pacific Coastal 

Bryozoan (Conopeum reticulum) Atlantic, NE, Coastal Atlantic Coastal 

Bryozoan (Celleporella hyalina) Atlantic, NW, Coastal Atlantic Coastal 

Bryozoan (Celleporella hyalina) Pacific, East, Coastal Pacific Coastal 

Sea vase (Ciona intestinalis) Atlantic, Open Ocean Atlantic Open Ocean 

Sea squirt (Ascidella aspersa) Atlantic, NE, Coastal Atlantic Coastal 

Polychaete worm (Myxicola 

infundibulum) 

Atlantic, Open Ocean Atlantic Open Ocean 

Polychaete worm (Myxicola 

infundibulum) 

Pacific Open Ocean Pacific Open Ocean 

Peacock worm (Sabella pavonina) Atlantic, Mediterranean, Coastal Atlantic Coastal 

Keel worm (Pomatoceros triqueter) Atlantic, NE, Coastal Atlantic Coastal 

Keel worm (Pomatoceros triqueter) Arctic, Coastal Arctic Coastal 

Polychaete worm (Hydroides norvegica) Atlantic, Mediterranean, Coastal Atlantic Coastal 

Sinistral spiral tubeworm (Spirorbis 

borealis) 

Atlantic, NE, Coastal Atlantic Coastal 

Sinistral spiral tubeworm (Spirorbis 

borealis) 

Pacific, East, Coastal Pacific Coastal 

Polychaete worm (Salmacina dysteri) Pacific Open Ocean Pacific Open Ocean 

Breadcrumb sponge (Halichondria 

panicea) 

Atlantic, NE, Coastal Atlantic Coastal 

Breadcrumb sponge (Halichondria 

panicea) 

Pacific, West, Coastal Pacific Coastal 

Common Bream (Abramis brama) Freshwater, Europe Freshwater Coastal 



 49 

White Bream (Blicca bjoerkna) Freshwater, Europe Freshwater Coastal 

Roach (Rutilus rutilus) Freshwater, Europe Freshwater Coastal 

Gizzard shad (Dorosoma cepedianum) Freshwater, North America Freshwater Coastal 

North Atlantic Right Whale (Eubalaena 

glacialis) 

Atlantic, Open Ocean Atlantic Open Ocean 

 

No significant difference in microplastic consumption rates was found among species 

feeding in the different ocean basins (p = 0.1512, χ2 = 0.5, df = 1, Kruskal-Wallis test). 

Although no significant difference occurs, species feeding in the Pacific Ocean had the 

highest mean microplastic consumption rates compared to other ocean basins (Figure 14). 

Those feeding in freshwater, the Indian Ocean, and Arctic Ocean had the lowest mean 

microplastic consumption rates (Figure 22). 

When considering how bodyweight might affect these results, the analysis showed 

that still no significant differences occurred in NMCR values at the different ocean basins (p 

= 0.09, F5,62=2.01, Kruskal-Wallis Test). Thus, it can be concluded that the ocean basin is not 

associated with higher risks of microplastic contamination in different filter feeders (Figure 

23). 

 Additionally, both ocean basin and filtration technique were further tested to 

determine if any interactions between these two variables significantly affected MCR or 

NMCR values. Analysis showed that when bodyweight was not considered, no 

significant interactions occurred between ocean basin and filtration technique to affect 

MCR values (p = 0.1, F10,55=4.0, Kruskal-Wallis Test). When bodyweight was taken into 

consideration, the analysis determined that significant interactions still did not occur between 

the two variables to affect MCR values (p = 0.967, F10,55=4.0, Kruskal-Wallis Test).  
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Figure 22. Calculated MCR value (particles/s ± SE) for the six different ocean basins/water 

sources: Arctic, Atlantic, Freshwater, Indian, Pacific, Southern. 

 

 

Figure 23. Calculated NMCR value (particles/s/kg ± SE) for the six different ocean 

basins/water sources: Arctic, Atlantic, Freshwater, Indian, Pacific, Southern. 
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f. Environment 

 

Each species was determined to feed in one of two types of environment: coastal or 

open ocean (Table 8). Analysis showed that the different environments do not have 

significant differences in regards to MCR for study species (p = 0.173, t = -1.48, Welch two 

sample t-test). Despite the lack of a significant difference, species in the open ocean had a 

higher mean MCR compared to those in the coastal areas (Figure 24), which supports similar 

values found in previous studies (Barrows et al. 2018). 

 Additional analysis considered bodyweight and showed that no significant differences 

in NMCR values occurred at the different environments (p = 0.173, t = -1.48, two-tailed two 

sample t-test). This result suggests that filter feeders in either environment experience equal 

risks of microplastic contamination (Figure 25).  

 

 

Figure 24. Calculated MCR (particles/s ± SE) for each environment, coastal or open ocean. 
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Figure 25. Calculated NMCR (particles/s/kg ± SE) for each environment, coastal or open 

ocean. 
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endangered, but are still labeled as vulnerable on the IUCN Red List (2019). Although this 

provides a better outlook than their estimated MCR values might suggest, caution must be 

taken to ensure that these organisms are exposed to plastics as minimally as possible. 

Pacific oyster larvae (Crassostrea gigas) and bryozoans (Electra pylosa), on the other 

hand, consumed the lowest mean quantity of microplastics per second of feeding when 

bodyweight was not considered. Unfortunately, neither of these species is evaluated by the 

IUCN (2019) and it is difficult to infer how microplastics might affect their overall 

population. Yet, their comparatively small MCR indicates that they likely experience lesser 

risk of microplastic consumption compared with most other filter feeding species, including 

fin whales. Similar to other species, feeding in E. pilosa and other bryozoans is expected to 

incur some energetic costs, as the organisms actively filter with the use of a mechanical 

laterofrontalfilter (Riisgard & Manriquez 1997). It is possible that some inorganic particles 

may be filtered out post-capture by these species, but more research is required to determine 

if they are actually capable of removing any sediment or debris as has been previously 

described (Riisgard & Manriquez, 1997). 

The factors found to have significant differences in mean MCR values were IUCN 

Red List status and filtration technique. The species with higher levels of vulnerability 

according to the IUCN Red List statuses (i.e. vulnerable and endangered species) had higher 

mean Microplastic Consumption Rates compared to those that were not evaluated or 

threatened. Species that had not yet been evaluated tended to be small and widely distributed, 

including crabs, scallops, bryozoans, sea worms, tunicates, and copepods (IUCN 2019). Such 

organisms are generally incapable of filtering massive quantities of particulates from the 

water regardless of the microplastic abundance in their location. This result can be beneficial 

to resource managers IUCN could potentially be used as a predictor, as it shows that 

vulnerable species are more likely to consume higher quantities of microplastics over time. 

Effective strategies, then, could be implemented to protect these species. It is important to 

note, however, that reasonable biological characteristics must be met to use this factor as a 

predictor for specific species. The variable has only been considered in terms of marine filter 

feeding species and thus, conclusions should only be drawn for similar organisms.  

 Species that filter water with lunge feeding techniques, such as humpback whales 

and bowhead whales, had significantly higher mean MCR values compared with those that 
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rely on other techniques, like suspension feeding or water pumping. Lunge feeding is 

energetically expensive and, as such, it is a method frequently used by larger and stronger 

species, which are also capable of filtering greater quantities of particulates in water 

(Acevedo-Gutiérrez et al. 2002, Watkins & Schevill 1979). 

The remaining variables considered – ocean basin, environment, life stage, and 

salinity – were not found to have significant differences in Microplastic Consumption Rates. 

These factors, then, do not increase or decrease the risk that individuals will experience 

higher risks of microplastic consumption. Although fin whales – the species with highest 

mean MCR in this study – are known to feed in offshore, subpolar marine waters 

(Vikingsson et al. 2009), for example, it is impossible to conclude from this knowledge that 

they are at risk of consuming high quantities of microplastics. Instead, it is much more 

valuable to consider the population’s vulnerability and filtration technique. Similarly, Pacific 

oyster larvae and bryozoans are known to feed in coastal marine waters of the Atlantic and 

Pacific Oceans (Harris 2008, Fey et al. 2010, Cognie et al. 2006). Though these areas tend to 

have a lower abundance of microplastics, conclusions cannot be drawn without first 

considering vulnerability and filtration techniques. Both of these species are not yet 

evaluated by the IUCN (2019) and rely on suspension feeding techniques (Gerdes 1982, 

Harris 2008, Riisgard & Manriquez 1997), factors that support the conclusion that such 

species are not at great risks of microplastic consumption.  

When bodyweight is factored into the analysis, results showed that pelagic tunicates 

(P. confederata) had the highest NMCR values. As one of the smallest species studied in this 

review, this result is likely caused by the species’ incredible efficiency and high filtration rate 

in relation to its size. No other factors considered here would have had a significant effect on 

the NMCR, so it would be important for future studies to take this into account. The only 

factor that had a significant relationship with NMCR was salinity, while the remaining 

variables did not experience significant differences. Bryozoans (E. pylosa) still experienced 

the smallest NMCR values. Thus, it can be concluded that pelagic tunicates experience the 

highest risk of microplastic contamination, while bryozoans experience the lowest risk of 

contamination.  

Understanding the species most at risk of consuming microplastics – including fin 

whales (Balaenoptera physalus), North Atlantic right whales (Eubalaena glacialis), and 
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bowhead whales (Balaena mysticetus) – is critical because these particles are known to 

contain toxic chemicals and pose serious dangers to the species that consume them (Gallo et 

al. 2018). Chemicals commonly associated with microplastics include Persistent Organic 

Pollutants, polychlorinated biphenyls, and Persistent, Bioaccumulative, and Toxic 

Compounds, are found in marine plastic litter (Gallo et al. 2018, Lusher et al. 2017). Some of 

these chemicals and additives have endocrine disrupting properties (Lusher et al. 2017). And 

PBTs are known to bioaccumulate, leading to the dangerous hazards that plastics pose 

(Lusher et al. 2017). Toxins and chemicals frequently associated with microplastics are often 

either added during the manufacturing process or absorbed from the surrounding 

environment. These harmful additives are expected to have significant and detrimental 

effects on entire populations and ecosystems, as they can reduce an individual’s ability to 

survive in their environment (Gallo et al. 2018). The whale species found to be most at risk 

of consuming microplastic are thus more likely to be exposed to such toxins and chemicals, 

providing them with yet another human-caused challenge to overcome and recover from their 

statuses as endangered or vulnerable species.   

This study also considered factors that affect microplastic abundance. It was 

determined there are significant differences in microplastic abundance among the ocean 

basins and between the different environments. The open ocean had higher mean 

microplastic abundance in surface waters compared to coastal environments. Furthermore, 

the Arctic and Southern Oceans had significantly higher mean levels of microplastic 

abundance than other basins. This can pose a potentially substantial problem in the Arctic 

Ocean, because researchers expect that climate change may lead to the release of even 

greater quantities of microplastics from melting sea ice in the region (Lusher et al. 2017). 

When drawing conclusions from these results, however, caution must be taken because data 

was not equally distributed between the different oceans. Far fewer water samples existed in 

the Arctic and Southern Oceans than in the Pacific, Atlantic, and Indian Oceans, and this 

disparity could cause the results to be slightly unreliable. 

The presence of marine litter has been a problem for decades in the open ocean, as 

solid waste was frequently discarded from ships prior to the 1980s (Lusher et al. 2017), most 

likely due to ghost fishing gear or shipping container losses. Yet, even as international 

regulations and conservation efforts attempt to reduce the quantity of microplastics in 
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offshore waters today, the findings in this study show that open ocean environments continue 

to harbor vast quantities of litter. Due to continuous ocean currents, improper waste disposal, 

and dramatic events, such as floods and cyclones, it can be extremely difficult to manage the 

levels of marine litter found ((Lusher et al. 2017).  

   

Future Considerations  

 

In future studies, it would be beneficial for researchers to focus on individual species 

and consider their specific and unique risks in terms of microplastic consumption. Here, it 

was necessary to make generalizations and estimates of geographic distribution for each 

species simply as a result of the quantity of species considered throughout the review. 

Although the mean filtration rates would remain the same for each species, geographic 

distribution greatly determines the quantity of microplastics to which filter feeders are 

exposed. It was extremely beneficial to take an overall assessment of the many different filter 

feeders to better understand which are most at-risk of consuming toxic particulates and which 

factors affect that risk. But focusing future studies on specific species – particularly those 

that are commercially and ecologically important – could further this understanding.  

Additionally, consumption of macroplastics is an important topic to highlight in 

future studies. Communities around the globe are familiar with widely publicized news 

articles concerning the occurrence of beached animals (Lusher et al. 2015). Many of the 

necropsies that result from these incidents indicate that macroplastics are consumed, 

particularly in whales, sharks, seabirds, and other species that are vital to the ecosystem 

(Lusher et al. 2015, Bråte et al. 2017). It would be beneficial to develop a broader 

understanding of the risks associated with macroplastic consumption in conjunction with the 

risks of microplastic consumption, as reviewed in this paper. Such an understanding could 

illuminate the different ecological impacts associated with plastics of varying sizes. 

Previous studies have also shown that mesh size and the size of microplastic 

particulates should be considered when evaluating microplastic consumption (Roesch et al. 

2013, Zhao et al. 2014). Thus, it would be beneficial if future studies consider how specific 

mesh sizes of gill rakers in each species, as well as the average microplastic particle size, 

could potentially affect the quantity of microplastics consumed. This paper aimed to 



 57 

determine how likely it is that different filter feeding species will consume microplastics, and 

while this complex problem was simplified to estimate risks of consumption and 

contamination for many different species for the purposes of this review, it did not provide 

concrete quantities of microplastics actually consumed. With the use of ever emerging 

technologies and techniques, it is expected that actual consumption data will be provided for 

many of these species, allowing researchers to consider these risks further and more 

accurately predict their ecologically and environmental impacts.  
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