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Abstract 

Alzheimer’s disease (AD) is the most common late-onset neurodegenerative disorder and 

cause of dementia, characterized by the formation of neurofibrillary tangles and senile 

plaque deposits. The heterogeneous nature of the disease (both genetically and 

environmentally) makes it difficult to prevent or cure. Without prevention, the prevalence 

of AD is expected to triple by 2050. However, because the diagnosis of AD is usually 

preceded by years of cognitive impairment, early detection may aid in reducing 

prevalence. Thus, there is a need for validated diagnostic measures for early and 

improved diagnosis and prevention. In this review, current and ongoing classifiers of 

early detection and tools for monitoring disease progression are discussed. In this present 

analyses, the diagnostic value of the following tools were statistically analyzed between 

three cognitive levels (cognitively normal, MCI, and AD) within (Alzheimer’s Disease 

Neuroimaging Initiative) ADNI databases: hippocampus volume, the Mini-Mental State 

Evaluation (MMSE) test, the Alzheimer’s Disease Assessment Scale (ADAS-Cog), 

APOE-ε4 genotype screening, and CSF biomarkers (including AB-42, P-tau, and T-tau). 

Hippocampal volumes were significantly different between cognitive groups over a 24-

month period. These volumetric differences correlated to cognitive test scores, with 

ADAS-Cog 13 being more sensitive to time changes than the MMSE. APOE-ε4 genotype 

had only significant effects on hippocampal volume within MCI subjects, suggesting that 

the possession of the APOE-ε4 allele may have an effect on disease conversion. Of the 

biomarkers, Aβ42 yielded the highest sensitivity (84.09%) and negative predictive value 

(88.14%). Aβ42 /P-tau demonstrated the highest specificity (95.45%) and positive 

predictive value (91.18%). The combination of the several validated diagnostic tools 

(including hippocampal atrophy, cognitive screening tests, genotype, and CSF 

biomarkers) may increase the diagnostic accuracy of AD, possibly leading to improved 

diagnosis and reduction of AD prevalence. 

Keywords: Alzheimer’s Disease, Alzheimer’s Disease Neuroimaging Initiative, 

Hippocampal Atrophy, Neuropsychological Test, APOE-ε4, Cerebrospinal Fluid (CSF) 

Biomarkers 



5 
 

I. Introduction 

Alzheimer’s disease (AD), the most common late-onset neurodegenerative disorder and 

cause of dementia, is a devastating and incurable condition affecting an estimated 5.4 

million Americans (Alzheimer’s Association, 2016). AD is characterized by increased 

formation of plaques and neurofibrillary tangles, causing selective damage of brain 

regions for cognition and memory. This damage leads to progressive memory loss, 

impairment of cognitive functions, and changes in behavior and personality. People in the 

late stages of AD require assistance with all aspects of personal care and are often placed 

in nursing homes (Sloane et al., 2002). Memory loss is generally followed by death 

within 7-10 years after diagnosis (Hu et al., 2007). 

Alzheimer’s disease starts in the hippocampus, deep within the temporal lobe of the 

brain, responsible for forming memories and for spatial navigation. From the 

hippocampus, the disease then spreads to the temporal lobes, impairing language 

encoding and visual input, before it continues to spread through the brain. The cerebral 

cortex begins to thin as the brain gradually shrinks, and older memories are lost 

(Alzheimer’s Association, 2016).  

 

 

 

 

 

 

 

 

 

Figure 1. Alzheimer’s at a glance (Alzheimer’s Association, 2016). Image of a crosswise section comparing brain 

characteristics of Alzheimer’s disease brain to a healthy brain. 
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Despite this disease being the most well studied cause of dementia, there is no current 

cure. In the absence of prevention, the number of individuals with AD is predicted to 

triple by 2050 due to aging of the population. In fact, since 2000, the prevalence of AD 

has risen by 89% (Alzheimer’s Association, 2016). Additionally, the cost of caring for 

AD patients in the United States is roughly $259 billion annually and continues to rise 

with the increasing number of diagnosed persons, causing major strains on the national 

economy (Atri et al., 2008).  

Decreasing AD prevalence necessitates early diagnosis strategies, exclusion of 

misdiagnosed patients, targeted treatment of symptoms, and increased awareness of 

preventative approaches. Current screening methods include neuropsychological tests, 

neuroimaging tools, and biomarkers. Presently, the treatment of AD includes to provision 

of a supportive environment, symptomatic drugs, and nonpharmacological therapies. 

Although there is evidence that these approaches may retard disease progression and 

ameliorate concurrent symptoms of AD, the prevalence of AD remains on the rise. Thus, 

methods of prevention, early detection, and neuroprotection/reversal are of grave 

necessity.  

This literary review will discuss the pathology, genetic and environmental risk factors, 

diagnosis methods, and treatment advances of AD with the aim to examine the scope of 

AD prevention. This review also incorporates a statistical analysis of the diagnostic value 

of current neuroimaging, genotype, biomarkers, and cognitive testing data within the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. ADNI is a longitudinal 

study conducted by many researchers aiming to reduce the prevalence of AD via 

effective early detection methods and the development of targeted treatments. Statistical 

data from three ADNI cohorts, comprised of a total of 819 subjects of various levels of 

cognitive impairment, has been analyzed to determine whether current imaging, 

biomarker, and cognitive testing methods effectively measure AD progression. 
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II. Alzheimer’s Disease Background  

Pathogenesis and Disease Models 

Pathologically, AD is characterized with dysfunction and degeneration of mainly 

cholinergic neural circuits, leading to progressive loss of memory, resulting in dementia 

and eventually death (Ribotta, 2001).  The progression of the disease is described in two 

stages: mild cognitive impairment (MCI) and AD. MCI represents the preclinical stage of 

AD. Although clinical diagnosis of MCI is not a necessary precursor to dementia, it 

serves as a risk factor of dementia progression (Health Quality Ontario, 2014). Patients 

with MCI have an increased risk of developing dementia. About one-third of patients 

diagnosed with MCI develop dementia within 5 years. Studies have shown that around 

80% of progressed MCI patients convert to AD after 6 years of follow-up (Lopez, 2013). 

There are three phases of AD, with each stage of the disease progressively worsening as 

the dementia spreads throughout the brain (Figure 2). The medial temporal lobes 

(primarily hippocampus and entorhinal cortex) are typically the first location to 

demonstrate atrophy, and remain the most severely affected region as illness progresses. 

This atrophy continues to spread to the temporal and parietal association cortices, with 

very little left of the primary sensory and motor cortices by the late course of the disease 

(McGinnis, 2012). Early stage AD may present itself with loss of memory or recent 

events and impaired judgement. These changes become more marked in moderate stage 

AD, in which one may experience delusions and lose orientation of place or time. Within 

a decade of initial onset, late state AD presents itself with pronounced memory loss of 

familiar people and even basic abilities, including how to self-feed, speak, or urinate. 
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People in the late stage of AD require assistance with all aspects of personal care and are 

often placed in nursing homes (Sloane et al., 2002).  

 

 

 

 

 

 

 

 

 

 

AD may be broken down into subcategories by age of onset and genetic heritability, as 

shown in Figure 3. Accounting for between 1-5% of all AD cases, EOAD occurs in 

individuals younger than 65 years of age. The remainder of AD cases affect individuals 

older than 65 years, known as late-onset AD (LOAD) (McGinnis, 2012). Furthermore, 

there are two genetic manifestations of AD: familial and sporadic. Though the 

progression of dementia in these subgroups are the outwardly the same, familial AD is 

caused by heritable genetic mutations while sporadic AD is due to an accumulation of 

age-related processes. The underlying cause of AD remains incompletely understood. 

However, a number of hypotheses aim to explain its origins.  

 

 

 

 

Figure 3. Subtypes of Alzheimer’s Disease (AD). Types of AD include early onset, late onset, familial, and sporadic. 

The disease is divided into categories based on age of onset and heritability. 

Alzheimer’s 
Disease

Age of 
Onset

Early Onset Late Onset

Heritability

Familial Sporadic

Figure 2. Stages of Alzheimer’s Disease (Seniordirectory.com). Stages of Alzheimer’s Disease include 
mild cognitive impairment and Alzheimer’s. Alzheimer’s disease progresses in 3 stages: mild, moderate, 

and severe. 
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The Amyloid Cascade Hypothesis 

The most dominant explanation of AD pathogenesis is explained by the Amyloid 

Cascade Hypothesis, proposed by John Hardy and David Allsop in 1991. This hypothesis 

explains that neuronal death and cognitive impairment is attributed to build-up of β-

amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) (Figure 4). (Folch et al., 2016). 

 

 

 

 

 

 

 

 

 

 

Aβ is a 39-42 amino acid peptide that comes from neural cell membranes. Aβ exists in 

two isoforms (Aβ40 and Aβ42), derived through the cleavage of an amyloid precursor 

protein (APP) by β and γ secretases (Hu et al., 2007). The Aβ deposits, specifically Aβ42, 

primarily cause neuronal dysfunction in the basal forebrain, cortex, hippocampus and 

amygdala (Ballard et al., 2011); (Winner et al., 2011). Small oligomers of Aβ42 may be 

more toxic than mature fibrils because they can block cell-to-cell signaling. The 

processing of APP to Aβ amyloid plaques, resulting in neuronal death is depicted in 

Figure 5. 

Figure 4. Comparison of a normal brain and a brain affected by Alzheimer’s Disease (Pescosolido et al, 2014). 
Amyloid plaques (abnormal clusters of protein fragments) build up between nerve cells, whereas neurofibrillary 

tangles made up of Tau protein grow inside neurons. 
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Figure 5. Amyloid Hypothesis (Ballard et al., 2011). Aβ=amyloid β. APP=amyloid precursor protein. APP is 

processed into Aβ, which accumulates inside neuronal cells and extracellularly, where it aggregates into plaques. 

Aβ deposits are noted to induce neuronal cell death, but the pathway of 

neurodegeneration is unclear. In normal metabolism, Aβ levels are regulated by proteases 

including neprilysin, insulin degrading enzyme, and angiotestin converting enzyme I 

(Folch et al., 2016). However, these Aβ-degrading enzymes may be imbalanced in 

subjects with AD, thereby reducing clearance from the brain. This imbalance may be due 

to genetic mutations or age-related oxidative stress of Aβ-degrading enzymes. 

Additionally, Aβ may accumulate in AD brains due to endosomal enlargement (Cataldo 

et al., 2014). 

The Amyloid Cascade Hypothesis holds that toxic levels of Aβ may contribute to the 

formation of neurofibrillary tangles (NFTs) (Ballard et al., 2011). These NFTs are 

composed of hyperphosphorylated protein tau. Tau is a microtubule associated protein 

that stimulates tubulin to assemble microtubules in the brain, promoting neurite extension 

and stabilization. Tau normally exists in 6 different isomers, each created by alternative 

splicing of tau mRNA. All six isoforms exist in an adult human brain. However, altered 

proportions of tau isoforms are observed in patients with neurodegenerative diseases, 

including AD (Gong and Iqbal, 2008).  

The overexpression of tau is due to hyperphosphorylation by various kinases, including 

CDK5, GSK3β, Fryn, stress-activated protein kinases JNK and p38, and mitogen-
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activated kinases ERK1 and ERK2 (Folch et al., 2016). Comparisons of control and AD 

autopsies reveal phosphorylated tau 3-4 times more than in normal brains. Although tau 

is a soluble protein, abnormally hyperphosphorylated tau promotes its polymerization, 

causing insoluble aggregates. The abnormal tau monomers combine to form oligomers, 

which then combine into insoluble paired helical filaments which form insoluble 

neurofibrillary tangle (NFT) aggregates (Folch et al., 2016). These NFTs can then disrupt 

the structure and function of a neuron and spread to other parts of the brain (Ballard et al., 

2011). Figure 6 depicts the disintegration of microtubules via tau hyperphosphorylation 

as result of AD. 

Figure 6. Illustration of neurofibrillary tangles in Alzheimer’s Disease (Cruchaga et al., 2010). Tau 

hyperphosphorylation causes microtubule disintegration within neurons, leading to accumulation of neurofibrillary 

tangles (NFTs). When NFTs form, brain cells die and release tau. 

Though the triggers for increase Aβ differ between familial and sporadic AD, increased 

levels contribute to both forms of the disease. Familial AD is generally caused by 

mutations in the APP processing genes. On the other hand, sporadic AD seems to act 

independently from APP gene mutations. Instead, sporadic AD appears to be caused by 
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the imbalance of Aβ production and clearance (Pohlkamp et al., 2017). Figure 7 below 

illustrates the multiple factors described by the Amyloid Cascade Hypothesis.  

 

 

 

 

 

 

 

Figure 7. The Amyloid Cascade Hypothesis - Modified (Armstrong, 2011). Updated version of the Amyloid 

Cascade Hypothesis where Aβ: β-amyloid, APOE: apolipoprotein E, APP: amyloid precursor protein, PSEN1/2: 

presenilin genes 1 and 2, NFTs: neurofibrillary tangles, and SPs: senile plaques. 

The Neuroinflammatory Hypothesis 

In addition to the Amyloid Cascade Hypothesis, recent data from preclinical and clinical 

studies suggest that the immune system plays a role in the pathogenesis of AD. The 

Neuroinflammatory Hypothesis is based on the premise that damage to the central 

nervous system (CNS) induces a chronic inflammatory reaction that leads to cell damage 

and neurodegenerative disease (Morales et al., 2014). Damage or injury to the CNS 

causes an acute inflammatory response in which glial cells, i.e., microglia and astrocytes, 

are activated. Although glial cells play a role in the removal of Aβ plaques, 

overactivation from constant damage signals may lead to neuroinflammation and neural 

death. In fact, marked astrogliosis (abnormal increase in astrocytes) has been found in 

post-mortem samples of AD affected brain samples.  

The presence of the persisting damage may trigger an inflammatory condition in which 

feedback loops between neurons and glial cells lead to neurodegenerative disease. In 

individuals with AD, the presence of Aβ and NFTs produce high expression of pro-

inflammatory cytokines, prostaglandins, and nitric oxide synthase, which contribute to a 



13 
 

state of perpetual stress and eventually neuronal death (Folch et al., 2016). Figure 8 

below depicts the mechanism of the Neuroinflammatory Hypothesis. 

 

 

 

 

 

 

 

 

 

 

Figure 8. The Neuroinflammatory Hypothesis (Morales et al., 2014). By sensing signals of damage or injury, 

astrocytes and microglia suffer a gradual activation process, leading to morphological changes and secretion of pro-
inflammatory elements (i.e., cytokines, cytotoxic elements, ROS). The constant exposure of astrocytes and microglia 

eventually trigger neuronal death. 

Several neurodegenerative disorders, including AD, have been associated with 

modification of glial cell activation in the brain, inducing a neuroinflammatory response 

and thus neuronal cell death. Tau aggregates have been shown to activate microglia, 

which release pro-inflammatory cytokines, causing a circuit of constant 

neuroinflammation. Table 1 below indicates the role of the specific cytokines involved in 

neurodegeneration and AD.  

 Table 1. Pro-inflammatory Elements in Neuroinflammation (Morales et al., 2014). 

Pro-inflammatory elements secreted by astrocytes and microglia during the process of neuroinflammation.  
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Moreover, epidemiological studies have established a link between non-steroidal anti-

inflammatories (NSAIDs) and reduced risk of AD (Morales et al., 2014). Anti-

inflammatory treatments will be discussed further in Treatment. 

Neurotransmitter Systems and AD 

There are other pathologies associated with various neurotransmitter systems and the 

development of AD. AD often coexists with the presence of Lewy bodies (aggregations 

of protein alpha-synuclein) and cerebral amyloid angiopathy (CAA) (Aβ in the walls of 

small arterioles) (Ringman et al., 2016). Another component of AD pathology is its 

association with declines in various neurotransmitter systems. These include a reduction 

in acetylcholine production and an excess of glutamate activity (Casey et al., 2010). 

Additionally, the Golgi apparatus and related secretory pathways have also been 

established to play a role in the neuropathology of AD. It has been found that the size of 

the Golgi apparatus in the vertical limb of the diagonal band of Broca is more 

pronounced in patients with AD (Hu et al., 2007). This finding may be helpful for future 

efforts in the early diagnosis and prevention of AD. 

The Blood Brain Barrier 

In both aging and AD, the body’s capacity to eliminate toxic compounds greatly 

decreases. The barriers of the brain, including the blood brain barrier (BBB) and blood 

cerebrospinal fluid barrier, are targets of the disease. In normal aging, permeability of the 

brain barriers increase, reducing the brain’s ability to be rid of toxic metabolites. The 

BBB is constituted of various extracellular matrix proteins, forming the neurovascular 

unit (NVU), the functional unit of the BBB. The NVU’s role is to control the homeostasis 

and microenvironment of the brain, complemented by transport systems such as ion 

channels, pumps, receptors, and transporters. The dysfunction of the NVU has been 

proposed to be causative in AD development, due to reduced Aβ clearance from the brain 

(ElAli and Rivest, 2013). The accumulation of Aβ peptides in the brain can result from 



15 
 

their increased production as well as a decrease in excretion through the brain barriers 

(Figure 9). 

 

 

 

 

 

 

 

 

 

Figure 9. The blood-brain-barrier in Alzheimer disease (Weiss et al., 2009). In healthy condition (right), Aβ 

amyloid peptide is transported to brain by the receptor for advanced glycosylation products (RAGE) and cleared from 

the brain to the blood by LDL-Receptor-Proteins (LRPs). In Alzheimer's disease (left), these transport systems are 

impaired. RAGE is overexpressed and the expression of LRPs is decreased, leading to the accumulation of Aβ in the 

brain. 

Various transporter systems are responsible for the flux of Aβ through the BBB. Animal 

studies reveal that the receptor for advanced glycation end products (RAGE) seems to 

contribute to Aβ accumulation in aging. Additionally, the low-density lipoprotein 

receptor-related protein 2 (LRP-2) has been found to decrease with age, supporting 

decreased Aβ clearance from the brain (Marques et al., 2013).  

Epidemiology 

Modifiable Risk Factors 

AD prevalence varies among a wide range of risk factors. There is sufficient evidence to 

suggest that some modifiable risk factors contribute to dementia in late life. Some of 

these risk factors are potentially modifiable, including cardiovascular risk factors, 

psychosocial risk factors, and health behaviors. A 2010 systematic review published by 

the US National Institute of Health highlighted risk factors most highly associated with 

increased risk of cognitive decline or AD. These factors included diabetes mellitus, 

present smoking, depression, cognitive inactivity, physical inactivity, and poor diet 

(Barnes and Yaffe, 2011). Smoking, hypertension, and diabetes between the ages of 40-
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44 years is associated with a 20-40% increased risk of dementia in old age (Kotze and 

van Rensburg, 2012). Patients with Aβ plaques have been found to have higher lipid 

measurements, including cholesterol and triglycerides, suggesting the association of 

abnormal lipid metabolism and AD pathology. Interestingly, possession of the APOE-ε4 

gene, a risk factor for developing LOAD, increases the risk of coronary heart disease by 

40% (Kotze and van Rensburg, 2012). Thus, there is evidence of overlap between 

modifiable risk factors and the occurrence of AD. 

In 2011, Barnes and Yaffe published a review aiming to summarize the evidence related 

to each of these risk factors and the projected effect of risk factor reduction on the 

prevalence of AD. Using systematic reviews and meta-analysis, population attributable 

risk (PAR) was calculated for each risk factor, both worldwide and within the US. PAR is 

the proportion of people in a population the disease that can be attributed to a given risk 

factor.  PAR is calculated using the Levin formula: 

 

Where PRF is the population prevalence for the risk factor and RR is the relative risk. 

Their findings suggest that half of AD cases worldwide were potentially attributable to 

modifiable risk factors. However, the Levin formula does have limitations. One limitation 

is that PAR estimates are calculated by assuming there is a causal relationship between 

each risk factor and the disease prevalence. It is important to remember that each of the 

risk factors summarized are potential contributors of the disease. 

According to the statistical analysis conducted by Barnes and Yaffe, low education 

contributed to the largest proportion of AD worldwide. Several retrospective studies have 

established declining dementia prevalence in specific cohorts since 1970 due to 

improvements in educational attainment (Baumgart et al., 2015). This was followed by 

smoking. The third largest risk factor was physical inactivity. Depression is the fourth 

most significant risk factor. Lastly midlife cardiovascular risk factors, including obesity, 

hypertension, and diabetes, contribute to substantial AD cases worldwide, based on the 

Levin formula (Barnes and Yaffe, 2011).  



17 
 

Follow-up studies by other researchers have shown that treatment of hypertension may 

decrease the risk of AD by 50%. Moreover, a recent meta-analysis demonstrated that 

individuals with MCI and diabetes were more likely to progress to AD than those without 

diabetes (Baumgart et al., 2015). Figure 10 below summarizes the strength of risk factor 

evidence on AD, according to the National Institute of Health.  

 

 

 

 

 

 

 

 

 

Figure 10. (Baumgart et al., 2015). Strength of evidence on risk factors for cognitive decline calculated using the 

Levin formula. 

Thus targeting modifiable risk factors may aid in the prevention of AD. According to the 

PAR study, a 10-25% reduction in all seven risk factors could prevent up to 3 million 

cases worldwide every year. The most effective strategy to reduce the risk of developing 

AD may require addressing multiple risk factors simultaneously. This multivariate 

approach was tested by the Finnish Geriatric Intervention Study to Prevent Cognitive 

Impairment and Disability (FINGER), which resulted in overall improvement of 

cognitive performance and executive functions (Baumgart et al., 2015). Likewise, the 

Alzheimer’s Association believes there is sufficient evidence to conclude that regular 

physical activity and management of cardiovascular risk factors, as well as a healthy diet 

and cognitive training, may reduce the risk of dementia and AD in late life (Alzheimer’s 

Association, 2016).  
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Genetic Epidemiology  

Although environmental factors play a role in the pathophysiology of the disease, about 

70% of AD risk is attributed to genetics (Ballard et al., 2011). The heritability, or 

proportion of phenotypic variance contributed by genetic factors, of AD is remarkably 

heterogeneous and complex. Although familial AD is characterized by classic Mendelian 

inheritance, loci for sporadic late-onset AD are difficult to identify due a complex pattern 

of inheritance (Figure 11). 

 

 

 

 

 

 

 

Figure 11. Genetic components of Alzheimer’s Disease (AD) (Simone et al., 2015). Familial AD is 

caused by mutations of APP (amyloid processing gene), PSEN1 (presenilin 1) and PSEN2 (presenilin 2). 

Sporadic AD is caused by many genetic variants. 

The rare, familial form of AD is well understood, known to be inherited as rare 

autosomal-dominant mutations in three genes related to amyloid processing: APP, 

PSEN1, and PSEN2 (Lord et al., 2014). Specific point mutations of APP are noted in rare 

examples of autosomal dominant early-onset familial AD (Schmechel et al., 1993). While 

these genes are located on three different chromosomes, they share a common 

biochemical pathway; the altered production of Aβ leading to an overabundance of Aβ42, 

eventually leading to neuronal cell death and dementia (Betram and Tanzi, 2005). More 

than 160 mutations occur in these three genes have been reported to cause early onset 

AD. Although these autosomal dominant chromosomal mutations account for less than 

5% of total AD patients, inheritance of any of these mutations results in complete 

penetrance (Ballard et al., 2011); (Sloane et al., 2002). Moreover, those inheriting a 

mutation of the PSEN2 have a 95% chance of developing the disease. To date, autosomal 

dominant AD mutations can be seen in Table 2 below.  
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Table 2. Autosomal dominant AD mutations (Ringman et al., 2016). 

 

 

 

 

 

 

 

 

 

However, the majority of patients (99%) acquire sporadic late-onset AD (LOAD), at age 

65 or older, for which the genetic components much more complex and less understood. 

To identify these variants, a variety of methods have been used. These include genome-

wide linkage studies (GWLS), gene association studies, meta-analysis of linkage and 

gene association studies, GWAS, and whole genome/exome sequencing (Naj et al., 

2016). Hundreds of genes have been tested for LOAD association. Out of these variants, 

few have been replicated and only one has gained wide acceptance, the ε4 allele of the 

apolipoprotein E gene (APOE-ε4), with Bayes Factor >50.  

The APOE gene is associated with the reduced ability to clear Aβ from the brain by 

binding to Aβ. APOE contains three allelic variants (ε2, ε3, and ε4), encoding for 

different isoforms (ApoE2, ApoE3, and ApoE4) (Cauwenberghe et al., 2016). In 

comparison to individuals with APOE genotype ε3/ ε3, those with a single copy of the ε4 

allele have 5-fold risk of developing LOAD. Moreover, those with two copies have an 

estimated 20 fold increased risk (Simic et al., 2016). However, although APOE-ε4 is a 

risk factor for AD, it is not necessary or sufficient to cause the disease. Roughly only 

27% of individuals with LOAD have this genotype. Up to 50% of individuals with AD do 

not carry the APOE-ε4 allele (Cauwenberghe et al., 2016). Thus, a large portion of AD 

heritability remains unexplained and remains a driving force for many years of research 

(Lord et al., 2014). Although APOE-ε4 has been found to be the most well established 

52 cases from the National Alzheimer’s Coordinating Center were included for 

whom autosomal dominant AD mutations were verified. 
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risk factor for late-onset AD, other genes have been found to be associated with the late-

onset AD phenotype. GWAS studies have laid the foundation for meta-analysis studies 

that have revealed up to 20 LOAD variants.  

Currently, the top nine most highly-associated susceptibility genes for developing LOAD, 

after APOE, are listed on Alzgene.org. This can be viewed in Table 3 below. This 

ranking is based on meta-analysis results using P-value and Bayes factor (BF) to 

determine association with LOAD development. Ranked from highly associated to least 

associated LOAD susceptibility factor is BIN1 (BF = 23.4) that encodes several isoforms 

of nuclear proteins, CLU (BF = 20.1), encoding for apolipoprotein J, ABAC7 (BF = 18.8), 

CR1 (BF = 18.1), PICALM (BF = 17.3), MS4A6A (BF = 8.7), CD33 (BF = 7.7), MS4A4E 

(BF = 6.9), and CD2AP (BF = 6.6). Illustrated below is the ranking of polymorphisms 

from Algene.org, a database that reviews published genome-wide association studies and 

meta-analyses relating to Alzheimer’s Disease.  

Table 3. Polymorphism ranking based on genetic association studies with late onset AD. 

 

 

 

 

 

 

 

In the effort to identify a greater portion of genetic risk factors contributing to LOAD, a 

two-staged meta-analysis by Lambert et al. performed on four GWAS data sets, revealed 

11 new loci for LOAD susceptibility. Prior to this meta-analysis, 9 genetic susceptibility 

factors for LOAD risk had been identified, including ABCA7, BIN1, CD33, CLU, CR1, 

CD2AP, EPHA1, MS4A6A–MS4A4E and PICALM. The GWAS examined were 

This data was received from 320 meta-analysis performed using 1,395 studies examining 695 

genes and 2973 polymorphisms. Only meta-analysis results with P-values <0.00001 are displayed 

in this table. Accessed 3/13/2017 on Alzgene.org. 
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conducted by four consortia: Alzheimer’s Disease Consortium (ADGC), CHARGE, 

EADI, and GERAD. In addition to the APOE locus, 19 other genomic regions reached 

genome-wide significance in the combined stage 1 and 2 analysis. Of these 19 genomic 

regions, 11 were found to be associated with AD pathology (Lambert et al., 2013). 

These variants were verified in future large scale GWAS and by the International 

Genomics of Alzheimer’s Project. An additional variant found included the 

SLC4A4/RIN3 genes, the first involved in brain expression and the second, a known 

interactor of BIN1 gene product (Cauwenberghe et al, 2016). Table 4 below shows at 

least 20 genetic risk loci for LOAD development reaching genome-wide significance.  

Table 4. Overview of AD susceptibility loci defined by GWAS and meta-analysis (Cauwenberghe et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This summary includes 20 genetic variants, its chromosomal location, position and closest gene, described OR, meta 

P-value, and P-value data for each LOAD susceptibility loci.  
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The merit of such risk factor studies is the elucidation of the pathways involved in the 

disease. Although a number of these variants are related with Aβ or tau, many of these 

GWAS-identified genes are associated with cholesterol/lipid metabolism, immune 

system/inflammatory response, or endosomal vesicle cycling (Cauwenberghe et al., 

2016). Table 5 below depicts and overview of the GWAS AD-susceptibility genes sorted 

by function and properties. 

Table 5. Overview of the single-locus AD-susceptibility genes identified by GWAS and meta-analysis: function 

and characteristics (Cauwenberghe et al., 2016). 

Diagnosis and Detection 

The definitive diagnosis of AD can only be made post-mortem via microscopic analysis 

of brain tissue. However, probable diagnosis of AD is presently possible. The most used 

clinical tool for diagnosis of AD utilize the NINCDS-ADRDA criteria. Proposed by the 

National Institute of Neurological and Communicative Disorders (NINCDS) and the 

Alzheimer’s Disease and Related Disorders Association (ADRDA), these criteria require 

the presence of cognitive impairment confirmed by neuropsychological testing. However, 
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there may not be any other comorbid diseases capable of contributing to dementia if a 

diagnosis of probable AD is to be made. Patients can be diagnosed with MCI if they 

exhibit cognitive decline, evidenced by neuropsychological tests. Subjects with MCI are 

at risk for developing AD (Alzheimer’s Association, 2016). 

The ability to distinguish between AD and other dementias has limited accuracy, between 

23% and 88%, and remains a difficulty (Ballard et al., 2011). For example, small and 

large vessel cerebrovascular disease can cause dementia syndromes that often are 

difficult to distinguish from, and can occur concurrently with AD (Sloane et al., 2002).  

However, early diagnosis of AD may improve the medical care that affected individuals 

receive. Currently, the best classifiers for early detection include MRI, f-

fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests (Weiner et al., 2015). 

Criteria for probable AD diagnosis include presence of significant episodic memory 

impairment, neuropsychological tests, supportive neuroimaging, and biomarker evidence.  

Medical History 

To begin the process of making a clinical diagnosis of AD, a detailed history must be 

obtained from either the patient or the caregiver. This includes family medical history, 

coexisting medical issues, progression of cognitive symptoms, and current mental state. 

Ruling out other sources of dementia (e.g. medication side-effects, vitamin deficiencies, 

thyroid problems) or types of dementia (e.g. diffuse Lewy body dementia, frontotemporal 

dementia, and vascular dementia) is imperative. The inclusion of falsely diagnosed 

patients may hinder the effectiveness of clinical therapy (Olsson et al., 2016). Ruling out 

other possibilities of dementia may be conducted via obtaining medical history, 

neuroimaging, urine samples, and blood work. 

Cognitive Tests 

After a patient has been identified with having memory impairment via health and family 

history, they are given cognitive assessments. Such tests are usually used by medical 

doctors due to their inexpensiveness and global availability, in comparison to more 

technological diagnostic tests, such as PET scans or biomarkers. Cognitive tests usually 

involve a series of simple tasks and questions to assess orientation, problem-solving 

skills, memory, attention, and language (Matias de Lemos, 2012).   
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The most widely used and globally studied cognitive test within clinical screening is the 

Mini-Mental State Exam (MMSE). The MMSE utilizes a series of questions to assess the 

subject’s overall mental status out of 30 points. These questions are divided into five 

parts: orientation, registration, attention, recall, and language. A score of 20 to 24 

suggests mild dementia, 13 to 20 suggests moderate dementia, and less than 12 indicates 

severe dementia. On average, the MMSE score of a person with AD declines about two 

to four points each year. Despite its common usage, the MMSE does have several 

limitations. First, this test is sometimes misunderstood as a diagnostic test, whereas is 

actually a screening test. Second, MMSE scoring has been evaluated to be biased by 

social variables, such as age and education. Lastly, it has been found that the MMSE is 

relatively insensitive to change and disease progression due to floor and ceiling effects 

(Sheehan, 2012). 

The MMSE is often used in combination with the Alzheimer's Disease Assessment Scale 

– Cognitive sub-scale (ADAS–Cog) in clinical trials, which is based on eleven (original 

ADAS-Cog) or thirteen domains (modified ADAS-Cog). The ADAS-Cog is generally 

used to complement the MMSE because it is more sensitive to cognitive changes over 

time (Sheehan, 2012). The score is based on the weighted score of multiple cognitive 

domains. The original eleven-item scale is scored from 0-70, where higher numbers 

indicate increased cognitive impairment. Average scores for patients diagnosed with 

cognitive impairment is around 31.2. The ADAS-Cog is the preferred scoring method if 

cognition is of particular interest, despite its lengthiness (Carnero-Pardo et al., 2013) 

(Rockwood et al., 2007). Though the ADAS is widely used for diagnostic purposes, the 

ADAS-Cog exhibits a ceiling effect in MCI and mild AD patients. Clinical trials have 

shown that changes in earlier stages of AD are difficult to detect using this test 

(Silverberg et al., 2011). In addition, the ADAS-Cog has been labelled by some as having 

low sensitivity for measuring disease progression in clinical trials (Verma et al., 2015). 

The reason for its low sensitivity can be attributed to its inability to capture all domains 

of cognition. For example, in an open study of 100 AD patients, 43% of patients had 

declining ADAS-Cog scores but increased performance in at least two clinical measures 

(Rockwood et al., 2007). The modified 13-item scale includes two additional domains, 
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word recall and number cancellation, to broaden the range of symptoms consistent with 

MCI (Skinner et al., 2012). This modified version is scored out of 85. 

Other highly selected cognitive tests aiding clinicians to diagnose AD include the 

Wechsler Memory Scale, the General Practitioner Assessment of Cognition (GPCOG), 

Mini-Cog, the Memory Impairment Screen (MIS), and the Clock Drawing Test (CDT). 

Each of these tests are developed for primary care settings and takes five minutes or less 

to administer. In comparison to the MMSE, these tests are relatively free from 

educational, cultural, and language biases and do not require payment for copyrights 

(Cordell et al., 2013). However, these tests have less ability to detect MCI patients and 

have been found to have little diagnostic utility in clinical settings (Carnero-Pardo et al., 

2013). 

Neurological Imaging  

Neurological imaging has played a variety of roles in the diagnosis and treatment of AD. 

Initially, neurological imaging was used for exclusionary purposes. Computed 

tomography (CT) and magnetic resonance imaging (MRI) were the most widely used 

imaging techniques to assist in ruling out other causes of dementia. However, over the 

last four decades, the role of neurological imaging has become more centrally used as a 

tool for diagnosing AD and MCI, as well as drug discovery. We are now capable of 

detecting morphological changes in the brain over time and visualizing the molecular 

pathology of the disease. Neurological imaging can be broken down into three major 

categories: structural, functional, and molecular (Johnson et al., 2012). 

The first widely used method of detecting AD involves structural imaging of the brain. 

Structural neuroimaging aims to visualize anatomical features of the brain. MRI and CT 

scans, the most widely used mode of structural imaging, are most useful in diagnosing 

AD in cases of uncertainty (Health Quality Ontario, 2014). MRI has become the most 

used tool in the diagnosis of AD, allowing for visualization of medial temporal lobe 

atrophy, ventricular enlargement and decreased total brain volume (Ferreira and Busatto, 

2011). Although not as rapid or widely available as CT scans, MRIs are safe from 

carcinogenic effects because they do not involve ionizing radiation exposure, allowing 

patients to receive multiple scans. Due to its wide availability, safety from carcinogenic 
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effects, and time effectiveness, MRIs have become the structural imaging modality of 

choice. 

Structural MRIs are used to assess white matter loss, particularly hippocampal atrophy, 

for the clinical diagnosis and progression of AD. T1-weighted MRI are useful to 

evaluating topographic distribution due to white matter atrophy. T2-weighted MRI allow 

for tracking of signal changes on T2-weighted images (Yin et al., 2015). The medial 

temporal lobes (primarily hippocampus and entorhinal cortex) are typically the first 

location to demonstrate atrophy, and remain the most severely affected region as illness 

progresses. Compared to older controls, subjects with AD demonstrate medial temporal 

atrophy measures ranging from 77% to 92% (Small, 2002). Figure 12 depicts key 

structural differences between control and AD subjects using structural MRI.  

Figure 12. Comparable T1-weighted Coronal MRI Imaging of Control and MCI Medial Temporal Structures 
(Lindesay et al., 2010). Structural magnetic resonance imaging (MRI) in Alzheimer's disease: whole brain atrophy and 

ventricular enlargement are key features.  

Structural neuroimaging can also be used to predict future AD in patients with MCI. 

Longitudinal MRI studies have suggested that hippocampal volumes are reduced by 10% 

before receiving a clinical diagnosis of AD.  CT and MRI scans have shown a reduction 

of entorhinal volumes by 20-30% and hippocampal volumes by 15-25% in subjects with 

even mildly affected individuals (MMSE of ~24/30) (Johnson et al., 2012).  Figure 13 

below demonstrates a comparison of hippocampal atrophy between control and MCI 

subjects via T1-weighted MRI imaging.  
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Figure 13. Comparable T1-weighted Coronal MRI Imaging of Control and MCI Medial Temporal Structures 
(Ballard et al., 2011). Coronal T1-weighted coronal MRI slices perpendicular to the long axis of the hippocampus 

showing a normal sized hippocampus in a control subject and a smaller hippocampus in an MCI patient.  

Another study, by Schuff et al., aimed to evaluate the predictive value of hippocampal 

atrophy, utilizing a Markov chain approach to derive the rate of volume change over 6-12 

months in normal, MCI, and AD subjects. Schuff et al. were able to conclude that 

hippocampal atrophy rates indeed were more significant in MCI and AD subjects 

compared to cognitively normal subjects (Schuff et al., 2009). Thus, assessment of 

medial temporal atrophy via structural neuroimaging does indeed have a predictive role 

for AD. 

Along with the detection of cerebral atrophy, other benefits of structural imaging include 

its wide availability, time effectiveness, and safety. However, structural imaging does 

have its limitations. The utility of CT and MRI scans have been found to be highest in 

cases of ambiguity, such as dementia caused by vascular disease, and low for patients 

already diagnosed with AD. Furthermore, a meta-analysis concluded that although 

structural neuroimaging is useful in detecting brain abnormalities in persons with 

dementia, less than 10% of detected abnormalities lead to a change in the course of 

treatment and decision making process (Health Quality Ontario, 2014). Additionally, CT 

scans are not utilized much in clinical diagnosis of AD due to its lower special resolution 

and lack the ability to differentiate between grey and white matter (Ferreira and Busatto, 

2011; Small, 2002). Lastly, structural MRIs lack the feature of molecular specificity. In 

order to assess the molecular pathology (i.e. amyloid plaques and NFTs) of AD, 

functional and molecular imaging techniques are more useful (Johnson et al., 2012). 
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Functional neuroimaging aims to find relationships between brain area activities and 

specific mental imaging using measurements of brain function. Functional neuroimaging 

can be used to complement the diagnostic investigation of AD in the case of uncertainty. 

Widely utilized functional neuroimaging methods in AD include functional MRI (fMRI), 

single photon emission computed tomography (SPECT), and f-fluorodeoxyglucose-

positron emission tomography (FDG-PET). fMRI measures changes in blood oxygen 

levels to examine correlations in brain function. fMRI can be task-related, or acquired 

during cognitive tasks to compare how information is encoded. The test can also be 

acquired during one’s resting state to examine connectivity of brain networks. Memory 

function is carried out by a network of brain regions, known as the “default network,” 

which deactivate during cognitive tasks in normal subjects. However, several studies 

have found fMRI hyperactivity among MCI and at-risk subjects during memory trials, 

suggesting a possible compensatory mechanism (Johnson et al., 2012). 

Functional neurological imaging can also be combined with tracers to assess the 

pathology of AD. SPECT is a technique that measures brain perfusion (blood flow) via 

metabolism-dependent uptake of a radioactive tracer. PET scans with f-

fluorodeoxyglucose (FDG-PET) have shown promising results in distinguishing patients 

with AD from those with non-AD dementias by measuring glucose metabolism (Ballard 

et al., 2011). Both SPECT and FDG-PET have revealed a pattern of 

hypometabolism/hypoperfusion in the temporoparietal cortex of AD and MCI patients in 

comparison to controls (Ferreira and Busatto, 2011).  FDG hypometabolism correlates to 

atrophy of areas responsible for cognitive function, such as the “default network”, which 

are highly vulnerable to amyloid depositions (Johnson et al., 2012). Figure 14 below 

depicts FDG hypometabolism in the AD brain, in comparison to that of a control. 
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Figure 14. FDG-PET images of normal control and a patient with mild AD (Johnson et al., 2012). Transaxial 

FDG-PET images of a normal control subject and a patient with mild AD. Note severe hypometabolism (yellow and 

blue cortical regions) in association and limbic cortex.  

FDG-PET can also be used to discriminate between other forms of dementia. For 

example, when frontotemporal hypofunction is more prominent than temporoparietal 

hypofunction, a clinical diagnosis of AD may be changed (Johnson et al., 2012). 

However, significant limitations to FDG-PET is the high cost and exposure to 

radioactivity.  Despite this limitation, use of functional neuroimaging aids in reducing 

uncertainty of AD as a complement to structural imaging. 

In addition to visualizing neurostructural changes and brain activity with relation to AD 

pathology, it is now possible to view the specific molecular pathology of the disease. 

Amyloid deposition can be viewed via the use of radiotracers paired with PET imaging. 

One advance in the study of AD imaging has been the development of the in vivo 

amyloid-labelling tracer, Pittsburgh Compound-B (PIB), which binds to Aß40 and Aß42 

cortical plaques. Used with PET scans, measurement of PIB binding retention rates allow 

for visualization of AD pathology, shown in Figure 15 below. Currently, the most widely 

used ligand for cerebral Aβ imaging, PIB-PET serves as a research tool for the diagnosis 

of AD (Clifford et al., 2008).  
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Figure 15. PiB PET scan comparing brains of people with and without Alzheimer's disease. Yellow color 

indicating amyloid positivity. Photo credit: The Commonwealth Scientific and Industrial Research Organization. 

One publication evaluating the use of amyloid PET on clinically diagnosed AD patients 

revealed 96% of patients with amyloid positivity. However, the amyloid negative patients 

remained the same after 5 years, suggesting AD was not the likely cause of dementia. 

Thus, amyloid PET may be used to rule out other cases of dementia. Amyloid PET scans 

may also be used as a tool to mark the progression of MCI to AD. For instance, PIB 

neuroimaging has demonstrated more intense signals of amyloid deposition in MCI 

patients who convert to AD than non-converters (Ferreira and Busatto, 2011).  

Amyloid imaging scans serve to identify the absence or presence of amyloid deposits in 

the brain. Despite the advances in amyloid imaging, one downfall is that amyloid 

deposition is not specific to the pathogenesis of AD. For example, amyloid deposition 

can also be found in cognitively normal controls, as well as subjects with other forms of 

dementia (such as Lewy body dementia). Whereas structural MRIs and FDG-PETs would 

better serve to aid in the evaluation of AD progression, amyloid PET scans can rule out 

misdiagnosed AD subjects (Johnson et al., 2012). Despite limited use in clinical settings, 

amyloid imaging is being used as a validating biomarker tool to evaluate the success of 

AD clinical trials (Ferriera and Busatto, 2011).  

In summary, neuroimaging studies aid in the detection of preclinical AD, evaluation of 

disease progression, and clarification of underlying disease mechanisms.  The most 

utilized neuroimaging tools for the diagnosis and detection of AD in clinical settings 

include MRI, CT, FDG-PET, SPECT, and amyloid PET. Table 6 summarizes the extent 

of utility for each mode of imaging below. Each modality of imaging has different 
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strengths and limitations, but may be used to complement each other within the study of 

AD. 

Table 6. Neuroimaging modalities in patients with suspect Alzheimer’s disease (Ferreira and Busatto, 2011).   

The clinical utility of neuroimaging modalities used in patients with suspected AD. CT = computed tomography; FDG-
PET = 18F-fluorodeoxyglucose-positron emission tomography; MRI = magnetic resonance imaging; SPECT = single 

photon emission computed tomography. 

Computer-Aided Neuroimaging 

Currently structural MRIs have been the most extensively utilized diagnostic tool due to 

their accurate visualization of brain structures. Computer-based algorithms may be used 

to complement the diagnostic process. Computer-based diagnostics use algorithms to 

design classifiers that can categorize groups (e.g. MCI, AD, and cognitively normal) 

based on atrophy in medial temporal lobe structures (hippocampus, amygdala, entorhinal 

cortex and parahippocampal gyrus) (Bron et al., 2015). And so, computer-based 

diagnosis may accompany imaging and biomarker tools to diagnose presymptomatic AD, 

as well as to predict conversion of MCI to AD. 

Neuroimaging can be complemented by the use of quantitative algorithm tools, such as 

diffusion tensor imaging (DTI).  Using a strategy called tract-based spatial statistics 

(TBSS), DTI is capable of detecting white matter abnormalities within the limbic-

diencephalic network, which is affected in the earliest stages of AD, by measuring the 

diffusion of water molecules in neural tissue (Sexton et al., 2017). One recent study used 

DTI in conjunction with 3T MRI to show microstructural changes in the hippocampus of 

MCI participants that were not detected using structural MRIs. Compared to age matched 

controls, MCI participants demonstrated raised hippocampal mean diffusivity and smaller 

hippocampal volumes (Rose et al., 2006). Thus, despite its novelty, DTI may serve as a 
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sensitive complementary clinical tool to MRI for the diagnosis of AD/MCI individuals. 

However, though DTI-derived maps are less invasive and less expensive than fMRI and 

PET modalities, they remain a challenge due to their inability to gather anatomical 

information. 

Another computer-based neuroimaging technique is voxel-based morphometry (VBM), a 

technique using 3-D MRI imaging to detect differences in regional gray matter across the 

whole brain (Busatto et al., 2008). Unlike MRI and other region-of-interest (ROI) 

methods, this whole-brain approach is free of hypotheses or a priori decisions which 

reduce statistical power of analysis, allowing for a more comprehensive view of the 

brain. The VBM technique is conducted by normalizing an MRI scan into the same field, 

segmenting the image into gray matter white matter and CSF, and comparing each 

segment of gray matter voxel-by-voxel. Similar to DTI studies, VBM studies also 

identify volume decreases in the left hippocampus and parahippocampal gyrus, 

associated with conversion from MCI to AD (Ferreira et al., 2011).  

Additional computer-based diagnostic techniques employs the integration of multiple 

imaging modalities into one framework. This approach, called the Multiple Kernel 

Learning technique, has been seen to increase discrimination between clinical groups. By 

combining data from DTI and structural MRI, Ahmed et al. demonstrated increased 

classification accuracy, with 90.2% between AD and controls, 79.42% between MCI and 

controls, and 76.63% between AD and MCI (Ahmed et al., 2017). This work supports the 

idea of using multiple modalities of imaging, including both qualitative and computer-

based models, to improve the diagnosis of the disease. 

To summarize, computer-based algorithms are currently being developed to complement 

the diagnosis and prediction of AD. The benefit of such studies is that they are fully 

automated and capable of detecting quantitative differences across the whole brain. This 

may reduce human error and increase the speed during the interpretation of a diagnostic 

image (Bron et al., 2015). In addition to optimizing AD diagnostics, neuroimaging, 

biomarker, and computer-based algorithms may also be used to predict development of 
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AD in MCI patients. Taken together, each diagnostic technique mentioned may aid in 

early detection, thereby facilitating optimal treatment and delaying cognitive decline. 

Biomarkers 

Research is underway to develop biomarkers to accurately diagnose, monitor progression, 

and quantify changes in vivo with regards to AD. Over the past 25 years, three 

cerebrospinal fluid (CSF) markers have been identified and tested to increase the 

diagnostic validity of sporadic AD: total tau (T-tau), phosphorylated tau (P-tau), and Aβ42 

(Humpel, 2011, Olsson et al., 2016). Each core CSF biomarker is an indication AD 

pathology. Tau can be abnormally hyperphosphorylated at specific sites (P-tau), leading 

to the formation of neurofibrillary tangles and axonal dysfunction (Blennow et al., 2015). 

Aβ42, the least soluble peptide produced from amyloid precursor protein, is a measure of 

amyloid-beta plaques in the brain.  These biomarkers have been found to discriminate 

AD subjects from controls, as well as other dementia-related diseases, with high 

sensitivity and specificity using ELISA.  

CSF biomarker concentrations can serve as accurate markers of AD progression. 

Biomarker studies have shown that individuals with AD contain increased CSF 

concentrations of T-tau (300% higher than controls), due to cortical neuronal loss, and P-

tau (200% higher than controls), due to cortical tangle formation (Forlenza et al., 2015). 

Conversely, the concentration of Aβ42 is decreased in AD subjects due to the 

sequestration of Aβ plaques reducing the amount available for clearance in to the CSF 

(Leuzy et al., 2016). Aβ42 is on average 50% lower than in controls (Forlenza et al., 

2015). The comparison of CSF biomarker concentrations in healthy, MCI, and AD 

patients can be viewed in Table 7. 
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Table 7. Changes of the core CSF biomarkers in MCI and AD (Mao, 2012). 

 

 

 

 

Cutoff values discriminating AD from controls for each biomarker have been established 

internationally, and can be found in Table 8. T-tau increases in the CSF with age in 

healthy controls: <300 pg/mL (21-50 years), <450 pg/mL (51-70 years), and <500 pg/mL 

(>70 years). However, these concentrations are much larger for AD subjects, with a 

cutoff value of >600 pg/mL. High levels of T-tau have been found in 90% of MCI 

patients, suggesting that T-tau may be able to predict conversion to AD (Humpel, 2011). 

Subjects with AD demonstrate a cutoff value of >60 pg/mL for P-tau, compared to 

controls. Lastly, individuals with AD show a significant reduction of Aβ42, with cutoff 

values of <500 pg/mL.  

Table 8. Internationally established biomarkers in CSF used to diagnose AD (Humpel, 2011). 

 

 

 

 

 

CSF biomarker cut-off values obtained by Innogenics 96-well ELISA kits between age-matched controls and AD 

subjects, yielding combined sensitivity of 95% and specificity of 85%. P<0.001. 

Interestingly, the ratio of Aβ42/T-tau and Aβ42 /P-Tau also serve as diagnostic signatures 

and predictors of conversion from MCI to AD, as demonstrated by an ADNI cohort study 

revealing a sensitivity of 86% and specificity of 85% (Ritchie et al., 2013). 

Aβ42 = Beta-amyloid 42, T-Tau = total tau, P-Tau = phosphorylated tau, tau/Aβ42 = the ratio of tau to beta-amyloid 42. 
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The cut-off values displayed in Table 7 cannot be utilized universally to calculate 

sensitivity and specificity within clinical studies, due to biomarker concentration 

variability. Instead, sensitivity (SE) and specificity (SP) must be calculated using cut-off 

values derived from ROC (Receiving Operating Characteristics) Curves. ROC curves 

illustrate the diagnostic ability of a binary classifier system by calculating discrimination 

threshold between “control” and “diseased”. This is done by plotting the true positive rate 

by the false positive rate at various thresholds. One study by Forlenza et al. established 

cutoff values, sensitivity, and specificity of biomarkers Aβ42, T-tau, P-tau, Aβ42/T-tau and 

Aβ42/P-tau, using the aforementioned method. Using these cutoff values, it was 

determined that the best predictor of disease conversion was Aβ42 (SE = 83% and SP = 

70%) and Aβ42/P-tau (SE = 88% and SP = 78%). According to these values, a 

combination of biomarker signatures may be the most accurate predictor of AD 

conversion (Forlenza et al., 2015). 

Additionally, levels of the three core CSF biomarkers differ in subjects other forms of 

neurodegenerative disease, such as Parkinson’s, Creutzfeldt-Jakob Disease (CJD), and 

vascular dementia (VaD) (Table 9). For example, whereas cutoff values for T-tau are 

>600 pg/mL in AD subjects, these levels are dramatically increased in subjects with CJD 

(>3000 pg/mL). Levels of P-tau can also distinguish AD subjects from frontotemporal 

lobar degeneration, VaD, and Lewy Body Dementia (Humpel, 2 011). Thus the 

concentration of these three CSF biomarkers serves as a signature for AD and a 

molecular tool used to confirm amyloid pathology in clinical trials (Humpel, 2011; 

Teunissen and Parnetti, 2016).  
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Table 9. Changes in CSF biomarkers in different central nervous system diseases (Humpel, 2011). 

 

 

 

 

 

 

 

 

 

The clinical utility of neuroimaging modalities used in patients with suspected AD. CT = computed tomography; FDG-

PET = 18F-fluorodeoxyglucose-positron emission tomography; MRI = magnetic resonance imaging; SPECT = single 

photon emission computed tomography. 

In addition to the three core CSF biomarkers (Aβ42, T-tau, and P-tau), other CSF 

biomarkers have been established to have high association with AD and are deemed as 

possible candidates for clinical research. One additional CSF biomarker specific to AD 

pathology is neurogranin (Ng), a post-synaptic protein and marker of synaptic loss 

(Mattsson et al., 2016). Ng is highly expressed in the cortex, hippocampus, and amygdala 

(the regions most affected in AD). Studies reveal higher CSF Ng concentrations in AD 

patients than in controls and patients with dementia-causing disease, confirming the high 

specificity of Ng (Figure 16) (Wellington et al., 2016). 
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Figure 16. Increased CFS Ng concentrations in patients with AD (Wellington et al., 2016).  Boxplots showing CSF 

Ng concentrations across different diagnostic groups. Ng concentrations were significantly higher in the AD group 

compared to control participants. The whiskers extend to the minimum and maximum Ng data points. AD - Alzheimer 
disease; FTD - behavioral variant frontotemporal dementia; genetic AD -  those with confirmed PSEN1 mutations; HC 

- healthy controls; LBD - Lewy body dementia; MSA - multiple system atrophy; Ng - neurogranin; non-ND - non-

neurodegenerative patients with mood disorder; PD - Parkinson disease; PSP - progressive supranuclear palsy; FTD - 

speech variant frontotemporal dementia. 

In addition to the three core biomarkers (Aβ42, T-tau, and P-tau), a meta-analysis 

conducted by Olsson et al. found neurofilament light protein (NFL), a protein likely 

released from neurons during acute axonal damage, to have high association with AD 

(Figure 8) (Mattsson et al., 2016; Olsson et al., 2016). This meta-analysis also revealed 

moderate performance of neuron-specific enolase (NSE), visinin-like protein 1 (VLP-1), 

heart fatty acid binding protein (HFABP), and human cartilage glycoprotein 39 (YKL-

40). Though neither of these markers specifically reflect the pathology of AD, they could 

be useful in clinical trials for the prevention of AD (Olsson et al., 2016). The biomarkers 

performance is shown in Figure 17. 
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Figure 17. CSF biomarker performance rating in patients with Alzheimer’s disease versus controls (Olsson et 

al., 2016).  Head-to-head biomarker performance in CSF based on average Alzheimer’s disease to control ratios. 
Biomarkers shown in green are significant with good effect sizes, in purple significant with moderate effect sizes, and 

in red non-significant or signifi cant with minor effect sizes. The Alzheimer’s disease to control ratios of CSF Aβ42, 

Aβ40, and Aβ38 were inverted to allow for a clear comparison with the other biomarkers. 

Mattsson et al. tested the hypothesis that combinations of T-tau, Ng, and NFL may 

increase the diagnostic accuracy for AD. Although levels of NFL were also increased in 

MCI and AD patients, there was no correlation of NFL with amyloid positivity (Figure 

18). In fact, NFL seems to correlate with cognitive decline regardless of Aβ pathology, 

such as inflammatory disease and frontotemporal dementia. Because increased NFL 

concentration seems to be a non-specific marker of injury, further work is needed to use 

NFL as a discriminating factor in the study of AD (Mattsson et al., 2016). 

 

 

 

 

 

 

 

Figure 18. Biomarkers by diagnosis and amyloid pathology (Mattsson et al., 2016).  A–C CSF T-tau (panel A), Ng 

(panel B) and NFL (panel C) in different combinations of clinical diagnosis and Ab pathology (CN Ab-, n = 69; CN 
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Ab+, n = 40; MCI Ab-, n = 50; MCI Ab+, n = 137; AD Ab-, n = 8; AD Ab+, n = 85). Biomarker levels are 

standardized to z-scores and shown in box plots.  

In addition to CSF biomarkers, blood-based biomarkers may add value to diagnosing and 

predicting AD. Because pathology precedes onset of AD symptoms by 10 years, 

identifying biomarkers that can identify the pathology before onset of symptoms may aid 

in prevention of debilitating AD symptoms. CSF biomarkers have made the most 

progress in AD diagnostics due to the direct reflection it has of brain metabolism. 

However, CSF collection requires an invasive lumbar puncture with potential side effects 

and poses difficulty with follow-up analysis (Humpel, 2011). The potential advantages of 

blood biomarkers would include sample collection convenience, lower processing cost, 

and the ability to separate blood compartments (plasma, serum, and cellular 

compartment). Therefore, the search for blood biomarkers associated with AD is 

ongoing.  

Of the plasma and serum biomarkers reviewed, only plasma T-tau has been shown to be 

significantly elevated in AD patients compared to controls (Olsson et al., 2012). Aβ 

levels are detectable in plasma using ELISA. Nevertheless, attempts to measure Aβ 

subtypes in blood have produced inconsistent results (Anoop et al., 2010). Despite the 

potential advantages of using blood biomarkers in AD diagnosis, peripheral blood does 

not have a direct connection with the brain and may not reflect AD accurately. In 

addition, levels of components in the blood may change based on the environment, 

resulting in changes that are too dynamic (Thambisetty and Lovestone 2010). Still, the 

search for blood biomarkers may aid in a more non-invasive way of detecting AD. 

In total, biomarkers are currently used as a tool to diagnose AD and MCI, and to predict 

conversion of MCI patients to AD. T-tau, P-tau, and Aβ1-42 are CSF biomarkers that have 

yielded significant results among population studies and meta-analysis, and should be 

considered for clinical practice and clinical research (Olsson, 2016). These biomarkers 

may be used in combination for a more accurate reflection of the diagnosis. 

Presymptomatic detection of AD would facilitate the development of effective 

treatments. Therefore, there is a crucial need for research and development of other CSF 

and blood-based biomarkers. It is also necessary to further develop biomarkers more 
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specific to the pathology of AD to rule out other causes of dementia which also 

demonstrate a degree of Aβ presence. 

Treatment 

Management of AD is usually carried out through provision of safe environment with 

assistance for daily activities and personal care, nonpharmaceutical strategies such as 

social activities or exercise, symptomatic drugs, and psychoactive drugs. 

Neuropsychiatric drugs, such as antipsychotic, antidepressant, and anticonvulsive drugs, 

are commonly used to treat agitation, aggression, and psychosis in patients with 

dementia. Unfortunately, the benefits of the current drugs are moderate, and sometimes 

with serious adverse events including sedation, Parkinsonism, chest infections, edemas, 

and an increased risk of stroke and death (Ballard et al., 2011).  

Established Symptomatic Treatments 

To date, the treatments established for AD are all symptomatic in nature, aiming to 

balance the neurotransmitter disturbance occurring in the disease (Yiannopoulou and 

Papageorgiou, 2013). Symptomatic treatments for AD have been widely available since 

the mid-1990s and have been widely used (Ballard et al., 2011). Current approved 

treatments for AD include cholinesterase-inhibitors and memantine.  

Cholinesterase-inhibitors (Cis) are target the cholinergic system, in which the loss of 

acetylcholine neurons result in memory loss. All CIs work by binding to and inactivating 

cholinesterase, thereby reducing acetylcholine degradation. The three approved CIs 

include donepezil, rivastigmine, and galantamine. Systematic reviews have shown that 

these three CIs delay decline in cognitive function as measured by the AD Assessment 

Scale. Compared to a placebo treatment, patients on CIs demonstrated an average 

cognitive improvement of 2.7 points on the ADAS-Cog after 6 months of treatment 

(Yiannopoulou and Papageorgiou, 2013). Initiation of CI treatment at earlier stages of the 

disease is more favorable. However, only half of the subjects treated with CIs show 

evidence of any improvement (Casey et al., 2010). 

The other symptomatic treatment, memantine, is an N-methyl-D-aspartate (NMDA) 

antagonist that opposed the neurotransmitter glutamate. Excessive glutamate may 
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interfere with neurotransmission. Although memantine’s mechanism is very different 

from CIs, the clinical effects appear to be similar (Casey et al., 2010). Multiple 

systematic reviews comparing use of memantine to placebo have shown memantine to 

improve cognitive function in patients with moderate to severe AD after 6 months of 

treatment. There is also some evidence of additive benefits to combining CI and 

memantine treatments (Ballard et al., 2011). 

Despite its demonstrated efficacy, there remains a heavy controversy over the 

effectiveness of currently established symptomatic treatments. The amount of money 

spent on CIs and memantine exceeds $1 billion annually in the U.S. These drugs are not 

curative and do not alter the final outcome of the disease, and the benefits of treatment 

range widely from modest to drastic. Another dilemma includes the possibility of biased 

data within trials sponsored by drug companies (Casey et al., 2010).  

Candidate Disease-modifying Treatments 

The two targets for potential disease-modifying treatments of AD include Aβ and tau. 

These candidate disease-modifying treatments include Aβ inhibitors and proteinases, 

APP modulators, tau hyperphosphorylation and aggregation inhibitors, and microtubule 

stabilizers. These treatments are still in clinical stages, yet seem to produce promising 

results in the reversal of AD. 

Aβ-targeting strategies include Aβ inhibitors, Aβ proteinases, and APP enzyme 

modulators. Compounds that prevent the aggregation of Aβ plaques have shown some 

promise. The only Aβ inhibitor to have reached phase III in clinical trials, called 3APS, 

has shown disappointing results and even increased tau aggregation. Other Aβ treatments, 

including colostrinin and scyllo-inositol have been shown to reduce Aβ aggregates and 

improve cognitive performance in animal models, but without significant results in 

human trials (Yiannopoulou and Papageorgiou, 2013). In addition to Aβ inhibitors, 

amyloid may be targeted via proteinases. Since amyloid plaque degrading enzymes 

gradually decrease in patients with AD, the proteinases serve as a replacement. These 

proteinases include neprilysin, insulin-degrading enzyme, plasmin, endothelin converting 

enzyme, angiotensin converting enzyme, and metalloproteinases. However, due to lack of 

specificity, these compounds have not reached the stage of clinical development. To date, 
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the only proteinase-based treatment of amyloid to reach clinical stages target the receptor 

for advanced glycation products RAGE, but have yet to be published (Folch et al., 2016).  

As mentioned before, the overexpression and decreased clearance of Aβ is a result of 

APP cleavage. Modulators and inhibitors of APP processing enzymes, including 

secretase, have not yet been proven to be effective, due to lack of substrate specificity 

and adverse side effects. Selective 𝛾-secretase modulators (SGSM) are being developed 

to avoid the adverse effects associated with 𝛾- and 𝛽-secretase modulators. One effective 

SGSM is the microglial modulator, CHF5074, a compound understood to reduce 

inflammation, amyloid burden, and microglial activity.  In a phase II clinical trial with 

MCI patients, administration of CHF5074 resulted in improved cognitive measures and 

decreased inflammatory markers (Folch et al., 2016). Another instance of a possible 

SGSM is the naturally occurring cyclic sugar alcohol, pinitol, purportedly modulates 𝛾-

secretase activity and reduces Aβ production, while preserving Notch activity. Although 

further replication is needed, pinitol and other SGSMs may be seen as a future topic for 

AD therapy and prevention.   

Medications targeting tau include inhibitors of tau hyperphosphorylation, tau 

aggregation, and microtubule stabilizers. Tau hyperphosphorylation is caused by specific 

kinases that lead to the overexpression of tau. For example, human AD brains 

demonstrate an upregulation of a specific tau kinase, JNK3, in CSF levels and is 

associated with memory loss. Mouse models treated with SP600125, a pan-JNK inhibitor 

revealed reduced neurodegeneration and increased cognition. Inhibitors of GSK3β, 

another tau phosphorylator, are in the most advanced stages of advancement and have 

just reached phase II trials. Inhibitors of tau phosphorylation can also be attained using 

phosphatase activation. Sodium selenate, a protein phosphatase 2 activator currently in 

phase II trials in Australia, show reduction of tau phosphorylation in cell cultures and 

mouse models. Another method to reduce tau buildup is methylene blue, a compound that 

directly inhibits tau formation. A next generation version of methylene blue, TRx 0237, is 

currently being developed to not only inhibit aggregation but also to also dissolve already 

present tau aggregates (Folch et al, 2016). 
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The last technique to protect against tau toxicity is the use of microtubule stabilizers. In 

patients with AD, NFTs produce microtubule instability and neural dysfunction. As a 

result, the use of microtubule stabilizers protect against NFT’s adverse effect on 

microtubules by blocking the cell cycle in its G1 or M phase, protecting against 

depolymerization. Paclitaxel is an example of a microtubule-stabilizing drug currently in 

use to help cancer patients and considered for use towards Alzheimer’s disease (Folch et 

al., 2016). Another example is the drug Epothilone D, which has been seen to reduce 

hippocampal neural loss and axonal dystrophy in clinical trials.  

Gene Therapy and Immunotherapy 

Although recent in clinical applications, gene therapy and immunotherapy are currently 

making their way as alternatives to conventional treatments (Nobre and Pereira de 

Almeida, 2011). Currently, gene therapy directed for the neuroprotection of cholegernic 

neurons utilizing nerve growth factor (NGF) is being developed. Phase 1 clinical trials 

resulted in AD patients demonstrating improvement in the rate of cognitive decline, 

suggesting that in vivo NGF gene transfer may have a future role in the treatment of AD 

(Felgin and Eidelberg, 2007). Similar to NGF gene transfer, choligernic neurons may be 

targeted by the use of antisense RNA. Antisense RNA for acetylcholinersterase mRNA 

has shown some promise in mouse models. Other approaches of AD gene therapy involve 

targeting the genes and proteins responsible for the formation of amyloid plaques and 

NFTs using RNA interference.   

Lastly of interest in the advancing of AD gene therapy is the BCL-2 protein family. 

Studies have found that expression levels of BCL-2 family proteins, such as Bax, Bak, 

Bad, Bcl-2, Bim, Bcl-w and Bcl-x are altered in affected neurons in individuals with AD.  

A recent study by Kudo et al. reported the importance of Bax in formation of Aβ plaques 

and neuronal death. Inhibition of Bax activity through Bax-inhibiting peptide and bax 

gene knockout significantly suppresses Aβ neurotoxicity ex vivo and in vivo, indicating 

that Bax is a critical mediator of Aβ neuronal cell death. Thus, Bax may serve as a new 

therapeutic approach for the treatment of AD (Kudo et al., 2012).  
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Another field of interest in the management of AD is targeted immunotherapy, which can 

be either active or passive. Whereas active immunotherapy utilizes vaccinations with 

either Aβ42 or synthetic fragments to generate a response of antibodies against the 

antigen, passive immunotherapy utilizes antibodies to create short-term immunizations. 

Attempts for active immunity against Aβ are still in phase II of human trials. First-

generation vaccinations utilizing a synthetic full-length Aβ42 peptide resulted in 6% of 

patients developing cerebral inflammation and aseptic meningoencephalitis. Fortunately, 

a second-generation vaccine using a shorter Aβ42 peptide fragment was designed by 

Novartis. This vaccination, CAD 106, was the first to reach clinical phase II and resulted 

in an antibody response of 75% without any adverse effects.  

Passive immunizations utilize administration of monoclonal or polyclonal antibodies 

targeted against Aβ, rather than vaccinations. Animal models show that passive anti-Aβ 

immunotherapies neutralize soluble amyloid oligomers in the brain and improve 

cognitive function. Intracerbroventricular (icv) injection of anti-Aβ antibodies in mouse 

models have shown increases in synaptic plasticity in the hippocampus, reversing 

memory deficits (Thakker et al., 2009). Bapineuzumab and solanezumab are two 

monoclonal antibodies that reached late clinical trials in humans. Bapineuzumab has 

shown ability to reduce CSF P-Tau in AD patients, but is unable to improve cognitive 

function. Solanezumab suggested improved cognitive function but without statistical 

significance. Thus, for their lack of efficacy, bapineuzumab and solanezumab failed to 

phase III trials.  Other monoclonal antibodies with affinity to Aβ fibers are currently 

being investigated in patients at risk for developing AD, with patient safety as a priority.  

Potential Anti-inflammatory Treatments 

According to the Neuroinflammatory Hypothesis, AD may be a result of an inflammatory 

response initiated by Aβ or tau aggregates. Several studies have aimed to evaluate the 

role of nonsteroidal anti-inflammatory drugs (NSAIDs), anti-oxidants, and cytokine 

modulators on the symptoms of AD.  

NSAIDs have a potential role in neuroprotection by reducing the inflammatory response 

caused by microglial and astroglial cells. Epidemiological studies have established a link 

between (NSAIDs) and reduced risk of AD (Morales et al., 2014). For example, 



45 
 

Ibuprofen has shown to reduce amyloid plaque deposits in transgenic mice. Conversely, 

some clinical trials of the effect of NSAID treatment on cognitive decline in AD do not 

show clear results. For example, trials with Naproxen and Celecoxib indicate attenuation 

of cognitive decline.  

Several molecules addressing oxidative damage have been evaluated as potential 

treatments for the symptoms of AD. Some antioxidants that have been examined to play a 

role in neuroprotection include Andean Compound, turmeric, and Resveratol. Andean 

Compound is a complex mix of natural antioxidants in which the major active ingredient, 

fulvic acid, is thought to have protective properties against neurodegenerative disorders. 

One study has found that fulvic acid is able to block tau self-aggregation in vitro 

(Morales et al., 2014). Additionally, the herb turmeric which contains the compound 

curcumin, has demonstrated prevention of neuronal death in animal models. Curcumin 

has also been found to stimulate hippocampal neurogenesis in adult mice. Another 

antioxidant, Resveratrol, has been investigated for its anti-inflammatory effects and has 

been recently found to inhibit Aβ formation in vitro. This compound has other potential 

properties including cardioprotection, anticancer, and antiaging effects. Numerous 

antioxidants, have received of attention, but after investigation did not show any 

significant effects on cognition. For example, Ginko biloba, folate, vitamin B6, and 

vitamin B12 fail to show any cognitive advantages compared to the placebo groups in 

large randomized trials (Ballard et al., 2011; Yiannopoulou and Papageorgiou, 2013). 

Recent studies have shed light on the role of cytokine inhibitors to improve cognition. 

For instance, inhibition of tumor necrosis factor (TNF), which plays a role in the 

inflammatory response, has been shown to increase cognitive impairment.  Multiple 

approaches are underway to find successful treatments for AD. Table 10 below 

summarizes evidence gathered from current and emerging treatment approaches.  
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Table 10. Current and Proposed Treatment for Alzheimer’s Disease (Ballard et al., 2011). 

Results of various treatments for AD: symptomatic treatments, treatment for neuropsychiatric symptoms, and proposed 

disease-modifying agents. 
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III. Hypotheses  

Every year, millions of new cases of new AD cases are diagnosed, resulting in dementia 

and death of elderly individuals and increasing expenses of medical treatment. There 

remains a strong need for the early detection and screening of the disease as well as 

statistical evidence of biomarker specificity.  I have chosen to focus on examining the 

value of neuroimaging, selected cognitive tests, genotype and biomarkers in diagnosing, 

detecting, and predicting AD.  

My aims are in line with those of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), a collaborative longitudinal study that serves to aid researchers and clinicians in 

the development of new AD treatments and to increase the effectiveness of clinical trials. 

One of the primary goals of ADNI is the development of standardized neuroimaging and 

biomarker methods for AD clinical trials, as well as using these to measure changes 

longitudinally in control, MCI, and AD subjects.  

Based on the research gathered, I have conducted statistical analyses to test the following 

hypotheses: 

1. Temporal lobe atrophy (specifically hippocampal volumes) significantly 

correlates with progression of AD and serves as a marker for measuring 

progression of AD within controls, MCI, and AD subjects. This will be assessed 

by evaluating the statistically significant difference of hippocampal volume 

between cognitive groups over time (Schuff et al., 2009). 

2. There is a statistically significant correlation between hippocampal atrophy, 

cognitive testing scores (MMSE and ADAS-Cog13) between groups over time. 

Because the ADAS-Cog 13 includes domains for testing various types of 

cognition, it is expected that this test will demonstrate more sensitivity to 

hippocampal volume changes over time.  

3. The APOE gene is associated with the reduced ability to clear Aβ from the brain. 

It has been found that individuals with a single copy of the ε4 allele have 5-fold 

risk of developing LOAD. Subjects who are APOE-ε4 positive subjects will 

reflect greater disease progression than APOE-ε4 negative subjects (Shaw, 2009). 
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This will be assessed by evaluating longitudinal hippocampal loss by genotype, as 

well as the correlation of having a positive genotype to receiving differential 

diagnoses of AD. 

4. The three core CSF biomarkers (Aβ42, T-Tau, and P-tau) as well as combinations 

(Aβ42/T-tau and Aβ42 /P-Tau) will yield high sensitivity, specificity, and 

predictive value in the diagnosis of AD.  

IV. Methods 

Data Source 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a collaborative longitudinal 

study that serves to aid researchers and clinicians in the development of new AD 

treatments and to increase the effectiveness of clinical trials. ADNI researchers seek to 

measure the progression of MCI and early AD by identifying relationships between 

neuroimaging, biomarker, and cognitive assessment data over time. The identification of 

analyses with high statistical power of detection would act as tools for earlier and more 

accurate diagnosis of AD, allowing for a slowing of its progression. Clinical, 

neuroimaging, genetic, and biomarker data are collected from subjects from over 50 sites 

in North America. ADNI is organized into eight cores; each with separate 

responsibilities. The cores are comprised of the Clinical Core, the MRI and PET Cores, 

the Biomarker Core, the Genetics Core, the Neuropathology Core, the Biostatistics Core, 

and the Informatics Core. The ADNI study has been conducted in 4 phases: ADNI1 (5 

years from October 2004), ADNIGO (2 years from September 2009), ADNI2 (5 years 

from September 2011), and the ADNI3 (6 years from September 2016). New participants 

are recruited in each phase of the study, while existing participants are tracked over time 

to monitor progression. An ADNI Data Use application and agreement were sent and 

approved of.  

Data discussed in this report were obtained from the freely available ADNI database 

(www.adni.loni.usc.edu). Datasets downloaded include the ADNIMERGE package (on 

September 23rd, 2017), which includes all categories of results from each phase, minus 

genetic (SNP and biomarker) data. Biomarker data was downloaded also from the ADNI 

database. This dataset, titled “UPENNBIOMK9,” includes the UPENN CSF Biomarkers 
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Elecsys data, which shows Aβ42, P-tau, and T-tau results for ADNI1, ADNIGO, and 

ADNI2 subjects. Roche Elecsys immunoassays were performed in a series of 36 runs for 

each biomarker test. A total of 2401 samples were included in this analysis (Shaw et al., 

2017). Technical limits, statistical adjustments and other details may be found at 

(www.adni.loni.usc.edu). The data needed for inclusion within the biomarker test were 

the three CSF biomarker concentrations (AB42, P-tau, and T-tau), baseline diagnoses, 

and differential diagnoses. Diagnoses data were matched from within the ADNIMERGE 

dataset. 

Subjects 

From the ADNIMERGE package, subjects from only the ADNI1, ADNIGO, and ADNI2 

phases were selected. The ADNI3 cohort was excluded because this study is ongoing 

until 2022 and results will be inconclusive. Each ADNI phase consists of subjects given 

baseline diagnoses of the following: cognitively normal (CN), significant memory 

impairment (SMC), early MCI (eMCI), late MCI (lMCI), or AD. Subjects were excluded 

if they had any history of coexisting neurological disease, brain trauma, or psychoactive 

drug use (http://www.adni-info.org/Scientists/doc/ADNI_review_update2013-

manuscript.pdf). Subjects were given a baseline diagnosis of CN if they show no signs of 

depression, MCI, or dementia. Diagnosis of SMC indicates that the subject scored within 

normal range on cognitive tests, but exhibited “slight forgetfulness.” MCI subjects were 

given a diagnosis of eMCI or lMCI as determined by the Wechsler Memory Scale 

Logical Memory II. Lastly, subjects diagnosed as AD met the NINCDS/ADRDA criteria 

for probable AD (http://adni.loni.usc.edu/study-design/background-rationale/). Group 

specific inclusion criteria for each cohort can be found below in Table 11. Further 

screening information can be found within procedure manuals specific to the cohort at 

http://adni.loni.usc.edu/methods/documents/. 

 

 

 

 

http://adni.loni.usc.edu/methods/documents/
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Table 11. Group Specific Inclusion Criteria. 

Baseline 

Diagnosis 

Cohort Criteria 

CN 

(Cognitively 

Normal) 

ADNI 

1/GO/2 
 Absence of impairment of cognition or daily function. 

 Normal memory function determined by Wechsler 

Memory Scale (delayed paragraph recall) II (maximum 

score is 25). 

 Mini-Mental State Exam Score between 24-30. 

 CDR = 0, Memory Box = 0 

SMC 

(Significant 

Memory 

Concern) 

ANDI 2  Absence of impairment of cognition or daily function 

but with concern of slight forgetfulness. 

 Normal memory function determined by Wechsler 

Memory Scale (delayed paragraph recall) II (maximum 

score is 25). 

 Mini-Mental State Exam Score between 24-30. 

 CDR = 0, Memory Box = 0 

eMCI (Early 

Mild 

Cognitive 

Impairment) 

ADNI 

GO/2 
 Memory complaint by subject or study partner. 

 Abnormal memory function determined by Wechsler 

Memory Scale (delayed paragraph recall) II (maximum 

score is 25).  

 Mini-Mental State Exam Score between 24-30. 

 CDR = 0.5, Memory Box at least 0.5 

 General cognition and functional performance does not 

meet criteria for probable AD. 

MCI (Mild 

Cognitive 

Impairment) 

ADNI 1 

lMCI 

(Impairment) 

ADNI 

GO/2 

AD 

(Alzheimer’s 

Disease) 

ADNI 

1/GO/2 
 Memory complaint by subject or study partner. 

 Abnormal memory function determined by Wechsler 

Memory Scale (delayed paragraph recall) II (maximum 

score is 25). 

 Mini-Mental State Exam Score between 20-26. 

 CDR = 0.5, Memory Box = 1.0 

 NINCDS/ADRDA criteria for probable AD. 

Diagnoses per cohort including the following criteria: memory complaint, cognitive impairment, daily function 

impairment, memory function determined by Weschler Memory Scale II, MMSE score, CDR score, and probable AD 

criteria (http://adni.loni.usc.edu/study-design/background-rationale/). 

http://adni.loni.usc.edu/study-design/background-rationale/
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All ADNI subjects underwent a series of neuropsychological tests. Tests were given at 

baseline, as well as every few months to monitor the progression of their cognitive states. 

These cognitive tests include 1) the MMSE, as a global measure of mental status 2) the 

ADAS-Cog (11 and 13 item), the most frequently used battery of cognitive tests in 

clinical trials 3) the Clinical Dementia Rating Scale (CDR), which rates the severity of 

the dementia, 4) the Functional Activities Questionnaire, which serves as a measurement 

of independence and 5) the Geriatric Depression Scale (GDS), a self-report tool used to 

identify depression and 6) the Wechsler Memory Scale, designed the measure different 

memory functions (http://www.adni-info.org/Scientists/doc/ADNI_review_update2013-

manuscript.pdf). 

All subjects included were also tested for APOE genotyping and were given a series of 

cognitive tests each time they received 1.5T or 3T MRI scans, for measuring progression. 

ADNI1 cohorts received imaging including MRI and FDG-PET. ADNIGO/2 participants 

received MRI and FDG-PET, as well as fMRI and imaging for microhemorrhage 

detection.  

The ADNI1 cohort consisted of 200 elderly controls, 200 MCI and 400 AD subjects. 

ADNI1 subjects moved to the ADNIGO phase at month 36, 48, or 60.The ADNIGO 

phases consisted of 208 subjects from ADNI1 as well as 200 new MCI recruits. Lastly, 

the ADNI2 cohort included of 258 ADNI1 and 115 ADNIGO subjects, plus new subjects 

(150 elderly controls, 250 MCI, and 150 AD). Subjects willing to receive lumbar 

punctures were tested for CSF biomarker analysis, including Aβ1-42, T-tau, and P-tau. 

Biomarker analysis was conducted by the University of Pennsylvania School of 

Medicine, which collects DNA, blood, urine, and CSF samples from all ADNI sites.  

Of the subjects within the ADNI cohorts, subjects were excluded if they did not meet all 

of the following criteria: 1) APOE genotyping, 2) MMSE at each 6 month period for 24 

months, 3) ADAS-Cog at each 6-month period for 24 months, and 4) hippocampal 

volume scores at each 6 month period for 24 months. Month 18 for each subject was also 

excluded due to lack of hippocampal volume scores globally. The subjects used for 

biomarker analysis were different that those selected for the other tests. The data needed 
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for inclusion within the biomarker test were the three CSF biomarker concentrations 

(AB42, P-tau, and T-tau), baseline diagnoses, and differential diagnoses. 

Data Analysis  

Datasets downloaded include the ADNIMERGE package, which includes all categories 

of results from each phase, minus genetic (SNP and biomarker) data. Subjects were 

excluded if they had missing data (i.e. blank APOE, MMSE, ADAS, or MRI fields). The 

demographics and clinical data at baseline were calculated in Excel 2016, using the 

descriptive statistics feature of the Analysis ToolPak add-in. The data from Excel was 

imported and analyzed in SPSS Statistics GradPack (Version 23.0). 

The diagnostic value of hippocampal atrophy over time was explored within SPSS via 

analysis of variance (ANOVA). First, baseline hippocampal volume was regressed 

against baseline diagnoses via univariate general linear model at a 95% confidence 

interval with age as a covariate. The equality of variances were tested between groups 

using the Levene’s Test of Equal Variances, where p > 0.05 would result in the 

conclusion that variances are equal. Significant differences were then explored between 

cognitive levels via pairwise post-hocs with Bonferroni adjustment. Hippocampal volume 

was analyzed longitudinally via repeated measures ANOVA (RMANOVA) per cognitive 

group, where cognitive group was determined by post-diagnosis. The times were selected 

at 6-month intervals, from baseline to 24 months of monitoring (excluding the 18 month 

interval due to lack of descriptive information within the database). Mauchly’s Test of 

Sphericity was employed to detect violations of sphericity between all possible groups 

over time. Sphericity values > 0.75 were then corrected using the Greenhouse-Geisser 

correction made available within SPSS. Pair-wise comparisons using estimated measures 

with Bonferroni adjustment were evaluated between each possible group (time, cognitive 

group, and time* cognitive group). Lastly, a line plot was generated for visualization of 

hippocampal differences between groups. 

The two neuropsychological tests that were chosen to compare with hippocampal data 

included the ADAS-Cog 13 and the MMSE, due to their ability to diagnose and monitor 

progression of the disease over time. The ADAS-Cog 13 is scored out of 85, where 

higher scores indicate increased cognitive impairment. The MMSE is scored out of 30, 
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where lower scores indicate increased cognitive impairment. To evaluate the correlation 

of cognitive test scores to hippocampal volumes, Pearson’s correlation and 2-tailed T-

tests were calculated via canonical correlation tests. The test scores for each interval were 

then regressed over time via repeated measures ANOVA (RMANOVA). Each 

RMANOVA was performed, where independent variable (time) was regressed against 

the dependent variables (MMSE scores or ADAS scores) between each cognitive group 

(CN, MCI, and AD). Each test employed the Mauchly’s Test of Sphericity with 

corrections. Pair-wise comparisons using estimated measures with Bonferroni adjustment 

were evaluated between each possible group (time, cognitive group, and time*dependent 

variable). Linear plots were generated for both RMANOVAs for visualization.  

 

Descriptive statistics of genotype frequencies within cognitive levels were attained. This 

was followed by obtaining descriptive statistics of genotype frequencies grouped by 

disease progression (CN-stable, MCI-stable, AD-stable, CN-MCI, or MCI-AD). A 

histogram was created to visualize relationship between number of APOE- ε4 alleles and 

progression. To test the effect of AD progression due to APOE-ε4 genotyping, a 

multinominal regression was employed where APOE-ε4 genotype was the independent 

variable and progression was the dependent variable. Lastly mixed-model RMANOVAs 

were employed, where the independent variables (time and genotype) were regressed 

against hippocampal scores between each cognitive group. The same measures of 

sphericity were taken and were adjusted for using the Greenhouse-Geisser correction. 

Pairwise and multiple comparisons between each possible group were evaluated after 

Bonferroni adjustment. Line plot were then generated for each cognitive group for 

visualization of slopes. 

Lastly, CSF biomarker positivity diagnostic value was assessed in normal, MCI, and AD 

subjects. Receiving Operator Characteristic (ROC) curves were employed utilizing 

concentrations of CSF biomarkers (Aβ42, T-tau, and P-tau) and combinations (Aβ42/T-tau 

and Aβ42/P-Tau) at a 95% confidence interval. Optimal cutoff values were assessed 

utilizing the coordinates of the curve with minimal distance to the top left corner of the 

box. This is the point where the true positivity rate (sensitivity) is 1 and the false 
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negativity rate (1-specificity) is 0. This distance was calculated in Excel using the 

formula below where SE = sensitivity and SP = specificity: 

Distance = √(1-SE)2+(1-SP)2  

After the optimal cutoff value was attained for each test, sensitivity (SE), specificity (SP), 

positive predictive value (PPV), and negative predictive value (NPV) were calculated 

utilizing the following formulas: 

 SE = TP/(TP+FN) 

 SP = TN/((TN+FP) 

 PPV = TP/(TP+FN) 

 NPV = TN/(TN+FN) 

Where TP, FP, TN, and FN represent true positive, false positive, true negative, and false 

negative scores, respectively. Scores with the highest values were selected as accurate 

predictors of AD.  

V. Results  

Hippocampal Volume Regressions 

The main demographic and clinical data at baseline for all 3 cohorts are summarized in 

Table 12 below. Though each group demonstrated comparable age and sex distributions, 

and cognitive scores were markedly different. Subjects with AD have more than two-fold 

higher rates of APOE-ε4 carriers than the normal subjects. Chi-square values indicated 

that gender does not play a significant role. 
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Table 12. ADNI Participant Demographics and Clinical Data at Baseline. 

Measure Cognitively 

Normal 

Late Mild Cognitive 

Impairment 

Alzheimer’s 

Disease 

N 125 122 54 

Women (%) 49.6 38.5 48.2 

Age (years) 75.2±8.5 73.8±9.7 73.6±12.3 

MMSE a 29.1±2.8 27.1±3.0 23.3±3.8 

ADAS-Cog 13 b 8.8±3.9 18.3±6.7 28.0±8.9 

APOE-ε4 Carriers (%) c 27.2 51.6 66.7 

a) MMSE; Mini-Mental State Examination; range 0–30 points. b) ADAS-Cog 13; Alzheimer’s disease Assessment 

Scale—Cognitive Subscale (13-item); range 0–85 points. c) APOE-ε4 Carriers (%); the percentage of subjects with 1 or 

2 APOE-ε4 alleles (http://www.adni-info.org/Scientists/doc/ADNI_review_update2013-manuscript.pdf). 

Baseline hippocampus volumes were regressed against baseline diagnoses. Variances 

between groups were equal, per the Levene’s test of equal variances. Differences between 

hippocampal volumes between baseline cognitive levels were significant (p < 0.005). 

Mean differences of volumes per group after Bonferroni adjustments via pairwise 

comparison can be seen below in Table 13 below. 

Table 13. Pairwise Comparisons of Baseline Hippocampal Volumes between Baseline Cognitive Levels. 

(I) DX_bl (J) DX_bl 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

AD CN -1613.356* 161.804 .000 -2002.917 -1223.794 

LMCI -657.227* 161.826 .000 -1046.841 -267.613 

CN AD 1613.356* 161.804 .000 1223.794 2002.917 

LMCI 956.129* 126.570 .000 651.396 1260.861 

LMCI AD 657.227* 161.826 .000 267.613 1046.841 

CN -956.129* 126.570 .000 -1260.861 -651.396 

Significant differences based on estimated marginal means at the 95% confidence interval. Adjustment for multiple 

comparisons: Bonferroni. AD = Alzheimer’s Disease; CN = cognitively normal; LMCI = late mild cognitive impairment. 

To evaluate the progression of hippocampal volumes between cognitive groups 

longitudinally, RMANOVA was performed. Table 14 below shows mean hippocampal 

volumes per cognitive group at each interval. Mean baseline hippocampal volumes (cm3) 
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for CN, MCI, and AD were 7244.90±928.96, 6649.08±1030.60, and 5814.50±1169.255, 

respectively. 

Volumetric data was taken at baseline, 6-month, 12-month, and 24-month intervals for cognitively normal (CN), mild 

cognitive impairment (MCI), and AD subjects.  

Hippocampal volume values were significant between time intervals and cognitive 

groups (p < 0.005). The differences in hippocampal volume atrophy between each 

cognitive group can be seen in Figure 19.  

 

 

 

 

 

 

 

 

 

Table 14. Descriptive Statistics of Hippocampal Volume (cm3) per Group by MRI Scan Interval.   

Baseline Diagnosis Mean Hippocampal 

Volume (cm3) 

Standard Deviation N 

Baseline AD 7244.90 928.957 120 

CN 6649.08 1030.596 78 

MCI 5814.50 1169.255 103 

Total 6601.03 1207.717 301 

Month 6 AD 7223.27 1004.617 120 

CN 6592.32 1051.938 78 

MCI 5690.21 1175.697 103 

Total 6535.17 1260.829 301 

Month 12 AD 7189.83 975.562 120 

CN 6490.79 1063.629 78 

MCI 5584.60 1132.723 103 

Total 6459.39 1257.193 301 

Month 24 AD 7078.12 995.571 120 

CN 6324.37 1167.706 78 

MCI 5392.22 1145.001 103 

Total 6305.89 1309.243 301 
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Figure 19. Hippocampal Volume Changes over Time. Mean hippocampal volume change (cm3) per cognitive group 
(CN, MCI, and AD) over four intervals (BL – baseline, m06 – month 6, m12 – month 12, and m24 – month 24).  

  

Cognitive Tests Score Regressions 

Cognitive test scores were regressed against hippocampal volumes per group for each 

interval via RMANOVA. The same subjects were used for this analyses as for the 

hippocampal volume regressions. Descriptive statistics for ADAS-Cog 13 scores and 

MMSE scores are shown in Table 15 below. The ADAS-Cog 13 is scored out of 85, 

where higher scores indicate increased cognitive impairment. The MMSE is scored out of 

30, where lower scores indicate increased cognitive impairment. 
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Table 15. Descriptive statistics of cognitive test scores (ADAS-Cog 13 and MMSE) per group by intervals.   

Left: Descriptive statistics of ADAS-Cog scores by group. Right: Descriptive statistics of MMSE scores by group. 

Cognitive test scores taken at baseline, 6-month, 12-month, and 24-month intervals for cognitively normal (CN), MCI, 

and AD subjects. Groups determined by differential diagnosis.  

 

The Pearson’s correlation of ADAS-Cog 13 scores and hippocampal volumes over time 

can be viewed in Table 16. Scores on the ADAS-Cog 13 test negatively correlated with 

hippocampal volumes at each interval. MMSE scores and hippocampal scores exhibited a 

positive correlation with significance. 

Table 16. Canonical Correlations of ADAS-Cog 13 and MMSE Scores to Hippocampal Volume over Time. 

Interval Test ADAS-Cog 13 MMSE 

Baseline Pearson Correlation 

Sig. (2-tailed) 

-.479 

.000 

.490 

.000 

Month 6 Pearson Correlation 

Sig. (2-tailed) 

-.495 

.000 

.468 

.000 

Month 12 Pearson Correlation 

Sig. (2-tailed) 

-.552 

.000 

.502 

.000 

Month 24 Pearson Correlation 

Sig. (2-tailed) 

-.546 

.000 

.492 

.000 
Pearson’s correlation and 2-tailed T-test significance between test scores and hippocampal volume at each interval 
(baseline, month 6, month 12, and month 24). 

 



59 
 

ADAS-Cog 13 and MMSE scores were significant different (p < 0.005) between each 

cognitive group (CN, MCI, and AD). However, ADAS scores did not demonstrate 

significant values between the month 6 and month 12 intervals (p = 1.000). ADAS scores 

for each cognitive level (CN, MCI, and AD) ranged from 7.37-9.55, 15.58-18.29, and 

26.72-29.12, respectively. 

 

As stated earlier, MMSE scores were statistically significant between all cognitive 

groups. Conversely, MMSE scores were not statistically different from each other 

between baseline and month 6 (p = 0.055) as well as month 6 and month 12 (p = 0.163). 

MMSE were statistically different from each other between all other intervals (baseline-

month 12, baseline – month 24, month 12 – month 24, and month 6 - month 24). Mean 

MMSE scores for each cognitive group (CN, MCI, and AD) ranged between 28.76-29.31, 

27.04-27.97, and 22.70-23.513, respectively. ADAS-Cog 13 and MMSE score changes 

are displayed in Figure 20 and 21 below, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Change of ADAS-Cog 13. Mean ADAS-Cog 13 scores within cognitive groups (CN, MCI, and AD) over 

four intervals (baseline, month 6, month 12, and month 24).  
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Figure 21. Change of MMSE Scores. Mean MMSE scores within cognitive groups (CN, MCI, and AD) over four 
intervals (baseline, month 6, month 12, and month 24).  

  

Regression between APOE-ε4 Genotype and Time on Hippocampal Volume 

Descriptive statistics for each genotype (0 APOE-ε4 alleles, 1 APOE-ε4 allele, and 

APOE-ε4 alleles) can be found in Table 17. Frequencies of subject disease progression 

(stable CN, stable MCI, stable AD, CN-MCI, or MCI-AD) grouped by genotype are 

found in Figure 22.  

 Table 17. APOE-ε4 Descriptive Statistics by Group. 

  

DX 

Total CN Dementia MCI 

Number 
of 
APOE-
ε4 
Alleles 

0 90 36 42 168 

1 28 47 28 103 

2 
2 20 8 30 

Total 120 103 78 301 

Frequencies and percentages of subjects with each genotype (0 APOE-ε4 alleles, 1 APOE-ε4 allele, and APOE-ε4 

alleles) by cognitive level (CN, MCI, and AD).  
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Figure 22. Frequencies of Subject disease progression Grouped by APOE-ε4 Genotype. CN-S = stable CN; MCI-S 

= stable MCI; AD-S = stable AD; CN-MCI = progression from CN to MCI; and MCI-AD = progression from MCI to 

AD. Stable is used to describe lack of diagnosis change. Genotypes are represented by number of APOE-ε4 alleles (0 

APOE-ε4 alleles, 1 APOE-ε4 allele, and APOE-ε4 alleles). 

 

Multinominal logistic regression revealed there was no significance between number of 

APOE-ε4 allele and disease progression. Parameter estimates depicted significance only 

for the APOE-ε4 negative genotype. However, RMANOVA Multivariate Tests revealed 

statistically significant hippocampal volumes over time as a result of genotype within 

MCI subjects (p = 0.004). Hippocampal volume differences were not significant between 

genotypes within the CN or AD groups. Individual line plots of longitudinal hippocampal 

volume grouped by genotypes are shown below in Figures 23-25, separated by diagnosis. 
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Figure 23. The Change in Hippocampal Volume between CN subjects by APOE-ε4 Genotype. 0; no APOE-ε4 

alleles, 1; one APOE-ε4 allele, and 2; two APOE-ε4 alleles. 
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Figure 24. The Change in Hippocampal Volume between MCI subjects by APOE-ε4 Genotype. 0; no APOE-ε4 

alleles, 1; one APOE-ε4 allele, and 2; two APOE-ε4 alleles. 
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Figure 25. The Change in Hippocampal Volume between AD subjects by APOE-ε4 Genotype. 0; no APOE-ε4 
alleles, 1; one APOE-ε4 allele, and 2; two APOE-ε4 alleles. 

 

Biomarker Sensitivity, Specificity, and Predictive Values 

The ROC Curve analyses of biomarkers included 211 subjects of various cognitive 

levels. ROC curves were employed to assess optimal cutoff values for each biomarker 

(Aβ42, T-Tau, and P-tau) and ratios (Aβ42/T-tau and Aβ42/P-tau). Cutoff values 

discriminating AD subjects from controls are as follows: Aβ42 < 741.75 pg/mL (SE: 

84.09%) (SP: 33.33%) (PPV: 72.55%) (NPV: 88.14%); T-Tau > 256.85 pg/mL (SE: 

77.27%) (SP: 78.79%) (PPV: 70.83%) (NPV: 83.87%); P-tau > 26.38 pg/mL (SE: 50%) 

(SP: 83.33%) (PPV: 50%) (NPV: 83.33%); Aβ42/T-tau < 1.9905; (SE: 79.55%) (SP: 

92.42%) (PPV: 87.5%) (NPV: 87.14%); and Aβ42/P-tau < 17.26; (SE: 70.45%) (SP: 
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95.45%) (PPV: 91.18%) (NPV: 82.89%). Cutoff values for biomarker and biomarker 

ratios can be found in Table 18 below. 

 

Table 18. Cutoff values for each biomarker signature diagnostic accuracy and prediction. 

Biomarker 

Signature 

Optimal Cutoff 

Value  

Sensitivity Specificity Positive 

Predictive 

Value 

Negative 

Predictive 

Value 

Aβ42 < 741.75 pg/mL 84.09% 33.33% 72.55% 88.14% 

T-tau 256.85 pg/mL 77.27% 78.79% 70.83% 83.87% 

P-tau > 26.38 pg/mL 50% 83.33% 50% 83.33% 

Aβ42/T-tau < 1.9905 79.55% 92.42% 87.5% 87.14% 

Aβ42/P-tau < 17.26 70.45% 95.45% 91.18% 82.14% 

Cutoff values for each biomarker (Aβ42, T-tau, P-tau) and combination (Aβ42/T-tau and Aβ42/P-tau) with sensitivity, 

specificity, positive predictive value, and negative predictive value. Aβ42 = amyloid-beta 42 peptide; T-tau = total tau 

protein; and P-tau = hyperphosphorylated tau. 

VI. Discussion  

The goal of this present study was to assess the diagnostic value of hippocampus volume, 

the Mini-Mental State Evaluation test, the Alzheimer’s Disease Assessment Scale, 

APOE-ε4 genotype screening, and CSF biomarkers, to detect changes in cognitive 

impairment of CN, MCI, and AD subjects within the ADNI database. Significant linear 

correlations of hippocampal atrophy between intervals and groups suggest that structural 

MRI is a powerful tool in the detection of hippocampal changes over time and therefore 

should be used for monitoring disease progression. Since the mean volumes were 

significantly different between cognitive groups, utilizing structural MRI as a biomarker 

for detecting early AD in MCI subjects may be promising. 

It was expected that both the MMSE and ADAS-Cog would accurately reflect 

hippocampal volumes as a measure of cognitive impairment. As anticipated, there was a 

negative correlation of ADAS-Cog 13 scores to hippocampal volume, where higher 

scores indicated increased cognitive impairment and lower hippocampal volumes. 

Conversely, a positive correlation of MMSE scores to hippocampal volume was revealed, 

where lower MMSE scores indicated increased cognitive impairment and lower 

hippocampal volumes. This association suggests that the two cognitive test scores do 
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reflect AD pathology. However, since the ADAS-Cog 13 was more sensitive to change 

over time, it may be beneficial to use both tests in diagnostic screening, to complement 

the each other. 

It was expected that the number of APOE-ε4 alleles would significantly correspond to 

cognitive impairment, due to its role in binding to Aβ. Yet the frequencies of subjects 

with each APOE-ε4 genotype (0 alleles, 1 allele, and 2 alleles) did not linearly correlate 

to their level of cognitive impairment, as shown in Table 13 and Figure 13. However, 

when regressed to hippocampal volume by group, the number of APOE-ε4 alleles yielded 

significant effects within MCI subjects (Figure 14). This suggests that the APOE-ε4 allele 

may have diagnostic value in the evaluation of MCI to AD conversion, when paired with 

structural MRI scans. 

The sensitivity, specificity, and predictive values of the CSF biomarkers (Aβ42, T-Tau, 

and P-tau) and combinations (Aβ42/T-tau and Aβ42 /P-Tau) were assessed. Of all 5 

signatures, AB42 yielded the highest sensitivity (84.09%) and negative predictive value 

(88.14%) but low specificity (33.33%). AB42/P-tau demonstrated the highest specificity 

(95.45%) and positive predictive value (91.18%). T-tau and AB42/T-tau yielded 

intermediate values throughout. Thus, the combination of the AB42 and P-tau may serve 

as accurate predictors of disease progression.  

VII. Conclusion 

Alzheimer’s Disease a progressive neurodegenerative disease characterized by the 

formation of neurofibrillary tangles and senile plaque deposits. The prevalence of 

Alzheimer’s Disease is expected to triple by the year 2050. However, it has been 

estimated that the delay of onset by 5 years may reduce AD prevalence by 50% over the 

next 50 years (Shaw, 2008). The identification of analyses with high statistical power of 

detection acts as tools for earlier and more accurate diagnosis of AD, allowing for a 

slowing of its progression. Such detection may be most beneficial when cognitive 

impairment at its earlier stages (prodromal and MCI). Currently, the best classifiers for 

early detection include MRI, FDG-PET, CSF biomarkers, and clinical tests (Weiner et 

al., 2015). The goal of this present study was to evaluate the diagnostic value of early 
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detection strategies. These included hippocampal MRI scans, two cognitive tests (the 

MMSE and the ADAS-Cog 13), APOE-ε4 genotyping, and three CSF biomarkers (AB-

42, P-tau, and T-tau). 

The medial temporal lobe (including the hippocampus) is typically the first location to 

demonstrate atrophy in the presence of AD. Structural MRIs have been utilized as a non-

invasive tool to track the progression of the disease. The present statistical analyses have 

shown that structural MRI does provide valuable information of cognitive changes 

between 6-month intervals by groups (based on diagnoses). Thus, hippocampal volume 

may serve as a powerful tool for detecting atrophy in short periods of time. Moreover, 

MRIs are safe from carcinogenic effects because they do not involve ionizing radiation 

exposure, allowing subjects to receive multiple scans. 

Consistent with previous literature, the MMSE and the ADAS-Cog are used as 

complementary screening tests. As expected, the ADAS-Cog 13 is more sensitive to 

cognitive changes over time. For cross-validation and avoidance of extraneous variable 

effects, this regression should be repeated, adjusting for age as co-variates. 

The APOE gene is associated with the reduced ability to clear Aβ from the brain by 

binding to Aβ. In comparison to individuals with APOE-ε4 negative subjects, those with 

a single copy of the ε4 allele have increased risk of developing the disease (Simic et al., 

2016). However, even with the knowledge of APOE-ε4 being a significant risk factor for 

the heritability of late-onset AD, roughly only 27% of individuals with LOAD have this 

genotype (Cauwenberghe et al., 2016). This information is consistent with the current 

genotype regressions, where the number of APOE-ε4 alleles did not correlate with the 

frequency of having the differential diagnosis of AD. However, when combined with 

hippocampal volume data, the APOE-ε4 genotype did seem to have an effect within MCI 

patients. Thus, APOE-ε4 genotype must be used in conjunction with other biomarkers of 

AD to produce any significant answers. 

Lastly, the three core CSF biomarkers (Aβ42, T-Tau, and P-tau) as well as combinations 

(Aβ42/T-tau and Aβ42 /P-Tau) did yield a high combined sensitivity, specificity, and 

predictive value of AD diagnosis. Despite its success, lumbar puncture may not be 
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recommended for routine clinical use unless in the case of suspected early onset AD, due 

to potential side effects. For this reason, the ongoing research of blood-based biomarkers 

in the detection of AD is necessary. The potential advantages of blood biomarkers would 

include sample collection convenience, lower processing cost, and the ability to separate 

blood compartments (plasma, serum, and cellular compartment). 

Though each test did produce results consistent with the hypotheses, limitations of this 

study included the inconsistency of data availability between time intervals. For example, 

the lack of hippocampal data at the month-18 interval prevented its use within regression 

studies. Although tracking hippocampal volume data over a longer period of time would 

have increased accuracy, data availability was inconsistent. Nevertheless, hippocampal 

activity still followed a linear pattern and produced significant effects.  

To summarize, the use of pathological markers, including structural neuroimaging, 

cognitive screening tests, genotyping, and biochemical markers should be used in 

combination for increased accuracy of early detection and disease monitoring. Future 

avenues of research include the effect of anti-inflammatory treatments, gene therapy and 

immunotherapy on the progression of AD, as well as an updated overview of biomarker 

research. The increased ability to accurately diagnose and quickly detect Alzheimer’s will 

aid in the development of more effective treatments and clinical trials, thereby reducing 

the prevalence of the debilitating disease.  
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