2018

X Chromosome Evolution in Cetartiodactyla

Anastasiya A. Proskuryakova
Institute of Molecular and Cell Biology - Novosibirsk, Russia; Novosibirsk State University - Russia

Anastasia I. Kulemzina
Institute of Molecular and Cell Biology - Novosibirsk, Russia

Polina L. Perelman
Institute of Molecular and Cell Biology - Novosibirsk, Russia; Novosibirsk State University - Russia

Alexey I. Makunin
Institute of Molecular and Cell Biology - Novosibirsk, Russia

Natalya A. Lemskaya
Institute of Molecular and Cell Biology - Novosibirsk, Russia

See next page for additional authors

Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facpres
Part of the Genetics and Genomics Commons

NSUWorks Citation
Proskuryakova, Anastasiya A.; Kulemzina, Anastasia I.; Perelman, Polina L.; Makunin, Alexey I.; Lemskaya, Natalya A.; Beklemisheva, Violetta R.; Larkin, Denis M.; Farre, Marta; Kuklova, Anna V.; Ryder, Oliver A.; O'Brien, Stephen James; and Graphodatsky, Alexander S., “X Chromosome Evolution in Cetartiodactyla” (2018). Biology Faculty Proceedings, Presentations, Speeches, Lectures. 322. https://nsuworks.nova.edu/cnso_bio_facpres/322

This Conference Proceeding is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Proceedings, Presentations, Speeches, Lectures by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Numerous Carnivora karyotype evolution investigations have been performed by classical and molecular cytogenetics and were supplemented by reconstructions of the Ancestral Carnivora Karyotype (ACK). However, the group of Pinnipedia was not studied in detail. Here we reconstruct pinniped karyotype evolution and refine ACK using published and our new painting data for 10 pinniped species. The combination of human (HSA) and domestic dog (CFA) whole-chromosome painting probes was used for the construction of the comparative chromosome maps for species from all three pinniped families: Odobenidae – *Odobenus rosmarus* Linnaeus, 1758, Phocidae – *Phoca vitulina* Linnaeus, 1758, *Pusa sibirica* Gmelin, 1788, *Erignathus barbatus* Erxleben, 1777, *Phoca largha* Pallas, 1811, *Phoca hispida* Schreber, 1775 and Otariidae – *Eumetopias jubatus* Schreber, 1775, *Callorhinus ursinus* Linnaeus, 1758, *Phocarctos hookeri* Gray, 1844, *Arctocephalus forsteri* Lesson, 1828. HSA and CFA autosome painting probes have delineated 32 and 68 conservative autosome segments in the studied genomes. The comparative painting in Pinnipedia supports monophyletic origin of pinnipeds, shows that pinniped karyotype evolution was characterized by slow rate of genome rearrangements (less then one rearrangement per 10 million years), provides strong support for refined structure of ACK with 2n = 38 and specifies plausible order of dog chromosome synthenic segments on ancestral Carnivora chromosomes. The heterochromatin, telomere and ribosomal DNA distribution was studied in all 10 species.

Acknowledgements

The work was financially supported by RFBR №17-00-00146, RSF №16-14-10009.

O3

X chromosome evolution in Cetartiodactyla

Anastasia A. Proskuryakova¹,², Anastasia I. Kulemzina¹, Polina L. Perelman¹,², Alexey I. Makunin¹, Natalya A. Lemskaya¹, Violetta R. Beklemisheva¹, Denis M. Larkin³, Marta Farre³ Anna V. Kukekova⁴, Oliver A. Ryder⁵, Stephen J. O’Brien⁶, Alexander S. Graphodatsky¹,²

¹ Institute of Molecular and Cellular Biology, SB RAS, Lavrentjeva ave 8/2, Novosibirsk, 630090, Russian Federation
² Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
³ The Royal Veterinary College, Royal College Street, University of London, London NW1 0TU, UK
⁴ The University of Illinois at Urbana-Champaign, W. Gregory Drive Urbana 1207, Illinois, USA
⁵ Zoological Society of San Diego, Conservation and Research for Endangered Species, San Pasqual Valley Road 15600, Escondido, CA 92027, USA
⁶ Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Sredniy Av. 41A, Saint-Petersburg, 199034, Russia

Corresponding author: Anastasia A. Proskuryakova (andrena@mcb.nsc.ru)
The mammalian X chromosome is characterized by high level of conservation. On the contrary the Cetartiodactyl X chromosome displays variation in morphology and G-banding pattern. It is hypothesized that X chromosome has undergone multiple rearrangements during Cetartiodactyla speciation. To investigate the evolution of this sex chromosome we have selected 26 BAC clones from cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution maps were obtained by fluorescence in situ hybridisation in a representative range of cetartiodactyl species from different families: pig (Suidae), gray whale (Eschrichtiidae), pilot whale (Delphinidae), hippopotamus (Hippopotamidae), Java mouse deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), giraffe (Giraffidae). To trace the X chromosome evolution during fast radiation in speciose families, we mapped more than one species in Cervidae (moose, Siberian roe deer, fallow deer and Pere David’s deer) and Bovidae (musk ox, goat, sheep, sable antelope, nilgau, gaur, saola, and cattle). We have identified three major conserved syntenic blocks and based on this data reconstructed the structure of putative ancestral cetartiodactyl X chromosome. We demonstrate that intrachromosomal rearrangements such as inversions and centromere reposition are main drivers of cetartiodactyl’s chromosome X evolution.

Acknowledgements

The work was supported by the Russian Science Foundation (RSF #16-14-10009).

Cytogenetics and genomics of domestic animals

L8

Copy number variations in cattle and pigs: aging and reproduction

W. Allan King¹,², Olutobi Oluwole¹, Tamas Revay¹

¹ Department of Biomedical Sciences, University of Guelph, 50 Stone rd. Guelph, ON, Canada N1G2W1 ² Karyotekk Inc, University of Guelph, 50 Stone rd. Guelph, ON, Canada N1G2W1

Corresponding author: W. Allan King (waking@uoguelph.ca)

Variability in genomes (including single nucleotide polymorphisms (SNP), copy number variations (CNV) and chromosomal rearrangements (CA)) is responsible for a significant proportion of the diverse phenotypes associated with many important traits including fertility and ageing. We have investigated copy number variation in Canadian Holstein bulls and Yorkshire, Landrace and Duroc boars. In bulls we studied de novo CNVs from two perspectives: somatic variability and ageing. In boars we