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Self-inductance and magnetic flux
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The canonical equation for self-inductance involving magnetic flux is examined, and a more

general form is presented that can be applied to continuous current distributions. We attempt to

clarify and extend the use of the standard equation by recasting it in its more versatile form. # 2023
Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0098417

I. INTRODUCTION

Self-inductance is typically calculated in reference to the
total current I of some circuital configuration and to the mag-
netic flux U through a relevant surface that the current
bounds

L ¼ U
I
: (1)

Generally, the current may be filamentary (i.e., it follows a
singular contour) or distributed over a surface or in a vol-
ume. The magnetic flux through an area d~r,

dU ¼ ~B ~rð Þ � d~r; (2)

involves the magnetic field that is created by the current distri-
bution. The simplest, in principle, application of Eq. (1) is that
of a single circular current loop (see Appendix A). In cases in
which the current is not filamentary, but rather is distributed
across a surface or within a volume, the surface of integration
associated with the application of Eq. (1) becomes unclear, espe-
cially to students first introduced to magnetostatics. The simplest
example of this case is the solenoid, but it is nearly always
treated as a filamentary current bounding an effective area so
that Eq. (1) is readily applicable (see Sec. III). In David
Griffiths’s textbook, Introduction to Electrodynamics, he states
that in cases in which current is not confined to a single path, “it
can be very tricky to get the inductance” from Eq. (1).1 General
physics textbooks never address this matter (for example, Refs.
2–4), nor do other undergraduate textbooks (for example, Refs.
5–7). Even advanced physics textbooks on electrodynamics are
silent on the matter (for example, Ref. 8). It is curious that a
more versatile version of Eq. (1) exists but is never presented in
any of the references cited.

In the pedagogical literature on inductance, one finds
references to “flux linkage” or “flux weighting” but no elabo-
ration on these (see, for example, Refs. 9 and 10, and Ref.
11). The idea is assumed to be common knowledge and
appears to be familiar to the electrical engineering commu-
nity. We shall see that the more versatile version of Eq. (1),
derived in Sec. II, will show that U is indeed a weighted flux.
This version of the equation deserves to be explained, which
this paper attempts to do, thereby filling what appears to be a
small void in the physics literature. This version should clar-
ify the approach to any self-inductance problem encountered
by students exposed to calculus-level electromagnetism and
intent on using the flux method.

Let us begin by pointing out that parts, or segments, of a
complete circuit, such as the wire we will consider in Sec. II,
have well-defined partial inductances despite there not being
an explicit current loop. Given any current loop, let ~A be the
magnetic vector potential so that

~B ¼ r� ~A: (3)

The flux in Eq. (1) can, therefore, be expressed as

U ¼
þ
~A � d~‘; (4)

and one can then define the partial inductance of any seg-
ment, for example, the straight (filamentary) segment
depicted in Fig. 1, to be

Lpartial ¼
1

I

ð
~A0 � d~‘; (5)

where the integral is taken along the length of the segment
and ~A0 is the vector potential of only that segment. Note that
the sum of the partial inductances is not the loop inductance
as there are partial mutual inductances (between that seg-
ment and other parts of the current loop) that contribute to
this. If we wish to return to Eq. (1) and calculate the partial
inductance via a flux through a loop, we can create an inte-
gration path that includes the segment, as long as the line
integral over the additional path is zero. For example, given
an (albeit unphysical) isolated linear conductor carrying a
current I, the partial inductance can be calculated by integrat-
ing ~A

0 � d~‘ around the clockwise rectangular path depicted in
the figure. This closed path is taken to extend to infinity on
the right so that A0 ! 0 on the right leg of the path. Also, the
vector potential is perpendicular to the horizontal (dashed)
segments in the figure so ~A0 � d~‘ ¼ 0 on the top and bottom
legs. Application of Eq. (1) to this area will, therefore, yield
Lpartial for the linear conductor. A more detailed exposition
of partial inductance can be found in Ref. 12.

When calculating a flux in cases of distributed currents,
such as the linear conductor considered in Sec. II, there will
be a part of the flux area that overlaps the conductor and a
part that does not. The inductance calculation can then be
split into the contribution from the overlap, referred to as the
internal inductance, and that from the non-overlap region,
called the external inductance.

In Sec. II, we will derive the versatile version of Eq. (1)
and apply it to calculate the self-inductances of a straight
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wire, of a solenoid (Sec. III), of a ribbon (Sec. IV), and of an
annular current (Sec. V).

II. GENERAL EQUATION FOR SELF-INDUCTANCE

To derive the more general form of Eq. (1), we start with
the magnetic field energy

1

2l0

ð ð ð
ar

~B
2
ds ¼ 1

2
LI2; (6)

where ds is the volume element, ar is shorthand for “all
space,” and I is the total current of the circuital configura-
tion that creates the magnetic field ~B. Equation (6) could be
solved to find the self-inductance of the circuit. The basis
for the following derivation can be found, for example, in
Ref. 1. If one considers a spherical surface with a radius
r !1 enclosing the current distribution, the following sur-
face integral (d~r is the surface element) vanishes in this
limit, since A! 1=r; B! 1=r2, and the surface area
increases as r2,ðð
�

@V

~A � ~Bð Þ � d~r ! 0; (7)

where @V is the (closed) boundary of the volume. By
Gauss’s theorem,ðð
� ~A � ~Bð Þ � d~r ¼

ð ð ð
r � ~A � ~Bð Þds: (8)

As long as the integration is over all space, Eq. (6) can be
written as

L ¼ 1

l0I2

ð ð ð
ar

~B
2 �r � ~A � ~Bð Þ

� �
ds: (9)

Mathematically, using Ampere’s law

~B
2 �r � ~A � ~Bð Þ ¼ ~A � r � ~Bð Þ ¼ l0

~A � ~J : (10)

Consequently,

L ¼ 1

I2

ð ð ð
ar

~A � ~J ds: (11)

The volume current density can be expressed as filamen-
tary differential sub-currents,

~J ~rð Þ ds ¼ n̂ J da?d‘ ¼ dId~‘; (12)

where n̂ is the unit vector in the direction of current flow and
da? is the area perpendicular to n̂ of the volume element ds
whose length is d‘ so that Eq. (11) becomes

L ¼ 1

I2

ð
dI

þ
@R

~A � d~‘; (13)

¼ 1

I2

ð
dI

ð ð
R
r� ~A � d~r; (14)

¼ 1

I2

ð
dI

ð ð
R

~B � d~r; (15)

where Eq. (14) follows from Eq. (13) by Stokes’s theorem.
Note that @R is the (closed) boundary contour for dI; the cur-
rent element dI flows around this contour @R, which bounds
the flux surface R (Fig. 2). So if we define

UR ¼
ð

R
dU; (16)

as the flux linked with this surface R, then the correct flux in
Eq. (1) is, in fact, the weighted integral

U ¼
ð

dI

I
UR; (17)

so that

L ¼ 1

I2

ð
dI UR: (18)

For cases in which the current is confined to a single fila-
mentary path, Eq. (18) reduces to its standard form,
Eq. (1).

To illustrate a naive use of Eq. (1) that results in an incor-
rect result, let us consider the case of a straight cylindrical
conductor of radius R and length ‘. We assume that the cur-
rent is uniformly distributed over the circular cross section.
From Ampere’s law, the magnetic field inside the cylinder at
a distance r from the central axis is

~B rð Þ ¼ l0

2p
Ir

R2
/̂; (19)

where /̂ is the azimuthal unit vector in cylindrical coordi-
nates. The student presented with the problem of finding the
internal magnetic field’s contribution to the inductance
would likely identify the rectangular area, ABCD (shown in
Fig. 3(a) with a representative gray differential strip dr), as
the relevant total area over which the magnetic flux should
be calculated, which is correct. Indeed, Griffiths points out
that the return current can be assumed to follow along the
surface (i.e., from B to C in the figure) just beyond a thin

Fig. 2. A portion of a filamentary current’s path and associated bounded sur-

face depicted within a tubular volume current distribution.

Fig. 1. Isolated linear segment of a current loop with integration contour for

partial inductance.
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insulating sheath.13 However, a straightforward (albeit
naive) calculation using Eq. (1) yields Lint ¼ l0‘=4p, which
is wrong by a factor of two.

This problem is solved correctly in Ref. 11. Rosa calcu-
lates separately the contributions to the self-inductance due
to the internal field of the wire and to the external field
using magnetic fluxes. To determine the internal contribu-
tion (which is specifically the part we are considering here),
he calculates a weighted flux (without explanation), which
yields the correct answer. He confirms the result by com-
paring it with that coming from Eq. (6). Griffiths explicitly
espouses this energy method when a current is not confined
to a single path. However, the volume integral in Eq. (6)
may be intractable in many cases, such as in the case of a
circular current loop, so that it is useful to have a version of
Eq. (1) that removes any confusion when calculating fluxes
in the presence of surface or volume current distributions.
We point out that implicit in Griffiths (by using Eq. (11)) is
also the option to work with the more primal vector poten-
tial ~A rather than the energy or the flux.

Let us now reconsider the self-inductance of the wire due
to the internal field using Eq. (18). Figure 3(b) shows a repre-
sentative filamentary current element dIðr;/Þ,

dI r;/ð Þ ¼ I

pR2
rdrd/: (20)

As a singular (linear) current, the relevant area of integration
is the loop, A0BCD0 (i.e., a rectangle within the conductor
with the current as one side). This follows from the discus-
sion on partial internal inductance in the Introduction. The
flux through this area is

UR r;/ð Þ ¼
ðR

r

B r0ð Þ ‘dr0ð Þ; (21)

¼ l0‘I

4pR2
R2 � r2ð Þ: (22)

Consequently, the self-inductance contribution due to the
field within the conductor follows correctly from Eq. (18):

Lint ¼
1

I2

ð
UR r;/ð ÞdI r;/ð Þ; (23)

¼ l0‘

8p
: (24)

Although the calculation of the self-inductance contribution
due to the external field does not present any problems using
Eq. (1) since its determination involves, in effect, a filamen-
tary current, we include it for completeness in Appendix B.

III. SELF-INDUCTANCE OF A SOLENOID

We now consider the simple case of the solenoid (Fig. 4).
The solenoid is the most common example of the use of Eq.
(1) in calculating self-inductance. Students generally have
no difficulty in determining that the cross section A of the
solenoid is the surface through which the flux has to be cal-
culated. However, they are often confused by how this sur-
face changes with the finite length ‘ or the number of
windings N. In fact, the total area per axial length ‘ is that of
N disks, or that of a spiral surface of N levels so that the total
surface to be considered for the flux calculation is Atot ¼ NA.
If the solenoid were infinite, the magnetic field is then con-
stant (B ¼ l0NI=‘), the flux is simply U ¼ BAtot, and the
self-inductance per unit length NBA=I‘ ¼ l0ðN=‘Þ2A.

The calculation is also easily handled with Eq. (18) by
denoting the effective surface current density K ¼ NI=‘.
Taking the axial coordinate to be z, dI ¼ Kdz. The flux contour
is a circle whose disk surface area is A and the associated flux
UR ¼ BA. The self-inductance for a solenoid of length ‘ is

L ¼ 1

I2

ð
dI UR ¼

KBA

I2

ð
dz ¼ NBA

I
¼ l0N2A

‘
; (25)

where the final equality assumes that the magnetic field is
the same as for the infinite solenoid.

IV. SELF-INDUCTANCE OF A RIBBON

We now illustrate a case in which the flux method is better
suited than the energy method to determine an inductance.
Consider a long ribbon of length ‘ and width w� ‘ with
uniform surface current density K ¼ I=w. We seek the inter-
nal inductance, i.e., that part of the partial inductance due
solely to the magnetic field within the conductor (as in the
case of the linear conductor in Sec. II). This inductance com-
ponent involves no volume, so the energy method would not
be obviously viable. One proceeds with the flux method by
determining the magnetic field along s, the direction perpen-
dicular to the ribbon length, with s¼ 0 at one edge (the left
side of the ribbon in Fig. 5). Since the differential current
elements dI ¼ Kds are singular straight currents with well-
known magnetic field, an application of the superposition
principle yields

Fig. 3. (a) A long straight conductor of radius R, length ‘, and through which

flows a current I. (b) The same conductor with representative current ele-

ment dI identified.

Fig. 4. Section of an infinite solenoid.
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B sð Þ ¼
�l0K

2p
ln

w� s

sþ e

� �
; 0 � s � w=2;

þl0K

2p
ln

s

w� sþ e

� �
; w=2 � s � w;

8>>><
>>>:

(26)

where e regularizes the infinity at the edges. There is obvi-
ously a symmetry about the central line of the ribbon. Each
current element is part of an infinite rectangular contour
whose area is hatched in the figure for a give dI (in gray).
The contour extends beyond the ribbon (i.e., s>w; recall
again the discussion on partial and internal/external induc-
tance in the Introduction), but we are only considering the
internal inductance now. The contour can be extended either
to the right (as we are doing) or equivalently to the left. Next
we calculate the flux for this area

UR sð Þ ¼ ‘
ðw

w�s

B s0ð Þds0; s � w=2; (27)

¼ l0K‘

2p
w ln w� s ln s� w� sð Þ ln jw� sj
� �

:

(28)

Because of the symmetry URðsÞ ¼ URðw� sÞ for s � w=2.
Now using Eq. (18), we get

Lint ¼
1

I2

ðw

0

dI UR sð Þ; (29)

¼ 2K

I2

ðw=2

0

UR sð Þ ds; (30)

¼ l0‘

4p
: (31)

The external inductance of the ribbon can be calculated
using the results of Appendix B. Instead of the filamentary
current, we now have a surface current K ¼ I=w. In Eq.
(B2), let I ! dI0 ¼ Kds0 and s! s� s0 where s0 locates the
element of current dI0 (Fig. 6), then

B ¼ l0K

4p

ðþw=2

�w=2

ds0

s� s0ð Þ

"
‘� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘� zð Þ2 þ s� s0ð Þ2
q

þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ s� s0ð Þ2

q
#
: (32)

The rest of the calculation proceeds the same, once the order
of integration is changed to

U ¼
ðþw=2

�w=2

ds0
ð1

w=2

ds

ð‘
0

dz B ¼ l0I‘

2p
ln

2‘

w
: (33)

The total (partial) inductance of the ribbon is, therefore,

L ¼ l0‘

2p
ln

2‘

w
þ 1

2

� �
: (34)

V. THE ANNULUS

As a non-trivial application of Eq. (18), we outline the cal-
culation of the self-inductance of a 2D annulus (or washer).
Since an annulus is a flattened hollow cylinder, the idea
employed in the solenoid case also applies. Although in the
annulus case, the magnetic field resulting from the current
distribution will be far more complicated than the constant
one of the infinite solenoid. In Fig. 7, a uniform surface cur-
rent, K, flows in a circular pattern forming an annulus of cur-
rent with inner radius, a, and outer radius, b. If one takes the
annulus to be a flat spiral coil, as in an RFID tag antenna, for
example, one can express the surface current density as
K ¼ NI=ðb� aÞ. Naively trying to apply Eq. (1), a student
may be confused as to which flux U should be used. The
alternative is Eq. (6), but this would require knowledge of
the magnetic field in all space and would involve a volume
integral that is certainly daunting, if not altogether unfeasi-
ble. As in the ribbon case of Sec. IV, the flux method is like-
wise preferable, as it requires only the knowledge of the
magnetic field in the plane of the annulus (as is the case for
the circular current; see Appendix A). Moreover, Eq. (18)
removes the ambiguity in approaching this case using the
flux method.

In Fig. 7, a representative circular current element within
the annulus is identified, of radius r and current dI ¼ Kdr.
The self-inductance then follows from Eq. (18) as

Fig. 5. (a) A surface current forming a long ribbon of width w. (b) A head-

on view.

Fig. 6. Magnetic flux external to the ribbon current.

Fig. 7. Uniform surface current distribution forming an annulus.
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L ¼ 1

I2

ðb

a

UR rð Þ Kdrð Þ; (35)

where URðrÞ is the magnetic flux through a disk of radius, r,
due to the annular current (see the end of Appendix A for
more details). The determination of this flux and its integra-
tion in Eq. (35) is now the crux of the matter and beyond the
scope of this paper. The work on the circular current loop of
Appendix A can serve as a basis for this calculation since it
lays out how to calculate the flux contributions from the (sin-
gular) sub-currents of the annulus. Although it avoids the
complications of the field energy method, the calculation,
using the flux method at least, is anything but trivial.
Reference 9 presents an alternate method for calculating
self-inductance based on the relationship between power and
current rather than flux and current, and perhaps represents a
more efficient method in this case.

VI. CONCLUSION

Although self-inductance can be calculated via various
methods, including using the magnetic field energy or the
magnetic vector potential, students in introductory magneto-
statics are often asked to derive it via magnetic fluxes. From
this perspective, we believe it is well worth presenting Eq.
(18), although it is absent from the more common textbooks
on electromagnetism. By recasting Eq. (1) in the more
explicit, or versatile, form of Eq. (18), instructors will pro-
vide students with a more valuable tool in general and an
invaluable tool in problems without a filamentary current.
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APPENDIX A: THE CIRCULAR CURRENT

For completeness, in this appendix, we calculate the self-
inductance of a circular current of radius R (Fig. 8), where
there is no conceptual problem in using Eq. (1). The mag-
netic flux of the circular current loop through its bounded
area is first calculated. To do so, the magnetic field at a point
located at ~r , due to the circular current, is calculated using
the Biot–Savart law. Without loss of generality,~r ¼ rx̂, then

~r0 ¼ ðx̂ cos/þ ŷ sin/ÞR and d~‘ ¼ ð�x̂ sin/þ ŷ cos/ÞRd/,
with / being the angle between x̂ and ~r0 ; x̂ and ŷ the unit
vectors along the x and y directions. Consequently,

~B ~r;Rð Þ ¼ l0

4p

ð
Id~‘ � ~r �~r 0ð Þ
j~r �~r 0j3

: (A1)

The only non-zero component of ~B is along the z direction,

B r;Rð Þ ¼ l0IR

2p

ðp

0

d/
R� r cos /

r2 � 2rR cos /þ R2½ 	3=2
; (A2)

where B> 0 for r<R, and B< 0 for r>R. Let R be the disc
bounded by the current. Using Eq. (1), it is straightforward
to calculate the self-inductance in this case

L ¼ 1

I

ð
R

~B � d~a; (A3)

¼ 1

I

ðR�

0

B r;Rð Þ 2prdrð Þ; (A4)

where R� ¼ R� e and e! 0 is a regularizer used to circum-
vent the fact that the magnetic field diverges near the current
loop. Replacing Bðr;RÞ by its expression (Eq. (A2)), Eq.
(A4) becomes

L ¼ l0R

ðp

0

d/J /ð Þ; (A5)

where

J /ð Þ ¼
ðR�

0

dr
r R� r cos /ð Þ

r2 � 2rR cos /þ R2½ 	3=2
: (A6)

To evaluate this integral, we make the substitution,
z ¼ r=R� cos /ð Þcos /,

J /ð Þ ¼ �cos /
ð�cos2/þg cos /

�cos2/
dz

zþ cos2/
� �

z� sin2/
� �

z2 þ sin2/ cos2/
� �3=2

;

(A7)

where g ¼ R�=R. Then the second substitution,
z ¼ sin / cos / sinh a, yields after integration on a,

J /ð Þ ¼ 1� cos / sinh�1 cot/ð Þ

� cos / sinh�1 g� cos /
sin /

� �

þ 2g cos /� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g cos /þ g2

p : (A8)

Then the integration with respect to / yields

L

l0R
¼
ðp

0

d/J /ð Þ; (A9)

¼ 1þ g2

j1� gj

ðp=2

0

dh
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2 sin2h
p

� j1� gj
ðp=2

0

dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin2h

p
; (A10)

Fig. 8. Circular current.
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¼ 1þ g2

j1� gjF
p
2
; ik

� �
� j1� gjE p

2
; ik

� �
; (A11)

where k2 ¼ 4g=ð1� gÞ2, and F, E are elliptic integrals of the
first and second kinds, respectively. Finally, the result can be
expressed in terms of complete elliptic integrals K and E as

L

l0R
¼ R2 þ R2

�
R Rþ R�ð ÞK jð Þ � Rþ R�

R
E jð Þ; (A12)

where j ¼ 4RR�=ðRþ R�Þ2 < 1. For j < 1, the elliptic
integrals can be approximated by a polynomial14

K jð Þ ¼ ln 4þ a1~j þ a2~j2 þ 1

2
þ b1~j þ b2~j2

� �
ln

1

~j
;

(A13)

E jð Þ ¼ 1þ c1~j þ c2~j2 þ d1~j þ d2~j2
� �

ln
1

~j
; (A14)

where a1 ¼ 0:1119723; a2 ¼ 0:0725296; b1 ¼ 0:1213478;
b2 ¼ 0:0288729; c1 ¼ 0:4630151; c2 ¼ 0:1077812; d1

¼ 0:2452727; d2 ¼ 0:0412496, and where ~j ¼ 1� j ¼ ðR
�R�Þ2=ðR þR�Þ2 ! ðe=2RÞ2 as e! 0. In this limit,

L ¼ l0R ln
8R

e
� 2

	 

: (A15)

Some of the results above can be carried over to the annu-
lus case considered in the main text. In Eq. (A12), replacing
R� with r, one notes that L represents the flux distribution
for the annulus

L
 dU
dI

r; Rð Þ

¼ l0

R2þ r2

Rþ rð ÞK
4Rr

Rþ rð Þ2

 !
� Rþ rð ÞE 4Rr

Rþ rð Þ2

 !" #
;

(A16)

so that dUðr; RÞ is the flux through a circular region of
radius, r, due to a co-centered circular current of radius, R.
Therefore, the flux associated with a differential circular cur-
rent element of radius r within the annulus of inner radius a,
outer radius b, and surface current density K is

UR rð Þ ¼
ð

dU
dI

r; Rð ÞdI ¼
ðb

a

dU
dI

r; Rð Þ KdRð Þ; (A17)

which is the flux that appears in Eq. (35).

APPENDIX B: THE LINEAR CONDUCTOR’S

EXTERNAL FIELD SELF-INDUCTANCE

We complete the case of the wire, or linear conductor, by
calculating the (partial) self-inductance contribution due to
the external field. We assume the conductor to have a length
‘ and a radius R� ‘. To calculate the flux, we start by calcu-
lating the magnetic field at point P external to the conductor
due to a uniform current I flowing along the wire. The posi-
tion P is defined by parameters s and z or by z0, r and the
angle h. These quantities are defined in Fig. 9. Since P lies

outside of the conductor, the magnetic field created by the
wire is identical to the one created by a line current running
down the center of the cylinder. Using the Biot–Savart law,
the contribution from each I d~z0 (where both the z and z0 axes
run positive upwards in Fig. 9) is azimuthal (i.e., directed
into the page at P in the figure) so

B s; zð Þ ¼
l0I

4p

ð‘
0

dz0 sin h
r2

: (B1)

Now note that z� z0 ¼ s cot h. Then

B s; zð Þ ¼
l0I

4ps

ðhF

hI

sin hdh ¼ l0I

4ps
cos hI � cos hF½ 	

¼ l0I

4ps

‘� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘� zð Þ2 þ s2

q þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ s2
p

2
4

3
5: (B2)

As discussed in the Introduction, the area to consider for the
external partial inductance in the case of a linear conductor
is a rectangular one, in this case, of height ‘, and extending
horizontally from the surface of the conductor to infinity. A
representative element of this area is shown in gray in Fig. 9.
The differential flux is then integrated over this area to give

U ¼
ð1

R

ds

ð‘
0

dz B ¼ l0I

2p

ð1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ s2

p
s

� 1

" #
ds: (B3)

Letting s ¼ ‘ tan / in Eq. (B3) then yields

U¼ l0I

2p

ðp=2

/R

‘ csc/þ sec/ tan/ð Þd/�
ð1

R

ds

" #
; (B4)

¼ l0I

2p
�‘ ln

����‘þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þ s2

p
s

����þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þ s2

p
� s

" #1
R

; (B5)

¼ l0I

2p
‘ ln

���� ‘þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þR2

p
R

����� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2þR2

p
þR

" #
: (B6)

Therefore,

Lext �
l0‘

2p
ln

2‘

R
� 1

	 

: (B7)

Fig. 9. Magnetic flux external to the linear conductor.
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