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Abstract: We give a short proof of Mirsky’s result regarding the extreme points of the convex polytope of
doubly substochastic matrices via Birkho�’s Theorem and the doubly stochastic completion of doubly sub-
stochastic matrices. In addition, we give an alternative proof of the extreme points of the convex polytopes of
symmetric doubly substochastic matrices via its corresponding loopy graphs.
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1 Introduction
An n×n nonnegativematrix is called a doubly (sub) stochastic matrix if the sum of each row and each column
is (less than or) equal to 1. The convex sets of all n × n doubly stochastic matrices and doubly substochastic
matrices are denoted by Ωn and ωn , respectively. Both Ωn and ωn have been studied intensively in [4]. A
matrix A is an extreme point of a convex set S if every convex decomposition of the form

A = λA1 + (1 − λ)A2, (0 ≤ λ ≤ 1)

where A1 and A2 in S implies that A1 = A2 = A.
We let Ωtn = {A ∈ Ωn | A = At} denote the set of all n × n symmetric doubly stochastic matrices and let

ωtn = {B ∈ ωn | B = Bt} denote the set of all n × n symmetric doubly substochastic matrices.
Awell known result of Birkho� [1] characterized all extremepoints ofΩn , stated as the following theorem.

Theorem 1.1. ([1]) Pn is an extreme point of Ωn if and only if P is an n × n permutation matrix.

A square (0, 1)-matrix is called a subpermutation matrix or a partial permutation matrix if it has at most one
1 in each row and each column. The extreme points of ωn were characterized by Mirsky [6] in the following
theorem.

Theorem 1.2. ([6]) Qn is an extreme point of ωn if and only if Q is an n × n subpermutation matrix.

In Section 2, we provide an alternative proof of Theorem 2.2. In Section 3,we give equivalent characterizations
of the extreme points of Ωtn and ωtn in the language of graph theory and a concise proof of the extreme points
of ωtn.
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2 Classical Case
Given an n × n doubly substochastic matrix Bn = (bij)ni,j=1, there always exists an m × m doubly stochastic
completion matrix Am such that Bn is an n × n submatrix of Am , where n ≤ m. Indeed, denote ri the ith row
sum of Bn and cj the jth column sum of Bn , then(

Bn Dn
En Btn

)

is a2n×2n doubly stochasticmatrixwhereDn is the diagonalmatrixwith diagonal entries1−r1, 1−r2, . . . , 1−
rn and En is the diagonalmatrixwith diagonal entries1−c1, 1−c2, . . . , 1−cn . In [3], the authors give the lower
bound of m and provide methods to construct Am when m minimal. The results in [3] imply the following
proposition.

Proposition 2.1. Let Bn be an n × n doubly substochastic matrix, then there always exists an m × m doubly
stochastic matrix Am such that Bn is the n × n principal submatrix on the upper left corner of Am .

We are now in the position to provide an alternate proof of Theorem 1.2.

Theorem 2.2. ([6]) Let n be a positive integer. Q is an extreme point of ωn if and only if Q is an n × n subper-
mutation matrix.

Proof. On the one hand, it is clear that all n × n subpermutation matrices are extreme points of ωn .
On the other hand, let Bn ∈ ωn . According to Proposition 2.1, there exists

An+k =
(
Bn Ck
Rk Mk

)
∈ Ωn+k ,

where Ck is an n × k matrix, Rk is a k × n matrix and Mk is a k × k matrix. Applying Theorem 1.1, there exists
(n + k) × (n + k) permutation matrices P1, P2, . . . , Pt such that

An+k =
t∑
i=1

ciPi (1)

where ci > 0 and
∑
ci = 1. Truncate the last k rows and k columns of each matrix in (1), we have

Bn =
t∑
i=1

ciQi

where Qi are subpermutation matrices. Since Bn is arbitrary, any n × n doubly substochastic matrix can be
written as a convex combination of subpermutationmatrices, meaning that there are nomore extreme points
besides subpermutation matrices.

3 Symmetric Case
The extreme points of the set Ωtn , all symmetric n × n doubly stochastic matrices, were characterized by Katz
([5], also see [2]) which can be generalized as the following theorem.

Theorem 3.1. ([5], Lemma 1 in [2]) Let P be an n × n permutation matrix. Then 1
2 (P + P

t) is an extreme point of
Ωtn if and only if P does not contain any even cycle longer than 2.
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For an n × n symmetric matrix A, we associate a loopy graph in the following way to represent the structure
of the non-zeros of A. Let V = {v1, v2, · · · , vn} be the set of vertices. The loopy graph associated with A is the
graph G(A) with vertex set V such that there is an edge connecting vi and vj if and only if ai,j ≠ 0.

Let P be an n × n permutation matrix. Then there is a one to one correspondence between cycles longer
than 2 contained in P and cycles in the loopy graph associated with 1

2 (P + P
t). Indeed, if σ = (i1, i2, . . . , ik)

is a cycle contained in P longer than 2, then there is a cycle

vi1 → vi2 → . . . → vik → vi1

contained in the associated loopy graph of 1
2 (P + P

t) and vice versa. Hence, Theorem 3.1 in [5] can be stated
as the following.

Corollary 3.2. Let P be an n × n permutation matrix. Then 1
2 (P + P

t) is an extreme point of Ωtn if and only if the
loopy graph associated with 1

2 (P + P
t) does not contain even cycles longer than 2.

Proposition 3.3. Any n × n symmetric doubly substochastic matrix A can be written as a convex combination
of the matrices of the form 1

2 (Q + Qt) where Q is an n × n subpermutation matrix.

The proof of Proposition 3.3 is essentially the same as the proof of Theorem 9 in [2]. Before we give the follow-
ing lemma, we would like to mention that we do not consider loops to be cycles, and since loopy graphs are
undirected, the shortest possible cycle is on three vertices.

Lemma 3.4. Let Q be an n ×n subpermutation matrix. Then 1
2 (Q+Q

t) is not an extreme point of ωtn if the loopy
graph associated with 1

2 (Q + Qt) contains at least one even cycle.

Proof. Denote the loopy graph associated with 1
2 (Q + Qt) by G. Suppose G contains an even cycle C2k

vi1 → vi2 → . . . → vi2k → vi1

where k ≥ 2. Denote the submatrix of 1
2 (Q + Qt) corresponding to C2k by A2k . We construct the matrix A1 by

putting 1 in the places

(i1, i2), (i2, i1), (i3, i4), (i4, i3), . . . , (i2k−1, i2k), (i2k , i2k−1)

and the matrix A2 by putting 1 in the places

(i2, i3), (i3, i2), (i4, i5), (i5, i4), . . . , (i2k , i1), (i1, i2k).

Note that both A1 and A2 are symmetric permutation matrices and

A2k =
1
2A1 +

1
2A2,

and hence 1
2 (Q + Qt) is not an extreme point.

Lemma 3.5. Let Q be an n × n subpermutation matrix. Then 1
2 (Q+Q

t) is not an extreme point of ωtn if the loopy
graph associated with 1

2 (Q + Qt) contains a path longer than 1.

Proof. Denote the loopy graph associated with 1
2 (Q + Qt) by G. Suppose G contains a path Pk

vi1 → vi2 → . . . → vik

where k ≥ 3. Denote the k × k submatrix of 1
2 (Q + Qt) corresponding to Pk by Pk .

Wemay construct symmetric subpermutation matrices A1 and A2 similarly in Lemma 3.4 such that

Pk =
1
2A1 +

1
2A2,

and hence 1
2 (Q + Qt) is not an extreme point.
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Theorem 3.6. Let Q be an n × n subpermutation matrix. Then 1
2 (Q + Qt) is an extreme point of ωtn if and only

if each connected component of the loopy graph associated with 1
2 (Q + Qt) is one of the following:

(a) a loop
(b) an isolated vertex
(c) an independent edge (a path with length 1)
(d) an odd cycle.

Proof. Let A = 1
2 (Q + Qt). Since Q is a subpermutation matrix, it contains at most one nonzero element in

each row and each column, and hence 1
2 (Q + Qt) contains at most two nonzero elements in each row and

each column which implies that the degree of each vertex in the associated loopy graph G(A) is at most 2.
Therefore, each connected component of G(A)must be one of the following:

(a) a loop
(b) a path longer than 1
(c) an isolated vertex
(d) an independent edge (a path with length 1)
(e) an odd cycle
(f ) an even cycle.

Lemma 3.4 and Lemma 3.5 rule out the possibilities that G(A) contains a connected component which is
a path longer than 1 or an even cycle.

On the other hand, if each of connected component of A is one of the four types listed in the theorem,
then there exists a permutationmatrix P such that PAPT is a direct sum of some squarematrices with smaller
orders denoted by A1, A2, . . . , Ak , and G(Ai), the associated loopy graph of Ai , is one of these four types. It
is su�ce to show that each Ai is extreme for i = 1, 2, . . . , k.

If G(Ai) is a loop, then Ai is the 1×1matrix I1 which is extreme. If G(Ai) is an isolated vertex, then Ai is the

1 ×1 zero matrix. If G(Ai) is an independent edge, then Ai is the 2 ×2matrix
(
0 1
1 0

)
which is a permutation

matrix and hence extreme. If G(Ai) is an odd cycle, then according to Theorem 3.1, each Ai is an extreme
point. Hence, A is an extreme point.
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