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DIAGONAL SUMS OF DOUBLY SUBSTOCHASTIC MATRICES∗

LEI CAO† , ZHI CHEN‡ , XUEFENG DUAN§ , SELCUK KOYUNCU¶, AND HUILAN LI‖

Abstract. Let Ωn denote the convex polytope of all n×n doubly stochastic matrices, and ωn denote the convex polytope

of all n × n doubly substochastic matrices. For a matrix A ∈ ωn, define the sub-defect of A to be the smallest integer k such

that there exists an (n + k) × (n + k) doubly stochastic matrix containing A as a submatrix. Let ωn,k denote the subset of

ωn which contains all doubly substochastic matrices with sub-defect k. For π a permutation of symmetric group of degree n,

the sequence of elements a1π(1), a2π(2), . . . , anπ(n) is called the diagonal of A corresponding to π. Let h(A) and l(A) denote

the maximum and minimum diagonal sums of A ∈ ωn,k, respectively. In this paper, existing results of h and l functions are

extended from Ωn to ωn,k. In addition, an analogue of Sylvesters law of the h function on ωn,k is proved.

Key words. Doubly substochastic matrices, Sub-defect, Maximum diagonal sum.

AMS subject classifications. 15A51, 15A83.

1. Introduction. An n by n real matrix A = [aij ] is called a doubly stochastic matrix if

1. aij ≥ 0, and

2.
∑
i aij = 1 and

∑
j aij = 1 for all i and j.

One can define doubly substochastic matrices by replacing the equalities by inequalities
∑
i aij ≤ 1 and∑

j aij ≤ 1 in (2). Doubly stochastic matrices and doubly substochastic matrices have been studied inten-

sively by many mathematicians (see [3], [7], [9] and [11]). Denote Ωn and ωn the set of all n by n doubly

stochastic matrices and the set of all n × n doubly substochastic matrices, respectively. It is clear that

Ωn ⊆ ωn. For B ∈ ωn, denote the sum of all elements of B by σ(B), i.e

(1.1) σ(B) =

n∑
i=1

n∑
j=1

bij .

Recently, Cao, Koyuncu and Parmer defined an interesting characteristic called sub-defect on the set ωn.

For B ∈ ωn, the sub-defect of B is denoted by sd(B). It is the smallest integer k such that there exists

an (n + k) × (n + k) doubly stochastic matrix containing B as a submatrix. It has been shown that the

sub-defect can be calculated easily by taking the ceiling of the difference of the size of the matrix and the

sum of all entries (see [4], [5] and [6]).
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Theorem 1.1. (Theorem 2.1 of [6]) Let B = [bij ] be an n× n doubly substochastic matrix. Then

sd(B) = dn− σ(B)e,

where dxe is the ceiling of x.

Let ωn,k denote the set of matrices in ωn with sub-defect equal to k. It is worth to point out that the

sub-defect k then provides a way to partition ωn into n+1 convex subsets which are ωn,0 = Ωn, ωn,1, . . . , ωn,n.

Namely,

(i) ωn,k is convex for all k;

(ii) ωn,i ∩ ωn,j = ∅ for i 6= j;

(iii)
⋃n
i=0 ωn,i = ωn.

Let A = [aij ] be a real n × n matrix. Denote Sn the symmetric group of degree n. For π ∈ Sn, the

sequence of elements a1π(1), a2π(2), . . . , anπ(n) is called the diagonal of A corresponding to π and will also be

denoted by π. A diagonal π of A is a maximum (minimum) diagonal if
∑n
i=1 aiπ(i) is a maximum (minimum)

among all n! diagonal sums. The value of the maximum and minimum diagonal sums of A will be denoted

by h(A) and l(A), respectively, and in case the matrix under consideration is fixed, simply by h and l,

respectively. For X = [xij ] an n× n real matrix, denote

〈A,X〉 =
∑
i,j

aijxij .

Note that h(A) is also the support function of the assignment polytope Ωn, i.e.,

h(A) = sup{〈A,X〉 : X ∈ Ωn}.

Similarly, l(A) can be defined as

l(A) = inf{〈A,X〉 : X ∈ Ωn}.

In [12], Wang investigated and conjectured some interesting properties when the domains of these two

functions are restricted on Ωn. We extend the existing results of h function and l function on ωn.

The paper is organized as follows: In Section 2, we show some properties of h-function and l-function on

ωn,k with respect to the sub-defect k. In Section 3, we prove an analogue of the Sylvesters law of h functions

on ωn,k. In addition, we give an example to illustrate that the analogue of Frobenius inequalities of the rank

function is not true on ωn. Throughout this paper, we denote by Jn the n×n matrix whose all entries are 1.

2. The h-function and l-function on ωn,k. In this paper, we shall view h and l as two functions

defined on ωn,k in the natural way and study their properties. For k = 0, which is when restricted on

Ωn, some interesting properties have been discussed and explored in [12]. For k ≥ 1, one crucial difference

between matrices in Ωn and those in ωn,k is the sum of all elements. That is actually how sub-defect is

defined originally. If A ∈ ωn,k, then σ(A) is inside the interval [n − k, n − k + 1). We explore and show

properties of the h and l functions on ωn,k with respect to the sub-defect k or the sum of all elements of the

matrices. We first notice that in ωn,k, the function h is convex while the function l is concave.

Proposition 2.1. (i) h is a convex function;

(ii) l is a concave function.
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Proof. Let A and B be two nonnegative matrices and λ ∈ [0, 1]. It is clear that

h(λA+ (1− λ)B) ≤ h(λA) + h((1− λ)B) = λh(A) + (1− λ)h(B)

and

l(λA+ (1− λ)B) ≥ l(λA) + l((1− λ)B) = λl(A) + (1− λ)l(B),

and hence, the proposition holds.

Let A ∈ ωn. It is not hard to see the extreme values of h(A) and l(A) given by the following proposition.

Proposition 2.2. Let A ∈ ωn. Then

(2.2) 0 ≤ l(A) ≤ σ(A)

n
≤ h(A) ≤ σ(A).

Proof. It is clear that l(A) ≥ 0 and h(A) ≤ σ(A). From the covering theorem (Theorem 2.1 in [12]), we

can get l(A) ≤ σ(A)
n ≤ h(A), which implies the proposition.

In (2.2), l(A) = 0 if and only if A has a zero diagonal, such as partial permutation matrices. On the

other hand, h(A) = σ(A) if and only if A has only one non-zero diagonal such that the sum of all entries of

the diagonal is equal to σ(A). For example, let n − k ≤ s < n − k + 1 and A an n by n matrix containing

bsc 1’s and an s− bsc on the diagonal as follows.

A =



1
. . .

1

s− bsc
0

. . .


.

It is easy to check that h(A) = σ(A) = s. For A ∈ ωn, denote σ(A) = s. Then l(A) = s
n = h(A) if and only

if A is in the following form:

A =
s

tn



1 1 · · · 1
...

...
...

1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0


,

where t ≥ s, a positive integer and the first t rows of A are filled up by s
tn .

Corollary 2.3. Let B ∈ ωn,k. Then

n− k
n
≤ h(B) < n− k + 1.

Proof. This is a direct consequence of Proposition 2.2 and Theorem 1.1, which implies that n − k ≤
σ(B) < n− k + 1.
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Remark 2.4. From [12], we know that for A ∈ Ωn, h(A) ≥ 1 with equality if and only if A = 1
nJn.

However, in ωn,k, such an B satisfying h(B) = n−k
n is not unique. For example, we can take B1 = n−k

n2 Jn,

and B2 an n-square matrix with n− k rows filled up by 1
n ’s, i.e.,

B1 =
n− k
n2


1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

 and B2 =
1

n



1 1 · · · 1
...

...
...

1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0


.

By direct computation, we have σ(B1) = σ(B2) = n− k and h(B1) = h(B2) = n−k
n .

Actually, if A,B ∈ ωn, then AB ∈ ωn (Proposition 2.4 in [5]). We can evaluate the extreme values of

h(AB) and l(AB).

Theorem 2.5. Let A ∈ ωn,k and B be an n× n real matrix with nonnegative entries. Then

(i) h(AB) ≤ h(B);

(ii) l(B) ≤ l(AB).

Proof. (i) For reader’s convenience, we first prove a special case when k = 0, which means A ∈ Ωn. The

case that both A and B in Ωn has been proved in [12].

Due to Birkhoff’s theorem (see [2], [3] and [10]), we can always write

A = α1P1 + · · ·+ αmPm,

where P1, . . . , Pm are permutation matrices and α1 + · · · + αm = 1. It is clear that h(B) = h(PB) for an

arbitrary permutation matrix P. Then we have

h(AB) = h(α1P1B + · · ·+ αmPmB)(2.3)

≤ α1h(P1B) + · · ·+ αmh(PmB)

= α1h(B) + · · ·+ αmh(B)

= (α1 + · · ·+ αm)h(B)

= h(B)

in which the inequality sign is due to the convexity of h.

Next we show the inequality holds for any integer 0 ≤ k ≤ n and all A ∈ ωn,k. Simply, let

(2.4) Ã =

[
A X

Y Z

]
be a doubly stochastic matrix containing A as a principal submatrix. (For instance, we can let Ã be the

minimal doubly stochastic completion obtained by the method described in the proof of Theorem 2.1 in [6].)

Write

(2.5) B̃ =

[
B 0

0 0

]
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with the same size as Ã. Since Ã is a doubly stochastic matrix, we can apply (2.3) to Ã and B̃ to get

h(AB) ≤ h
([
AB 0

Y B 0

])
= h(ÃB̃) ≤ h(B̃) = h(B).

(ii) For A ∈ Ωn, replacing h function by l function and using the concavity of l in (2.3), we get

(2.6) l(AB) ≥ l(B).

Then applying (2.6) to Ã and B̃ defined in (2.4) and (2.5), respectively, we have

l(AB) ≥ l
([
AB 0

Y B 0

])
= l(ÃB̃) ≥ l(B̃) = l(B).

Corollary 2.6. Let A,B ∈ ωn,k. Then

(i) h(AB) ≤ min{h(A), h(B)};
(ii) l(AB) ≥ max{l(A), l(B)}.

Remark 2.7. To determine whether the equality in (i) holds, simply let A = B =

[
In−k 0

0 0

]
. Then we

have AB = A = B, and therefore, h(AB) = h(A) = h(B) = min{h(A), h(B)}.

Remark 2.8. In [12], Wang shows that for A,B ∈ Ωn, h(AB) ≤ h(A)h(B). However similar result does

not hold for A,B ∈ ωn,k. To see this, simply choose

A =

 1
4

1
4

1
4

1
4

1
4

1
4

0 0 0

 ∈ ω3,2

and B just the transpose of A, i.e., B = At. Since

AB =

 3
16

3
16 0

3
16

3
16 0

0 0 0

 ,
we have h(AB) = 3

8 . However h(A) = h(B) = 1
2 , and hence,

3

8
= h(AB) > h(A)h(B) =

1

4
.

Corollary 2.9. Let A ∈ ωn,k. Then

(i) h(Am) ≤ h(A);

(ii) l(Am) ≥ l(A).

Lemma 2.10. Let A,B ∈ ωn. Then

0 ≤ l(AB) ≤ σ(A)σ(B)

n2
≤ h(AB).

Proof. The leftmost inequality is trivial.
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To show
σ(A)σ(B)

n2
≤ h(AB),

let A = [aij ] and B = [bij ] be two matrices in ωn. First note that AB = [
∑n
k=1 aikbkj ]. Without loss of

generality, assume

h(AB) =

n∑
i,j=1

aijbji.

We need to find the minimum value of h(AB) subject to the conditions

n∑
i,j=1

aij = σ(A)

and
n∑

i,j=1

bij = σ(B).

We introduce two Lagrange multipliers λ1 and λ2, and then construct the Lagrange function H as follows.

H = h(AB)− λ1

∑
i,j

aij − σ(A)

− λ2
∑

i,j

bij − σ(B)

 .

Using Lagrange multiplier method, we have

∂H

∂aij
= bji − λ1 = 0,

∂H

∂bij
= aji − λ2 = 0,

∂H

∂λ1
=
∑
i,j

aij − σ(A) = 0,

∂H

∂λ2
=
∑
i,j

bij − σ(B) = 0.

Solving the system of equations above, we get∑
i,j

aij = n2λ2 = σ(A),
∑
i,j

bij = n2λ1 = σ(B),

aij = λ2 =
σ(A)

n2
, bij = λ1 =

σ(B)

n2
.

Due to the convexity of the function h, we know that

hmin(AB) =
σ(A)σ(B)

n2
.

Similarly, by the method of Lagrange multipliers and the concavity of l function, we can prove that

lmax(AB) =
σ(A)σ(B)

n2
.

Since both l function and h function are well defined on the set of all n × n real matrices, although

A + B is not necessarily in ωn for A,B ∈ ωn,k, both l(A + B) and h(A + B) are well defined and we have

the following result.
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Proposition 2.11. Let A,B ∈ ωn,k. Then

(i) 0 ≤ h(A) + h(B)− h(A+B) ≤ min{h(A), h(B)} < n− k + 1;

(ii) l(A+B)− l(A)− l(B) <
2(n− k + 1)

n
.

Proof. (i) Since h(A+B) ≤ h(A) + h(B), it is clear that

0 ≤ h(A) + h(B)− h(A+B) ≤ min{h(A), h(B)} < n− k + 1,

where the equality implies h(A+B) = max{h(A), h(B)}. To see the upper bound is sharp, one can choose

such A and B that both contain n− k 1’s and an ε as follows:

A =



1
. . .

1

ε

0
. . .


and B =



0 1
. . .

. . .

0 1

0 0
. . . 0

ε 0


,

where 0 ≤ ε < 1. Then h(A) = h(B) = h(A+B) = n− k + ε, letting ε→ 1 and we get supA,B∈ωn,k
{h(A) +

h(B)− h(A+B)} = n− k + 1.

(ii) Since 1
2 (A+B) ∈ ωn,k, we have l(A+B

2 ) < n−k+1
n or l(A+B) < 2(n−k+1)

n . With l(A), l(B) ≥ 0, we

get l(A+B)− l(A)− l(B) < 2(n−k+1)
n .

3. The analogue of the Sylvesters law of the maximum diagonals of matrices in ωn,k. The

Sylverster’s law of the rank function (2.17.8 in [8]) says that if A is an m× t real matrix and B an t×n real

matrix, then

max{rank(A), rank(B)} ≤ rank(A) + rank(B)− rank(AB) ≤ n.

In [12], Wang conjectured the analogue of Sylvester’s law of h function on Ωn, and later on it was proved

by Balasubramanian for a more general case using the statement tr(A) + tr(B) − tr(AB) ≤ n. For further

use, we state the result as follows.

Theorem 3.1. (Main Theorem of [1]) If A,B are n × n real matrices with all elements in the closed

interval [0, 1], then

(3.7) h(A) + h(B)− h(AB) ≤ n.

Also, Balasubramanian gave the conditions for which the equality holds. Based on this theorem, we give

two analogues of (3.7) as follows.

Lemma 3.2. Let A ∈ Ωn and B ∈ ωn. Then

1 ≤ h(A) + h(B)− h(AB) ≤ n,

where both the equalities can be tight.
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Proof. The inequality involving the upper bound is due to Theorem 3.1. To get the equality of the upper

bound, simply take A to be any permutation matrix and any B ∈ ωn. In this case, h(AB) = h(B), and

therefore, h(A) + h(B)− h(AB) = h(A) = n.

For the lower bound, it is due to the combination of h(A) ≥ 1 and Theorem 2.5 (i). Thus, we have

h(A) + h(B)− h(AB) ≥ h(A) ≥ 1.

The equality for the lower bound holds when A = 1
nJn ∈ Ωn and B = s

n2 Jn ∈ ωn, where 0 < s < n. In this

case, AB = B and then h(B) = h(AB) = s
n , which implies that

h(A) + h(B)− h(AB) = h(A) = 1.

Let A,B ∈ ωn,k. Then, due to Theorem 3.1 and Corollary 2.6 (i), we have

(3.8) max{h(A), h(B)} ≤ h(A) + h(B)− h(AB) ≤ n.

When k = 0, i.e., A,B ∈ Ωn, both upper bound and lower bound are tight. However, when k is close to n,

the upper bound is not tight anymore. In addition, it seems that the lower bound can be more precise with

respect to the sub-defect k. So, we explore the role of k and obtain the following theorem for the doubly

substochastic matrix case, which is stronger than (3.8).

Theorem 3.3. Let A,B ∈ ωn,k. Then

n− k
n
≤ h(A) + h(B)− h(AB) ≤ min{n, 2(n− k + 1)}.

In particular when k ≥ n
2 + 1,

sup
A,B∈ωn,k

{h(A) + h(B)− h(AB)} = 2(n− k + 1).

In order to prove Theorem 3.3, we need the following lemma.

Lemma 3.4. Let A ∈ ωn,k. Then we have h(A) < n− k + 1 and

sup
A∈ωn,k

{h(A)} = n− k + 1.

Proof. Since A ∈ ωn,k, σ(A) < n − k + 1. It is clear that h(A) ≤ σ(A) < n − k + 1. So, n− k + 1 is an

upper bound. To show n− k+ 1 is the least upper bound, one can construct the following diagonal matrix:

(3.9) Aε =



1
. . .

1

ε

0
. . .


which contains n− k 1’s and an ε on the diagonal. For 0 ≤ ε < 1, Aε ∈ ωn,k. Note that

lim
ε→1−

h(Aε) = n− k + 1,
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which means that

sup
A∈ωn,k

{h(A)} = n− k + 1.

Corollary 3.5. Let A ∈ ωn,k. Then there exists an 0 ≤ ε < 1, such that

h(A) ≤ h(Aε).

Proof. It is clear that

h(Aε) = max{h(A) : σ(A) = σ(Aε), A ∈ ωn,k}.

Therefore, the corollary holds.

Now, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Upper bound. On the one hand, due to Theorem 3.1, A and B satisfy

h(A) + h(B)− h(AB) ≤ n.

Since when 0 ≤ k < n
2 + 1 we have 2(n − k + 1) > n, and therefore, the right hand side inequality in

Theorem 3.3 holds. For k ≥ n
2 + 1, we have

2(n− k + 1) ≤ 2
(
n− (

n

2
+ 1) + 1

)
= n.

Thus, we need to show that when k ≥ n
2 + 1, h(A) + h(B)− h(AB) ≤ 2(n− k+ 1). To see this, let Aε be as

in (3.9) and Bη be the matrix as follows.

Bη =



0
. . .

0

η

1
. . .

1


which contains n− k 1’s and a nonnegative real number 0 ≤ η < 1. Since k ≥ n

2 + 1, AεBη = 0, and hence,

h(AεBη) = 0. In addition, due to Corollary 3.5, we have both

max
A∈ωn,k

h(A) ≤ lim
ε→1−

h(Aε) = n− k + 1,

and

max
B∈ωn,k

h(B) ≤ lim
η→1−

h(Bη) = n− k + 1.

Therefore, we claim that

h(A) + h(B)− h(AB) ≤ lim
ε→1−

h(Aε) + lim
η→1−

h(Bη) = 2(n− k + 1).

Lower bound. Due to Corollary 2.3 and Corollary 2.6, we have

h(A) + h(B)− h(AB) ≥ max{h(A), h(B)} ≥ n− k
n

,
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which means that n−k
n is a lower bound. It is tight because one can always let

A0 =
1

n



1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0


∈ ωn,k

such that all elements in the the first n− k rows are 1
n and 0 otherwise. Let B0 = At0. Then

A0B0 =
1

n

[
Jn−k 0

0 0

]
.

So, we have

h(A0) = h(B0) = h(A0B0) =
n− k
n

,

and hence,

h(A0) + h(B0)− h(A0B0) =
n− k
n

.

In [12], the authors also conjectured the analogue of Frobenius inequalities of the rank function (see

page 27 in [8]).

Conjecture 3.6. (Conjecture 5.2 of [12]) Let A,B,C ∈ Ωn. Then

h(AB) + h(BC)− h(ABC) ≤ h(B).

Note that (3.7) is a special case of Conjecture 3.6 by letting B be the identity matrix. Although the

Sylvester’s law of h function is true and Conjecture 3.6 still remains mysterious to us, it is not true if we

replace Ωn by ωn in Conjecture 3.6. Here is an example.

Example 3.7. Let

A =
1

5


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

 ,

B = At and C = A. Then

AB =
1

5


1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0

0 0 0 0 0

 , BC =
3

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


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and

ABC =
3

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

 .
So, h(A) = h(B) = h(AB) = h(BC) = 3

5 and h(ABC) = 9
25 , and hence,

21

25
= h(AB) + h(BC)− h(ABC) > h(B) =

3

5
.
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