


structure by preferentially disadvantaging branching, encrusting

and arborescent corals, such as Acropora. The coral community

would change to a more homeogeneous, low-cover and

simplified assemblage across lagoons and ocean-facing reefs.

These trajectories are comparable to field data from Kiribati

atolls [5,7]. If disturbance frequency was increased to , 8 years,

the assemblage changed further to even lower cover made up

by small branching and small massive corals that never attained

large sizes (not illustrated since not expected within the next 50

years).

Discussion

Coral populations in atoll environments, as on any reef in

general, are relatively fragile with regards to impacts from climate

and environmental change and other, more direct, human impacts

[5]. Studies in the coral atolls of the Line Islands and the NW

Hawaiian islands have shown that with increased distance to

human habitation, coral cover and fish density tend to increase,

and negatives, such as for example coral diseases, decline

[5,7,8,44]. Potential causative factors are shown in table 1 and

were harnessed for a theoretical examination of several ‘‘what if’’

modeling scenarios of what might happen to coral populations

under minimal or maximum anthropogenic pressure, depending

on intensity of and proximity to human use. This is of relevance

for the Chagos. They are presently the world’s largest marine

protected area and are also one of the world’s largest remaining

wildernesses without any permanent human habitation [45].

There exists, however, strong debate on whether or not

resettlement of the atolls should be allowed. And there is the

question what damage far-field human impacts through climate

and environmental change can cause on even these most remote

reef systems. Better information about potential effects of near-

and far-field anthropogenic pressures can only help management

decision processes in this specific, and indeed any other, reef

setting.

The dynamics of Chagos coral populations between 1998 and

2009 showed differences in population structure and life-history

between lagoons and ocean-facing reefs. In lagoons, higher levels

of recruitment, higher coral cover and also higher persistence

through bleaching events were observed as well as estimated from

models. The coral biostromes (laterally continuous, thin coral

Figure 5. Summary of annual recruitment level ( = number of spat) between 1998 and 2006 required to obtain size distributions as
observed in 2006, based on model runs. Matrices show color-coded modal values of number of spat for each year (x-axis) and each depth zone
(y-axis). Highest recruitment levels are orange, lowest black. Overall, higher values of recruitment (more orange cells) were predicted for inside the
lagoons.
doi:10.1371/journal.pone.0036921.g005
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frameworks [46]) in the deep lagoons were identified as having

acted as a refuge due to lower mortality and also high recruitment.

Also on shallow lagoonal reefs, more large colonies had survived

the 1998 bleaching event than on ocean-facing reefs. Currents

measured inside lagoons were much weaker than on ocean facing

reefs (Fig. 1) suggesting that the combination of deep coral refuge,

individual large survivors, and weak currents may lead to a greater

availability and longer residence of larvae in the lagoons, thus

causing the higher recruitment levels (Fig. 5). Since models

suggested that coral populations across the Chagos must be highly

connected, it is possible that lagoonal reefs may also serve to seed

ocean-facing reefs and might therefore be a locus of resilience for

the entire atoll reef system. Of course differences in assemblage

structure exist between lagoonal and ocean-facing reefs [19], some

coral species may have unique dynamics to either environment

and some components of ocean-facing communities may be

decoupled from lagoonal processes. However, many of the

dominant species on Chagos reefs occur both inside and outside

the lagoons [10,19], suggesting that connectivity may indeed play

an important role.

Lagoons may be at more immediate risk from human and

climate change impacts than ocean-facing reefs [11], although

evidence for the opposite also exists [47]. However, nutrification

and pollution due to human settlement affects lagoons particularly

strongly and frequently leads to algal proliferation that in turn

reduces coral recruitment [11,7]. Other forms of pollution may

also have negative effects. Models suggest that even in the absence

of acute coral mortality, cover would be expected to decrease in

the long term in response to human pressure if coral recruitment is

disadvantaged by as little as 1% per annum. Scenarios exclusively

disadvantaging recruitment resulted in coral cover declines of

about 30% in 50 years (Fig. 6) due to lacking replacement of losses

by natural mortality in big colonies. This scenario not only bears

relevance to local land-based impacts but also to climate and

environmental change (both heat and acidification reduce larval

viability/settlement; [38,49]). Not surprisingly, if background

mortality of corals is raised (for example due to pollution,

sedimentation stress, predators or diseases), coral declines are

much more dramatic. From the models it is evident that impacts

from even a sparse human population have the potential to reduce

coral cover.

Introduction of repeated heavy mortality events, such as caused

by bleaching, predator or disease outbreaks [18,42], drastically

decreased contribution of branching, encrusting and arborescent

species. In the models, massives fared better due to higher

recruitment. But massives are also frequently more bleaching-

resistant, less susceptible to diseases and less favored by predators

[39,47,48,49]. Thus, under repeated heavy mortality, whether

Figure 6. Predictive model outcomes of impacts on coral cover on atolls. Four columns represent lagoonal and ocean-facing coral
populations of branching and encrusting and massive corals. Models use recruitment values of Fig. 5, and size distributions of Fig. 3 multiplied by
matrices of Fig. 2. This is the general model that was verified by hindcasting dynamics between 1998 and 2006. First row: trajectory of coral cover
under annual recruitment reduction of one percent ( = 50% cumulatively over 50 model years). Thick/dotted lines = scenario without/with recruitment
reductions, red dots = final degraded coral cover value after 50 model years. Second row: trajectory of coral cover with/without (thick/dotted lines)
recruitment reduction (1% annually cumulative over 50 years) and 75% mortality in non-recruit size classes every eight years. Third row: Synergistic
effects of recruitment reduction and repeat mortality of non-recruit size classes (2–5) on coral cover. Color coded value is percent of cover remaining
relative to completely undisturbed scenario.
doi:10.1371/journal.pone.0036921.g006
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caused by climate and environmental change or local human

habitation, the coral community will change to a novel low-cover

assemblage with changed contribution by growth forms. Due to

the decline in coral diversity, differences in communities among

environments can be lost (Fig. 6, middle row). The direction of this

change will depend on causes, patterns, and frequency of such

mass mortality, but the models and experience [47,49] suggest that

community changes are indeed likely to ensue. Even in the

absence of any local human population, far-field effects of

anthropogenic climate and environmental change can affect

recruitment and mortality, and therefore have the potential to

irreversibly reduce coral cover and cause changes towards novel,

homogenized assemblage structure that lacks previously observed

differentiation. Any such changes driven by far-field pressures

would be dramatically augmented by the addition of significant

near-field stresses.

Model results also find support in studies showing faster coral

reef regeneration in mostly unimpacted areas, such as marine

reserves, where higher fish and herbivore densities keep settling

substrates available for coral recruits [50]. The largely unexploited

nature of the Chagos and its good fish populations [51] presents as

healthy an environment for coral regeneration as can be found

anywhere. Since recovery in the Chagos from the 1998 bleaching

event was faster than in most other Indian Ocean reef areas [10],

this is a strong argument to support the minimization of human

impacts on coral reefs and furthering their protection.
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